WO2023016327A1 - 光电探测阵列、光电探测器、及激光雷达 - Google Patents

光电探测阵列、光电探测器、及激光雷达 Download PDF

Info

Publication number
WO2023016327A1
WO2023016327A1 PCT/CN2022/110177 CN2022110177W WO2023016327A1 WO 2023016327 A1 WO2023016327 A1 WO 2023016327A1 CN 2022110177 W CN2022110177 W CN 2022110177W WO 2023016327 A1 WO2023016327 A1 WO 2023016327A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
array
area
light
electrode
Prior art date
Application number
PCT/CN2022/110177
Other languages
English (en)
French (fr)
Inventor
张乃川
石拓
Original Assignee
北京一径科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京一径科技有限公司 filed Critical 北京一径科技有限公司
Publication of WO2023016327A1 publication Critical patent/WO2023016327A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Definitions

  • a photodetector array converts light energy into electrical energy.
  • the photodetection array can be formed by array arrangement of photodiodes.
  • Photodiodes typically use semiconductor materials that absorb received light energy and generate a photocurrent based on the absorbed light energy. Through the photoelectric conversion characteristics of photodiodes, optical signal detection can be performed.
  • an absorbing layer located on a second side of the first electrode layer opposite to the first side, configured to absorb light energy of the light to be measured transmitted through the first electrode layer, and generate light energy based on the absorbed light energy Photocurrent;
  • the second electrode layer is located on the side of the absorption layer opposite to the first electrode layer, the second electrode layer includes a plurality of second electrodes distributed in an array, and the adjacent said second electrodes are electrically isolated from each other, each of said second electrodes corresponding to an area of said absorbing layer covered by that second electrode;
  • each of the second electrodes is respectively coupled to the first electrode layer and is configured to output a voltage corresponding to the photocurrent generated by the region of the absorption layer corresponding to the second electrode.
  • the photoelectric detection array also includes:
  • a contact layer located between the second electrode layer and the absorption layer, the contact layer includes a plurality of contact blocks distributed in an array, each of the contact blocks corresponds to one of the second electrodes;
  • a multiplication layer located between the contact layer and the absorber layer, is configured to amplify the photocurrent generated by the absorber layer, the areas of the multiplication layer covered by each of the contact blocks not overlapping each other.
  • the cross-section of the contact blocks in the direction of array distribution is polygonal, and the polygon has at least four sides.
  • the first electrode layer includes a common electrode, and each of the second electrodes is coupled to the common electrode.
  • the photodetection array further includes a transparent substrate, located between the first electrode layer and the absorption layer, and made of a transparent semiconductor material.
  • the photodetection array further includes a transition layer located between the transparent substrate and the absorbing layer and configured to smooth the barrier between the transparent substrate and the absorbing layer.
  • a photodetector including:
  • connection circuit can be electrically connected to each of the second electrodes of the photodetection array, and is configured to be able to read the voltage output by each of the second electrodes;
  • a processor electrically connected to the connection circuit and configured to receive the voltage output by each of the second electrodes from the connection circuit.
  • the photodetector also includes:
  • the control circuit is configured to control the connection circuit of the photodetection array to be turned on or off according to the control signal of the processor.
  • control circuit, the connection circuit and the photodetection array are packaged in a detection chip
  • the detection chip includes an array area and a circuit area, and the circuit area surrounds the periphery of the array area;
  • the photodetection array is located in the array area;
  • control circuit is located within the circuit area
  • An insulating isolation zone is provided between the circuit area and the array area.
  • control circuit includes:
  • a power supply circuit connected to the first electrode layer of the photodetection array and configured to provide an operating voltage to the first electrode layer;
  • the base material of the circuit area is a semiconductor material, and the base material of the circuit area is doped with conductive doped particles at a position corresponding to the control circuit.
  • the photodetector also includes:
  • the optical film at least includes:
  • a composite film wherein the composite film is formed by mixing multiple materials, and the multiple materials are configured to respectively realize different optical phenomena;
  • the laminated film includes at least two film layers with different optical phenomena, and the at least two film layers are stacked.
  • the optical film is configured to increase the transmittance of the light to be measured incident on the absorption layer and/or filter out interfering light other than the light to be measured.
  • the optical film is divided into:
  • a plurality of second regions configured to transmit light of a second wavelength to the absorbing layer.
  • the first area and the second area are distributed according to a preset pattern interval.
  • the first region and the second region have the same shape and equal area, one of the first region and one of the second region corresponds to the N second electrodes of the photodetection array, the N is a positive integer.
  • the first region and the second region that are located in the same row and adjacent to each other in one preset pattern are connected to the same connection circuit;
  • the first region and the second region located in the same column and adjacent to each other in one preset pattern are connected to the same connection circuit;
  • One of the connecting circuits conducts the corresponding first area and the second area in a time-division manner.
  • the first area is distributed on the diagonal of any rectangular area in the preset pattern.
  • the second area is distributed on the diagonal of any rectangular area in the preset pattern.
  • a laser radar including:
  • the photodetector provided in any of the foregoing embodiments is used for detecting the return light of the laser light.
  • FIG. 1 is a schematic structural diagram of a photodetection array provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a photodetection array provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a photodetection array provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a photodetector provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a photodetector provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an optical film provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural view of an optical film provided by an embodiment of the present disclosure.
  • Fig. 10 is a schematic structural diagram of a lidar provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a photoelectric detection array, including:
  • the first electrode layer 32, the light to be measured can be incident from the first side of the first electrode layer 32 and transmitted through the first electrode layer 32;
  • the absorption layer 33 located on the second side of the first electrode layer 32 opposite to the first side, is configured to absorb light energy of the light to be measured transmitted through the first electrode layer 32, and generate light based on the absorbed light energy current;
  • the second electrode layer 30, the second electrode layer 30 is located on the side opposite to the first electrode layer 32 of the absorption layer 33, the second electrode layer 30 includes a plurality of second electrodes 34 distributed in an array, the adjacent second electrodes The electrodes 34 are electrically isolated from each other, each second electrode 34 corresponding to the area of the absorption layer 33 covered by this second electrode 34;
  • Each second electrode 34 is respectively coupled to the first electrode layer 32 and configured to output a voltage corresponding to the photocurrent generated by the region of the absorption layer 33 corresponding to the second electrode 34 .
  • a transparent substrate 31 may also be provided, and the first electrode layer 32 and the absorption layer 33 may be located on both sides of the transparent substrate 31 .
  • the transparent substrate 31 can provide support for the structure of the photodetection array.
  • the transparent substrate 31 may be a transparent substrate, and thus allows the light to be measured passing through the first electrode layer 32 to pass through the transparent substrate 31 and be incident on the absorbing layer 33 .
  • the absorption layer 33 can be made of InGaAs and other materials.
  • the material of the absorption layer 33 includes but not limited to undoped indium gallium arsenide phosphide (U-InGaAs).
  • the absorbing layer 33 will absorb the light energy of the incident light to be measured, and convert the absorbed light energy into electrical energy, thereby forming a photocurrent. For example, electrons in the ground state in the absorbing layer 33 transition to an excited state after absorbing light energy. The more light energy absorbed by the absorbing layer 33 , the greater the photocurrent will be formed, and the further change in the applied voltage between the first electrode layer 32 and the second electrode 34 will be greater.
  • the absorption layer 33 can be shared by all the second electrodes 34 of the second electrode layer 30 of the entire photodetection array.
  • Different second electrodes 34 cover different areas of the absorption layer 33 , that is, the areas of the absorption layer 33 covered (or corresponding) by any two second electrodes 34 do not overlap. Each second electrode 34 corresponds to the area of the absorption layer 33 covered by the second electrode 34 .
  • the first electrode layer 32 may be a common electrode, that is, one first electrode layer 32 is shared by all the second electrodes 34 in the photodetection array. Any two second electrodes 34 are electrically isolated from each other. Exemplarily, any two second electrodes 34 are provided separately, and each second electrode 34 is coupled with a common power supply to provide a voltage to the outside.
  • the second electrode 34 can be a transparent electrode or a non-transparent electrode.
  • a plurality of the second electrodes 34 are distributed in an array, including but not limited to a plurality of the second electrodes 34 are distributed in a rectangular array.
  • the array-type second electrodes 34 are divided into a plurality of rows and a plurality of columns.
  • a photocurrent When light to be measured is incident at the region of the absorbing layer 33 corresponding to one second electrode 34, a photocurrent is generated.
  • the photocurrent can generate a voltage drop between the second electrode 34 and the first electrode layer 32, so that the voltage introduced from the second electrode 34 drops relative to the voltage when no light to be measured is incident on the corresponding absorbing layer 33, thereby Realize the detection of the light to be measured.
  • the light intensity of the light to be measured can be determined according to the voltage drop between the output voltage after coupling between the second electrode 34 and the first electrode layer 32 relative to the voltage drop when no light to be measured is incident.
  • One second electrode 34 together with the region of the absorbing layer 33 covered under the second electrode 34 and the first electrode layer 32 may correspond to one photodiode in the photodetection array. If the second electrode 34 is an N electrode of a photodiode, the first electrode layer 32 is a P electrode common to all photodiodes. Alternatively, if the second electrode 34 is a P electrode of a photodiode, the first electrode layer 32 is an N electrode common to all photodiodes. The N electrode is electrically connected to the N region of the corresponding photodiode, and the P electrode is electrically connected to the P region of the corresponding photodiode.
  • the N region includes N-type doped semiconductor material
  • the P region includes P-type doped semiconductor material.
  • the interface between the P region and the N region forms the PN junction of the photodiode.
  • the photodiode includes but is not limited to an avalanche photodiode (Avalanche Photon Diode, APD).
  • the first electrode layer 32 is a common electrode shared by multiple second electrodes 34 in the photodetection array, thereby simplifying the structure of the photodetection array and the fabrication of the photodetection array.
  • the transparent substrate 31 is a substrate made of a transparent semiconductor material.
  • the material of the transparent substrate 31 includes but not limited to N-type doped indium phosphide (N-InP).
  • the transparent substrate 31 can serve as one of the N region and the P region of the photodiode, and the first electrode layer 32 can directly contact the transparent substrate 31 .
  • the transparent semiconductor material of the transparent substrate 31 can be transparent silicon material. Therefore, the first electrode layer 32 does not need to be electrically connected to the N region or the P region through via holes, thereby simplifying the manufacturing process of the photodetection array.
  • connection circuit of the first electrode layer 32 thus simplifies the connection circuit 11 of the photodetection array.
  • One first electrode layer 32 is equivalent to an electrode of another polarity corresponding to the plurality of second electrodes 34 in the embodiment of the present disclosure, and the first electrode layer 32 may only need one connection circuit. Therefore, the number of connecting circuits can be greatly reduced.
  • the connection circuit can generally be made of opaque metal.
  • the area covered by the connecting circuits on the incident surface of the light to be measured can be reduced, thereby achieving an increase in the area of the light to be measured without increasing the area of the photodetection array itself.
  • Light incident area In the embodiment of the present disclosure, multiple second electrodes 34 and the first electrode layer 32 are located on different surfaces of the transparent substrate 31, and the connection circuit of the photodiode formed by the combination of the second electrodes 34 and the first electrode layer 32 will cover on the side of the second electrode 34 .
  • the light to be measured is incident from the side of the first electrode layer 32 , passes through the first electrode layer 32 and the transparent substrate 31 and then enters the absorbing layer 33 .
  • the side of the second electrode 34 covered by the connecting circuit is the non-incident surface of the light to be measured. Therefore, the light to be measured will be incident from the entire transparent first electrode layer 32 and the transparent substrate 31 without being blocked. Therefore, the shielding of the light to be measured by the connecting circuit can be reduced, thereby increasing the light transmission area of the photodetection array per unit area, so that the photodetection array can detect more light and improve the light detection efficiency.
  • the light to be measured can be laser light and the photodetection array can be used for the return light detection of the ranging laser, then the photodetection array has a larger area to receive the return light (this return light Reflected by objects in space, it can also be called space light). In this way, the photodetection array can improve light detection efficiency.
  • the laser emitted by the laser emitter is detected as much as possible, so that it has the characteristics of high light detection efficiency.
  • the light to be measured may also be infrared light and other light that can be detected by a photodiode.
  • the laser may be a laser with a wavelength of 905 nm, or a laser with a wavelength of 1310 nm, or a laser with a wavelength of 1550 nm.
  • the photodetection array provided in the embodiments of the present disclosure has the feature of a relatively larger light receiving area.
  • the photodetection array further has one or more transition layers between the transparent substrate 31 and the absorption layer 33 .
  • the transition layer 41 includes two layers, one is an N-type doped transition layer, and the other is an undoped transition layer.
  • the N-type doped transition layer is in contact with the transparent substrate 31
  • the undoped transition layer is in contact with the absorption layer 33 . That is, the N-type doped transition layer is located between the transparent substrate 31 and the non-doped transition layer.
  • the material of the N-type doped transition layer includes but not limited to N-type doped indium phosphide (N-InP); the undoped transition layer may be undoped indium phosphide (U-InP).
  • the substrates of different transition layers 41 are the same.
  • the substrates of the aforementioned N-type doped transition layer and the non-doped transition layer are both InP, so the substrates of multiple transition layers are formed through one manufacturing process.
  • one-shot deposition is done. During the deposition process, the transition layer to be doped and the non-doped transition layer are produced through the control of doping particles.
