WO2023019731A1 - 雾化器及其加热组件 - Google Patents

雾化器及其加热组件 Download PDF

Info

Publication number
WO2023019731A1
WO2023019731A1 PCT/CN2021/127120 CN2021127120W WO2023019731A1 WO 2023019731 A1 WO2023019731 A1 WO 2023019731A1 CN 2021127120 W CN2021127120 W CN 2021127120W WO 2023019731 A1 WO2023019731 A1 WO 2023019731A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
section
edge
heating element
heating assembly
Prior art date
Application number
PCT/CN2021/127120
Other languages
English (en)
French (fr)
Inventor
乐桂荣
周虎
Original Assignee
比亚迪精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪精密制造有限公司 filed Critical 比亚迪精密制造有限公司
Publication of WO2023019731A1 publication Critical patent/WO2023019731A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present application relates to the technical field of electronic cigarettes, and more specifically, to an atomizer and a heating assembly thereof.
  • Ceramic heating elements are widely used in electronic cigarettes.
  • the ceramic heating element generally includes a liquid-conducting porous ceramic body and a heating element arranged on the porous ceramic body.
  • the design of the heating wire of the existing heating element is relatively complicated, the heating is uneven, and local hot spots are prone to occur, which increases the possibility of burning smell of electronic cigarettes.
  • the temperature of the heating element is too high, the service life of the atomizer will be shortened, and the possibility of scalding the user's hands will be increased.
  • An object of the present application is to provide a new technical solution for the heating assembly of the atomizer, which can at least solve the problem of uneven heating of the heating element in the prior art.
  • Another object of the present application is to provide a new technical solution for an atomizer, which includes the heating assembly.
  • a heating assembly of an atomizer comprising: a porous ceramic substrate; two wiring pads, the two wiring pads are arranged at intervals on the porous ceramic substrate along a first direction; a heating element, the heating element is arranged on the porous ceramic substrate, the two ends of the heating element are respectively electrically connected to the two connection pads, and the heating element extends in a curve between the two connection pads,
  • the heating element includes two connecting sections and a heating section, each of the connecting sections is respectively connected to the heating section and the corresponding wiring board, the heating section includes at least one bent section, and the bent section has In the inner arc segment and the outer arc segment, the width between the inner arc segment and the outer arc segment in at least one of the bent segments is greater than the width of the connecting segment.
  • the porous ceramic matrix has a first edge and a second edge extending along the first direction and spaced apart in the second direction, and the bent section faces the first edge or the second edge.
  • the two edges are bent.
  • the plurality of bent sections are sequentially connected in the first direction, and two adjacent bent sections respectively face the first edge and the The second edge is bent.
  • one of the two adjacent bent segments includes a first inner arc segment and a first outer arc segment concave toward the first edge, and two adjacent bent segments
  • the other one of the bent sections includes a second inner arc segment and a second outer arc segment concave toward the second edge; wherein, the first inner arc segment faces toward The first edge extends, and the second inner arc segment extends toward the second edge relative to the second outer arc segment, so that the width of the bent segment is greater than the width of the connecting segment.
  • the heating body in the first direction is symmetrical to the center line of the heating body in the second direction.
  • the distance between the side of the heating element close to the second edge and the second edge is 0.2mm-0.5mm, and the width of the heating section in the first direction is 0.02mm -1mm.
  • the thickness of the heating section is 0.01mm-1mm, and the length of the heating section is 1mm-30mm.
  • the two connecting sections respectively make a smooth transition to opposite sides of the two wiring boards.
  • the shape of the heating segment is arc or wave.
  • the porous ceramic substrate is provided with a through hole penetrating along its thickness direction, and the through hole is located between the two wiring pads.
  • the heating assembly further includes: two electrodes, and the two electrodes are respectively arranged on the wiring board.
  • an atomizer including the heating assembly of the atomizer described in the above embodiments.
  • the heating element is connected to two wiring boards, the heating element has at least one bent section, and the inner arc section and the outer arc section of the bent section
  • the width is greater than the width of the connecting section, which reduces the temperature difference between the inner arc section and the outer arc section of the heating element, improves the overall temperature uniformity of the heating element, avoids local hot spots, and reduces the possibility of burning smell.
  • FIG. 1 is a schematic structural view of a heating assembly according to an embodiment of the present disclosure
  • FIG. 2 is a partial enlarged view of a heating body of an embodiment of the present disclosure
  • Fig. 3 is another structural schematic diagram of a heating assembly according to an embodiment of the present disclosure.
  • Fig. 4 is another structural schematic diagram of the heating assembly of the embodiment of the present disclosure.
  • Fig. 5 is another structural schematic diagram of the heating assembly of the embodiment of the present disclosure.
  • Fig. 6 is another structural schematic diagram of a heating assembly according to an embodiment of the present disclosure.
  • Fig. 7 is another structural schematic diagram of the heating assembly of the embodiment of the present disclosure.
  • Fig. 8 is another structural schematic diagram of the heating assembly of the embodiment of the present disclosure.
  • Fig. 9 is another structural schematic diagram of the heating assembly of the embodiment of the present disclosure.
  • Fig. 10 is another structural schematic diagram of a heating assembly according to an embodiment of the present disclosure.
  • Fig. 11 is another structural schematic diagram of a heating assembly according to an embodiment of the present disclosure.
  • Fig. 13 is another structural schematic diagram of a heating assembly according to an embodiment of the present disclosure.
  • Fig. 14 is another structural schematic diagram of the heating assembly of the embodiment of the present disclosure.
  • Fig. 15 is a temperature field distribution diagram of the heating assembly of the embodiment of the present disclosure.
  • Fig. 16 is another temperature field distribution diagram of the heating assembly of the embodiment of the present disclosure.
  • Porous ceramic matrix 10 comprising first edge 11; second edge 12; through hole 13;
  • Heating body 30 connecting section 31; heating section 32; bending section 321; inner arc section 322; outer arc section 323; first inner arc section 3211; first outer arc section 3212; second inner arc section 3213; second Outer arc section 3214;
  • a heating assembly 100 of an atomizer includes a porous ceramic base 10 , two wiring boards 20 and a heating element 30 .
  • two wiring pads 20 are disposed on the porous ceramic base 10 at intervals along the first direction.
  • the heating element 30 is arranged on the porous ceramic substrate 10, and the two ends of the heating element 30 are respectively electrically connected to the two connection pads 20, and the heating element 30 extends in a curve between the two connection pads 20, and the heating element 30 includes two connection sections 31 and the heating segment 32, each connecting segment 31 is respectively connected to the heating segment 32 and the corresponding wiring board 20, the heating segment 32 includes at least one bent segment 321, the bent segment 321 has an inner arc segment 322 and an outer arc segment 323, at least one The width between the inner arc segment 322 and the outer arc segment 323 of the bent segment 321 is greater than the width of the connecting segment 31 .
  • the heating assembly 100 of the atomizer is mainly composed of a porous ceramic base 10 , two wiring boards 20 and a heating element 30 .
  • the two wiring boards 20 are mounted on the porous ceramic substrate 10 at intervals in a first direction (wherein the first direction is generally shown in the direction of the arrow in FIG. 3 ).
  • the heating element 30 is disposed on the porous ceramic substrate 10 , and the heating element 30 generally extends along the first direction.
  • the extension of the heating element 30 in the first direction may be arc extension, curve extension or other extension methods. Both ends of the heating element 30 are electrically connected to the two terminal blocks 20 respectively.
  • the electric current is introduced into one of the wiring boards 20 through the conductive nail in the electronic cigarette, and flows through the wiring board 20 to one end of the heating element 30, and then flows from the other end of the heating element 30 to the other wiring tray 20, and finally It flows to the conductive nail in the electronic cigarette to form a complete path, so that the heating element 30 generates heat.
  • the specific working principle of the electronic cigarette can be understood and realized by those skilled in the art, and will not be described in detail in this application.
  • the heating element 30 includes two connection sections 31 and a heating section 32 , one ends of the two connection sections 31 are respectively connected to two ends of the heating section 32 , and the other ends of the two connection sections 31 are respectively connected to the wiring board 20 .
  • the heating segment 32 includes at least one bent segment 321 , as shown in FIG. 1 , the bent segment 321 has an inner arc segment 322 and an outer arc segment 323 .
  • the inner arc section 322 can be understood as the inner side of the bent section 321 , that is, the side with a larger curvature of the bent section 321 .
  • the outer arc section 323 can be understood as the outer side of the bent section 321 , that is, the side with a smaller curvature of the bent section 321 .
  • the width between the inner arc segment 322 and the outer arc segment 323 of at least one bent segment 321 is greater than the width of the connecting segment 31 .
  • the resistance of different parts of the heating element 30 is different, and the amount of heat generated is different. Due to the reason that the current takes a shortcut, the current will flow towards the concave part of the bent section 321, causing the concave part (as shown in the inner arc section 322 in FIG. 1 ) to have a larger current and its temperature is higher than that of the convex position ( As shown in the outer arc section 323 in Figure 1) high.
