WO2023019549A1 - 一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用 - Google Patents

一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用 Download PDF

Info

Publication number
WO2023019549A1
WO2023019549A1 PCT/CN2021/113776 CN2021113776W WO2023019549A1 WO 2023019549 A1 WO2023019549 A1 WO 2023019549A1 CN 2021113776 W CN2021113776 W CN 2021113776W WO 2023019549 A1 WO2023019549 A1 WO 2023019549A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride
self
mos
alternating
Prior art date
Application number
PCT/CN2021/113776
Other languages
English (en)
French (fr)
Inventor
张权
刘国跃
贾寓真
欧阳志勇
Original Assignee
湖南泰嘉新材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南泰嘉新材料科技股份有限公司 filed Critical 湖南泰嘉新材料科技股份有限公司
Priority to PCT/CN2021/113776 priority Critical patent/WO2023019549A1/zh
Publication of WO2023019549A1 publication Critical patent/WO2023019549A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Definitions

  • the invention belongs to the field of preparation of self-lubricating coating hob materials for band saw blade milling teeth, in particular to a self-lubricating coating hob milling cutter for band saw blade tooth milling and its preparation method and application.
  • bimetallic band saw blades have many advantages, such as high sawing efficiency, large sawing size range, narrow kerf, and high section accuracy, compared with other cutting methods.
  • the bimetal band saw blade is welded by "electron beam” or “laser” by "teeth” tungsten-cobalt alloy high-speed steel and "back” chrome-vanadium alloy spring steel.
  • the tooth part is the main working part of the band saw blade.
  • the tooth milling of bimetallic band saw blades is mostly wet machining, and the cutting temperature of the cutting edge of the hob milling cutter is significantly reduced under the action of coolant.
  • the coolant cannot fully immerse, lack of lubrication and cooling of the cutting fluid, the friction between the tool-workpiece and the tool-chip increases, and the cutting force and cutting heat increase significantly, resulting in rolling
  • the service life of the milling teeth of the milling cutter is reduced and the machining accuracy of the teeth of the bimetallic band saw blade is deteriorated.
  • the use and disposal costs of cutting fluids have increased day by day, and dry milling without cutting fluids has attracted the attention of the industry.
  • the MeAlN nitride coating with a high Al content and a face-centered cubic structure prepared by dry milling physical vapor deposition also has some defects, although it can show excellent mechanical properties under the joint action of solid solution strengthening and fine grain strengthening Performance and cutting performance, but in the high-feed milling process, because the cutting edge of the hob bears a large cutting force ( ⁇ 1000MPa) and high temperature ( ⁇ 700°C), under the combined action of stress and temperature , MeAlN nitride coating with high Al content is prone to structural transformation and precipitates hexagonal AlN (h-AlN) phase, which has a negative impact on the mechanical properties and cutting performance of the coating, and the MeAlN nitride coating itself is also difficult to cut steel.
  • h-AlN hexagonal AlN
  • the technical problem to be solved by the present invention is to provide a self-lubricating coating hob and its Preparation methods and applications.
  • a self-lubricating coating hob for band saw blade milling including a tool base and a self-lubricating coating
  • the self-lubricating coating consists of a nitride bonding layer, nitride/MoS 2 Composed of alternating layers; the nitride/MoS 2 alternating layer is obtained by alternately depositing a nitride layer and a MoS 2 layer.
  • the thickness of the nitride bonding layer is 0.5-1.5 ⁇ m
  • the thickness of the nitride/MoS 2 alternating layer is 1.0-4.5 ⁇ m
  • the total thickness of the self-lubricating coating on the surface of the tool base is 1.5-6.0 ⁇ m.
  • the modulation period of the nitride/MoS 2 alternating layer is 50-1000 nm, and the modulation ratio is 1:1-9:1.
  • one layer of nitride layer and one layer of MoS2 layer adjacent to the nitride layer are an alternating unit, and the number of said alternating units is 5-100, wherein nitrogen
  • the compound layer was prepared by arc ion plating technique, and the MoS2 layer was prepared by magnetron sputtering technique.
  • the modulation period is the thickness of an alternating unit, that is, the sum of the thickness of a nitride layer and a MoS 2 layer adjacent to the nitride layer;
  • the modulation ratio is the thickness of an alternating unit Ratio of the thickness of the nitride layer to the thickness of the MoS2 layer.
  • the nitride layer and the nitride layer bonding layer are MeAlN, wherein Me is at least one of the three elements of Ti, Cr and Zr, and the atomic ratio of Al/Me is greater than or equal to 0.5, and the ratio of Al and Me The sum of the atomic ratios is 0.45 to 0.55.
  • the material of the tool base is heat-treated powder metallurgy high-speed steel.
  • the present invention also provides a method for preparing the above-mentioned self-lubricating coating hob comprising the following steps:
  • the pretreatment described in S1 specifically includes: first sandblasting and passivating the tool, then ultrasonically cleaning it with a metal cleaner solution, then rinsing it with deionized water, blowing it dry with nitrogen, and putting it on the workpiece turret in the vacuum chamber , the revolution speed of the turret is 1-3rpm, and the rotation speed of the cutter is 1-3rpm; turn on the heater to raise the temperature of the vacuum chamber to 400-500°C, and evacuate the vacuum chamber to make the vacuum degree higher than 5.0-8.0 ⁇ 10 -3 Pa; Finally, an ion source is used to etch the surface of the tool for 20-70 minutes.
  • the specific parameters for preparing the nitride bonding layer in S2 are: the bias voltage is adjusted to -60 ⁇ -100V, N2 gas is introduced, the air pressure is adjusted to 2.0 ⁇ 4.0Pa, the AlMe arc target is started, and the target current of the arc target is 120-200A, and the deposition time is 15-45min; in the AlMe, Me is at least one of the three elements Ti, Cr and Zr.
