WO2023018310A1 - 이차 전지용 전극 조립체 및 그 제조방법 - Google Patents

이차 전지용 전극 조립체 및 그 제조방법 Download PDF

Info

Publication number
WO2023018310A1
WO2023018310A1 PCT/KR2022/012146 KR2022012146W WO2023018310A1 WO 2023018310 A1 WO2023018310 A1 WO 2023018310A1 KR 2022012146 W KR2022012146 W KR 2022012146W WO 2023018310 A1 WO2023018310 A1 WO 2023018310A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrode assembly
folding
electrode
binder
Prior art date
Application number
PCT/KR2022/012146
Other languages
English (en)
French (fr)
Inventor
김성환
박성빈
이석경
조미루
조우형
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22856303.7A priority Critical patent/EP4280328A1/en
Priority to JP2023548733A priority patent/JP2024506355A/ja
Priority to CN202280014573.2A priority patent/CN116868392A/zh
Priority to US18/277,614 priority patent/US20240186562A1/en
Publication of WO2023018310A1 publication Critical patent/WO2023018310A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly for a secondary battery and a manufacturing method thereof, and more particularly, to a stack-and-folding type electrode assembly having excellent lifespan characteristics and rapid charging performance, and a manufacturing method thereof.
  • Lithium secondary batteries are generally manufactured by accommodating an electrode assembly in which a positive electrode, a separator, and a negative electrode are stacked in a battery case and injecting an electrolyte, and the electrode assembly is a wound type (jelly-roll type), stacked type, or stack-type depending on the manufacturing method. It may be divided into a stack and folding type and the like.
  • the winding-type electrode assembly is manufactured by winding long sheet-shaped positive electrode plates, separators, and negative electrode plates
  • the stacked-type electrode assembly is manufactured by stacking positive electrodes, separators, and negative electrodes cut to a certain size.
  • the stack-and-folding electrode assembly is manufactured by arranging unit cells in which an anode, a separator, and a cathode are stacked side by side on a long sheet-shaped folding separator, and then folding from one side.
  • an electrode for a lithium secondary battery is manufactured by coating an electrode slurry on a current collector to form an active material layer and then rolling.
  • a phenomenon in which the thickness of the layer decreases (hereinafter referred to as a sliding phenomenon) occurs.
  • 1 is a view showing the thickness distribution of the active material layer in the width direction of an electrode manufactured by coating an electrode slurry on a current collector. 1 , it can be confirmed that a sliding phenomenon in which the thickness of the active material layer is reduced occurs at the distal end of the electrode.
  • the separation problem between the electrode and the separator can be minimized by compressing the electrode and the separator through a heating and pressing process during manufacturing of the electrode assembly. This is because in the compression process, the binder included in the electrode active material layer and/or the separator coating layer is melted and pushed out into the separation space to fill the separation space.
  • FIG. 2 is a photograph taken after disassembling a battery cell to which a conventional stack-and-folding type electrode assembly is applied. Through FIG. 2, lithium precipitation occurs at the part where the lower surface of the folding separator and the unit cell come into contact (the part marked with a box). can confirm that it has been done.
  • the present invention is to solve the above problems, and to provide an electrode assembly and a method of manufacturing the same that can improve life characteristics and rapid charging performance by minimizing the separation space between the folding separator and the electrode.
  • the present invention includes the steps of disposing a plurality of unit cells on one side of a folding separator, fixing the unit cells on the folding separator, providing a binder composition to at least one end portion of the other surface of the folding separator. and stacking the unit cells by folding the folding separator.
  • the step of fixing the unit cell may be performed by heating and pressurizing the folding separator on which the unit cell is disposed.
  • the binder composition may be applied along the longitudinal direction of the folded separator, and may be provided at an end portion in a direction in which the electrode tab of the unit cell is disposed.
  • the binder composition may be provided such that the application amount of the binder is 0.1 g/m 2 to 1 g/m 2 .
  • the binder composition may be provided in a region at a distance of 0.15W from an end of the folded separator.
  • the binder composition as a binder, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose Rose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), alcohol It may include phonated-EPDM, styrene-butadiene rubber (SBR), fluororubber, or various copolymers thereof, and among these, it is particularly preferable to include an aqueous binder such as styrene-butadiene rubber.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copoly
  • the present invention is an electrode assembly in which a plurality of unit cells including an anode, a separator, and a cathode are wound and stacked by a long sheet-shaped folding separator, and the unit cell is an electrode at at least one end of the outermost electrode.
  • An electrode assembly including a sliding portion in which the thickness of the active material layer is reduced, and a binder coating layer formed between the sliding portion and the folding separator is provided.
  • the present invention provides a secondary battery including the electrode assembly according to the present invention described above.
  • the present invention is characterized in that a folding process is performed after providing a binder composition to a surface of a folding separator on which unit cells are not disposed when manufacturing a stack-and-folding type electrode assembly.
  • the folding process is performed after providing the binder composition on the surface where the unit cells are not arranged as in the present invention, the binder composition is interposed between the outermost electrode of the unit cell and the folding separator to form a space between the electrode and the folding separator. Therefore, it is possible to minimize the precipitation of lithium ions caused by the gap between the electrode and the folding separator. Therefore, when the electrode assembly manufactured according to the method of the present invention is applied to a secondary battery, excellent long life characteristics and fast charging performance can be implemented.
  • 1 is a graph showing the thickness distribution of an active material layer of an electrode prepared by electrode slurry coating.
  • FIG. 2 is a photograph showing a lithium precipitation phenomenon of a battery cell to which a conventional stack-and-folding electrode assembly is applied.
  • FIG 3 is a view showing a manufacturing process of an electrode assembly according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining a step of providing a binder composition.
  • FIG. 5 is a view showing an example of an electrode assembly according to the present invention.
  • FIG. 3 shows an embodiment of a method for manufacturing an electrode assembly according to the present invention.
  • a method of manufacturing an electrode assembly according to the present invention will be described with reference to FIG. 3 .
  • the method of manufacturing an electrode assembly according to the present invention includes (A) arranging a plurality of unit cells on one surface of a folding separator, (B) fixing unit cells on the folding separator. , (C) applying a binder composition to at least one end portion of the other surface of the folded separator, and (D) stacking the unit cells by folding the folded separator.
  • a plurality of unit cells 20A and 20B are disposed on one surface of the folding separator 10 (see FIG. 3(A)).
  • the unit cells 20A and 20B are electrode stacks in which an anode 22 cut to a certain size, a separator 24, and a cathode 26 are stacked.
  • the unit cell includes an anode 22 / separator 24 / cathode 26 / separator 24 / anode 22 or cathode 26 / separator 24 / anode ( 22) / separator 24 / cathode 26, but may have a bi-cell structure in which the same electrode is disposed on the outermost surface, but is not limited thereto, and a full cell having the same number of anodes and cathodes, such as anode / separator / cathode It is also free for rescue.
  • the electrode laminate of the bicell structure is described as being composed of 5 layers in FIG. 3, it is not limited thereto, and the number of laminated electrodes and separators may be variously modified.
  • the folding separator 10 is a long sheet-shaped separator, and is distinguished from the cut separator 24 included in the unit cell.
  • various separators used in the art may be used, and for example, a separator coated with a polymer material such as ceramic particles and/or a binder on the surface of a polyolefin-based porous polymer film.
  • a plurality of unit cells 20A and 20B are disposed on the folded separator 10 . At this time, neighboring unit cells are arranged so that the cathode 26 and the anode 22 can be stacked with the folding separator 10 interposed therebetween when folded.
  • the unit cells 20A and 20B are fixed on the folding separator 10 so that the unit cells 20A and 20B do not move during the folding process (see (B) of FIG. 3 ).
  • the step of fixing the unit cells 20A and 20B may be performed by heating and pressurizing the folding separator 10 on which the unit cells 20A and 20B are disposed.
  • the heating and pressing process is performed, the binder component included in the electrode active material layer and/or the coating layer of the folded separator is melted by heat, and the unit cell and the folded separator are bonded and fixed.
  • a heating means 30 such as a heater
  • a unit cell through a pressing means 40 such as a roll press
  • Unit cells 20A and 20B may be adhered to the folding separator 10 by pressing the unit cells 20A and 20B, thereby fixing the unit cells.
  • the binder included in the electrode active material layer and/or the folding separator coating layer is pushed out into the space between the electrode active material layer and/or the folding separator coating layer in the thickness reduction region (hereinafter referred to as a sliding part) of the active material layer at the end of the electrode.
  • the separation space between the folding separator and the unit cell is reduced, and accordingly, the effect of suppressing lithium precipitation due to the separation between the folding separator and the electrode can be obtained.
  • the heating may be performed at a temperature condition of 50°C to 150°C, preferably 60°C to 120°C, more preferably 70°C to 90°C.
  • the pressurization may be performed under a pressure condition of 10 kPa to 300 kPa, preferably 50 kPa to 250 kPa, and more preferably 100 kPa to 200 kPa.
  • the unit cell and the folding separator can be fixed and the separation space can be smoothly reduced without damaging the components of the unit cell or the folding separator.
  • the binder composition 52 is provided on the other side of the folding separator 10 (see (C) of FIG. 3).
  • the other surface means a surface on which unit cells are not disposed, that is, a surface opposite to the surface of the folded separator on which unit cells are disposed.
  • This step is to minimize the separation space between the other surface of the folding separator and the unit cells after the folding process.
  • the separation space between the surface (one side) of the folding separator on which the unit cells are disposed and the interface between the unit cells can be minimized, but the surface of the folding separator on which the unit cells are not disposed after folding ( A separation space due to the sliding phenomenon of the active material layer still remains on the surface where the other surface) and the unit cell are in contact.
  • diffusion of lithium ions is inhibited, and lithium ions are precipitated in the corresponding region, and thus life characteristics and rapid charging performance may be deteriorated.
  • the binder composition in order to solve the above problems, by providing a binder composition on the other side of the folding separator and performing a folding process immediately before the folding process of folding the folding separator and stacking unit cells, the binder composition is folded during the folding process. It is possible to fill the separation space between the separator and the unit cell.
  • the method of providing the binder composition 52 is not particularly limited, and may be performed through methods of applying a composition well known in the art, such as spray spraying, bar coating, roller coating, and the like. .
  • the binder composition 52 is preferably provided on at least one end portion of the other surface of the folded separator 10 . Since the sliding part where the thickness of the electrode active material layer is reduced is usually formed at the distal end of the electrode, the separation space between the folding separator and the sliding part can be effectively reduced by providing the binder composition to the distal end of the folded separator corresponding to the electrode end.
  • the binder composition 52 may be provided along the longitudinal direction L of the folded separator 10 .
