WO2023020161A1 - 一种软弱地基防沉井突沉的方法 - Google Patents

一种软弱地基防沉井突沉的方法 Download PDF

Info

Publication number
WO2023020161A1
WO2023020161A1 PCT/CN2022/105091 CN2022105091W WO2023020161A1 WO 2023020161 A1 WO2023020161 A1 WO 2023020161A1 CN 2022105091 W CN2022105091 W CN 2022105091W WO 2023020161 A1 WO2023020161 A1 WO 2023020161A1
Authority
WO
WIPO (PCT)
Prior art keywords
caisson
well section
well
subsidence
foundation
Prior art date
Application number
PCT/CN2022/105091
Other languages
English (en)
French (fr)
Inventor
袁锐
秦林
黄刚
尹钱超
洪浩
闫建龙
Original Assignee
中铁四局集团第三建设有限公司
中铁四局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁四局集团第三建设有限公司, 中铁四局集团有限公司 filed Critical 中铁四局集团第三建设有限公司
Publication of WO2023020161A1 publication Critical patent/WO2023020161A1/zh
Priority to US18/347,006 priority Critical patent/US20230358010A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/08Lowering or sinking caissons
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/16Jointing caissons to the foundation soil, specially to uneven foundation soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • E02D3/123Consolidating by placing solidifying or pore-filling substances in the soil and compacting the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D37/00Repair of damaged foundations or foundation structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/26Compacting soil locally before forming foundations; Construction of foundation structures by forcing binding substances into gravel fillings

Definitions

  • the invention belongs to the field of building construction, in particular to a method for preventing the sudden subsidence of a caisson on weak ground.
  • the caisson is a shaft-like structure without an upper cover and no bottom.
  • soil is excavated in the caisson, and the caisson relies on its own gravity to overcome the frictional resistance between the well wall and the soil to sink.
  • the caisson relies on its own gravity to overcome the frictional resistance between the well wall and the soil to sink.
  • the foundation of buildings or other structures due to the soft and complex soil at the bottom, direct excavation and subsidence may easily cause sudden or continuous sinking of caissons, which not only affects the surrounding buildings, but also causes serious damage to construction personnel pose a safety hazard.
  • the invention provides a method for preventing the sudden subsidence of a caisson on a weak foundation, so as to solve the above-mentioned problems existing in the prior art.
  • a method for preventing sudden subsidence of a caisson on weak ground comprises the following steps:
  • Step 1 determine the caisson well location
  • Step 2 grouting to reinforce the foundation of the caisson, the foundation of the caisson is located at the bottom of the wall of the caisson;
  • Step 3 leveling the caisson manufacturing site
  • Step 4 Fabrication and installation of the caisson well section
  • Step 5 Repeat step 4 until all well joints are completed and the caisson sinks in place as a whole.
  • the construction steps of said caisson foundation are:
  • Step 1 Calculate and adjust the ratio of cement slurry
  • Step two opening grouting holes
  • Step 3 Inject cement slurry into the grouting hole, and form the foundation of the caisson through grouting.
  • the grouting holes are divided into two rows and are evenly spaced in a ring, the first row of grouting holes is located outside the caisson, and the second row of grouting holes is located inside the caisson; The rows of grouting holes are arranged in a staggered interval.
  • the second row of grouting holes is located at the bottom of the caisson wall.
  • the outer wall of the well section is uniformly formed with several raised blocks.
  • the number and size of the raised blocks are adjusted according to the sinking condition of the previous well section.
  • protruding blocks are arranged in a staggered interval.
  • the bottom end surface of the well joint is a plane.
  • the carrying unit includes several corbels and frames, the corbels are evenly spaced and fixed on the inner side of the upper part of the well joint, frames are fixed on several of the corbels, and brackets are fixed on the bottom of the frame; Formwork is laid on the top of the frame.
  • the frames are connected end to end to form a ring structure.
  • the frame is made of I-beam.
  • the method for preventing sudden subsidence of caissons on soft foundations is to set up caisson foundations to reinforce the soil at the bottom of caissons, and to further prevent sudden subsidence of caissons by preloading test well joints with loads, and to set raised blocks to avoid The joint sinks too fast to bring excessive impact force to the bottom well joint.
  • the method is applicable to the construction of soft soil, avoids the loss caused by the sudden sinking phenomenon, and ensures the personal safety of the construction personnel.
  • the method for preventing the sudden subsidence of caissons on weak foundations by setting caisson foundations at the bottom of caissons to reinforce the soil at the bottom of caissons, ensures that the construction can still proceed smoothly under weak soil conditions, and effectively avoids subsidence during construction.
  • Well sudden sinking phenomenon The proportion of cement slurry for grouting can be adjusted according to the site conditions, which further improves the stability of the caisson installation process and avoids property losses and safety hazards caused by sudden sinking.
  • This method of preventing sudden subsidence of caissons on weak foundations simulates the load when installing well sections through preloading, cooperates with the caisson foundation foundation at the bottom of caissons, and conducts load tests before installing the next section of well section to further prevent actual Sudden sinking of the caisson during installation to avoid unnecessary losses.
  • the method for preventing sudden subsidence of caissons on soft foundations by setting raised blocks on the outer wall of the well joints, increases the friction between the well joints and the soil, slows down the sinking speed of the well joints, thereby reducing the impact of the upper well joints on the bottom well joints impact force, to avoid the sudden sinking of the bottom well joint due to excessive force.
  • the number and size of the raised blocks can be flexibly adjusted according to the installation situation of the previous well section, which not only prevents the sudden subsidence of the well section but also avoids the difficulty of settlement and ensures the smooth progress of the construction.
  • the method for preventing the sudden subsidence of the caisson on weak ground is to increase the cross-sectional area of the bottom surface of the well joint and the soil on the horizontal plane by making the bottom surface of the well joint into a plane, reduce the pressure on the soil, and prevent the sudden subsidence of the caisson. Reduce construction risks.
  • the method for preventing sudden subsidence of caissons provided by the present invention effectively prevents the occurrence of sudden subsidence through caisson foundations and well joint preload tests.
  • the operation is simple, convenient and practical, and various parameters during construction can be adjusted in real time.
  • the construction method is flexible and can adapt to different construction environments, effectively avoiding the impact of sudden caisson sinking on surrounding buildings and eliminating potential safety hazards.
  • Fig. 1 is a flow chart of steps of the present invention
  • Fig. 2 is the plan view of caisson and bearing unit of the present invention
  • Fig. 3 is a longitudinal sectional view of the carrying unit of the present invention.
  • Fig. 4 is a longitudinal sectional view of caisson and caisson foundation of the present invention.
  • Fig. 5 is the plan view of caisson and grouting hole of the present invention.
  • Fig. 6 is the longitudinal sectional view of the caisson with raised blocks in the present invention.
  • Fig. 7 is the caisson top view that the present invention is made with raised block
  • Fig. 8 is a front view of the caisson made with raised blocks according to the present invention.
  • 1 is the corbel
  • 2 is the frame
  • 3 is the well joint
  • 4 is the load
  • 5 is the template
  • 6 is the bracket
  • 7 is the grouting hole
  • 8 is the raised block
  • 9 is the caisson foundation
  • A is The distance from the top of the corbel to the top of the well section
  • B is the foundation height of the caisson
  • C is the inner diameter of the well section
  • D is the distance between raised blocks
  • E is the height of the caisson
  • F is the height of the grouting hole.
  • a method for preventing sudden subsidence of a caisson on weak ground comprises the following steps:
  • Step 1 determine the caisson well location
  • Step 2 grouting and reinforcing the foundation 9 of the caisson, the foundation 9 of the caisson is located at the bottom of the sidewall of the caisson;
  • Step 3 leveling the caisson manufacturing site, and excavating the caisson hole
  • Step 4 fabrication and installation of caisson well section 3
  • Step 5 repeat step 4, until all well sections 3 are manufactured, and the caisson is sunk in place as a whole.
  • the construction steps of said caisson foundation 9 are:
  • Step 1 Calculate and adjust the ratio of cement slurry
  • Step 2 opening the grouting hole 7;
  • Step 3 inject cement slurry into the grouting hole 7, and form the caisson foundation 9 through grouting.
  • the grouting holes 7 are divided into two rows and arranged at uniform intervals in a ring shape, as shown in Figures 3 and 4, the first row of the grouting holes 7 is located outside the caisson
  • the grouting holes 7 in the second row are located inside the caisson, preferably, the grouting holes 7 in the second row are arranged evenly at the bottom of the caisson wall, and the axial distance between each of the grouting holes 7 is 1 meter, the central axis of the two rows of grouting holes 7 coincides with the centerline axis of the caisson, the grouting holes 7 of the first row and the grouting holes 7 of the second row are separated by 1 meter, and the two rows
  • the grouting holes 7 are arranged in a staggered interval.
  • the grouting height B in the two rows of the grouting holes 7 is 4 meters, and the height F of the grouting holes 7 is equal to the caisson height E plus the caisson foundation Base 9 Height B.
  • the carrying unit includes several corbels 1 and frames 2, as shown in Figures 1 and 2, the corbels 1 are evenly spaced and fixed on the inner side of the upper part of the well section 3, so The distance A between the top surface of the corbel 1 and the top surface of the well section 3 is 1000mm.
  • Several of the corbels 1 are fixed with frames 2 made of I-shaped steel, and the frames 2 and the corbels 1 are welded by pre-embedded steel plates, and the size of the pre-embedded steel plates is 300mm*300mm*10mm.
  • the bottom of the frame 2 is fixed with a bracket 6; the top of the frame 2 is laid with a template 5 (the template 5 is not shown in the accompanying drawing 1).