  • the heat generated in the area near the inner arc section 322 of the bending section 321 of the heating section 32 is high and the temperature is high, and the area near the outer arc section 323 of the bending section 321 generates more heat than the area near the inner arc section 322.
  • the heat is low and the temperature is low.
  • This application appropriately increases the width between the inner arc segment 322 and the outer arc segment 323 in the bending segment 321, reduces the resistance of the bending segment 321, and reduces heat generation, thereby effectively reducing the inner arc segment 322 and the outer arc segment 323
  • the temperature difference makes the temperature of the heating element 30 more balanced.
  • connection section 31 is connected to the wiring board 20 , the closer the heating element 30 is to the wiring board 20 , the easier the heat is transferred to the wiring board 20 .
  • width of the connection section 31 By designing the width of the connection section 31 to be smaller than the width of the bending section 321, the width of the connection section 31 is narrowed compared with the bending section 321, the resistance increases, the heat generated increases, and the heat generation and transmission of the connection section 31 are guaranteed. Heat balance is achieved, making the temperature closer to other heating sections, improving the uniformity of the overall temperature of the heating assembly 100, avoiding local hot spots, and reducing the possibility of burning smell.
  • the width of the heating element 30 may vary nonlinearly in the first direction. That is to say, the heating element 30 adopts a non-linear gradient width design.
  • Fig. 1 to Fig. 14 more only shows the general extension direction of the heating element 30 on the porous ceramic substrate 10, and the width change and length change of the heating element 30 should not be attached.
  • the visual effect in the figure shall prevail, but the content recorded in the description of the present application shall prevail.
  • the heating element 30 as shown in Fig. 7 to Fig. 14 is difficult to reflect the non-linear gradual width design of the heating element 30 in visual effect, because the width change size of the heating element 30 itself is small, it is difficult to form a visual effect.
  • the resistance values of different parts of the same position of the heating element 30 connected to the two wiring boards 20 are different.
  • the present application can ensure that the resistance value of each different part of the heating element 30 is the same or substantially similar by designing the width of the heating element 30 to a non-linearly changing width, thereby making the difference between the heating element 30 on the porous ceramic substrate 10
  • the heat generated by the position is basically the same or similar, so that the temperature of the heating surface can be guaranteed to be uniform without local hot spots, and it will not cause the heating element 30 to appear on the porous ceramic substrate 10.
  • Some positions are too high in temperature to produce burnt smell, but some The location temperature is low, thereby ensuring the uniformity of the temperature of the heating assembly 100 .
  • the heating element 30 since the heat transfer of the heating element 30 at different positions of the porous ceramic substrate is not the same, therefore, by designing the heating element 30 with different width changes, it can be designed to have a narrower width at the position where the heat transfer is faster. Increase the resistance at that location and increase the heat production at that location. In the same way, the position with larger resistance can be designed to have a wider width, reduce the resistance at this position, reduce the heat production at this position, ensure the balance of heat generation and heat transfer of the heating element 30, and improve the uniformity of the overall temperature of the heating element.
  • the heating element 30 can be a heating wire, and the arrangement and structure of the heating wire can be designed by analyzing the heat generation and heat transfer of the heating wire. It can be determined by thermal analysis that the uniform arrangement of heating wires does not guarantee uniform heating. Therefore, the design of the heating wire should not only consider heat generation but also heat conduction. Reasonable arrangement and the design of gradual width can effectively prevent the occurrence of local hot spots and local heat regions, greatly reducing the possibility of burning smell, and at the same time can effectively conduct heat conduction to prevent heating of the conductive layer or atomizing core The life is attenuated due to the rapid temperature rise.
  • the heating element 100 is based on the problems of uneven heating in the prior art, and creatively designs the specific shape trend, spacing, width, etc. of the heating element 30 according to the sum effect of heat transfer and heat generation, and effectively improves the temperature of the heating element 100. Uniformity.
  • the heating assembly 100 of the nebulizer of the embodiment of the present disclosure by disposing the heating element 30 on the porous ceramic substrate 10, the heating element 30 is connected to two wiring boards 20, and the heating element 30 has at least one bent section 321, And the width between the inner arc segment 322 and the outer arc segment 323 of the bending section 321 is greater than the width of the connecting segment 31, so as to reduce the temperature difference between the inner arc segment 322 and the outer arc segment 323 of the heating element 30, and improve the temperature of the heating assembly 100.
  • the uniformity of the overall temperature avoids local hot spots and reduces the possibility of burning smell.
  • the porous ceramic substrate 10 has a first edge 11 and a second edge 12 extending along a first direction and spaced apart in a second direction, referring to FIGS. 1 to 4 , a bent section 321 Bending towards the first edge 11 and/or the second edge 12 . At least one bent section 321 is connected to the connecting section 31 .
  • the bending section 321 in the heating section 32 the overall length of the heating section 32 is increased, the contact area between the heating section 32 and the porous ceramic substrate 10 is increased, and at the same time, the distribution of the heating element 30 along the first direction is looser. , to prevent the heating element 30 from concentrating in a certain area, resulting in excessive local heat.
  • the multiple bent sections 321 are sequentially connected in the first direction, and two adjacent bent sections 321 bend toward the first edge 11 and the second edge 12 respectively. fold.
  • the bending directions of adjacent bending sections 321 are opposite, not only can the overall structure of the heating element 30 be more balanced, the length of the heating element 30 is longer, and the distribution range on the porous ceramic substrate 10 is wider, which further improves the heating efficiency.
  • the temperature uniformity of the assembly 100 it should be noted that, in the accompanying drawings of the present application, the borders of the areas used to identify the bending section 321, the heating section 32 and the connecting section 31 are not limited to the dotted frame area in the accompanying drawings (as shown in Fig. 1, Fig. 4, Fig. 5 , Fig. 7, Fig. 9 and Fig. 11 shown by the dotted line box) are only used to explain the different positions, not as a limitation.
  • the opening sizes of two adjacent bent sections 321 are different, so that the areas enclosed by the bent sections 321 are different.
  • an appropriate opening distance can generate the enclosure effect of the heating section 32 and increase the effective heating area (as shown in FIG. 15 ).
  • the temperature uniformity of the heating assembly 100 can be further ensured by setting the opening size, length, bending angle, and bending curvature of the bending section 321 according to actual heat production requirements.
  • one of the two adjacent bent segments 321 includes a first inner arc segment 3211 and a first outer arc segment concave toward the first edge 11 3212
  • the other bent segment 321 of the two adjacent bent segments 321 includes a second inner arc segment 3213 and a second outer arc segment 3214 concave toward the second edge 12
  • the first inner arc segment 3211 extends toward the first edge 11 relative to the first outer arc segment 3212
  • the second inner arc segment 3213 extends toward the second edge 12 relative to the second outer arc segment 3214
  • the width of the bent segment 321 is larger than Width of connecting section 31.
  • the width of the heating element 30 changes nonlinearly.
  • the current in the concave part (as shown in the first inner arc section 3211 and the second inner arc section 3213 in Figure 2) has a larger current, and the temperature is higher than that in the convex position (as shown in the first outer arc section in Figure 2).
  • Arc 3212 and second outer arc 3214) are high.
  • the temperature field distribution is roughly as shown in Fig. 15 . In Fig.
  • the present application stretches the first inner arc segment 3211 and the second inner arc segment 3213 outward relative to the position of the dotted line in Figure 2, and increases the inner arc to make the width here becomes larger, so as to reduce the local excessive temperature and ensure the overall temperature uniformity of the heating assembly 100 (for details, refer to the temperature field distribution in FIG. 15 ).
  • the distance between the side of the heating element 30 close to the second edge 12 and the second edge 12 is 0.2mm-0.5mm, and the width of the heating section 32 in the first direction is 0.02mm. -1mm.
  • the thickness of the heating section 32 is 0.01mm-1mm, and the length of the heating section 32 is 1mm-30mm.
  • the porous ceramic substrate 10 has a first edge 11 and a second edge 12 , and the first edge 11 and the second edge 12 extend along a first direction of the porous ceramic substrate 10 and are positioned on the porous ceramic substrate 10
  • the distribution is spaced apart in the second direction (the first direction and the second direction are shown by arrows in FIG. 3 ).
  • the first direction may be defined as a left-right direction (see arrow direction in FIG. 1 )
  • the second direction may be defined as an up-down direction.
  • the first edge 11 and the second edge 12 respectively extend along the left-right direction and are spaced apart in the up-down direction.
  • the first edge 11 and the second edge 12 are concepts adopted for convenience of description, and the first edge 11 and the second edge 12 are not strictly defined.
  • the area of the porous ceramic substrate 10 between the first edge 11 and the second edge 12 can be used as a bearing installation area, for example, where the wiring board 20 and the heating element 30 are installed.
  • the heating element 30 is disposed at a position close to the second edge 12 of the wiring board 20 , and the distance between the side of the heating element 30 close to the second edge 12 and the second edge 12 is 0.2mm-0.5mm.
  • the heat generation at the edge prevents the temperature at the edge of the porous ceramic base 10 from being too high, which affects the service life of the structure (such as the shell or silica gel, etc.) of the atomizer near the edge of the porous ceramic base 10. Hands are easily burned by high temperature when using the appliance.
  • the heating element 30 in the first direction is symmetrical to the center line of the heating element 30 in the second direction. That is to say, the whole curve of the heating element 30 of the present application can be left-right symmetrical, and the uniformity of the temperature of the heating element 30 can be further improved by arranging the left-right symmetrical heating element 30 .
  • the heating element 30 is mainly composed of two connecting sections 31 and a heating section 32, wherein the width of the connecting section 31 changes nonlinearly in the first direction, and the width of the heating section 32 changes in the first direction.
  • the non-linear change ensures that the resistance values of the connecting section 31 and the heating section 32 of the heating element 30 are the same or substantially similar, so that the heat generated by the heating element 30 at different positions on the porous ceramic substrate 10 is basically the same or substantially the same. Similar, in this way, the temperature of the heating surface is guaranteed to be uniform without local hot spots, and it will not cause the heating element 30 to appear on the porous ceramic substrate 10.
  • the temperature of some positions is too high to produce burnt smell but the temperature of some positions is low, thereby ensuring the heating element 100 Uniformity of heat generation and heat conduction.
  • the connecting section 31 by designing the connecting section 31 to have a variable width, it is beneficial to reduce the risk of fracture caused by excessive temperature difference.
  • the width range of the heating section 32 in the first direction is 0.02mm-1mm.
  • the thickness of the heating section 32 is 0.01mm-1mm, and the length of the heating section 32 is 1mm-30mm.
  • the width range of the heating section 32 is set at 0.02-1 mm, and the resistance value of the heating section 32 can be further adjusted to obtain a heating element 30 with a uniform resistance value.
  • the total length of the heating section 32 can be adjusted according to the required heating power density, and its length ranges from 1 to 30 mm. Therefore, by adjusting the width, thickness, length, etc. of the heating section 32, the heat generation uniformity of the heating section 32 can be further improved.
  • the cross-section of the wiring board 20 can be roughly arranged as a square, and the two connecting sections 31 are respectively connected to the opposite sides of the two wiring boards 20, and the two connecting sections 31 Smoothly transition with the two wiring boards 20 respectively.
  • each place will be compressed or pulled in the tangential direction of the curve of the heating element 30. stretch.
  • a smooth transition is adopted, so that the stress at each location on the connecting section 31 will not be superimposed in one direction, thereby reducing the risk of the connecting section 31 breaking under the condition of a large temperature difference.
  • the junction plate 20 can have a circular cross-section.
  • the position of the connecting section 31 and the terminal block 20 towards the second edge 12 can be vertically connected, so as to avoid the connection plate 20 and the connecting section 31 from being distorted due to the temperature difference and the difference in expansion rate with the porous ceramic matrix 10 . resulting in breakage problems.
  • the vertical connection in this application can be understood as a connection roughly in the vertical direction, not a 90° connection in the strict sense.
  • the two connecting sections 31 are respectively smoothly transitioned to the positions of the two circular wiring boards 20 toward the second edge 12 .
  • the smooth transition areas between the two connecting sections 31 and the two circular wiring pads 20 are not limited to the position where the wiring pads 20 face the second edge 12 , but can also be other positions (as shown in FIG. 11 and FIG. 12 ).
  • the shape of the heating section 32 is arc or wave. As shown in FIG. 7 to FIG. 12 , the shape of the heating section 32 can be set in an arc shape. As shown in FIGS. 3 to 6 , the shape of the heating section 32 can be designed as a wave.
  • the arc-shaped opening of the heating section 32 faces the wiring board 20 .
  • the width of the arc-shaped heating section 32 changes nonlinearly in the first direction, and the thickness of the arc-shaped heating section 32 changes nonlinearly in the first direction.
  • the visual effects in the drawings should not be taken as the criterion, but the written content in the description of the application should be taken as the criterion.
  • the heating element 30 shown in Fig. 3 to Fig. 14 is difficult to reflect the width design of the heating element 30 in a non-linear gradual change in visual effect, because the width change size of the heating element 30 itself is small, it is difficult to form a visual effect, and only By using a partially enlarged picture like Figure 2, changes can be formed visually.
  • the temperature field distribution of the arc-shaped heating section 32 is shown in FIG. 16 .
  • the width and/or thickness of the heating element 30 in a non-linear manner, it can be ensured that the resistance value of each different part of the heating element 30 is the same or substantially similar, so that the heating element 30 on the porous ceramic substrate 10
  • the heat generated at different positions is basically the same or similar, so that the temperature of the heating surface is guaranteed to be uniform without local hot spots, and it will not cause the heating element 30 to appear on the porous ceramic substrate 10.
  • the temperature of some positions is too high and produces a burnt smell.
  • the location temperature is low, so as to ensure the uniformity of heat generation and heat conduction of the heating component 100 .
  • the two heating elements 30 there are two heating elements 30 , and the two heating elements 30 are respectively arranged at positions facing the first edge 11 and the second edge 12 of the wiring board 20 , and the two heating elements 30 are respectively connected to the two The connection pads 20 are connected to form a closed loop.
  • one heating element 30 can be provided, the heating element 30 can be a heating wire, and one heating element 30 can be arranged near the second edge 12 of the wiring board 20 At the position of the heating element 30, by rationally designing the width, thickness, length and other dimensions of the heating element 30, the resistance values of each position of the heating element 30 are equal to ensure the heating uniformity of the heating element 100.
  • Two heating elements 30 can be used. As shown in FIG. 13 and FIG. 14 , the two heating elements 30 can be respectively provided at positions facing the first edge 11 and the second edge 12 of the wiring board 20 . The two heating elements 30 are respectively connected to the two wiring boards 20 to form a closed loop. By arranging two heating elements 30, the uniformity of heating of the porous ceramic matrix 10 can be improved.
  • the cross-section of the porous ceramic matrix 10 can be set in an ellipse or other irregular shapes.
  • the porous ceramic substrate 10 is provided with a through hole 13 penetrating through its thickness direction, and the through hole 13 is located between two connection pads 20 .
  • the through hole 13 on the porous ceramic base 10 can communicate with the air outlet channel in the atomization chamber and the electronic cigarette housing, and the smoke in the atomization chamber can enter the air outlet channel in the housing through the through hole 13, and then enter the mouth, satisfying the needs of users. suction needs.
  • the heating element 30 is disposed on the surface of the porous ceramic substrate 10 by printing, so the heating element 30 can be spaced apart from the through hole 13 .
  • the heating assembly 100 further includes two electrodes 40 , and the two electrodes 40 are respectively disposed on the wiring board 20 .
  • electrodes 40 can be respectively arranged on the two connection pads 20, by setting the electrodes 40 on the connection pads 20, it is convenient for the electrodes 40 is adapted to the installation position of the conductive nail in the electronic cigarette.
  • the two electrodes 40 are respectively a positive electrode and a negative electrode, and the positive electrode and the negative electrode are spaced apart along the first direction.
  • One of the junction pads 20 is arranged around the positive electrode and can be electrically connected to the positive electrode, and the other junction pad 20 is arranged around the negative electrode and can be electrically connected to the negative electrode.
  • the electrode 40 at the left end is a positive electrode
  • the electrode 40 at the right end is a negative electrode. Connection, the right end of the heating element 30 is electrically connected to the terminal pad 20 corresponding to the negative electrode.
  • the current can flow out from the positive electrode, and flow to the left end of the heating element 30 after passing through the junction plate 20 surrounding the positive electrode, and then the current flows from the left end of the heating element 30 to the right end of the heating element 30, Finally, the current flows to the negative electrode after passing through the junction plate 20 surrounding the negative electrode, forming a complete path, so that the heating element 30 generates heat.
  • the heating assembly 100 may not be provided with the electrodes 40 , and the conductive nails in the electronic cigarette may be directly connected to the wiring board 20 to realize the entire current circuit of the heating assembly 100 .
  • the heating element 30 by disposing the heating element 30 on the porous ceramic substrate 10, the heating element 30 is connected to two wiring boards 20, the heating element 30 has at least one bent section 321, and The width between the inner arc section 322 and the outer arc section 323 of the bending section 321 is greater than the width of the connecting section 31, which reduces the temperature difference between the inner arc section 322 and the outer arc section 323 of the heating element 30, thereby ensuring that the heating element generates heat Balance with heat conduction, improve the uniformity of the overall temperature of the heating assembly 100, avoid local hot spots, and reduce the possibility of burning smell.
  • an atomizer including the heating assembly 100 of the atomizer in the above-mentioned embodiments. Since the heating assembly 100 of the atomizer according to the embodiment of the present application has the above-mentioned technical effect, the atomizer according to the embodiment of the present application also has the above-mentioned technical effect. That is, the atomizer of the present application can effectively improve the uniformity of the overall temperature of the heating assembly 100 by using the heating assembly 100 , avoid local hot spots, and reduce the possibility of burning smell.

Landscapes

  • Resistance Heating (AREA)

Abstract

一种雾化器及其加热组件(100),加热组件(100)包括:多孔陶瓷基体(10);两个接线盘(20),两个接线盘(20)沿第一方向间隔设置在多孔陶瓷基体(10)上;发热体(30),发热体(30)设于多孔陶瓷基体(10)上,发热体(30)包括:两个连接段(31)和加热段(32),每个连接段(31)分别连接加热段(32)和对应的接线盘(20),加热段(32)包括至少一个弯折段(321),弯折段(321)具有内弧段(322)和外弧段(323),至少一个弯折段(321)中内弧段(322)和外弧段(323)之间的宽度大于连接段(31)的宽度。该加热组件(100)可减少发热体(30)在内弧段(322)区域和外弧段(323)区域的温度差,提高加热组件(100)整体温度的均匀性,避免出现局部热点,降低产生焦味的可能性。

Description

雾化器及其加热组件
本申请要求于2021年8月19日提交中国专利局,申请号为202121964079.1,申请名称为“雾化器及其加热组件”的中国专利申请的优先权,其全部内容通过引用结合到本申请中。
技术领域
本申请涉及电子烟技术领域,更具体地,涉及一种雾化器及其加热组件。
背景技术
陶瓷发热体被广泛用于电子烟中。陶瓷发热体一般包括导液的多孔陶瓷体及设置多孔陶瓷体上的发热元件。
现有的发热元件的发热丝设计较为复杂,发热不均匀,容易出现局部热点,增大电子烟产生焦味的可能性。同时还会因发热元件的温度过高,缩短雾化器的使用寿命,增加用户手部被烫伤的可能性。
发明内容
本申请的一个目的是提供一种雾化器的加热组件的新技术方案,至少能够解决现有技术中的发热元件发热不均匀的问题。
本申请的又一个目的是提供一种雾化器的新技术方案,该雾化器包括该加热组件。
根据本申请的第一方面,提供了一种雾化器的加热组件,包括:多孔陶瓷基体;两个接线盘,所述两个接线盘沿第一方向间隔设置在所述多孔陶瓷基体上;发热体,所述发热体设于所述多孔陶瓷基体上,所述发热体的两端分别与两个所述接线盘电连接,所述发热体在两个所述接线盘之间曲线延伸,所述发热体包括两个连接段和加热段,每个所述连接段分别连接所述加热段和对应的所述接线盘,所述加热段包括至少一个弯折段,所 述弯折段具有内弧段和外弧段,至少一个所述弯折段中所述内弧段和所述外弧段之间的宽度大于所述连接段的宽度。
可选地,所述多孔陶瓷基体具有沿所述第一方向延伸且在第二方向上间隔开分布的第一边缘和第二边缘,所述弯折段朝向所述第一边缘或所述第二边缘弯折。
可选地,所述弯折段为多个,多个所述弯折段在所述第一方向上依次连接,且相邻两个所述弯折段分别朝向所述第一边缘和所述第二边缘弯折。
可选地,相邻两个所述弯折段中的其中一个所述弯折段包括朝向所述第一边缘凹陷的第一内弧段和第一外弧段,相邻两个所述弯折段中的另一个所述弯折段包括朝向所述第二边缘凹陷的第二内弧段和第二外弧段;其中,所述第一内弧段相对所述第一外弧段朝向所述第一边缘延伸,所述第二内弧段相对所述第二外弧段朝向所述第二边缘延伸,以使所述弯折段的宽度大于所述连接段的宽度。
可选地,相邻两个所述弯折段的开口大小不同,以使所述弯折段所合围的面积不同。
可选地,所述发热体在所述第一方向上相对于所述发热体在所述第二方向上的中心线相互对称。
可选地,所述发热体的靠近所述第二边缘的一侧与所述第二边缘的距离为0.2mm-0.5mm,所述加热段在所述第一方向上的宽度范围为0.02mm-1mm。
可选地,所述加热段的厚度为0.01mm-1mm,所述加热段的长度为1mm-30mm。
可选地,两个所述连接段分别与两个所述接线盘的相对的一侧圆滑过渡。
可选地,所述加热段的形状为弧形或波浪形。
可选地,所述发热体为两个,两个所述发热体分别设在所述接线盘的朝向所述第一边缘和所述第二边缘的位置处,两个发热体分别与两个所述接线盘连接形成闭环形。
可选地,所述多孔陶瓷基体设有沿其厚度方向贯通的通孔,所述通孔 位于两个所述接线盘之间。
可选地,所述加热组件还包括:两个电极,两个电极分别设于所述接线盘上。
根据本公开的第二方面,提供一种雾化器,包括上述实施例中所述的雾化器的加热组件。
根据本公开的一个实施例,通过在多孔陶瓷基体上设置发热体,发热体连接两个接线盘,发热体具有至少一个弯折段,并且弯折段的内弧段和外弧段之间的宽度大于连接段的宽度,减少发热体在内弧段区域和外弧段区域的温度差,提高加热组件整体温度的均匀性,避免出现局部热点,降低产生焦味的可能性。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1是本公开实施例的加热组件的一个结构示意图;
图2是本公开实施例的加热体的部分放大图;
图3是本公开实施例的加热组件的另一个结构示意图;
图4是本公开实施例的加热组件的又一个结构示意图;
图5是本公开实施例的加热组件的又一个结构示意图;
图6是本公开实施例的加热组件的又一个结构示意图;
图7是本公开实施例的加热组件的又一个结构示意图;
图8是本公开实施例的加热组件的又一个结构示意图;
图9是本公开实施例的加热组件的又一个结构示意图;
图10是本公开实施例的加热组件的又一个结构示意图;
图11是本公开实施例的加热组件的又一个结构示意图;
图12是本公开实施例的加热组件的又一个结构示意图;
图13是本公开实施例的加热组件的又一个结构示意图;
图14是本公开实施例的加热组件的再一个结构示意图;
图15是本公开实施例的加热组件的一个温度场分布图;
图16是本公开实施例的加热组件的另一个温度场分布图。
附图标记
加热组件100;
多孔陶瓷基体10;第一边缘11;第二边缘12;通孔13;
接线盘20;
发热体30;连接段31;加热段32;弯折段321;内弧段322;外弧段323;第一内弧段3211;第一外弧段3212;第二内弧段3213;第二外弧段3214;
电极40。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的段件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一段分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
下面结合附图对根据本申请实施例的雾化器的加热组件100进行详细说明。
如图1至图14所示,根据本公开实施例的雾化器的加热组件100包括多孔陶瓷基体10、两个接线盘20和发热体30。
具体而言,两个接线盘20沿第一方向间隔设置在多孔陶瓷基体10上。发热体30设于多孔陶瓷基体10上,发热体30的两端分别与两个接线盘20电连接,发热体30在两个接线盘20之间曲线延伸,发热体30包括两个连接段31和加热段32,每个连接段31分别连接加热段32和对应的接线盘20,加热段32包括至少一个弯折段321,弯折段321具有内弧段322和外弧段323,至少一个弯折段321的内弧段322和外弧段323之间的宽度大于连接段31的宽度。
换言之,如图1和图3所示,根据本公开实施例的雾化器的加热组件100主要由多孔陶瓷基体10、两个接线盘20和发热体30组成。两个接线盘20在第一方向间隔开地安装在多孔陶瓷基体10上(其中第一方向大致如图3中箭头方向所示)。发热体30设置在多孔陶瓷基体10上,发热体30大致沿第一方向延伸,发热体30在第一方向上的延伸可以是弧线延伸、曲线延伸或其他延伸方式。发热体30的两端分别与两个接线盘20电连接。
在电子烟结构中,电流通过电子烟中的导电钉导入其中一个接线盘20,并通过该接线盘20流向发热体30的一端,然后从发热体30的另一端流向另一个接线盘20,最后流向电子烟中的导电钉,形成一个完整的通路,从而使发热体30产生热量。当然,电子烟的具体工作原理是本领域技术人员能够了解并且实现的,在本申请中不再详细赘述。
发热体30包括两个连接段31和加热段32,两个连接段31的一端分别与加热段32的两端连接,两个连接段31的另一端分别与接线盘20连接。加热段32包括至少一个弯折段321,如图1所示,弯折段321具有内弧段322和外弧段323。在本申请中,内弧段322可以理解为弯折段321的内侧,即弯折段321的曲率较大的一侧。外弧段323可以理解为弯折段321的外侧,即弯折段321的曲率较小的一侧。
如图1所示,至少一个弯折段321的内弧段322和外弧段323之间的宽度大于连接段31的宽度。本申请中,发热体30的不同部位的电阻不同,产生的热量大小不同。由于电流走捷径的原因,电流会偏向弯折段321的 内凹部分流动,导致内凹的部分(如图1中的内弧段322所示)电流较大并且其温度比外凸的位置(如图1中的外弧段323所示)高。因此,加热段32的靠近弯折段321的内弧段322的区域产生的热量高、温度高,靠近弯折段321的外弧段323的区域相对于靠近内弧段322的区域来说产生的热量低、温度低。本申请通过适当增加弯折段321中内弧段322和外弧段323之间的宽度,减小弯折段321的电阻,减少热量产生,从而有效减小内弧段322和外弧段323的温度差,使发热体30的温度更加均衡。
同时,由于连接段31与接线盘20连接,因此,发热体30越靠近接线盘20的部分,热量越容易传给接线盘20。通过将连接段31的宽度设计成小于弯折段321的宽度,使连接段31的宽度相比于弯折段321收窄,电阻增加,产生的热量增加,保证连接段31的产热和传热实现平衡,使温度与其他发热段更加接近,提高加热组件100整体温度的均匀性,避免出现局部热点,降低产生焦味的可能性。
如图1至图6所示,在本申请中,发热体30的宽度在第一方向上可以呈非线性变化。也就是说,发热体30采用非线性渐变的宽度设计。在本申请的附图中(图1至图14)更多的只是示出了发热体30在多孔陶瓷基体10上的大致延伸方向,对于发热体30的宽度变化、长度变化等不应该以附图中视觉上的效果为准,而应该以本申请的说明书文字记载的内容为准。如图7至图14所示的发热体30在视觉效果上很难体现发热体30采用非线性渐变的宽度设计,因为发热体30本身的宽度变化尺寸较小,很难形成视觉上效果。
需要说明的是,在本申请的加热组件100中,连接两个接线盘20的发热体30同一位置的不同部位的电阻值不同。电流在发热体30上传导的过程中,会出现走捷径的现象,导致发热体30在多孔陶瓷基体10上同一位置的不同部位产生的热量不同。因此,本申请通过将发热体30的宽度设计成非线性变化的宽度,可以保证发热体30的每个不同部位的电阻值相同或基本相近,从而使发热体30在多孔陶瓷基体10上的不同位置所产生的热量基本相同或相近,如此,可以保证加热面的温度均匀而没有局部热点,不会造成发热体30在多孔陶瓷基体10上出现有的位置温度过高而产生焦 味但有的位置温度低,从而保证加热组件100的温度的均匀性。另一方面,由于发热体30在多孔陶瓷基体的不同位置的传热也不尽相同,因此,通过设计不同的宽度变化的发热体30,可以在传热较快的位置设计成宽度较窄来提高该位置的电阻并增加该位置的产热量。同样的道理,可以在电阻较大的位置设计成宽度较宽,降低该位置的电阻,减少该位置的产热量,保证发热体30发热和传热的平衡,提高加热组件整体温度的均匀性。
在本申请中,发热体30可以采用发热丝,通过对发热丝的发热和传热分析来设计发热丝的排布和结构。经热分析可以确定,发热丝排布均匀并不能保证发热的均匀。因此,发热丝的设计不仅要考虑发热还要考虑热传导。合理的排布再加上采用渐变宽度的设计可以有效地防止局部热点和局部热域的出现,大大减缓产生焦味的可能性,同时还能有效进行热量传导,防止加热导电层或雾化芯因升温过快而寿命衰减。
该加热组件100在现有技术存在的加热不均等问题的基础上,对发热体30的具体形状走势、间距、宽度等根据传热和发热的总和效应进行创造性设计,有效提升加热组件100温度的均匀性。
由此,根据本公开实施例的雾化器的加热组件100,通过在多孔陶瓷基体10上设置发热体30,发热体30连接两个接线盘20,发热体30具有至少一个弯折段321,并且弯折段321的内弧段322和外弧段323之间的宽度大于连接段31的宽度,减少发热体30在内弧段322区域和外弧段323区域的温度差,提高加热组件100整体温度的均匀性,避免出现局部热点,降低产生焦味的可能性。
根据本公开的一个实施例,多孔陶瓷基体10具有沿第一方向延伸且在第二方向上间隔开地分布的第一边缘11和第二边缘12,参见图1至图4,弯折段321朝向第一边缘11和/或第二边缘12弯折。至少一个弯折段321与连接段31连接。通过在加热段32中设置弯折段321,增大加热段32的整体长度,增大加热段32与多孔陶瓷基体10的接触面积,同时还能使发热体30沿第一方向的分布更加宽松,避免发热体30集中在某个区域,导致局部热量过高。
可选地,弯折段321的个数为多个,多个弯折段321在第一方向上依 次连接,且相邻两个弯折段321分别朝向第一边缘11和第二边缘12弯折。通过限定相邻弯折段321的弯折方向相反,不仅能够使发热体30整体结构更加均衡,使得发热体30的长度更长,在多孔陶瓷基体10上的分布范围更广,进一步提高了加热组件100的温度均匀性。需要说明的是,本申请的附图中,用于标识弯折段321、加热段32和连接段31的区域的边界不限于附图中的虚线框区域(如图1、图4、图5、图7、图9和图11中虚线框所示),只是用于解释不同的位置,而不是作为限制。
可选地,参见图1至图6,相邻两个弯折段321的开口大小不同,以使弯折段321所合围的面积不同。通过合理设计弯折段321的开口大小或开口方向,适当的开口距离可以产生加热段32的围合效果,提高有效发热面积(如图15所示)。在本申请中,可以根据实际产热需要,通过具体设置弯折段321的开口大小、长度、弯折角度以及弯折曲率等,可以进一步保证加热组件100的温度均匀性。
根据本公开的一个实施例,参见图2,相邻两个弯折段321中的其中一个所述弯折段321包括朝向第一边缘11凹陷的第一内弧段3211和第一外弧段3212,相邻两个弯折段321中的另一个弯折段321包括朝向第二边缘12凹陷的第二内弧段3213和第二外弧段3214。其中,第一内弧段3211相对第一外弧段3212朝向第一边缘11延伸,第二内弧段3213相对第二外弧段3214朝向第二边缘12延伸,而且弯折段321的宽度大于连接段31的宽度。
具体来说,在本申请中发热体30的宽度呈非线性变化。对于同一位置的发热体的不同部位。由于电流走捷径的原因,内凹的部分(如图2中第一内弧段3211和第二内弧段3213所示)电流较大,温度比外凸的位置(如图2中第一外弧段3212和第二外弧段3214所示)高。其中,温度场分布大致如图15所示。图2中若按虚线设置为等宽,则第一内弧段3211处的温度大于第一外弧段3212处的温度,第二内弧段3213处的温度大于第二外弧段3214处的温度。为使内外侧温度差不至于过大,本申请将第一内弧段3211和第二内弧段3213分别相对图2中虚线位置向外拉伸,把内圆弧加大,使此处宽度变大,从而降低局部的过高温度,保证加热组件100 整体温度均匀(具体参见图15中的温度场分布)。
在本公开的一些具体实施方式中,发热体30的靠近第二边缘12的一侧与第二边缘12的距离为0.2mm-0.5mm,加热段32在第一方向上的宽度范围为0.02mm-1mm。加热段32的厚度为0.01mm-1mm,加热段32的长度为1mm-30mm。
也就是说,如图3所示,多孔陶瓷基体10具有第一边缘11和第二边缘12,第一边缘11和第二边缘12沿多孔陶瓷基体10的第一方向延伸且在多孔陶瓷基体10的第二方向上间隔开分布(第一方向和第二方向如图3中箭头方向所示)。例如,可以将第一方向定义为左右方向(参见图1中箭头方向),并将第二方向定义为上下方向。第一边缘11和第二边缘12分别沿着左右方向延伸,且在上下方向上间隔开分布。本领域技术人员能够理解,第一边缘11和第二边缘12只是便于描述而采用的概念,第一边缘11和第二边缘12并没有严格的边界限定。
多孔陶瓷基体10在第一边缘11和第二边缘12之间的区域可以作为承载安装区域,例如,安装接线盘20和发热体30。发热体30设置在接线盘20的靠近第二边缘12的位置处,发热体30的靠近第二边缘12的一侧与第二边缘12的距离为0.2mm-0.5mm。通过将发热体30设置在距离第二边缘12的距离为0.2mm-0.5mm的范围内,保证发热体30与多孔陶瓷基体10的第二边缘12具有最优的距离,降低多孔陶瓷基体10的边缘的发热情况,防止多孔陶瓷基体10的边缘位置温度过高,影响雾化器靠近多孔陶瓷基体10的边缘位置的结构(例如外壳或硅胶等)的使用寿命,同时还能防止用户使用雾化器时,手部容易被高温烫伤。
在本公开的一些具体实施例中,如图1至图6所示,发热体30在第一方向上相对于发热体30在第二方向上的中心线相互对称。也就是说,本申请的发热体30的整条曲线可以呈左右对称,通过设置左右对称的发热体30,可以进一步提高发热体30温度的均匀性。
参见图1至图6,发热体30主要由两个连接段31和加热段32组成,其中,连接段31的宽度在第一方向呈非线性变化,加热段32的宽度在第一方向上呈非线性变化,保证发热体30的连接段31和加热段32的每个不 同部位的电阻值相同或基本相近,从而使发热体30在多孔陶瓷基体10上的不同位置所产生的热量基本相同或相近,如此,保证加热面的温度均匀而没有局部热点,不会造成发热体30在多孔陶瓷基体10上出现有的位置温度过高而产生焦味但有的位置温度低,从而保证加热组件100的产热和导热的均匀性。同时,通过将连接段31设计为变化的宽度,有利于降低因温差过大导致的断裂风险。
两个连接段31的一端分别与加热段32的两端连接,两个连接段31的另一端分别与两个接线盘20连接。其中,加热段32在第一方向上的宽度范围为0.02mm-1mm。通过合理设计加热段32的宽度范围,可以调整加热段32的不同部位的电阻值,保证加热段32的不同部位的电阻值基本一致或相同,确保加热段32产热的均匀性。
可选地,加热段32的厚度为0.01mm-1mm,加热段32的长度为1mm-30mm。在本申请中,两个连接段31之间为加热段32,加热段32可以根据温度场分布调整其宽度,使整个发热区域温度分布均匀。加热段32的宽度范围设置在0.02-1mm,加热段32的电阻值大小还可以通过进一步地调整加热段32的厚度而得到电阻值大小均一的发热体30。加热段32的总线长可以根据所需的发热功率密度进行调整,其长度范围为1-30mm。因此,通过对加热段32的宽度、厚度、长度等进行调节,可以进一步提高加热段32产热的均匀性。
在本申请中,如图1和图3所示,接线盘20的截面可以大致设置成方形,两个连接段31分别连接在两个接线盘20的相对的一侧,并且两个连接段31分别与两个接线盘20圆滑过渡。在本申请中,发热体30在加热和冷却过程中,由于发热体30与多孔陶瓷基体10和接线盘20的膨胀率的不同,每一处都会受到发热体30的曲线切线方向的压缩或拉伸。而采用圆滑过渡的方式,使得连接段31上每一处的受力不会在一个方向上叠加,从而降低了连接段31在大温差情况下断裂的风险。
在本申请中,如图4至图14所示,接线盘20的截面可以设置成圆形,通过设置成圆形的接线盘20,更加便于与导电钉顶部的圆形体相适配。如图7和图8所示,连接段31与接线盘20的朝向第二边缘12的位置可以垂 直连接,避免接线盘20与连接段31由于温度差以及与多孔陶瓷基体10的膨胀率不同而导致的易于断裂的问题。本申请中的垂直连接可以理解为大致在垂直方向上的连接,并非严格意义上的90°的连接方式。可选地,如图9和图10所示,两个连接段31分别与两个圆形的接线盘20的朝向第二边缘12的位置圆滑过渡。当然,两个连接段31分别与两个圆形的接线盘20圆滑过渡的区域不限于接线盘20朝向第二边缘12的位置,还可以是其他位置(如图11和图12所示)。通过采用圆滑过渡的方式,可以进一步降低连接段31在大温差情况下断裂的风险。
在本申请中,加热段32的形状为弧形或波浪形。如图7至图12所示,加热段32的形状可以设置成弧形状。如图3至图6所示,加热段32的形状可以设计成波浪形。加热段32的弧形开口朝向接线盘20。弧形状的加热段32的宽度在第一方向上呈非线性变化,弧形状的加热段32的厚度在第一方向上呈非线性变化。在本申请中,未示出图3至图14的发热体30的放大图,只是示出了发热体30在多孔陶瓷基体10上的大致延伸方向,对于发热体30的宽度变化、长度变化等不应该以附图中视觉上的效果为准,而应该以本申请的说明书文字记载的内容为准。图3至图14所示的发热体30在视觉效果上很难体现发热体30采用非线性渐变的宽度设计,因为发热体30本身的宽度变化尺寸较小,很难形成视觉上效果,只能通过像图2一样,采用局部放大图才能在视觉上形成变化。弧形的加热段32的温度场分布如图16所示。本申请通过将发热体30的宽度和/厚度设计成非线性变化的方式,可以保证发热体30的每个不同部位的电阻值相同或基本相近,从而使发热体30在多孔陶瓷基体10上的不同位置所产生的热量基本相同或相近,如此,保证加热面的温度均匀而没有局部热点,不会造成发热体30在多孔陶瓷基体10上出现有的位置温度过高而产生焦味但有的位置温度低,从而保证加热组件100的产热和导热的均匀性。
根据本公开的一个实施例,发热体30为两个,两个发热体30分别设在接线盘20的朝向第一边缘11和第二边缘12的位置处,两个发热体30分别与两个接线盘20连接形成闭环形。
换句话说,在本申请中,参见图1至图12所示,发热体30可以设置 成一个,发热体30可以采用发热丝,一个发热体30可以设置在接线盘20的靠近第二边缘12的位置处,通过合理设计发热体30的宽度、厚度、长度等尺寸,使发热体30各位置电阻值相当,保证加热组件100的发热均匀性。
发热体30可以采用两个,如图13和图14所示,两个发热体30可以分别设在接线盘20的朝向第一边缘11和第二边缘12的位置处。两个发热体30分别与两个接线盘20连接形成闭环形。通过设置两个发热体30,可以提高多孔陶瓷基体10受热的均匀性。
在本申请中,多孔陶瓷基体10的截面可以设置成椭圆形或其他不规则形状。参见图1和图3,多孔陶瓷基体10设置有沿其厚度方向贯通的通孔13,该通孔13位于两个接线盘20之间。多孔陶瓷基体10上的通孔13可以连通雾化腔和电子烟壳体中的出气通道,雾化腔内的烟雾可以通过通孔13进入壳体中的出气通道,进而进入人口中,满足用户的抽吸需求。
在本公开的一些具体实施方式中,发热体30通过印刷的方式设置于多孔陶瓷基体10的表面,因此发热体30可与通孔13间隔开设置。
在本公开的一些具体实施方式中,加热组件100还包括两个电极40,两个电极40分别设于接线盘20上。
也就是说,如图1、图4、图5、图7、图9和图11所示,两个接线盘20上可以分别设置有电极40,通过在接线盘20上设置电极40,便于电极40适配电子烟中的导电钉的安装位置。两个电极40分别为正电极和负电极,正电极和负电极沿第一方向间隔开分布。其中一个接线盘20设于正电极周围,并且能够与正电极电连接,另一个接线盘20设于负电极周围,并且能够与负电极电连接。在本申请,以左端的电极40为正电极,右端的电极40为负电极为例进行说明,发热体30设置在多孔陶瓷基体10上,发热体30的左端和与正电极对应的接线盘20电连接,发热体30的右端和与负电极对应的接线盘20电连接。
当正电极和负电极通电时,电流可以从正电极流出,经过包围在正电极周围的接线盘20后,流向发热体30的左端,然后电流从发热体30的左端流向发热体30的右端,最后电流经过包围在负电极周围的接线盘20后 流向负电极,形成完整的通路,从而使得发热体30产生热量。
当然,在本申请中,加热组件100可以不设置电极40,电子烟中的导电钉可以直接与接线盘20连接,实现加热组件100的整个电流回路。
总而言之,根据本公开实施例的雾化器的加热组件100,通过在多孔陶瓷基体10上设置发热体30,发热体30连接两个接线盘20,发热体30具有至少一个弯折段321,并且弯折段321的内弧段322和外弧段323之间的宽度大于连接段31的宽度,减少发热体30在内弧段322区域和外弧段323区域的温度差,从而保证发热体发热和热传导的平衡,提高加热组件100整体温度的均匀性,避免出现局部热点,降低产生焦味的可能性。
根据本公开的第二方面,提供一种雾化器,包括上述实施例中的雾化器的加热组件100。由于根据本申请实施例的雾化器的加热组件100具有上述技术效果,因此,根据本申请实施例的雾化器也具有上述技术效果。即本申请的雾化器通过采用该加热组件100,能够有效提高加热组件100整体温度的均匀性,避免出现局部热点,降低产生焦味的可能性。
根据本申请实施例的雾化器的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (14)

  1. 一种雾化器的加热组件,其特征在于,包括:
    多孔陶瓷基体;
    两个接线盘,所述两个接线盘沿第一方向间隔设置在所述多孔陶瓷基体上;
    发热体,所述发热体设于所述多孔陶瓷基体上,所述发热体的两端分别与两个所述接线盘电连接,所述发热体在两个所述接线盘之间曲线延伸,所述发热体包括两个连接段和加热段,每个所述连接段分别连接所述加热段和对应的所述接线盘,所述加热段包括至少一个弯折段,所述弯折段具有内弧边和外弧边,至少一个所述弯折段中所述内弧边和所述外弧边之间的宽度大于所述连接段的宽度。
  2. 根据权利要求1所述的雾化器的加热组件,其特征在于,所述多孔陶瓷基体具有沿所述第一方向延伸且在第二方向上间隔开分布的第一边缘和第二边缘,所述弯折段朝向所述第一边缘或所述第二边缘弯折。
  3. 根据权利要求2所述的雾化器的加热组件,其特征在于,所述弯折段为多个,多个所述弯折段在所述第一方向上依次连接,且相邻两个所述弯折段分别朝向所述第一边缘和所述第二边缘弯折。
  4. 根据权利要求3所述的雾化器的加热组件,其特征在于,相邻两个所述弯折段中的其中一个所述弯折段包括朝向所述第一边缘凹陷的第一内弧段和第一外弧段,相邻两个所述弯折段中的另一个所述弯折段包括朝向所述第二边缘凹陷的第二内弧段和第二外弧段;其中,所述第一内弧段相对所述第一外弧段朝向所述第一边缘延伸,所述第二内弧段相对所述第二外弧段朝向所述第二边缘延伸,以使所述弯折段的宽度大于所述连接段的宽度。
  5. 根据权利要求3或4所述雾化器的加热组件,其特征在于,所述弯折段的开口大小不同,以使所述弯折段所合围的面积不同。
  6. 根据权利要求2至5中任一项所述的雾化器的加热组件,其特征在于,所述发热体在所述第一方向上相对于所述发热体在所述第二方向上的中心线相互对称。
  7. 根据权利要求3至6中任一项所述的雾化器的加热组件,其特征在于,所述发热体的靠近所述第二边缘的一侧与所述第二边缘的距离为0.2mm-0.5mm,所述加热段在所述第一方向上的宽度范围为0.02mm-1mm。
  8. 根据权利要求1至7中任一项所述的雾化器的加热组件,其特征在于,所述加热段的厚度为0.01mm-1mm,所述加热段的长度为1mm-30mm。
  9. 根据权利要求1至8中任一项所述的雾化器的加热组件,其特征在于,两个所述连接段分别与两个所述接线盘的相对的一侧圆滑过渡。
  10. 根据权利要求1至9中任一项所述的雾化器的加热组件,其特征在于,所述加热段的形状为弧形或波浪形。
  11. 根据权利要求2至10中任一项所述的雾化器的加热组件,其特征在于,所述发热体为两个,两个所述发热体分别设在所述接线盘的朝向所述第一边缘和所述第二边缘的位置处,两个发热体分别与两个所述接线盘连接形成闭环形。
  12. 根据权利要求1至11中任一项所述的雾化器的加热组件,其特征在于,所述多孔陶瓷基体设有沿其厚度方向贯通的通孔,所述通孔位于两个所述接线盘之间。
  13. 根据权利要求1至12中任一项所述的雾化器的加热组件,其特征在于,所述加热组件还包括两个电极,两个电极分别设于所述接线盘上。
  14. 一种雾化器,其特征在于,包括权利要求1至13中任一项所述的雾化器的加热组件。
PCT/CN2021/127120 2021-08-19 2021-10-28 雾化器及其加热组件 WO2023019731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121964079.1U CN216293047U (zh) 2021-08-19 2021-08-19 雾化器及其加热组件
CN202121964079.1 2021-08-19

Publications (1)

Publication Number Publication Date
WO2023019731A1 true WO2023019731A1 (zh) 2023-02-23

Family

ID=81087917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127120 WO2023019731A1 (zh) 2021-08-19 2021-10-28 雾化器及其加热组件

Country Status (2)

Country Link
CN (1) CN216293047U (zh)
WO (1) WO2023019731A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040108308A1 (en) * 2002-09-13 2004-06-10 Ngk Insulators, Ltd. Ceramic heater having a resistant heater element
CN108308715A (zh) * 2018-02-13 2018-07-24 深圳麦克韦尔股份有限公司 电子烟及其发热组件和发热体
CN110169605A (zh) * 2019-05-22 2019-08-27 深圳麦克韦尔股份有限公司 电子雾化装置及其发热组件和发热体
CN110384258A (zh) * 2019-06-14 2019-10-29 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热组件
CN211091891U (zh) * 2019-11-15 2020-07-28 湖南省国银新材料有限公司 一种厚膜发热元件及电子烟
CN213428333U (zh) * 2020-08-25 2021-06-15 深圳市华诚达精密工业有限公司 发热单元、分段式加热组件以及雾化装置
CN113180299A (zh) * 2021-05-12 2021-07-30 深圳伊卡普科技有限公司 一种雾化芯结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040108308A1 (en) * 2002-09-13 2004-06-10 Ngk Insulators, Ltd. Ceramic heater having a resistant heater element
CN108308715A (zh) * 2018-02-13 2018-07-24 深圳麦克韦尔股份有限公司 电子烟及其发热组件和发热体
CN110169605A (zh) * 2019-05-22 2019-08-27 深圳麦克韦尔股份有限公司 电子雾化装置及其发热组件和发热体
CN110384258A (zh) * 2019-06-14 2019-10-29 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热组件
CN211091891U (zh) * 2019-11-15 2020-07-28 湖南省国银新材料有限公司 一种厚膜发热元件及电子烟
CN213428333U (zh) * 2020-08-25 2021-06-15 深圳市华诚达精密工业有限公司 发热单元、分段式加热组件以及雾化装置
CN113180299A (zh) * 2021-05-12 2021-07-30 深圳伊卡普科技有限公司 一种雾化芯结构

Also Published As

Publication number Publication date
CN216293047U (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
TWI512444B (zh) 具熱阻絕效果的電子裝置
WO2023035854A1 (zh) 加热组件及气溶胶产生装置
EP3753427A1 (en) Electronic cigarette and heating assembly and heating member thereof
WO2023035852A1 (zh) 导向部件、加热组件及气溶胶产生装置
CN209930531U (zh) 一种具有管状结构的电子烟加热体
WO2023035853A1 (zh) 加热组件及气溶胶产生装置
JP2024000501A (ja) エアロゾル発生装置及びその加熱モジュール
WO2023019731A1 (zh) 雾化器及其加热组件
WO2022027800A1 (zh) 加热模组及发烟装置
KR102089472B1 (ko) 홀더 및 이동 단말
CN210471024U (zh) 一种电发热装置及电子烟雾化器
CN104344382A (zh) Led灯管的散热灯帽
WO2023019752A1 (zh) 雾化器的加热组件及其雾化器
JP3189207U (ja) チップ型ヒューズの構造
JP6591013B2 (ja) モバイル端末
JP4311422B2 (ja) 誘導加熱調理器
WO2020015738A1 (zh) 一种用于香烟烘烤发热管的单片式均热发热膜
CN113483367A (zh) 一种集成灶及集成灶灶具面板降温结构
WO2023065668A1 (zh) 电子烟的雾化芯以及电子烟
CN217136823U (zh) 雾化器的加热组件、雾化器及电子烟
WO2024125648A1 (zh) 加热装置及烹饪器具
KR20040045282A (ko) 그릴 도어
WO2022252575A1 (zh) 烟支的加热装置
JP2011033308A (ja) 電気パネルヒータ
CN219876156U (zh) 一种电热板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE