WO2022030269A1 - 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法 - Google Patents

車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法 Download PDF

Info

Publication number
WO2022030269A1
WO2022030269A1 PCT/JP2021/027428 JP2021027428W WO2022030269A1 WO 2022030269 A1 WO2022030269 A1 WO 2022030269A1 JP 2021027428 W JP2021027428 W JP 2021027428W WO 2022030269 A1 WO2022030269 A1 WO 2022030269A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
display
vehicle
change
situation
Prior art date
Application number
PCT/JP2021/027428
Other languages
English (en)
French (fr)
Inventor
祐輔 三宅
敬久 藤野
敏治 白土
しおり 間根山
一輝 和泉
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022030269A1 publication Critical patent/WO2022030269A1/ja
Priority to US18/161,869 priority Critical patent/US20230166596A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/22Display screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/28Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/29Instruments characterised by the way in which information is handled, e.g. showing information on plural displays or prioritising information according to driving conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/172Driving mode indication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/18Information management
    • B60K2360/186Displaying information according to relevancy
    • B60K2360/1868Displaying information according to relevancy according to driving situations

Definitions

  • the present disclosure relates to a vehicle display control device, a vehicle display control system, and a vehicle display control method.
  • Patent Document 1 discloses a technique for starting and stopping automatic operation that automatically controls acceleration / deceleration according to a traffic jam situation.
  • automatic operation is started when a traffic jam occurs and the length of the section where the traffic jam occurs is equal to or more than a predetermined value.
  • a technique for stopping automatic operation when it is considered that the vehicle has escaped from a congested section is disclosed.
  • One purpose of this disclosure is a display control device for vehicles and a display for vehicles that enable the driver to give a more understandable notification according to the situation when the driving is changed from automatic driving during traffic congestion to driving requiring a driver. It is an object of the present invention to provide a control system and a display control method for a vehicle.
  • the vehicle display control device of the present disclosure limits the automatic driving in which the system on the vehicle side can perform all the driving tasks in the automatic driving to the conditions including at least the time of congestion.
  • a display control unit that displays a display regarding the change of driving from automatic driving during congestion to driving required by a driver, and a situation specifying unit that specifies the situation of a vehicle that is requested to switch from automatic driving during congestion to driving required by a driver.
  • the display control unit changes at least one of the display timing and contents related to the driving change according to the situation specified by the situation specifying unit.
  • the display control method for a vehicle of the present disclosure limits the automatic driving in which the system on the vehicle side can perform all the driving tasks to the conditions including at least the time of congestion. It is a display control method for a vehicle used in a vehicle capable of automatic driving at the time of congestion and driver-required driving in which the driver must also perform a driving task, and is executed by at least one processor.
  • a display control process that displays a display regarding the change of driving from automatic driving during congestion to driving required by a driver, and a display control process from automatic driving during congestion to a driver requiring a driver.
  • the situation specifying process for specifying the situation of the vehicle for which switching to driving is requested in the display control process, at least one of the display timing and contents regarding the driving change is set according to the situation specified in the situation specifying process. Let me change.
  • the display control system for a vehicle of the present disclosure limits the automatic driving in which the system on the vehicle side can perform all the driving tasks in the automatic driving to the conditions including at least the time of congestion.
  • the above-mentioned vehicle display control device that controls the display on the display.
  • the above-mentioned display control device for vehicles since the above-mentioned display control device for vehicles is included, it is possible to give a more understandable notification to the driver according to the situation when the driving is changed from the automatic driving at the time of traffic jam to the driving required by the driver.
  • the vehicle system 1 shown in FIG. 1 is used in a vehicle capable of automatic driving (hereinafter referred to as an automatic driving vehicle).
  • the vehicle system 1 includes an HCU (Human Machine Interface Control Unit) 10, a communication module 20, a locator 30, a map database (hereinafter, map DB) 40, a vehicle status sensor 50, and a peripheral monitoring sensor 60.
  • HCU Human Machine Interface Control Unit
  • map DB map database
  • vehicle status sensor 50 a vehicle status sensor 50
  • peripheral monitoring sensor 60 a vehicle status sensor
  • This vehicle system 1 corresponds to a vehicle display control system.
  • the vehicle using the vehicle system 1 is not necessarily limited to an automobile, but the case where the system 1 is used for an automobile will be described below as an example.
  • the automation level As the degree of automatic driving of an autonomous vehicle (hereinafter referred to as the automation level), there may be a plurality of levels as defined by SAE, for example.
  • the automation level is divided into levels 0 to 5 as follows, for example.
  • Level 0 is the level at which the driver performs all driving tasks without the intervention of the system.
  • the driving task may be paraphrased as a dynamic driving task.
  • Driving tasks are, for example, steering, acceleration / deceleration, and peripheral monitoring.
  • Level 0 corresponds to so-called manual operation.
  • Level 1 is the level at which the system supports either steering or acceleration / deceleration.
  • Level 1 corresponds to so-called driving support.
  • Level 2 is the level at which the system supports both steering and acceleration / deceleration. Level 2 corresponds to so-called partial operation automation. Levels 1 and 2 shall also be part of autonomous driving.
  • level 1 and 2 automatic driving is automatic driving in which the driver has a monitoring obligation related to safe driving (hereinafter, simply monitoring obligation). Obligation to monitor is to visually monitor the surrounding area.
  • Levels 1 and 2 automatic driving can be rephrased as automatic driving in which the second task is not permitted.
  • the second task is an act other than driving permitted to the driver, and is a predetermined specific act.
  • the second task can also be rephrased as a secondary activity, another activity, and the like.
  • the second task must not prevent the driver from responding to the request to take over the driving operation from the autonomous driving system. As an example, viewing of contents such as videos, operation of smartphones, reading, eating, etc. are assumed as second tasks.
  • Level 3 is a level at which the system can perform all driving tasks in a specific place such as a highway, and the driver performs driving operations in an emergency. At level 3, the driver is required to be able to respond promptly when there is a request for a driver change from the system. Level 3 corresponds to so-called conditional operation automation. Level 4 is a level at which the system can perform all driving tasks except under specific circumstances such as unresponsive roads and extreme environments. Level 4 corresponds to so-called advanced driving automation. Level 5 is the level at which the system can perform all driving tasks in any environment. Level 5 corresponds to so-called complete operation automation.
  • level 3 to 5 automatic driving is automatic driving where the driver is not obliged to monitor.
  • Levels 3 to 5 autonomous driving can be rephrased as autonomous driving in which a second task is permitted.
  • the presence or absence of monitoring obligation is switched by switching between the automation level of level 3 or higher and the automation level of level 2 or lower. Therefore, when switching from an automation level of level 3 or higher to an automation level of level 2 or lower, the driver is required to monitor the safe driving.
  • the configuration required when switching from the automation level of level 2 or higher to the automation level of level 1 or lower may be used. In the present embodiment, a case where a driver is required to change driving when switching from an automation level of level 3 or higher to an automation level of level 2 or lower will be described as an example.
  • the automation level of the autonomous driving vehicle of this embodiment can be switched.
  • the automation level may be configured to be switchable only between some of the levels 0 to 5.
  • the case where the autonomous driving vehicle can switch between the automatic driving of the automation level 3 and the automatic driving or the manual driving of the automation level 2 or less will be described as an example.
  • the automatic operation of the automation level 3 is permitted only in the case of a traffic jam.
  • the automatic driving of the automation level 3 may be permitted only when the vehicle is congested and when the vehicle is traveling on a specific road section such as an expressway or a motorway.
  • the automatic driving of the automation level 3 will be described by taking as an example the case where the automatic driving is permitted only when the vehicle is congested and when driving on a specific road section such as a highway or a motorway.
  • Such automatic driving of automation level 3 which is permitted only in the time of traffic jam is hereinafter referred to as automatic driving in traffic jam.
  • automatic operation and manual operation of automation level 2 or lower are hereinafter referred to as driver-required operation.
  • the communication module 20 transmits / receives information to / from another vehicle via wireless communication. That is, vehicle-to-vehicle communication is performed.
  • the communication module 20 may transmit and receive information via wireless communication with the roadside unit installed on the roadside. That is, road-to-vehicle communication may be performed.
  • the communication module 20 may receive information on the peripheral vehicle transmitted from the peripheral vehicle of the own vehicle via the roadside unit.
  • the communication module 20 may send and receive information to and from a center outside the own vehicle via wireless communication. That is, wide area communication may be performed.
  • the communication module 20 may receive information on the peripheral vehicle transmitted from the peripheral vehicle of the own vehicle via the center.
  • the communication module 20 may receive traffic congestion information, weather information, and the like around the own vehicle from the center.
  • the locator 30 is equipped with a GNSS (Global Navigation Satellite System) receiver and an inertial sensor.
  • the GNSS receiver receives positioning signals from a plurality of positioning satellites.
  • the inertial sensor includes, for example, a gyro sensor and an acceleration sensor.
  • the locator 30 sequentially positions the vehicle position of the own vehicle (hereinafter referred to as the own vehicle position) on which the locator 30 is mounted by combining the positioning signal received by the GNSS receiver and the measurement result of the inertial sensor.
  • the position of the own vehicle shall be represented by, for example, the coordinates of latitude and longitude.
  • the mileage obtained from the signals sequentially output from the vehicle speed sensor mounted on the vehicle may also be used.
  • the map DB 40 is a non-volatile memory and stores high-precision map data.
  • the high-precision map data is map data with higher accuracy than the map data used for route guidance in the navigation function.
  • the map DB 40 may also store map data used for route guidance.
  • the high-precision map data includes information that can be used for automatic driving, such as three-dimensional shape information of a road, information on the number of lanes, and information indicating an allowable traveling direction for each lane.
  • the high-precision map data may include information on node points indicating the positions of both ends of the road marking such as a lane marking.
  • the locator 30 may be configured not to use a GNSS receiver by using the three-dimensional shape information of the road.
  • the locator 30 is a peripheral monitoring sensor such as a lidar (Light Detection and Ringing / Laser Imaging Detection and Ringing) or a peripheral monitoring camera that detects three-dimensional shape information of a road and a point cloud of a road shape and a feature point of a structure.
  • the position of the own vehicle may be specified by using the detection result of 60.
  • the three-dimensional shape information of the road may be generated based on the captured image by REM (Road Experience Management).
  • the communication module 20 may receive the map data distributed from the external server by, for example, wide area communication and store it in the map DB 40.
  • the map DB 40 may be used as a volatile memory, and the communication module 20 may be configured to sequentially acquire map data of an area corresponding to the position of the own vehicle.
  • the vehicle state sensor 50 is a group of sensors for detecting various states of the own vehicle.
  • the vehicle state sensor 50 includes a vehicle speed sensor that detects a vehicle speed, a steering sensor that detects a steering angle, and the like.
  • the vehicle state sensor 50 includes a steering torque sensor, an accelerator sensor, a brake sensor, and the like.
  • the steering torque sensor detects the steering torque applied to the steering wheel.
  • the accelerator sensor detects whether or not the accelerator pedal is depressed.
  • an accelerator pedal force sensor that detects the pedaling force applied to the accelerator pedal may be used.
  • an accelerator stroke sensor that detects the amount of depression of the accelerator pedal may be used.
  • an accelerator switch that outputs a signal depending on whether or not the accelerator pedal is depressed may be used.
  • the brake sensor detects whether or not the brake pedal is depressed.
  • a brake pedal force sensor that detects the pedal effort applied to the brake pedal may be used.
  • a brake stroke sensor that detects the amount of depression of the brake pedal may be used.
  • a brake switch that outputs a signal depending on whether or not the brake pedal is depressed may be used.
  • the vehicle status sensor 50 outputs the detected sensing information to the in-vehicle LAN.
  • the sensing information detected by the vehicle state sensor 50 may be output to the in-vehicle LAN via the ECU mounted on the own vehicle.
  • the peripheral monitoring sensor 60 monitors the surrounding environment of the own vehicle.
  • the peripheral monitoring sensor 60 detects obstacles around the own vehicle such as moving objects such as pedestrians and other vehicles, and stationary objects such as falling objects on the road. In addition, it detects road markings such as driving lane markings around the vehicle.
  • the peripheral monitoring sensor 60 is, for example, a peripheral monitoring camera that captures a predetermined range around the own vehicle, a millimeter wave radar that transmits an exploration wave to a predetermined range around the own vehicle, a sonar, a sensor such as LIDAR.
  • the peripheral monitoring camera sequentially outputs the captured images to be sequentially captured as sensing information to the automatic driving ECU 80.
  • Sensors that transmit exploration waves such as sonar, millimeter-wave radar, and LIDAR sequentially output scanning results based on the received signal obtained when the reflected wave reflected by an obstacle is received to the automatic operation ECU 80 as sensing information.
  • the sensing information detected by the peripheral monitoring sensor 60 may be output to the in-vehicle LAN via the automatic driving ECU 80.
  • the vehicle control ECU 70 is an electronic control device that controls the running of the own vehicle. Examples of the traveling control include acceleration / deceleration control and / or steering control.
  • the vehicle control ECU 70 includes a steering ECU that performs steering control, a power unit control ECU that performs acceleration / deceleration control, a brake ECU, and the like.
  • the vehicle control ECU 70 performs driving control by outputting control signals to each traveling control device such as an electronically controlled throttle, a brake actuator, and an EPS (Electric Power Steering) motor mounted on the own vehicle.
  • EPS Electronic Power Steering
  • the automatic operation ECU 80 includes, for example, a processor, a memory, an I / O, and a bus connecting these, and executes a process related to automatic operation by executing a control program stored in the memory.
  • the memory referred to here is a non-transitory tangible storage medium that stores programs and data that can be read by a computer non-temporarily. Further, the non-transitional substantive storage medium is realized by a semiconductor memory, a magnetic disk, or the like.
  • the automatic operation ECU 80 includes a first automatic operation ECU 81 and a second automatic operation ECU 82.
  • the following description will be made assuming that the first automatic operation ECU 81 and the second automatic operation ECU 82 each include a processor, a memory, an I / O, and a bus connecting them. It should be noted that a common processor may be configured to carry out the functions of the first automatic operation ECU 81 and the second automatic operation ECU 82 by the virtualization technology.
  • the first automatic operation ECU 81 is responsible for the above-mentioned automatic operation function of level 2 or lower. In other words, the first automatic operation ECU 81 enables automatic operation for which monitoring is obligatory.
  • the first automatic driving ECU 81 can execute at least one of vertical control and horizontal control of the own vehicle.
  • the vertical direction is a direction that coincides with the front-rear direction of the own vehicle.
  • the lateral direction is a direction that coincides with the width direction of the own vehicle.
  • the first automatic driving ECU 81 executes acceleration / deceleration control of the own vehicle as vertical control.
  • the first automatic driving ECU 81 executes steering control of the own vehicle as lateral control.
  • the first automatic operation ECU 81 includes a first environment recognition unit, an ACC control unit, an LTA control unit, and the like as functional blocks.
  • the first environment recognition unit recognizes the driving environment around the own vehicle based on the sensing information acquired from the peripheral monitoring sensor 60. As an example, the first environment recognition unit recognizes the detailed position of the own vehicle in the traveling lane from the information such as the left and right lane markings of the own vehicle's traveling lane (hereinafter, the own lane). In addition, the first environment recognition unit recognizes the position and speed of obstacles such as vehicles around the own vehicle. The first environment recognition unit recognizes the position and speed of obstacles such as vehicles in its own lane. In addition, the first environment recognition unit recognizes the position and speed of obstacles such as vehicles in the lanes around the own lane.
  • the peripheral lane may be, for example, an adjacent lane to the own lane. In addition, the peripheral lane may be a lane other than the own lane in the road section where the own vehicle is located.
  • the first environment recognition unit may have the same configuration as the second environment recognition unit described later.
  • the ACC control unit executes ACC (Adaptive Cruise Control) control that realizes constant speed running of the own vehicle at a target speed or following running of the preceding vehicle.
  • the ACC control unit may execute the ACC control using the position and speed of the vehicle around the own vehicle recognized by the first environment recognition unit.
  • the ACC control unit may execute the ACC control by causing the vehicle control ECU 70 to perform acceleration / deceleration control.
  • the LTA control unit executes LTA (Lane Tracing Assist) control for maintaining the vehicle running in the lane.
  • the LTA control unit may execute the LTA control using the detailed position of the own vehicle in the own lane recognized by the first environment recognition unit.
  • the LTA control unit may execute the LTA control by causing the vehicle control ECU 70 to perform steering control.
  • the ACC control is an example of vertical control.
  • LTA control is an example of lateral control.
  • the first automatic operation ECU 81 realizes level 2 automatic operation by executing both ACC control and LTA control.
  • the first automatic operation ECU 81 may realize level 1 automatic operation by executing either ACC control or LTA control.
  • the second automatic operation ECU 82 has the above-mentioned automatic operation function of level 3 or higher. In other words, the second automatic operation ECU 82 enables automatic operation without monitoring obligation.
  • the second automatic operation ECU 82 includes a second environment recognition unit, an action determination unit, a trajectory generation unit, and the like as functional blocks.
  • the second environment recognition unit is based on the sensing information acquired from the peripheral monitoring sensor 60, the position of the own vehicle acquired from the locator 30, the map data acquired from the map DB 40, the information of other vehicles acquired by the communication module 20, and the like. Recognize the driving environment around the car. As an example, the second environment recognition unit uses this information to generate a virtual space that reproduces the actual driving environment.
  • the second environment recognition unit determines the manual driving area (hereinafter referred to as MD area) in the driving area of the own vehicle.
  • the second environment recognition unit determines the automatic driving area (hereinafter referred to as AD area) in the traveling area of the own vehicle.
  • the second environment recognition unit determines the ST section in the AD area.
  • the second environment recognition unit determines the non-ST section in the AD area.
  • the MD area is an area where automatic driving is prohibited.
  • the MD area is an area defined by the driver to perform all of the vertical control, horizontal control, and peripheral monitoring of the own vehicle.
  • the MD area may be a general road.
  • the AD area is an area where automatic driving is permitted.
  • the AD area is an area defined in which the vehicle can substitute one or more of the vertical control, the horizontal control, and the peripheral monitoring.
  • the AD area may be a highway or a motorway.
  • the AD area is divided into a non-ST section where automatic operation of level 2 or lower is possible and an ST section where automatic operation of level 3 or higher is possible.
  • the non-ST section where the level 1 automatic operation is permitted and the non-ST section where the level 2 automatic operation is permitted are not separately classified.
  • the ST section may be, for example, a traveling section in which traffic congestion occurs (hereinafter referred to as a traffic jam section). Further, the ST section may be, for example, a traveling section in which high-precision map data is prepared.
  • the non-ST section may be a section that does not correspond to the ST section.
  • the action judgment unit determines the planned action (hereinafter referred to as future action) for the own vehicle based on the recognition result of the driving environment in the second environment recognition unit.
  • the action judgment unit judges future actions for driving the own vehicle by automatic driving.
  • the action judgment unit may determine the type of behavior that the vehicle should take in order to reach the destination as a future action. Examples of this type include going straight, turning right, turning left, and changing lanes.
  • the action judgment unit determines that the transfer of the driving control right to the driver (that is, the driving change) is necessary, the action judgment unit generates a change request and outputs it to the HCU 10.
  • a driving change there is a case where the own vehicle moves from the ST section to the non-ST section of the AD area.
  • the own vehicle moves from the ST section of the AD area to the MD area.
  • Other causes of driving changes include elimination of traffic congestion and lack of high-precision map data.
  • the shortage of high-precision map data can be predicted.
  • the action judgment unit uses the position of the own vehicle for positioning the lack of high-precision map data with the locator 30 and the high-precision map data stored in the map DB 40 to obtain the high-precision map data of the planned course of the own vehicle. You can predict the shortage. Then, when the behavior judgment unit predicts a shortage of high-precision map data, it determines that a driving change is necessary, and requests a change before the vehicle reaches the point where the shortage of high-precision map data is predicted. May be output to the HCU 10.
  • the elimination of traffic congestion may or may not be predictable. Specifically, if the communication module 20 can receive traffic jam information and information on surrounding vehicles, it is possible to predict the elimination of the traffic jam from these information.
  • the action determination unit may predict the elimination of the congestion in the planned course of the own vehicle by using the position of the own vehicle determined by the locator 30 and the congestion information received by the communication module 20.
  • the behavior prediction unit may predict the elimination of the congestion in the planned course of the own vehicle by using the number and speed of the peripheral vehicles specified from the information of the peripheral vehicles received by the communication module 20. Then, if the action judgment unit predicts that the traffic jam will be eliminated, it determines that a driving change is necessary, and outputs a change request to the HCU 10 before the vehicle reaches the point where the congestion is predicted to be eliminated. good.
  • the communication module 20 cannot receive the traffic jam information and the information of surrounding vehicles, it is assumed that the elimination of the traffic jam cannot be predicted. If the elimination of the traffic jam cannot be predicted, the elimination of the traffic jam may be determined by using the number of peripheral vehicles, the speed, etc. recognized by the second environment recognition unit using the peripheral monitoring sensor 60. Then, when the action determination unit determines that the traffic congestion is resolved, it may determine that a driving change is necessary and output a change request to the HCU 10.
  • the action judgment unit uses the position of the own vehicle determined by the locator 30 and the high-precision map data stored in the map DB 40 to end the section where the median strip of the planned course of the own vehicle exists, and to determine the number of lanes.
  • the behavior determination unit may predict changes in the road structure such as entry of the own vehicle into the construction section from the presence of a signboard or the like under construction recognized by the second environment recognition unit using the peripheral monitoring sensor 60. Then, when the behavior judgment unit predicts these changes in the road structure, it determines that a driving change is necessary, and makes a change request before the vehicle reaches the point where these changes in the road structure occur. You can output to.
  • Sudden sensor loss is a failure of the peripheral monitoring sensor 60, a failure to recognize the driving environment using the peripheral monitoring sensor 60, and the like. Sudden bad weather is heavy rain, snow, fog, etc. Sudden bad weather causes a change in driving because the accuracy of recognizing the driving environment using the peripheral monitoring sensor 60 may decrease. In addition, sudden bad weather causes a change in driving because there is a possibility that a communication problem may occur in the communication module 20. Sudden sensor loss and sudden bad weather are unpredictable.
  • the behavior judgment unit may judge a sudden sensor loss or a sudden bad weather from the recognition result of the driving environment by the second environment recognition unit. Further, when the action determination unit determines that a sudden sensor loss or a sudden bad weather condition is made, it may determine that a driving change is necessary and output a change request to the HCU 10.
  • the action judgment unit If the cause of the change can be predicted, the action judgment unit outputs the change request to the HCU 10 before the cause of the change occurs. On the other hand, if the cause of the change cannot be predicted, the action judgment unit outputs a change request to the HCU 10 after the cause of the change occurs.
  • the causes of change can be classified into the following four patterns.
  • the first pattern is the elimination of predictable congestion.
  • the second pattern is the elimination of unpredictable congestion.
  • the third pattern is a predictable cause other than the elimination of traffic congestion.
  • the fourth pattern is an unpredictable cause other than the elimination of traffic congestion.
  • the third pattern includes lack of high-precision map data and changes in road structure.
  • the fourth pattern includes sudden sensor loss and sudden bad weather. Predictable sensor lost and predictable bad weather may be included in, for example, the third pattern.
  • the four patterns from the first pattern to the fourth pattern can be grouped as shown in FIG.
  • the SU in FIG. 2 shows that the vehicle speed of the own vehicle increases after the driving change.
  • the SM in FIG. 2 shows that the vehicle speed of the own vehicle is maintained even after the driving change.
  • P in FIG. 2 indicates that the driving change is predictable. Being able to predict a driving change can be rephrased as being able to give a notification instructing a driving change (hereinafter referred to as a driving change notification) before the cause of the change occurs.
  • a driving change notification a notification instructing a driving change
  • Up in FIG. 2 indicates that the driving change is unpredictable.
  • the unpredictability of a driving change can be rephrased as the inability to notify the driving change before the cause of the change occurs.
  • the first pattern and the second pattern are classified into a group in which the vehicle speed of the own vehicle increases after the driving change. This is because in the first pattern and the second pattern, the cause of the change is the elimination of traffic congestion, and the vehicle speed increases after the change of driving.
  • the third pattern and the fourth pattern are classified into a group in which the vehicle speed of the own vehicle is maintained even after the driving change. This is because, in the third pattern and the fourth pattern, the cause of the change is other than the elimination of the traffic jam, and the traffic jam continues even after the driving change, and the vehicle speed cannot be increased.
  • the first pattern and the third pattern are classified into a group in which the operation change can be predicted.
  • the second pattern and the fourth pattern classify the driving change into an unpredictable group.
  • the track generation unit generates a driving track of the own vehicle in a section where automatic driving can be executed, based on the recognition result of the driving environment in the second environment recognition unit and the future action determined by the action judgment unit.
  • the traveling track includes, for example, a target position of the own vehicle according to the progress, a target speed at each target position, and the like.
  • the track generation unit sequentially provides the generated travel track to the vehicle control ECU 70 as a control command to be followed by the own vehicle in automatic driving.
  • the automatic driving system including the above automatic driving ECU 80 enables automatic driving of level 2 or lower and level 3 or higher in the own vehicle.
  • the automatic driving ECU 80 may be configured to switch the automation level of the automatic driving of the own vehicle as needed.
  • the automatic driving of level 3 may be switched to the automatic driving of level 2 or lower.
  • the automatic driving ECU 80 may switch from level 3 automatic driving to manual driving when the own vehicle moves from the ST section of the AD area to the MD area.
  • the display device 90 is a display device provided in the own vehicle.
  • the display 90 is provided in the vehicle interior of the own vehicle so that the display surface faces.
  • the display 90 is provided so that the display surface is located in front of the driver's seat of the own vehicle.
  • various displays such as a liquid crystal display, an organic EL display, and a head-up display (hereinafter, HUD) can be used.
  • the HCU 10 is mainly composed of a computer equipped with a processor, a volatile memory, a non-volatile memory, an I / O, and a bus connecting these, and is connected to the display 90 and the in-vehicle LAN.
  • the HCU 10 controls the display on the display 90 by executing a control program stored in the non-volatile memory.
  • This HCU 10 corresponds to a vehicle display control device. The configuration of the HCU 10 regarding the control of the display on the display 90 will be described in detail below.
  • the HCU 10 has a change request acquisition unit 101, a situation identification unit 102, an interrupt identification unit 103, an override detection unit 104, and a display control unit 105 as functional blocks for controlling the display on the display 90. Be prepared. Further, the execution of the processing of each functional block of the HCU 10 by the computer corresponds to the execution of the display control method for the vehicle. In addition, a part or all of the functions executed by the HCU 10 may be configured in terms of hardware by one or a plurality of ICs or the like. Further, a part or all of the functional blocks included in the HCU 10 may be realized by a combination of software execution by a processor and hardware members.
  • the replacement request acquisition unit 101 acquires the replacement request output from the automatic operation ECU 80.
  • the replacement request acquisition unit 101 acquires the replacement request when the replacement request is output from the automatic operation ECU 80.
  • the situation specifying unit 102 identifies the situation of the own vehicle that requires switching from automatic driving during traffic congestion to driving requiring a driver (that is, driving change).
  • the process in the situation specifying unit 102 corresponds to the situation specifying process.
  • the situation specifying unit 102 may specify the situation of the own vehicle (hereinafter, the replacement situation) that requires the driving change requested by the replacement request.
  • the first situation is a change situation in which the cause of the change corresponds to the above-mentioned first pattern.
  • the second situation is a change situation in which the cause of the change corresponds to the above-mentioned second pattern.
  • the third situation is a replacement situation in which the cause of the replacement corresponds to the above-mentioned third pattern.
  • the fourth situation is a replacement situation in which the cause of the replacement corresponds to the above-mentioned fourth pattern. That is, the first situation and the second situation correspond to a situation in which the cause of the change is the elimination of the traffic jam. On the other hand, the third situation and the fourth situation correspond to the situation where the cause of the change is not the elimination of the traffic jam.
  • the first situation and the third situation correspond to situations in which the driving change can be predicted. In other words, it is a situation where it is possible to notify the driving change before the cause of the change occurs.
  • the second situation and the fourth situation correspond to a situation in which the driving change is unpredictable. In other words, it is a situation where it is impossible to notify the driving change before the cause of the change occurs.
  • the situation specifying unit 102 may specify that it is the first situation when the behavior determination unit of the automatic driving ECU 80 predicts that the traffic jam will be eliminated.
  • the situation specifying unit 102 may specify that it is the second situation when the behavior determination unit of the automatic driving ECU 80 determines that the elimination of the traffic jam is unpredictable.
  • the situation specifying unit 102 may specify that it is the third situation when the action determination unit of the automatic driving ECU 80 predicts a cause of change other than the elimination of the traffic jam. Predictable causes of change other than the elimination of traffic congestion include the above-mentioned lack of high-precision map data and changes in road structure.
  • the situation specifying unit 102 may specify that it is the fourth situation when the behavior determination unit of the automatic driving ECU 80 determines that the cause of the change other than the elimination of the traffic jam is unpredictable.
  • the causes of unpredictable changes other than the elimination of traffic congestion include the sudden sensor loss and sudden bad weather mentioned above.
  • the interruption specifying unit 103 specifies whether or not there is an interruption of a vehicle around the own vehicle into the traveling lane of the own vehicle (that is, the own lane).
  • the interruption specifying unit 103 specifies, for example, whether or not there is an interruption of the peripheral vehicle into the own lane from the recognition result of the peripheral vehicle of the own vehicle in the driving environment recognized by the first environment recognition unit of the automatic driving ECU 80. Just do it. For example, it may be specified whether or not there is an interruption of the peripheral vehicle into the own lane based on whether or not the acceleration of the peripheral vehicle toward the own lane exceeds the threshold value.
  • the lighting of the winker lamp of the peripheral vehicle may be configured to be recognized by the first environment recognition unit by image analysis of the image captured by the peripheral surveillance camera.
  • the information on the peripheral vehicle received by the communication module 20 includes information for transmitting the interruption of the peripheral vehicle to the own lane, is there an interruption of the peripheral vehicle to the own lane using this information? You may specify whether or not.
  • the override detection unit 104 detects an override, which is an operation for the driver of the own vehicle to voluntarily acquire the control right of the own vehicle.
  • the override detection unit 104 may detect the override from the sensing information obtained from the vehicle condition sensor 50. For example, the override detection unit 104 may detect the override when the steering torque detected by the steering torque sensor exceeds the threshold value. Further, the override detection unit 104 may detect the override when the accelerator sensor detects that the accelerator pedal is depressed. In addition, the override detection unit 104 may detect the override when the brake sensor detects that the brake pedal is depressed.
  • the display control unit 105 causes the display regarding the change of driving from the automatic driving during traffic jam to the driving required by the driver when it is necessary to switch from the automatic driving during traffic jam to the driving required by the driver.
  • the process in the display control unit 105 corresponds to the display control process. Since the display control unit 105 has acquired the replacement request by the replacement request acquisition unit 101, it may determine that it is necessary to switch from the automatic operation during traffic congestion to the driver-required operation.
  • Examples of the display related to the driving change include a change instruction display, a display after the driving change, and a preceding display.
  • the change instruction display is a display as a driving change notification instructing a driving change.
  • As an example of the change instruction display there is a display of texts, icons, etc. that prompt the driver to change the driving.
  • the display after the driving change is the display after the driving change.
  • the display after the operation change is the display of the information necessary for the automatic operation and the manual operation of the automation level 2 or less after the operation change.
  • As an example of the display after the driving change there is a display such as an image showing information about the vehicle speed of the own vehicle and the surroundings of the own vehicle.
  • the preceding display is a display in which the information displayed after the driving change is displayed prior to the driving change.
  • Examples of the preceding display include a display in which the information of the change instruction display and the information of the operation change display are combined, a display in which the information of the simplified change instruction display and the information of the operation change display are combined, and the like.
  • the display control unit 105 changes at least one of the display timing and contents related to the driving change according to the situation specified by the situation specifying unit 102. More specifically, the timing of the change instruction display, the content of the change instruction display, the presence / absence of the preceding display, the content of the display after the operation change, etc. are changed.
  • the display control unit 105 changes the timing and content of the display related to the operation change depending on whether or not the situation specified by the situation specifying unit 102 is a situation in which the change instruction display is performed before the occurrence of the change cause. Is preferable.
  • the timing of the replacement instruction display and the driver's margin from the replacement instruction display to the driving change differ depending on whether or not the situation causes the replacement instruction display to be performed before the occurrence of the replacement cause.
  • the timing of the replacement instruction display can be changed or the driver's margin can be adjusted depending on whether or not the situation is such that the replacement instruction display is performed before the occurrence of the replacement cause. It is possible to change the contents of the replacement instruction display.
  • the first situation and the third situation correspond to the situation in which the replacement instruction is displayed before the occurrence of the replacement cause.
  • the display control unit 105 precedes the information to be displayed after the operation change before the operation change is completed. It is preferable to display in advance. On the other hand, it is preferable that the display control unit 105 does not perform the preceding display in the case of a situation in which the replacement instruction display is performed before the occurrence of the replacement cause. In a situation where the replacement instruction is displayed after the cause of the replacement occurs, the grace period from the display of the replacement instruction to the driving change is short. On the other hand, the preceding display makes it possible for the driver to quickly grasp the situation by displaying the information to be displayed after the driving change in advance before the driving change is completed.
  • the second situation and the fourth situation correspond to the situation in which the replacement instruction is displayed after the occurrence of the replacement cause.
  • the change instruction display is also performed together with the advance display until the operation change is completed. According to this, even when the advance display is performed, the driver can easily recognize from the change instruction display that the driving change is necessary.
  • the replacement instruction display may be displayed by simplifying the information or narrowing the display area as compared with the case where the replacement instruction display is not displayed together with the preceding display. Further, when the replacement instruction display is performed together with the preceding display, the other may be superimposed on one of the display areas, or the respective display areas may be displayed separately.
  • the display control unit 105 provides information about the surroundings of the own vehicle when the situation specified by the situation specifying unit 102 is a situation in which the cause of the change is not the elimination of the traffic jam, as compared with the case where the cause of the change is the elimination of the traffic jam. It is preferable to display after the operation change, which has a low degree of detail. Further, when the situation specified by the situation specifying unit 102 is a situation in which the cause of the change is not the elimination of the traffic jam, the display control unit 105 is more about the surroundings of the own vehicle than in the case of the situation where the cause of the change is the elimination of the traffic jam. It is preferable to display the information after the operation change, which has a low degree of detail.
  • the vehicle speed of the own vehicle will increase after the change of driving, and it will be necessary to pay more attention to the surroundings of the own vehicle. Therefore, there is a high need for more detailed information about the surroundings of the vehicle.
  • the cause of the change is not the elimination of the traffic jam
  • the traffic jam continues even after driving and the vehicle speed does not increase, so it is less necessary to pay attention to the surroundings of the vehicle. Therefore, there is less need for more detailed information about the surroundings of the vehicle.
  • the degree of detail of the information about the surroundings of the own vehicle is determined according to the need for more detailed information about the surroundings of the own vehicle after the driving change in each situation. It will be possible to change.
  • the third situation and the fourth situation correspond to the situation where the cause of the change is not the elimination of the traffic jam.
  • the first situation and the second situation correspond to the situation where the cause of the change is the elimination of the traffic jam.
  • the display control unit 105 includes driving change including information on the own lane and surrounding lanes as information on the surroundings of the own vehicle. It is preferable to have the posterior display performed.
  • the display control unit 105 uses the own lane and the own lane of the surrounding lanes as information about the surroundings of the own vehicle. It is preferable to display after the operation change including only the information.
  • the information on the own lane may be, for example, a diagram showing the division line of the own lane and the positional relationship of the surrounding vehicles in the own lane with respect to the own vehicle.
  • the information on the peripheral lane may be, for example, a diagram showing the division line of the own lane and the positional relationship of the peripheral vehicles in the peripheral lane with respect to the own vehicle.
  • the display control unit 105 displays after the driving change including information on only the own lane and the surrounding lane as information about the surroundings of the own vehicle, and the interrupt specifying unit 103 shifts to the own lane.
  • the display control unit 105 detects the override in the override detection unit 104 in a situation where the display is performed after the driving change including the information of only the own lane among the own lane and the surrounding lane as the information about the surroundings of the own vehicle. If this is the case, it is preferable to change the display after the driving change to the display after the driving change including information on the surrounding lanes in addition to the own lane.
  • the behavior of the vehicle may change suddenly, so it is highly necessary to pay attention to the surrounding lanes.
  • FIG. 4 is a diagram for explaining the timing of an event related to display control in the first situation.
  • the vertical axis of FIG. 4 shows the vehicle speed of the own vehicle.
  • the horizontal axis of FIG. 4 indicates time.
  • ADTJ in FIG. 4 shows a period of automatic operation during traffic congestion.
  • the DDR in FIG. 4 shows the period of driver-required driving.
  • the PCE in FIG. 4 shows the timing at which the elimination of the traffic jam could be predicted.
  • the TOR in FIG. 4 indicates the timing at which the change instruction display is performed.
  • the CF in FIG. 4 indicates the timing of completion of the driving change.
  • the SUT in FIG. 4 indicates the timing at which the vehicle speed of the own vehicle increases.
  • the PE in FIG. 4 indicates the period during which the congestion is predicted to be eliminated. Since the elimination of traffic congestion is a prediction, it is assumed that the congestion will be eliminated anywhere within a wide period.
  • the action judgment unit predicts the elimination of the congestion based on the information received by the communication module 20 before the congestion is resolved (see PCE in FIG. 4). Then, before the period in which the elimination of the traffic jam is predicted (see PE in FIG. 4), the change instruction display is performed by the control of the display control unit 105 (see TOR in FIG. 4). The period during which the congestion is expected to be eliminated may be predicted by the action determination unit based on the information received by the communication module 20.
  • the change instruction display in the first situation in addition to the content requesting the driving change, the display including the content indicating that the congestion is expected to be eliminated may be displayed. For example, in the area A shown in FIG.
  • a display such as "The traffic jam will disappear after XX seconds. Please prepare for driving.” May be displayed. Sc in FIG. 5 shows the display surface of the display 90.
  • the area A may be the entire display surface of the display 90, or may be a part of the display surface of the display 90.
  • the driving change is completed (see CF in Fig. 4).
  • the completion of the driving change may be determined by the HCU 10 based on the fact that, for example, the grip sensor provided on the steering wheel detects the grip of the steering wheel. It is preferable that the change instruction display is displayed until the operation change is completed.
  • the display after the operation change is started under the control of the display control unit 105 (see ACI in FIG. 4).
  • the automatic driving at the time of traffic jam is switched to the driver-required driving. It should be noted that the switching from the automatic driving during traffic congestion to the driver-required driving may be performed at the same timing as the completion of the driving change.
  • the vehicle speed can be increased, so that the vehicle speed of the own vehicle can be increased by the driving operation of the driver (see SUT in FIG. 4).
  • the vehicle speed of the own vehicle may be increased by the control of the automatic driving system side.
  • a diagram showing the positional relationship between the vehicle and the surrounding vehicles in the own lane (see OLV in FIG. 6) and a diagram showing the positional relationship between the vehicle and the surrounding vehicles in the peripheral lane (FIG. 6). 6) and may be displayed.
  • a line indicating a dividing line between the own lane and the surrounding lane may also be displayed.
  • an image showing the vehicle speed of the own vehicle (Ve in FIG. 6) may be displayed.
  • FIG. 7 is a diagram for explaining the timing of an event related to display control in the second situation.
  • the vertical axis of FIG. 7 shows the vehicle speed of the own vehicle.
  • the horizontal axis of FIG. 7 indicates time.
  • the PC of FIG. 7 shows the timing at which the congestion is cleared.
  • the FI in FIG. 7 indicates the timing at which the preceding display is performed.
  • the congestion cannot be predicted and the congestion suddenly disappears (see the PC in Fig. 7).
  • the elimination of the traffic jam itself may be performed by the action judgment unit as described above.
  • the change instruction display is performed under the control of the display control unit 105 (see TOR in FIG. 7).
  • the display including the content indicating that the traffic jam has been resolved may be displayed. For example, in the area A shown in FIG. 5, a display such as "The traffic jam has been resolved. Please prepare for driving immediately.” May be displayed.
  • the preceding display is started by the control of the display control unit 105 (see FI in FIG. 7).
  • the preceding display may be configured to start within the period estimated to be the minimum necessary from the start of the change instruction display to the completion of the operation change.
  • the preceding display may be started at the same timing as the change instruction display.
  • the preceding display in the second situation the same display as the display after the driving change in the first situation may be performed.
  • a display such as "Please prepare for operation" may be displayed on B of FIG.
  • the replacement instruction display to be performed together with the preceding display may have the same content as the case where it is not performed together with the preceding display, or may be a simplified content. Further, when the replacement instruction display is performed together with the preceding display, it is preferable to narrow the display area as compared with the case where the preceding display is not performed together so as not to interfere with the preceding display.
  • the driving change is completed (see CF in Fig. 7).
  • the display after the operation change is started under the control of the display control unit 105 (see ACI in FIG. 7).
  • the display after the operation change may be the same as the preceding display.
  • the replacement instruction display is performed together with the preceding display, the information obtained by removing the information of the replacement instruction display from the information of the preceding display may be used as the display after the driving change.
  • the automatic driving at the time of traffic jam is switched to the driver-required driving. It should be noted that the switching from the automatic driving during traffic congestion to the driver-required driving may be performed at the same timing as the completion of the driving change.
  • the vehicle speed can be increased, so that the vehicle speed of the own vehicle can be increased by the driving operation of the driver (see SUT in FIG. 7).
  • the vehicle speed of the own vehicle may be increased by the control of the automatic driving system side.
  • the display after the driving change in the second situation may be the same as the table after the driving change in the first situation. For example, it may be the same as the example of FIG.
  • FIG. 9 is a diagram for explaining the timing of an event related to display control in the third situation.
  • the vertical axis of FIG. 9 shows the vehicle speed of the own vehicle.
  • the horizontal axis of FIG. 9 indicates time.
  • the timing at which the PCC in FIG. 9 can predict the cause of the change other than the elimination of the traffic jam is shown.
  • the PC of FIG. 9 shows the timing at which a change cause other than the elimination of the traffic jam occurs.
  • the cause of the change other than the elimination of the traffic jam in the third situation is a predictable cause of the change.
  • the behavior judgment unit predicts the occurrence of a change cause other than the elimination of the traffic jam based on the high-precision map data, etc., before the change cause other than the elimination of the traffic jam occurs (Fig. 9). See PCC). Then, the replacement instruction is displayed by the control of the display control unit 105 before the timing at which the replacement cause other than the elimination of the traffic jam occurs (see TOR in FIG. 9).
  • the timing at which a change cause other than the elimination of the traffic jam may be determined by the action judgment unit based on, for example, the point where the change cause occurs and the vehicle speed of the own vehicle.
  • the display including the content indicating that the cause of the change other than the elimination of the traffic jam is predicted may be displayed.
  • a display such as "Automatic driving is not possible because of a single lane in the future. Please prepare for driving.” May be displayed.
  • the driving change is completed (see CF in Fig. 9). It is preferable that the change instruction display is displayed until the operation change is completed.
  • the display after the operation change is started under the control of the display control unit 105 (see ACI in FIG. 9).
  • the automatic driving at the time of traffic jam is switched to the driver-required driving. It should be noted that the switching from the automatic driving during traffic congestion to the driver-required driving may be performed at the same timing as the completion of the driving change. In the third situation, the traffic congestion is not eliminated even after the driving change is completed, and the vehicle speed is not increased. Therefore, the vehicle speed of the own vehicle is maintained even after the driving change.
  • the display after the driving change in the third situation it is sufficient to display the information including only the information of the own lane out of the information of the own lane and the information of the surrounding lanes.
  • the vehicle speed of the own vehicle does not increase, and it is less necessary to pay more attention to the surroundings of the own vehicle.
  • a diagram (see OLV in FIG. 10) showing the positional relationship between the vehicle and the surrounding vehicles in the vehicle lane may be displayed.
  • the diagram showing the positional relationship between the vehicle and the peripheral vehicle in the peripheral lane is not displayed.
  • an image showing the vehicle speed of the own vehicle (Ve in FIG. 10) may be displayed.
  • the interruption identification unit 103 interrupts the surrounding vehicle to the own lane.
  • the display may be changed to the display after the driving change including the information of the surrounding lane in addition to the own lane.
  • a diagram showing the positional relationship between the vehicle and the surrounding vehicles in the own lane see OLV in FIG. 11
  • a diagram showing the positional relationship between the vehicle and the surrounding vehicles in the peripheral lane FIG. 11
  • a line indicating a dividing line between the own lane and the surrounding lane may be displayed.
  • an image showing the vehicle speed of the own vehicle (Ve in FIG. 11) may be displayed.
  • FIG. 12 is a diagram for explaining the timing of an event related to display control in the fourth situation.
  • the vertical axis of FIG. 12 shows the vehicle speed of the own vehicle.
  • the horizontal axis of FIG. 12 indicates time.
  • the timing at which the PC in FIG. 12 causes a change other than the elimination of the traffic jam is shown.
  • the cause of the change other than the elimination of the traffic jam in the fourth situation is an unpredictable cause of the change.
  • the cause of the change other than the elimination of the traffic jam cannot be predicted, and the cause of the change other than the elimination of the traffic jam suddenly occurs (see the PC in FIG. 12).
  • the occurrence of a change cause other than the elimination of the traffic jam may be performed by the action judgment unit as described above.
  • the change instruction display is performed by the control of the display control unit 105 (see TOR in FIG. 12).
  • the display including the content indicating that the cause of the change other than the elimination of the traffic jam has occurred may be displayed. For example, in the area A shown in FIG. 5, a display such as "Automatic operation is stopped due to bad weather. Please prepare for operation immediately.” May be displayed.
  • the preceding display is started by the control of the display control unit 105 (see FI in FIG. 12).
  • the preceding display may be configured to start within the period estimated to be the minimum necessary from the start of the change instruction display to the completion of the operation change.
  • the preceding display may be started at the same timing as the change instruction display.
  • the same display as the display after the driving change in the third situation may be performed.
  • a display such as "Please prepare for operation" may be displayed on C of FIG.
  • the replacement instruction display to be performed together with the preceding display may have the same content as the case where it is not performed together with the preceding display, or may be a simplified content. Further, when the replacement instruction display is performed together with the preceding display, it is preferable to narrow the display area as compared with the case where the preceding display is not performed together so as not to interfere with the preceding display.
  • the driving change is completed (see CF in Fig. 12).
  • the display after the operation change is started under the control of the display control unit 105 (see ACI in FIG. 12).
  • the display after the operation change may be the same as the preceding display.
  • the replacement instruction display is performed together with the preceding display, the information obtained by removing the information of the replacement instruction display from the information of the preceding display may be used as the display after the driving change.
  • the automatic driving at the time of traffic jam is switched to the driver-required driving. It should be noted that the switching from the automatic driving during traffic congestion to the driver-required driving may be performed at the same timing as the completion of the driving change.
  • the display after the driving change in the fourth situation may be the same as the table after the driving change in the third situation. For example, it may be the same as the example of FIG.
  • the interruption identification unit 103 interrupts the surrounding vehicle to the own lane.
  • the display may be changed to the display after the driving change including the information of the surrounding lane in addition to the own lane. For example, it may be the same as the example of FIG.
  • FIG. 14 may be configured to be started when, for example, the own vehicle starts automatic driving during a traffic jam.
  • step S1 if the cause of the change is predicted (YES in S1), the process proceeds to step S2. On the other hand, if the cause of the change is not predicted (NO in S1), the process proceeds to step S3. Whether or not the cause of the change is predicted may be determined by the HCU 10 acquiring the determination result in the action determination unit of the automatic driving ECU 80.
  • step S2 the HCU 10 performs the change cause prediction processing and ends the display control-related processing.
  • the flowchart of FIG. 1 An example of the flow of processing at the time of predicting the cause of change will be described using the flowchart of FIG.
  • step S21 if the predicted cause of the change is the elimination of traffic congestion (YES in S21), the process proceeds to step S22. On the other hand, if the predicted cause of the change is other than the elimination of the traffic jam (NO in S21), the process proceeds to step S25.
  • step S22 the display control unit 105 causes the display 90 to display the same change instruction as described in the above-mentioned example of the display mode according to the first situation.
  • step S23 when the operation change is completed (YES in S23), the display control unit 105 ends the change instruction display and proceeds to step S24.
  • the process returns to S22 and the process is repeated. Whether or not the driving change is completed may be determined by whether or not the HCU 10 has detected the gripping of the steering wheel, for example, as described above.
  • step S24 the display control unit 105 causes the display 90 to display the same post-operation change display as described in the above-mentioned example of the display mode according to the first situation, and ends the display control-related processing.
  • the display is performed after the driving change, which includes only the information of the own lane out of the information of the own lane and the information of the surrounding lanes.
  • step S25 the display control unit 105 causes the display unit 90 to display the same change instruction as described in the example of the display mode according to the third situation described above.
  • step S26 when the operation change is completed (YES in S26), the display control unit 105 ends the change instruction display and proceeds to step S27. On the other hand, when the operation change is not completed (NO in S26), the process returns to S25 and the process is repeated.
  • step S27 the display control unit 105 causes the display 90 to display the same post-operation change display as described in the above-mentioned example of the display mode according to the third situation, and ends the display control-related processing. For details, display after the driving change including information on the own lane and information on the surrounding lanes.
  • step S3 when the cause of the change is determined (YES in S3), the process proceeds to step S4. On the other hand, if the cause of the change is not determined (NO in S3), the process proceeds to step S5. Whether or not the cause of the replacement has been determined may be determined by whether or not the HCU 10 has acquired the replacement request by the replacement request acquisition unit 101.
  • step S4 the HCU 10 performs a process when a change cause occurs and ends the display control-related process.
  • a change cause occurs and ends the display control-related process.
  • step S41 if the cause of the change is the elimination of traffic congestion (YES in S41), the process proceeds to step S42. On the other hand, if the cause of the change is other than the elimination of the traffic jam (NO in S41), the process proceeds to step S46.
  • step S42 the display control unit 105 causes the display 90 to display the same change instruction as described in the above-mentioned example of the display mode according to the second situation.
  • step S43 the display control unit 105 causes the display device 90 to perform the same preceding display as described in the above-mentioned example of the display mode according to the second situation.
  • the advance display including only the information of the own lane out of the information of the own lane and the information of the surrounding lane is performed. It should be noted that the display control unit 105 may be configured to also perform the alternate instruction display even when the preceding display is started.
  • step S44 when the operation change is completed (YES in S44), the display control unit 105 ends the change instruction display and the preceding display, and proceeds to step S24.
  • the preceding display may be used as the display after the driving change described later.
  • the process returns to S42 and the process is repeated.
  • step S45 the display control unit 105 causes the display 90 to perform the same post-operation change display as described in the example of the display mode according to the third situation described above, and ends the display control related processing.
  • the display is performed after the driving change, which includes only the information of the own lane out of the information of the own lane and the information of the surrounding lanes.
  • step S46 the display control unit 105 causes the display unit 90 to display the same change instruction as described in the above-mentioned example of the display mode according to the fourth situation.
  • step S47 the display control unit 105 causes the display device 90 to perform the same preceding display as described in the example of the display mode according to the fourth situation described above.
  • the advance display including the information of the own lane and the information of the surrounding lanes is performed. It should be noted that the display control unit 105 may be configured to also perform the alternate instruction display even when the preceding display is started.
  • step S48 when the operation change is completed (YES in S48), the display control unit 105 ends the change instruction display and the preceding display, and proceeds to step S49.
  • the preceding display may be used as the display after the driving change described later.
  • the process returns to S46 and the process is repeated.
  • step S49 the display control unit 105 causes the display 90 to perform the same post-operation change display as described in the example of the display mode according to the fourth situation described above, and ends the display control-related processing. For details, display after the driving change including information on the own lane and information on the surrounding lanes.
  • step S5 when it is the end timing of the display control-related process (YES in S5), the display control-related process is terminated. On the other hand, if it is not the end timing of the display control related processing (NO in S5), the process returns to S1 and the processing is repeated.
  • An example of the end timing of display control-related processing is that the power switch is turned off.
  • the interrupt identification unit 103 shifts to the own lane.
  • the display may be changed to the display after the driving change including the information of the surrounding lane in addition to the own lane.
  • ⁇ Summary of Embodiment 1> when it is necessary to switch from the automatic driving during congestion to the driver-required driving, the situation of the own vehicle that needs to switch from the automatic driving during congestion to the driver-required driving is determined. At least one of the timing and contents of the display regarding the change of driving from the automatic driving at the time of congestion to the driving required by the driver will be changed. Therefore, it is possible to display at least one of the timing and the content suitable for the situation of the vehicle that needs to switch from the automatic driving at the time of traffic jam to the driving requiring a driver. As a result, it becomes possible to give a more understandable notification to the driver according to the situation when the driving is changed from the automatic driving at the time of traffic jam to the driving required by the driver.
  • Embodiment 2 In the first embodiment, as an example of switching the degree of detail of the information about the surroundings of the own vehicle in the display after the driving change, the information of only the own lane of the own lane and the surrounding lanes is displayed or the own lane is displayed. In addition to this, the configuration for switching whether to display information on surrounding lanes is shown, but this is not always the case. For example, in the post-change driving display with a low degree of detail, information about the vicinity of the own vehicle is displayed, while in the post-change driving display with a high degree of detail, not only the vicinity of the own vehicle but also the distance from the own vehicle is displayed. Information may also be displayed.
  • control unit and the method thereof described in the present disclosure may be realized by a dedicated computer constituting a processor programmed to execute one or a plurality of functions embodied by a computer program.
  • the apparatus and method thereof described in the present disclosure may be realized by a dedicated hardware logic circuit.
  • the apparatus and method thereof described in the present disclosure may be realized by one or more dedicated computers configured by a combination of a processor for executing a computer program and one or more hardware logic circuits.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

渋滞時自動運転と要運転者運転とが可能な車両で用いられ、渋滞時自動運転から要運転者運転への切り替えが要請される場合に、渋滞時自動運転から要運転者運転への運転交代に関する表示を行わせる表示制御部(105)と、渋滞時自動運転から要運転者運転への切り替えが要請される自車のシチュエーションを特定するシチュエーション特定部(102)とを備え、表示制御部(105)は、シチュエーション特定部(102)で特定するシチュエーションに応じて、運転交代に関する表示のタイミング及び内容の少なくともいずれかを変更させる。

Description

車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法 関連出願の相互参照
 この出願は、2020年8月7日に日本に出願された特許出願第2020-134987号基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 本開示は、車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法に関するものである。
 例えば、特許文献1には、渋滞の状況に応じて、加減速を自動で制御する自動運転を開始及び停止させる技術が開示されている。特許文献1に開示の技術では、渋滞が発生しており、且つ渋滞の発生している区間の長さが所定値以上である場合に、自動運転を開始させる。また、特許文献1に開示の技術では、渋滞区間を抜け出たと考えられる場合に自動運転を停止する技術が開示されている。また、車両側のシステムが全ての運転タスクを実施可能な自動運転を少なくとも渋滞時を含む条件に限定して実施する渋滞時自動運転を実施可能とする技術が知られている。
特開2005-324661号公報
 渋滞時自動運転において、特許文献1に開示の技術のように、渋滞が解消された場合に、運転者も運転タスクを実施しなければならない運転(以下、要運転者運転)に交代することが考えられる。しかしながら、渋滞時自動運転には、要運転者運転に運転交代しなければいけないシチュエーションが複数考えられる。シチュエーションによっては、必ずしも渋滞が解消したときに運転交代するとは限らず、必要となる通知も異なると考えらえる。よって、渋滞時自動運転から要運転者運転に運転交代をする場合に、シチュエーションに応じてドライバにとって分かりやすい通知が検討されている。
 この開示のひとつの目的は、渋滞時自動運転から要運転者運転に運転交代をする場合に、シチュエーションに応じてドライバにとってよりわかりやすい通知を行うことを可能とする車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法を提供することにある。
 上記目的は独立請求項に記載の特徴の組み合わせにより達成され、また、下位請求項は、開示の更なる有利な具体例を規定する。請求の範囲に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
 上記目的を達成するために、本開示の車両用表示制御装置は、自動運転のうちの、車両側のシステムが全ての運転タスクを実施可能な自動運転を、少なくとも渋滞時を含む条件に限定して実施する渋滞時自動運転と、運転者も運転タスクを実施しなければならない要運転者運転とが可能な車両で用いられ、渋滞時自動運転から要運転者運転への切り替えが要請される場合に、渋滞時自動運転から要運転者運転への運転交代に関する表示を行わせる表示制御部と、渋滞時自動運転から要運転者運転への切り替えが要請される車両のシチュエーションを特定するシチュエーション特定部とを備え、表示制御部は、シチュエーション特定部で特定するシチュエーションに応じて、運転交代に関する表示のタイミング及び内容の少なくともいずれかを変更させる。
 上記目的を達成するために、本開示の車両用表示制御方法は、自動運転のうちの、車両側のシステムが全ての運転タスクを実施可能な自動運転を、少なくとも渋滞時を含む条件に限定して実施する渋滞時自動運転と、運転者も運転タスクを実施しなければならない要運転者運転とが可能な車両で用いられる車両用表示制御方法であって、少なくとも1つのプロセッサにより実行される、渋滞時自動運転から要運転者運転への切り替えが要請される場合に、渋滞時自動運転から要運転者運転への運転交代に関する表示を行わせる表示制御工程と、渋滞時自動運転から要運転者運転への切り替えが要請される車両のシチュエーションを特定するシチュエーション特定工程とを含み、表示制御工程では、シチュエーション特定工程で特定するシチュエーションに応じて、運転交代に関する表示のタイミング及び内容の少なくともいずれかを変更させる。
 以上の構成によれば、渋滞時自動運転から要運転者運転への切り替えが要請される場合に、渋滞時自動運転から要運転者運転への切り替えが要請される車両のシチュエーションに応じて、渋滞時自動運転から要運転者運転への運転交代に関する表示のタイミング及び内容の少なくともいずれかを変更させることになる。よって、渋滞時自動運転から要運転者運転への切り替えが要請される車両のシチュエーションに合ったタイミング及び内容の少なくともいずれかの表示を行わせることが可能になる。その結果、渋滞時自動運転から要運転者運転に運転交代をする場合に、シチュエーションに応じてドライバにとってよりわかりやすい通知を行うことが可能になる。
 上記目的を達成するために、本開示の車両用表示制御システムは、自動運転のうちの、車両側のシステムが全ての運転タスクを実施可能な自動運転を、少なくとも渋滞時を含む条件に限定して実施する渋滞時自動運転と、運転者も運転タスクを実施しなければならない要運転者運転とが可能な車両で用いられ、車両の車室内に表示面が向くように車両に設けられる表示器と、表示器での表示を制御する、前述の車両用表示制御装置とを含む。
 これによれば、前述の車両用表示制御装置を含むので、渋滞時自動運転から要運転者運転に運転交代をする場合に、シチュエーションに応じてドライバにとってよりわかりやすい通知を行うことが可能になる。
車両用システム1の概略的な構成の一例を示す図である。 交代原因の4つのパターンのグループ分けについて説明するための図である。 HCU10の概略的な構成に一例を示す図である。 第1シチュエーションでの表示制御に関するイベントのタイミングを説明するための図である。 交代指示表示の一例について説明するための図である。 第1シチュエーションでの運転交代後表示の一例について説明するための図である。 第2シチュエーションでの表示制御に関するイベントのタイミングを説明するための図である。 第2シチュエーションでの先行表示と交代指示表示とを併せた表示の一例について説明するための図である。 第3シチュエーションでの表示制御に関するイベントのタイミングを説明するための図である。 第3シチュエーションでの運転交代後表示の一例について説明するための図である。 第3シチュエーションでの運転交代後表示の一例について説明するための図である。 第4シチュエーションでの表示制御に関するイベントのタイミングを説明するための図である。 第4シチュエーションでの先行表示と交代指示表示とを併せた表示の一例について説明するための図である。 HCU10での表示制御関連処理の流れの一例を示すフローチャートである。 交代原因予測時処理の流れの一例を示すフローチャートである。 交代原因発生時処理の流れの一例を示すフローチャートである。
 図面を参照しながら、開示のための複数の実施形態を説明する。なお、説明の便宜上、複数の実施形態の間において、それまでの説明に用いた図に示した部分と同一の機能を有する部分については、同一の符号を付し、その説明を省略する場合がある。同一の符号を付した部分については、他の実施形態における説明を参照することができる。
 (実施形態1)
 <車両用システム1の概略構成>
 以下、本開示の実施形態1について図面を用いて説明する。図1に示す車両用システム1は、自動運転が可能な車両(以下、自動運転車両)で用いられる。車両用システム1は、図1に示すように、HCU(Human Machine Interface Control Unit)10、通信モジュール20、ロケータ30、地図データベース(以下、地図DB)40、車両状態センサ50、周辺監視センサ60、車両制御ECU70、自動運転ECU80、及び表示器90を含んでいる。この車両用システム1が車両用表示制御システムに相当する。車両用システム1を用いる車両は、必ずしも自動車に限るものではないが、以下では自動車に用いる場合を例に挙げて説明を行う。
 自動運転車両の自動運転の度合い(以下、自動化レベル)としては、例えばSAEが定義しているように、複数のレベルが存在し得る。自動化レベルは、例えば以下のようにレベル0~5に区分される。
 レベル0は、システムが介入せずに運転者が全ての運転タスクを実施するレベルである。運転タスクは動的運転タスクと言い換えてもよい。運転タスクは、例えば操舵、加減速、及び周辺監視とする。レベル0は、いわゆる手動運転に相当する。レベル1は、システムが操舵と加減速とのいずれかを支援するレベルである。レベル1は、いわゆる運転支援に相当する。レベル2は、システムが操舵と加減速とのいずれをも支援するレベルである。レベル2は、いわゆる部分運転自動化に相当する。レベル1~2も自動運転の一部であるものとする。
 例えば、レベル1~2の自動運転は、安全運転に係る監視義務(以下、単に監視義務)が運転者にある自動運転とする。監視義務としては、目視による周辺監視がある。レベル1~2の自動運転は、セカンドタスクが許可されない自動運転と言い換えることができる。セカンドタスクとは、運転者に対して許可される運転以外の行為であって、予め規定された特定行為である。セカンドタスクは、セカンダリアクティビティ,アザーアクティビティ等と言い換えることもできる。セカンドタスクは、自動運転システムからの運転操作の引き継ぎ要求にドライバが対応することを妨げてはならないとされる。一例として、動画等のコンテンツの視聴,スマートフォン等の操作,読書,食事等の行為が、セカンドタスクとして想定される。
 レベル3は、高速道路等の特定の場所ではシステムが全ての運転タスクを実施可能であり、緊急時に運転者が運転操作を行うレベルである。レベル3では、システムから運転交代の要求があった場合に、運転手が迅速に対応可能であることが求められる。レベル3は、いわゆる条件付運転自動化に相当する。レベル4は、対応不可能な道路,極限環境等の特定状況下を除き、システムが全ての運転タスクを実施可能なレベルである。レベル4は、いわゆる高度運転自動化に相当する。レベル5は、あらゆる環境下でシステムが全ての運転タスクを実施可能なレベルである。レベル5は、いわゆる完全運転自動化に相当する。
 例えば、レベル3~5の自動運転は、監視義務が運転者にない自動運転とする。レベル3~5の自動運転は、セカンドタスクが許可される自動運転と言い換えることができる。本実施形態では、レベル3以上の自動化レベルとレベル2以下の自動化レベルとの切り替えで監視義務の有無が切り替わるものとする。よって、レベル3以上の自動化レベルからレベル2以下の自動化レベルに切り替わる場合に、安全運転に係る監視が運転者に要求されることになるものとする。一方、運転者への運転交代については、レベル2以上の自動化レベルからレベル1以下の自動化レベルに切り替わる場合に要求される構成としてもよい。本実施形態では、レベル3以上の自動化レベルからレベル2以下の自動化レベルに切り替わる場合に、運転者への運転交代が要求される場合を例に挙げて説明を行う。
 本施形態の自動運転車両は、自動化レベルが切り替え可能であるものとする。自動化レベルは、レベル0~5のうちの一部のレベル間でのみ切り替え可能な構成であってもよい。本実施形態では、自動運転車両が、自動化レベル3の自動運転と、自動化レベル2以下の自動運転若しくは手動運転とを切り替え可能な場合を例に挙げて説明を行う。また、本実施形態では、自動化レベル3の自動運転は、渋滞時に限定して許可されるものとする。なお、本実施形態では、自動化レベル3の自動運転は、渋滞時且つ高速道路若しくは自動車専用道路といった特定道路区間の走行時に限定して許可される構成としてもよい。以下では、自動化レベル3の自動運転は、渋滞時且つ高速道路若しくは自動車専用道路といった特定道路区間の走行時に限定して許可される場合を例に挙げて説明を行う。このように渋滞時に限定して許可される自動化レベル3の自動運転を以降では、渋滞時自動運転と呼ぶ。また、自動化レベル2以下の自動運転及び手動運転を以降では、要運転者運転と呼ぶ。
 通信モジュール20は、他車との間で、無線通信を介して情報の送受信を行う。つまり、車車間通信を行う。通信モジュール20は、路側に設置された路側機との間で、無線通信を介して情報の送受信を行ってもよい。つまり、路車間通信を行ってもよい。路車間通信を行う場合、通信モジュール20は、路側機を介して、自車の周辺車両から送信されるその周辺車両の情報を受信してもよい。また、通信モジュール20は、自車の外部のセンタとの間で、無線通信を介して情報の送受信を行ってもよい。つまり、広域通信を行ってもよい。広域通信を行う場合、通信モジュール20は、センタを介して、自車の周辺車両から送信されるその周辺車両の情報を受信してもよい。他にも、広域通信を行う場合、通信モジュール20は、センタから自車周辺の渋滞情報,天候情報等を受信してもよい。
 ロケータ30は、GNSS(Global Navigation Satellite System)受信機及び慣性センサを備えている。GNSS受信機は、複数の測位衛星からの測位信号を受信する。慣性センサは、例えばジャイロセンサ及び加速度センサを備える。ロケータ30は、GNSS受信機で受信する測位信号と、慣性センサの計測結果とを組み合わせることにより、ロケータ30を搭載した自車の車両位置(以下、自車位置)を逐次測位する。自車位置は、例えば緯度経度の座標で表されるものとする。なお、自車位置の測位には、車両に搭載された車速センサから逐次出力される信号から求めた走行距離も用いる構成としてもよい。
 地図DB40は、不揮発性メモリであって、高精度地図データを格納している。高精度地図データは、ナビゲーション機能での経路案内に用いられる地図データよりも高精度な地図データである。地図DB40には、経路案内に用いられる地図データも格納していてもよい。高精度地図データには、例えば道路の三次元形状情報,車線数情報,各車線に許容された進行方向を示す情報等の自動運転に利用可能な情報が含まれている。他にも、高精度地図データには、例えば区画線等の路面標示について、両端の位置を示すノード点の情報が含まれていてもよい。なお、ロケータ30は、道路の三次元形状情報を用いることで、GNSS受信機を用いない構成としてもよい。例えば、ロケータ30は、道路の三次元形状情報と、道路形状及び構造物の特徴点の点群を検出するLIDAR(Light Detection and Ranging/Laser Imaging Detection and Ranging)若しくは周辺監視カメラ等の周辺監視センサ60での検出結果とを用いて、自車位置を特定する構成としてもよい。道路の三次元形状情報は、REM(Road Experience Management)によって撮像画像をもとに生成されたものであってもよい。
 なお、通信モジュール20は、外部サーバから配信される地図データを例えば広域通信で受信し、地図DB40に格納してもよい。この場合、地図DB40を揮発性メモリとし、通信モジュール20が自車位置に応じた領域の地図データを逐次取得する構成としてもよい。
 車両状態センサ50は、自車の各種状態を検出するためのセンサ群である。車両状態センサ50としては、車速を検出する車速センサ,操舵角を検出する操舵センサ等がある。また、車両状態センサ50としては、ステアリングトルクセンサ,アクセルセンサ,ブレーキセンサ等がある。
 ステアリングトルクセンサは、ステアリングホイールに印加される操舵トルクを検出する。アクセルセンサは、アクセルペダルの踏み込みの有無を検出する。アクセルセンサとしては、アクセルペダルに加わる踏力を検出するアクセル踏力センサを用いればよい。アクセルセンサとしては、アクセルペダルの踏み込み量を検出するアクセルストロークセンサを用いてよい。アクセルセンサとしては、アクセルペダルの踏み込み操作の有無に応じた信号を出力するアクセルスイッチを用いてもよい。ブレーキセンサは、ブレーキペダルの踏み込みの有無を検出する。ブレーキセンサとしては、ブレーキペダルに加わる踏力を検出するブレーキ踏力センサを用いればよい。ブレーキセンサとしては、ブレーキペダルの踏み込み量を検出するブレーキストロークセンサを用いてよい。ブレーキセンサとしては、ブレーキペダルの踏み込み操作の有無に応じた信号を出力するブレーキスイッチを用いてもよい。
 車両状態センサ50は、検出したセンシング情報を車内LANへ出力する。なお、車両状態センサ50で検出したセンシング情報は、自車に搭載されるECUを介して車内LANへ出力される構成であってもよい。
 周辺監視センサ60は、自車の周辺環境を監視する。一例として、周辺監視センサ60は、歩行者,他車等の移動物体、及び路上の落下物等の静止物体といった自車周辺の障害物を検出する。他にも、自車周辺の走行区画線等の路面標示を検出する。周辺監視センサ60は、例えば、自車周辺の所定範囲を撮像する周辺監視カメラ、自車周辺の所定範囲に探査波を送信するミリ波レーダ、ソナー、LIDAR等のセンサである。周辺監視カメラは、逐次撮像する撮像画像をセンシング情報として自動運転ECU80へ逐次出力する。ソナー、ミリ波レーダ、LIDAR等の探査波を送信するセンサは、障害物によって反射された反射波を受信した場合に得られる受信信号に基づく走査結果をセンシング情報として自動運転ECU80へ逐次出力する。周辺監視センサ60で検出したセンシング情報は、自動運転ECU80を介して車内LANへ出力される構成とすればよい。
 車両制御ECU70は、自車の走行制御を行う電子制御装置である。走行制御としては、加減速制御及び/又は操舵制御が挙げられる。車両制御ECU70としては、操舵制御を行う操舵ECU、加減速制御を行うパワーユニット制御ECU及びブレーキECU等がある。車両制御ECU70は、自車に搭載された電子制御スロットル、ブレーキアクチュエータ、EPS(Electric Power Steering)モータ等の各走行制御デバイスへ制御信号を出力することで走行制御を行う。
 自動運転ECU80は、例えばプロセッサ、メモリ、I/O、これらを接続するバスを備え、メモリに記憶された制御プログラムを実行することで自動運転に関する処理を実行する。ここで言うところのメモリは、コンピュータによって読み取り可能なプログラム及びデータを非一時的に格納する非遷移的実体的記憶媒体(non-transitory tangible storage medium)である。また、非遷移的実体的記憶媒体は、半導体メモリ又は磁気ディスクなどによって実現される。
 自動運転ECU80は、第1自動運転ECU81及び第2自動運転ECU82を備える。第1自動運転ECU81及び第2自動運転ECU82が、それぞれプロセッサ、メモリ、I/O、これらを接続するバスを備えるものとして以降の説明を行う。なお、仮想化技術によって共通のプロセッサが第1自動運転ECU81及び第2自動運転ECU82の機能を担う構成としてもよい。
 第1自動運転ECU81は、前述のレベル2以下の自動運転の機能を担う。言い換えると、第1自動運転ECU81は、監視義務のある自動運転を、実施可能にする。例えば、第1自動運転ECU81は、自車の縦方向制御及び横方向制御の少なくともいずれかを実行可能である。縦方向とは、自車の前後方向と一致する方向である。横方向とは、自車の幅方向と一致する方向である。第1自動運転ECU81は、縦方向制御として、自車の加減速制御を実行する。第1自動運転ECU81は、横方向制御として、自車の操舵制御を実行する。第1自動運転ECU81は、機能ブロックとして、第1環境認識部、ACC制御部、及びLTA制御部等を備える。
 第1環境認識部は、周辺監視センサ60から取得するセンシング情報に基づき、自車の周囲の走行環境を認識する。一例として、第1環境認識部は、自車の走行車線(以下、自車線)の左右の区画線等の情報から、走行車線における自車の詳細な位置を認識する。他にも、第1環境認識部は、自車の周囲の車両等の障害物の位置及び速度を認識する。第1環境認識部は、自車線における車両等の障害物の位置及び速度を認識する。また、第1環境認識部は、自車線の周辺車線における車両等の障害物の位置及び速度を認識する。周辺車線とは、例えば自車線の隣接車線としてもよい。他にも、周辺車線は、自車が位置する道路区間における自車線以外の車線としてもよい。なお、第1環境認識部は、後述の第2環境認識部と同様の構成としてもよい。
 ACC制御部は、目標速度での自車の定速走行、又は先行車への追従走行を実現するACC(Adaptive Cruise Control)制御を実行する。ACC制御部は、第1環境認識部で認識した自車の周囲の車両の位置及び速度を用いて、ACC制御を実行すればよい。ACC制御部は、車両制御ECU70で加減速制御を行わせることでACC制御を実行すればよい。LTA制御部は、自車の車線内走行を維持するLTA(Lane Tracing Assist)制御を実行する。LTA制御部は、第1環境認識部で認識した自車線における自車の詳細な位置を用いて、LTA制御を実行すればよい。LTA制御部は、車両制御ECU70で操舵制御を行わせることでLTA制御を実行すればよい。なお、ACC制御は縦方向制御の一例である。LTA制御は横方向制御の一例である。
 第1自動運転ECU81は、ACC制御及びLTA制御の両方を実行することで、レベル2の自動運転を実現する。第1自動運転ECU81は、ACC制御及びLTA制御のいずれか一方を実行することで、レベル1の自動運転を実現してもよい。
 一方、第2自動運転ECU82は、前述のレベル3以上の自動運転の機能を担う。言い換えると、第2自動運転ECU82は、監視義務のない自動運転を、実施可能にする。第2自動運転ECU82は、機能ブロックとして、第2環境認識部、行動判断部、及び軌道生成部等を備える。
 第2環境認識部は、周辺監視センサ60から取得するセンシング情報、ロケータ30から取得する自車位置、地図DB40から取得する地図データ、及び通信モジュール20で取得する他車の情報等に基づき、自車の周囲の走行環境を認識する。一例として、第2環境認識部は、これらの情報を用いて、実際の走行環境を再現した仮想空間を生成する。
 第2環境認識部は、自車の走行地域における手動運転エリア(以下、MDエリア)の判別を行う。第2環境認識部は、自車の走行地域における自動運転エリア(以下、ADエリア)の判別を行う。第2環境認識部は、ADエリアにおけるST区間の判別を行う。第2環境認識部は、ADエリアにおける非ST区間の判別を行う。
 MDエリアは、自動運転が禁止されるエリアである。言い換えると、MDエリアは、自車の縦方向制御、横方向制御、及び周辺監視の全てを運転者が実行すると規定されたエリアである。例えば、MDエリアは、一般道路とすればよい。
 ADエリアは、自動運転が許可されるエリアである。言い換えると、ADエリアは、縦方向制御、横方向制御、及び周辺監視のうちの1つ以上を、自車が代替すること可能と規定されたエリアである。例えば、ADエリアは、高速道路,自動車専用道路とすればよい。
 ADエリアは、レベル2以下の自動運転が可能な非ST区間と、レベル3以上の自動運転が可能なST区間とに区分される。本実施形態では、レベル1の自動運転が許可される非ST区間と、レベル2の自動運転が許可される非ST区間とを分けて区分しないものとする。ST区間は、例えば渋滞が発生している走行区間(以下、渋滞区間)とすればよい。また、ST区間は、例えば高精度地図データが整備された走行区間とすればよい。非ST区間は、ST区間に該当しない区間とすればよい。
 行動判断部は、第2環境認識部での走行環境の認識結果等に基づいて、自車に予定される行動(以下、将来行動)を判断する。行動判断部は、自動運転によって自車を走行させるための将来行動を判断する。行動判断部は、目的地に到着するために自車が取るべき振る舞いの類型を将来行動として決定すればよい。この類型としては、例えば直進,右折,左折,車線変更等が挙げられる。
 また、行動判断部は、運転者への運転制御権の移譲(つまり、運転交代)が必要であると判断した場合に、交代要請を生成し、HCU10へと出力する。運転交代が必要となる場合の一例としては、自車がADエリアのST区間から非ST区間に移る場合が挙げられる。他にも、運転交代が必要となる場合の一例としては、自車がADエリアのST区間からMDエリアに移る場合が挙げられる。他にも、運転交代の原因(以下、交代原因)としては、渋滞の解消,高精度地図データの不足が挙げられる。
 高精度地図データの不足は予測できる。行動判断部は、高精度地図データの不足を、ロケータ30で測位する自車位置と、地図DB40に格納されている高精度地図データとを用いて、自車の予定進路の高精度地図データの不足を予測すればよい。そして、行動判断部は、高精度地図データの不足を予測した場合に、運転交代が必要と判断し、高精度地図データの不足が予測される地点に自車が達するよりも前に、交代要請をHCU10へ出力すればよい。
 渋滞の解消は、予測できる場合と予測できない場合とがある。詳しくは、通信モジュール20で、渋滞情報,周辺車両の情報を受信できる場合は、これらの情報から渋滞の解消を予測できる。行動判断部は、ロケータ30で測位する自車位置と、通信モジュール20で受信する渋滞情報とを用いて、自車の予定進路の渋滞の解消を予測すればよい。他にも、行動予測部は、通信モジュール20で受信する周辺車両の情報から特定される周辺車両の台数,速度を用いて、自車の予定進路の渋滞の解消を予測してもよい。そして、行動判断部は、渋滞の解消を予測した場合に、運転交代が必要と判断し、渋滞の解消が予測される地点に自車が達するよりも前に、交代要請をHCU10へ出力すればよい。
 一方、通信モジュール20で、渋滞情報,周辺車両の情報を受信できない場合は、渋滞の解消が予測できないものとする。渋滞の解消が予測できない場合には、周辺監視センサ60を用いて第2環境認識部で認識した周辺車両の台数,速度等を用いて、渋滞の解消を判断すればよい。そして、行動判断部は、渋滞の解消を判断した場合に、運転交代が必要と判断し、交代要請をHCU10へ出力すればよい。
 また、渋滞の解消,高精度地図データの不足以外の原因で運転交代が必要となる場合も存在する。例えば、道路構造の変化,急なセンサロスト,急な天候不良等が挙げられる。運転交代が必要となる道路構造の変化としては、中央分離帯の存在する区間の終了,車線数の減少,工事区間への進入等が挙げられる。これらの道路構造の変化が運転交代の原因となるのは、走行環境の認識精度が低下する可能性があるためである。道路構造の変化は予測できる。行動判断部は、ロケータ30で測位する自車位置と、地図DB40に格納されている高精度地図データとを用いて、自車の予定進路の中央分離帯の存在する区間の終了,車線数の減少といった道路構造の変化を予測すればよい。また、行動判断部は、周辺監視センサ60を用いて第2環境認識部で認識した工事中の看板等の存在から、自車の工事区間への進入といった道路構造の変化を予測すればよい。そして、行動判断部は、これらの道路構造の変化を予測した場合に、運転交代が必要と判断し、これらの道路構造の変化が生じる地点に自車が達するよりも前に、交代要請をHCU10へ出力すればよい。
 急なセンサロストは、周辺監視センサ60の故障,周辺監視センサ60を用いた走行環境の認識の失敗等である。急な天候不良は、豪雨,雪,霧等である。急な天候不良が運転交代の原因となるのは、周辺監視センサ60を用いた走行環境の認識精度が低下する可能性があるためである。他にも、急な天候不良が運転交代の原因となるのは、通信モジュール20での通信に不具合が生じる可能性があるためである。急なセンサロスト,急な天候不良は予測できない。行動判断部は、第2環境認識部での走行環境の認識結果等から、急なセンサロスト,急な天候不良を判断すればよい。また、行動判断部は、急なセンサロスト若しくは急な天候不良を判断した場合に、運転交代が必要と判断し、交代要請をHCU10へ出力すればよい。
 行動判断部は、交代原因が予測できる場合には、交代原因の発生前に交代要請をHCU10へ出力する。一方、行動判断部は、交代原因が予測できない場合には、交代原因の発生後に交代要請をHCU10へ出力する。
 なお、交代原因は、以下の4つのパターンに分類することができる。第1パターンは、予測できる渋滞の解消である。第2パターンは、予測できない渋滞の解消である。第3パターンは、渋滞の解消以外の予測できる原因である。第4パターンは、渋滞の解消以外の予測できない原因である。第3パターンには、高精度地図データの不足,道路構造の変化が含まれる。第4パターンには、急なセンサロスト,急な天候不良が含まれる。予測できるセンサロスト,予測できる天候不良については、例えば第3パターンに含まれるものとしてもよい。
 また、第1パターンから第4パターンまでの4つのパターンは、図2に示すようにグループ分けできる。図2のSUが、運転交代後に自車の車速が上がることを示す。図2のSMが、運転交代後も自車の車速が維持されることを示す。図2のPが、運転交代を予測可能であることを示す。運転交代を予測可能であることは、交代原因の発生前に運転交代を指示する通知(以下、運転交代通知)が可能であることと言い換えることができる。また、図2のUpが、運転交代を予測不能であることを示す。運転交代を予測不能であることは、交代原因の発生前に運転交代通知が不可能であることと言い換えることができる。
 図2に示すように、第1パターン及び第2パターンは、運転交代後に自車の車速が上がるグループに分類される。これは、第1パターン及び第2パターンは、交代原因が渋滞の解消であり、運転交代後に車速が上がるためである。一方、第3パターン及び第4パターンは、運転交代後も自車の車速が維持されるグループに分類される。これは、第3パターン及び第4パターンは、交代原因が渋滞の解消以外であって、運転交代後も渋滞が継続しており、車速を上げることができないためである。また、図2に示すように、第1パターン及び第3パターンは、運転交代を予測可能なグループに分類される。一方、第2パターン及び第4パターンは、運転交代を予測不能なグループに分類される。
 軌道生成部は、第2環境認識部での走行環境の認識結果、及び行動判断部で決定された将来行動に基づき、自動運転を実行可能な区間での自車の走行軌道を生成する。走行軌道には、例えば進行に応じた自車の目標位置及び各目標位置での目標速度等が含まれる。軌道生成部は、生成した走行軌道を、自動運転において自車が従う制御指令として車両制御ECU70に逐次提供する。
 以上の自動運転ECU80を含んで構成される自動運転システムにより、自車においてレベル2以下、及びレベル3以上の自動運転が実行可能となる。また、例えば自動運転ECU80は、必要に応じて自車の自動運転の自動化レベルを切り替える構成とすればよい。一例として、自車がADエリアのうちのST区間から非ST区間に移る場合に、レベル3の自動運転からレベル2以下の自動運転に切り替えればよい。また、自動運転ECU80は、自車がADエリアのうちのST区間からMDエリアに移る場合に、レベル3の自動運転から手動運転に切り替えればよい。
 表示器90は、自車に設けられる表示装置である。表示器90は、自車の車室内に表示面が向くように設けられる。例えば、表示器90は、自車の運転席正面に表示面が位置するように設けられる。表示器90としては、液晶ディスプレイ,有機ELディスプレイ,ヘッドアップディスプレイ(以下、HUD)等の種々のディスプレイを用いることができる。
 HCU10は、プロセッサ、揮発性メモリ、不揮発性メモリ、I/O、これらを接続するバスを備えるコンピュータを主体として構成され、表示器90と車内LANとに接続されている。HCU10は、不揮発性メモリに記憶された制御プログラムを実行することにより、表示器90での表示を制御する。このHCU10が車両用表示制御装置に相当する。なお、表示器90での表示の制御に関するHCU10の構成については以下で詳述する。
 <HCU10の概略構成>
 続いて、図3を用いてHCU10の概略構成についての説明を行う。HCU10は、表示器90での表示の制御に関して、図3に示すように、交代要請取得部101、シチュエーション特定部102、割込み特定部103、オーバーライド検出部104、及び表示制御部105を機能ブロックとして備える。また、コンピュータによってHCU10の各機能ブロックの処理が実行されることが、車両用表示制御方法が実行されることに相当する。なお、HCU10が実行する機能の一部又は全部を、一つ或いは複数のIC等によりハードウェア的に構成してもよい。また、HCU10が備える機能ブロックの一部又は全部は、プロセッサによるソフトウェアの実行とハードウェア部材の組み合わせによって実現されてもよい。
 交代要請取得部101は、自動運転ECU80から出力される交代要請を取得する。交代要請取得部101は、自動運転ECU80から交代要請が出力された場合に、この交代要請を取得する。
 シチュエーション特定部102は、渋滞時自動運転から要運転者運転への切り替え(つまり、運転交代)が必要な自車のシチュエーションを特定する。このシチュエーション特定部102での処理がシチュエーション特定工程に相当する。シチュエーション特定部102は、例えば交代要請取得部101で交代要請を取得した場合に、その交代要請で要請されている運転交代が必要な自車のシチュエーション(以下、交代シチュエーション)を特定すればよい。
 交代シチュエーションは、例えば4種類であるものとする。第1シチュエーションは、交代原因が前述の第1パターンに該当する交代シチュエーションとする。第2シチュエーションは、交代原因が前述の第2パターンに該当する交代シチュエーションとする。第3シチュエーションは、交代原因が前述の第3パターンに該当する交代シチュエーションとする。第4シチュエーションは、交代原因が前述の第4パターンに該当する交代シチュエーションとする。つまり、第1シチュエーション及び第2シチュエーションは、交代原因が渋滞の解消であるシチュエーションにあたる。一方、第3シチュエーション及び第4シチュエーションは、交代原因が渋滞の解消でないシチュエーションにあたる。また、第1シチュエーション及び第3シチュエーションは、運転交代を予測可能であるシチュエーションにあたる。言い換えると、交代原因の発生前に運転交代通知を行うことが可能なシチュエーションにあたる。一方、第2シチュエーション及び第4シチュエーションは、運転交代を予測不能であるシチュエーションにあたる。言い換えると、交代原因の発生前に運転交代通知を行うことが不可能なシチュエーションにあたる。
 シチュエーション特定部102は、自動運転ECU80の行動判断部で渋滞の解消が予測された場合に、第1シチュエーションであると特定すればよい。シチュエーション特定部102は、自動運転ECU80の行動判断部で渋滞の解消が予測されずに判断された場合に、第2シチュエーションであると特定すればよい。シチュエーション特定部102は、自動運転ECU80の行動判断部で渋滞の解消以外の交代原因が予測された場合に、第3シチュエーションであると特定すればよい。渋滞の解消以外の予測できる交代原因としては、前述した高精度地図データの不足,道路構造の変化が挙げられる。シチュエーション特定部102は、自動運転ECU80の行動判断部で渋滞の解消以外の交代原因が予測されずに判断された場合に、第4シチュエーションであると特定すればよい。渋滞の解消以外の予測できない交代原因としては、前述した急なセンサロスト,急な天候不良が挙げられる。
 割込み特定部103は、自車の走行車線(つまり、自車線)への自車の周辺車両の割込みがあるか否かを特定する。割込み特定部103は、例えば自動運転ECU80の第1環境認識部で認識した走行環境のうちの自車の周辺車両の認識結果から、自車線への周辺車両の割込みがあるか否かを特定すればよい。例えば、周辺車両の自車線側への加速度が閾値以上となったか否かで自車線への周辺車両の割込みがあるか否かを特定すればよい。また、周辺車両の自車線側のウィンカランプの点灯の有無から、自車線への周辺車両の割込みがあるか否かを特定してもよい。周辺車両のウィンカランプの点灯は、周辺監視カメラの撮像画像に対する画像解析によって第1環境認識部で認識される構成とすればよい。他にも、通信モジュール20で受信した周辺車両の情報に、自車線への周辺車両の割込みを伝える情報が含まれる場合に、この情報を用いて、自車線への周辺車両の割込みがあるか否かを特定してもよい。
 オーバーライド検出部104は、自車の運転者が自発的に自車の制御権を取得するための操作であるオーバーライドを検出する。オーバーライド検出部104は、車両状態センサ50から得られるセンシング情報からオーバーライドを検出すればよい。例えば、オーバーライド検出部104は、ステアリングトルクセンサで検出する操舵トルクが閾値を超える場合に、オーバーライドを検出すればよい。また、オーバーライド検出部104は、アクセルセンサでアクセルペダルの踏み込みを検出した場合に、オーバーライドを検出すればよい。他にも、オーバーライド検出部104は、ブレーキセンサでブレーキペダルの踏み込みを検出した場合に、オーバーライドを検出すればよい。
 表示制御部105は、渋滞時自動運転から要運転者運転への切り替えが必要な場合に、渋滞時自動運転から要運転者運転への運転交代に関する表示を行わせる。この表示制御部105での処理が表示制御工程に相当する。表示制御部105は、交代要請取得部101で交代要請を取得したことから、渋滞時自動運転から要運転者運転への切り替えが必要なことを判断すればよい。
 運転交代に関する表示としては、交代指示表示,運転交代後表示,先行表示等が挙げられる。交代指示表示は、運転交代を指示する運転交代通知としての表示である。交代指示表示の一例としては、運転交代を運転者に促す内容のテキスト,アイコン等の表示が挙げられる。運転交代後表示は、運転交代後の表示である。運転交代後表示は、運転交代後の自動化レベル2以下の自動運転,手動運転で必要な情報の表示である。運転交代後表示の一例としては、自車の車速,自車の周囲についての情報を示す画像等の表示が挙げられる。自車の周囲についての情報の一例としては、自車に対する周辺車両の位置関係を示す図等が挙げられる。先行表示は、運転交代後表示の情報を運転交代よりも前に先行して表示させる表示である。先行表示の一例としては、交代指示表示と運転交代後表示との情報が合わさった表示,交代指示表示を簡略化した情報と運転交代後表示の情報とが合わさった表示等が挙げられる。
 表示制御部105は、シチュエーション特定部102で特定するシチュエーションに応じて、運転交代に関する表示のタイミング及び内容の少なくともいずれかを変更させる。より詳しくは、交代指示表示のタイミング,交代指示表示の内容,先行表示の有無,運転交代後表示の内容等を変更させる。
 表示制御部105は、シチュエーション特定部102で特定するシチュエーションが、交代原因の発生よりも前に交代指示表示を行わせるシチュエーションか否かに応じて、運転交代に関する表示のタイミング及び内容を変更させることが好ましい。交代原因の発生よりも前に交代指示表示を行わせるシチュエーションか否かで、交代指示表示のタイミング,交代指示表示から運転交代までの運転者の余裕が異なる。これに対して、以上の構成によれば、交代原因の発生よりも前に交代指示表示を行わせるシチュエーションか否かに応じて、交代指示表示のタイミングを変更したり、運転者の余裕に合わせた交代指示表示の内容に変更したりすることが可能になる。なお、交代原因の発生よりも前に交代指示表示を行わせるシチュエーションには、第1シチュエーション,第3シチュエーションが該当する。
 表示制御部105は、シチュエーション特定部102で特定するシチュエーションが、交代原因の発生以後に交代指示表示を行わせるシチュエーションの場合には、運転交代後に表示させる情報を運転交代が完了する前に先行して表示させる先行表示を行わせることが好ましい。一方、表示制御部105は、交代原因の発生よりも前に交代指示表示を行わせるシチュエーションの場合には、先行表示を行わせないことが好ましい。交代原因の発生以後に交代指示表示を行わせるシチュエーションでは、交代指示表示を行わせてから運転交代までの猶予が短い。これに対して、先行表示によって、運転交代後に表示させる情報を運転交代が完了する前に先行して表示させることで、運転者に状況を速やかに把握させることが可能になる。なお、交代原因の発生以後に交代指示表示を行わせるシチュエーションには、第2シチュエーション,第4シチュエーションが該当する。
 表示制御部105は、先行表示を行わせる場合、運転交代が完了するまでは、交代指示表示も先行表示に併せて行わせることが好ましい。これによれば、先行表示を行わせる場合であっても、運転交代が必要なことを運転者が交代指示表示から容易に認識可能となる。先行表示に交代指示表示を併せて行わせる場合、例えば交代指示表示は、先行表示と併せて表示させない場合に比べて情報を簡略化させたり、表示領域を狭めたりして表示させればよい。また、先行表示に交代指示表示を併せて行わせる場合、一方に他方を重畳させて表示させてもよいし、それぞれの表示領域を分けて表示させてもよい。
 表示制御部105は、シチュエーション特定部102で特定するシチュエーションが、交代原因が渋滞の解消でないシチュエーションの場合には、交代原因が渋滞の解消であるシチュエーションの場合よりも、自車の周囲についての情報の詳しさの度合いが低い運転交代後表示を行わせることが好ましい。また、表示制御部105は、シチュエーション特定部102で特定するシチュエーションが、交代原因が渋滞の解消でないシチュエーションの場合には、交代原因が渋滞の解消であるシチュエーションの場合よりも、自車の周囲についての情報の詳しさの度合いが低い運転交代後表示を行わせることが好ましい。
 交代原因が渋滞の解消であるシチュエーションでは、運転交代後に自車の車速が上がり、より自車の周囲について注意が必要となる。よって、自車の周囲についてのより詳細な情報の必要性が高い。一方、交代原因が渋滞の解消でないシチュエーションでは、運転後も渋滞が継続されて自車の車速は上がらないため、自車の周囲について注意を払う必要性がより低い。よって、自車の周囲についてのより詳細な情報の必要性が低い。これに対して、以上の構成によれば、シチュエーションごとの、運転交代後の自車の周囲についてのより詳細な情報の必要性に合わせて、自車の周囲についての情報の詳しさの度合いを変更することが可能になる。なお、交代原因が渋滞の解消でないシチュエーションには、第3シチュエーション,第4シチュエーションが該当する。一方、交代原因が渋滞の解消であるシチュエーションには、第1シチュエーション,第2シチュエーションが該当する。
 表示制御部105は、シチュエーション特定部102で特定するシチュエーションが、交代原因が渋滞の解消であるシチュエーションの場合には、自車の周囲についての情報として、自車線及び周辺車線の情報を含む運転交代後表示を行わせることが好ましい。一方、表示制御部105は、シチュエーション特定部102で特定するシチュエーションが、交代原因が渋滞の解消でないシチュエーションの場合には、自車の周囲についての情報として、自車線及び周辺車線のうちの自車線のみの情報を含む運転交代後表示を行わせることが好ましい。
 交代原因が渋滞の解消であるシチュエーションでは、前述したように、より自車の周囲について注意が必要となる。よって、自車線の情報だけでなく周辺車線の情報も運転交代後表示に含む必要性が高い。一方、交代原因が渋滞の解消でないシチュエーションでは、前述したように、自車の周囲について注意を払う必要性がより低い。よって、自車線の情報に加えて周辺車線の情報も運転交代後表示に含む必要性が低い。これに対して、以上の構成によれば、シチュエーションごとの、運転交代後の周辺車線の情報の必要性に合わせて、自車の周辺車線の情報を運転交代後表示に含ませるか否かを変更することが可能になる。自車線の情報とは、例えば自車線の区画線と、自車に対する自車線内の周辺車両の位置関係とを示す図とすればよい。周辺車線の情報とは、例えば自車線の区画線と、自車に対する周辺車線内の周辺車両の位置関係とを示す図とすればよい。
 表示制御部105は、自車の周囲についての情報として、自車線及び周辺車線のうちの自車線のみの情報を含む運転交代後表示を行わせている状況で、割込み特定部103で自車線への周辺車両の割込みがあることを特定した場合には、その運転交代後表示を、自車線に加えて周辺車線の情報も含む運転交代後表示に変更させることが好ましい。自車線への周辺車両の割込みがある場合には、周辺車線にも注意を払う必要性が高い。これに対して、以上の構成によれば、自車線及び周辺車線のうちの自車線のみの情報を含む運転交代後表示を行わせている状況であっても、周辺車線にも注意を払う必要性が高くなった場合に、周辺車線の情報も表示させることが可能になる。
 表示制御部105は、自車の周囲についての情報として、自車線及び周辺車線のうちの自車線のみの情報を含む運転交代後表示を行わせている状況で、オーバーライド検出部104でオーバーライドを検出した場合には、その運転交代後表示を、自車線に加えて周辺車線の情報も含む運転交代後表示に変更させることが好ましい。オーバーライドが発生する場合には、自車の挙動を急に変化させることもあるため、周辺車線にも注意を払う必要性が高い。これに対して、以上の構成によれば、自車線及び周辺車線のうちの自車線のみの情報を含む運転交代後表示を行わせている状況であっても、周辺車線にも注意を払う必要性が高くなった場合に、周辺車線の情報も表示させることが可能になる。
 以下では、第1シチュエーションから第4シチュエーションまでの4種類のシチュエーションごとの表示制御部105での表示制御の例について説明を行う。
 <第1シチュエーションに応じた表示制御の一例>
 まず、第1シチュエーションに応じた表示制御の一例について説明を行う。図4は、第1シチュエーションでの表示制御に関するイベントのタイミングを説明するための図である。図4の縦軸が自車の車速を示す。図4の横軸が時間を示す。図4のADTJが渋滞時自動運転の期間を示す。図4のDDRが要運転者運転の期間を示す。図4のPCEが渋滞の解消が予測できたタイミングを示す。図4のTORが、交代指示表示が行われるタイミングを示す。図4のCFが、運転交代の完了のタイミングを示す。図4のACIが、運転交代後表示が行われるタイミングを示す。図4のSUTが、自車の車速が上がるタイミングを示す。図4のPEが渋滞の解消が予測されている期間を示す。渋滞の解消は予測であるため、幅をもった期間内のどこで渋滞が解消されると予測されるものとする。
 第1シチュエーションでは、渋滞が解消するよりも前に、通信モジュール20で受信する情報をもとに渋滞の解消が行動判断部で予測される(図4のPCE参照)。そして、渋滞の解消が予測される期間(図4のPE参照)よりも前に、表示制御部105の制御によって交代指示表示が行われる(図4のTOR参照)。なお、渋滞の解消が予測される期間については、通信モジュール20で受信する情報をもとに行動判断部で予測すればよい。第1シチュエーションでの交代指示表示の一例としては、運転交代を要請する内容に加え、渋滞の解消が予測されることを示す内容も含む表示を行わせればよい。例えば、図5に示すAの領域で「XX秒後、渋滞が解消します。運転の準備をしてください。」といった表示を行わせればよい。図5のScが表示器90の表示面を示す。なお、Aの領域は、表示器90の表示面の全域であってもよいし、表示器90の表示面の一部の領域であってもよい。
 交代指示表示が行われた後、運転交代が完了する(図4のCF参照)。運転交代が完了したことは、例えばステアリングホイールに設けられた把持センサでステアリングホイールの把持を検出したことをもとにHCU10で判断すればよい。なお、交代指示表示は、運転交代が完了するまで表示させることが好ましい。運転交代が完了すると、表示制御部105の制御によって運転交代後表示が開始される(図4のACI参照)。運転交代後表示が開始されたタイミングで、渋滞時自動運転から要運転者運転に切り替わる。なお、渋滞時自動運転から要運転者運転への切り替えは、運転交代の完了と同じタイミングであってもよい。そして、運転交代完了後且つ渋滞の解消後に、車速が上げられるようになるので、運転者の運転操作によって自車の車速が上がる(図4のSUT参照)。なお、レベル2の自動運転への運転交代の場合には、自動運転システム側の制御によって自車の車速が上がる場合もある。
 第1シチュエーションでの運転交代後表示の一例としては、自車線の情報だけでなく周辺車線の情報も含む表示を行わせればよい。これは、前述したように、自車の車速が上がり、より自車の周囲について注意が必要となるためである。例えば、図6に示すように、自車に対する自車線の周辺車両との位置関係を示す図(図6のOLV参照)と、自車に対する周辺車線の周辺車両との位置関係を示す図(図6のALV参照)とを表示させればよい。この場合、自車線と周辺車線との区画線を示す線も表示させればよい。また、自車の車速を示す画像(図6のVe)も表示させればよい。
 <第2シチュエーションに応じた表示制御の一例>
 続いて、第2シチュエーションに応じた表示制御の一例について説明を行う。図7は、第2シチュエーションでの表示制御に関するイベントのタイミングを説明するための図である。図7の縦軸が自車の車速を示す。図7の横軸が時間を示す。図7のPCが渋滞の解消が発生するタイミングを示す。図7のFIが、先行表示が行われるタイミングを示す。
 第2シチュエーションでは、渋滞の解消が予測できず、突発的に渋滞が解消される(図7のPC参照)。渋滞の解消自体は、前述したように行動判断部で行われる構成とすればよい。そして、渋滞の解消が発生すると直ちに、表示制御部105の制御によって交代指示表示が行われる(図7のTOR参照)。第2シチュエーションでの交代指示表示の一例としては、運転交代を要請する内容に加え、渋滞が解消されたことを示す内容も含む表示を行わせればよい。例えば、図5に示すAの領域で「渋滞が解消しました。すぐに運転の準備をしてください。」といった表示を行わせればよい。
 交代指示表示が行われた後、運転交代が完了するよりも前に、表示制御部105の制御によって先行表示が開始される(図7のFI参照)。例えば、先行表示は、交代指示表示の開始から運転交代の完了までに最低限必要と推定される期間内に開始する構成とすればよい。他にも、交代指示表示と同じタイミングで先行表示も開始させる構成としてもよい。第2シチュエーションでの先行表示の一例としては、第1シチュエーションでの運転交代後表示と同様の表示を行わせればよい。また、先行表示を行わせる場合、運転交代が完了するまでは、交代指示表示も先行表示に併せて行わせることが好ましい。よって、例えば図8に示すように、図6に示す表示に加え、図8のBに、「運転の準備をしてください。」といった表示を行わせればよい。先行表示と併せて行わせる交代指示表示は、先行表示と併せて行わせない場合と同じ内容であってもよいし、簡略化した内容であってもよい。また、交代指示表示を先行表示に併せて行わせる場合は、先行表示の邪魔となりにくいように、先行表示と併せて行わせない場合よりも表示領域を狭くすることが好ましい。
 先行表示が行われた後、運転交代が完了する(図7のCF参照)。運転交代が完了すると、表示制御部105の制御によって運転交代後表示が開始される(図7のACI参照)。運転交代後表示は、先行表示と内容自体は同じとすればよい。先行表示に交代指示表示を併せて行わせている場合には、先行表示の情報から交代指示表示の情報を除いた情報を運転交代後表示とすればよい。また、運転交代後表示が開始されたタイミングで、渋滞時自動運転から要運転者運転に切り替わる。なお、渋滞時自動運転から要運転者運転への切り替えは、運転交代の完了と同じタイミングであってもよい。そして、運転交代完了後且つ渋滞の解消後に、車速が上げられるようになるので、運転者の運転操作によって自車の車速が上がる(図7のSUT参照)。なお、レベル2の自動運転への運転交代の場合には、自動運転システム側の制御によって自車の車速が上がる場合もある。第2シチュエーションでの運転交代後表示も、第1シチュエーションでの運転交代後表と同様とすればよい。例えば、図6の例と同様とすればよい。
 <第3シチュエーションに応じた表示の態様の一例>
 続いて、第3シチュエーションに応じた表示制御の一例について説明を行う。図9は、第3シチュエーションでの表示制御に関するイベントのタイミングを説明するための図である。図9の縦軸が自車の車速を示す。図9の横軸が時間を示す。図9のPCCが渋滞の解消以外の交代原因が予測できたタイミングを示す。図9のPCが、渋滞の解消以外の交代原因が発生するタイミングを示す。第3シチュエーションでの渋滞の解消以外の交代原因は、予測可能な交代原因である。
 第3シチュエーションでは、渋滞の解消以外の交代原因が発生するよりも前に、高精度地図データ等をもとに渋滞の解消以外の交代原因の発生が行動判断部で予測される(図9のPCC参照)。そして、渋滞の解消以外の交代原因が発生するタイミングよりも前に、表示制御部105の制御によって交代指示表示が行われる(図9のTOR参照)。なお、渋滞の解消以外の交代原因が発生するタイミングについては、例えばこの交代原因が発生する地点と自車の車速とをもとに行動判断部で判断すればよい。第3シチュエーションでの交代指示表示の一例としては、運転交代を要請する内容に加え、渋滞の解消以外の交代原因の発生が予測されることを示す内容も含む表示を行わせればよい。例えば、図5に示すAの領域で「この先単一車線のため自動運転不可。運転の準備をしてください。」といった表示を行わせればよい。
 交代指示表示が行われた後、運転交代が完了する(図9のCF参照)。なお、交代指示表示は、運転交代が完了するまで表示させることが好ましい。運転交代が完了すると、表示制御部105の制御によって運転交代後表示が開始される(図9のACI参照)。運転交代後表示が開始されたタイミングで、渋滞時自動運転から要運転者運転に切り替わる。なお、渋滞時自動運転から要運転者運転への切り替えは、運転交代の完了と同じタイミングであってもよい。第3シチュエーションでは、運転交代完了後であっても渋滞が解消しているわけでなく、車速が上げられるわけでないので、運転交代後も自車の車速が維持される。
 第3シチュエーションでの運転交代後表示の一例としては、自車線の情報と周辺車線の情報とのうちの自車線の情報のみを含む表示を行わせればよい。これは、前述したように、自車の車速が上がらず、より自車の周囲について注意を払う必要性が低いためである。例えば、図10に示すように、自車に対する自車線の周辺車両との位置関係を示す図(図10のOLV参照)を表示させればよい。この場合、周辺車線に周辺車両が存在したとしても、自車に対する周辺車線の周辺車両との位置関係を示す図は表示させない。また、自車線と周辺車線とのうちの自車線の区画線を示す線のみ表示させればよい。他にも、自車の車速を示す画像(図10のVe)も表示させればよい。
 ただし、自車線の情報と周辺車線の情報とのうちの自車線の情報のみを含む運転交代後表示を行っている場合であっても、割込み特定部103で自車線への周辺車両の割込みがあることを特定した場合、若しくはオーバーライド検出部104でオーバーライドを検出した場合には、自車線に加えて周辺車線の情報も含む運転交代後表示に変更させればよい。例えば、図11に示すように、自車に対する自車線の周辺車両との位置関係を示す図(図11のOLV参照)と、自車に対する周辺車線の周辺車両との位置関係を示す図(図11のALV参照)とを表示させればよい。また、自車線と周辺車線との区画線を示す線を表示させればよい。他にも、自車の車速を示す画像(図11のVe)も表示させればよい。
 <第4シチュエーションに応じた表示の態様の一例>
 続いて、第4シチュエーションに応じた表示制御の一例について説明を行う。図12は、第4シチュエーションでの表示制御に関するイベントのタイミングを説明するための図である。図12の縦軸が自車の車速を示す。図12の横軸が時間を示す。図12のPCが渋滞の解消以外の交代原因が発生するタイミングを示す。第4シチュエーションでの渋滞の解消以外の交代原因は、予測不能な交代原因である。
 第4シチュエーションでは、渋滞の解消以外の交代原因が予測できず、突発的に渋滞の解消以外の交代原因が発生する(図12のPC参照)。渋滞の解消以外の交代原因の発生は、前述したように行動判断部で行われる構成とすればよい。そして、渋滞の解消以外の交代原因が発生すると直ちに、表示制御部105の制御によって交代指示表示が行われる(図12のTOR参照)。第4シチュエーションでの交代指示表示の一例としては、運転交代を要請する内容に加え、渋滞の解消以外の交代原因が発生したことを示す内容も含む表示を行わせればよい。例えば、図5に示すAの領域で「天候不良のため自動運転中止。すぐに運転の準備をしてください。」といった表示を行わせればよい。
 交代指示表示が行われた後、運転交代が完了するよりも前に、表示制御部105の制御によって先行表示が開始される(図12のFI参照)。例えば、先行表示は、交代指示表示の開始から運転交代の完了までに最低限必要と推定される期間内に開始する構成とすればよい。他にも、交代指示表示と同じタイミングで先行表示も開始させる構成としてもよい。第4シチュエーションでの先行表示の一例としては、第3シチュエーションでの運転交代後表示と同様の表示を行わせればよい。また、先行表示を行わせる場合、運転交代が完了するまでは、交代指示表示も先行表示に併せて行わせることが好ましい。よって、例えば図13に示すように、図10に示す表示に加え、図13のCに、「運転の準備をしてください。」といった表示を行わせればよい。先行表示と併せて行わせる交代指示表示は、先行表示と併せて行わせない場合と同じ内容であってもよいし、簡略化した内容であってもよい。また、交代指示表示を先行表示に併せて行わせる場合は、先行表示の邪魔となりにくいように、先行表示と併せて行わせない場合よりも表示領域を狭くすることが好ましい。
 先行表示が行われた後、運転交代が完了する(図12のCF参照)。運転交代が完了すると、表示制御部105の制御によって運転交代後表示が開始される(図12のACI参照)。運転交代後表示は、先行表示と内容自体は同じとすればよい。先行表示に交代指示表示を併せて行わせている場合には、先行表示の情報から交代指示表示の情報を除いた情報を運転交代後表示とすればよい。また、運転交代後表示が開始されたタイミングで、渋滞時自動運転から要運転者運転に切り替わる。なお、渋滞時自動運転から要運転者運転への切り替えは、運転交代の完了と同じタイミングであってもよい。第4シチュエーションでは、運転交代完了後であっても渋滞が解消しているわけでなく、車速が上げられるわけでないので、運転交代後も自車の車速が維持される。第4シチュエーションでの運転交代後表示も、第3シチュエーションでの運転交代後表と同様とすればよい。例えば、図10の例と同様とすればよい。
 ただし、自車線の情報と周辺車線の情報とのうちの自車線の情報のみを含む運転交代後表示を行っている場合であっても、割込み特定部103で自車線への周辺車両の割込みがあることを特定した場合、若しくはオーバーライド検出部104でオーバーライドを検出した場合には、自車線に加えて周辺車線の情報も含む運転交代後表示に変更させればよい。例えば、図11の例と同様とすればよい。
 <HCU10での表示制御関連処理>
 ここで、図14~図16のフローチャートを用いて、HCU10での表示の制御に関する処理(以下、表示制御関連処理)の流れの一例について説明を行う。図14のフローチャートは、例えば自車が渋滞時自動運転を開始した場合に開始される構成とすればよい。
 まず、ステップS1では、交代原因が予測された場合(S1でYES)には、ステップS2に移る。一方、交代原因が予測されなかった場合(S1でNO)には、ステップS3に移る。交代原因が予測されたか否かは、HCU10が、自動運転ECU80の行動判断部での判断結果を取得することによって判断すればよい。
 ステップS2では、HCU10が交代原因予測時処理を行って、表示制御関連処理を終了する。ここで、図15のフローチャートを用いて、交代原因予測時処理の流れの一例について説明を行う。
 ステップS21では、予測された交代原因が渋滞の解消であった場合(S21でYES)には、ステップS22に移る。一方、予測された交代原因が渋滞の解消以外であった場合(S21でNO)には、ステップS25に移る。
 ステップS22では、表示制御部105が、前述の第1シチュエーションに応じた表示の態様の一例で説明したのと同様の交代指示表示を表示器90で行わせる。ステップS23では、運転交代が完了した場合(S23でYES)には、表示制御部105が、交代指示表示を終了させ、ステップS24に移る。一方、運転交代が完了していない場合(S23でNO)には、S22に戻って処理を繰り返す。運転交代が完了したか否かは、HCU10が、例えば前述したようにステアリングホイールの把持を検出したか否かで判断すればよい。
 ステップS24では、表示制御部105が、前述の第1シチュエーションに応じた表示の態様の一例で説明したのと同様の運転交代後表示を表示器90で行わせ、表示制御関連処理を終了する。詳しくは、自車線の情報と周辺車線の情報とのうちの自車線の情報のみを含む運転交代後表示を行わせる。
 一方、ステップS25では、表示制御部105が、前述の第3シチュエーションに応じた表示の態様の一例で説明したのと同様の交代指示表示を表示器90で行わせる。ステップS26では、運転交代が完了した場合(S26でYES)には、表示制御部105が、交代指示表示を終了させ、ステップS27に移る。一方、運転交代が完了していない場合(S26でNO)には、S25に戻って処理を繰り返す。
 ステップS27では、表示制御部105が、前述の第3シチュエーションに応じた表示の態様の一例で説明したのと同様の運転交代後表示を表示器90で行わせ、表示制御関連処理を終了する。詳しくは、自車線の情報と周辺車線の情報とを含む運転交代後表示を行わせる。
 図14に戻って、ステップS3では、交代原因が判断された場合(S3でYES)には、ステップS4に移る。一方、交代原因が判断されなかった場合(S3でNO)には、ステップS5に移る。交代原因が判断されたか否かは、HCU10が、交代要請取得部101で交代要請を取得したか否かによって判断すればよい。
 ステップS4では、HCU10が交代原因発生時処理を行って、表示制御関連処理を終了する。ここで、図16のフローチャートを用いて、交代原因発生時処理の流れの一例について説明を行う。
 ステップS41では、交代原因が渋滞の解消であった場合(S41でYES)には、ステップS42に移る。一方、交代原因が渋滞の解消以外であった場合(S41でNO)には、ステップS46に移る。
 ステップS42では、表示制御部105が、前述の第2シチュエーションに応じた表示の態様の一例で説明したのと同様の交代指示表示を表示器90で行わせる。ステップS43では、表示制御部105が、前述の第2シチュエーションに応じた表示の態様の一例で説明したのと同様の先行表示を表示器90で行わせる。詳しくは、自車線の情報と周辺車線の情報とのうちの自車線の情報のみを含む先行表示を行わせる。なお、表示制御部105は、先行表示を開始させる場合であっても、交代指示表示を併せて行わせる構成とすればよい。
 ステップS44では、運転交代が完了した場合(S44でYES)には、表示制御部105が、交代指示表示及び先行表示を終了させ、ステップS24に移る。なお、交代指示表示及び先行表示のうちの先行表示のみを継続することで、先行表示を後述の運転交代後表示として用いる構成としてもよい。一方、運転交代が完了していない場合(S44でNO)には、S42に戻って処理を繰り返す。
 ステップS45では、表示制御部105が、前述の第3シチュエーションに応じた表示の態様の一例で説明したのと同様の運転交代後表示を表示器90で行わせ、表示制御関連処理を終了する。詳しくは、自車線の情報と周辺車線の情報とのうちの自車線の情報のみを含む運転交代後表示を行わせる。
 一方、ステップS46では、表示制御部105が、前述の第4シチュエーションに応じた表示の態様の一例で説明したのと同様の交代指示表示を表示器90で行わせる。ステップS47では、表示制御部105が、前述の第4シチュエーションに応じた表示の態様の一例で説明したのと同様の先行表示を表示器90で行わせる。詳しくは、自車線の情報と周辺車線の情報とを含む先行表示を行わせる。なお、表示制御部105は、先行表示を開始させる場合であっても、交代指示表示を併せて行わせる構成とすればよい。
 ステップS48では、運転交代が完了した場合(S48でYES)には、表示制御部105が、交代指示表示及び先行表示を終了させ、ステップS49に移る。なお、交代指示表示及び先行表示のうちの先行表示のみを継続することで、先行表示を後述の運転交代後表示として用いる構成としてもよい。一方、運転交代が完了していない場合(S48でNO)には、S46に戻って処理を繰り返す。
 ステップS49では、表示制御部105が、前述の第4シチュエーションに応じた表示の態様の一例で説明したのと同様の運転交代後表示を表示器90で行わせ、表示制御関連処理を終了する。詳しくは、自車線の情報と周辺車線の情報とを含む運転交代後表示を行わせる。
 図14に戻って、ステップS5では、表示制御関連処理の終了タイミングであった場合(S5でYES)には、表示制御関連処理を終了する。一方、表示制御関連処理の終了タイミングでなかった場合(S5でNO)には、S1に戻って処理を繰り返す。表示制御関連処理の終了タイミングの一例としては、パワースイッチがオフになったこと等が挙げられる。
 なお、表示制御部105は、自車線の情報と周辺車線の情報とのうちの自車線の情報のみを含む運転交代後表示を行っている場合であっても、割込み特定部103で自車線への周辺車両の割込みがあることを特定した場合、若しくはオーバーライド検出部104でオーバーライドを検出した場合には、自車線に加えて周辺車線の情報も含む運転交代後表示に変更させればよい。
 <実施形態1のまとめ>
 実施形態1の構成によれば、渋滞時自動運転から要運転者運転への切り替えが必要な場合に、渋滞時自動運転から要運転者運転への切り替えが必要な自車のシチュエーションに応じて、渋滞時自動運転から要運転者運転への運転交代に関する表示のタイミング及び内容の少なくともいずれかを変更させることになる。よって、渋滞時自動運転から要運転者運転への切り替えが必要な車両のシチュエーションに合ったタイミング及び内容の少なくともいずれかの表示を行わせることが可能になる。その結果、渋滞時自動運転から要運転者運転に運転交代をする場合に、シチュエーションに応じてドライバにとってよりわかりやすい通知を行うことが可能になる。
 (実施形態2)
 実施形態1では、運転交代後表示での自車の周囲についての情報の詳しさの度合いの切り替えの例として、自車線と周辺車線とのうちの自車線のみの情報を表示させるか、自車線に加えて周辺車線の情報も表示させるかを切り替える構成を示したが、必ずしもこれに限らない。例えば、詳しさの度合いが低い運転交代後表示では、自車の近傍についての情報を表示させる一方、詳しさの度合いが高い運転交代後表示では、自車の近傍だけでなく自車から遠方の情報も表示させる等してもよい。
 (実施形態3)
 実施形態1では、運転交代が必要な自車のシチュエーションを4種類のシチュエーションに区分する例を示したが、必ずしもこれに限らない。例えば、前述の第1シチュエーションと第2シチュエーションとを同じ区分とする一方、第3シチュエーションと第4シチュエーションとを同じ区分としてもよい。他にも、前述の第1シチュエーションと第3シチュエーションとを同じ区分とする一方、第2シチュエーションと第4シチュエーションとを同じ区分としたりしてもよい。
 なお、本開示は、上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。また、本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された1つ乃至は複数の機能を実行するようにプログラムされたプロセッサを構成する専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の装置及びその手法は、専用ハードウェア論理回路により、実現されてもよい。もしくは、本開示に記載の装置及びその手法は、コンピュータプログラムを実行するプロセッサと1つ以上のハードウェア論理回路との組み合わせにより構成された1つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。

Claims (10)

  1.  自動運転のうちの、車両側のシステムが全ての運転タスクを実施可能な自動運転を、少なくとも渋滞時を含む条件に限定して実施する渋滞時自動運転と、運転者も運転タスクを実施しなければならない要運転者運転とが可能な車両で用いられ、
     前記渋滞時自動運転から前記要運転者運転への切り替えが要請される場合に、前記渋滞時自動運転から前記要運転者運転への運転交代に関する表示を行わせる表示制御部(105)と、
     前記渋滞時自動運転から前記要運転者運転への切り替えが要請される前記車両のシチュエーションを特定するシチュエーション特定部(102)とを備え、
     前記表示制御部は、前記シチュエーション特定部で特定する前記シチュエーションに応じて、前記運転交代に関する表示のタイミング及び内容の少なくともいずれかを変更させる車両用表示制御装置。
  2.  請求項1において、
     前記運転交代に関する表示には、前記運転交代を前記運転者に指示する旨の表示である交代指示表示を含み、
     前記表示制御部は、前記シチュエーション特定部で特定する前記シチュエーションが、前記渋滞時自動運転から前記要運転者運転への切り替えが要請される原因である交代原因の発生よりも前に前記交代指示表示を行わせるシチュエーションか否かに応じて、前記運転交代に関する表示のタイミング及び内容を変更させる車両用表示制御装置。
  3.  請求項2において、
     前記表示制御部は、前記シチュエーション特定部で特定する前記シチュエーションが、前記交代原因の発生以後に前記交代指示表示を行わせるシチュエーションの場合には、前記運転交代後に表示させる情報を前記運転交代が完了する前に先行して表示させる先行表示を行わせる一方、前記交代原因の発生よりも前に前記交代指示表示を行わせるシチュエーションの場合には、前記先行表示を行わせない車両用表示制御装置。
  4.  請求項3において、
     前記表示制御部は、前記先行表示を行わせる場合、前記運転交代が完了するまでは、前記交代指示表示も前記先行表示に併せて行わせる車両用表示制御装置。
  5.  請求項1~4のいずれか1項において、
     前記運転交代に関する表示には、前記運転交代後に前記運転者に向けて表示させる運転交代後表示を含み、
     前記運転交代後表示は、前記車両の周囲についての情報を含むものであって、
     前記表示制御部は、前記シチュエーション特定部で特定する前記シチュエーションが、前記渋滞時自動運転から前記要運転者運転への切り替えが要請される原因である交代原因が渋滞の解消でないシチュエーションの場合には、前記交代原因が渋滞の解消であるシチュエーションの場合よりも、前記車両の周囲についての情報の詳しさの度合いが低い前記運転交代後表示を行わせる車両用表示制御装置。
  6.  請求項5において、
     前記表示制御部は、前記シチュエーション特定部で特定する前記シチュエーションが、前記交代原因が渋滞の解消であるシチュエーションの場合には、前記車両の周囲についての情報として、前記車両の自車線及び周辺車線の情報を含む前記運転交代後表示を行わせる一方、前記シチュエーション特定部で特定する前記シチュエーションが、前記交代原因が渋滞の解消でないシチュエーションの場合には、前記車両の周囲についての情報として、前記車両の自車線及び周辺車線のうちの自車線のみの情報を含む前記運転交代後表示を行わせる車両用表示制御装置。
  7.  請求項6において、
     前記車両の自車線への前記車両の周辺車両の割込みがあるか否かを特定する割込み特定部(103)を備え、
     前記表示制御部は、前記車両の周囲についての情報として、前記車両の自車線及び周辺車線のうちの自車線のみの情報を含む前記運転交代後表示を行わせている状況で、前記割込み特定部で前記割込みがあることを特定した場合には、その運転交代後表示を、前記車両の自車線に加えて周辺車線の情報も含む前記運転交代後表示に変更させる車両用表示制御装置。
  8.  請求項6又は7において、
     前記車両の運転者が自発的に前記車両の制御権を取得するための操作であるオーバーライドを検出するオーバーライド検出部(104)を備え、
     前記表示制御部は、前記車両の周囲についての情報として、前記車両の自車線及び周辺車線のうちの自車線のみの情報を含む前記運転交代後表示を行わせている状況で、前記オーバーライド検出部で前記オーバーライドを検出した場合には、その運転交代後表示を、前記車両の自車線に加えて周辺車線の情報も含む前記運転交代後表示に変更させる車両用表示制御装置。
  9.  自動運転のうちの、車両側のシステムが全ての運転タスクを実施可能な自動運転を、少なくとも渋滞時を含む条件に限定して実施する渋滞時自動運転と、運転者も運転タスクを実施しなければならない要運転者運転とが可能な車両で用いられ、
     前記車両の車室内に表示面が向くように前記車両に設けられる表示器(90)と、
     前記表示器での表示を制御する、請求項1~8のいずれか1項に記載の車両用表示制御装置(10)とを含む車両用表示制御システム。
  10.  自動運転のうちの、車両側のシステムが全ての運転タスクを実施可能な自動運転を、少なくとも渋滞時を含む条件に限定して実施する渋滞時自動運転と、運転者も運転タスクを実施しなければならない要運転者運転とが可能な車両で用いられる車両用表示制御方法であって、
     少なくとも1つのプロセッサにより実行される、
     前記渋滞時自動運転から前記要運転者運転への切り替えが要請される場合に、前記渋滞時自動運転から前記要運転者運転への運転交代に関する表示を行わせる表示制御工程と、
     前記渋滞時自動運転から前記要運転者運転への切り替えが要請される前記車両のシチュエーションを特定するシチュエーション特定工程とを含み、
     前記表示制御工程では、前記シチュエーション特定工程で特定する前記シチュエーションに応じて、前記運転交代に関する表示のタイミング及び内容の少なくともいずれかを変更させる車両用表示制御方法。
PCT/JP2021/027428 2020-08-07 2021-07-22 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法 WO2022030269A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/161,869 US20230166596A1 (en) 2020-08-07 2023-01-30 Vehicle display control device, vehicle display control system, and vehicle display control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-134987 2020-08-07
JP2020134987A JP7363710B2 (ja) 2020-08-07 2020-08-07 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/161,869 Continuation US20230166596A1 (en) 2020-08-07 2023-01-30 Vehicle display control device, vehicle display control system, and vehicle display control method

Publications (1)

Publication Number Publication Date
WO2022030269A1 true WO2022030269A1 (ja) 2022-02-10

Family

ID=80119729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027428 WO2022030269A1 (ja) 2020-08-07 2021-07-22 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法

Country Status (3)

Country Link
US (1) US20230166596A1 (ja)
JP (1) JP7363710B2 (ja)
WO (1) WO2022030269A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097519A (ja) * 2015-11-20 2017-06-01 オムロン株式会社 自動運転支援装置、自動運転支援システム、自動運転支援方法、プログラムおよび記録媒体
JP2017165289A (ja) * 2016-03-16 2017-09-21 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP2018177064A (ja) * 2017-04-17 2018-11-15 株式会社デンソーテン コンテンツ再生装置及びコンテンツ再生方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6973930B2 (ja) 2017-12-18 2021-12-01 日産自動車株式会社 運転支援方法及び運転支援装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097519A (ja) * 2015-11-20 2017-06-01 オムロン株式会社 自動運転支援装置、自動運転支援システム、自動運転支援方法、プログラムおよび記録媒体
JP2017165289A (ja) * 2016-03-16 2017-09-21 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP2018177064A (ja) * 2017-04-17 2018-11-15 株式会社デンソーテン コンテンツ再生装置及びコンテンツ再生方法

Also Published As

Publication number Publication date
JP7363710B2 (ja) 2023-10-18
JP2022030768A (ja) 2022-02-18
US20230166596A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US10503165B2 (en) Input from a plurality of teleoperators for decision making regarding a predetermined driving situation
US11851090B2 (en) Vehicle control apparatus, vehicle control method, and storage medium
US20190311207A1 (en) Vehicle control device, vehicle control method, and storage medium
US20200174470A1 (en) System and method for supporting autonomous vehicle
WO2021075454A1 (ja) 車載装置及び運転支援方法
US20230150509A1 (en) Vehicle control device, vehicle control method, and storage medium
JP2018025993A (ja) 自動運転システム
US11402844B2 (en) Vehicle control apparatus, vehicle control method, and storage medium
CN110281931B (zh) 车辆用控制装置以及车辆
US20200074851A1 (en) Control device and control method
US11541892B2 (en) Vehicle control method and vehicle control device
US20220204027A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7215596B2 (ja) 運転制御方法及び運転制御装置
JP2021006448A (ja) 単一車両走行用に設計された自動運転システムでの車両隊列実施
JP2021011188A (ja) 車両の制御システム、車両の制御方法、およびプログラム
US20230166755A1 (en) Vehicle display control device, vehicle display control system, and vehicle display control method
US20230174106A1 (en) Path checking device and path checking method
US20230103715A1 (en) Vehicle display control device, vehicle display control system, and vehicle display control method
JP7424327B2 (ja) 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法
WO2022030269A1 (ja) 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法
WO2023021930A1 (ja) 車両用制御装置及び車両用制御方法
WO2022030372A1 (ja) 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法
WO2022030270A1 (ja) 車両用表示制御装置、車両用表示制御システム、及び車両用表示制御方法
US20230166767A1 (en) Path checking device, path checking method and vehicle control method
WO2023090166A1 (ja) 車両用制御装置及び車両用制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853438

Country of ref document: EP

Kind code of ref document: A1