  • the specific parameters for preparing alternate layers of nitride/ MoS2 in S3 are: adjust the deposition bias to -120--150V, start the AlMe target, and the target current of the arc target is 100-180A, deposit for 1-20min, and obtain nitrogen compound layer; turn off the N 2 gas, pass in the Ar gas, adjust the air pressure to 0.6-1.5Pa, start the MoS 2 sputtering target, the magnetron target power is 1.0-6.0kW, deposit 1-10min, and get the MoS 2 layer; alternately Cycle 2 to 50 times to obtain alternate layers of nitride/MoS 2 ; wherein in the AlMe, Me is at least one of the three elements of Ti, Cr and Zr.
  • the present invention also provides an application of the above-mentioned self-lubricating coating hob or the self-lubricating coating hob prepared by the above-mentioned preparation method, and the coating hob is applied to bimetallic band saw blades Gear milling.
  • the MeAlN coating is widely used in cutting tools due to its high hardness and good oxidation resistance (dense Al 2 O 3 can be formed on the surface), so as to improve the overall performance and processing efficiency of the cutting tool.
  • the MeAlN coating maintains a single-phase cubic structure, its hardness value increases with the increase of Al content.
  • the increase in hardness value is the result of the joint action of various strengthening mechanisms such as intrinsic strengthening, solid solution strengthening and grain boundary strengthening.
  • the coating will produce a hexagonal AlN phase (h-AlN), resulting in a decrease in the hardness of the coating.
  • the cutting force ( ⁇ 1000MPa) and high temperature ( ⁇ 700°C) are high during dry gear milling, and the high temperature or high pressure generated during gear milling will promote the precipitation of h-AlN in the coating.
  • the local stress exceeds 700MPa, as the cutting time increases, the coating will precipitate h-AlN.
  • the friction force between the tool-workpiece and the tool-chip and the heat generated by friction are important components of the cutting force and cutting heat. Reducing the friction coefficient of the coating can effectively reduce the The cutting temperature and cutting force can slow down the precipitation of h-AlN and achieve the effect of maintaining high mechanical properties of MeAlN under long-term service.
  • MoS2 presents an anisotropic hexagonal crystal structure and a typical layered structure.
  • the lamellar structure of MoS 2 is composed of three planar layers of S-Mo-S. Mo atoms are surrounded by 6 S atoms distributed in a triangular shape, connected by strong covalent bonds, and have stable chemical properties. However, the two adjacent S atomic layers are connected by weak van der Waals force, so MoS 2 has low interlayer shear strength, poor shear resistance, and easy to generate interlayer slip, which is a good solid lubricant. .
  • the introduction of MoS 2 layer into the high Al content MeAlN coating as a solid lubricant can reduce the friction coefficient of the coating, reduce the cutting temperature and cutting force, thereby slowing down the precipitation of h-AlN and achieving the MeAlN long The effect of maintaining high mechanical properties under long-term service.
  • the present invention has the following advantages and beneficial effects:
  • the present invention adopts the alternating deposition technology of arc ion plating and magnetron sputtering, and through multi-layer structure design, a MoS2 layer is inserted into the MeAlN coating with high Al content as a solid lubricant, which can effectively reduce the friction of the coating coefficient, reduce the cutting force and cutting temperature of the MeAlN coating with high Al content in the dry milling process, delay the precipitation of h-AlN, maintain the mechanical properties of the coating, and make the coated hob have excellent mechanical properties , wear resistance and friction reduction and long cutting life.
  • the coated hob of the present invention can flexibly adjust the modulation period and modulation ratio according to specific application scenarios, and has a wide application range.
  • the preparation method of the present invention is simple and operable, and is suitable for protecting the surface of the hob for milling teeth of bimetallic band saw blades, and has good economic benefits.
  • Fig. 1 is a schematic diagram of the coating structure of the coated hob in Example 1.
  • Fig. 2 is a comparison chart of the maximum stress value and cutting temperature at the cutting edge of Example 1 and Comparative Example 1.
  • FIG. 3 is a comparison chart of the milling tooth life of the coated hobs prepared in Example 1 and Comparative Example 1 respectively.
  • the invention provides a coated hob for tooth milling of a band saw blade and a preparation method thereof.
  • Those skilled in the art can refer to the content of this article and appropriately improve the process parameters to realize it.
  • all similar substitutions and modifications are obvious to those skilled in the art, and they all belong to the protection scope of the present invention.
  • the method and application of the present invention have been described through preferred embodiments, and relevant personnel can obviously make changes or appropriate changes and combinations to the method and application herein without departing from the content, spirit and scope of the present invention to realize and apply the present invention Invent technology.
  • a coating hob for milling teeth of a bimetallic band saw blade comprising a heat-treated powder metallurgy high-speed steel tool substrate, and also comprising a self-lubricating coating, the self-lubricating coating is composed of AlTiN which is sequentially arranged on the outer surface of the tool substrate Combination layer, AlTiN/MoS 2 alternating layers; the modulation ratio of AlTiN/MoS 2 alternating layers is 4:1, the modulation period is 200nm, and the alternating period is 20 cycles; the AlTiN bonding layer, AlTiN/MoS 2 in the alternating layers
  • the atomic percentages of the elements in the AlTiN layer and the AlTiN top layer are: Al: 25.0 at.%, Ti: 20.0 at.%, N: 55.0 at.%.
  • the tool substrate is pretreated, the tool is sandblasted and passivated, ultrasonically cleaned with a metal cleaner solution, rinsed with deionized water, dried with nitrogen, and placed on the workpiece turret in the vacuum chamber.
  • the revolution rate of the turret is 2rpm, the rotation rate of the tool is 3rpm; turn on the heater to raise the temperature of the vacuum chamber to 500°C, and evacuate the vacuum chamber to make the vacuum degree higher than 5.0 ⁇ 10 -3 Pa; finally use the ion source to etch the surface of the tool for 50min;
  • S2 Prepare the AlTiN bonding layer; specifically: adjust the bias voltage to -100V, feed N2 gas, adjust the air pressure to 4.0Pa, start the AlTi arc target, the target current of the arc target is 150A, and the deposition time is 15min;
  • the thickness of the AlTiN bonding layer is 0.5 ⁇ m
  • the thickness of the AlTiN/MoS 2 alternating layer is 4.0 ⁇ m
  • the total thickness of the coating is 4.5 ⁇ m.