  • the frames 2 are connected end to end to form a ring structure.
  • the corbel 1 is 400mm long, 400mm wide, and 300mm-400mm high.
  • the linear distance between the corbels 1 is 3000mm, and the I-beam model is 20#A (200*100*7mm).
  • the outer wall of the caisson is uniformly formed with several raised blocks 8 for increasing the friction between the caisson and the soil, as shown in accompanying drawings 5, 6 and 7, adjacent up and down
  • the two rows of raised blocks 8 are alternately arranged at intervals.
  • the raised blocks 8 are cubes of 150mm*150mm*150mm, and the horizontal spacing D and the vertical spacing D of the raised blocks 8 are both 1500mm.
  • the area of the bottom edge of the caisson is increased, or the bottom surface of the caisson is made into a plane, so as to slow down the sinking speed of the caisson.
  • step six the sandbags are evenly stacked on the bearing unit of the first well section 3 along the inner wall of the caisson until the total load of the sandbags is equal to the total load of the second well section 3 .
  • the sandbags can be removed and the second well section 3 can be installed to prevent the second well section 3 from sinking suddenly during installation . If sudden subsidence occurs in the first well section 3 during the preloading process, the construction plan should be readjusted.
  • the cement slurry ratio and the raised block 8 for the grouting of the next well section 3 are re-allocated. number and size.
  • the inner diameter C of the well section 3 is 5000mm.
  • This method for preventing sudden subsidence of caissons on weak foundations sets caisson foundations to reinforce the soil at the bottom of caissons, and at the same time tests the bearing capacity of well joints through preloading with loads to further prevent sudden subsidence of caissons, and sets raised blocks to prevent the caissons from falling below the joints. Sinking too fast brings too much impact to the bottom well joint.
  • the method is applicable to the construction of soft soil, avoids the loss caused by the sudden sinking phenomenon, and ensures the personal safety of the construction personnel.
  • the method for preventing sudden subsidence of caissons on weak foundations by setting caisson foundations at the bottom of caissons to reinforce the soil at the bottom of caissons, ensures that the construction can still proceed smoothly under weak soil conditions, and effectively avoids caisson suddents during construction. sinking phenomenon.
  • the proportion of cement slurry for grouting can be adjusted according to the site conditions, which further improves the stability of the caisson installation process and avoids property losses and safety hazards caused by sudden sinking.
  • This method of preventing sudden subsidence of caissons on weak foundations simulates the load when installing well sections through preloading, cooperates with the caisson foundation foundation at the bottom of the caisson, and conducts load tests before installing the next section of the well section to further prevent the actual installation process Sudden sinking of the middle caisson avoids unnecessary losses.
  • This method for preventing sudden subsidence of caissons on soft foundations increases the friction between the well joints and the soil by setting raised blocks on the outer wall of the well joints, and slows down the sinking speed of the well joints, thereby reducing the impact of the upper well joints on the bottom well joints , to avoid sudden sinking of the bottom well section due to excessive force.
  • the number and size of the raised blocks can be flexibly adjusted according to the installation situation of the previous well section, which not only prevents the sudden subsidence of the well section but also avoids the difficulty of settlement and ensures the smooth progress of the construction.
  • the method for preventing the sudden subsidence of caissons on soft ground is to increase the cross-sectional area between the bottom of the well joints and the soil on the horizontal plane by making the bottom of the well joints flat, reduce the pressure on the soil, prevent the sudden subsidence of the caissons, and reduce the construction cost. risk.
  • the method for preventing sudden subsidence of caissons provided by the present invention effectively prevents the occurrence of sudden subsidence through caisson foundations combined with well joint preload tests, is simple to operate, convenient and practical, and can adjust various parameters during construction in real time It is flexible and can adapt to different construction environments, effectively avoiding the impact of sudden caisson sinking on surrounding buildings and eliminating potential safety hazards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Revetment (AREA)

Abstract

一种软弱地基防沉井突沉的方法,包括以下步骤:步骤一、确定沉井井位;步骤二、注浆加固沉井地基基础(9);步骤三、平整沉井制作场地;步骤四、沉井井节(3)的制作与安装,①制作沉井井节(3),在井节(3)上部内侧固装承载单元;②下沉第一节井节(3);③计算第二节井节(3)质量,将与井节(3)重量相同的负载(4)放置在第一节井节(3)的承载单元上,第一节井节(3)带负载(4)预压24小时;④若第一节井节(3)未明显突沉,取出负载(4)并下沉安装第二节井节(3);⑤若第一节井节(3)发生突沉,重新调整施工方案;步骤五、重复步骤四,直至全部井节(3)制作完成,沉井整体下沉到位。适用于软弱土质的施工,避免了突沉现象带来的损失,确保施工人员的人身安全。

Description

一种软弱地基防沉井突沉的方法 技术领域
本发明属于建筑施工领域,尤其是一种软弱地基防沉井突沉的方法。
背景技术
沉井是无上盖、无下底的井筒状结构物,施工过程中在沉井内挖土,让沉井依靠自身重力克服井壁与土体的摩擦阻力从而下沉。作为建筑或者其他结构的基础,沉井在下沉过程中,由于底部土质软弱复杂,直接挖土下沉,易造成沉井突沉或下沉不止的现象,不仅影响周围的建筑,还给施工人员带来安全隐患。
发明内容
本发明提供一种软弱地基防沉井突沉的方法,以解决现有技术中所存在的上述问题。
本发明提供的一种软弱地基防沉井突沉的方法,包括以下步骤:
步骤一、确定沉井井位;
步骤二、注浆加固沉井地基基础,所述沉井地基基础位于沉井井壁的底部;
步骤三、平整沉井制作场地;
步骤四、沉井井节的制作与安装,
①制作沉井井节,在井节上部内侧固装承载单元;
②下沉第一节井节;
③计算第二节井节质量,将与井节重量相同的负载放置在第一节井节的承载单元上,第一节井节带负载预压24小时;
④若第一节井节未明显突沉,取出负载并下沉安装第二节井节;
⑤若第一节井节发生突沉,重新调整施工方案;
步骤五、重复步骤四,直至全部井节制作完成,沉井整体下沉到位。
进一步的,所述步骤二中,所述沉井地基基础的施工步骤为:
步骤一、计算并调配水泥浆液比例;
步骤二、开设注浆孔;
步骤三、向注浆孔内注入水泥浆液,注浆形成沉井地基基础。
进一步的,所述注浆孔分为两排且呈环形均匀间隔设置,第一排所述注浆孔位于所述沉井外侧,第二排所述注浆孔位于所述沉井内侧;两排所述注浆孔间隔交错设置。
进一步的,第二排所述注浆孔位于所述沉井井壁底部。
进一步的,所述步骤四中,所述井节外壁均匀制有若干凸起块。
进一步的,安装下一节井节时,根据上一节井节的下沉情况调整凸起块的数量和尺寸。
进一步的,所述凸起块间隔交错设置。
进一步的,所述步骤三中,所述井节底端面为平面。
进一步的,所述承载单元包括若干牛腿和框架,所述牛腿均匀间隔固装在所述井节上部内侧,若干所述牛腿上固装有框架,所述框架底部固装有支架;所述框架顶部铺设有模板。
进一步的,所述框架首尾相连,形成环状结构。
进一步的,所述框架由工字钢制成。
本发明的优点和积极效果是:
1、本软弱地基防沉井突沉的方法,设置沉井地基基础加固沉井底部土壤的同时,通过带负载预压测试井节承载,进一步预防沉井突沉,设置凸起块,避 免井节下沉过快给底部井节带来过大的冲击力。本方法可适用于软弱土质的施工,避免了突沉现象带来的损失,确保施工人员的人身安全。
2、本软弱地基防沉井突沉的方法,通过在沉井底部设置沉井地基基础加固沉井底部土壤,确保施工在软弱土质的环境下仍能顺利进行,有效避免了施工过程中发生沉井突沉的现象。注浆的水泥浆液比例可根据现场情况进行调整,进一步提高沉井安装过程的稳定性,避免了突沉现象带来的财产损失及安全隐患。
3、本软弱地基防沉井突沉的方法,通过预压负载模拟安装井节时的载荷,配合沉井底部的沉井地基基础,在安装下一节井节前进行负载测试,进一步预防实际安装过程中沉井发生突沉,避免造成不必要的损失。
4、本软弱地基防沉井突沉的方法,通过在井节外壁设置凸起块,增大井节与土壤间的摩擦力,减缓井节下沉速度,从而减轻上层井节对底层井节的冲击力,避免底部井节因受力过大而发生突沉。凸起块的数量和尺寸可根据上一节井节的安装情况灵活调整,既防止井节突沉也避免沉降困难,确保施工顺利进行。
5、本软弱地基防沉井突沉的方法,通过将井节底端面制为平面,增大井节底面与土壤在水平面上的横截面积,减小土壤所受压强,防止沉井突沉,降低施工风险。
6、本发明提供的防沉井突沉的方法,通过沉井地基基础配合井节预压测试,有效防止了突沉现象的发生,操作简单,方便实用,实时调整施工中的各项参数,施工方式灵活,可适应不同的施工环境,有效避免了沉井突沉对周围建筑带来的影响,消除了安全隐患。
附图说明
图1是本发明的步骤流程图;
图2是本发明沉井和承载单元俯视图;
图3是本发明承载单元纵向剖视图;
图4是本发明沉井和沉井地基基础纵向剖视图;
图5是本发明沉井和注浆孔俯视图;
图6是本发明制有凸起块的沉井纵向剖视图;
图7是本发明制有凸起块的沉井俯视图;
图8是本发明制有凸起块的沉井主视图。
图中,1为牛腿,2为框架,3为井节,4为负载,5为模板,6为支架,7为注浆孔,8为凸起块,9为沉井地基基础,A为牛腿顶面至井节顶面距离,B为沉井地基基础高度,C为井节内径,D为凸起块的间距,E为沉井高度,F为注浆孔高度。
具体实施方式
下面结合附图对本发明作进一步详述。
本发明提供的一种软弱地基防沉井突沉的方法,包括以下步骤:
步骤一、确定沉井井位;
步骤二、注浆加固沉井地基基础9,所述沉井地基基础9位于沉井井壁的底部;
步骤三、平整沉井制作场地,开挖沉井孔;
步骤四、沉井井节3的制作与安装,
①制作沉井井节3,在井节3上部内侧固装承载单元;
②下沉第一节井节3;
③计算第二节井节3质量,将与井节3重量相同的负载4放置在第一节井节3的承载单元上,第一节井节3带负载4预压24小时;
④若第一节井节3未明显突沉,取出负载4并下沉安装第二节井节3;
⑤若第一节井节3发生突沉,重新调整施工方案;
步骤五、重复步骤四,直至全部井节3制作完成,沉井整体下沉到位。
进一步的,所述步骤二中,所述沉井地基基础9的施工步骤为:
步骤一、计算并调配水泥浆液比例;
步骤二、开设注浆孔7;
步骤三、向注浆孔7内注入水泥浆液,注浆形成沉井地基基础9。
进一步的,所述步骤二中,所述注浆孔7分为两排且呈环形均匀间隔设置,如附图3、4所示,第一排所述注浆孔7位于所述沉井外侧,第二排所述注浆孔7位于所述沉井内侧,优选的,第二排所述注浆孔7位于沉井井壁底部均匀排列,每个所述注浆孔7轴心间距为1米,两排注浆孔7的中心轴线与所述沉井的中心线轴线重合,第一排所述注浆孔7和第二排所述注浆孔7之间相隔1米,两排所述注浆孔7间隔交错设置。
进一步的,所述步骤三的注浆过程中,两排所述注浆孔7内的注浆高度B均为4米,所述注浆孔7高度F等于沉井高度E加上沉井地基基础9高度B。水泥浆液向注浆孔7周围扩散,最终形成沉井地基基础9,所述沉井地基基础9为环形结构的地基。
进一步的,所述步骤四中,所述承载单元包括若干牛腿1和框架2,如附图1、2所示,所述牛腿1均匀间隔固装在所述井节3上部内侧,所述牛腿1顶面 距离所述井节3顶面距离A为1000mm。若干所述牛腿1上固装有工字钢制成的框架2,所述框架2与所述牛腿1之间通过预埋钢板焊接,所述预埋钢板尺寸为300mm*300mm*10mm。所述框架2底部固装有支架6;所述框架2顶部铺设有模板5(模板5未在附图1中示出)。所述框架2首尾相连,形成环状结构。所述牛腿1长400mm,宽400mm,高300mm-400mm,所述牛腿1直线间距为3000mm,工字钢型号为20#A型(200*100*7mm)。
进一步的,所述步骤四中,所述沉井外壁均匀制有若干凸起块8,用于增大沉井与土壤间的摩擦力,如附图5、6、7所示,上下相邻的两排所述凸起块8间隔交错设置。所述凸起块8为150mm*150mm*150mm的正方体,所述凸起块8的水平间距D和竖直间距D均为1500mm。
进一步的,所述步骤四中,增大所述沉井底部刃脚面积,或者将所述沉井底端面制为平面,以此减缓沉井下沉的速度。
进一步的,所述步骤六中,将沙袋沿沉井内壁均匀堆码在第一节井节3的承载单元上,直至沙袋总载荷与第二节井节3的总载荷相等。第一节井节3带负载4预压24小时后,井节3未明显突沉,方可取出沙袋安装第二节井节3,以此预防第二节井节3安装过程中突然下沉。若预压过程中第一节井节3发生突沉,则重新调整施工方案。
进一步的,所述步骤八中,上一节井节3安装完成后,根据上一节井节3的下沉情况,重新调配下一节井节3注浆的水泥浆液比例和凸起块8的数量及尺寸。
进一步的,所述井节3内径C为5000mm。
本软弱地基防沉井突沉的方法,设置沉井地基基础加固沉井底部土壤的同 时,通过带负载预压测试井节承载,进一步预防沉井突沉,设置凸起块,避免井节下沉过快给底部井节带来过大的冲击力。本方法可适用于软弱土质的施工,避免了突沉现象带来的损失,确保施工人员的人身安全。
本软弱地基防沉井突沉的方法,通过在沉井底部设置沉井地基基础加固沉井底部土壤,确保施工在软弱土质的环境下仍能顺利进行,有效避免了施工过程中发生沉井突沉的现象。注浆的水泥浆液比例可根据现场情况进行调整,进一步提高沉井安装过程的稳定性,避免了突沉现象带来的财产损失及安全隐患。
本软弱地基防沉井突沉的方法,通过预压负载模拟安装井节时的载荷,配合沉井底部的沉井地基基础,在安装下一节井节前进行负载测试,进一步预防实际安装过程中沉井发生突沉,避免造成不必要的损失。
本软弱地基防沉井突沉的方法,通过在井节外壁设置凸起块,增大井节与土壤间的摩擦力,减缓井节下沉速度,从而减轻上层井节对底层井节的冲击力,避免底部井节因受力过大而发生突沉。凸起块的数量和尺寸可根据上一节井节的安装情况灵活调整,既防止井节突沉也避免沉降困难,确保施工顺利进行。
本软弱地基防沉井突沉的方法,通过将井节底端面制为平面,增大井节底面与土壤在水平面上的横截面积,减小土壤所受压强,防止沉井突沉,降低施工风险。
本发明提供的防沉井突沉的方法,通过沉井地基基础配合井节预压测试,有效防止了突沉现象的发生,操作简单,方便实用,实时调整施工中的各项参数,施工方式灵活,可适应不同的施工环境,有效避免了沉井突沉对周围建筑带来的影响,消除了安全隐患。
显然,上述实施例仅是为清楚地说明所作的举例,而并非对实施方式的限 定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种软弱地基防沉井突沉的方法,其特征在于,包括以下步骤:
    步骤一、确定沉井井位;
    步骤二、注浆加固沉井地基基础(9),所述沉井地基基础(9)位于沉井井壁的底部;
    步骤三、平整沉井制作场地;
    步骤四、沉井井节(3)的制作与安装,
    ①制作沉井井节(3),在井节(3)上部内侧固装承载单元;
    ②下沉第一节井节(3);
    ③计算第二节井节(3)质量,将与井节(3)重量相同的负载(4)放置在第一节井节(3)的承载单元上,第一节井节(3)带负载(4)预压24小时;
    ④若第一节井节(3)未明显突沉,取出负载(4)并下沉安装第二节井节(3);
    ⑤若第一节井节(3)发生突沉,重新调整施工方案;
    步骤五、重复步骤四,直至全部井节(3)制作完成,沉井整体下沉到位。
  2. 根据权利要求1所述的一种软弱地基防沉井突沉的方法,其特征在于,所述步骤二中,所述沉井地基基础(9)的施工步骤为:
    步骤一、计算并调配水泥浆液比例;
    步骤二、开设注浆孔(7);
    步骤三、向注浆孔(7)内注入水泥浆液,注浆形成沉井地基基 础(9)。
  3. 根据权利要求2所述的一种软弱地基防沉井突沉的方法,其特征在于,所述注浆孔(7)分为两排且呈环形均匀间隔设置,第一排所述注浆孔(7)位于所述沉井外侧,第二排所述注浆孔(7)位于所述沉井内侧;两排所述注浆孔(7)间隔交错设置。
  4. 根据权利要求3述的一种软弱地基防沉井突沉的方法,其特征在于,第二排所述注浆孔(7)位于所述沉井井壁底部。
  5. 根据权利要求1述的一种软弱地基防沉井突沉的方法,其特征在于,所述步骤四中,所述井节(3)外壁均匀制有若干凸起块(8)。
  6. 根据权利要求5所述的一种软弱地基防沉井突沉的方法,其特征在于,安装下一节井节(3)时,根据上一节井节(3)的下沉情况调整凸起块(8)的数量和尺寸。
  7. 根据权利要求5所述的一种软弱地基防沉井突沉的方法,其特征在于,所述凸起块(8)间隔交错设置。
  8. 根据权利要求1所述的一种软弱地基防沉井突沉的方法,其特征在于,所述步骤四中,所述井节(3)底端面为平面。
  9. 根据权利要求1所述的一种软弱地基防沉井突沉的方法,其特征在于,所述承载单元包括若干牛腿(1)和框架(2),所述牛腿(1)均匀间隔固装在所述井节(3)上部内侧,若干所述牛腿(1)上固装有框架(2),所述框架(2)底部固装有支架(6);所述框架(2)顶部铺设有模板(5)。
  10. 根据权利要求9所述的一种软弱地基防沉井突沉的方法,其 特征在于,所述框架(2)首尾相连,形成环状结构。
PCT/CN2022/105091 2021-11-22 2022-07-12 一种软弱地基防沉井突沉的方法 WO2023020161A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/347,006 US20230358010A1 (en) 2021-11-22 2023-07-05 Method for preventing sudden subsidence of open caisson in soft foundation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111381724.1 2021-11-22
CN202111381724.1A CN113818466B (zh) 2021-11-22 2021-11-22 一种软弱地基防沉井突沉的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/347,006 Continuation US20230358010A1 (en) 2021-11-22 2023-07-05 Method for preventing sudden subsidence of open caisson in soft foundation

Publications (1)

Publication Number Publication Date
WO2023020161A1 true WO2023020161A1 (zh) 2023-02-23

Family

ID=78919418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105091 WO2023020161A1 (zh) 2021-11-22 2022-07-12 一种软弱地基防沉井突沉的方法

Country Status (4)

Country Link
US (1) US20230358010A1 (zh)
CN (1) CN113818466B (zh)
LU (1) LU502827B1 (zh)
WO (1) WO2023020161A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113818466B (zh) * 2021-11-22 2022-02-18 中铁四局集团第三建设有限公司 一种软弱地基防沉井突沉的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025225A (ja) * 2006-07-21 2008-02-07 Shimizu Corp ケーソン沈下工法およびケーソン沈下管理システム
CN107268650A (zh) * 2017-07-28 2017-10-20 马鞍山钢铁建设集团有限公司 一种工业漩流沉淀池结构不排水法沉井方法
CN109695250A (zh) * 2019-02-21 2019-04-30 深圳市工勘岩土集团有限公司 一种深厚软土地层大直径沉井施工方法
CN111395374A (zh) * 2020-03-31 2020-07-10 广东省建筑工程监理有限公司 一种沉井的施工方法
CN111894027A (zh) * 2020-08-26 2020-11-06 天津市丙辉建材科技开发有限公司 一种沉井构造及沉井施工方法
CN213390194U (zh) * 2020-07-16 2021-06-08 中国水利水电第七工程局有限公司 一种防止沉井突沉的结构
CN113818466A (zh) * 2021-11-22 2021-12-21 中铁四局集团第三建设有限公司 一种软弱地基防沉井突沉的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080660A (ja) * 1998-09-07 2000-03-21 Toyo Technos:Kk ケーソン工法とその施工装置
CN214401860U (zh) * 2020-09-03 2021-10-15 庞利峰 一种市政工程用辅助沉井装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025225A (ja) * 2006-07-21 2008-02-07 Shimizu Corp ケーソン沈下工法およびケーソン沈下管理システム
CN107268650A (zh) * 2017-07-28 2017-10-20 马鞍山钢铁建设集团有限公司 一种工业漩流沉淀池结构不排水法沉井方法
CN109695250A (zh) * 2019-02-21 2019-04-30 深圳市工勘岩土集团有限公司 一种深厚软土地层大直径沉井施工方法
CN111395374A (zh) * 2020-03-31 2020-07-10 广东省建筑工程监理有限公司 一种沉井的施工方法
CN213390194U (zh) * 2020-07-16 2021-06-08 中国水利水电第七工程局有限公司 一种防止沉井突沉的结构
CN111894027A (zh) * 2020-08-26 2020-11-06 天津市丙辉建材科技开发有限公司 一种沉井构造及沉井施工方法
CN113818466A (zh) * 2021-11-22 2021-12-21 中铁四局集团第三建设有限公司 一种软弱地基防沉井突沉的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GU, SUNPING: "Primary Research on laws of Sinking Movement of Caisson", PORT & WATERWAY ENGINEERING, 1 January 1988 (1988-01-01), XP093037427, [retrieved on 20230404] *

Also Published As

Publication number Publication date
LU502827B1 (en) 2023-02-27
US20230358010A1 (en) 2023-11-09
CN113818466B (zh) 2022-02-18
CN113818466A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2023020161A1 (zh) 一种软弱地基防沉井突沉的方法
CN111118966A (zh) 一种无砟轨道路基过渡段填料置换结构及其施工方法
CN107044142A (zh) 用于减小房屋不均匀沉降的可调节式加固纠偏方法及结构
CN110016919A (zh) 一种旧楼加装电梯微创基坑结构与施工方法
CN110878555A (zh) 一种大跨度地下空间深基坑支护系统与施工方法
CN206902783U (zh) 用于减小房屋不均匀沉降的可调节式加固纠偏结构
RU2436899C1 (ru) Способ исправления крена и неравномерной осадки массивного высотного сооружения и его фундамента
CN107476316B (zh) 一种建筑基坑内外支撑结构及施工方法
CN212175797U (zh) 一种大跨度地下空间深基坑支护系统
CN212560935U (zh) 一种无砟轨道路基过渡段填料置换结构
Chen et al. Numerical study on the movement of existing tunnel due to deep excavation in Shanghai
CN215165200U (zh) 一种低桩承台扶壁组合式坞墙结构
CN111206601A (zh) 一种高陡滑坡快速抢修加固的方法
CN207878451U (zh) 一种采用坑底注浆地连墙控制基坑开挖影响的装置
CN215926053U (zh) 一种混凝土给排水管原位不停水增设接驳井装置
CN114108653A (zh) 一种防止基坑围护大面积连续垮塌的支护结构及施工方法
CN110578330A (zh) 利用索锚和坑外地连墙控制隧道变形的装置及方法
CN111912711A (zh) 一种用于结构拟静力试验的综合模型槽系统
CN211081877U (zh) 一种用于控制基坑外隧道变形的主动控制装置
AU2016102393A4 (en) A Method of constructing a column, a tunnel, and a tunnel made from the method
CN205024711U (zh) 通信塔用锥体单管桩
CN211081885U (zh) 一种控制基坑外隧道变形的装置
CN221255573U (zh) 一种不入楼注浆顶升纠偏装置
CN220433745U (zh) 一种旋流井施工期间利用支护桩进行抗浮的结构
CN216108555U (zh) 一种大坡度支护空腔结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857474

Country of ref document: EP

Kind code of ref document: A1