WO2018088823A1 - 용매를 이용하여 전지셀을 라미네이션하는 방법 및 상기 라미네이션을 위한 챔버 장치 - Google Patents

용매를 이용하여 전지셀을 라미네이션하는 방법 및 상기 라미네이션을 위한 챔버 장치 Download PDF

Info

Publication number
WO2018088823A1
WO2018088823A1 PCT/KR2017/012688 KR2017012688W WO2018088823A1 WO 2018088823 A1 WO2018088823 A1 WO 2018088823A1 KR 2017012688 W KR2017012688 W KR 2017012688W WO 2018088823 A1 WO2018088823 A1 WO 2018088823A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamination
separator
solvent
chamber
electrode
Prior art date
Application number
PCT/KR2017/012688
Other languages
English (en)
French (fr)
Inventor
김태규
구자훈
김원년
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780039615.7A priority Critical patent/CN109328414B/zh
Priority to US16/319,072 priority patent/US10992010B2/en
Priority to EP17869477.4A priority patent/EP3460898B1/en
Publication of WO2018088823A1 publication Critical patent/WO2018088823A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0038Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving application of liquid to the layers prior to lamination, e.g. wet laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • B32B37/0053Constructional details of laminating machines comprising rollers; Constructional features of the rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/144Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of laminating a battery cell using a solvent and a chamber device for the lamination.
  • the secondary battery is an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle that is proposed as a solution for the air pollution of existing gasoline vehicles and diesel vehicles that use fossil fuels. It is attracting attention as a power source such as (Plug-In HEV).
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • plug-in hybrid electric vehicle a plug-in hybrid electric vehicle that is proposed as a solution for the air pollution of existing gasoline vehicles and diesel vehicles that use fossil fuels. It is attracting attention as a power source such as (Plug-In HEV).
  • the secondary battery is manufactured in a form in which the electrode assembly is included in the battery case together with the electrolyte.
  • the electrode assembly is classified into a stack type, a folding type, and a stack-fold type according to a manufacturing method.
  • each unit cell constituting the electrode assembly has a structure in which a separator is interposed between the positive electrode and the negative electrode and is sequentially stacked. A lamination process is required to bond.
  • the lamination process is generally carried out by joining the electrode and the separator by heating and pressurization. For example, when the applied temperature rises, the melting of the organic component constituting the separator is induced to increase the adhesion between the electrode and the separator, but when the temperature rises above a certain temperature, the polymer substrate (fabric) shrinks, There was also a problem that the adhesion between the electrode and the separator is also uneven. In addition, in the lamination process of bonding the electrode and the separator by adjusting the pressure (pressure), the binder polymer is melted to block the pores of the separator, thereby increasing the cell resistance.
  • one problem to be solved by the present invention is to solve such a conventional problem, it characterized in that a predetermined solvent is used to melt the binder polymer component included in the separator (melting). This enables lamination at low temperatures, allowing the lamination process to proceed without causing separator shrinkage.
  • Another problem to be solved in the present invention is to provide a lamination process to exhibit a uniformly increased adhesive force in the electrode and separator bonding surface.
  • the present invention is to provide a method for manufacturing a lithium secondary battery including the lamination process and a lithium secondary battery produced by the manufacturing method.
  • the present invention is to provide a chamber device for the lamination.
  • the electrode and the separator are prepared, respectively, the separator is a porous polymer substrate, and a porous formed of a mixture of inorganic particles and a binder polymer on at least one surface of the porous polymer substrate Comprising a coating layer; Applying a solvent for lamination ('lamination solvent') to the separator surface bonded to the electrode; And before the lamination solvent is dried, there is provided a method of manufacturing a unit cell comprising the step of laminating an electrode and a separator.
  • the lamination solvent has a boiling point of 90 ° C. or higher and is an electrochemically inert organic solvent.
  • the lamination solvent may be one having a boiling point of 90 to 100 °C.
  • the lamination solvent may be dimethyl carbonate, ethyl propionate or mixtures thereof.
  • the binder polymer may be polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, poly (vinylidene fluoride-chlorotrifluoroethylene) copolymer, polymethyl methacrylate, polyvinylpyrrolidone , Polyvinyl alcohol, ethylene vinyl acetate copolymer, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, pullulan, carboxyl methyl cellulose, and styrene-butadiene rubber. have.
  • the lamination solvent may be applied to the separator through a process of passing the separator sheet and the electrode sheet before the lamination solvent is contained in a closed chamber in which the lamination solvent is contained in a vapor state or by spraying the lamination solvent on the surface of the separator.
  • closed chambers is preferred in view of the human hazards and mass production applications of lamination solvents.
  • the temperature applied to the chamber apparatus applied for the lamination may be 90 to 100 °C.
  • the lamination solvent may be vaporized and fused to the binder polymer.
  • a linear pressure is applied to a semi-finished product such as a bi-cell for lamination, in which the pressure may be in the range of 100 to 120 kgf / cm.
  • a chamber apparatus for the lamination is provided.
  • the lower portion of the chamber is provided with a container (container) for storing the lamination solvent, and a heat source for heating and evaporating the lamination solvent is provided around the container, the container is a lamination solvent is vaporized And a structure in which the lamination solvent evaporated from the container is maintained in the chamber, and the chamber has an inlet through which the electrode sheet and the separator sheet enter, and an outlet through which the electrode sheet and the separator sheet are laminated.
  • the upper part of the chamber is provided with a moving tube through which the lamination solvent vapor can move, and the moving tube is provided with a cooling device downstream to condense the lamination solvent vapor, and the moving tube is connected to the chamber again. Be Such that the solvent condenses lamination is again returned to the chamber.
  • the separator shrinkage phenomenon caused by the conventional lamination process does not occur.
  • the lamination solvent is fused to the surface of the separator binder polymer to effectively melt the binder polymer, and the human hazard problem can be solved and can be used for mass production.
  • Figure 1a schematically shows a separator cross section according to an aspect of the present invention before the lamination solvent is applied
  • Figure 1b schematically shows the separator cross section after the lamination solvent is applied.
  • FIG. 2 is a view schematically showing a chamber apparatus for lamination according to an aspect of the present invention.
  • 3 and 4 are schematic views showing the peeling of the separator from the positive electrode after laminating the positive electrode and the separator according to the first and second embodiments of the present invention.
  • 5 and 6 are schematic views showing the peeling of the separator from the positive electrode after laminating the positive electrode and the separator according to Comparative Examples 1 and 2 of the present invention.
  • Example 7 is a graph measuring the adhesive strength between the positive electrode and the separator according to Example 2 of the present invention.
  • the electrodes for example, the positive electrode and the negative electrode are manufactured by coating a positive electrode or a negative electrode on a foil layer, and the positive electrode is manufactured by applying a mixture of a positive electrode active material, a conductive material, and a binder on a positive electrode current collector, followed by drying and pressing.
  • the negative electrode like the manufacture of the positive electrode, the negative electrode active material is coated on the negative electrode current collector and then dried and compressed to be prepared, and optionally, a conductive material, a binder, a filler, and the like may be further included.
  • the porous polymer substrate 100, and the inorganic polymer is located on at least one side of the porous polymer substrate It includes a porous coating layer 120 formed of a mixture of particles 121 and a binder polymer (122).
  • the porous polymer substrate is not particularly limited as long as it satisfies the object of the present invention
  • Polyphenylene oxide, polyphenylene sulfide and polyethylene naphthalene may be formed of at least one selected from the group consisting of: the polyolefin may be any one polymer selected from the group consisting of polyethylene, polypropylene, polybutylene and polypentene Can be.
  • the porous polymer substrate may be composed of a layer structure composed of the polymers such as polypropylene / polyethylene / polypropylene.
  • the inorganic particles are attached to each other (ie, the binder polymer is connected and fixed between the inorganic particles) by the binder polymer so that the inorganic particles are bound to each other, and the porous coating layer is porous by the binder polymer. It remains bound with the polymer substrate.
  • the inorganic particles of the porous coating layer may exist in substantially contact with each other, and the interstitial volume generated when the inorganic particles are in contact with each other may form pores of the porous coating layer.
  • the binder polymer used in the porous coating layer should be able to be melted to an appropriate extent in the lamination solvent application.
  • 1B schematically shows a binder polymer melted by a lamination solvent.
  • a porous coating layer 120 is formed on one surface of the porous polymer substrate 110, and the binder polymer 122 ′ on the surface of the porous coating layer is melted by a lamination solvent and porous.
  • the coating layer surface is made more flat. That is, the binder polymer 122 'becomes stronger in adhesion, while increasing the adhesion surface.
  • the binder polymer when the binder polymer is completely converted to the liquid phase due to the lamination solvent, the electrode-separator adhesion is rather deteriorated, which is not preferable.
  • the binder polymer preferably has a melting point higher than the lamination solvent boiling point.
  • Binder polymers usable in the present invention are, for example, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer (polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP)), poly (vinylidene fluoride- Chlorotrifluoroethylene) copolymer, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polyvinylpyrrolidone, polyvinyl alcohol alcohols, ethylene vinyl co-vinyl acetate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, pullulan, Carboxyl methyl cellulose and styrene- One or a mixture of two or more selected from the group consisting of butadiene rubber can be used.
  • Cyanoethyl polyvinyl alcohol may be used as a dispersant in preparing a slurry for forming a porous coating layer.
  • the inorganic particles used in the porous coating layer are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range (for example, 0 to 5 V on the basis of Li / Li + ) of the applied electrochemical device. In particular, in the case of using the inorganic particles having the ion transport ability, it is possible to improve the performance by increasing the ion conductivity in the electrochemical device.
  • the inorganic particles when inorganic particles having a high dielectric constant are used as the inorganic particles, the ionic conductivity of the electrolyte may be improved by contributing to an increase in the dissociation degree of the electrolyte salt such as lithium salt in the liquid electrolyte.
  • the inorganic particles preferably include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more, inorganic particles having a lithium ion transfer ability, or a mixture thereof.
  • composition ratio of the inorganic particles to the binder polymer in the porous coating layer may be a weight ratio of 10:90 to 99: 1, for example, 80:20 to 95: 5 weight ratio.
  • solvent for lamination or “lamination solvent” is understood to mean a solvent capable of melting the binder polymer used as the separator component when the solvent is applied to the separator surface in a vaporized state.
  • the lamination solvent may be an organic solvent which is electrochemically inert when used as a battery component and preferably has a boiling point of 90 ° C. or higher.
  • lamination solvents are dimethyl carbonate, ethyl propionate or mixtures thereof.
  • Dimethyl carbonate is most preferred because it significantly improves the adhesion effect.
  • ethanol is a highly volatile compound having a boiling point of about 10 ° C.
  • the present invention does not exhibit a significant effect of melting the binder polymer by fusion to the binder polymer.
  • acetone having a high volatility also did not appear to exhibit an adhesive improvement effect during lamination.
  • the lamination solvent should be able to melt the binder polymer on the surface of the separator, thereby improving the roughness of the surface of the separator and at the same time improve the adhesion.
  • the term "melt” refers to a lamination solvent fused to a binder polymer in a solid state, whereby the fused binder polymer portion is "changed into a liquid,” wherein “change in liquid” refers to adhesion to an electrode. It is understood that the binder polymer is changed into a liquid only to the extent that it is preferable to H. Therefore, it is understood that it is not corresponding to the present invention that all or most of the binder polymer is changed into liquid to the extent that it cannot provide improved adhesion.
  • the solvent for the lamination is to improve the adhesive force by melting the binder polymer on the surface of the separator, the separator pores are blocked by the binder polymer or the integrity of the inorganic particle structure constituting the separator on the surface of the separator in an amount that is not impaired Should be applied.
  • the lamination solvent is vaporized by passing the separator sheet and the electrode sheet through a hermetic chamber in which the lamination solvent is in a vapor state, and the fused binder polymer portion is fused to the binder polymer in the separator porous coating layer. Either melt or lamination solvent may be sprayed directly onto the separator porous coating surface.
  • the amount of the lamination solvent applied to the separator to be fused may range from 1 to 100 (microliters) / cm 2 or from 1 to 20 ⁇ l / cm 2 or from 5 to 15 ⁇ l / cm 2 , but is not limited thereto. Since the inorganic particles and the binder polymer are present in the separator porous coating layer, and the lamination solvent is not fused to the inorganic particles, the lamination solvent is substantially limited to the binder polymer to be fused. When the lamination solvent is fused to the binder polymer by the above content, it is possible to improve the adhesion of the binder polymer.
  • the electrode and the separator may be bonded in the chamber.
  • the inside of the chamber is prepared to be saturated with lamination solvent vapor, and the temperature inside the chamber is set to 90 to 100 ° C. so that the vaporized lamination solvent does not condense.
  • the lamination temperature may be set lower, for example, may be lowered to 25 ° C. or 50 ° C.
  • a linear pressure is applied to the lamination.
  • the lamination pressure applied during lamination of the electrode sheet and the separator sheet may be lowered to a range of 100 to 120 kgf / cm. Therefore, the conventional problem of occluding the separator pores does not occur.
  • the chamber residence time entering the chamber in the state before the separator sheet and the electrode sheet are laminated, and the chamber residence time coming out of the chamber in the laminated state corresponds to a very short time in consideration of the tag time of mass production.
  • the residence time may be 0.1 to 10 seconds or 1 second to 5 seconds or 2 seconds to 3 seconds.
  • Lamination can be performed by applying the lamination solvent at low temperature and / or low pressure for such a short time.
  • the positive electrode, the negative electrode, and the separator according to an embodiment of the present invention may form an electrode assembly formed by stacking a full cell, a bicell, or one or more of these cells.
  • the electrode assembly may be implemented as a stack electrode assembly, a stack and folding electrode assembly, and the like.
  • the electrode assembly may be manufactured into an electrochemical device by being sealed in a case after the electrolyte is further injected as necessary after being housed in a case by a conventional method in the art.
  • the electrochemical device is preferably a lithium secondary battery.
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone, and the like
  • Ether solvents such as dibutyl ether or tetrahydrofuran
  • Ketone solvents such as cyclohexanone
  • Aromatic hydrocarbon solvents such as benzene and fluorobenzene
  • Alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
  • a chamber device for lamination for lamination.
  • Such chamber arrangements are particularly useful where the lamination solvent has a human hazard.
  • the lamination solvent is preferably fused to the separator binder polymer in the chamber.
  • the chamber device includes a container 210 in which a lamination solvent 220 is accommodated, and a heat source for heating and evaporating the lamination solvent in the container 200.
  • source, 230 the container has a structure that can be exhausted when the stored lamination solvent is vaporized, the chamber is in a closed form to maintain the lamination solvent exhausted from the container in the chamber, the chamber
  • the upper part of the chamber is provided with a moving tube 260 through which the vaporized lamination solvent can move, and the tube is downstream of the cooling device 2. 70 to condense the vaporized lamination solvent, and the moving tube is connected to the chamber again so that the condensed lamination solvent 220 "is returned to the chamber.
  • the lamination solvent vapor 220 is formed inside the chamber 200. Satur
  • PVdF-HFP Polyvinylidene fluoride-hexafluoropropylene copolymer
  • Solef21510 Solvay Specialty Polymers, weight average molecular weight 300,000 g / mol, HFP 15% by weight
  • PVDF-CTFE poly (vinylidene fluoride-chlorotrifluoro Ethylene) copolymer
  • Solef32008 Solvay, weight average molecular weight 280,000 g / mol
  • Al 2 O 3 powder (AES-11, Sumitomo) was prepared as inorganic particles to form a porous coating layer, and cyanoethyl polyvinyl alcohol (CR-V, Shin-Etsu Chemical Co., Ltd) was used as a dispersant. Ready.
  • PVdF-HFP copolymer PVDF-CTFE copolymer: Al 2 O 3 powder: cyanoethyl polyvinyl alcohol was added in a weight ratio of 7: 2: 89.5: 1.5, and the bead mill method was performed for 12 hours or more.
  • the Al 2 O 3 powder was crushed and dispersed to prepare a slurry for forming a porous coating layer.
  • the slurry thus prepared was coated and dried on both sides of the polyethylene porous polymer substrate (porosity 45%) having a thickness of 12 ⁇ m, thereby forming a porous coating layer on both sides of the porous polymer substrate.
  • the total thickness of the prepared separator was 20 ⁇ m.
  • a lithium cobalt composite oxide as a positive electrode active material 92% by weight of a lithium cobalt composite oxide as a positive electrode active material, 4% by weight of carbon black as a conductive material, and 4% by weight of PVdF as a binder are added to N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a positive electrode mixture.
  • NMP N-methyl-2-pyrrolidone
  • Slurry was prepared.
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al) of a positive electrode current collector having a thickness of 20 ⁇ m, and a positive electrode was manufactured by drying, followed by roll press.
  • Dimethyl carbonate is sprayed on one side of the separator in a confined space to allow dimethyl carbonate to be fused in an amount of 10 ⁇ l per 1 cm 2 of the separator unit, and to be contacted with the anode while the dimethyl carbonate is in a liquid state by lamination by a lamination method. Proceeded. At this time a 100 kgf / cm load was applied at 50 ° C.
  • PVDF-HFP5 (LBG2, Arkema Inc., HFP 5% by weight) in place of PVDF-HFP and PVDF-CTFE as binder polymers in preparing the slurry for forming the porous coating layer
  • PVDF-HFP5 Al 2 O 3 powder:
  • a positive electrode and a separator were prepared in the same manner as in Example 1 except that cyanoethyl polyvinyl alcohol was used in a weight ratio of 8.5: 90: 1.5, and then laminated in the same manner as in Example 1.
  • a positive electrode and a separator were manufactured and laminated in the same manner as in Example 1 except that dimethyl carbonate was not used in the lamination process step.
  • a positive electrode and a separator were manufactured and laminated in the same manner as in Example 1 except that propylene carbonate was used instead of dimethyl carbonate in the lamination process.
  • a positive electrode and a separator were manufactured and laminated in the same manner as in Example 2 except that propylene carbonate was used instead of dimethyl carbonate in the lamination process.
  • a positive electrode and a separator were manufactured and laminated in the same manner as in Example 1 except for using ethanol instead of dimethyl carbonate in the lamination process.
  • a positive electrode and a separator were manufactured and laminated in the same manner as in Example 2 except for using ethanol instead of dimethyl carbonate in the lamination process.
  • the separator was removed from the laminated positive electrode and separator prepared in Examples 1 to 2 and Comparative Examples 1 to 5, and the adhesive strength between the positive electrode and the separator was evaluated.
  • the adhesive strength peeled the separator from the surface of the positive electrode by hand, and visually confirmed the separator binder polymer moved to the surface of the positive electrode to evaluate the adhesive strength.
  • FIG. 3 Example 1
  • FIG. 4 Example 2
  • FIG. 5 Comparative Example 1
  • FIG. 6 Comparative Example 2
  • the photograph thereof is a priority of the KR patent application. See 10-2016-0148984.
  • Comparative Examples 3 to 5 little or no separator binder polymer moved to the surface of the positive electrode, and photographs thereof are also disclosed in KR Patent Application No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은, 전극과 세퍼레이터를 각각 준비하되, 상기 세퍼레이터는 다공성 고분자 기재, 및 다공성 고분자 기재의 적어도 일면에 무기물 입자와 바인더 고분자의 혼합물로 형성된 다공성 코팅층이 있는 것인 단계; 전극에 접합되는 세퍼레이터 표면에, 라미네이션 용매를 적용하는 단계; 및 상기 라미네이션 용매가 건조되기 이전에, 전극과 세퍼레이터를 라미네이션하는 단계를 포함하는 단위셀의 제조방법을 제공함으로써 종래 라미네이션 공정동안 발생하는 세퍼레이터 수축 문제점을 해소할 수 있다.

Description

용매를 이용하여 전지셀을 라미네이션하는 방법 및 상기 라미네이션을 위한 챔버 장치
본 출원은 2016년 11월 9일에 출원된 대한민국 특허출원 제10-2016-0148984호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 용매를 이용하여 전지셀을 라미네이션하는 방법 및 상기 라미네이션을 위한 챔버 장치에 관한 것이다.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원 또는 보조 전력장치 등으로 광범위하게 사용되고 있다. 또한, 이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기 자동차(Plug-In HEV) 등의 동력원으로서도 주목받고 있다.
이러한 이차전지는 전극조립체가 전해액과 함께 전지케이스에 포함되는 형태로 제조된다. 상기 전극조립체는 제조 방법에 따라 스택형, 폴딩형 및 스택-폴딩형 등으로 구분된다. 스택형 또는 스택-폴딩형 전극조립체의 경우, 전극조립체를 구성하는 단위셀 각각이 양극과 음극 사이에 세퍼레이터가 개재되어 있으면서 순차적으로 적층되는 구조로 이루어져 있으며, 이러한 단위셀을 만들기 위해서는 전극과 세퍼레이터를 접합시키는 라미네이션 공정이 필요하다.
라미네이션 공정은 일반적으로 가열 및 가압에 의해 전극과 세퍼레이터를 접합시키는 방식으로 이루어진다. 예컨대, 가해지는 온도가 상승하면, 세퍼레이터를 구성하는 유기물 성분의 용융(melting)이 유도되어 전극과 세퍼레이터 간의 접착력이 상승하게 되지만, 상기 온도가 일정 온도 이상으로 올라가면 고분자 기재(원단)가 수축되고, 전극과 세퍼레이터 간의 접착력도 불균일하게 되는 문제점이 있었다. 또한, 가압(압력)을 조절하여 전극과 세퍼레이터를 접합하는 라미네이션 공정에서는 바인더 고분자가 용융되어 세퍼레이터 기공을 폐색시켜 셀 저항이 증가하는 문제점이 있었다.
따라서, 본 발명에서 해결하고자 하는 일 과제는 이와 같은 종래의 문제점을 해결하기 위한 것으로, 세퍼레이터에 포함되어 있는 바인더 고분자 성분을 용융(melting)시키기 위해 소정의 용매를 이용하는 것을 특징으로 한다. 이로써 낮은 온도에서의 라미네이션이 가능하게 됨에 따라 세퍼레이터 수축이 발생되지 않으면서 라미네이션 공정이 진행될 수 있게 된다.
또한, 본 발명에서 해결하고자 하는 다른 과제는 전극과 세퍼레이터 접합면에서 균일하게 증가된 접착력을 나타내도록 하는 라미네이션 공정을 제공하는 것이다.
또한, 본 발명에서는 상기 라미네이션 공정을 포함하는 리튬이차전지의 제조방법 및 상기 제조방법에 의해 제조된 리튬이차전지를 제공하고자 한다.
또한, 본 발명에서는 상기 라미네이션을 위한 챔버 장치를 제공하고자 한다.
전술한 과제를 해결하기 위해, 본 발명의 일 실시양태에 따르면, 전극과 세퍼레이터를 각각 준비하되, 상기 세퍼레이터는 다공성 고분자 기재, 및 다공성 고분자 기재의 적어도 일면에 무기물 입자와 바인더 고분자의 혼합물로 형성된 다공성 코팅층을 포함하는 것인 단계; 전극에 접합되는 세퍼레이터 표면에, 라미네이션을 위한 용매('라미네이션 용매')를 적용하는 단계; 및 상기 라미네이션 용매가 건조되기 전에, 전극과 세퍼레이터를 라미네이션하는 단계를 포함하는 단위셀의 제조방법이 제공된다.
상기 라미네이션 용매는 90 ℃ 이상의 비점을 갖는 것으로, 전기화학적으로 불활성인 유기 용매인 것이다. 예컨대, 상기 라미네이션 용매는 90 내지 100 ℃ 비점을 갖는 것일 수 있다.
상기 라미네이션 용매는 디메틸 카보네이트, 에틸 프로피오네이트 또는 이들의 혼합물일 수 있다.
상기 바인더 고분자는 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 공중합체, 폴리(비닐리덴 플루오라이드-클로로트리플루오로에틸렌) 공중합체, 폴리메틸메타크릴레이트, 폴리비닐피롤리돈, 폴리비닐알코올, 에틸렌 비닐 아세테이트 공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부티레이트, 셀룰로오스 아세테이트 프로피오네이트, 풀루란, 카르복실 메틸 셀룰로오스 및 스티렌-부타디엔 고무로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
상기 라미네이션 용매는, 상기 라미네이션 용매가 증기 상태로 포함되어 있는 밀폐 챔버(chamber)에 라미네이션되기 전의 세퍼레이터 시트와 전극 시트를 통과시키는 공정을 통해 혹은 세퍼레이터 표면에 라미네이션 용매를 분사시킴으로써 세퍼레이터에 적용될 수 있다. 라미네이션 용매의 인체 유해성 및 양산 적용을 고려할 때 밀폐 챔버의 이용이 바람직하다.
상기 라미네이션을 위해 적용되는 챔버 장치에 적용되는 온도는 90 내지 100 ℃ 일 수 있다. 상기 온도 범위에서 라미네이션 용매가 기화되어 바인더 고분자에 융착될 수 있게 된다.
또한, 라미네이션을 위해 바이셀(Bi-cell)과 같은 반제품에 선압이 걸리게 되는데, 이 때 가해지는 압력은 100 내지 120 kgf/cm 범위일 수 있다.
본 발명의 다른 양태에 따르면 상기 라미네이션을 위한 챔버 장치가 제공된다. 상기 챔버의 하부에는 라미네이션 용매가 수납되는 컨테이너(container)가 구비되어 있고, 상기 컨테이너 주변에는 라미네이션 용매를 가열하여 증발시키기 위한 열원(heat source)이 구비되어 있으며, 상기 컨테이너는 수납된 라미네이션 용매가 기화되어 증발되도록 하는 구조를 가지며, 상기 챔버는 컨테이너로부터 증발된 라미네이션 용매가 챔버내에 유지되도록 하는 밀폐 형태이고, 상기 챔버에는 전극 시트와 세퍼레이터 시트가 들어가는 입구와, 전극 시트와 세퍼레이터 시트가 라미네이션되어 나오는 출구가 마련되어 있고, 상기 챔버의 상부에는 라미네이션 용매 증기가 이동할 수 있는 이동관이 형성되어 있으며, 상기 이동관은 하지(downstream)에 냉각 장치를 구비하고 있어서 라미네이션 용매 증기를 응결시키고, 상기 이동관은 다시 챔버에 연결되어 응결된 라미네이션 용매가 다시 챔버로 복귀되도록 한다.
본 발명에 따르면, 저온에서 라미네이션 공정이 수행되기 때문에 종래 라미네이션 공정에 의해 발생하였던 세퍼레이터 수축 현상이 발생하지 않게 된다.
또한, 본 발명에 따르면 라미네이션에 과도한 압력이 필요하지 않으므로, 가압에 의한 세퍼레이터 기공 폐색 문제점이 발생하지 않거나 최소화될 수 있다.
또한, 본 발명에 따른 라미네이션을 위한 챔버를 사용할 경우, 라미네이션 용매가 세퍼레이터 바인더 고분자 표면에 융착되어 바인더 고분자를 효과적으로 용융시킬 수 있을 뿐만 아니라, 인체 유해성 문제가 해결될 수 있으며 양산에 이용가능하게 된다.
도 1a는 라미네이션 용매가 적용되기 전에 본 발명의 일 양태에 따른 세퍼레이터 단면을 개략적으로 나타낸 것이고, 도 1b는 라미네이션 용매가 적용된 후에 상기 세퍼레이터 단면을 개략적으로 나타낸 것이다.
도 2는 본 발명의 일 양태에 따른 라미네이션을 위한 챔버 장치를 개략적으로 나타낸 도면이다.
도 3과 도 4 각각은 본 발명의 실시예 1과 2에 따라 양극과 세퍼레이터를 라미네이션한 후에 양극으로부터 세퍼레이터를 벗겨낸 후를 개략적으로 나타낸 도면이다.
도 5와 도 6 각각은 본 발명의 비교예 1과 2에 따라 양극과 세퍼레이터를 라미네이션한 후에 양극으로부터 세퍼레이터를 벗겨낸 후를 개략적으로 나타낸 도면이다.
도 7은 본 발명의 실시예 2에 따른 양극과 세퍼레이터간 접착 강도를 측정한 그래프이다.
이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 특허청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재되고 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 일 양태에 따르면, 전극과 세퍼레이터를 각각 준비하되, 상기 세퍼레이터는 다공성 고분자 기재, 및 다공성 고분자 기재의 적어도 일면에 무기물 입자와 바인더 고분자의 혼합물로 형성된 다공성 코팅층이 있는 것인 단계; 전극에 접합되는 세퍼레이터 표면에, 라미네이션을 위한 용매("라미네이션 용매")를 적용하는 단계; 및 상기 용매가 건조되기 전에, 전극과 세퍼레이터를 라미네이션하는 단계를 포함하는 단위셀의 제조방법이 제공된다.
상기 방법을 보다 구체적으로 살펴보면, 먼저, 전극과 세퍼레이터를 준비한다 (S1).
전극, 예컨대, 양극과 음극은 호일층에 양극 또는 음극이 코팅되어 제조된 것으로, 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조 및 압착하여 제조된다. 음극의 경우도, 양극의 제조와 마찬가지로, 음극 집전체 상에 음극 활물질을 도포한 후 건조 및 압착하여 제조되며, 필요에 따라 도전재, 바인더, 충진재 등이 선택적으로 더 포함될 수 있다.
세퍼레이터는 양극과 음극 사이에 위치하여 쇼트를 방지하고 이온의 이동만을 가능하게 하는 구성요소로, 도 1a를 참조하여 살펴보면, 다공성 고분자 기재(100), 및 상기 다공성 고분자 기재의 적어도 일면에 위치하며 무기물 입자(121) 및 바인더 고분자(122)의 혼합물로 형성된 다공성 코팅층(120)을 포함한다.
상기 다공성 고분자 기재는 본 발명의 목적에 부합하는 한 특별히 제한되지 않으며, 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드 및 폴리에틸렌나프탈렌으로 이루어진 군으로부터 선택된 적어도 어느 하나로 형성될 수 있으며, 상기 폴리올레핀은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌 및 폴리펜텐으로 이루어진 군으로부터 선택된 어느 하나의 고분자일 수 있다.
필요에 따라, 상기 다공성 고분자 기재는 폴리프로필렌/폴리에틸렌/ 폴리프로필렌과 같이 상기 고분자들로 이루어진 층 구조로 구성될 수 있다.
상기 다공성 코팅층에서는 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 바인더 고분자에 의해 무기물 입자들이 서로 부착(즉, 바인더 고분자가 무기물 입자 사이를 연결 및 고정)되어 있으며, 또한 다공성 코팅층은 바인더 고분자에 의해 다공성 고분자 기재와 결착된 상태를 유지한다. 이러한 다공성 코팅층의 무기물 입자들은 실질적으로 서로 접촉한 상태로 존재할 수 있으며, 무기물 입자들이 접촉한 상태에서 생기는 틈새 공간(interstitial volume)이 다공성 코팅층의 기공을 형성할 수 있다.
상기 다공성 코팅층에 사용되는 바인더 고분자는 라미네이션 용매 적용시 접착에 적당한 정도로 용융될 수 있어야 한다. 도 1b에는 라미네이션 용매에 의해 용융된 바인더 고분자가 개략적으로 도시되어 있다. 도 1b의 세퍼레이터(100)를 살펴보면, 다공성 고분자 기재(110)의 일면에 다공성 코팅층(120)이 형성되어 있고, 상기 다공성 코팅층 표면에 있는 바인더 고분자(122')는 라미네이션 용매에 의해 용융되며, 다공성 코팅층 표면이 보다 편평하게 형성되도록 한다. 즉, 바인더 고분자(122')는 접착에 보다 강한 상태(status)로 되는 한편, 접착면을 증가시킨다. 한편, 라미네이션 용매로 인해 바인더 고분자가 완전히 액상으로 전환되는 경우에는 전극-세퍼레이터 접착력이 오히려 저하되므로 바람직하지 않다. 이러한 점에서, 바인더 고분자는 라미네이션 용매 비점(boiling point)보다 높은 융점(melting point)을 갖는 것이 바람직하다. 본 발명에서 사용가능한 바인더 고분자는, 예를 들면 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 공중합체(polyvinylidene fluoride-co-hexafluoropropylene, PVDF-HFP), 폴리(비닐리덴 플루오라이드-클로로트리플루오로에틸렌) 공중합체, 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐알코올(polyvinyl alcohol), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부티레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 및 스티렌-부타디엔 고무로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물을 사용할 수 있다.
시아노에틸 폴리비닐알콜이 다공성 코팅층 형성을 위한 슬러리 제조시 분산제로 사용될 수도 있다.
다공성 코팅층에 사용되는 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는 경우 전기화학소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있다. 또한, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다. 전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합체를 포함하는 것이 바람직하다.
상기 다공성 코팅층에서 무기물 입자 대 바인더 고분자의 조성비는 10:90 내지 99:1 중량비, 예컨대, 80:20 내지 95:5 중량비일 수 있다.
이어서, 전극에 접합되는 세퍼레이터 표면에, 라미네이션을 위한 용매를 적용한다(S2).
본원 명세서에서 '라미네이션을 위한 용매' 혹은 '라미네이션 용매'라 함은 상기 용매가 기화된 상태로 세퍼레이터 표면에 적용될 때, 세퍼레이터 구성성분으로 사용된 바인더 고분자를 용융시킬 수 있는 용매를 의미하는 것으로 이해한다.
상기 라미네이션 용매는 전지 구성성분으로 사용시 전기화학적으로 불활성이고, 바람직하게는 90 ℃ 이상의 비점을 갖는 유기용매일 수 있다. 이러한 라미네이션 용매의 비제한적인 예로 디메틸 카보네이트, 에틸 프로피오네이트 또는 이들의 혼합물이 있다. 예컨대, 프로필렌 카보네이트를 라미네이션 용매로 사용하여 폴리비닐리덴 플루오라이드에 적용되는 경우에는 폴리비닐리덴 플루오라이드가 과하게 용융되는 현상을 나타내어 접착력 개선에 유의한 효과를 주지 못하는 것으로 실험에 의해 확인되었다. 디메틸 카보네이트가 접착력 효과를 유의하게 개선시키기 때문에 가장 바람직하다. 에탄올은 디메틸 카보네이트보다 약 10 ℃ 낮은 비점을 갖는 고 휘발성 화합물이지만, 본 발명에서 목적하는 효과, 즉, 바인더 고분자에 융착되어 바인더 고분자를 용융시키는 유의한 효과를 나타내지 않는 것으로 나타났다. 그 밖에, 휘발성이 높은 특성을 갖는 아세톤 또한 라미네이션시 접착력 향상 효과를 나타내지 않는 것으로 나타났다.
또한, 상기 라미네이션 용매는 세퍼레이터 표면에 있는 바인더 고분자를 용융시켜, 세퍼레이터 표면의 roughness를 개선시키는 동시에 접착력을 향상시킬 수 있어야 한다.
본원 명세서에서 "용융"이라 함은 라미네이션 용매가 고체 상태인 바인더 고분자에 융착되어, 융착된 바인더 고분자 부분이 "액체로 상태변화"되되, 이 때 "액체로 상태변화'라 함은 전극과의 접착에 바람직한 정도까지만 바인더 고분자가 액체로 상태변화되는 것을 의미한다. 따라서, 개선된 접착력을 제공하지 못할 정도로 바인더 고분자 전부 혹은 대부분이 액체로 상태 변화되는 것은 본 발명에 해당하지 않는 것으로 이해한다.
또한, 상기 라미네이션을 위한 용매는 세퍼레이터 표면에 있는 바인더 고분자를 용융시켜 접착력을 향상시키되, 상기 바인더 고분자에 의해 세퍼레이터 기공이 폐색되거나 세퍼레이터를 구성하는 무기물 입자 구조의 integrity가 손상되지 않는 양으로 세퍼레이터 표면에 적용되어야 한다.
이를 위해, 본 발명의 일 양태에서는 상기 라미네이션 용매가 증기 상태로 있는 밀폐형 챔버에 세퍼레이터 시트와 전극 시트를 통과시킴으로써 기화된 라미네이션 용매가 세퍼레이터 다공성 코팅층에 있는 바인더 고분자에 융착되고 상기 융착된 바인더 고분자 부분이 용융되도록 하거나 혹은 라미네이션 용매를 세퍼레이터 다공성 코팅층 표면에 직접 분사할 수 있다.
상기 라미네이션 용매가 세퍼레이터에 적용되어 융착되는 양은 1 내지 100 (마이크로리터)/ cm2 또는 1 내지 20 ㎕/ cm2 또는 5 내지 15 ㎕/ cm2 범위일 수 있으나, 이에 한정되는 것은 아니다. 상기 세퍼레이터 다공성 코팅층에는 무기물 입자와 바인더 고분자가 존재하고 있고, 무기물 입자에는 라미네이션 용매가 융착되지 않으므로, 실제로 라미네이션 용매는 실질적으로는 바인더 고분자에 한정되어 융착되게 된다. 상기 함량으로 라미네이션 용매가 바인더 고분자에 융착되는 경우에 바인더 고분자의 접착력을 향상시킬 수 있게 된다.
이어서, 상기 라미네이션을 위한 용매가 건조되기 전에, 상기 전극과 세퍼레이터를 접합시켜 라미네이션하여 단위셀을 제조한다 (S3).
상기 라미네이션이 밀폐된 챔버 내에서 이루어지는 경우, 상기 챔버 내에서 전극과 세퍼레이터가 접합될 수 있다. 이 때, 상기 챔버 내부가 라미네이션 용매 증기로 포화되도록 준비하고, 또한, 챔버 내부의 온도는 90 내지 100 ℃로 설정하여, 기화된 라미네이션 용매가 응결되지 않도록 한다. 상기 라미네이션 용매가 세퍼레이터 다공성 코팅층 표면에 직접 분사되는 경우에는 라미네이션 온도가 보다 낮게 설정될 수 있으며, 예컨대, 25℃ 또는 50 ℃까지 낮아질 수 있다.
라미네이션을 위해 선압이 가해지게 되는데, 본 발명에서는 전극 시트와 세퍼레이터 시트를 라미네이션하는 동안 가해지는 라미네이션 압력을 100 내지 120 kgf/cm 범위로 낮출 수 있다. 따라서, 세퍼레이터 기공을 폐색하는 종래 문제점은 발생하지 않게 된다.
본 발명에서 세퍼레이터 시트와 전극 시트가 라미네이션되기 이전의 상태로 챔버에 들어가서, 라미네이션된 상태로 챔버로부터 나오는 챔버 체류 시간은 양산의 태그 타임(tag time)을 감안할 때 매우 짧은 시간에 해당한다. 예컨대, 상기 체류 시간은 0.1 내지 10초 또는 1초 내지 5초 또는 2초 내지 3초일 수 있다. 이와 같은 짧은 시간동안 저온 및/또는 저압에서 라미네이션 용매를 적용함으로써 라미네이션이 수행될 수 있게 된다.
본 발명의 일 실시예에 따른 양극, 음극, 세퍼레이터는 풀셀, 바이셀 또는 이들 셀들이 하나 이상 적층되어 형성된 전극조립체를 형성할 수 있다. 이때, 전극조립체는 스택 전극조립체, 스택 앤 폴딩 전극조립체 등으로 구현될 수 있다.
또한, 상기 전극조립체는 당업계에서 통상적인 방법으로 케이스에 수납된 후에 필요에 따라 전해질이 더 주입된 후에 밀봉되어 전기화학소자로 제조될 수 있다. 상기 전기화학소자는 바람직하게는 리튬 이차전지이다.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone), 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 중량% 내지 5 중량%로 포함될 수 있다.
본 발명에서는 또한 라미네이션을 위한 챔버 장치가 제공된다. 이러한 챔버 장치는 라미네이션 용매가 인체 유해성을 갖는 경우에 특히 유용하다. 예컨대, 디메틸 카보네이트를 유기용매로 사용하는 경우에는 챔버에서 라미네이션 용매가 세퍼레이터 바인더 고분자에 융착되도록 하는 것이 바람직하다.
상기 챔버 장치를 도 2를 참조하여 살펴보면, 챔버(200)의 하부에는 라미네이션 용매(220)가 수납되는 컨테이너(container, 210)가 구비되어 있고, 상기 컨테이너에는 라미네이션 용매를 가열하여 증발시키는 열원(heat source, 230)이 구비되어 있으며, 상기 컨테이너는 수납된 라미네이션 용매가 기화시 배기될 수 있는 구조를 가지며, 상기 챔버는 컨테이너로부터 배기된 라미네이션 용매가 챔버내에 유지되도록 하는 밀폐 형태이고, 상기 챔버에는 전극 시트(240a, 240c)와 세퍼레이터 시트(240b)가 입구(260a)와, 전극 시트(240a, 240c)와 세퍼레이터 시트(240b)가 예컨대, 롤(250)에 의해, 라미네이션되어 나오는 출구(260b)가 마련되어 있고, 상기 챔버의 상부에는 기화된 라미네이션 용매가 이동할 수 있는 이동관(260)이 형성되어 있으며, 상기 관은 하지(downstream)에 냉각 장치(270)를 구비하고 있어서 기화된 라미네이션 용매를 응결시키고, 상기 이동관은 다시 챔버에 연결되어 응결된 라미네이션 용매(220")가 다시 챔버로 복귀되도록 한다. 상기 챔버(200) 내부에는 라미네이션 용매 증기(220')로 포화되어 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 아니 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
(1) 세퍼레이터의 제조
폴리비닐리덴플루오라이드-헥사플루오로프로필렌 공중합체(PVdF-HFP, Solef21510, Solvay Specialty Polymers사, 중량평균분자량 300,000 g/mol, HFP 15중량%) 고분자와 폴리(비닐리덴 플루오라이드-클로로트리플루오로에틸렌) (PVDF-CTFE) 공중합체(Solef32008, Solvay사, 중량평균분자량 280,000 g/mol)를 7:2 비율로 사용하여, 이들 합량이 10 중량%가 되도록 아세톤에 첨가하여 50℃에서 약 12시간 이상 용해시켜 바인더 고분자 용액을 제조하였다. 또한, 다공성 코팅층을 구성할 무기물 입자로 Al2O3 분말(AES-11, Sumitomo사)을 준비하고, 분산제로 시아노에틸 폴리비닐알코올(CR-V, Shin-Etsu Chemical Co., Ltd)을 준비하였다.
이어서, PVdF-HFP 공중합체: PVDF-CTFE 공중합체: Al2O3 분말: 시아노에틸 폴리비닐알코올이 7:2:89.5:1.5 중량비가 되도록 첨가하여 12시간 이상 비드밀 법(Bead mill)을 이용하여 Al2O3 분말을 파쇄 및 분산하여 다공성 코팅층 형성을 위한 슬러리를 제조하였다.
이와 같이 제조된 슬러리를, 두께 12 ㎛의 폴리에틸렌 다공성 고분자 기재(기공도 45%)의 양 면에 딥 코팅 방식으로 코팅하고 건조시킴으로써, 다공성 고분자 기재의 양면에 다공성 코팅층을 형성하였다. 제조된 세퍼레이터의 총 두께는 20 ㎛ 이었다.
(2) 양극의 제조
양극 활물질로 리튬 코발트 복합산화물 92 중량%, 도전재로 카본 블랙 (carbon black) 4 중량%, 결합제로 PVdF 4 중량%를 용제인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극합제 슬러리를 제조하였다. 상기 양극합제 슬러리를 두께가 20 ㎛인 양극 집전체의 알루미늄(Al) 박막에 도포, 건조를 통하여 양극을 제조한 후 롤 프레스(roll press)를 실시하였다.
(3) 라미네이션 공정
밀폐된 공간에서 세퍼레이터 일면에 디메틸 카보네이트를 분사하여, 세퍼레이터 단위면적 1 ㎠ 당 10 ㎕의 양으로 디메틸 카보네이트가 융착되도록 하고, 디메틸 카보네이트가 액체 상태로 있는 동안, 양극과 접하도록 롤 라미네이션 방법에 의해 라미네이션을 진행하였다. 이 때 50 ℃에서 100 kgf/cm 하중을 가하였다.
실시예 2
다공성 코팅층 형성을 위한 슬러리 제조시 바인더 고분자로서 PVDF-HFP 및 PVDF-CTFE 대신에 PVDF-HFP5 (LBG2, Arkema Inc., HFP 5중량%)를 사용하는 것과, PVDF-HFP5: Al2O3 분말: 시아노에틸 폴리비닐알코올이 8.5:90:1.5 중량비가 사용되는 것을 제외하고 실시예 1과 동일한 방법으로 양극과 세퍼레이터를 제조하고, 이어서 실시예 1과 동일한 방법으로 라미네이션하였다.
비교예 1
라미네이션 공정단계에서 디메틸 카보네이트를 사용하지 않는 것을 제외하고 실시예 1과 동일한 방법으로 양극과 세퍼레이터를 제조하여 라미네이션하였다.
비교예 2
라미네이션 공정시 디메틸 카보네이트 대신에 프로필렌 카보네이트를 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 양극과 세퍼레이터를 제조하여 라미네이션하였다.
비교예 3
라미네이션 공정시 디메틸 카보네이트 대신에 프로필렌 카보네이트를 사용하는 것을 제외하고 실시예 2와 동일한 방법으로 양극과 세퍼레이터를 제조하여 라미네이션하였다.
비교예 4
라미네이션 공정시 디메틸 카보네이트 대신에 에탄올을 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 양극과 세퍼레이터를 제조하여 라미네이션하였다.
비교예 5
라미네이션 공정시 디메틸 카보네이트 대신에 에탄올을 사용하는 것을 제외하고 실시예 2와 동일한 방법으로 양극과 세퍼레이터를 제조하여 라미네이션하였다.
평가예 : 접착 강도
실시예 1 ~ 2 및 비교예 1 ~ 5에서 제조되어 라미네이션된 양극, 세퍼레이터로부터 세퍼레이터를 떼어내어 양극과 세퍼레이터간 접착 강도를 평가하였다. 상기 접착 강도는 양극 표면으로부터 세퍼레이터를 손으로 벗겨내고, 양극 표면으로 이동한 세퍼레이터 바인더 고분자를 육안으로 확인하여 접착 강도를 평가하였다. 그 결과를 도 3(실시예 1), 도 4 (실시예 2), 도 5 (비교예 1), 도 6 (비교예 2)에 도면으로 개재하였으며, 이에 대한 사진이 본건 우선권인 KR특허출원 10-2016-0148984에 개재되어 있다. 비교예 3 내지 비교예 5에서는 양극 표면으로 이동한 세퍼레이터 바인더 고분자가 거의 혹은 전혀 없었으며, 이에 대한 사진 또한 본건 우선권인 KR특허출원 10-2016-0148984에 개재되어 있다. 도 3 내지 도 6에서 “100”은 양극을 나타내고, “200”은 세퍼레이터를 나타내며, “210”은 세퍼레이터로부터 양극으로 이동한 바인더 고분자를 나타낸다. 또한, 실시예 2의 라미네이션 강도를 도 7 그래프로 나타내었으며, 실시예 2의 세퍼레이터에서 라미네이션 개선 효과가 현저한 것으로 나타났다.
그 결과, 본 발명에 따른 실시예 1~2에서는 양극과 세퍼레이터간 접착력이 발현되었음이 확인되었으나, 라미네이션 공정에서 용매를 사용하지 않거나 디메틸 카보네이트 이외의 용매를 사용한 비교예 1~5에서는 양극과 세퍼레이터간 접착력이 없거나 미미한 것으로 확인되었다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.

Claims (7)

  1. 전극과 세퍼레이터를 각각 준비하되, 상기 세퍼레이터는 다공성 고분자 기재, 및 다공성 고분자 기재의 적어도 일면에 무기물 입자와 바인더 고분자의 혼합물로 형성된 다공성 코팅층이 있는 것인 단계;
    전극에 접합되는 세퍼레이터 표면에, 라미네이션 용매를 적용하는 단계; 및
    상기 라미네이션 용매가 건조되기 이전에, 전극과 세퍼레이터를 라미네이션하는 단계를 포함하는 단위셀의 제조방법.
  2. 제1항에 있어서,
    상기 라미네이션 용매는 90 ℃ 이상의 비점을 갖는, 전기화학적으로 불활성인 유기 용매인 것을 특징으로 하는 제조방법.
  3. 제1항에 있어서,
    상기 라미네이션 용매가 디메틸 카보네이트, 에틸 프로피오네이트 또는 이들의 혼합물인 것을 특징으로 하는 제조방법.
  4. 제1항에 있어서,
    상기 바인더 고분자가 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 공중합체, 폴리(비닐리덴 플루오라이드-클로로트리플루오로에틸렌) 공중합체, 폴리메틸메타크릴레이트, 폴리비닐피롤리돈, 폴리비닐알코올, 에틸렌 비닐 아세테이트 공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부티레이트, 셀룰로오스 아세테이트 프로피오네이트, 풀루란, 카르복실 메틸 셀룰로오스 및 스티렌-부타디엔 고무로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 제조방법.
  5. 제1항에 있어서,
    상기 라미네이션 용매는, 상기 라미네이션 용매가 증기 상태로 포함되어 있는 챔버(chamber)에 세퍼레이터를 통과시키거나 혹은 세퍼레이터 표면에 라미네이션 용매를 분사시킴으로써 세퍼레이터 표면에 적용되는 것을 특징으로 하는 제조방법.
  6. 제1항에 있어서,
    상기 라미네이션을 위해 가해지는 선압 압력이 100 내지 120 kgf/cm 범위인 것을 특징으로 하는 제조방법.
  7. 제1항의 라미네이션에 사용되는 라미네이션 챔버 장치로,
    상기 챔버의 하부에는 라미네이션 용매가 수납되는 컨테이너가 구비되어 있고, 상기 컨테이너 주변에는 라미네이션 용매를 가열하여 증발시키기 위한 열원이 구비되어 있으며, 상기 컨테이너는 수납된 라미네이션 용매가 기화되어 증발되도록 하는 구조를 가지며, 상기 챔버는 컨테이너로부터 증발된 라미네이션 용매가 챔버내에 유지되도록 하는 밀폐 형태이고, 상기 챔버에는 전극 시트와 세퍼레이터 시트가 들어가는 입구와, 전극 시트와 세퍼레이터 시트가 라미네이션되어 나오는 출구가 마련되어 있고, 상기 챔버의 상부에는 라미네이션 용매 증기가 이동할 수 있는 이동관이 형성되어 있으며, 상기 이동관은 하지(downstream)에 냉각 장치를 구비하고 있어서 라미네이션 용매 증기를 응결시키고, 상기 이동관은 다시 챔버에 연결되어 응결된 라미네이션 용매가 다시 챔버로 복귀되도록 하는 것을 특징으로 하는 라미네이션 챔버 장치.
PCT/KR2017/012688 2016-11-09 2017-11-09 용매를 이용하여 전지셀을 라미네이션하는 방법 및 상기 라미네이션을 위한 챔버 장치 WO2018088823A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780039615.7A CN109328414B (zh) 2016-11-09 2017-11-09 使用溶剂层压电池单元的方法和用于执行层压的腔室装置
US16/319,072 US10992010B2 (en) 2016-11-09 2017-11-09 Method for lamination of battery cell using solvent and chamber device for carrying out lamination
EP17869477.4A EP3460898B1 (en) 2016-11-09 2017-11-09 Method for lamination of battery cell using solvent and chamber device for carrying out lamination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0148984 2016-11-09
KR20160148984 2016-11-09

Publications (1)

Publication Number Publication Date
WO2018088823A1 true WO2018088823A1 (ko) 2018-05-17

Family

ID=62110633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012688 WO2018088823A1 (ko) 2016-11-09 2017-11-09 용매를 이용하여 전지셀을 라미네이션하는 방법 및 상기 라미네이션을 위한 챔버 장치

Country Status (5)

Country Link
US (1) US10992010B2 (ko)
EP (1) EP3460898B1 (ko)
KR (1) KR102107215B1 (ko)
CN (1) CN109328414B (ko)
WO (1) WO2018088823A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780171B1 (en) * 2018-03-26 2023-07-26 Zeon Corporation Non-aqueous secondary battery layered-body manufacturing method, and non-aqueous secondary battery manufacturing method
KR20210073338A (ko) * 2019-12-10 2021-06-18 주식회사 엘지에너지솔루션 단위셀의 제조장치 및 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256947A (ja) * 1993-03-05 1994-09-13 Ishikawajima Harima Heavy Ind Co Ltd 連続真空蒸着装置
KR19990066849A (ko) * 1998-01-30 1999-08-16 해머 로버트 에이치. 삼세 겔 전해질 배터리용 격리판
KR20020070439A (ko) * 1999-11-23 2002-09-09 발렌스 테크놀로지 (네바다), 인크. 전기화학 전지 장치에 사용하기 위한 격리판의 처리 방법
US20050260490A1 (en) * 2004-05-19 2005-11-24 Luigi Persi Adhesive-treated electrode separator and method of adhering an electrode thereto
US7279251B1 (en) * 2000-05-19 2007-10-09 Korea Institute Of Science And Technology Lithium secondary battery comprising a super fine fibrous polymer separator film and its fabrication method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148167A (ja) 1994-11-17 1996-06-07 Tokyo Gas Co Ltd 高分子電解質膜と電極の接合体及びその接合方法
JPH09213308A (ja) 1996-01-31 1997-08-15 Fuji Photo Film Co Ltd 非水二次電池の製造方法
KR100416206B1 (ko) 1996-10-07 2004-03-24 삼성에스디아이 주식회사 고체폴리머전지용전극어셈블리의제조방법
US5778515A (en) * 1997-04-11 1998-07-14 Valence Technology, Inc. Methods of fabricating electrochemical cells
TW439309B (en) 1999-01-22 2001-06-07 Toshiba Corp Nonaquous electrolyte secondary battery
KR100336395B1 (ko) 2000-06-12 2002-05-10 홍지준 리튬 이차 전지의 제조방법
KR100590808B1 (ko) * 2002-11-15 2006-06-19 한국과학기술연구원 초극세 섬유상의 다공성 고분자 분리막을 포함하는리튬이차전지 및 그 제조방법
JP4068988B2 (ja) 2003-02-20 2008-03-26 Jsr株式会社 電解膜−電極基板複合体の製造方法
TWI429127B (zh) 2006-05-12 2014-03-01 A123 Systems Inc 處理塗層片的裝置與方法
KR101667520B1 (ko) * 2014-05-15 2016-10-19 주식회사 엘지화학 무기물 코팅층을 포함하는 전극조립체 및 이를 포함하는 이차전지
JP2016115457A (ja) * 2014-12-12 2016-06-23 日東電工株式会社 セパレータ/正極の積層体および二次電池の製造方法
JP2017098138A (ja) 2015-11-26 2017-06-01 株式会社豊田自動織機 電極製造装置および電極製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256947A (ja) * 1993-03-05 1994-09-13 Ishikawajima Harima Heavy Ind Co Ltd 連続真空蒸着装置
KR19990066849A (ko) * 1998-01-30 1999-08-16 해머 로버트 에이치. 삼세 겔 전해질 배터리용 격리판
KR20020070439A (ko) * 1999-11-23 2002-09-09 발렌스 테크놀로지 (네바다), 인크. 전기화학 전지 장치에 사용하기 위한 격리판의 처리 방법
US7279251B1 (en) * 2000-05-19 2007-10-09 Korea Institute Of Science And Technology Lithium secondary battery comprising a super fine fibrous polymer separator film and its fabrication method
US20050260490A1 (en) * 2004-05-19 2005-11-24 Luigi Persi Adhesive-treated electrode separator and method of adhering an electrode thereto

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460898A4 *

Also Published As

Publication number Publication date
KR102107215B1 (ko) 2020-05-06
CN109328414B (zh) 2021-06-29
CN109328414A (zh) 2019-02-12
EP3460898A4 (en) 2019-08-28
KR20180052108A (ko) 2018-05-17
US10992010B2 (en) 2021-04-27
EP3460898A1 (en) 2019-03-27
EP3460898B1 (en) 2023-07-26
US20190221811A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
WO2011019187A2 (ko) 리튬 이차전지
WO2016093589A1 (ko) 안전성이 향상된 전극조립체, 그의 제조방법 및 상기 전극조립체를 포함하는 전기화학소자
WO2013005898A1 (ko) 전기화학소자용 전극 조립체 및 이를 구비한 전기화학소자
WO2009110726A2 (en) Separator having porous coating layer and electrochemical device containing the same
WO2015065127A1 (ko) 스택-폴딩형 전극 조립체
WO2015065118A1 (ko) 전극조립체 및 그를 포함하는 리튬 이차전지
WO2014084681A1 (ko) 표면 특성이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
WO2012128440A1 (ko) 전극조립체 및 이의 제조방법
WO2013089428A1 (ko) 전기화학소자용 전극 및 이를 구비한 전기화학소자
WO2018147714A1 (ko) 접착층을 구비한 리튬 이차전지용 분리막
WO2015072753A1 (ko) 젤리-롤형 전극 조립체 및 이를 구비한 이차전지
WO2016171519A1 (ko) 리튬 이차전지용 분리막 및 그의 제조방법
KR20130141234A (ko) 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
KR20130127201A (ko) 다공성 코팅층을 포함하는 세퍼레이터 및 그를 포함하는 전기화학소자
WO2015076573A1 (ko) 이차 전지
WO2015065116A1 (ko) 유기-무기 복합 다공성 막, 이를 포함하는 세퍼레이터 및 전극 구조체
WO2018088823A1 (ko) 용매를 이용하여 전지셀을 라미네이션하는 방법 및 상기 라미네이션을 위한 챔버 장치
WO2021075924A1 (ko) 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법
WO2020226367A1 (ko) 바인더 수지 조성물 및 이를 포함하는 전기화학소자용 분리막
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2020190101A1 (ko) 전기화학소자용 분리막 및 이의 제조 방법
WO2019022474A1 (ko) 불산을 저감하는 물질을 포함하는 전지 분리막
WO2021101222A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2023018310A1 (ko) 이차 전지용 전극 조립체 및 그 제조방법
WO2020251295A1 (ko) 바이폴라 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017869477

Country of ref document: EP

Effective date: 20181220

NENP Non-entry into the national phase

Ref country code: DE