  • Fig. 1 is a schematic diagram of the coating structure of the coated hob in embodiment 1. It includes a cutting tool substrate, and an AlTiN bonding layer and an AlTiN/MoS 2 alternate layer arranged on the outer surface of the cutting tool substrate in sequence.
  • the AlTiN bonding layer can enhance the bonding force of the film base and provide support for the multilayer structure; in the AlTiN/MoS 2 alternate layer structure, the AlTiN layer maintains the mechanical properties of the coating, and the MoS 2 layer reduces the friction coefficient of the coating.
  • An AlTiN coated hob for band saw blade milling comprising a heat-treated powder metallurgy high-speed steel tool base, and an AlTiN bonding layer and an AlTiN top layer that are sequentially arranged on the outer surface of the tool base; the AlTiN bonding layer and the top layer
  • the atomic percentages of each element are: Al: 25.0 at.%, Ti: 20.0 at.%, N: 55.0 at. %; the thickness of the AlTiN bonding layer is 0.5 ⁇ m, and the thickness of the AlTiN top layer is 4.0 ⁇ m.
  • S1 Carry out pretreatment on the tool substrate, passivate the tool by sandblasting, use metal cleaning agent solution to ultrasonically clean, then rinse with deionized water, blow dry with nitrogen, and put it into a vacuum chamber.
  • the revolution rate of the turret is 2rpm, and the rotation rate of the tool is 3rpm; turn on the heater to raise the temperature of the vacuum chamber to 500°C, and evacuate the vacuum chamber to make the vacuum degree higher than 3.0 ⁇ 10 -3 Pa; Etching for 50min;
  • an AlTiN bonding layer is deposited by arc ion plating; specifically: adjust the bias voltage to -100V, feed N2 gas, adjust the air pressure to 4.0Pa, and start the AlTi arc target , the target current of the arc target is 150A, and the deposition time is 15min;
  • the deposition After the deposition is completed, wait until the temperature of the vacuum chamber drops below 100°C, inflate the vacuum chamber and take out the coated hob, wherein the thickness of the AlTiN bonding layer is 0.5 ⁇ m, and the thickness of the AlTiN top layer is 4.0 ⁇ m.
  • a coating hob for milling teeth of a bimetallic band saw blade comprising a heat-treated powder metallurgy high-speed steel tool base, and also including a self-lubricating coating, the self-lubricating coating is composed of AlTiN that is sequentially arranged on the outer surface of the tool base Combination layer, AlCrN/MoS 2 alternating layers; the modulation ratio of AlCrN/MoS 2 alternating layers is 2:1, the modulation period is 90nm, and the alternating period is 40 periods; the atomic percentage of each element in the AlTiN bonding layer is: Al : 30.0at.%, Ti: 20.0at.%, N: 50.0at.%, the atomic percentage of each element of AlCrN in the AlCrN/MoS 2 alternating layer is: Al: 28.0at.%, Cr: 22.0at.% , N: 50.0 at.%.
  • S1 Carry out pretreatment on the tool substrate, passivate the tool by sandblasting, use metal cleaning agent solution to ultrasonically clean, then rinse with deionized water, blow dry with nitrogen, and put it into a vacuum chamber.
  • the revolution rate of the turret is 3rpm, and the rotation rate of the tool is 3rpm; turn on the heater to raise the temperature of the vacuum chamber to 500°C, and evacuate the vacuum chamber to make the vacuum degree higher than 5.0 ⁇ 10 -3 Pa; Etching for 70min;
  • S2 Prepare the AlTiN bonding layer; specifically: adjust the bias voltage to -80V, feed N2 gas, adjust the air pressure to 3.0Pa, start the AlTi arc target, the target current of the arc target is 150A, and the deposition time is 30min;
  • the total layer thickness is 4.6 ⁇ m.
  • a coating hob for milling teeth of a bimetallic band saw blade comprising a heat-treated powder metallurgy high-speed steel tool substrate, and also comprising a self-lubricating coating, the self-lubricating coating is composed of AlCrN which is sequentially arranged on the outer surface of the tool substrate Combination layer, AlTiN/MoS 2 alternating layers; the modulation ratio of AlTiN/MoS 2 alternating layers is 9:1, the modulation period is 500nm, and the alternating period is 10 periods; the atomic percentage of each element in the AlCrN bonding layer is: Al : 25.0at.%, Cr: 20.0at.%, N: 55.0at.%; the atomic percentage of each element in the AlTiN layer in the AlTiN/MoS 2 alternating layer is: Al: 30.0at.%, Ti: 20.0at.% , N: 50.0 at.%.
  • S1 Carry out pretreatment on the tool substrate, passivate the tool by sandblasting, use metal cleaning agent solution to ultrasonically clean, then rinse with deionized water, blow dry with nitrogen, and put it into a vacuum chamber.
  • the revolution rate of the turret is 1rpm, and the tool rotation rate is 3rpm; turn on the heater to raise the temperature of the vacuum chamber to 450°C, and evacuate the vacuum chamber to make the vacuum degree higher than 8.0 ⁇ 10 -3 Pa; Etching for 60min;
  • S2 Prepare the AlCrN bonding layer; specifically: adjust the bias voltage to -100V, feed N2 gas, adjust the air pressure to 2.0Pa, start the AlCr arc target, the target current of the arc target is 150A, and the deposition time is 35min;
  • the thickness of the AlCrN bonding layer is 1.5 ⁇ m
  • the thickness of the AlTiN/MoS 2 alternating layer is 5.0 ⁇ m
  • the total thickness of the coating is 6.5 ⁇ m.
  • a coating hob for milling teeth of a bimetallic band saw blade comprising a heat-treated powder metallurgy high-speed steel tool substrate, and also comprising a self-lubricating coating, the self-lubricating coating is composed of AlTiN which is sequentially arranged on the outer surface of the tool substrate Combination layer, AlTiCrN/MoS 2 alternating layers; the modulation ratio of AlTiCrN/MoS 2 alternating layers is 6:1, the modulation period is 140nm, and the alternating period is 30 cycles; the atomic percentage of each element in the AlTiN bonding layer is: Al : 30.0at.%, Ti: 25.0at.%, N: 45.0at.%. The atomic percentages of the elements in the AlTiCrN layers in the alternating layers are: Al: 30.0 at.%, Ti: 10.0 at.%, Cr: 10.0 at.%, N: 50.0 at.%.
  • S2 Prepare the AlTiN bonding layer; specifically: adjust the bias voltage to -60V, feed N2 gas, adjust the air pressure to 4.0Pa, start the AlCr arc target, the target current of the arc target is 120A, and the deposition time is 35min;
  • the thickness of the AlCrN bonding layer is 0.8 ⁇ m
  • the thickness of the AlTiN/MoS 2 alternating layer is 4.2 ⁇ m
  • the total thickness of the coating is 5.0 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Gear Processing (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

提供一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用。涂层滚铣刀包括刀具基体,还包括依次沉积在刀具基体外表面的氮化物结合层、氮化物/MoS 2交替层;氮化物/MoS 2交替层由氮化物层与MoS 2层交替沉积所得。其中氮化物层采用电弧离子镀技术制备,MoS 2采用磁控溅射技术制备。涂层滚铣刀主要应用于双金属带锯条的铣齿加工。通过多层结构设计减少了MeAlN氮化物涂层的摩擦系数,降低了涂层在干式铣齿过程中的切削力以及切削温度,延缓了h-AlN的析出,保持了涂层的力学性能,获得兼具优异力学性能、耐磨减摩以及长切削寿命的双金属带锯条铣齿用涂层滚铣刀。

Description

一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用 技术领域
本发明属于带锯条铣齿用自润滑涂层滚铣刀材料制备领域,特别涉及一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用。
背景技术
机械工业为国民经济发展提供物质技术基础,而金属切削加工在机械工业中有着举足轻重的地位。下料作为原材料加工的第一道工序,其加工质量与加工效率会影响后续整个加工过程。双金属带锯条作为一种大规模应用的金属切割下料工具,与其他下料方式相比具有锯切效率高、锯切尺寸范围大、切缝窄、断面精度高等诸多优点。双金属带锯条是由“齿部”钨钴合金高速钢和“背部”铬钒合金弹簧钢用“电子束”或“激光”焊接而成。齿部是带锯条的主要工作部分,参考齿条的加工方法,多数双金属带锯条生产厂家采用铣齿机,通过铣削的方式来进行锯齿成型,铣齿加工质量直接影响双金属带锯条的精度与性能,因此制备具有长寿命的滚齿刀具对于提升带锯条的生产效率、降低成本具有积极作用。采用物理气相沉积(PVD)的方法在滚齿刀上沉积一层或几层具有耐磨减摩特性的硬质涂层,能够有效降低刀具的磨损,延长刀具寿命,其中高Al含量的MeAlN氮化物涂层(如AlCrN、AlTiN等)凭借自身优异的力学性能和高温抗氧化性能,已在刀具领域获得广泛应用。
目前,双金属带锯条的铣齿加工多为湿式加工,在冷却液的作用下滚铣刀刃口的切削温度显著降。但在前刀面切屑与切削刃接触的地方,冷却液无法充分浸入,缺少切削液的润滑和冷却,刀具-工件以及刀具-切屑之间的摩擦增加,切削力与切削热显著上升,导致滚铣刀铣齿寿命下降以及双金属带锯条齿部加工精度恶化。近年来随着工业生产的环保标准不断提升,对切削液的使用和处理成本日益增加,无切削液的干式铣齿加工引起工业界的关注。
而通过干式铣齿加工物理气相沉积制备的具有面心立方结构的高Al含量MeAlN氮化物涂层也存在一些缺陷,虽然在固溶强化与细晶强化的共同作用下能表现出优异的力学性能与切削加工性能,但是在大进给的铣齿加工中,由于滚铣刀的刃口承受着大切削力(≥1000MPa)与高温度(≥700℃),在应力和温度的共同作用下,高Al含量MeAlN氮化物涂层易发生结构转化并析出六方AlN(h-AlN)相,对涂层的力学性能与切削性能均产生负面影响,并且MeAlN氮化物涂层自身在切削钢材时也表现出较高的摩擦系数,这也不利于滚铣刀的实际应用。故此,我们现在急需制备一种兼具高硬度与低摩擦的涂 层材料来降低滚齿刀加工时的切削力与切削温度带来的负面影响,以便实现双金属带锯条铣齿加工质量、成本与效率的协同改善。
发明内容
针对现有技术不足,本发明解决的技术问题是,提供一种兼具优异的力学性能、耐磨减磨性能以及长切削寿命的双金属带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用。
为解决上述技术问题,本发明所采用的技术方案是:
一种带锯条铣齿用自润滑涂层滚铣刀,包括刀具基体,还包括自润滑涂层,所述自润滑涂层由依次设置在刀具基体表面的氮化物结合层、氮化物/MoS 2交替层构成;所述氮化物/MoS 2交替层由氮化物层与MoS 2层交替沉积所得。
进一步地,所述氮化物结合层的厚度为0.5~1.5μm,氮化物/MoS 2交替层的厚度为1.0~4.5μm,所述刀具基体表面自润滑涂层的总厚度为1.5~6.0μm。
进一步地,所述氮化物/MoS 2交替层的调制周期为50~1000nm,调制比为1:1~9:1。
进一步地,对于氮化物/MoS 2交替层,一层氮化物层和与该氮化物层相邻的一层MoS 2层为一个交替单元,所述交替单元的数量为5~100个,其中氮化物层采用电弧离子镀技术制备,MoS 2层采用磁控溅射技术制备。
氮化物/MoS 2交替层中,调制周期为一个交替单元的厚度,即一层氮化物层和与该氮化物层相邻的一层MoS 2层的厚度之和;调制比为一个交替单元中氮化物层的厚度与MoS 2层的厚度之比。
进一步地,所述氮化物层和氮化物层结合层为MeAlN,其中Me为Ti、Cr及Zr三种元素中的至少一种,且Al/Me的原子比例大于或等于0.5,Al和Me的原子比例之和为0.45~0.55。
进一步地,所述刀具基体的材料为经过热处理的粉末冶金高速钢。
基于同一发明构思本发明还提供了一种制备上述自润滑涂层滚铣刀的制备方法包括以下步骤:
S1:将刀具基体进行预处理;
S2:在S1预处理所得的刀具基体表面上,通过电弧离子镀沉积得氮化物结合层;
S3:在S2所得的氮化物结合层上,通过电弧与磁控交替沉积方式沉积得氮化物/MoS 2交替层。
进一步地,S1所述的预处理具体为:先将刀具喷砂钝化处理,再使用金属清洗剂 溶液超声波清洗,随后使用去离子水漂洗,氮气吹干后装入真空室内的工件转架上,转架公转速率为1~3rpm,刀具自转速率为1~3rpm;打开加热器将真空室升温至400~500℃,对真空室抽真空使真空度高于5.0~8.0×10 -3Pa;最后采用离子源对刀具表面进行刻蚀20~70min。
进一步地,S2中制备氮化物结合层的具体参数为:偏压调至-60~-100V,通入N 2气,调节气压至2.0~4.0Pa,启动AlMe电弧靶,电弧靶的靶电流为120~200A,沉积时间为15~45min;其中所述的AlMe中,Me为为Ti、Cr及Zr三种元素中的至少一种。
进一步地,S3中制备氮化物/MoS 2交替层的具体参数为:调节沉积偏压为-120~-150V,启动AlMe靶,电弧靶的靶电流为100~180A,沉积1~20min,得氮化物层;关闭N 2气,通入Ar气,调整气压至0.6~1.5Pa,启动MoS 2溅射靶,磁控靶功率为1.0~6.0kW,沉积1~10min,得MoS 2层;如此交替循环2~50次得氮化物/MoS 2交替层;其中所述的AlMe中,Me为为Ti、Cr及Zr三种元素中的至少一种。
基于同一发明构思,本发明还提供了一种上述自润滑涂层滚铣刀或上述备方法制备的自润滑涂层滚铣刀的应用,所述涂层滚铣刀应用于双金属带锯条的铣齿加工。
在本发明中,由于MeAlN涂层具有较高的硬度、良好的抗氧化性(表面可形成致密Al 2O 3)而被广泛应用于切削刀具,提高切削刀具整体性能和加工效率。当MeAlN涂层保持单相立方结构时,其硬度值随着Al含量的升高而增大。硬度值的提高是本征强化、固溶强化以及晶界强化等多种强化机制共同作用结果。当Al含量超过在MeN中的溶解度时涂层会产生六方AlN相(h-AlN)导致涂层硬度下降。并且,干式铣齿加工时切削力大(≥1000MPa)、温度高(≥700℃),在铣齿过程中产生的高温或高压会促进涂层中h-AlN的析出。通常局部应力超过700MPa,随着切削时间的增加,涂层会析出h-AlN。更重要的是在干式铣齿加工过程中,刀具-工件以及刀具-切屑之间摩擦力以及摩擦产生的热量是切削力和切削热的重要组成部分,降低涂层的摩擦系数,可以有效降低切削温度与切削力,从而减缓h-AlN的析出,达到MeAlN长时间服役下仍保持较高的力学性能的效果。
MoS 2作为过渡族金属硫化物,呈现出各相异性的六方晶体结构和典型的层状结构。MoS 2的层片结构是由S-Mo-S三个平面层组成,Mo原子被三棱形分布的6个S原子包围,以强共价键形式相连接,化学性质稳定。但是相邻的两层S原子层之间以较弱的范德华力连接,因此MoS 2层间剪切强度低,抗剪切能力差,易产生层间滑移,是一种良 好的固体润滑剂。综上所述,在高Al含量的MeAlN涂层中引入MoS 2层充当固体润滑剂,可实现降低涂层的摩擦系数,降低切削温度与切削力,从而减缓h-AlN的析出,达到MeAlN长时间服役下仍保持较高的力学性能的效果。
与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明采用电弧离子镀与磁控溅射交替沉积技术,通过多层结构设计,在高Al含量的MeAlN涂层中插入MoS 2层充当固体润滑剂,可有效减小涂层的摩擦系数,降低高Al含量的MeAlN的涂层在干式铣齿过程中的切削力以及切削温度,延缓h-AlN的析出,保持涂层的力学性能,使涂层滚铣刀兼具优异力学性能、耐磨减摩以及长切削寿命。
(2)本发明的涂层滚铣刀可根据具体应用场景,灵活调控调制周期与调制比,具有较广的适用范围。
(3)本发明的制备方法简单,可操作性强,适用于双金属带锯条铣齿用滚铣刀表面的防护,具有较好的经济效益。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1涂层滚铣刀的涂层结构示意图。
图2是实施例1和对比例1切削刃处的最大应力值以及切削温度对比图。
图3是实施例1和对比例1分别制备的涂层滚铣刀的铣齿寿命对比图。
具体实施方式
本发明提供了一种用于带锯条铣齿的涂层滚铣刀及其制备方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都属于本发明保护的范围。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
实施例1
一种用于双金属带锯条铣齿的涂层滚铣刀,包括热处理的粉末冶金高速钢刀具基体,还包括自润滑涂层,所述自润滑涂层由依次设置在刀具基体外表面的AlTiN结合层、AlTiN/MoS 2交替层构成;AlTiN/MoS 2交替层的调制比为4:1,调制周期为200nm,交 替周期为20周期;所述AlTiN结合层、AlTiN/MoS 2交替层中的AlTiN层及AlTiN顶层的各元素原子百分比为:Al:25.0at.%,Ti:20.0at.%,N:55.0at.%。
具体制备过程如下:
S1:刀具基体进行预处理,将刀具喷砂钝化处理,使用金属清洗剂溶液超声波清洗,再使用去离子水漂洗,氮气吹干后装入真空室内的工件转架上,转架公转速率为2rpm,刀具自转速率为3rpm;打开加热器将真空室升温至500℃,对真空室抽真空使真空度高于5.0×10 -3Pa;最后采用离子源对刀具表面刻蚀50min;
S2:制备AlTiN结合层;具体为:将偏压调至-100V,通入N 2气,调节气压至4.0Pa,启动AlTi电弧靶,电弧靶的靶电流为150A,沉积时间为15min;
S3:制备AlTiN/MoS 2交替层:将偏压调至-150V,启动AlTi电弧靶,电弧靶的靶电流为180A,沉积5min,得AlTiN层;关闭N 2气,通入Ar气,调整气压至1.0Pa,启动MoS 2溅射靶,磁控靶功率为6kW,沉积5min,得MoS 2层;如此交替循环20次制备AlTiN/MoS 2交替层;
沉积完成后待真空室温度降至100℃以下,向真空室充气并取出涂层滚铣刀,其中AlTiN结合层厚度为0.5μm,AlTiN/MoS 2交替层厚度为4.0μm,涂层总厚度为4.5μm。
图1为实施例1涂层滚铣刀的涂层结构示意。包括刀具基体,和依次设置在刀具基体外表面的AlTiN结合层、AlTiN/MoS 2交替层。AlTiN结合层可增强膜基结合力并为多层结构提供支撑;AlTiN/MoS 2交替层结构中,AlTiN层保持涂层的力学性能,MoS 2层减少涂层的摩擦系数。
表1 实施例1所制备的涂层滚铣刀上的涂层硬度及弹性模量
涂层 硬度(GPa) 弹性模量(GPa)
AlTiN 32.34±0.46 514.23±16.78
AlTiN/MoS 2 29.63±0.74 401.89±15.76
对比例1
一种用于带锯条铣齿用AlTiN涂层滚铣刀,包括热处理的粉末冶金高速钢刀具基体,和依次设置在刀具基体外表面的AlTiN结合层与AlTiN顶层;所述AlTiN结合层与顶层的各元素原子百分比为:Al:25.0at.%、Ti:20.0at.%、N:55.0at.%;所述AlTiN结合层厚度为0.5μm,AlTiN顶层厚度为4.0μm。
具体制备过程如下:
S1:刀具基体进行预处理,将刀具喷砂钝化处理,使用金属清洗剂溶液超声波清洗,再使用去离子水漂洗,氮气吹干后装入真空室内氮气吹干后装入真空室内的工件转架上,转架公转速率为2rpm,刀具自转速率为3rpm;打开加热器将真空室升温至500℃,对真空室抽真空使真空度高于3.0×10 -3Pa;采用离子源对刀具表面进行刻蚀50min;
S2:在S1预处理所得的刀具基体表面上,通过电弧离子镀沉积得AlTiN结合层;具体为:将偏压调至-100V,通入N 2气,调节气压至4.0Pa,启动AlTi电弧靶,电弧靶的靶电流为150A,沉积时间为15min;
S3:制备AlTiN顶层:将偏压调至-150V,启动AlTi电弧靶,电弧靶的靶电流为180A,沉积125min,得AlTiN层;
沉积完成后待真空室温度降至100℃以下,向真空室充气并取出涂层滚铣刀,其中AlTiN结合层厚度为0.5μm,AlTiN顶层厚度为4.0μm。
实施例2
一种用于双金属带锯条铣齿的涂层滚铣刀,包括热处理的粉末冶金高速钢刀具基体,还包括自润滑涂层,所述自润滑涂层由依次设置在刀具基体外表面的AlTiN结合层、AlCrN/MoS 2交替层构成;AlCrN/MoS 2交替层的调制比为2:1,调制周期为90nm,交替周期为40周期;所述AlTiN结合层中的各元素原子百分比为:Al:30.0at.%,Ti:20.0at.%,N:50.0at.%,所述AlCrN/MoS 2交替层中AlCrN的各元素原子百分比为:Al:28.0at.%,Cr:22.0at.%,N:50.0at.%。
具体制备过程如下:
S1:刀具基体进行预处理,将刀具喷砂钝化处理,使用金属清洗剂溶液超声波清洗,再使用去离子水漂洗,氮气吹干后装入真空室内氮气吹干后装入真空室内的工件转架上,转架公转速率为3rpm,刀具自转速率为3rpm;打开加热器将真空室升温至500℃,对真空室抽真空使真空度高于5.0×10 -3Pa;采用离子源对刀具表面刻蚀70min;
S2:制备AlTiN结合层;具体为:偏压调至-80V,通入N 2气,调节气压至3.0Pa,启动AlTi电弧靶,电弧靶的靶电流为150A,沉积时间为30min;
S3:制备AlCrN/MoS 2交替层:调节沉积偏压为-120V,启动AlCr靶,电弧靶的靶电流为100A,沉积2min,得AlCrN层;关闭N 2气,通入Ar气,调整气压至0.6Pa,启动MoS 2溅射靶,磁控靶功率为4kW,沉积偏压为-100V,沉积5min,得MoS 2层;如此交替循环40次制备AlCrN/MoS 2交替层;
完成镀膜后,沉积完成后待真空室温度降至100℃以下,向真空室充气并取出涂层 滚铣刀,其中AlTiN结合层厚度为1.0μm,AlCrN/MoS 2交替层厚度为3.6μm,涂层总厚度为4.6μm。
实施例3
一种用于双金属带锯条铣齿的涂层滚铣刀,包括热处理的粉末冶金高速钢刀具基体,还包括自润滑涂层,所述自润滑涂层由依次设置在刀具基体外表面的AlCrN结合层、AlTiN/MoS 2交替层构成;AlTiN/MoS 2交替层的调制比为9:1,调制周期为500nm,交替周期为10周期;所述AlCrN结合层中的各元素原子百分比为:Al:25.0at.%,Cr:20.0at.%,N:55.0at.%;AlTiN/MoS 2交替层中的AlTiN层的各元素原子百分比为:Al:30.0at.%,Ti:20.0at.%,N:50.0at.%。
具体制备过程如下:
S1:刀具基体进行预处理,将刀具喷砂钝化处理,使用金属清洗剂溶液超声波清洗,再使用去离子水漂洗,氮气吹干后装入真空室内氮气吹干后装入真空室内的工件转架上,转架公转速率为1rpm,刀具自转速率为3rpm;打开加热器将真空室升温至450℃,对真空室抽真空使真空度高于8.0×10 -3Pa;采用离子源对刀具表面刻蚀60min;
S2:制备AlCrN结合层;具体为:将偏压调至-100V,通入N 2气,调节气压至2.0Pa,启动AlCr电弧靶,电弧靶的靶电流为150A,沉积时间为35min;
S3:制备AlTiN/MoS 2交替层:将偏压调至-100V,启动AlTi电弧靶,电弧靶的靶电流为180A,沉积15min,得AlTiN层;关闭N 2气,通入Ar气,调整气压至1.5Pa,启动MoS 2溅射靶,磁控靶功率为6kW,沉积6.25min,得MoS 2层;如此交替循环10次制备AlTiN/MoS 2交替层;
沉积完成后待真空室温度降至100℃以下,向真空室充气并取出涂层滚铣刀,其中AlCrN结合层厚度为1.5μm,AlTiN/MoS 2交替层厚度为5.0μm,涂层总厚度为6.5μm。
实施例4
一种用于双金属带锯条铣齿的涂层滚铣刀,包括热处理的粉末冶金高速钢刀具基体,还包括自润滑涂层,所述自润滑涂层由依次设置在刀具基体外表面的AlTiN结合层、AlTiCrN/MoS 2交替层构成;AlTiCrN/MoS 2交替层的调制比为6:1,调制周期为140nm,交替周期为30周期;所述AlTiN结合层中的各元素原子百分比为:Al:30.0at.%,Ti:25.0at.%,N:45.0at.%。交替层中的AlTiCrN层的各元素原子百分比为:Al:30.0at.%、Ti:10.0at.%、Cr:10.0at.%、N:50.0at.%。
具体制备过程如下:
S1:刀具基体进行预处理,将刀具喷砂钝化处理,使用金属清洗剂溶液超声波清洗,再使用去离子水漂洗,氮气吹干后装入真空室内氮气吹干后装入真空室内的工件转架上,转架公转速率为2rpm,刀具自转速率为2rpm;打开加热器将真空室升温至450℃,对真空室抽真空使真空度高于7.0×10 -3Pa;采用离子源对刀具表面刻蚀60min;
S2:制备AlTiN结合层;具体为:将偏压调至-60V,通入N 2气,调节气压至4.0Pa,启动AlCr电弧靶,电弧靶的靶电流为120A,沉积时间为35min;
S3:制备AlTiCrN/MoS 2交替层:将偏压调至-100V,启动AlTiCr电弧靶,电弧靶的靶电流为120A,沉积5min,得AlTiCrN层;关闭N 2气,通入Ar气,调整气压至0.8Pa,启动MoS 2溅射靶,磁控靶功率为2.0kW,沉积5min,得MoS 2层;如此交替循环30次制备AlTiN/MoS 2交替层;
沉积完成后待真空室温度降至100℃以下,向真空室充气并取出涂层滚铣刀,其中AlCrN结合层厚度为0.8μm,AlTiN/MoS 2交替层厚度为4.2μm,涂层总厚度为5.0μm。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种带锯条铣齿用自润滑涂层滚铣刀,包括刀具基体,其特征在于,还包括自润滑涂层,所述自润滑涂层由依次设置在刀具基体表面的氮化物结合层、氮化物/MoS 2交替层构成;所述氮化物/MoS 2交替层由氮化物层与MoS 2层交替沉积所得。
  2. 根据权利要求1所述的自润滑涂层滚铣刀,其特征在于,所述氮化物结合层的厚度为0.5~1.5μm,氮化物/MoS 2交替层的厚度为1.0~4.5μm,所述刀具基体表面的自润滑涂层的总厚度为1.5~6.0μm。
  3. 根据权利要求1所述的自润滑涂层滚铣刀,其特征在于,所述氮化物/MoS 2交替层的调制周期为50~1000nm,调制比为1:1~9:1。
  4. 根据权利要求1所述的自润滑涂层滚铣刀,其特征在于,对于氮化物/MoS 2交替层,一层氮化物层和与该氮化物层相邻的一层MoS 2层为一个交替单元,所述交替单元的数量为5~100个,其中氮化物层采用电弧离子镀技术制备,MoS 2层采用磁控溅射技术制备。
  5. 根据权利要求1所述的自润滑涂层滚铣刀,其特征在于,所述氮化物层和氮化物层结合层为MeAlN,其中Me为Ti、Cr及Zr三种元素中的至少一种,且Al/Me的原子比例大于或等于0.5,Al和Me的原子比例之和为0.45~0.55。
  6. 根据权利要求1所述的自润滑涂层滚铣刀,其特征在于,所述刀具基体的材料为经过热处理的粉末冶金高速钢。
  7. 根据权利要求1-6任一项所述的自润滑涂层滚铣刀的制备方法,其特征在于,包括以下步骤:
    S1:将刀具基体进行预处理;
    S2:在S1预处理所得的刀具基体表面上,通过电弧离子镀沉积得氮化物结合层;
    S3:在S2所得的氮化物结合层上,通过电弧与磁控交替沉积方式沉积得氮化物/MoS 2交替层。
  8. 根据权利要求1-6任一项所述的自润滑涂层滚铣刀或权利要求7所述的制备方法制备的自润滑涂层滚铣刀的应用,其特征在于,所述涂层滚铣刀应用于双金属带锯条的铣齿加工。
PCT/CN2021/113776 2021-08-20 2021-08-20 一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用 WO2023019549A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113776 WO2023019549A1 (zh) 2021-08-20 2021-08-20 一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113776 WO2023019549A1 (zh) 2021-08-20 2021-08-20 一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023019549A1 true WO2023019549A1 (zh) 2023-02-23

Family

ID=85239415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113776 WO2023019549A1 (zh) 2021-08-20 2021-08-20 一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2023019549A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116288179A (zh) * 2023-03-29 2023-06-23 纳狮新材料有限公司杭州分公司 一种耐高温润滑的TiSiBAgYN涂层

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254207A (ja) * 2001-02-23 2002-09-10 Mmc Kobelco Tool Kk 切粉に対する表面潤滑性にすぐれた表面被覆超硬合金製切削工具
CN201808250U (zh) * 2010-03-26 2011-04-27 大连远东工具有限公司 一种工具表面的抗磨损涂层
CN102205674A (zh) * 2011-04-01 2011-10-05 山推工程机械股份有限公司 TiN+MoS2/Zr组合涂层刀具及其制备工艺
CN102277554A (zh) * 2011-07-29 2011-12-14 山推工程机械股份有限公司 梯度叠层涂层刀具及其制备方法
CN103143761A (zh) * 2013-03-22 2013-06-12 武汉大学 一种AlTiN-MoN纳米多层复合涂层铣刀及其制备方法
CN104372299A (zh) * 2013-09-23 2015-02-25 中国科学院合肥物质科学研究院 多层结构硬质、耐磨、润滑涂层及其制备方法
CN105861995A (zh) * 2016-06-15 2016-08-17 济宁学院 ZrTiN-MoS2/Ti/Zr叠层涂层刀具及其制备工艺
CN105887024A (zh) * 2016-06-15 2016-08-24 济宁学院 TiCrN&MoS2/Cr/Ti叠层涂层刀具及其制备工艺
CN107354431A (zh) * 2017-07-03 2017-11-17 济宁学院 TiMoCN梯度复合涂层刀具及其制备方法
CN110158044A (zh) * 2019-05-13 2019-08-23 东南大学 一种多元复合梯度涂层刀具及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254207A (ja) * 2001-02-23 2002-09-10 Mmc Kobelco Tool Kk 切粉に対する表面潤滑性にすぐれた表面被覆超硬合金製切削工具
CN201808250U (zh) * 2010-03-26 2011-04-27 大连远东工具有限公司 一种工具表面的抗磨损涂层
CN102205674A (zh) * 2011-04-01 2011-10-05 山推工程机械股份有限公司 TiN+MoS2/Zr组合涂层刀具及其制备工艺
CN102277554A (zh) * 2011-07-29 2011-12-14 山推工程机械股份有限公司 梯度叠层涂层刀具及其制备方法
CN103143761A (zh) * 2013-03-22 2013-06-12 武汉大学 一种AlTiN-MoN纳米多层复合涂层铣刀及其制备方法
CN104372299A (zh) * 2013-09-23 2015-02-25 中国科学院合肥物质科学研究院 多层结构硬质、耐磨、润滑涂层及其制备方法
CN105861995A (zh) * 2016-06-15 2016-08-17 济宁学院 ZrTiN-MoS2/Ti/Zr叠层涂层刀具及其制备工艺
CN105887024A (zh) * 2016-06-15 2016-08-24 济宁学院 TiCrN&MoS2/Cr/Ti叠层涂层刀具及其制备工艺
CN107354431A (zh) * 2017-07-03 2017-11-17 济宁学院 TiMoCN梯度复合涂层刀具及其制备方法
CN110158044A (zh) * 2019-05-13 2019-08-23 东南大学 一种多元复合梯度涂层刀具及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116288179A (zh) * 2023-03-29 2023-06-23 纳狮新材料有限公司杭州分公司 一种耐高温润滑的TiSiBAgYN涂层

Similar Documents

Publication Publication Date Title
CN107201499B (zh) 一种钛合金切削用成分梯度TiAlXN涂层刀具及其制备方法
CN109504940B (zh) 一种周期性纳米多层结构的AlCrN/AlCrSiNiN涂层及其制备方法和应用
CN102011090B (zh) 一种基体表面的TiAlN/TiAlCN多层膜涂层及其制备方法
CN107354438B (zh) 一种圆锯片表面的复合纳米涂层
CN107747092B (zh) 一种耐高温硬质复合涂层及其制备方法和涂层刀具
CN106498393B (zh) 微织构ZrVSiN自适应涂层刀具及其制备工艺
CN110373639B (zh) 切削工具复合涂层及其制备方法
CN110158044A (zh) 一种多元复合梯度涂层刀具及其制备方法
WO2023019549A1 (zh) 一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用
CN103215544A (zh) 一种应用于挤压丝锥的涂层
CN111321381A (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
TW201823509A (zh) 刀具複合塗層、刀具以及刀具複合塗層的製備方法
WO2023004752A1 (zh) 一种周期性多层结构涂层带锯条及其制备方法和应用
CN107354437B (zh) 一种提高圆锯片切削速度的多层复合涂层
CN114318226A (zh) 一种钛合金切削用AlCrN/WN多层结构硬质涂层及其制备方法和应用
CN105671496B (zh) 一种氮化钼/氮硼钛纳米复合多层涂层刀具及其制备方法
WO2021072623A1 (zh) 一种钛合金和高温合金加工用的涂层刀具及其制备方法
CN114059029B (zh) 用于高温合金加工的Cr/CrN/NbN/NbXN稀土超晶格涂层及其制备方法
CN111455338A (zh) 一种纳米多层涂层及其制备方法和表面涂覆纳米多层涂层的刀具
CN111962036B (zh) 一种纳米多层涂层及其制备方法和表面涂覆纳米多层涂层的刀具
CN113684448A (zh) 一种带锯条铣齿用自润滑涂层滚铣刀及其制备方法和应用
CN107740052B (zh) 一种TiSiTaN涂层刀具及其制备方法
CN113913746A (zh) 涂层及其制备方法和器具
CN111139426A (zh) 一种超高强冷轧钢板切割刀具涂镀层及方法
CN113584439A (zh) 一种双金属带锯条铣齿用涂层滚铣刀及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21953790

Country of ref document: EP

Kind code of ref document: A1