  • the binder composition 52 may be provided at the distal end of the unit cell 20 in the direction in which the electrode tab 28 is disposed.
  • the sliding part of the electrode active material layer is disposed in the direction of the electrode tab, as shown in FIG. 4 , when the binder composition is provided along the longitudinal direction of the folding separator at the distal end in the direction in which the electrode tab is disposed, the separation due to the sliding part effective in reducing space.
  • the binder composition 52 may be provided in a region at a distance of 0.15W from the end E of the folded separator. It may be provided in a region at a distance of 0.01W to 0.15W from the end E, and more specifically, at a distance of 3mm to 10mm from the end of the folding separator.
  • the binder may be smoothly interposed in the space between the folding separator and the sliding part to fill the space.
  • the area provided with the binder composition is too narrow, the spaced apart space cannot be sufficiently filled, and if the area provided with the binder composition is too wide, the amount of the binder composition used increases, resulting in increased costs, as well as fairness in the folding process due to the surplus binder composition. can adversely affect
  • the binder composition has a binder application amount of 0.1 g/m 2 to 1 g/m 2 , preferably 0.1 g/m 2 to 0.8 g/m 2 , more preferably 0.3 g/m 2 to 0.5 g/m 2 can be provided.
  • a binder application amount satisfies the above range, side effects caused by the excess binder may be minimized while effectively reducing the separation space.
  • the binder composition may include a binder and a solvent.
  • various binders used in the secondary battery field for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol , polyacrylonitrile, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene -Propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluororubber, or various copolymers thereof may be used.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • CMC carboxymethylcellulose
  • EPDM rubber ethylene -Propylene-diene monomer rubber
  • an aqueous binder such as styrene-butadiene rubber.
  • an aqueous binder is used for the coating layer of the folding separator and the negative electrode where lithium precipitation occurs. Therefore, when a water-based binder is used as a binder, adhesion between the folded separator and the negative electrode is improved, so that the separation space can be removed more smoothly, and thus lithium precipitation can be more effectively suppressed.
  • the solvent is for dissolving or dispersing the binder component so that it can be applied, and an appropriate solvent may be selected and used according to the binder used.
  • an aqueous binder water may be used as a solvent
  • an organic solvent such as N-methylpyrrolidone, acetone, or alcohol may be used as a solvent.
  • the solvent may be used in an amount such that the binder composition has a viscosity suitable for application.
  • additives such as inorganic particles, solid electrolytes, and ion conductive polymers may be further included in the binder composition to improve electrolyte impregnability, conductivity, and resistance characteristics.
  • a drying process for removing the solvent may be additionally performed if necessary.
  • the unit cells 20A and 20B are stacked by folding the folding separator 10 (see (D) of FIG. 3 ). Since the binder composition applied to the lower surface of the folding separator 10 has flexibility, it is inserted into the separation space between the folding separator and the unit cell during the folding process, thereby reducing the separation.
  • a step of heating and/or pressurizing the electrode assembly in which the unit cells are stacked may be additionally performed, if necessary.
  • the heating and/or pressing process is for fixing the folded separator and adhering the unit cells.
  • the heating may be performed at a temperature condition of 50 °C to 150 °C, preferably 60 °C to 120 °C, more preferably 70 °C to 90 °C.
  • the pressurization may be performed under a pressure condition of 10 kPa to 300 kPa, preferably 50 kPa to 250 kPa, and more preferably 100 kPa to 200 kPa.
  • the adhesive strength of the binder inserted into the separation space is increased by heating and/or pressurization, which is more effective in reducing the separation, and the solvent in the binder composition can be volatilized during the process, It has the advantage that no drying process is required.
  • electrochemical properties are also improved.
  • FIG 5 shows an example of an electrode assembly according to the present invention.
  • the electrode assembly 1 of the present invention is an electrode assembly in which a plurality of unit cells 20 are wound and stacked by a long sheet-shaped folding separator 10 .
  • the unit cell 20 is an electrode stack in which at least one positive electrode 22 and at least one negative electrode 26 are alternately stacked with a separator 24 interposed therebetween, and the positive electrode 22 and the negative electrode 26 And the separation membrane 24 is cut to a certain size.
  • positive electrode As the positive electrode, negative electrode, and separator included in the unit cell 20, various positive electrodes, negative electrodes, and separators used in the field of secondary batteries may be used, and their materials or shapes are not particularly limited.
  • the positive electrode 24 may be manufactured by coating a positive electrode composite material including a positive electrode active material, a binder, and a conductive material on one or both surfaces of a positive electrode current collector to form a positive electrode active material layer
  • the negative electrode ( 26) may be prepared by coating one or both surfaces of the negative electrode current collector with a negative electrode composite including a negative electrode active material, a binder, and a conductive material to form a negative electrode active material layer.
  • lithium cobalt-based oxide lithium nickel-based oxide, lithium manganese-based oxide, lithium nickel-cobalt-manganese-based oxide, lithium nickel-cobalt-aluminum-based oxide , Lithium transition metal oxides such as lithium nickel-cobalt-manganese-aluminum-based oxides may be used, but are not limited thereto.
  • the negative electrode active material examples include various materials used in the art, for example, carbon-based materials such as natural graphite, artificial graphite, graphitized carbon fiber, and amorphous carbon; metallic compounds capable of being alloyed with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys, or Al alloys; metal oxides capable of doping and undoping lithium, such as SiO ⁇ (0 ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Or a composite including the metallic compound and a carbonaceous material, such as a Si-C composite or a Sn-C composite, but is not limited thereto.
  • carbon-based materials such as natural graphite, artificial graphite, graphitized carbon fiber, and amorphous carbon
  • metallic compounds capable of being alloyed with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, S
  • the binder is a component that assists the bonding between the current collector and the active material and between the active material and the active material, and includes polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, Regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluoro rubber, Various copolymers thereof may be used, but are not limited thereto.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluoro rubber
  • the conductive material is a component for improving the conductivity of the electrode, for example, polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose Rose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, these Various copolymers and the like may be used, but are not limited thereto.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluororubber these Various copolymers and the like may be used, but are not
  • the separator means a separator cut to a certain size and interposed between the positive electrode and the negative electrode of a unit cell, and is used as a concept different from a long sheet-shaped folding separator.
  • separators generally used in the art may be used, and the material thereof is not particularly limited.
  • a porous polymer film as the separator for example, a porous film made of a polyolefin polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer
  • a polymer film or a laminated structure of two or more layers thereof may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
  • the unit cell 20 may have a full-cell structure including the same number of positive and negative electrodes, and the positive and negative electrodes are arranged so that the electrodes have the same polarity on the outermost upper surface and outermost lower surface of the electrode stack.
  • a bi-cell structure in which the number of one of the negative electrodes is one more than the number of the other negative electrodes may also be used.
  • FIG. 5 shows a unit cell of a bi-cell structure in which three electrodes are stacked with two separators as the unit cell 20, but the present invention is not limited thereto, and the number of electrodes and separators is variously modified. It can be.
  • the folding separator 10 is a separator in the form of a long sheet, and is folded in a form of wrapping between unit cells 20.
  • various separators used in the art may be used, and for example, a separator coated with a polymer material such as ceramic particles and/or a binder on the surface of a polyolefin-based porous polymer film.
  • the unit cell 20 includes a sliding portion in which the thickness of the electrode active material layer decreases at at least one end of the outermost electrode in contact with the folding separator 10, and a binder coating layer 54 is formed between the sliding portion and the folding separator. is formed (see the enlarged view of FIG. 5).
  • the amount of the coating slurry is reduced at the end of the coating, so that a sliding portion in which the thickness of the active material layer is reduced occurs.
  • the sliding portion may be relieved to a certain extent through a heating and/or pressurizing process.
  • an interface in which the folding separator and the electrode are not compressed but only in simple contact occurs, and the sliding part is not relieved in the electrode located at this interface. A separation space between the folded separator and the electrode remains.
  • the electrode assembly 1 of the present invention provides a binder composition to the other surface of the folding separator immediately before the folding process, and a binder coating layer is formed between the sliding part and the folding separator by the binder composition, the separation space is reduced. effect can be obtained.
  • the binder coating layer 54 is formed of various binders used in the secondary battery field, for example, polyvinylidene fluoride (PVDF) and vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP).
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • polyvinyl alcohol polyacrylonitrile, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene
  • It may include polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluoro rubber, or various copolymers thereof, among which styrene-butadiene rubber and It is particularly preferred to include the same water-based binder.
  • EPDM rubber ethylene-propylene-diene monomer rubber
  • SBR styrene-butadiene rubber
  • fluoro rubber or various copolymers thereof, among which styrene-butadiene rubber and It is particularly preferred to include the same water-based binder.
  • the electrode assembly of the present invention as described above can be usefully applied to a secondary battery.
  • the secondary battery according to the present invention includes a battery case, an electrode assembly accommodated inside the battery case, and an electrolyte.
  • the electrode assembly is the electrode assembly according to the present invention described above.
  • the battery case may be various battery cases used in the art, for example, prismatic, cylindrical, or pouch-type battery cases, and among them, a pouch-type battery case is preferable.
  • electrolytes common in the secondary battery field for example, organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, and the like may be used.
  • the type is not particularly limited.
  • the secondary battery may preferably be a lithium ion battery or a lithium ion polymer battery, but is not limited thereto.
  • the lithium secondary battery according to the present invention minimizes the separation space between the folding separator and the unit cell, thereby suppressing lithium precipitation, and thus exhibiting excellent long life characteristics and rapid charging performance. Accordingly, electric vehicles including mobile phones, notebook computers, portable devices such as digital cameras, electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it can be usefully used in a power storage system.
  • electric vehicles including mobile phones, notebook computers, portable devices such as digital cameras, electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it can be usefully used in a power storage system.
  • heating means 40 pressurization means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 폴딩 분리막과 전극 사이의 이격 공간을 최소화하여 수명 특성 및 급속 충전 성능을 개선할 수 있는 전극 조립체의 제조 방법에 관한 것으로, 폴딩 분리막의 일면에 복수의 단위셀을 배치하는 단계; 상기 폴딩 분리막 상에 단위셀을 고정시키는 단계; 상기 폴딩 분리막의 타면의 적어도 일 말단부에 바인더 조성물을 제공하는 단계; 및 상기 폴딩 분리막을 접어서 상기 단위셀들을 적층하는 단계를 포함하는 전극 조립체의 제조 방법에 관한 것이다.

Description

이차 전지용 전극 조립체 및 그 제조방법
본 출원은 2021년 8월 13일에 출원된 한국특허출원 제10-2021-0107606호에 기초한 우선권의 이익을 주장하며, 해당 한구특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 이차 전지용 전극 조립체 및 그 제조방법에 관한 것으로, 보다 구체적으로는, 수명 특성 및 급속 충전 성능이 우수한 스택-앤-폴딩형(stack and folding type) 전극 조립체 및 그 제조 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지는 일반적으로, 양극, 분리막, 음극이 적층된 전극 조립체를 전지 케이스 수용하고 전해액을 주입하여 제조되며, 전극 조립체는 그 제조 방법에 따라, 권취형(젤리-롤형), 적층형, 스택-앤-폴딩(stack and folding)형 등으로 구분될 수 있다. 구체적으로는, 권취형 전극 조립체는 긴 시트 형상의 양극판, 분리막 및 음극판을 감아서 제조된 것이며, 적층형 전극 조립체는 일정한 크기로 재단된 양극, 분리막 및 음극을 적층하여 제조된 것이다. 또한, 스택 앤 폴딩 전극 조립체는 긴 시트 형상의 폴딩 분리막 상에 양극, 분리막, 음극이 적층된 단위셀을 나란히 배치한 후, 일 측부터 폴딩하여 제조된 것이다.
한편, 리튬 이차 전지용 전극은 집전체 상에 전극 슬러리를 코팅하여 활물질층을 형성한 후 압연하는 방식으로 제조되는데, 이와 같은 방법으로 제조된 전극은 활물질층 말단부에서 슬러리 도포량이 감소하여 중앙부에 비해 활물질층의 두께가 감소하는 현상(이하, 슬라이딩 현상이라 함)이 발생한다. 도 1에는 집전체 상에 전극 슬러리를 코팅하여 제조된 전극의 폭 방향의 활물질층 두께 분포를 보여주는 도면이다. 도 1을 통해, 전극 말단부에서 활물질층의 두께가 감소하는 슬라이딩 현상이 발생하였음을 확인할 수 있다.
한편, 이러한 슬라이딩 현상으로 인해 전극 말단부에서 전극과 분리막 사이에 이격 공간이 발생하는데, 전극과 분리막 사이에 이격 공간이 존재하면 리튬 이온의 확산(diffusion) 저항으로 작용하여 해당 영역에서 리튬 이온이 원활하게 이동되지 못하고 석출되는 문제가 발생한다.
전극과 분리막 사이의 이격 문제는, 전극 조립체 제조 시에 전극과 분리막 사이를 가열 및 가압 공정을 통해 압착시킴으로써 최소화할 수 있다. 상기 압착 공정에서 전극 활물질층 및/또는 분리막 코팅층에 포함된 바인더가 용융되면서 이격 공간으로 밀려나와 이격 공간을 메울 수 있기 때문이다.
그러나, 스택 앤 폴딩형의 전극 조립체의 경우, 제조 공정의 특성 상 폴딩 분리막과 전극이 압착되지 않고 단순 접촉만 하는 계면이 발생하게 되며, 이러한 계면에서 전극과 분리막 사이의 이격 공간이 생겨 리튬 석출이 발생한다는 문제점이 있다. 도 2는 종래의 스택 앤 폴딩형 전극 조립체를 적용한 전지 셀을 분해한 후 촬영한 사진으로, 도 2를 통해 폴딩 분리막의 하면과 단위셀이 접촉하는 부분(박스로 표시된 부분)에서 리튬 석출이 발생하였음을 확인할 수 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 폴딩 분리막과 전극 사이의 이격 공간을 최소화하여 수명 특성 및 급속 충전 성능을 개선할 수 있는 전극 조립체 및 그 제조 방법을 제공하고자 한다.
일 측면에서, 본 발명은, 폴딩 분리막의 일면에 복수의 단위셀을 배치하는 단계, 상기 폴딩 분리막 상에 단위셀을 고정시키는 단계, 상기 폴딩 분리막의 타면의 적어도 일 말단부에 바인더 조성물을 제공하는 단계 및 상기 폴딩 분리막을 접어서 상기 단위셀들을 적층하는 단계를 포함하는 전극 조립체의 제조 방법을 제공한다.
이때, 상기 단위셀을 고정하는 단계는, 상기 단위셀이 배치된 폴딩 분리막을 가열하고, 가압하여 수행될 수 있다.
또한, 상기 바인더 조성물은 상기 폴딩 분리막의 길이 방향을 따라 도포될 수 있으며, 상기 단위셀의 전극탭이 배치되는 방향의 말단부에 제공될 수 있다.
또한, 상기 바인더 조성물은 바인더 도포량이 0.1g/m2 내지 1g/m2이 되도록 제공될 수 있다.
또한, 상기 바인더 조성물은 상기 폴딩 분리막의 폭을 W이라 할 때, 상기 폴딩 분리막의 끝단으로부터 0.15W의 거리에 있는 영역에 제공될 수 있다.
상기 바인더 조성물은, 바인더로 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체를 포함할 수 있으며, 이 중에서도 스티렌-부타디엔 고무와 같은 수계 바인더를 포함하는 것이 특히 바람직하다.
다른 측면에서, 본 발명은, 양극, 분리막 및 음극을 포함하는 복수 개의 단위셀들이 긴 시트 형상의 폴딩 분리막에 의해 권취되어 적층되는 전극 조립체이고, 상기 단위셀은 최외각 전극의 적어도 일 말단에 전극 활물질층의 두께가 감소하는 슬라이딩부를 포함하고, 상기 슬라이딩부와 폴딩 분리막 사이에 바인더 코팅층이 형성된 전극 조립체를 제공한다.
또 다른 측면에서, 본 발명은 상술한 본 발명에 따른 전극 조립체를 포함하는 이차 전지를 제공한다.
본 발명은 스택 앤 폴딩형 전극 조립체 제조 시에 폴딩 분리막의 단위셀이 배치되지 않은 면에 바인더 조성물을 제공한 후에 폴딩 공정을 실시하는 것을 특징으로 한다. 본 발명과 같이 단위셀이 배치되지 않은 면에 바인더 조성물을 제공한 후 폴딩 공정을 실시할 경우, 바인더 조성물이 단위셀의 최외각 전극과 폴딩 분리막 사이에 개재되어 전극과 폴딩 분리막 사이의 이격 공간을 메우게 되고, 이에 따라 전극과 폴딩 분리막 사이의 이격에 의해 발생하는 리튬 이온 석출을 최소화할 수 있다. 따라서, 본 발명의 방법에 따라 제조된 전극 조립체를 이차 전지에 적용할 경우, 우수한 장기 수명 특성 및 급속 충전 성능을 구현할 수 있다.
도 1은 전극 슬러리 코팅에 의해 제조된 전극의 활물질층의 두께 분포를 보여주는 그래프이다.
도 2는 종래의 스택 앤 폴딩 전극 조립체를 적용한 전지 셀의 리튬 석출 현상을 보여주는 사진이다.
도 3은 본 발명의 일 실시예에 따른 전극 조립체의 제조 공정을 도시한 도면이다.
도 4는 바인더 조성물 제공 단계를 설명하기 위한 도면이다.
도 5는 본 발명에 따른 전극 조립체의 일례를 도시한 도면이다.
이하, 첨부된 도면을 참조하여, 본 발명에 대해 상세히 설명한다. 본 발명의 도면은 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자가 본 발명을 명확하게 이해할 수 있도록 하기 위해 제공되는 것이며, 본 발명이 도면에 개시된 발명에 의해 한정되는 것은 아니다.
또한, 본 발명을 명확하게 설명하기 위해서, 도면에 일부 구성 요소가 생략되어 표현될 수 있으며, 동일한 구성 요소는 동일한 도면 부호로 나타내었다.
전극 조립체의 제조 방법
먼저 본 발명에 따른 전극 조립체의 제조 방법에 대해 설명한다.
도 3에는 본 발명에 따른 전극 조립체의 제조 방법의 일 실시예가 도시되어 있다. 이하, 도 3을 참조하여 본 발명에 따른 전극 조립체의 제조 방법에 대해 설명한다.
도 3에 도시된 바와 같이, 본 발명에 따른 전극 조립체의 제조 방법은, (A) 폴딩 분리막의 일면에 복수의 단위셀을 배치하는 단계, (B) 상기 폴딩 분리막 상에 단위셀을 고정시키는 단계, (C) 상기 폴딩 분리막의 타면의 적어도 일 말단부에 바인더 조성물을 도포하는 단계 및 (D) 상기 폴딩 분리막을 접어서 상기 단위셀들을 적층하는 단계를 포함한다.
먼저, 폴딩 분리막(10)의 일면에 복수의 단위셀(20A, 20B)을 배치한다(도 3의 (A) 참조).
상기 단위셀(20A, 20B)은 일정한 크기로 재단된 양극(22), 분리막(24), 및 음극(26)이 적층된 전극 적층체이다. 상기 단위셀은, 도 3에 도시된 바와 같이, 양극(22)/분리막(24)/음극(26)/분리막(24)/양극(22) 또는 음극(26)/분리막(24)/양극(22)/분리막(24)/음극(26)과 같이 최외각에 동일한 전극이 배치되는 바이셀 구조일 수 있으나, 이에 한정되는 것은 아니며, 양극/분리막/음극과 같이 양극과 음극의 개수가 동일한 풀셀 구조에도 무방하다. 또한, 도 3에는 바이셀 구조의 전극 적층체가 5층으로 구성된 것으로 기재되어 있으나, 이에 한정되는 것은 아니며, 전극 및 분리막의 적층 수는 다양하게 변형될 수 있다.
상기 폴딩 분리막(10)은 긴 시트 형상의 분리막으로, 단위셀에 포함되는 재단된 형태의 분리막(24)과 구별된다. 상기 폴딩 분리막(10)으로는 당해 기술 분야에서 사용되는 다양한 분리막들이 사용될 수 있으며, 예를 들면, 폴리올레핀계 다공성 고분자 필름 표면에 세라믹 입자 및/또는 바인더와 같은 고분자 물질이 코팅된 분리막일 수 있다.
상기 폴딩 분리막(10) 상에 복수 개의 단위셀(20A, 20B)을 배치한다. 이때, 이웃하는 단위셀들은 폴딩되었을 때 폴딩 분리막(10)을 사이에 두고, 음극(26)과 양극(22)이 적층될 수 있도록 배치된다.
다음으로, 폴딩 과정에서 단위셀(20A, 20B)이 움직이지 않도록 폴딩 분리막(10) 상에 단위셀(20A, 20B)을 고정시킨다(도 3의 (B) 참조).
상기 단위셀(20A, 20B)을 고정하는 단계는, 상기 단위셀(20A, 20B)이 배치된 폴딩 분리막(10)을 가열하고 가압하는 방법으로 수행될 수 있다. 가열 및 가압 공정을 수행할 경우, 전극 활물질층 및/또는 폴딩 분리막의 코팅층에 포함된 바인더 성분이 열에 의해 용융되면서 단위셀과 폴딩 분리막이 접착되어 고정된다. 구체적으로는, 히터와 같은 가열 수단(30)을 통해 상기 단위셀(20A, 20B)이 배치된 폴딩 분리막(10)에 열을 가한 후, 롤 프레스 등과 같은 가압 수단(40)을 통해 단위셀(20A, 20B)을 가압함으로써, 폴딩 분리막(10) 상에 단위셀(20A, 20B)을 접착되도록 함으로써, 단위셀을 고정시킬 수 있다.
또한, 상기 가열 및 가압 과정에서 전극 말단부의 활물질층의 두께 감소 영역(이하, 슬라이딩 부라 함)으로 전극 활물질층 및/또는 폴딩 분리막 코팅층에 포함된 바인더가 폴딩 분리막과 전극 사이의 이격 공간으로 밀려나와 폴딩 분리막과 단위셀 사이의 이격 공간이 감소하고, 이에 따라 폴딩 분리막과 전극 사이의 이격으로 인한 리튬 석출을 억제하는 효과를 얻을 수 있다.
한편, 상기 가열은 50℃ 내지 150℃, 바람직하게는 60℃ 내지 120℃, 더 바람직하게는 70℃ 내지 90℃의 온도 조건으로 수행될 수 있다.
또한, 상기 가압은 10kPa 내지 300kPa, 바람직하게는 50kPa 내지 250kPa, 더 바람직하게는 100kPa 내지 200kPa의 압력 조건으로 수행될 수 있다.
가열 및/또는 가압이 상기 조건을 만족할 경우, 단위셀의 구성요소나 폴딩 분리막의 손상 없이 단위셀과 폴딩 분리막의 고정 및 이격 공간 감소가 원활하게 이루어질 수 있다.
다음으로, 단위셀(20A, 20B)이 폴딩 분리막(10)의 일면 상에 고정되면, 폴딩 분리막(10)의 타면에 바인더 조성물(52)을 제공한다(도 3의 (C) 참조). 이때, 상기 타면은 단위셀이 배치되지 않은 면, 즉, 단위셀이 배치된 폴딩 분리막의 표면의 반대 표면을 의미한다.
본 단계는 폴딩 공정 이후에 폴딩 분리막의 타면과 단위셀 사이의 이격 공간을 최소화하기 위한 것이다. 상술한 바와 같이, 단위셀 고정 단계를 통해 단위셀이 배치된 폴딩 분리막 표면(일면)과 단위셀 간 계면의 이격 공간은 최소화할 수 있으나, 폴딩 이후에 단위셀이 배치되지 않은 폴딩 분리막의 표면(타면)과 단위셀이 접촉되는 면에는 활물질층의 슬라이딩 현상으로 인한 이격 공간이 여전히 남아있게 된다. 이와 같은 이격 공간이 존재하면, 리튬 이온의 확산이 저해되어 해당 영역에서 리튬 이온이 석출되게 되고, 이로 인해 수명 특성 및 급속 충전 성능이 악화될 수 있다.
본 발명에서는 상기와 같은 문제점을 해결하기 위해, 폴딩 분리막을 접어 단위셀들을 적층하는 폴딩 공정 직전에 폴딩 분리막의 타면에 바인더 조성물을 제공하고, 폴딩 공정을 실시함으로써, 폴딩 과정에서 상기 바인더 조성물이 폴딩 분리막과 단위셀 사이의 이격 공간을 메울 수 있도록 한다.
이때, 상기 바인더 조성물(52)의 제공 방법은 특별히 한정되지 않으며, 당해 기술 분야에 잘 알려진 조성물의 도포 방법들, 예를 들면, 스프레이 분사, 바 코팅, 롤러 코팅 등의 방법을 통해 실시할 수 있다.
한편, 상기 바인더 조성물(52)은 폴딩 분리막(10)의 타면의 적어도 일 말단부에 제공되는 것이 바람직하다. 전극 활물질층의 두께가 감소하는 슬라이딩 부는 통상 전극의 말단부에 형성되므로, 전극 말단부에 대응되는 폴딩 분리막의 말단부에 바인더 조성물을 제공함으로써, 폴딩 분리막과 슬라이딩 부 사이의 이격 공간을 효과적으로 감소시킬 수 있다.
도 4에는 본 발명의 방법에 따라 바인더 조성물이 제공된 폴딩 분리막의 타면의 일례가 도시되어 있다. 도 4에 도시된 바와 같이, 상기 바인더 조성물(52)은 상기 폴딩 분리막(10)의 길이 방향(L)을 따라 제공될 수 있다. 또한, 상기 바인더 조성물(52)은 단위셀(20)의 전극탭(28)이 배치되는 방향의 말단부에 제공될 수 있다. 통상적으로 전극 활물질층의 슬라이딩부는 전극탭 방향에 배치되므로, 도 4에 도시된 바와 같이, 전극탭이 배치되는 방향의 말단부에 폴딩 분리막의 길이 방향을 따라 바인더 조성물을 제공할 경우, 슬라이딩부로 인한 이격 공간을 감소시키는데 효과적이다.
한편, 상기 바인더 조성물(52)은, 상기 폴딩 분리막의 폭을 W이라 할 때, 상기 폴딩 분리막의 끝단(E)부터 0.15W의 거리에 있는 영역에 제공될 수 있으며, 구체적으로는, 폴딩 분리막의 끝단(E)로부터 0.01W 내지 0.15W의 거리에 있는 영역에 제공될 수 있고, 더 구체적으로는, 폴딩 분리막의 끝단에서 3mm 내지 10mm의 거리에 있는 영역에 제공될 수 있다. 바인더 조성물의 제공 영역이 상기 조건을 만족할 때, 바인더가 폴딩 분리막과 슬라이딩 부 사이의 이격 공간에 원활하게 개재되어 이격 공간을 메울 수 있다. 바인더 조성물의 제공 영역이 너무 좁으면 이격 공간을 충분히 메울 수 없고, 바인더 조성물의 제공 영역이 너무 넓으면 바인더 조성물의 사용량이 많아져 비용이 증가할 뿐 아니라, 잉여의 바인더 조성물로 인해 폴딩 과정에 공정성에 악영향을 미칠 수 있다.
또한, 상기 바인더 조성물은 바인더 도포량이 0.1g/m2 내지 1g/m2, 바람직하게는 0.1g/m2 내지 0.8g/m2, 더 바람직하게는, 0.3g/m2 내지 0.5g/m2이 되도록 제공될 수 있다. 바인더 도포량이 상기 범위를 만족할 때, 이격 공간을 효과적으로 감소시키면서 잉여 바인더로 인한 부작용을 최소화할 수 있다.
한편, 상기 바인더 조성물은 바인더 및 용매를 포함할 수 있다.
상기 바인더로는, 이차 전지 분야에서 사용되는 다양한 바인더들, 예를 들면, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등이 사용될 수 있다.
이 중에서도 스티렌-부타디엔 고무와 같은 수계 바인더를 포함하는 것이 특히 바람직하다. 일반적으로 폴딩 분리막의 코팅층과, 리튬 석출이 발생하는 음극에는 수계 바인더가 사용된다. 따라서, 바인더로 수계 바인더를 사용할 경우 폴딩 분리막 및 음극과의 접착력이 향상되어 이격 공간 제거가 보다 원활하게 이루어질 수 있으며, 이로 인해 리튬 석출을 보다 효과적으로 억제할 수 있다.
한편, 상기 용매는 바인더 성분을 용해 또는 분산시켜 도포가능하도록 하기 위한 것으로, 사용되는 바인더에 따라 적절한 용매를 선택하여 사용할 수 있다. 예를 들면, 수계 바인더를 사용할 경우에는 용매로 물을 사용할 수 있으며, 비수계 바인더를 사용할 경우에는 용매로 N-메틸피롤리돈, 아세톤, 알코올 등과 같은 유기 용매를 사용할 수 있다. 상기 용매는 바인더 조성물이 도포에 적절한 점도를 갖도록 하는 양으로 사용될 수 있다.
또한, 필수적인 것은 아니나, 전해액 함침성, 전도성, 저항 특성 등의 개선을 위해 상기 바인더 조성물에 무기물 입자, 고체 전해질, 이온 전도성 폴리머와 같은 첨가제가 추가로 포함될 수 있다.
한편, 바인더 조성물 도포 후에 필요에 따라 용매 제거를 위한 건조 공정이 추가로 실시될 수 있다.
다음으로, 폴딩 분리막(10)을 접어서(folding) 상기 단위셀(20A, 20B)들을 적층한다(도 3의 (D) 참조). 폴딩 분리막(10)의 하면에 도포된 바인더 조성물은 유연성을 갖기 때문에 폴딩 과정에서 폴딩 분리막과 단위셀 사이의 이격 공간으로 삽입되면서 이격을 감소시킨다.
한편, 폴딩이 완료되어 단위셀의 적층이 완료된 후에, 필요에 따라, 단위셀들이 적층된 전극 조립체를 가열 및/또는 가압하는 단계를 추가로 수행할 수 있다.
상기 가열 및/또는 가압 공정은 폴딩 분리막의 고정하고, 단위셀들을 밀착시키기 위한 것이다.
이때, 상기 가열은 50℃ 내지 150℃, 바람직하게는 60℃ 내지 120℃, 더 바람직하게는 70℃ 내지 90℃의 온도 조건으로 수행될 수 있다.
또한, 상기 가압은 10kPa 내지 300kPa, 바람직하게는 50kPa 내지 250kPa, 더 바람직하게는 100kPa 내지 200kPa의 압력 조건으로 수행될 수 있다.
이와 같은 공정이 추가로 실시될 경우, 가열 및/또는 가압에 의해 이격 공간에 삽입된 바인더의 접착력이 증가하여 이격 감소에 더욱 효과적일 뿐 아니라, 상기 공정 중에 바인더 조성물 내의 용매를 휘발시킬 수 있어 별도의 건조 공정이 필요하지 않다는 장점이 있다. 또한 가압에 의해 단위셀 및 전극 조립체 내부의 구성요소들이 밀착되면서 전기화학 특성도 개선되는 효과를 가져온다.
전극 조립체
다음으로 본 발명에 따른 전극 조립체를 설명한다.
도 5에는 본 발명에 따른 전극 조립체의 일례가 도시되어 있다.
도 5에 도시된 바와 같이, 본 발명의 전극 조립체(1)는, 복수 개의 단위셀들(20)이 긴 시트 형상의 폴딩 분리막(10)에 의해 권취되어 적층되는 전극 조립체이다.
상기 단위셀(20)은, 적어도 하나 이상의 양극(22)과 적어도 하나 이상의 음극(26)이 분리막(24)을 개재하여 교대로 적층된 전극 적층체이며, 상기 양극(22), 음극(26) 및 분리막(24)은 일정한 크기로 재단되어 있다.
상기 단위셀(20)에 포함되는 양극, 음극 및 분리막으로는, 이차전지 분야에서 사용되는 다양한 양극, 음극 및 분리막이 사용될 수 있으며, 그 재질이나 형태가 특별히 한정되는 것은 아니다.
예를 들면, 상기 양극(24)은 양극 집전체의 일면 또는 양면에 양극 활물질, 바인더 및 도전재를 포함하는 양극 합재를 코팅하여 양극 활물질층을 형성하는 방법으로 제조된 것일 수 있고, 상기 음극(26)은 음극 집전체의 일면 또는 양면에 음극 활물질, 바인더 및 도전재를 포함하는 음극 합재를 코팅하여 음극 활물질층을 형성하는 방법으로 제조된 것일 수 있다.
양극 활물질로는, 당해 기술 분야에서 사용되는 다양한 물질들, 예를 들면 리튬 코발트계 산화물, 리튬 니켈계 산화물, 리튬 망간계 산화물, 리튬 니켈-코발트-망간계 산화물, 리튬 니켈-코발트-알루미늄계 산화물, 리튬 니켈-코발트-망간-알루미늄계 산화물 등과 같은 리튬 전이금속 산화물이 사용될 수 있으나, 이에 한정되는 것은 아니다.
음극 활물질로는, 당해 기술 분야에서 사용되는 다양한 물질들, 예를 들면, 천연 흑연, 인조 흑연, 흑연화 탄소 섬유, 비정질 탄소 등과 같은 탄소계 물질; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 바인더는 집전체와 활물질 및 활물질과 활물질 간의 결합을 조력하는 성분으로, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극의 도전성을 향상시키기 위한 성분으로, 예를 들면, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 분리막은 일정한 크기로 재단되어 단위셀의 양극 및 음극 사이에 개재되는 분리막을 의미하는 것으로, 긴 시트 형상의 폴딩 분리막과는 구별되는 개념으로 사용된 것이다. 상기 분리막으로는, 당해 기술 분야에서 일반적으로 사용되는 분리막들이 사용될 수 있으며, 그 재질이 특별히 한정되는 것은 아니다. 예를 들면, 상기 분리막으로 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
한편, 상기 단위셀(20)은 양극과 음극을 동일 개수로 포함하는 풀셀(full-cell) 구조일 수도 있고, 전극 적층체의 최외각 상면 및 최외각 하면에 동일한 극성이 전극이 배치되도록 양극 및 음극 중 하나의 개수가 다른 하나의 개수보다 1개 많은 바이셀(bi-cell) 구조일 수도 있다.
도 5에는 단위셀(20)로 3개의 전극이 2개의 분리막을 개재하여 적층된 바이셀 구조의 단위셀이 도시되어 있으나, 본 발명이 이에 한정되는 것은 아니며, 전극 및 분리막의 개수는 다양하게 변형될 수 있다.
폴딩 분리막(10)은 긴 시트 형상의 분리막으로, 단위셀(20)간의 감싸는 형태로 폴딩된다. 상기 폴딩 분리막(10)으로는 당해 기술 분야에서 사용되는 다양한 분리막들이 사용될 수 있으며, 예를 들면, 폴리올레핀계 다공성 고분자 필름 표면에 세라믹 입자 및/또는 바인더와 같은 고분자 물질이 코팅된 분리막일 수 있다.
한편, 상기 단위셀(20)은 폴딩 분리막(10)과 접촉하는 최외각 전극의 적어도 일 말단에 전극 활물질층의 두께가 감소하는 슬라이딩부를 포함하며, 슬라이딩 부와 폴딩 분리막 사이에 바인더 코팅층(54)이 형성된다(도 5의 확대도 참조).
상술한 바와 같이, 슬러리 코팅 공정을 통해 전극 활물질층을 형성할 경우, 코팅 말단부에서 코팅 슬러리의 양이 감소하여 활물질층의 두께가 감소하는 슬라이딩 부가 발생한다. 이러한 슬라이딩부는 가열 및/또는 가압 공정을 거치면서 일정 정도 완화될 수 있다. 그러나, 종래의 스택-앤-폴딩형 전극 조립체의 경우, 폴딩 공정의 특성 상 폴딩 분리막과 전극이 압착되지 않고 단순 접촉만 하는 계면이 발생하게 되며, 이러한 계면에 위치하는 전극에서는 슬라이딩부가 완화되지 않아 폴딩 분리막과 전극 사이의 이격 공간이 남아있게 된다. 그러나, 본 발명의 전극 조립체(1)는 폴딩 공정 직전에 바인더 조성물을 폴딩 분리막의 타면에 제공하고, 상기 바인더 조성물에 의해 슬라이딩부와 폴딩 분리막 사이에 바인더 코팅층이 형성되기 때문에, 이격 공간이 감소하는 효과를 얻을 수 있다.
본 발명과 같이 슬라이딩 부와 폴딩 분리막 사이에 바인더 코팅층이 형성될 경우, 이격 공간이 존재하는 경우와 비교하여 리튬 확산이 원활하게 이루어지며, 이로 인해 리튬 확산 저항으로 인한 리튬 이온 석출 현상을 현저하게 감소시킬 수 있다.
한편, 상기 바인더 코팅층(54)은 이차 전지 분야에서 사용되는 다양한 바인더들, 예를 들면, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체를 포함할 수 있으며, 이 중에서도 스티렌-부타디엔 고무와 같은 수계 바인더를 포함하는 것이 특히 바람직하다.
상기와 같은 본 발명의 전극 조립체는 이차 전지에 유용하게 적용될 수 있다.
구체적으로는, 본 발명에 따른 이차 전지는 전지 케이스와, 상기 전지 케이스 내부에 수용되는 전극 조립체 및 전해질을 포함하며, 이때, 상기 전극 조립체는 상술한 본 발명에 따른 전극 조립체이다.
상기 전지 케이스는 당해 기술 분야에서 사용되는 다양한 전지 케이스, 예를 들면, 각형, 원통형 또는 파우치형 전지 케이스일 수 있으며, 이 중에서도 파우치형 전지 케이스인 것이 바람직하다.
한편, 상기 전해질로는, 이차 전지 분야에서 일반적인 전해질들, 예를 들면, 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등이 사용될 수 있으며, 그 종류가 특별히 한정되는 것은 아니다.
상기 이차 전지는 바람직하게는 리튬 이온 전지 또는 리튬 이온 폴리머 전지일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 리튬 이차전지는 폴딩 분리막과 단위셀 사이의 이격 공간이 최소화되어 리튬 석출이 억제되며, 이로 인해 장기 수명 특성 및 급속 충전 성능이 우수하게 나타난다. 따라서, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 등에 유용하게 사용될 수 있다.
<부호의 설명>
10 : 폴딩 분리막 20, 20A, 20B : 단위셀
22 : 양극 24 : 분리막
26 : 음극 28 : 전극 탭
30 : 가열 수단 40 : 가압 수단

Claims (12)

  1. 폴딩 분리막의 일면에 복수의 단위셀을 배치하는 단계;
    상기 폴딩 분리막 상에 단위셀을 고정시키는 단계;
    상기 폴딩 분리막의 타면의 적어도 일 말단부에 바인더 조성물을 제공하는 단계; 및
    상기 폴딩 분리막을 접어서 상기 단위셀들을 적층하는 단계를 포함하는 전극 조립체의 제조 방법.
  2. 제1항에 있어서,
    상기 단위셀을 고정하는 단계는,
    상기 단위셀이 배치된 폴딩 분리막을 가열하고, 가압하여 수행되는 것인 전극 조립체의 제조 방법.
  3. 제1항에 있어서,
    상기 바인더 조성물은 상기 폴딩 분리막의 길이 방향을 따라 제공되는 것인 전극 조립체의 제조 방법.
  4. 제1항에 있어서,
    상기 바인더 조성물은 상기 단위셀의 전극탭이 배치되는 방향의 말단부에 제공되는 것인 전극 조립체의 제조 방법.
  5. 제1항에 있어서,
    상기 바인더 조성물을 제공하는 단계는, 바인더 도포량이 0.1g/m2 내지 1.0g/m2이 되도록 수행되는 것인 전극 조립체의 제조 방법.
  6. 제1항에 있어서,
    상기 바인더 조성물은 상기 폴딩 분리막의 폭을 W이라 할 때, 상기 폴딩 분리막의 끝단으로부터 0.15W의 거리에 있는 영역에 제공되는 것인 전극 조립체의 제조 방법.
  7. 제1항에 있어서,
    상기 바인더 조성물은 수계 바인더를 포함하는 것인 전극 조립체의 제조 방법.
  8. 제1항에 있어서,
    상기 단위셀들을 적층하는 단계 이후에 단위셀들이 적층된 전극 조립체를 가열하고 가압하는 단계를 더 포함하는 전극 조립체의 제조 방법.
  9. 제8항에 있어서,
    상기 가열은 50℃ 내지 150℃의 온도로 수행되며, 상기 가압은 10kPa 내지 300kPa의 압력 조건으로 수행되는 것인 전극 조립체의 제조 방법.
  10. 양극, 분리막 및 음극을 포함하는 복수 개의 단위셀들이 긴 시트 형상의 폴딩 분리막에 의해 권취되어 적층되는 전극 조립체이며,
    상기 단위셀은 적어도 일 말단에 전극 활물질층의 두께가 감소하는 슬라이딩부를 포함하고,
    상기 슬라이딩부와 폴딩 분리막 사이에 바인더 코팅층이 형성된 전극 조립체.
  11. 제10항에 있어서,
    상기 바인더 코팅층은 수계 바인더를 포함하는 것인 전극 조립체.
  12. 청구항 10 또는 청구항 11의 전극 조립체를 포함하는 이차 전지.
PCT/KR2022/012146 2021-08-13 2022-08-12 이차 전지용 전극 조립체 및 그 제조방법 WO2023018310A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22856303.7A EP4280328A1 (en) 2021-08-13 2022-08-12 Electrode assemblly for secondary battery, and manufacturing method therefor
JP2023548733A JP2024506355A (ja) 2021-08-13 2022-08-12 二次電池用電極組立体及びその製造方法
CN202280014573.2A CN116868392A (zh) 2021-08-13 2022-08-12 用于二次电池的电极组件及其制备方法
US18/277,614 US20240186562A1 (en) 2021-08-13 2022-08-12 Electrode Assembly For Secondary Battery And Preparation Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0107606 2021-08-13
KR1020210107606A KR20230025274A (ko) 2021-08-13 2021-08-13 이차 전지용 전극 조립체 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2023018310A1 true WO2023018310A1 (ko) 2023-02-16

Family

ID=85200191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012146 WO2023018310A1 (ko) 2021-08-13 2022-08-12 이차 전지용 전극 조립체 및 그 제조방법

Country Status (6)

Country Link
US (1) US20240186562A1 (ko)
EP (1) EP4280328A1 (ko)
JP (1) JP2024506355A (ko)
KR (1) KR20230025274A (ko)
CN (1) CN116868392A (ko)
WO (1) WO2023018310A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050131A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 스택-폴딩형 전극 조립체
KR20180044769A (ko) * 2016-10-24 2018-05-03 주식회사 엘지화학 스택-폴딩 셀의 제조방법
KR20180051072A (ko) * 2016-11-08 2018-05-16 주식회사 엘지화학 전극 조립체 및 그 제조방법
JP2018206490A (ja) * 2017-05-30 2018-12-27 株式会社村田製作所 二次電池およびその製造方法
KR20200095896A (ko) * 2019-02-01 2020-08-11 주식회사 엘지화학 전극 조립체 제조방법과, 이를 통해 제조된 전극 및 이차전지
KR20210107606A (ko) 2019-10-01 2021-09-01 (주)엠에스엔지니어링 비상 피난 구조물 및 그 시공 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050131A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 스택-폴딩형 전극 조립체
KR20180044769A (ko) * 2016-10-24 2018-05-03 주식회사 엘지화학 스택-폴딩 셀의 제조방법
KR20180051072A (ko) * 2016-11-08 2018-05-16 주식회사 엘지화학 전극 조립체 및 그 제조방법
JP2018206490A (ja) * 2017-05-30 2018-12-27 株式会社村田製作所 二次電池およびその製造方法
KR20200095896A (ko) * 2019-02-01 2020-08-11 주식회사 엘지화학 전극 조립체 제조방법과, 이를 통해 제조된 전극 및 이차전지
KR20210107606A (ko) 2019-10-01 2021-09-01 (주)엠에스엔지니어링 비상 피난 구조물 및 그 시공 방법

Also Published As

Publication number Publication date
JP2024506355A (ja) 2024-02-13
EP4280328A1 (en) 2023-11-22
US20240186562A1 (en) 2024-06-06
KR20230025274A (ko) 2023-02-21
CN116868392A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2013176498A1 (ko) 전극조립체의 제조방법 및 이에 제조되는 전극조립체를 포함하는 전기화학소자
WO2014003481A1 (ko) 전극 조립체 및 이를 포함하는 전기화학소자
WO2013176500A1 (ko) 전극조립체 및 이를 포함하는 전기화학소자
WO2014126427A1 (ko) 전극조립체 및 그의 제조방법
WO2015080305A1 (ko) 전극조립체 및 이를 포함하는 전기화학소자
WO2017039385A1 (ko) 점착력이 상이한 점착 코팅부들을 포함하는 분리막 및 이를 포함하는 전극조립체
WO2012128440A1 (ko) 전극조립체 및 이의 제조방법
WO2013005898A1 (ko) 전기화학소자용 전극 조립체 및 이를 구비한 전기화학소자
WO2009110726A2 (en) Separator having porous coating layer and electrochemical device containing the same
WO2014003488A1 (ko) 전극조립체, 전극조립체의 제조공정 및 전극조립체를 포함하는 전기화학소자
WO2014003485A1 (ko) 전극조립체, 전극조립체의 제조공정 및 전극조립체를 포함하는 전기화학소자
WO2011122868A2 (ko) 신규한 구조의 전극조립체 및 그것의 제조방법
WO2010027203A2 (ko) 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2015072753A1 (ko) 젤리-롤형 전극 조립체 및 이를 구비한 이차전지
WO2015080307A1 (ko) 이차 전지용 파우치 및 이를 포함하는 이차 전지
WO2015105369A1 (ko) 안전 분리막을 가진 전극조립체 및 이를 포함하는 이차전지
WO2013089428A1 (ko) 전기화학소자용 전극 및 이를 구비한 전기화학소자
WO2012093864A2 (ko) 비대칭 코팅된 분리막을 포함하는 전극조립체 및 상기 전극조립체를 포함하는 전기화학소자
WO2019203571A1 (ko) 비대칭 구조의 이차전지용 난연 분리막
WO2019135510A1 (ko) 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법
WO2021187726A1 (ko) 전극 조립체 및 그의 제조 방법
WO2018026117A1 (ko) 이차 전지
WO2020050559A1 (ko) 분리막 기재가 없는 이차전지용 분리막
WO2019221450A1 (ko) 음극, 및 상기 음극을 포함하는 리튬 이차 전지
WO2018088823A1 (ko) 용매를 이용하여 전지셀을 라미네이션하는 방법 및 상기 라미네이션을 위한 챔버 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22856303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548733

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280014573.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18277614

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022856303

Country of ref document: EP

Effective date: 20230818

NENP Non-entry into the national phase

Ref country code: DE