  • the base material of the transition layer 41 may be consistent with the base material of the transparent substrate 31 .
  • the base material of the transition layer and the base material of the transparent substrate 31 are both indium phosphide (InP). In this way, the manufacturing process of the photodetection array can be further simplified.
  • the transition layer 41 may be configured to smooth the barrier between the transparent substrate 31 and said absorber layer 33 .
  • the photodetection array may also include:
  • the contact layer 39 is located between the second electrode layer 30 and the absorption layer 33.
  • the contact layer 39 includes: a plurality of contact blocks 35 distributed in an array, and each contact block 35 is connected to a corresponding one of the contact blocks 35.
  • the second electrode 34 is electrically connected, and the adjacent contact blocks 35 are electrically isolated from each other;
  • the multiplication layer 36 located between the contact layer 39 and the absorption layer 33, is configured to amplify the photocurrent generated by the absorption layer 33, the multiplication layer 36 covered by each of the contact blocks 35 Regions do not overlap each other.
  • the transparent substrate 31 constitutes the P region of the photodiode, and the contact block 35 may constitute the N region of the photodiode.
  • the transparent substrate 31 constitutes the N region of the photodiode, and the contact block 35 constitutes the P region of the photodiode.
  • the second electrode 34 and the multiplication layer 36 can be electrically connected through the contact layer 39 .
  • One side of the contact layer 39 contacts the multiplication layer 36 and forms an electrical connection between the contact layer 39 and the multiplication layer 36, and the other side of the contact layer 39 contacts the second electrode 34 and forms a connection between the contact layer 39 and the second electrode 34. electrical connection between.
  • the material of the contact layer 39 includes but not limited to undoped indium gallium arsenide phosphide (U—InGaAs).
  • the multiplication layer 36 may also be called an avalanche layer.
  • the absorption layer 33 absorbs photons and releases electrons to form a photocurrent. After the photocurrent is transmitted to the multiplication layer 36, it will be multiplied by the multiplication layer 36, thereby forming a multiplication current several times larger than the photocurrent.
  • the multiplication layer 36 can amplify the photocurrent by ten times or even tens of times. Using the multiplication and amplification effect of the multiplication layer 36 can improve the sensitivity of light detection.
  • the material of the multiplication layer 36 includes but not limited to N-type doped indium phosphide (N-InP).
  • the contact layer 39 at least includes contact blocks 35 equal to the number of the second electrodes 34 , and the area of the multiplication layer 36 covered by each contact block 35 does not overlap with each other.
  • the contact blocks 35 included in the contact layer 39 are distributed in an array on the multiplication layer 36 .
  • the multiplication layer 36 can be shared by a plurality of photodiodes, and the multiplication layer 36 can be simply realized by deposition when manufacturing the photodetection array.
  • the contact layer 39 is divided into a plurality of contact blocks 35 so that different second electrodes 34 are coupled with the first electrode layer 32 to form N electrodes and P electrodes of different photodiodes.
  • the cross-sections of the contact blocks 35 in the direction of array distribution can be in various shapes, for example, circular.
  • the cross-section of the contact block 35 in the direction of the array distribution refers to the cross-section formed by a plane parallel to the array plane of the photodetection array crossing the contact block 35 .
  • the cross-section of the contact blocks 35 in the direction of array distribution is polygonal.
  • the polygon is at least a quadrilateral or more than a quadrilateral.
  • the cross-section of the contact blocks 35 in the direction of the array distribution may be: a regular quadrilateral, a regular pentagon or a regular hexagon.
  • the cross section of the contact block 35 in the direction of array distribution may be a cross section parallel to the contact surface of the contact block 35 and the multiplication layer 36 .
  • the cross-section of the contact block 35 is a polygon (such as a regular polygon) above a quadrilateral, while maintaining the required separation distance between adjacent contact blocks 35, on the multiplication layer 36 per unit area, the contact The contact surface between the block 35 and the multiplication layer 36 is larger, so that the photocurrent generated in the region corresponding to the absorption layer 33 and the current amplified by the light through the multiplication layer 36 are detected more.
  • the detection efficiency of spatial light can be improved, and at the same time, the light to be measured incident into the gap between the two contact blocks 35 can be reduced, thereby reducing the negative impact on the detection accuracy.
  • the side length of the contact block 35 with a regular quadrilateral cross section may be equal to the diameter of the contact block 35 with a circular cross section.
  • the cross-sectional area of the cylindrical contact block 35 with a square cross-section is greater than the cross-sectional area of the cylindrical contact block 35 with a cylindrical cross-section.
  • the cross section of the contact block 35 is a regular pentagon or a regular hexagon, such a cross section has a larger area than a regular quadrangle, so that the area of the contact block 35 can be further increased.
  • the shape of the second electrode 34 may be the same as or different from the shape of the cross section of the contact block 35 .
  • the cross section of the contact block 35 is a regular hexagon, and the shape of the second electrode 34 may also be a regular hexagon.
  • the cross-section of the contact block 35 is polygonal (such as a regular hexagon)
  • the cross-section of the photodiode near the end of the second electrode 34 can still be rectangular, and the photodetection array is still at this time.
  • the rectangular array includes a plurality of photodiodes arranged in rows and columns.
  • the cross section of the photodiode close to the second electrode 34 may have the same shape as the cross section of the contact block 35 .
  • an isolation ring 38 may be provided on the second electrode 34 for isolation between the second electrode 34 of an adjacent photodiode and the contact block 35 .
  • the isolation ring 38 is externally connected to the second electrode 34 and the contact block 35 .
  • the outer edges of the isolation ring 38 are in contact with the isolation rings 38 of other photodiodes, thereby realizing the electrical isolation of two adjacent photodiodes.
  • the isolation ring 38 is not a rectangular ring, the photodiodes are no longer a rectangular array, but other arrays in which polygons are directly stacked.
  • the cross section of the contact block 35 is a regular hexagon, and the isolation ring 38 between the photodiodes is also a regular hexagon, then the photodetection array can be a honeycomb array.
  • the photodetector array is a rectangular array, one second electrode 34 and the area below it corresponds to a photodiode; the isolation ring 38 between adjacent photodiodes is rectangular ring.
  • the photodetection array is a honeycomb array
  • one second electrode 34 corresponds to one photodiode
  • the isolation ring 38 between adjacent photodiodes is a positive hexagon. ring.
  • the cross section of the contact block 35 is a regular hexagonal ring and the isolation ring 38 is a regular hexagonal ring
  • the number of photodiodes per unit area is more, and the area of the contact block 35 included in the photodiode is larger. Therefore, more light to be measured can be absorbed, and the detection accuracy and sensitivity of the photodetection array can be improved.
  • the material of the isolation ring 38 may be the same as that of the multiplication layer 36 .
  • the isolation ring 38 differs from the multiplication layer 36 in that the position of the multiplication layer 36 and the isolation ring 38 are different.
  • the multiplication layer 36 is located between the absorption layer 33 and the contact block 35, that is, the multiplication layer is located at the bottom surface of the contact block 35; and the isolation ring 38 is located between the contact block 35 and the second electrode 34 sides.
  • the material of the multiplication layer 36 and the isolation ring 38 can be a doped semiconductor material, but since the isolation ring 38 is on both sides of the contact block 35 and the second electrode 34, it cannot receive the absorption layer 33 Because electrons excited by the absorption of light energy can be electrically isolated between two adjacent contact blocks 35 and two adjacent second electrodes 34 .
  • the material of the multiplication layer 36 and the isolation ring 38 includes but not limited to N-doped indium phosphide (N-InP).
  • the production of the multiplication layer 36 and the isolation ring 38 can be realized based on a single manufacturing process or manufacturing process, so the manufacturing process is simple and convenient. specialty.
  • one or more transition layers 42 and charge layers 37 may be disposed between the multiplication layer 36 and the absorption layer 33 . Similar to the transition layer 41 , the transition layer 42 can also be used to smooth the potential change between the absorption layer 33 and the multiplication layer 36 .
  • the charge layer 37 is in contact with the multiplication layer 36 , and the transition layers 42 are located between the charge layer 37 and the absorption layer 33 .
  • the charge layer 37 can make the electrons excited by the absorption layer 33 due to the absorption of light energy rapidly gather on the multiplication layer 36 to generate an avalanche phenomenon.
  • the charge layer 37 can be made of semiconductor material, for example, the charge layer can be N-type doped indium phosphide (N-InP).
  • the base materials of the transition layers 42 are the same. Further, the base material of the plurality of transition layers 42 may be consistent with the base material of the absorbing layer 33 .
  • both the base material of the plurality of transition layers 42 and the base material of the absorber layer 33 may be indium gallium arsenide phosphide (InGaAs).
  • InGaAs indium gallium arsenide phosphide
  • the N-type doped transition layer can be an N-type doped indium gallium arsenic phosphide (InGaAsP) layer, and the undoped transition layer can be a U-InGaAs layer.
  • the N-doped transition layer can also be called a graded layer.
  • the manufacturing process of the photodetection array can be simplified.
  • the photodetection array further includes: a protective substrate, the protective substrate is located on each of the second electrodes 34 and the connecting circuit, so as to protect the second electrodes 34 and the connecting circuit.
  • the connection circuit and the second electrode 34 are formed in one process. For example, patterned metal material is deposited on the contact layer, the second electrode 34 is formed at one time and the connection circuit with the second electrode 34 is formed simultaneously. After the fabrication of the second electrode 34 and the connecting circuit is completed, the protective substrate is formed.
  • an embodiment of the present disclosure provides a photodetector, including:
  • the photodetection array 10 provided by any of the foregoing technical solutions;
  • connection circuit 11 the connection circuit 11 can be electrically connected to each of the second electrodes 34 of the photodetection array 10, and is configured to be able to read the output voltage of each of the second electrodes 34 ;
  • the processor 13 is electrically connected to the connection circuit 11 and configured to receive the voltage output by each of the second electrodes 34 from the connection circuit 11 .
  • connection circuit 11 and the second electrode 34 may be located on the same layer of the photodetection array, for example, the connection circuit 11 may be distributed in the gap between the second electrodes 34 and connected to each second electrode 34.
  • the electrodes 34 are connected.
  • the corresponding connecting circuit 11 When the corresponding connecting circuit 11 is turned on, the voltage coupled between the second electrode 34 and the first electrode layer 32 is output.
  • the photodetection array 10 After the photodetection array 10 completes one scan, it can know the coupled voltage between each second electrode 34 and the power supply electrode in the current scan period, so as to know that the absorption layer 33 is detected in the area covered by the second electrode. The intensity of the light to be measured.
  • the photodetector includes the photodetection array provided by any of the foregoing embodiments.
  • the processor 13 may be a chip for controlling the light measurement of the photodetection array, or a chip for processing the signal measured by the photodetection array.
  • the photodetector provided by the embodiment of the present disclosure includes the aforementioned photodetection array.
  • the photodetection array detects the incident light from the side where the first electrode layer 32 is located. More light to be measured is detected, and the sensitivity and precision of the photodetection array are improved.
  • the photodetector also includes:
  • the control circuit 12 is configured to control the connection circuit 11 of the photodetection array to be turned on or off according to the control signal of the processor 13 .
  • the control circuit 12 is located at the periphery of the light detection array 10 .
  • control circuit 12 is electrically connected to each of the second electrodes 34 through the connection circuit 11 .
  • the connection circuit 11 can be a circuit on the same layer as the second electrode 34 .
  • the control circuit 12 can scan each photodiode in the photodetection array one by one by row and column by turning on or off the corresponding connection circuit 11 .
  • the control circuit 12 is located on the periphery of the photodetection array and is connected through various connection terminals on the edge of the photodetection array, so the control circuit 12 can become a peripheral circuit.
  • one of the connection terminals corresponds to a connection terminal located at the edge of the photodetection array.
  • the control circuit 12 may include gating sub-circuits.
  • the gating sub-circuit can gate the corresponding connecting circuit 11, so as to realize time-sharing conduction of different connecting circuits 11, thereby realizing scanning to the photodiodes corresponding to different second electrodes 34 within one scanning period, thereby obtaining different positions The intensity of the light to be measured detected by the photodiode.
  • control circuit 12 can scan each photodiode in the photodetection array one by one.
  • the gating subcircuit may include a row gating subcircuit and a column gating subcircuit.
  • the row gating sub-circuit turns on the row circuits of the photodetection array one by one in time division, and at the same time, the column gating sub-circuit turns on the column circuits of the photodetection circuit one by one in time division. In this way, at any moment in a scanning period, at least one photodiode corresponding to the second electrode 34 is turned on, so that the voltage across the photodiode can be read.
  • control circuit 12, the connection circuit 11 and the photodetection array 10 are packaged in a detection chip;
  • the detection chip includes an array area 21 and a circuit area 22, and the circuit area 22 surrounds the periphery of the array area 21;
  • the photodetection array 10 is located in the array area 21;
  • the control circuit 12 is located in the circuit area 22;
  • An insulating isolation strip 23 is provided between the circuit area 22 and the array area 21 .
  • control circuit 12 and the photodetection array are packaged in one chip, which can be called a detection chip.
  • the detection chip includes an array area 21 and a circuit area 22 , and the circuit area 22 is located on one or more sides of the periphery of the array area 21 .
  • the gating sub-circuit can conduct the row circuits of the connection circuit 11 from both sides, and then the row gating sub-circuits are provided on both sides of the detection array.
  • row gating sub-circuits are distributed on the left and right sides of the array area 21 .
  • row gating sub-circuits may be distributed on the left or right side of the array area 21 , and row gating sub-circuits may not be distributed on the other side.
  • the row gating sub-circuits on both sides of the array area 21 can turn on two adjacent row circuits in the connecting circuit 11 at different time points.
  • the gating sub-circuits on both sides of the array region 21 can simultaneously turn on two adjacent row connection circuits 11 , so as to realize reading the voltages of the photodiodes corresponding to the two second electrodes 34 at one time.
  • the row gating sub-circuit in the control circuit 12 may also be located only on one side of the array region 21 . Therefore, only the circuit row in the connection circuit 11 is turned on at one time point in the scanning period.
  • the column gate sub-circuits may also be located on two opposite sides of the array region 21 .
  • column gate subcircuits may be distributed on the front and rear sides of the array region 21 , or the column gate array may be distributed on only one of the front and rear sides of the array region 21 .
  • the two columns of the connection circuit 11 can be turned on at the same time, and then the two adjacent second electrodes 34 can be read at one time. corresponding to the photodiode voltage.
  • the column gate sub-circuit is located at the front side and the rear side of the array area 21, only one column in the connection circuit 11 can be turned on at a time point, and the photodiode corresponding to one second electrode 34 can be read at one time. voltage.
  • an isolation strip 23 is provided between the circuit area 22 and the array area 21 , and the isolation strip 23 is used to realize electrical isolation between the circuit area 22 and the array area 21 . Therefore, the electrons in the array area 21 entering the circuit area 22 can be reduced, resulting in inaccurate photodetection results.
  • a circuit is laid in the isolation zone 23 to form an electrical connection for securing the control circuit 12 and the connection circuit 11 .
  • the isolation strip 23 can be made of insulating material, or can be made of undoped semiconductor material.
  • Arranging the control circuit 12 in the circuit area 22 on the periphery of the array area 21 avoids the situation that the control circuit 12 is directly stacked and arranged in the array area 21 to block the light to be measured, so that a larger detection chip can be used in the same volume.
  • the light incident area is for incident light to be measured to improve detection accuracy and sensitivity.
  • control circuit 12 includes:
  • a power supply circuit connected to the first electrode layer 32 of the photodetection array, for providing an operating voltage to the first electrode layer 32;
  • the gating sub-circuit is electrically connected with the connection circuit 11 and is used to control the connection circuit 11 to be turned on or off according to a control signal of the processor 13 .
  • the electron supply circuit can provide the voltage required for the coupling between the first electrode layer 32 and the second electrode 34 .
  • the electron supply circuit is located in the circuit area 22 , and a voltage is applied to the first electrode layer 32 at the edge of the circuit area 22 .
  • the photodiode is an APD, and reverse pressure is applied to the APD at the first electrode layer 32 , so that the multiplication layer 36 can generate an avalanche phenomenon.
  • the processor 13 generates a control signal to control the gating sub-circuit to gating different connection circuits 11 .
  • a control signal to control the gating sub-circuit to gating different connection circuits 11 .
  • the transistor By inputting a corresponding signal to the control electrode of the transistor, the transistor is controlled to be turned on or off, and the corresponding connection circuit 11 is turned on or off.
  • the transistor includes but not limited to a MOS transistor, and the control electrode includes but not limited to a gate.
  • the base material of the circuit area 22 and the base material of the transparent substrate 31 in the photodetection array are both semiconductor materials, and the base material of the circuit area 22 is internally corresponding to the control Doping particles that increase conductivity at the location of the circuit 12 .
  • the substrate of the circuit region 22 is the same as that of the transparent substrate 31 . Therefore, during fabrication of the photodetection chip, the transparent substrate 31 and the circuit region 22 can be deposited at one time, and then the control circuit 12 can be generated by doping the circuit region 22 . Therefore, it has the characteristics of simple and convenient manufacturing process.
  • the side of the first electrode layer 32 where the light to be measured is incident is covered with an optical film 43 that facilitates the light to be measured to enter the absorption layer 33 .
  • the optical film 43 utilizes various optical phenomena to facilitate the light to be measured to be incident on the absorbing layer 33 , thereby improving the accuracy and detection capability of the photodetection array.
  • optical phenomena include but not limited to transmission, reflection, interference, diffraction, scattering and refraction, etc., so that more light to be measured is incident on the absorbing layer 33 and/or interference light other than the light to be measured is filtered out.
  • the optical film 43 includes but not limited to a normal prism sheet and/or a micro-lens film and/or a reflective polarizer.
  • the situation that the light to be measured is not incident on the absorbing layer 33 due to optical phenomena such as reflection can be reduced, so that more light to be measured that is incident on the photodetector array is incident as much as possible
  • the detection accuracy and detection sensitivity are improved.
  • the optical film 43 has various types.
  • the optical film 43 may be a single-layer composite film made by uniformly mixing multiple materials at the same time, and the single-layer composite film may have multiple optical functions at the same time.
  • the composite film can increase the transmittance of the light to be measured, and on the other hand, it can filter out the interfering light other than the light to be measured, thereby improving the accuracy of the photodetection array from two aspects.
  • the optical film 43 may be a multilayer film.
  • the multi-layer film can be composed of multiple film layers, and these film layers can be made of different materials and have different optical effects.
  • the multilayer film may include:
  • An anti-reflection layer used to increase the transmittance of the light to be measured incident on the absorbing layer 33; and/or,
  • the filter layer is used to filter out the interference light other than the light to be measured.
  • the anti-reflection layer and the filter layer are bonded by, for example, transparent glue.
  • the antireflection layer has a microprism structure, which can selectively inject more light into the interior of the photodetection array based on optical phenomena such as transmission, reflection, and interference.
  • the filter layer can be made of various filter materials. When the disturbing light is incident on the filter layer, these filter materials will absorb the disturbing light, thereby inhibiting the incident of the disturbing light on the absorbing layer 33 .
  • the distance between the antireflection layer and the transparent substrate 31 is larger than the distance between the filter layer and the transparent substrate 31 . That is, the anti-reflection layer is the outer layer of the multilayer film, and the filter layer is the inner layer of the multilayer film.
  • the anti-reflection layer first makes the light incident on the photodetector incident towards the absorbing layer 33 as much as possible, and then filters out the interfering light through the filter layer, and allows the light to be measured to pass through to be incident on the absorbing layer 33 .
  • the distance between the antireflection layer and the transparent substrate 31 is smaller than the distance between the filter film and the transparent substrate 31 . That is, the antireflection film is the inner layer of the multilayer film, and the filter layer is the outer layer of the multilayer film.
  • Different light has different wavelengths.
  • the light-absorbing material in the filter layer or the composite film in the embodiment which selectively absorbs and transmits according to the wavelength of the interfering light and the light to be measured, so that the light to be measured can be as much as possible is transmitted to the absorbing layer 33, while the interfering light is absorbed as much as possible.
  • the photocurrent generated by the absorbing layer 33 is generated based on the light to be measured as high as possible, and the detection accuracy of the light to be measured is improved.
  • the optical film 43 is divided into:
  • first regions 51 configured to transmit light of a first wavelength to the absorbing layer 33;
  • the multiple second regions 52 are used to transmit the light of the second wavelength to the absorbing layer 33 .
  • the first region 51 and the second region 52 may be regions with the same area and the same shape.
  • the shape of the first region 51 and the second region 52 is the same as the shape of the second electrode 34, and/or, the shape of the first region 51 and the second region 52 is the same as The cross-sectional shapes of the contact blocks 35 are the same.
  • the first region 51 and the second region 52 can be used to transmit light of different wavelengths to the absorbing layer 33 .
  • the photoelectric detection array can realize multi-wavelength light detection to be measured.
  • the light to be measured is a laser
  • the light of the first wavelength can be a laser of 1310nm
  • the light of the second wavelength can be a laser of 1550nm.
  • first regions 51 and second regions 52 there are multiple first regions 51 and second regions 52 on the optical film 43 , and these first regions 51 and second regions 52 are distributed at intervals according to a preset pattern.
  • the light to be measured may be incident on the photodetection array from various directions, and the interval distribution of the first region 51 and the second region 52 can make the first region 51 and the second region 52 distributed in the entire detection surface of the photodetection array.
  • the second area 52 can macroscopically enable each area of the photodetection array to detect the light of the first wavelength and the light of the second wavelength.
  • the areas of the first region 51 and the second region 52 are relatively large, and each first region 51 and each second region 52 corresponds to a photodetection sub-array.
  • the photodetection sub-array includes a plurality of photodiodes arranged adjacently and in an array throughout the large photodetection array. At this time, different sub-arrays of the photodetection array can be used to detect light of different wavelengths.
  • the manufacturing process (for example, the process of cutting a large array into independent small arrays) can be reduced.
  • the photodetection arrays of different wavelengths can be integrated, it has the characteristics of small size compared with multiple separated photodetection arrays. Thereby, the volume of the photodetector including the photodetection array can be reduced, and the lightness and thinning of the photodetector can be realized.
  • the first region 51 and the second region 52 are regions with the same shape and equal area, one rectangular region corresponds to N second electrodes, and N is a positive integer;
  • the first area 51 and the second area 52 are distributed at intervals according to a preset pattern.
  • the first area 51 and the second area 52 may be rectangular areas or non-rectangular areas. Both the first area 51 and the second area 52 cover one or more photodiodes continuously distributed. At this time, the shapes of the first region 51 and the second region 52 are consistent with the outer contours of the photodiodes that are continuously covered by them.
  • the preset pattern can be any preset pattern, including but not limited to, two areas on the diagonal in the 4 areas of the array distribution are one type of area, and the other two areas on the other diagonal are another type area.
  • FIG. 8 to 9 are schematic diagrams showing the effect of a preset pattern provided by an embodiment of the present disclosure, wherein, in FIG. 9 , different filling patterns represent the first area 51 and the second area 52 respectively.
  • the patterned optical film 43 can detect two or more types of light to be measured based on the same photodetection array, which has the characteristics of simple structure and high integration.
  • the patterned optical film 43 can be used to detect two or more types of light to be measured based on the same photodetection array 10 , which has the characteristics of simple structure and high integration.
  • the first region 51 and the second region 52 in the preset pattern have their own connection circuits, so that any first region 51 and second region 52 can work independently at the same time, so that the photodetection array 10 is working At any moment in the state, the light to be measured with two wavelengths can be detected simultaneously.
  • the photoelectric detection array 10 can detect two kinds of laser light at the same time, so that the ranging accuracy and/or ranging range of the laser light can be improved.
  • the first region 51 and the second region 52 located in the same row and adjacent to each other in one preset pattern are connected to the same connection circuit.
  • the first region 51 and the second region 52 located in the same column and adjacent to each other in one preset pattern are connected to the same connection circuit.
  • one of the connection circuits conducts the corresponding first region 51 and the second region 52 in time division.
  • the photodiodes in the first region 51 and the second region 52 adjacent in the same row in a preset pattern may share a connection circuit.
  • the adjacent first region 51 and the second region 52 in the same row in a preset pattern may share a connection circuit.
  • one connection circuit will turn on different first regions 51 and second regions 52 in time division, so as to obtain different measured values detected by the first region 51 and the second region 52 at different time points. light intensity etc.
  • the first area 51 is distributed on the diagonal of any rectangular area in the preset pattern; and/or, in the preset pattern
  • the second area 52 is distributed on the diagonal of any rectangular area.
  • the preset pattern includes two first regions and two second regions, and the first regions and the second regions are distributed at intervals. At this time, the two first regions are distributed on one diagonal, and the two second regions are distributed on the other diagonal, so that the light to be measured of a certain wavelength can be prevented from being incident on a row of the electrical detection array 10 or Phenomena that cannot be detected in one column improve the sensitivity and accuracy of the photodetection array 10 .
  • the preset pattern can be any preset pattern, including but not limited to: as shown in Figure 9, two areas on the diagonal in the 4 areas distributed by the array are a kind of area, and the other diagonal
  • the two areas above are another type of area, and the same type of area in the first area and the second area is distributed on the diagonal, so that each row and each column has two types of first areas.
  • it can reduce the situation that the light to be measured of one wavelength is incident on a certain row or column, but is filtered out by the area corresponding to the optical film of another wavelength as interference light, thereby improving the performance of the photodetector. Detection accuracy.
  • Each first region 51 and each second region 52 may correspond to S second electrodes 34 , that is, to S photodiodes.
  • the value of S may be 1, 2, 3 or 4, etc.
  • the specific value of S is less than the total number of photodiodes included in the photodetection array.
  • the S may be less than or equal to 1/2 of the total number of photodiodes included in the photodetection array.
  • the first region 51 and the second region 52 are photodiode-level optical active regions.
  • One said first region 51 covers one second electrode 34, and one said second region 52 covers one second electrode 34, then the photodetector realizes the detection of the light to be measured of different wavelengths of each photodiode.
  • an embodiment of the present disclosure provides a laser radar, including:
  • Laser emitter 61 for emitting laser
  • the photodetector 62 provided in any of the foregoing embodiments is used to detect the return light of the laser light.
  • the photodetector 62 is used in the laser radar, which can detect the return light of the laser well, thereby improving the accuracy of the ranging data of the laser radar.
  • the lidar can be various types of lidar.
  • the lidar may be a Micro-Electro-Mechanical System (Micro-Electro-Mechanical System, MEMS) lidar.
  • MEMS Micro-Electro-Mechanical System
  • the laser emitted by the laser emitter in the embodiment of the present disclosure may be a laser with a wavelength of 905 nm, or a laser with a wavelength of 1310 nm, or a laser with a wavelength of 1550 nm.
  • the photodetector provided by the embodiments of the present disclosure has the characteristics of high detection sensitivity and high precision, so the laser radar including the photodetector also has the characteristics of high sensitivity and high precision.
  • the laser radar can be used for distance measurement, and this laser radar is based on the distance measurement data generated by the photodetector from the voltage read between the first electrode and the second electrode, and has the characteristics of high precision.
  • the ranging data may be point cloud data of the lidar.
  • the point cloud data may include a distance value and/or an angle value between the measured target and the laser radar, and the angle value may be a pitch angle value in the vertical direction and/or a vertical angle value between the measured target and the laser radar angle value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)

Abstract

本公开的实施例提供了一种光电探测阵列、光电探测器及激光雷达。所述光电探测阵列包括:第一电极层,待测光能够从该第一电极层的第一侧入射并透射通过所述第一电极层;吸收层,位于所述第一电极层的与第一侧相反的第二侧上,被配置为吸收透射通过所述第一电极层的待测光的光能,并基于所吸收的光能产生光电流;第二电极层,所述第二电极层位于所述吸收层的与所述第一电极层相反的一侧,所述第二电极层包括阵列式分布的多个第二电极,相邻的所述第二电极彼此电隔离,每一个所述第二电极与所述吸收层的被该第二电极覆盖的区域相对应;其中,每一个所述第二电极分别与所述第一电极层耦合,被配置为输出对应于由所述吸收层的与该第二电极对应的区域所产生的光电流的电压。

Description

光电探测阵列、光电探测器、及激光雷达
相关申请的交叉引用
本申请是以CN申请号为202110908753.2,申请日为2021年8月9日,名称为“光电探测阵列、光电探测器、及激光雷达”的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及光电探测阵列、光电探测器及激光雷达。
背景技术
光电探测阵列能够将光能转换为电能。通常光电探测阵列可由光电二极管阵列式排布形成。光电二极管通常使用半导体材质,吸收接收到的光能并基于吸收的光能产生光电流。通过光电二极管这种光电转换特性,可以进行光信号探测。
发明内容
本公开的实施例提供了光电探测阵列、光电探测器及激光雷达。
本公开实施例一个方面提供一种光电探测阵列,包括:
第一电极层,待测光能够从该第一电极层的第一侧入射并透射通过所述第一电极层;
吸收层,位于所述第一电极层的与第一侧相反的第二侧上,被配置为吸收透射通过所述第一电极层的待测光的光能,并基于所吸收的光能产生光电流;
第二电极层,所述第二电极层位于所述吸收层的与所述第一电极层相反的一侧,所述第二电极层包括阵列式分布的多个第二电极,相邻的所述第二电极彼此电隔离,每一个所述第二电极与所述吸收层的被该第二电极覆盖的区域相对应;
其中,每一个所述第二电极分别与所述第一电极层耦合,被配置为输出对应于由所述吸收层的与该第二电极对应的区域所产生的光电流的电压。
基于上述方案,所述光电探测阵列还包括:
接触层,位于所述第二电极层与所述吸收层之间,所述接触层包括多个阵列式分布的接触块,每个所述接触块与对应的一个所述第二电极;
电连接,相邻的所述接触块彼此电隔离;
倍增层,位于所述接触层和所述吸收层之间,被配置为放大由所述吸收层产生的光电流,由每个所述接触块覆盖的所述倍增层的区域彼此不重叠。
基于上述方案,所述接触块在阵列式分布的方向上的横截面为多边形,所述多边形至少具有四条边。
基于上述方案,所述第一电极层包括一个公共电极,每一个所述第二电极都与所述公共电极耦合。
基于上述方案,所述光电探测阵列还包括透明衬底,位于所述第一电极层与所述吸收层之间,并且由透明半导体材质构成。
基于上述方案,所述光电探测阵列还包括过渡层,位于所述透明衬底与所述吸收层之间,被配置为平滑在所述透明衬底与所述吸收层之间的势垒。
本公开实施例另一个方面提供一种光电探测器,包括:
前述任意技术方案提供的光电探测阵列;
连接电路,所述连接电路能够分别与所述光电探测阵列的每个所述第二电极电连接,并被配置为能够读取每个所述第二电极输出的电压;
处理器,与所述连接电路电连接并被配置为从所述连接电路接收每个所述第二电极输出的电压。
基于上述方案,所述光电探测器还包括:
控制电路,被配置为根据所述处理器的控制信号,控制所述光电探测阵列的连接电路的导通或断开。
基于上述方案,所述控制电路、所述连接电路和所述光电探测阵列封装在探测芯片内;
其中,所述探测芯片包括阵列区域和电路区域,所述电路区域环绕在所述阵列区域外围;
所述光电探测阵列位于阵列区域内;
所述控制电路位于所述电路区域内;
所述电路区域和所述阵列区域之间设置有绝缘的隔离带。
基于上述方案,所述控制电路包括:
供电子电路,与所述光电探测阵列的第一电极层连接并且被配置为向所述第一电极层提供工作电压;
选通子电路,与所述连接电路电连接并且被配置为根据所述处理器的控制信号,导通或断开所述连接电路。
基于上述方案,所述电路区域的基材为半导体材料,且所述电路区域的基材内在对应 于所述控制电路的位置处增加导电性的掺杂粒子。
基于上述方案,所述光电探测器还包括:
光学膜,在所述待测光入射的一侧覆盖所述光电探测阵列,其中,所述光学膜被配置为促进所述待测光入射到所述吸收层。
基于上述方案,所述光学膜至少包括:
复合膜,其中,所述复合膜由多种材质混合形成,所述多种材质被配置为分别实现不同所述光学现象;
或者,
层叠膜,包括具有不同光学现象的至少两个膜层,所述至少两个膜层层叠设置。
基于上述方案,所述光学膜被配置为提升所述待测光入射到所述吸收层的透射率和/或滤除所述待测光以外的干扰光。
基于上述方案,所述光学膜被划分为:
多个第一区域,被配置为向所述吸收层透射第一波长的光;
多个第二区域,被配置为向所述吸收层透射第二波长的光。
基于上述方案,所述第一区域和所述第二区域按照预设图案间隔分布。
基于上述方案,所述第一区域和所述第二区域形状相同且面积相等,一个所述第一区域和一个所述第二区域对应于所述光电探测阵列的N个第二电极,所述N为正整数。
基于上述方案,一个所述预设图案内位于相同行且相邻的所述第一区域和所述第二区域,与相同的连接电路连接;或者
一个所述预设图案内位于相同列且相邻的所述第一区域和所述第二区域,与相同连接电路连接;或者
一个所述连接电路,分时导通对应的所述第一区域和所述第二区域。
基于上述方案,在所述预设图案内任意一个矩形区域的对角线上分布的是所述第一区域;和/或,
在所述预设图案内任意一个矩形区域的对角线上分布的是所述第二区域。
本公开实施例另一个方面提供一种激光雷达,包括:
激光发射器,用于发射激光;
前述任意实施例提供的光电探测器,用于检测所述激光的回光。
附图说明
图1是本公开实施例提供的一种光电探测阵列的结构示意图;
图2是本公开实施例提供的一种接触块的结构示意图;
图3是本公开实施例提供的一种光电探测阵列的结构示意图;
图4是本公开实施例提供的一种光电探测阵列的结构示意图;
图5是本公开实施例提供的一种光电探测阵列的结构示意图;
图6是本公开实施例提供的一种光电探测器的结构示意图;
图7是本公开实施例提供的一种光电探测器的结构示意图;
图8是本公开实施例提供的一种光学膜的结构示意图;
图9是本公开实施例提供的一种光学膜的结构示意图;
图10是本公开实施例提供的一种激光雷达的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本公开的实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本公开。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本公开的描述。
为了说明本公开所述的技术方案,下面通过具体实施例来进行说明。
如图1所示,本公开实施例提供一种光电探测阵列,包括:
第一电极层32,待测光能够从该第一电极层32的第一侧入射并透射通过第一电极层32;
吸收层33,位于第一电极层32的与第一侧相反的第二侧上,被配置为吸收透射通过第一电极层32的待测光的光能,并基于所吸收的光能产生光电流;
第二电极层30,该第二电极层30位于吸收层33的与第一电极层32相反的一侧,第二电极层30包括阵列式分布的多个第二电极34,相邻的第二电极34彼此电隔离,每一个第二电极34与吸收层33的被该第二电极34覆盖的区域相对应;
每一个第二电极34分别与第一电极层32耦合,被配置为输出对应于由吸收层33的与该第二电极34对应的区域所产生的光电流的电压。
在本公开实施例中,还可以提供透明衬底31,第一电极层32和吸收层33可以位于透明衬底31的两侧。透明衬底31可以为光电探测阵列的结构提供支持。在本公开实施例中,所述透明衬底31可为透明的基板,并且因此允许穿过第一电极层32的待测光可以从透明衬底31穿过,并入射到吸收层33上。
所述吸收层33可由铟镓砷等材质构成,例如,所述吸收层33的材质包括但不限于未 掺杂的磷化砷铟镓(U-InGaAs)。
在待测光入射到吸收层33之后,吸收层33会吸收入射的待测光的光能,并将吸收的光能转换为电能,进而形成光电流。例如,吸收层33中基态的电子吸收光能之后,跃迁到激发态。吸收层33吸收的光能越多则形成的光电流越大,并且进一步对第一电极层32和第二电极34之间所施加电压的改变量就越大。
该吸收层33可对于整个光电探测阵列的第二电极层30的所有第二电极34共用。
不同的第二电极34,覆盖在所述吸收层33的不同区域,即任意两个第二电极34覆盖(或者对应)的吸收层33区域无重叠。每一个第二电极34与吸收层33的被该第二电极34覆盖的区域相对应。
在本公开实施例中,第一电极层32可以是一个公共电极,即,一个第一电极层32被光电探测阵列中所有的第二电极34共用。任意两个第二电极34之间电隔离。示例性地,任意两个第二电极34分离设置,且每个第二电极34与公共供电耦合向外提供电压。
第二电极34可以是透明电极,也可以非透明电极。
多个所述第二电极34阵列式分布,包括但不限于多个所述第二电极34呈矩形阵列分布。例如,阵列式的第二电极34分为多个行和多个列。
在与一个第二电极34对应的吸收层33的区域处有待测光入射时,产生光电流。该光电流可以在该第二电极34与第一电极层32之间产生压降,使得从该第二电极34引入的电压相对于无待测光入射到对应吸收层33时的电压下降,从而实现待测光的探测。进一步地,根据第二电极34和第一电极层32之间耦合后所输出的电压相对于无待测光入射时的压降,可以确定出待测光的光强。
一个所述第二电极34连同该第二电极34下方覆盖的吸收层33的区域和第一电极层32可对应于光电探测阵列中的一个光电二极管。若该第二电极34为光电二极管的N电极,则该第一电极层32为所有光电二极管共用的P电极。或者,若该第二电极34为光电二极管的P电极,则该第一电极层32为所有光电二极管共用的N电极。所述N电极与对应的光电二极管的N区电连接,所述P电极与对应的光电二极管的P区电连接。
所述N区包括N型掺杂半导体材料,所述P区包含P型掺杂半导体材料。此处的P区和N区的交界面形成光电二极管的PN结。
该光电二极管包括但不限于雪崩光电二极管(Avalanche Photon Diode,APD)。
在本公开实施例中,第一电极层32是光电探测阵列中的多个第二电极34共用的公共电极,由此简化了光电探测阵列的结构和光电探测阵列的制作。
示例性地,透明衬底31是透明半导体材质构成的基板。示例性地,该透明衬底31的 材质包括但不限于N型掺杂的磷化铟(N-InP)。
因此,透明衬底31可以作为光电二极管的N区和P区中的一个区,并且第一电极层32可以直接与所述透明衬底31接触。该透明衬底31的透明半导体材质可以是透明的硅材质。因此,第一电极层32可以无需通过过孔等方式与N区或P区电连接,从而简化了光电探测阵列的制作工艺。
与此同时,由于多个第二电极34共用一个第一电极层32并且该光电探测阵列的多个第二电极34分别与第一电极层32组合形成的多个光电二极管,所以可以共用一个与第一电极层32的连接电路,由此简化了该光电探测阵列的连接电路11。一个第一电极层32相当于与本公开实施例中多个第二电极34对应的另一个极性的电极,第一电极层32可以仅需一个连接电路即可。因此,可以大大减少了连接电路的条数。此外,为了降低电阻,连接电路一般可以采用不透明的金属构成。因此,通过减少了连接电路的条数,可以减少了连接电路在待测光的入光面所覆盖的面积,从而实现了在不增加光电探测阵列自身面积的情况下,增加了待测光的入光面积。在本公开实施例中,多个第二电极34和第一电极层32位于所述透明衬底31的不同面,第二电极34和第一电极层32组合形成的光电二极管的连接电路将覆盖在第二电极34那一侧。在本公开实施例中,待测光是从第一电极层32那一侧入射,并穿过所述第一电极层32和所述透明衬底31之后入射到吸收层33。因此,连接电路覆盖的第二电极34那一侧为待测光的非入射面。因此,待测光将从整个透明的第一电极层32和透明衬底31无遮挡地入射。因此,可以减少连接电路对待测光的遮挡,从而在单位面积内增大了光电探测阵列的透光面积,使得该光电探测阵列可以检测更多的光线,提升光线检测效率。
在本公开的一些实施例中,该待测光可以为激光且该光电探测阵列可以用于测距激光的回光检测,则这种光电探测阵列具有更大面积接收回光(这种回光被空间中的物体反射回来,也可以称之为空间光)。如此,该光电探测阵列可以提升光线检测效率。尽可能检测到激光发射器所发射的激光,从而具有光探测效率高的特点。
在一些实施例中,所述待测光除了所述激光以外,还可以是红外光等其他可以被光电二极管探测的光线。
在该待测光是激光的情况下,则该激光可为波长为905nm的激光,或者波长为1310nm的激光,或者波长为1550nm的激光。
在本公开实施例提供的光电探测阵列,具有受光面积相对更大的特点。
在本公开实施例中,所述光电探测阵列在所述透明衬底31和所述吸收层33之间还具有一个或多个过渡层。
示例性地。如图1所示,所述过渡层41包括两层,一层是N型掺杂过渡层,另一层是不掺杂过渡层。所述N型掺杂过渡层与所述透明衬底31接触,所述不掺杂过渡层与所述吸收层33接触。即,所述N型掺杂过渡层位于所述透明衬底31与所述不掺杂过渡层之间。
所述N型掺杂过渡层的材质包括但不限于N型掺杂的磷化铟(N-InP);所述不掺杂过渡层可为不掺杂磷化铟(U-InP)。
在本公开实施例中,不同过渡层41的基材是相同的。例如,前述的N型掺杂过渡层和不掺杂过渡层的基材都是InP,故多个过渡层的基材通过一个制作流程形成。例如,一次性沉积完成。在沉积过程中通过掺杂粒子的控制,实现需掺杂的过渡层和不掺杂的过渡层的制作。
进一步地,所述过渡层41的基材可与所述透明衬底31的基材一致。示例性地,所述过渡层的基材和所述透明衬底31的基材均为磷化铟(InP)。如此,可以进一步简化所述光电探测阵列的制作工艺。
过渡层41可以被配置为平滑在透明衬底31和所述吸收层33之间的势垒。
在一些实施例中,所述光电探测阵列还可以包括:
接触层39,位于所述第二电极层30与所述吸收层33之间,所述接触层39包括:多个阵列式分布的接触块35,每个所述接触块35与对应的一个所述第二电极34电连接,相邻的所述接触块35彼此电隔离;
倍增层36,位于所述接触层39和所述吸收层33之间,被配置为放大由所述吸收层33产生的光电流,由每个所述接触块35覆盖的所述倍增层36的区域彼此不重叠。
在一个实施例中,透明衬底31构成光电二极管的P区,并且接触块35可构成该光电二极管的N区。或者,透明衬底31构成光电二极管的N区,并且接触块35构成光电二极管的P区。
第二电极34与倍增层36可以通过接触层39电连接。接触层39的一侧与倍增层36接触并形成接触层39与倍增层36之间的电连接,并且接触层39的另一侧接触第二电极34并形成接触层39与第二电极34之间的电连接。
所述接触层39的材质包括但不限于未掺杂的磷化砷铟镓(U--InGaAs)。
所述倍增层36又可以被称为雪崩层。吸收层33吸收光子并释放电子从而形成了光电流。该光电流传导到倍增层36之后,会被倍增层36成倍的放大,从而形成数倍于光电流的倍增电流。通常情况下,倍增层36可以将光电流放大十几倍甚至数十倍。利用倍增层36这种倍增放大效应,可以提升光探测的灵敏度。
所述倍增层36的材质包括但不限于N型掺杂的磷化铟(N-InP)。
在本公开实施例中,所述接触层39至少包含等于第二电极34个数的接触块35构成,由每个所述接触块35覆盖的所述倍增层36的区域彼此不重叠。
同样地,接触层39包含的接触块35阵列式分布在倍增层36上。该倍增层36可为多个光电二极管共用,在制作该光电探测阵列时可以通过沉积就可以简单实现该倍增层36。
接触层39被分割成多个接触块35,使得不同第二电极34与第一电极层32耦合来形成不同光电二极管的N电极和P电极。
所述接触块35在阵列式分布的方向上的横截面可以呈各种形状,例如,圆形。该接触块35在阵列式分布的方向上的横截面指的是与光电探测阵列的阵列平面平行的平面横切接触块35所形成的截面。
在本公开实施例中,所述接触块35在阵列式分布的方向上的横截面为多边形。该多边形至少为四边形或者四边形以上的多边形。示例性,该接触块35在阵列式分布的方向上的横截面可为:正四边形、正五边形或者正六边形。
在本公开式实施例中,参考图2至图5所示,该接触块35在阵列式分布的方向上的横截面可为平行于接触块35与倍增层36接触的表面的截面。
对应于不同光电二极管(第二电极34)的接触块35之间需要保持一定的间距,以保持电隔离。在接触块35的横截面为四边形以上的多边形(例如正多边形)的情况下,在保持相邻接触块35之间所需的分隔距离的同时,可以使得在单位面积的倍增层36上,接触块35与倍增层36之间的接触面更大,从而使得对应吸收层33区域所产生的光电流及光经倍增层36放大的电流被更多的探测到。由此,可以提升空间光的探测效率,且同时减少入射到两个接触块35之间的间隙内的待测光,降低对探测精度的负面影响。
示例性地,当在相同面积的倍增层36上设置同样多个接触块35的情况下,横截面为正四边形的接触块35的边长可等于横截面为圆形的接触块35的直径。如此,横截面为正方形的柱状体接触块35的横截面积,大于横截面为圆柱形的接触块35的横截面积。
示例性地,在接触块35的横截面为正五边形或者正六边形的情况下,这样的横截面比正四边形具有更大的面积,从而可以进一步增大接触块35的面积。
所述第二电极34的形状可以与所述接触块35的横截面的形状相同或不同。在本申请实施例中,接触块35的横截面为正六边形,所述第二电极34的形状也可以正六边形。
在一个实施例中,虽然所述接触块35的横截面呈多边形(例如正六边形),但是光电二极管靠近第二电极34一端的横截面依然可以是矩形,则此时所述光电探测阵列依然是矩形阵列。该矩形阵列包含的多个光电二极管成行成列分布。
在另一个实施例中,光电二极管靠近第二电极34的横截面可与所述接触块35的横截面的形状相同。
在本申请实施例中,在第二电极34可以设置隔离环38,用于相邻光电二极管的第二电极34和接触块35之间的隔离。该隔离环38外接于第二电极34和接触块35。隔离环38的外边缘与其他光电二极管的隔离环38接触,从而实现相邻两个光电二极管的电气性隔离。
若隔离环38不是矩形环,则该光电二极管就不再是矩形阵列,而是多边形直接堆积的其他阵列。
示例性地,所述接触块35的横截面为正六边形,且光电二极管之间的隔离环38也是正六边形,则所述光电探测阵列可蜂窝阵列。
参考图3和图5所示,所述光电探测阵列为矩形阵列,一个所述第二电极34及其下方的区域对应于一个光电二极管;相邻所述光电二极管之间的隔离环38为矩形环。
在另一个实施例中,参考图6所示,所述光电探测阵列为蜂窝阵列,一个所述第二电极34对应于一个光电二极管,相邻所述光电二极管之间的隔离环38为正六边形环。
在接触块35的横截面为正六边形环且所述隔离环38正六边形环的情况下,单位面积上光电二极管的个数更多,光电二极管包含的接触块35的面积更大。因此,可以吸收更多的待测光,提升光电探测阵列的探测精度和灵敏度。
在一些实施例中,所述隔离环38的材质可以与所述倍增层36的材质相同。隔离环38和倍增层36的不同之处在于倍增层36的位置和所述隔离环38的位置是不同的。所述倍增层36位于所述吸收层33和所述接触块35之间,即所述倍增层位于所述接触块35的底面;而所述隔离环38位于所述接触块35和第二电极34的侧面。
示例性地,所述倍增层36和所述隔离环38的材质均可为掺杂半导体材质,但是由于隔离环38是在接触块35和第二电极34两侧,并不能接收到吸收层33因为吸收光能量激发的电子,从而能够隔离两个相邻接触块35和两个相邻第二电极34之间的电气性。所述倍增层36和所述隔离环38的材质包括但不限于N掺杂的磷化铟(N-InP)。
在倍增层36和隔离环38的材质相同的情况下,在制作所述光电探测阵列时,可以基于一次制作工艺或者制作流程就能够实现倍增层36和隔离环38的制作,因此具有制作工艺简便的特点。
如图1所示,本公开实施例提供的光电探测阵列10,在倍增层36和吸收层33之间还可以设置一个或多个过渡层42和电荷(charge)层37。与过渡层41类似,该过渡层42同样可以用于平滑吸收层33和倍增层36之间的电势变化。该电荷层37与所述倍增层36 接触,所述多个过渡层42位于所述电荷层37和所述吸收层33之间。所述电荷层37能够使得吸收层33因吸收光能激发的电子迅速聚集到倍增层36上,以产生雪崩现象。
所述电荷层37可由半导体材质构成,示例性地,所述电荷层可为N型掺杂的磷化铟(N-InP)。
此处的多个过渡层42的基材相同。进一步地,多个过渡层42的基材可与吸收层33的基材一致。例如,多个过渡层42的基材和吸收层33的基材都可以是磷化砷铟镓(InGaAs)。示例性地,位于电荷层37和所述吸收层33之间的多个过渡层42可为两个,且分别是N型掺杂过渡层和不掺杂过渡层。此处的N型掺杂过渡层可为N型掺杂磷化砷铟镓(InGaAsP)层,且不掺杂过渡层可为U-InGaAs层。该N掺杂过渡层又可以称之为渐变层。
同样地,在多个过渡层42的基材相同和/或过渡层42与吸收层33的基材相同的情况下,可以简化所述光电探测阵列的制作工艺。
在一些实施例中,所述光电探测阵列还包括:保护基板,所述保护基板位于各所述第二电极34和所述连接电路之上,从而保护第二电极34和连接电路。在一些实施例中,该连接电路与所述第二电极34为在一道工艺中形成的。例如,在所述接触层上进行图案化金属材质的沉积,一次性形成所述第二电极34并同步形成与所述第二电极34的连接电路。在完成第二电极34和连接电路的制作之后,再形成所述保护基板。
如图6所示,本公开实施例提供一种光电探测器,包括:
前述任意技术方案提供的光电探测阵列10;
所述连接电路11,所述连接电路11能够分别与所述光电探测阵列10的每个所述第二电极34电连接,并被配置为能够读取每个所述第二电极34输出的电压;
处理器13,与所述连接电路11电连接并被配置为从所述连接电路11接收每个所述第二电极34输出的电压。
本公开实施例中,所述连接电路11可与所述第二电极34位于光电探测阵列的同一层,例如,连接电路11可以分布在第二电极34之间的间隙内,并与各个第二电极34连接。在对应的连接电路11导通时,第二电极34与第一电极层32耦合后的电压被输出。光电探测阵列10在完成一次扫描后,就可以知道当前扫描周期内各个第二电极34与供电电极之间耦合后的电压,从而知道吸收层33的与被该第二电极覆盖的区域内探测到的待测光的强度。
该光电探测器包括前述任意实施例提供的光电探测阵列。
该处理器13可以是控制光电探测阵列的待测光测量的芯片,还可以是对光电探测阵 列测量的信号进行处理的芯片。
本公开实施例提供的光电探测器包括前述的光电探测阵列,该光电探测阵列探测是从第一电极层32所在侧供待测光入射,具有单位面积内入光面积大的特点,从而可以探测到更多的待测光,提升了光电探测阵列的灵敏度和精度。
在一些实施例中,所述光电探测器还包括:
控制电路12,被配置为根据所述处理器13的控制信号,控制所述光电探测阵列的连接电路11的导通或断开。在本公开实施例中,如图6所示,控制电路12位于所述光探测阵列10的外围。
在本公开实施例中,所述控制电路12通过连接电路11与各所述第二电极34电连接。该连接电路11可为与第二电极34位于一层的电路。该控制电路12通过导通或者断开对应的连接电路11,可以按照行和列逐个扫描光电探测阵列内的各个光电二极管。
控制电路12位于与所述光电探测阵列的外围,通过光电探测阵列边缘的各种连接端子连接,因此该控制电路12可以成为外围电路。例如,一个所述连接端子对应于一个位于所述光电探测阵列边缘的连接端子。
该控制电路12可包括选通子电路。该选通子电路可以选通对应的连接电路11,从而实现分时导通不同的连接电路11,从而实现在一个扫描周期内扫描到不同第二电极34所对应的光电二极管,从而得到不同位置处光电二极管所探测的待测光的强度。
在一个扫描周期内,该控制电路12可以逐一扫描光电探测阵列内每一个光电二极管。
在一些实施例中,所述选通子电路可包括行选通子电路和列选通子电路。行选通子电路逐一分时导通光电探测阵列的行电路,同时列选通子电路逐一分时导通光电探测电路的列电路。如此,在一个扫描周期的任意一个时刻,至少有一个第二电极34对应的光电二极管被导通,从而能够该光电二极管两端的电压被读取到。
在一个实施例中,所述控制电路12、连接电路11和所述光电探测阵列10封装在探测芯片内;
其中,所述探测芯片包括阵列区域21和电路区域22,所述电路区域22环绕在所述阵列区域21外围;
所述光电探测阵列10位于阵列区域21内;
所述控制电路12位于所述电路区域22内;
所述电路区域22和所述阵列区域21之间设置有绝缘的隔离带23。
在本公开实施例中,该控制电路12与光电探测阵列封装在一个芯片内,该芯片可以称之为探测芯片。
在本公开实施例中,该探测芯片包括阵列区域21和电路区域22,电路区域22位于阵列区域21的外围的一侧或多侧。
示例性地,选通子电路可以从两侧导通连接电路11的行电路,则在探测阵列的两侧都设置有行选通子电路。示例性地,在阵列区域21的左侧和右侧都分布有行选通子电路。另外,示例性地,可以在阵列区域21的左侧或右侧分布有行选通子电路,另一侧不分布有行选通子电路。
在阵列区域21的两侧的行选通子电路时,该行选通子电路可以在不同时间点导通连接电路11中两个相邻的行电路。或者,在阵列区域21两侧的选通子电路可以同时导通相邻的两行连接电路11,从而实现一次性读取与两个第二电极34对应的光电二极管的电压。
在本公开实施例中,控制电路12中的行选通子电路也可以仅仅位于阵列区域21的一侧。因此,在扫描周期内的一个时间点仅导通连接电路11中的电路行。
在一些实施例中,所述列选通子电路也可以位于阵列区域21的两个相对侧。例如,列选通子电路可以分布在阵列区域21的前侧和后侧,或者,列选通阵列可以仅分布在阵列区域21的前侧和后侧之一。
在列选通子电路同时分布在阵列区域21的前侧和后侧时,在一个时间点可以同时导通连接电路11的两个列,则一次性读取相邻的两个第二电极34对应的光电二极管的电压。当然在列选通子电路位于阵列区域21的前侧和后侧时,也可以在一个时间点仅仅导通连接电路11中的一个列,一次性读取与一个第二电极34对应的光电二极管的电压。
在本公开实施例中,电路区域22和阵列区域21之间设置有隔离带23,该隔离带23用于实现电路区域22和阵列区域21之间的电隔离。因此,可以减少阵列区域21的电子进入电路区域22而导致光电探测结果不够精确的情况。
值得注意的是,在隔离带23中铺设电路来形成用于确保控制电路12与连接电路11之间的电连接。
该隔离带23可以由绝缘材质构成,也可以是不掺杂的半导体材质构成。
将控制电路12设置在阵列区域21外围的电路区域22内,避免了控制电路12直接层叠设置在阵列区域21的情况下遮挡待测光的情况,从而能够在相同体积的探测芯片内有更大入光面积供待测光入射,提升探测精确度和灵敏度。
在一些实施例中,所述控制电路12包括:
供电子电路,与所述光电探测阵列的第一电极层32连接,用于向所述第一电极层32提供工作电压;
选通子电路,与所述连接电路11电连接,用于控制根据所述处理器13的控制信号, 导通或断开所述连接电路11。
供电子电路可以提供第一电极层32和第二电极34耦合时所需的电压。在本公开实施例中,供电子电路位于电路区域22,在电路区域22的边缘位置处向第一电极层32施加电压。例如,该光电二极管为APD,在第一电极层32处向APD反向施压,从而可以使得倍增层36产生雪崩现象。
处理器13会产生控制信号,控制选通子电路选通不同的连接电路11。例如,连接电路11或者选通子电路上具有一个晶体管,通过向该晶体管的控制极输入对应的信号,控制该晶体管的导通或断开,实现对应连接电路11的导通或者断开。该晶体管包括但不限于MOS管,该控制极包括但不限于栅极。
在一些实施例中,所述电路区域22的基材与所述光电探测阵列中所述透明衬底31的基材均为半导体材质,且所述电路区域22的基材内在对应于所述控制电路12的位置处增加导电性的掺杂粒子。
在本公开实施例中,该电路区域22的基材与透明衬底31的基材是相同的。因此,在光电探测芯片制作时,可以一次性沉积透明衬底31和电路区域22,然后通过电路区域22的掺杂实现控制电路12的生成。因此,具有制作工艺流程简便的特点。
在一个实施例中,如图7所示,所述第一电极层32上待测光入射的一侧,覆盖有促进待测光入射到所述吸收层33的光学膜43。
该光学膜43将利用各种光学现象,促进待测光入射到吸收层33上,提升光电探测阵列的准确度和探测能力。
此处的光学现象包括但不限于透射、反射、干涉、衍射、散射和折射等,使得更多的待测光入射到吸收层33以及/或者滤除待测光以外的干扰光。
示例性地,所述光学膜43包括但不限于一般棱镜片(normal prism sheet)和/或微棱镜膜(Micro-lens film)和/或反射式偏光增亮膜(reflective polarizer)。
通过在待测光入射的表面铺设光学膜43,可以减少待测光由于反射等光学现象而未入射到吸收层33的情况,从而使得更多入射到光电探测阵列的待测光尽可能地入射到吸收层33上,提升探测精度和探测灵敏度。
在本公开实施例中,所述光学膜43具有多种。
示例性地,所述光学膜43可为同时由多种材质均匀混合制作而成的单层复合膜,该单层复合膜可以同时具有多个光学作用。例如,该复合膜一方面可以增加待测光的透射率,另一方面可以滤除待测光以外的干扰光,进而从两个方面提升了光电探测阵列的精准度。
又示例性地,所述光学膜43可为多层膜。该多层膜可由多个膜层构成,这些膜层的 制作材质可以不同,且具有不同的光学作用。
示例性地,所述多层膜可包括:
增透层,用于提升待测光入射到所述吸收层33的透射率;和/或,
过滤层,用于滤除待测光以外的干扰光。
此处增透层与过滤层之间通过例如透明胶材粘合。
示例性地,所述增透层上具有微棱镜结构,可以基于透射、反射、干涉等光学现象选择性将光线更多的入射到光电探测阵列的内部。
所述过滤层可由多种滤光材质构成。当干扰光入射到过滤层时,这些滤光材质会吸收这些干扰光,从而抑制了干扰光入射到吸收层33。
在一些实施例中,在所述光电探测阵列中,所述增透层与所述透明衬底31之间的间距,比所述过滤层与所述透明衬底31之间的间距大。即增透层是所述多层膜的外层,而所述过滤层是多层膜的内层。
如此,增透层先将入射到光电探测的光线尽可能往吸收层33方向入射,再通过过滤层滤除干扰光,并使得待测光通过,以入射到吸收层33。
在另一些实施例中,在所述光电探测阵列10中,所述增透层与所述透明衬底31之间的间距,比所述过滤膜与所述透明衬底31之间的间距小。即所述增透膜是所述多层膜的内层,而所述过滤层是多层膜的外层。
不同的光具有不同的波长,在本公开是实施例中过滤层或者复合膜中的吸光材质,根据干扰光和待测光的波长进行选择性吸收和透射,从而使得待测光尽可能多的透射到吸收层33上,而干扰光尽可能被吸收掉。由此,使得吸收层33产生的光电流尽可能高比例的是基于待测光产生的,提升待测光的探测精度。
在一些实施例中,如图8和图9所示,所述光学膜43分为:
多个第一区域51,用于向所述吸收层33透射第一波长的光;
多个第二区域52,用于向所述吸收层33透射第二波长的光。
在本公开实施例中,所述第一区域51和所述第二区域52可为面积相等且形状相同的区域。示例性地,所述第一区域51和所述第二区域52的形状与所述第二电极34的形状相同,和/或,所述第一区域51和所述第二区域52的形状与所述接触块35的横截面形状相同。
第一区域51和第二区域52可以用于向吸收层33透射不同波长的光。如此,该光电探测阵列就可以实现多波长的待测光探测。
例如,以待测光是激光为例,则第一波长的光可为1310nm的激光,第二波长的光可 为1550nm的激光。
在本公开实施例中,所述光学膜43上的第一区域51和第二区域52都是多个,这些第一区域51和第二区域52是按照预设图案间隔分布的。待测光可能从各种方向上入射到光电探测阵列上,第一区域51和第二区域52的这种间隔分布,可以使得光电探测阵列的整个检测面内都分布有第一区域51和第二区域52,即可以在宏观上使得光电探测阵列的各个区域都能够探测到第一波长的光和第二波长的光。
当然在另一些实施例中,如图8所示,第一区域51和第二区域52的面积均比较大,每一个第一区域51和每一个第二区域52都对应了一个光电探测子阵列。光电探测子阵列包括多个光电二极管,这些光电二极管在整个大光电探测阵列中相邻且阵列式分布。此时,该光电探测阵列的不同子阵列可以用于探测不同波长的光。
相对于独立制作两个或两个以上的光电探测阵列,可以减少制作工艺(例如,将大阵列切割为独立的小阵列的工艺)。此外,由于可以将不同波长光电探测阵列集成设置,相对于分离的多个光电探测阵列具有体积小的特点。由此,可以缩小包含该光电探测阵列的光电探测器的体积,实现光电探测器的轻薄化。
在一些实施例中,所述第一区域51和所述第二区域52为形状相同且面积相等的区域,一个所述矩形区域对应于N个所述第二电极,所述N为正整数;
所述第一区域51和所述第二区域52按照预设图案间隔分布。
示例性地,所述第一区域51和所述第二区域52可为矩形区域,也可以为非矩形区域。第一区域51和第二区域52都是覆盖连续分布的一个或多个光电二极管。此时第一区域51和第二区域52的形状,与被其连续覆盖的光电二极管的一同形成的外轮廓一致。
该预设图案可为预先设置的任意图案,包括但不限于阵列分布的4个区域中对角线上的两个区域是一种区域,另外一条对角线上的两个区域是另一种区域。
图8至图9所示是本公开实施例提供的一种预设图案的效果示意图,其中,在图9中,不同填充图案分别代表了第一区域51和第二区域52。
在本公开通过图案化的光学膜43,可以基于同一个光电探测阵列进行两种或者两种以上待测光的探测,具有结构简单且集成度高的特点。
在本公开通过图案化的光学膜43,可以基于同一个光电探测阵列10进行两种或者两种以上待测光的探测,具有结构简单且集成度高的特点。
在一些实施例中,预设图案中第一区域51和第二区域52都有各自的连接电路,从而任意第一区域51和第二区域52可以同时独立工作,从而该光电探测阵列10在工作状态下的任意时刻都可以同时探测两种波长的待测光。如此光电探测阵列10的待测光为激光 时,该光电探测阵列10可以同时探测两种激光,从而可以提升激光的测距精度和/或测距范围。
示例性地,在本公开实施例中,一个所述预设图案内位于相同行且相邻的所述第一区域51和所述第二区域52,与相同的连接电路连接。或者,在本公开的另一个实施例中,一个所述预设图案内位于相同列且相邻的所述第一区域51和所述第二区域52,与相同连接电路连接。在本公开的以上实施例中,一个所述连接电路分时导通对应的所述第一区域51和所述第二区域52。
在本公开实施例中,一个预设图案中同一行相邻的第一区域51和第二区域52的光电二极管可以共用一个连接电路。或者,在本公开的另一个实施例中,一个预设图案中同一列相邻的第一区域51和第二区域52可以共用一个连接电路。在本公开的以上实施例中,一个连接电路将分时导通不同的第一区域51和第二区域52,从而在不同的时间点获取第一区域51和第二区域52探测的不同待测光的光强等。
在一些实施例中,参考图9所示,若在所述预设图案内任意一个矩形区域的对角线上分布的是所述第一区域51;和/或,在所述预设图案内任意一个矩形区域的对角线上分布的是所述第二区域52。
在一个实施例中,假设所述预设图案包含两个第一区域和两个第二区域,且第一区域和第二区域间隔分布。此时,两个第一区域分布在一条对角线上,两个第二区域分布在另一条对角线上,就可以规避某一个波长的待测光入射到电探测阵列10的一行上或者一列上不能被探测到的现象,提升了光电探测阵列10的灵敏度和精确度。
该预设图案可为预先设置的任意图案,包括但不限于:如图9所示,由阵列分布式的4个区域中对角线上的两个区域是一种区域,另外一条对角线上的两个区域是另一种区域,这种对角线上分布的是第一区域和第二区域中的同一种区域,可以使得在每一行和每一列都具有两种第一区域。由此,可以减少一种波长的待测光入射到某一个行或者某一个列,却被另一种波长的光学膜所对应区域视为干扰光过滤掉的情况,从而提升了光电探测器的探测精确度。
每个第一区域51和每个第二区域52可以对应于S个第二电极34,即,对应于S个光电二极管。所述S的取值可为1、2、3或4等取值。具体S的取值小于所述光电探测阵列包含的光电二极管的总个数。示例性,所述S可以小于或等于所述光电探测阵列包含的光电二极管的总个数的1/2。
若所述S的取值为1,则所述第一区域51和所述第二区域52为光电二极管级别的光学作用区域。一个所述第一区域51覆盖一个第二电极34,且一个所述第二区域52覆盖一 个第二电极34,则该光电探测器实现了逐个光电二极管的不同波长的待测光的检测。
如图10所示,本公开实施例提供一种激光雷达,包括:
激光发射器61,用于发射激光;
前述任意实施例提供的光电探测器62,用于检测所述激光的回光。
该光电探测器62用于激光雷达中,可以很好的探测激光的回光,从而提升激光雷达的测距数据的精度。
该激光雷达可为各种类型的激光雷达。示例性地,所述光雷达可为微电子机械系统(Micro-Electro-Mechanical System,MEMS)光雷达。
本公开实施例中激光发射器发射的激光可为波长为905nm的激光,或者波长为1310nm的激光,或者波长为1550nm的激光。
本公开实施例提供的光电探测器具有探测灵敏度高及精度高的特点,故包含了该光电探测器的激光雷达同样具有灵敏度高及精度高的特点。示例性地,该激光雷达可以用于测距,则这种激光雷达基于光电探测器从第一电极和第二电极之间读取的电压生成的测距数据,具有精度高的特点。
该测距数据可为激光雷达的点云数据。该点云数据可包括被测目标与激光雷达之间的距离值和/或角度值,该角度值可为被测目标与激光雷达之间在垂直方向上的俯仰角度值和/或在水平方向的角度值。
本领域技术人员可以理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开的实施例的实施过程构成任何限定。
以上所述实施例仅用以说明本公开的技术方案,而非对其限制;尽管掺杂前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开的各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种光电探测阵列,包括:
    第一电极层,待测光能够从该第一电极层的第一侧入射并透射通过所述第一电极层;
    吸收层,位于所述第一电极层的与第一侧相反的第二侧上,被配置为吸收透射通过所述第一电极层的待测光的光能,并基于所吸收的光能产生光电流;
    第二电极层,所述第二电极层位于所述吸收层的与所述第一电极层相反的一侧,所述第二电极层包括阵列式分布的多个第二电极,相邻的所述第二电极彼此电隔离,每一个所述第二电极与所述吸收层的被该第二电极覆盖的区域相对应;
    其中,每一个所述第二电极分别与所述第一电极层耦合,被配置为输出对应于由所述吸收层的与该第二电极对应的区域所产生的光电流的电压。
  2. 根据权利要求1所述的光电探测阵列,还包括:
    接触层,位于所述第二电极层与所述吸收层之间,所述接触层包括多个阵列式分布的接触块,每个所述接触块与对应的一个所述第二电极;
    电连接,相邻的所述接触块彼此电隔离;
    倍增层,位于所述接触层和所述吸收层之间,被配置为放大由所述吸收层产生的光电流,由每个所述接触块覆盖的所述倍增层的区域彼此不重叠。
  3. 根据权利要求2所述的光电探测阵列,其中,所述接触块在阵列式分布的方向上的横截面为多边形,所述多边形至少具有四条边。
  4. 根据权利要求1所述的光电探测阵列,其中,所述第一电极层包括一个公共电极,每一个所述第二电极都与所述公共电极耦合。
  5. 根据权利要求1所述的光电探测阵列,还包括透明衬底,位于所述第一电极层与所述吸收层之间,并且由透明半导体材质构成。
  6. 根据权利要求1所述的光电探测阵列,还包括过渡层,位于所述透明衬底与所述吸收层之间,被配置为平滑在所述透明衬底与所述吸收层之间的势垒。
  7. 一种光电探测器,包括:
    权利要求1至6任一项所述光电探测阵列;
    连接电路,所述连接电路能够分别与所述光电探测阵列的每个所述第二电极电连接,并被配置为能够读取每个所述第二电极输出的电压;
    处理器,与所述连接电路电连接并被配置为从所述连接电路接收每个所述第二电极输出的电压。
  8. 根据权利要求7所述光电探测器,还包括:
    控制电路,被配置为根据所述处理器的控制信号,控制所述光电探测阵列的连接电路的导通或断开。
  9. 根据权利要求7或8所述的光电探测器,其中,
    所述控制电路、所述连接电路和所述光电探测阵列封装在探测芯片内;
    其中,所述探测芯片包括阵列区域和电路区域,所述电路区域环绕在所述阵列区域外围;
    所述光电探测阵列位于阵列区域内;
    所述控制电路位于所述电路区域内;
    所述电路区域和所述阵列区域之间设置有绝缘的隔离带。
  10. 根据权利要求9所述的光电探测器,其中,所述控制电路包括:
    供电子电路,与所述光电探测阵列的第一电极层连接并且被配置为向所述第一电极层提供工作电压;
    选通子电路,与所述连接电路电连接并且被配置为根据所述处理器的控制信号,导通或断开所述连接电路。
  11. 根据权利要求9所述的光电探测器,其中,所述电路区域的基材为半导体材料,且所述电路区域的基材内在对应于所述控制电路的位置处增加导电性的掺杂粒子。
  12. 根据权利要7至11任一项所述的光电探测器,还包括:
    光学膜,在所述待测光入射的一侧覆盖所述光电探测阵列,其中,所述光学膜被配置为促进所述待测光入射到所述吸收层。
  13. 根据权利要求12所述的光电探测器,其中,所述光学膜至少包括:
    复合膜,其中,所述复合膜由多种材质混合形成,所述多种材质被配置为分别实现不同所述光学现象;
    或者,
    层叠膜,包括具有不同光学现象的至少两个膜层,所述至少两个膜层层叠设置。
  14. 根据权利要求12或13所述的光电探测器,其中,所述光学膜被配置为提升所述待测光入射到所述吸收层的透射率和/或滤除所述待测光以外的干扰光。
  15. 根据权利要求12或13所述的光电探测器,其中,所述光学膜被划分为:
    多个第一区域,被配置为向所述吸收层透射第一波长的光;
    多个第二区域,被配置为向所述吸收层透射第二波长的光。
  16. 根据权利要求15所述的光电探测器,其中,
    所述第一区域和所述第二区域按照预设图案间隔分布。
  17. 根据权利要求15所述的光电探测器,其中,
    所述第一区域和所述第二区域形状相同且面积相等,一个所述第一区域和一个所述第二区域对应于所述光电探测阵列的N个第二电极,所述N为正整数。
  18. 根据权利要求17所述的光电探测器,其中,
    一个所述预设图案内位于相同行且相邻的所述第一区域和所述第二区域,与相同的连接电路连接;或者
    一个所述预设图案内位于相同列且相邻的所述第一区域和所述第二区域,与相同连接电路连接;或者
    一个所述连接电路,分时导通对应的所述第一区域和所述第二区域。
  19. 根据权利要求17所述的光电探测器,其中,
    在所述预设图案内任意一个矩形区域的对角线上分布的是所述第一区域;和/或,
    在所述预设图案内任意一个矩形区域的对角线上分布的是所述第二区域。
  20. 一种激光雷达,包括:
    激光发射器,用于发射激光;
    权利要求7至19任一项所述的光电探测器,用于检测所述激光的回光。
PCT/CN2022/110177 2021-08-09 2022-08-04 光电探测阵列、光电探测器、及激光雷达 WO2023016327A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110908753.2A CN115706175B (zh) 2021-08-09 2021-08-09 光电探测阵列、光电探测器、及激光雷达
CN202110908753.2 2021-08-09

Publications (1)

Publication Number Publication Date
WO2023016327A1 true WO2023016327A1 (zh) 2023-02-16

Family

ID=85179260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110177 WO2023016327A1 (zh) 2021-08-09 2022-08-04 光电探测阵列、光电探测器、及激光雷达

Country Status (2)

Country Link
CN (1) CN115706175B (zh)
WO (1) WO2023016327A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847933A (zh) * 2017-01-16 2017-06-13 中国工程物理研究院电子工程研究所 单片集成紫外‑红外双色雪崩光电二极管及其制备方法
US9825074B2 (en) * 2014-06-10 2017-11-21 Invisage Technologies, Inc. Layout and operation of pixels for image sensors

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095596C (zh) * 1999-10-29 2002-12-04 北京师范大学 新结构线阵列x光探测器及其探测方法
US6829080B2 (en) * 2001-04-17 2004-12-07 Matsushita Electric Industrial Co., Ltd. Optical waveguide device and light source and optical apparatus using the same
JP2005251890A (ja) * 2004-03-03 2005-09-15 Sumitomo Electric Ind Ltd 上面入射型受光素子アレイ
JP2005259829A (ja) * 2004-03-10 2005-09-22 Sumitomo Electric Ind Ltd 裏面入射型受光素子アレイ
CN1333433C (zh) * 2004-03-12 2007-08-22 中国科学院半导体研究所 抑制相邻通道间耦合串扰的电极布线结构及其制造方法
TWI443817B (zh) * 2006-07-03 2014-07-01 Hamamatsu Photonics Kk Photodiode array
US10957804B2 (en) * 2009-08-18 2021-03-23 The United States Of America As Represented By The Secretary Of The Army Photodetector using resonance and related method
JP5973149B2 (ja) * 2010-10-14 2016-08-23 ローム株式会社 光検出装置
KR101506962B1 (ko) * 2014-06-02 2015-03-30 인천대학교 산학협력단 고효율 광전소자 및 그 제조방법
JP2017220577A (ja) * 2016-06-08 2017-12-14 パナソニックIpマネジメント株式会社 光検出装置
JP6821406B2 (ja) * 2016-11-22 2021-01-27 京セラ株式会社 赤外線カットフィルタおよび光学素子用パッケージ
JP2018189725A (ja) * 2017-04-28 2018-11-29 Jsr株式会社 光学フィルター及び光学フィルターを用いた撮像装置
CN209045574U (zh) * 2018-11-12 2019-06-28 深圳市灵明光子科技有限公司 光电探测器、光电探测器阵列和光电探测终端
CN109712998B (zh) * 2018-12-27 2022-02-01 中国科学院长春光学精密机械与物理研究所 具有高短波探测效率的可见光硅增益接收器阵列
CN110336184B (zh) * 2019-07-16 2021-03-12 山东大学 一种低噪声的soa-pin集成光探测器
CN112086524A (zh) * 2020-08-28 2020-12-15 北京智创芯源科技有限公司 一种红外探测装置及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9825074B2 (en) * 2014-06-10 2017-11-21 Invisage Technologies, Inc. Layout and operation of pixels for image sensors
CN106847933A (zh) * 2017-01-16 2017-06-13 中国工程物理研究院电子工程研究所 单片集成紫外‑红外双色雪崩光电二极管及其制备方法

Also Published As

Publication number Publication date
CN115706175A (zh) 2023-02-17
CN115706175B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
US10700220B2 (en) Array of Geiger-mode avalanche photodiodes for detecting infrared radiation
CN109659377B (zh) 单光子雪崩二极管及制作方法、探测器阵列、图像传感器
US20210273120A1 (en) Photodetectors, preparation methods for photodetectors, photodetector arrays, and photodetection terminals
US11296137B2 (en) High quantum efficiency Geiger-mode avalanche diodes including high sensitivity photon mixing structures and arrays thereof
US8816461B2 (en) Dichromatic photodiodes
KR102514047B1 (ko) 복수의 기능이 통합된 이미지 센서 및 이를 포함하는 이미지 센서 모듈
CN217822825U (zh) 一种spad传感器
JP2014138142A (ja) 固体撮像素子および撮像装置
CN212783453U (zh) 高分辨率距离传感器像素结构及距离传感器
US11978754B2 (en) High quantum efficiency Geiger-mode avalanche diodes including high sensitivity photon mixing structures and arrays thereof
JP7431699B2 (ja) 光検出器、光検出システム、ライダー装置、及び車
WO2023016327A1 (zh) 光电探测阵列、光电探测器、及激光雷达
CN211061698U (zh) 用于检测光的装置
CN115706176B (zh) 光电探测器、设备及存储介质
CN115704905B (zh) 光电探测器及激光雷达
CN115706177A (zh) 光电探测阵列、光电探测器装置、设备及存储介质
WO2023103314A1 (zh) 探测单元、探测阵列、探测阵列母板、探测器和激光雷达
US20230063540A1 (en) Light detector, light detection system, lidar device, and mobile body
JP3137720B2 (ja) 光電変換デバイスおよびそれを用いた光論理演算デバイス
CN103928557A (zh) 太赫兹量子阱光电探测器的同心圆环光耦合器及制作方法
JPH05332821A (ja) ストライプ接触部赤外線検出器
CN114628424A (zh) 一种单光子雪崩二极管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE