WO2023017726A1 - スペクトル解析プログラム、信号処理装置、レーダ装置、通信端末、固定通信装置、及び記録媒体 - Google Patents

スペクトル解析プログラム、信号処理装置、レーダ装置、通信端末、固定通信装置、及び記録媒体 Download PDF

Info

Publication number
WO2023017726A1
WO2023017726A1 PCT/JP2022/028690 JP2022028690W WO2023017726A1 WO 2023017726 A1 WO2023017726 A1 WO 2023017726A1 JP 2022028690 W JP2022028690 W JP 2022028690W WO 2023017726 A1 WO2023017726 A1 WO 2023017726A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
power value
frequency spectrum
spectrum data
signal
Prior art date
Application number
PCT/JP2022/028690
Other languages
English (en)
French (fr)
Inventor
暢哉 荒川
克久 柏木
諒 齋藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023541390A priority Critical patent/JPWO2023017726A1/ja
Publication of WO2023017726A1 publication Critical patent/WO2023017726A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal

Definitions

  • the present invention relates to spectrum analysis programs, signal processing devices, radar devices, communication terminals, and recording media.
  • the MUSIC Multiple Signal Classification
  • Patent Document 1 a plurality of incoming waves arriving from each direction are received via a plurality of antennas arranged at mutually different positions, and the number of arriving waves is calculated from the received signal of each antenna using the MUSIC method. and methods for estimating the direction of arrival are described.
  • an object of the present invention is to solve such problems and propose an analysis method capable of improving the accuracy of estimating the power value of frequency spectrum data of radio signals with high resolution.
  • the spectrum analysis program causes a computer to generate first frequency spectrum data from the received radio signal by the Annihilating Filter method, Generating the second frequency spectrum data by a frequency spectrum analysis method different from the frequency spectrum data, the frequency value of the first frequency spectrum data, and the frequency value of the second frequency spectrum data, the closest frequency , a first power value of a first frequency in the first frequency spectrum data, and a second power of a second frequency in the second frequency spectrum data corresponding to the first frequency generating frequency spectrum data as an analysis result based on the comparison with the value, and if the first power value is less than or equal to the second power value, the first power value as the analysis result Adopted as the power value of the first frequency of the frequency spectrum data, and when the second power value is less than the first power value, the second power value is the first frequency of the frequency spectrum data as the analysis result to be adopted as the power value of
  • FIG. 4 is a flow chart showing the flow of processing of a spectrum analysis method according to an embodiment of the present invention
  • FIG. 4 is an explanatory diagram of a spectrum analysis method according to the embodiment of the present invention
  • FIG. 4 is an explanatory diagram of a spectrum analysis method according to the embodiment of the present invention
  • It is an explanatory view showing composition of a radar installation concerning an embodiment of the present invention.
  • It is a graph which shows the analysis result of the conventional AF method.
  • It is a graph which shows the analysis result of the spectrum-analysis method in connection with embodiment of this invention.
  • 1 is an explanatory diagram of a communication terminal according to an embodiment of the present invention
  • FIG. 1 is an explanatory diagram of a communication terminal according to an embodiment of the present invention
  • FIG. 1 is an explanatory diagram of a communication terminal according to an embodiment of the present invention
  • FIG. 1 is an explanatory diagram of a fixed communication device according to an embodiment of the present invention
  • FIG. 1 is an explanatory diagram showing the configuration of a fixed communication device according to an embodiment of the present invention
  • FIG. 2 is an explanatory diagram of radio signals according to the embodiment of the present invention
  • FIG. 1 is an explanatory diagram showing the hardware configuration of the signal processing device 100 according to the embodiment of the present invention.
  • the signal processing device 100 is a computer including a processor 101 that executes DSP (Digital Signal Processing) processing, a memory 102 , an input/output interface 103 and a storage device 104 .
  • Storage device 104 stores spectrum analysis program 200 according to the embodiment of the present invention.
  • the spectrum analysis program 200 is a program for causing the processor 101 to execute the spectrum analysis method according to the embodiment of the present invention.
  • the spectrum analysis program 200 is read from the storage device 104 into the memory 102 and executed by the processor 101 .
  • the input/output interface 103 receives an A/D-converted radio signal (a radio signal received by an antenna not shown in FIG.
  • Processor 101 inputs the A / D converted radio signal through input/output interface 103, executes the spectrum analysis method according to the embodiment of the present invention, generates frequency spectrum data as an analysis result, and generates It outputs frequency spectrum data through the input/output interface 103 .
  • the frequency spectrum includes an amplitude spectrum and a phase spectrum.
  • FIG. 2 is a flow chart showing the process flow of the spectrum analysis method according to the embodiment of the present invention.
  • the processor 101 generates first frequency spectrum data having continuous frequency values from the radio signal by the AF (Annihilating Filter) method.
  • the processor 101 uses a frequency spectrum analysis method (a frequency spectrum analysis method different from the AF method) for outputting a reference power value of the radio signal from the radio signal so that the frequency value takes a discrete value. Generate second frequency spectrum data.
  • a frequency spectrum analysis method for outputting a reference power value of a radio signal is a frequency spectrum analysis method with high power value estimation accuracy (for example, a discrete Fourier transform such as a fast Fourier transform, a beamformer method, or a Capon method).
  • the processor 101 associates the closest frequency values among the frequency values of the first frequency spectrum data and the frequency values of the second frequency spectrum data (frequency pairing).
  • “Associating the closest frequency values with each other” means, for example, that a specific frequency of the first frequency spectrum data is the first frequency, and among the frequencies of the second frequency spectrum data, the frequency closest to the first frequency If the frequency is the second frequency, it means to link (or associate) the first frequency of the first frequency spectrum data and the second frequency of the second frequency spectrum data. Such tying (or association) is referred to herein as pairing.
  • the processor 101 generates a first power value at a first frequency of the first frequency spectrum data and a second power value at a second frequency of the second frequency spectrum data corresponding to the first frequency. Based on the comparison with the values, frequency spectrum data is generated as an analysis result. For example, when the first power value is less than or equal to the second power value, the processor 101 sets the first power value to the power value of the first frequency of the frequency spectrum data as the analysis result. Also, for example, when the second power value is less than the first power value, the processor 101 sets the second power value to the power value of the first frequency of the frequency spectrum data as the analysis result.
  • FIG. Reference D1 indicates the first frequency spectrum data at the first frequency f1.
  • Reference D2 indicates the second frequency spectrum data at the second frequency f2.
  • the first frequency f1 and the second frequency f2 are associated with each other through the processing of step 203 .
  • the first frequency f1 and the second frequency f2 may be the same frequency, or may be different frequencies.
  • the same specific frequency values are paired.
  • the first power value P1 of the first frequency spectrum data D1 at the first frequency f1 is less than the second power value P2 of the second frequency spectrum data D2 at the second frequency f2.
  • the first power value P1 be the power value of the first frequency f1 of the frequency spectrum data as the analysis result. That is, let the first frequency spectrum data D1 at the first frequency f1 be the frequency spectrum data as the analysis result at the first frequency f1.
  • the second power value P2 of the second frequency spectrum data D2 at the second frequency f2 is the first power value of the first frequency spectrum data D1 at the first frequency f1. If it is equal to or less than P1, the second power value P2 is set as the power value of the first frequency f1 of the frequency spectrum data as the analysis result. That is, data obtained by correcting the power value of the first frequency spectrum data D1 at the first frequency f1 (data corrected from the first power value P1 to the second power value P2) is analyzed at the first frequency f1. Let the resulting frequency spectrum data.
  • the frequency spectrum data as the analysis result is the power value of the first frequency spectrum data based on the comparison between the power value of the first frequency spectrum data and the reference power value of the second frequency spectrum data. It is generated by executing correction processing for each frequency of the first frequency spectrum data.
  • the spectrum analysis method it is possible to generate frequency spectrum data having both the high frequency resolution of the AF method and the high power value estimation accuracy.
  • the actual number of incoming waves changes, it is possible to generate frequency spectrum data with high resolution and high reliability of power values.
  • true waves and fake waves can be distinguished with high accuracy.
  • the spectrum analysis program 200 has instructions for causing the signal processing device 100 to execute steps 201 to 204, respectively.
  • the signal processing device 100 functions as means for executing each of steps 201-204. Functions similar to those of each of these means may be implemented using dedicated hardware resources (eg, application specific integrated circuits (ASIC), field programmable gate arrays (FPGA), etc.) or firmware.
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • FIG. 5 is an explanatory diagram showing the configuration of the radar device 300 according to the embodiment of the present invention.
  • the radar device 300 is a frequency modulated continuous wave radar (FM-CW radar), which is a type of continuous wave radar that employs a frequency modulation method.
  • FM-CW radar frequency modulated continuous wave radar
  • the radar device 300 can measure, for example, the relative position of the target 400 with respect to the radar device 300 (for example, the angle ⁇ of the target 400 with respect to the radar device 300 and the distance R between the radar device 300 and the target 400). .
  • the radar device 300 includes an oscillator 301, an amplifier 302, a plurality of distributors 303, a transmitting antenna 304, a receiving antenna 305, a plurality of amplifiers 307, a plurality of mixers 308, a plurality of filters 309, a plurality of A/D converters 310, and a signal processing device 100 .
  • the oscillator 301 generates and outputs the transmission signal St.
  • Oscillator 301 is, for example, a voltage controlled oscillator.
  • the amplifier 302 power-amplifies the transmission signal St output from the oscillator 301 .
  • Each distributor 303 distributes the power-amplified transmission signal St output from the amplifier 302 to the transmission antenna 304 and the mixer 308 .
  • the power amplified transmission signal St from the amplifier 302 distributed to the mixer 308 is also called a local signal.
  • the transmission antenna 304 transmits the transmission signal St as a radar wave.
  • the receiving antenna 305 is a linear array antenna in which a plurality of antenna elements 306 are arranged at regular intervals.
  • the receiving antenna 305 receives the reflected wave of the transmission signal St reflected by the target object 400 as the reception signal Sr.
  • Each amplifier 307 amplifies received signal Sr output from antenna element 306 .
  • Each mixer 308 mixes the amplified reception signal Sr output from the amplifier 307 and the transmission signal St distributed by the distributor 303 to generate and output an intermediate frequency signal.
  • the intermediate frequency signal is a beat signal that indicates the frequency difference between the transmitted signal St and the received signal Sr.
  • Each filter 309 is a low-pass filter that removes unwanted signal components from the intermediate frequency signal output from mixer 308 .
  • Each A/D converter 310 A/D-converts the intermediate frequency signal output from each filter 309 .
  • the signal processing device 100 performs signal processing on the intermediate frequency signals converted into digital signals by each A/D converter 310 according to the spectrum analysis method according to the embodiment of the present invention, thereby obtaining the distance R of the target object 400, Either angle ⁇ or speed (change in distance R per unit time) is estimated.
  • the signal processing device 100 performs signal processing on the "intermediate frequency signal converted into a digital signal by each A/D converter 310" as the "radio signal” in steps 201 to 204 in FIG. Any one of the distance R, the angle ⁇ , and the speed (change in distance R per unit time) of the target 400 is estimated from the frequency spectrum data of .
  • the number of distributors 303 , amplifiers 307 , mixers 308 , filters 309 and A/D converters 310 is equal to the number of antenna elements 306 .
  • FIG. 6 is a graph showing an analysis result when the generated first frequency spectrum data and second frequency spectrum data are superimposed.
  • FIG. 7 is a graph showing analysis results when the spectrum analysis method according to the embodiment of the present invention is used as an algorithm executed by the signal processing device 100.
  • no high-power fake waves are generated other than the incoming wave 603 from the target 400 as a target, and it can be seen that the power of the fake waves can be effectively reduced.
  • FIG. 8 is an explanatory diagram of the communication terminal 500 according to the embodiment of the present invention.
  • Some of the radio waves from base station 600 may be received by communication terminal 500 after being reflected by obstacles 900 such as buildings, and some of the radio waves from base station 600 may be reflected by obstacles 900 such as buildings. It may be received by communication terminal 500 without being reflected by object 900 .
  • Communication terminal 500 estimates the direction of arrival of radio waves from base station 600, and directs the peak of the directivity of the antenna toward the estimated direction. A description of the server device 700 will be given later.
  • FIG. 9 is an explanatory diagram showing the configuration of the communication terminal 500 according to the embodiment of the present invention.
  • Communication terminal 500 includes modulation circuit 501, mixer 502, multiple phase shifters 503, multiple amplifiers 504, transmission antenna 505, reception antenna 507, multiple amplifiers 509, mixer 510, A/D converter 511, signal processing
  • An apparatus 100 and a demodulation circuit 512 are provided.
  • a circulator or switch may be used to commonize the transmit antenna 505 and the receive antenna 507 .
  • Transmission data is modulated by a modulation circuit 501 and a signal carrying information of the transmission data is up-converted by a mixer 502 .
  • Transmitting antenna 505 is a linear array antenna in which a plurality of antenna elements 506 are arranged at regular intervals. Each phase shifter 503 controls the phase of the high-frequency signal fed to each antenna element 506 so that the directivity peak of transmission antenna 505 is directed toward base station 600 .
  • the transmitting antenna 505 transmits radio signals carrying information of transmission data.
  • the receiving antenna 507 is a linear array antenna in which a plurality of antenna elements 508 are arranged at regular intervals.
  • a radio signal received by each antenna element 508 is power-amplified by an amplifier 509 , down-converted by a mixer 510 , and A/D-converted by an A/D converter 511 .
  • the signal processing device 100 estimates the direction of arrival of the radio signal by signal processing the radio signal converted into a digital signal by the A/D converter 511 according to the spectrum analysis method according to the embodiment of the present invention. For example, the signal processing device 100 performs signal processing on the “radio signal converted into a digital signal by the A/D converter 511” as the “radio signal” in steps 201 to 204 in FIG. From the spectrum data, the direction of arrival of the radio signal (azimuth and elevation of base station 600 with respect to communication terminal 500) is estimated. Signal processing apparatus 100 calculates the phase shift amount of each phase shifter 503 so that the directivity peak of transmission antenna 505 is directed toward base station 600 , and outputs the calculation result to each phase shifter 503 .
  • the signal processing device 100 performs DBF (Digital Beam Forming) processing on the radio signals converted into digital signals by each A/D converter 511, and performs beam synthesis. Received data is demodulated by the demodulation circuit 512 from the result of beam synthesis.
  • DBF Digital Beam Forming
  • the communication terminal 500 performs signal processing on the radio signal received from the base station 600 according to the spectrum analysis method according to the embodiment of the present invention.
  • communication terminal 500 may transfer a radio signal received from base station 600 to server device 700 and request server device 700 to estimate the direction of arrival of the radio signal.
  • the server device 700 is, for example, a general-purpose computer system such as a cloud server.
  • the server device 700 comprises a processor 701 , memory 702 , communication interface 703 and storage device 704 .
  • Storage device 704 stores spectral analysis program 200 according to an embodiment of the present invention.
  • the spectrum analysis program 200 is read from the storage device 704 into the memory 702 and executed by the processor 701 .
  • server apparatus 700 In response to a request from communication terminal 500, server apparatus 700 processes the radio signal received from communication terminal 500 according to the spectrum analysis method according to the embodiment of the present invention, thereby determining the direction of arrival of the radio signal. presume. Server device 700 transmits the estimation result of the direction of arrival of the radio signal to communication terminal 500 . Communication terminal 500 that has received the estimation result of the direction of arrival of the radio signal directs the peak of the directivity of the antenna based on the estimation result.
  • communication terminal 500 estimates the direction of arrival of radio waves from base station 600, and directs the peak of antenna directivity in the estimated direction. Examples are not limited. For example, as shown in FIG. 10, any one communication terminal 500 among a plurality of communication terminals 500 estimates the direction of arrival of radio waves from other communication terminals 500, and adjusts the antenna directivity in the estimated direction. You may direct the peak of .
  • a hardware configuration for estimating the direction of arrival of radio waves from another communication terminal 500 by one communication terminal 500 is the same as the hardware configuration shown in FIG. 9, and therefore detailed description thereof will be omitted.
  • one communication terminal 500 may transfer a radio signal received from another communication terminal 500 to the server device 700 and request the server device 700 to estimate the direction of arrival of the radio signal.
  • server apparatus 700 processes the radio signal received from communication terminal 500 according to the spectrum analysis method according to the embodiment of the present invention, thereby determining the direction of arrival of the radio signal.
  • Server device 700 transmits the estimation result of the direction of arrival of the radio signal to communication terminal 500 .
  • Communication terminal 500 that has received the estimation result of the direction of arrival of the radio signal directs the peak of the directivity of the antenna based on the estimation result.
  • FIG. 11 is an explanatory diagram of the fixed communication device 800 according to the embodiment of the present invention.
  • Fixed communication device 800 is a base station that functions as an access point for short-range wireless connection with communication terminal 500 .
  • the communication terminal 500 and each fixed communication device 800 are time-synchronized in advance through, for example, a GPS (Global Positioning System) system.
  • Communication terminal 500 transmits radio signals at regular intervals.
  • Fixed communication device 800 estimates the time at which the radio signal transmitted from communication terminal 500 is received, and calculates the difference between the time at which the radio signal is transmitted from communication terminal 500 and the time at which fixed communication device 800 receives the radio signal. , the distance between communication terminal 500 and fixed communication device 800 is estimated. By having each fixed communication device 800 execute such estimation processing, the position of communication terminal 500 can be obtained by trigonometry.
  • FIG. 12 is an explanatory diagram showing the configuration of the fixed communication device 800 according to the embodiment of the present invention.
  • Fixed communication device 800 includes receiving antenna 801 , A/D converter 802 , and signal processing device 100 .
  • Receiving antenna 801 receives a radio signal from communication terminal 500 .
  • A/D converter 802 A/D converts the radio signal received by receiving antenna 801 .
  • Signal processing apparatus 100 estimates the time at which the radio signal transmitted from communication terminal 500 is received by performing signal processing on the A/D converted radio signal according to the spectrum analysis method according to the embodiment of the present invention. .
  • the signal processing device 100 performs signal processing on the “radio signal converted into a digital signal by the A/D converter 802” as the “radio signal” in steps 201 to 204 in FIG. ) to reproduce the original time signal, and estimate the time when the radio signal transmitted from the communication terminal 500 was received.
  • FIG. 13(a) shows the radio signal 131 transmitted from the communication terminal 500 at time t1.
  • FIG. 13(b) shows a radio signal 132 received by the fixed communication device 800 and reproduced by fast Fourier transform, and radio signals 133 and 134 reproduced by the AF method. Since the power of the radio signal 134 recovered by the AF method is higher than the power of the radio signal 132 recovered by the fast Fourier transform, the radio signal 134 recovered by the AF method is a pseudo wave.
  • Signal processing apparatus 100 estimates time t2 at which the radio signal transmitted from communication terminal 500 is received, based on radio signal 133 reproduced by the AF method.
  • Signal processing device 100 calculates the distance between communication terminal 500 and fixed communication device 800 from the difference between time t1 at which the radio signal was transmitted from communication terminal 500 and time t2 at which fixed communication device 800 received the radio signal. presume.
  • fixed communication device 800 estimates the time when the radio signal transmitted from communication terminal 500 is received, and the time when the radio signal is transmitted from communication terminal 500 and the time when fixed communication device 800 receives the radio signal are calculated.
  • An example of estimating the distance between communication terminal 500 and fixed communication device 800 from the time difference has been shown.
  • the present invention is not limited to such examples.
  • fixed communication device 800 transfers a radio signal transmitted from communication terminal 500 to server device 700, and sends server device 700 an estimated time at which fixed communication device 800 receives the radio signal transmitted from communication terminal 500. may be requested.
  • server device 700 processes the radio signal received from communication terminal 500 by fixed communication device 800 according to the spectrum analysis method according to the embodiment of the present invention.
  • the time at which fixed communication device 800 receives the radio signal transmitted from communication terminal 500 is estimated.
  • Server device 700 transmits the estimated reception time to fixed communication device 800 .
  • Fixed communication device 800 that has received the estimation result of the reception time estimates the distance between communication terminal 500 and fixed communication device 800 based on the estimation result.
  • the server device 700 may download the spectrum analysis program 200 through the network and store it in the storage device 704 .
  • the server device 700 may install the spectrum analysis program 200 recorded on a computer-readable recording medium into the storage device 704 .
  • a computer-readable recording medium is, for example, any recording medium such as a magneto-optical recording medium, a magnetic recording medium, or a semiconductor memory.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

スペクトル解析プログラムは、コンピュータシステムに、無線信号から、AF法により、周波数の値が連続的な値をとる第1の周波数スペクトルデータを生成することと、無線信号から、無線信号の参照用の電力値を出力する周波数スペクトル解析法により、周波数の値が離散的な値をとる第2の周波数スペクトルデータを生成することと、第1の周波数スペクトルデータの周波数の値と、第2の周波数スペクトルデータの周波数の値とのうち、最も近い周波数の値同士を対応付けることと、第1の周波数スペクトルデータの第1の周波数の第1の電力値と、第1の周波数に対応する第2の周波数スペクトルデータの第2の周波数の第2の電力値との比較に基づいて、解析結果としての周波数スペクトルデータを生成することとを実行させる。

Description

スペクトル解析プログラム、信号処理装置、レーダ装置、通信端末、固定通信装置、及び記録媒体
 本発明は、スペクトル解析プログラム、信号処理装置、レーダ装置、通信端末、及び記録媒体に関わる。
 電波の到来方向を推定する高分解能アルゴリズムとして、例えば、MUSIC(Multiple Signal Classification)法が知られている。特許文献1には、互いに異なる位置に配設された複数のアンテナを介して各方向から到来する複数の到来波を受信し、各アンテナの受信信号から、MUSIC法を用いて、到来波の数及び到来方向を推定する方法が記載されている。
特開2000-121716号公報
 しかし、特許文献1に記載の方法では、推定波数が実際の到来波数よりも多い場合には、多くの偽波が出現し、その中には、閾値以上の高い電力を有する偽波が生じることがあり得るため、実際の到来波と偽波との区別が困難であるという問題がある。
 そこで、本発明は、このような問題を解決し、高分解能かつ無線信号の周波数スペクトルデータの電力値の推定精度を高めることのできる解析手法を提案することを課題とする。 
 上述の課題を解決するため、本発明に関わるスペクトル解析プログラムは、コンピュータに、受信した無線信号から、Annihilating Filter法により、第1の周波数スペクトルデータを生成することと、無線信号から、Annihilating Filter法とは異なる周波数スペクトル解析法により、第2の周波数スペクトルデータを生成することと、第1の周波数スペクトルデータの周波数の値と、第2の周波数スペクトルデータの周波数の値とのうち、最も近い周波数の値同士を対応付けることと、第1の周波数スペクトルデータにおける第1の周波数の第1の電力値と、第1の周波数に対応する第2の周波数スペクトルデータにおける第2の周波数の第2の電力値との比較に基づいて、解析結果としての周波数スペクトルデータを生成することであって、第1の電力値が第2の電力値以下である場合、第1の電力値を、解析結果としての周波数スペクトルデータの第1の周波数の電力値として採用し、第2の電力値が第1の電力値未満である場合、第2の電力値を、解析結果としての周波数スペクトルデータの第1の周波数の電力値として採用する、ことと、を実行させる。
 本発明によれば、高分解能かつ無線信号の周波数スペクトルデータの電力値の推定精度を高めることができる。 
本発明の実施形態に関わる信号処理装置のハードウェア構成を示す説明図である。 本発明の実施形態に関わるスペクトル解析方法の処理の流れを示すフローチャートである。 本発明の実施形態に関わるスペクトル解析方法の説明図である。 本発明の実施形態に関わるスペクトル解析方法の説明図である。 本発明の実施形態に関わるレーダ装置の構成を示す説明図である。 従来のAF法の解析結果を示すグラフである。 本発明の実施形態に関わるスペクトル解析方法の解析結果を示すグラフである。 本発明の実施形態に関わる通信端末の説明図である。 本発明の実施形態に関わる通信端末の構成を示す説明図である。 本発明の実施形態に関わる通信端末の説明図である。 本発明の実施形態に関わる固定通信装置の説明図である。 本発明の実施形態に関わる固定通信装置の構成を示す説明図である。 本発明の実施形態に関わる無線信号の説明図である。
 以下、各図面を参照しながら本発明の実施形態について説明する。ここで、同一符号は、同一の構成要素を示すものとし、重複する説明は省略する。
 図1は、本発明の実施形態に関わる信号処理装置100のハードウェア構成を示す説明図である。信号処理装置100は、DSP(Digital Signal Processing)処理を実行するプロセッサ101、メモリ102、入出力インタフェース103、及び記憶装置104を備えるコンピュータである。記憶装置104には、本発明の実施形態に関わるスペクトル解析プログラム200が記憶されている。スペクトル解析プログラム200は、本発明の実施形態に関わるスペクトル解析方法をプロセッサ101に実行させるためのプログラムである。スペクトル解析プログラム200は、記憶装置104からメモリ102に読み込まれてプロセッサ101により実行される。入出力インタフェース103には、A/D変換された無線信号(図1には図示されていないアンテナで受信され、更にA/D変換された無線信号)が入力される。プロセッサ101は、A/D変換された無線信号を、入出力インタフェース103を通じて入力し、本発明の実施形態に関わるスペクトル解析方法を実行し、解析結果としての周波数スペクトルデータを生成し、生成された周波数スペクトルデータを、入出力インタフェース103を通じて出力する。なお、周波数スペクトルは、振幅スペクトル及び位相スペクトルを含むものとする。
 図2は、本発明の実施形態に関わるスペクトル解析方法の処理の流れを示すフローチャートである。
 ステップ201において、プロセッサ101は、無線信号から、AF(Annihilating Filter)法により、周波数の値が連続的な値をとる第1の周波数スペクトルデータを生成する。
 ステップ202において、プロセッサ101は、無線信号から、無線信号の参照用の電力値を出力する周波数スペクトル解析法(AF法とは異なる周波数スペクトル解析法)により、周波数の値が離散的な値をとる第2の周波数スペクトルデータを生成する。無線信号の参照用の電力値を出力する周波数スペクトル解析法は、電力値の推定精度の高い周波数スペクトル解析法(例えば、高速フーリエ変換などの離散フーリエ変換、Beamformer法、又はCapon法)である。
 ステップ203において、プロセッサ101は、第1の周波数スペクトルデータの周波数の値と、第2の周波数スペクトルデータの周波数の値とのうち、最も近い周波数の値同士を対応付ける(周波数のペアリング)。「最も近い周波数の値同士を対応付ける」とは、例えば、第1の周波数スペクトルデータの特定の周波数を第1の周波数とし、第2の周波数スペクトルデータの周波数のうち、第1の周波数に最も近い周波数を第2の周波数とする場合、第1の周波数スペクトルデータの第1の周波数と、第2の周波数スペクトルデータの第2の周波数とを紐づける(又は関連付ける)ことである。このような紐づけ(又は関連付け)を、本明細書では、ペアリングと呼ぶ。
 ステップ204において、プロセッサ101は、第1の周波数スペクトルデータの第1の周波数の第1の電力値と、第1の周波数に対応する第2の周波数スペクトルデータの第2の周波数の第2の電力値との比較に基づいて、解析結果としての周波数スペクトルデータを生成する。例えば、第1の電力値が第2の電力値以下である場合、プロセッサ101は、第1の電力値を、解析結果としての周波数スペクトルデータの第1の周波数の電力値とする。また、例えば、第2の電力値が第1の電力値未満である場合、プロセッサ101は、第2の電力値を、解析結果としての周波数スペクトルデータの第1の周波数の電力値とする。
 ここで、図3及び図4を参照しながら、ステップ204の処理の詳細について説明する。符号D1は、第1の周波数f1における第1の周波数スペクトルデータを示している。符号D2は、第2の周波数f2における第2の周波数スペクトルデータを示している。第1の周波数f1及び第2の周波数f2は、ステップ203の処理を通じて、互いに対応付けられている。第1の周波数f1及び第2の周波数f2は、互いに同一の周波数でもよく、或いは、互いに異なる周波数でもよい。なお、第1の周波数f1及び第2の周波数f2が互いに同一の周波数の値である場合、同じ特定の周波数の値同士がペアリングされる。
 図3に示すように、第1の周波数f1における第1の周波数スペクトルデータD1の第1の電力値P1が、第2の周波数f2における第2の周波数スペクトルデータD2の第2の電力値P2未満である場合には、第1の電力値P1を、解析結果としての周波数スペクトルデータの第1の周波数f1の電力値とする。即ち、第1の周波数f1における第1の周波数スペクトルデータD1を、第1の周波数f1における解析結果としての周波数スペクトルデータとする。
 一方、図4に示すように、第2の周波数f2における第2の周波数スペクトルデータD2の第2の電力値P2が、第1の周波数f1における第1の周波数スペクトルデータD1の第1の電力値P1以下である場合には、第2の電力値P2を、解析結果としての周波数スペクトルデータの第1の周波数f1の電力値とする。即ち、第1の周波数f1における第1の周波数スペクトルデータD1の電力値を補正したデータ(第1の電力値P1から第2の電力値P2に補正したデータ)を、第1の周波数f1における解析結果としての周波数スペクトルデータとする。
 このように、解析結果としての周波数スペクトルデータは、第1の周波数スペクトルデータの電力値と第2の周波数スペクトルデータの参照用の電力値との比較に基づく第1の周波数スペクトルデータの電力値の補正処理を、第1の周波数スペクトルデータの各周波数について、実行することにより、生成される。
本発明の実施形態に関わるスペクトル解析方法によれば、AF法の高い周波数分解能と、電力値の高い推定精度とを併せ持つ周波数スペクトルデータを生成することができる。特に、実際の到来波数が変化しても、高分解能かつ電力値の信頼性の高い周波数スペクトルデータを生成することができる。また、移動体通信のように、無線電波の位相が計測毎に変化する状況においても、真波と偽波とを精度よく区別することができる。
 なお、スペクトル解析プログラム200は、信号処理装置100にステップ201~204のそれぞれを実行させる命令を備えている。信号処理装置100は、ステップ201~204のそれぞれを実行する手段として機能する。このような各手段の機能と同様の機能を、専用のハードウェア資源(例えば、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)など)やファームウェアを用いて実現してもよい。
 図5は、本発明の実施形態に関わるレーダ装置300の構成を示す説明図である。レーダ装置300は、周波数変調方式を採用する連続波レーダの一種である周波数変調連続波レーダ(FM-CWレーダ)である。レーダ装置300は、例えば、レーダ装置300に対する物標400の相対位置(例えば、レーダ装置300に対する物標400角度θ及びレーダ装置300と物標400との間の距離R)を計測することができる。レーダ装置300は、発振器301、増幅器302、複数の分配器303、送信アンテナ304、受信アンテナ305、複数の増幅器307、複数の混合器308、複数のフィルタ309、複数のA/D変換器310、及び信号処理装置100を備える。
 発振器301は、送信信号Stを生成及び出力する。発振器301は、例えば、電圧制御発振器である。増幅器302は発振器301から出力される送信信号Stを電力増幅する。各分配器303は、増幅器302から出力される電力増幅された送信信号Stを送信アンテナ304と混合器308とに分配する。混合器308に分配される、増幅器302からの電力増幅された送信信号Stは、ローカル信号とも呼ばれる。送信アンテナ304は、送信信号Stをレーダ波として送信する。
 受信アンテナ305は、複数のアンテナ素子306のそれぞれが等間隔で配列されたリニアアレーアンテナである。受信アンテナ305は、物標400で反射した送信信号Stの反射波を受信信号Srとして受信する。各増幅器307は、アンテナ素子306から出力される受信信号Srを増幅する。各混合器308は、増幅器307から出力される増幅された受信信号Srと、分配器303によって分配される送信信号Stとを混合して、中間周波数信号を生成及び出力する。中間周波数信号は、送信信号Stと受信信号Srとの間の周波数差を示すビート信号である。各フィルタ309は、混合器308から出力される中間周波数信号の不要信号成分を除去するローパスフィルタである。各A/D変換器310は、各フィルタ309から出力される中間周波数信号をA/D変換する。
 信号処理装置100は、各A/D変換器310によってデジタル信号に変換された中間周波数信号を、本発明の実施形態に関わるスペクトル解析方法に従って、信号処理することにより、物標400の距離R、角度θ、及び速度(単位時間あたりの距離Rの変化)のうち何れかを推定する。例えば、信号処理装置100は、「各A/D変換器310によってデジタル信号に変換された中間周波数信号」を、図2のステップ201~204の「無線信号」として信号処理を行い、解析結果としての周波数スペクトルデータから、物標400の距離R、角度θ、及び速度(単位時間あたりの距離Rの変化)のうち何れかを推定する。
 なお、分配器303、増幅器307、混合器308、フィルタ309、及びA/D変換器310のそれぞれの個数は、アンテナ素子306の個数に等しい。
 信号処理装置100が実行するアルゴリズムとして、AF法を用いて第1の周波数スペクトルデータを生成し、離散フーリエ変換法により第2の周波数スペクトルデータを生成した。図6は、生成したこれら第1の周波数スペクトルデータと第2の周波数スペクトルデータを重ねた場合の解析結果を示すグラフである。同図に示すように、ターゲットとしての物標400からの到来波601以外に、電力値の高い偽波602が生じている。図7は、信号処理装置100が実行するアルゴリズムとして、本発明の実施形態に関わるスペクトル解析方法を用いた場合の解析結果を示すグラフである。同図に示すように、ターゲットとしての物標400からの到来波603以外に、電力値の高い偽波は生じておらず、偽波の電力を効果的に低減できていることが分かる。
 図8は、本発明の実施形態に関わる通信端末500の説明図である。基地局600からの電波の一部は、建物などの障害物900で反射した後に、通信端末500で受信されることがあり、また、基地局600からの電波の一部は、建物などの障害物900で反射せずに、通信端末500で受信されることもある。通信端末500は、基地局600からの電波の到来方向を推定し、その推定した方向に、アンテナの指向性のピークを向ける。なお、サーバ装置700の説明については後述する。
 図9は、本発明の実施形態に関わる通信端末500の構成を示す説明図である。通信端末500は、変調回路501、混合器502、複数の位相器503、複数の増幅器504、送信アンテナ505、受信アンテナ507、複数の増幅器509、混合器510、A/D変換器511、信号処理装置100、及び復調回路512を備える。サーキュレータまたはスイッチを用いて、送信アンテナ505と受信アンテナ507とを共通化してもよい。
 送信データは、変調回路501により変調され、送信データの情報を担う信号は、混合器502によりアップコンバートされる。送信アンテナ505は、複数のアンテナ素子506のそれぞれが等間隔で配列されたリニアアレーアンテナである。各位相器503は、送信アンテナ505の指向性のピークが基地局600の方向に向くように、各アンテナ素子506に給電される高周波信号の位相を制御する。送信アンテナ505は、送信データの情報を担う無線信号を送信する。
 受信アンテナ507は、複数のアンテナ素子508のそれぞれが等間隔で配列されたリニアアレーアンテナである。各アンテナ素子508が受信する無線信号は、増幅器509により電力増幅され、混合器510によりダウンコンバートされ、A/D変換器511によりA/D変換される。
 信号処理装置100は、A/D変換器511によってデジタル信号に変換された無線信号を、本発明の実施形態に関わるスペクトル解析方法に従って、信号処理することにより、無線信号の到来方向を推定する。例えば、信号処理装置100は、「A/D変換器511によってデジタル信号に変換された無線信号」を、図2のステップ201~204の「無線信号」として信号処理を行い、解析結果としての周波数スペクトルデータから、無線信号の到来方向(通信端末500に対する基地局600の方位角及び仰角)を推定する。信号処理装置100は、送信アンテナ505の指向性のピークが基地局600の方向に向くように、各位相器503の位相シフト量を計算し、その計算結果を各位相器503に出力する。
 信号処理装置100は、各A/D変換器511によってデジタル信号に変換された無線信号にDBF (Digital Beam Forming)の処理を実行し、ビーム合成を行う。ビーム合成の結果から、復調回路512により、受信データが復調される。
 ここで、図8の説明に戻る。上述の説明では、通信端末500は、基地局600から受信した無線信号を、本発明の実施形態に関わるスペクトル解析方法に従って、信号処理することにより、解析結果としての周波数スペクトルデータから、無線信号の到来方向を推する例を示したが、本発明は、このような例に限られない。例えば、通信端末500は、基地局600から受信した無線信号をサーバ装置700に転送し、無線信号の到来方向の推定をサーバ装置700に要求してもよい。
 サーバ装置700は、例えば、クラウドサーバなどの汎用のコンピュータシステムである。サーバ装置700は、プロセッサ701、メモリ702、通信インタフェース703、及び記憶装置704を備えている。記憶装置704には、本発明の実施形態に関わるスペクトル解析プログラム200が記憶されている。スペクトル解析プログラム200は、記憶装置704からメモリ702に読み込まれてプロセッサ701により実行される。
 サーバ装置700は、通信端末500からの要求に応答して、通信端末500から受信した無線信号を、本発明の実施形態に関わるスペクトル解析方法に従って、信号処理することにより、無線信号の到来方向を推定する。サーバ装置700は、無線信号の到来方向の推定結果を通信端末500に送信する。無線信号の到来方向の推定結果を受信した通信端末500は、その推定結果を基に、アンテナの指向性のピークを向ける。
 上述の説明では、通信端末500は、基地局600からの電波の到来方向を推定し、その推定した方向に、アンテナの指向性のピークを向ける例を示したが、本発明は、このような例に限られない。例えば、図10に示すように、複数の通信端末500のうち何れか一つの通信端末500は、他の通信端末500からの電波の到来方向を推定し、その推定した方向に、アンテナの指向性のピークを向けてもよい。ある一つの通信端末500が、他の通信端末500からの電波の到来方向を推定するハードウェア構成は、図9に示すハードウェア構成と同様であるため、その詳細な説明を省略する。
 また、例えば、ある一つの通信端末500は、他の通信端末500から受信した無線信号をサーバ装置700に転送し、無線信号の到来方向の推定をサーバ装置700に要求してもよい。サーバ装置700は、通信端末500からの要求に応答して、通信端末500から受信した無線信号を、本発明の実施形態に関わるスペクトル解析方法に従って、信号処理することにより、無線信号の到来方向を推定する。サーバ装置700は、無線信号の到来方向の推定結果を通信端末500に送信する。無線信号の到来方向の推定結果を受信した通信端末500は、その推定結果を基に、アンテナの指向性のピークを向ける。
 図11は、本発明の実施形態に関わる固定通信装置800の説明図である。固定通信装置800は、通信端末500と近距離無線接続するアクセスポイントとして機能する基地局である。通信端末500及び各固定通信装置800は、例えば、GPS(Global Positioning System)システムなどを通じて予め時刻同期がされている。通信端末500は、一定の周期で無線信号を送信している。固定通信装置800は、通信端末500から送信された無線信号を受信した時刻を推定し、通信端末500から無線信号が送信された時刻と固定通信装置800が無線信号を受信した時刻との差から、通信端末500と固定通信装置800との間の距離を推定する。このような推定処理を各固定通信装置800が実行することにより、三角法により、通信端末500の位置を求めることができる。
 図12は、本発明の実施形態に関わる固定通信装置800の構成を示す説明図である。固定通信装置800は、受信アンテナ801、A/D変換器802、及び信号処理装置100を備える。受信アンテナ801は、通信端末500からの無線信号を受信する。A/D変換器802は、受信アンテナ801によって受信された無線信号をA/D変換する。信号処理装置100は、A/D変換された無線信号を、本発明の実施形態に関わるスペクトル解析方法に従って、信号処理することにより、通信端末500から送信された無線信号を受信した時刻を推定する。例えば、信号処理装置100は、「A/D変換器802によってデジタル信号に変換された無線信号」を、図2のステップ201~204の「無線信号」として信号処理を行い、位相分解データ(スペクトル)から元の時間信号の再生を行い、通信端末500から送信された無線信号を受信した時刻を推定する。
 図13(a)は、通信端末500から時刻t1に送信された無線信号131を示している。図13(b)は、固定通信装置800で受信され、高速フーリエ変換により再生された無線信号132と、AF法により再生された無線信号133,134を示している。AF法により再生された無線信号134の電力は、高速フーリエ変換により再生された無線信号132の電力よりも高いため、AF法により再生された無線信号134は偽波である。信号処理装置100は、AF法により再生された無線信号133を基に、通信端末500から送信された無線信号を受信した時刻t2を推定する。信号処理装置100は、通信端末500から無線信号が送信された時刻t1と固定通信装置800が無線信号を受信した時刻t2との差から、通信端末500と固定通信装置800との間の距離を推定する。
 ここで、図11の説明に戻る。上述の説明では、固定通信装置800は、通信端末500から送信された無線信号を受信した時刻を推定し、通信端末500から無線信号が送信された時刻と固定通信装置800が無線信号を受信した時刻との差から、通信端末500と固定通信装置800との間の距離を推定する例を示した。しかしながら、本発明は、このような例に限られない。例えば、固定通信装置800は、通信端末500から送信された無線信号をサーバ装置700に転送し、通信端末500から送信された無線信号を固定通信装置800が受信した時刻の推定をサーバ装置700に要求してもよい。サーバ装置700は、固定通信装置800からの要求に応答して、固定通信装置800が通信端末500から受信した無線信号を、本発明の実施形態に関わるスペクトル解析方法に従って、信号処理することにより、通信端末500から送信された無線信号を固定通信装置800が受信した時刻を推定する。サーバ装置700は、受信時刻の推定結果を固定通信装置800に送信する。受信時刻の推定結果を受信した固定通信装置800は、その推定結果を基に、通信端末500と固定通信装置800との間の距離を推定する。
 なお、サーバ装置700は、ネットワークを通じてスペクトル解析プログラム200をダウンロードし、これを記憶装置704に保存してもよい。或いは、サーバ装置700は、コンピュータ読み取り可能な記録媒体に記録されているスペクトル解析プログラム200を記憶装置704にインストールしてもよい。コンピュータ読み取り可能な記録媒体は、例えば、光磁気記録媒体、磁気記録媒体、或いは半導体メモリなどの任意の記録媒体である。
 なお、以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。即ち、実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。また、実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 
100…信号処理装置 101…プロセッサ 102…メモリ 103…入出力インタフェース 104…記憶装置 200…スペクトル解析プログラム 300…レーダ装置 400…物標 500…通信端末 600…基地局 700…サーバ装置 800…固定通信装置 900…障害物
 

Claims (8)

  1.  コンピュータに、
     受信した無線信号から、Annihilating Filter法により、第1の周波数スペクトルデータを生成することと、
     前記無線信号から、前記Annihilating Filter法とは異なる周波数スペクトル解析法により、第2の周波数スペクトルデータを生成することと、
     前記第1の周波数スペクトルデータの周波数の値と、前記第2の周波数スペクトルデータの周波数の値とのうち、最も近い周波数の値同士を対応付けることと、
     前記第1の周波数スペクトルデータにおける第1の周波数の第1の電力値と、前記第1の周波数に対応する前記第2の周波数スペクトルデータにおける第2の周波数の第2の電力値との比較に基づいて、解析結果としての周波数スペクトルデータを生成することであって、前記第1の電力値が前記第2の電力値以下である場合、前記第1の電力値を、解析結果としての周波数スペクトルデータの前記第1の周波数の電力値として採用し、前記第2の電力値が前記第1の電力値未満である場合、前記第2の電力値を、解析結果としての周波数スペクトルデータの前記第1の周波数の電力値として採用する、ことと、
     を実行させるスペクトル解析プログラム。
  2.  請求項1に記載のスペクトル解析プログラムであって、
     前記第2の周波数スペクトルデータの周波数の値は、離散的な値である、スペクトル解析プログラム。
  3.  請求項1又は2に記載のスペクトル解析プログラムであって、
     前記Annihilating Filter法とは異なる周波数スペクトル解析法は、離散フーリエ変換である、スペクトル解析プログラム。
  4.  信号処理装置であって、
     受信した無線信号から、Annihilating Filter法により、第1の周波数スペクトルデータを生成する手段と、
     前記無線信号から、前記Annihilating Filter法とは異なる周波数スペクトル解析法により、第2の周波数スペクトルデータを生成する手段と、
     前記第1の周波数スペクトルデータの周波数の値と、前記第2の周波数スペクトルデータの周波数の値とのうち、最も近い周波数の値同士を対応付ける手段と、
     前記第1の周波数スペクトルデータにおける第1の周波数の第1の電力値と、前記第1の周波数に対応する前記第2の周波数スペクトルデータにおける第2の周波数の第2の電力値との比較に基づいて、解析結果としての周波数スペクトルデータを生成する手段であって、前記第1の電力値が前記第2の電力値以下である場合、前記第1の電力値を、解析結果としての周波数スペクトルデータの前記第1の周波数の電力値として採用し、前記第2の電力値が前記第1の電力値未満である場合、前記第2の電力値を、解析結果としての周波数スペクトルデータの前記第1の周波数の電力値として採用する、手段と、
     を備える信号処理装置。
  5.  物標に送信信号を送信する送信アンテナと、
     前記物標で反射した送信信号の反射波を受信信号として受信する受信アンテナと、
     前記送信信号及び前記受信信号を混合して、前記送信信号前記受信信号との間の周波数差を示す中間周波数信号を出力する混合器と、
     請求項4に記載の信号処理装置であって、前記中間周波数信号を前記無線信号として前記解析結果としての周波数スペクトルデータを生成し、前記解析結果としての周波数スペクトルデータに基づいて前記物標の速度、距離、及び角度のうち何れかを推定する信号処理装置と、
     を備えるレーダ装置。
  6.  基地局又は他の通信端末からの無線信号を受信する受信アンテナと、
    請求項4に記載の信号処理装置であって、前記解析結果としての周波数スペクトルデータから、前記無線信号の到来方向を推定する信号処理装置と、
     を備える通信端末。
  7.  通信端末からの無線信号を受信する受信アンテナと、
    請求項4に記載の信号処理装置と、
     を備える固定通信装置であって、
     前記信号処理装置は、前記解析結果としての周波数スペクトルデータから、前記受信アンテナが前記無線信号を受信した時刻を推定し、前記通信端末から前記無線信号が送信された時刻と前記受信アンテナが前記無線信号を受信した時刻との差から、前記通信端末と前記固定通信装置との間の距離を推定する手段を備える、固定通信装置。
  8.  請求項1に記載のスペクトル解析プログラムを記録したコンピュータ読み取り可能な記録媒体。
     
PCT/JP2022/028690 2021-08-11 2022-07-26 スペクトル解析プログラム、信号処理装置、レーダ装置、通信端末、固定通信装置、及び記録媒体 WO2023017726A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023541390A JPWO2023017726A1 (ja) 2021-08-11 2022-07-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021131071 2021-08-11
JP2021-131071 2021-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/437,662 Continuation US20240183890A1 (en) 2021-08-11 2024-02-09 Spectrum analysis program, signal processing device, radar device, communication terminal, fixed communication device, and recording medium

Publications (1)

Publication Number Publication Date
WO2023017726A1 true WO2023017726A1 (ja) 2023-02-16

Family

ID=85199952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028690 WO2023017726A1 (ja) 2021-08-11 2022-07-26 スペクトル解析プログラム、信号処理装置、レーダ装置、通信端末、固定通信装置、及び記録媒体

Country Status (2)

Country Link
JP (1) JPWO2023017726A1 (ja)
WO (1) WO2023017726A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500683A (ja) * 1992-07-06 1995-01-19 テレフオンアクチーボラゲツト エル エム エリクソン 音声符号化補間に基づく時変スペクトル分析
JPH09145461A (ja) * 1995-11-20 1997-06-06 Tech Res & Dev Inst Of Japan Def Agency 最大エントロピー方法による周波数分析方式
JP2001349941A (ja) * 2000-06-08 2001-12-21 Japan Radio Co Ltd Fm−cwレーダ装置
JP2009014405A (ja) * 2007-07-02 2009-01-22 Hitachi Ltd 車載用レーダ装置
US20130039451A1 (en) * 2010-03-31 2013-02-14 Innovationszentrum Fuer Telekommunikationstechnik Gmbh Izt Apparatus and method for converting an analog time domain signal into a digital frequency domain signal, and apparatus and method for converting an analog time domain signal into a digital time domain signal
JP2013051675A (ja) * 2011-07-26 2013-03-14 Silver Spring Networks Inc マルチモード信号取得のためのシステムおよび方法
WO2021210489A1 (ja) * 2020-04-17 2021-10-21 株式会社村田製作所 レーダ装置、車両、及び到来波数推定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500683A (ja) * 1992-07-06 1995-01-19 テレフオンアクチーボラゲツト エル エム エリクソン 音声符号化補間に基づく時変スペクトル分析
JPH09145461A (ja) * 1995-11-20 1997-06-06 Tech Res & Dev Inst Of Japan Def Agency 最大エントロピー方法による周波数分析方式
JP2001349941A (ja) * 2000-06-08 2001-12-21 Japan Radio Co Ltd Fm−cwレーダ装置
JP2009014405A (ja) * 2007-07-02 2009-01-22 Hitachi Ltd 車載用レーダ装置
US20130039451A1 (en) * 2010-03-31 2013-02-14 Innovationszentrum Fuer Telekommunikationstechnik Gmbh Izt Apparatus and method for converting an analog time domain signal into a digital frequency domain signal, and apparatus and method for converting an analog time domain signal into a digital time domain signal
JP2013051675A (ja) * 2011-07-26 2013-03-14 Silver Spring Networks Inc マルチモード信号取得のためのシステムおよび方法
WO2021210489A1 (ja) * 2020-04-17 2021-10-21 株式会社村田製作所 レーダ装置、車両、及び到来波数推定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOICHI OBATA, SHOHEI HAMADA, KOICHI ICHIGE, NOBUYA ARAKAWA, KATSUHISA KASHIWAGI: "B-1-112 Distinguishing Real and Virtual Images in DOA Estimation Method Using Annihilating Filter", PROCEEDINGS OF THE 2021 IEICE COMMUNICATION SOCIETY CONFERENCE, IEICE, JP, 31 August 2021 (2021-08-31), JP, pages 112, XP009543543 *

Also Published As

Publication number Publication date
JPWO2023017726A1 (ja) 2023-02-16

Similar Documents

Publication Publication Date Title
US10890652B2 (en) Radar apparatus
US9097791B2 (en) Radar device
JP6818541B2 (ja) レーダ装置および測位方法
JP3525425B2 (ja) Fm−cwレーダ
US9470784B2 (en) Radar device
JP4737165B2 (ja) レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
JP5810287B2 (ja) レーダ装置
JP4986454B2 (ja) レーダ装置
JP2009168452A (ja) レーダ装置
JP2004170371A (ja) 方位検出装置
JP4082442B2 (ja) 方位検出装置
Guetlein et al. Calibration strategy for a TDM FMCW MIMO radar system
JP2001166029A (ja) Dbfレーダ装置
WO2023017726A1 (ja) スペクトル解析プログラム、信号処理装置、レーダ装置、通信端末、固定通信装置、及び記録媒体
JP4356662B2 (ja) 分散ネットワーク・レーダ装置
Kurganov Antenna array complex channel gain estimation using phase modulators
JP7248454B2 (ja) レーダ装置および補正値算出方法
JP2004117246A (ja) アンテナ装置
JP2020016474A (ja) レーダシステム及び信号処理方法
US20240183890A1 (en) Spectrum analysis program, signal processing device, radar device, communication terminal, fixed communication device, and recording medium
JP7406712B2 (ja) レーダ装置、車両、及び到来波数推定方法
Feger et al. Sparse antenna array design and combined range and angle estimation for FMCW radar sensors
JP2010056626A (ja) 漏れ波の遅れ位相と振幅を算出する方法
JP4784332B2 (ja) パルスレーダ装置
JP2000091844A (ja) 多重無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541390

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE