WO2023016219A1 - 一种高强韧冷作模具钢及其制备方法 - Google Patents

一种高强韧冷作模具钢及其制备方法 Download PDF

Info

Publication number
WO2023016219A1
WO2023016219A1 PCT/CN2022/106861 CN2022106861W WO2023016219A1 WO 2023016219 A1 WO2023016219 A1 WO 2023016219A1 CN 2022106861 W CN2022106861 W CN 2022106861W WO 2023016219 A1 WO2023016219 A1 WO 2023016219A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
steel
slag
molten steel
refining
Prior art date
Application number
PCT/CN2022/106861
Other languages
English (en)
French (fr)
Inventor
肖强
康琴
罗许
胡浩然
Original Assignee
攀钢集团攀枝花钢铁研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 攀钢集团攀枝花钢铁研究院有限公司 filed Critical 攀钢集团攀枝花钢铁研究院有限公司
Priority to AU2022325314A priority Critical patent/AU2022325314B2/en
Priority to KR1020237019602A priority patent/KR20230104949A/ko
Publication of WO2023016219A1 publication Critical patent/WO2023016219A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of cold work die steel, and in particular relates to a high-strength and tough cold work die steel and a preparation method thereof.
  • cold stamping dies are increasing year by year, and has become an important process equipment for the production of various sheet metal parts.
  • metal material of cold stamping die it is greatly affected by cold extrusion forming and punching force in use, especially the convex and concave dies of important parts. Therefore, cold working die steel is required to have strong strength, toughness and wear resistance. sex.
  • the steel types commonly used in cold stamping dies are generally Cr12MoV, SKD11 and D2, and the chemical composition of the three steels is basically the same.
  • the object of the present invention is to provide a high-strength and tough cold-working die steel and a preparation method thereof, so as to achieve the purpose of reducing or improving eutectic carbides.
  • the invention provides a high-strength and tough cold-working die steel, the composition of which is:
  • the balance is Fe.
  • the present invention provides a method for preparing the high-strength and tough cold-working die steel described in the above-mentioned technical solution, comprising:
  • Alloy raw materials are smelted in electric furnace, LF furnace refined and VD vacuum refined in sequence to obtain molten steel;
  • the molten steel is poured to obtain high strength and toughness cold work die steel.
  • the preparation method of the high strength and toughness cold working die steel includes:
  • scrap steel as raw material, smelting in 40t electric furnace, refining in 40t LF furnace and vacuum refining in 40t VD furnace are carried out sequentially by returning method to obtain molten steel;
  • the molten steel is then poured into an ingot to obtain a flat ingot of high strength and toughness cold working die steel.
  • the preparation method of the high strength and toughness cold working die steel includes:
  • Cr12MoV, Cr12, 4Cr13 steel scraps are used as steelmaking raw materials, followed by 40t electric furnace smelting, 40t LF furnace refining and 40t VD furnace vacuum refining to obtain molten steel with the target composition;
  • the molten steel is poured into an ingot to obtain a flat ingot of high strength and toughness cold working die steel.
  • the tapping temperature in the electric furnace smelting process is ⁇ 1600°C.
  • the temperature of molten steel entering the furnace is ⁇ 1510°C, and the slag thickness is 31-35 mm;
  • the operation of feeding aluminum wire is carried out first.
  • the amount of aluminum wire added is 120-150m/furnace molten steel, and at the same time, argon gas is fed into the bottom of the furnace with a flow rate of 80-100NL/min.
  • the slag lime and refining slag prepared in advance are added during the refining process of the LF furnace, and then additional lime is added;
  • the added amount of the slag lime is 500-580kg/melt steel, the added amount of the refining slag is 120-140kg/melt steel, and the added lime is 180-200kg/melt steel.
  • power transmission reduction is performed during the refining process of the LF furnace, and carbon powder and steel slag are added during the power transmission reduction process;
  • the dosage of the carbon powder is 80-100kg/melt steel in the furnace, the dosage of the molten steel slag is 100-150kg/molten steel; For molten steel in the furnace, 35-40kg/furnace molten steel, 30-35kg/furnace molten steel, 20-30kg/furnace molten steel are added to reduce with steel slag at intervals of 10 minutes during the refining period; Back, adjust the total Al to 0.05wt% according to the analysis results.
  • the white slag is kept for 20-25 minutes, and 10-15 kg/furnace of molten steel carbon powder is added in the later stage of refining to maintain the reducing atmosphere.
  • the chemical composition is adjusted according to the relevant requirements of specific chemical composition control and Nb alloying is carried out, and Nb iron is added according to 0.05% to 0.1% of the weight of molten steel;
  • the VD furnace is operated.
  • the hanging bag temperature during the VD vacuum refining process is 1610-1640°C;
  • the thickness of slag entering VD is ⁇ 80mm.
  • the ultimate vacuum degree in the VD vacuum refining process is ⁇ 60Pa, and the holding time under the ultimate vacuum is ⁇ 20min.
  • a large flow rate of Ar blowing is maintained under ultimate vacuum, and the blowing Ar flow rate is ⁇ 130 NL/min; 1-2 minutes before the void is broken, the Ar blowing flow rate is adjusted to 20-40 NL/min.
  • the VD vacuum material process includes:
  • the soft argon blowing time is ⁇ 25 minutes before hanging ladle pouring. If the soft blowing time exceeds 50 minutes, the fixed [H] operation needs to be performed again.
  • the temperature of the ladle during the casting process is 1505-1515° C., and finally cast into an ingot.
  • the invention provides a high-strength and tough cold-work die steel with specific composition and preparation process, which can reduce or improve the problem of eutectic carbides. unqualified flaw detection problem.
  • Fig. 1 is the metallographic picture of eutectic carbides at the edge of flat steel prepared in Example 1 of the present invention
  • Fig. 2 is the metallographic picture of the eutectic carbide in the flat steel core prepared in Example 1 of the present invention
  • Fig. 3 is the metallographic picture of eutectic carbides at the edge of flat steel prepared in Example 2 of the present invention
  • Fig. 4 is a metallographic picture of the eutectic carbide in the core of the flat steel prepared in Example 2 of the present invention.
  • the invention provides a high-strength and tough cold-working die steel, the composition of which is:
  • the balance is Fe.
  • the mass content of C is preferably 0.91-0.93%, more preferably 0.92%; the mass content of Si is preferably 1.38-1.42%, most preferably 1.4%; the mass content of Mn is preferably is 0.5%; the mass content of P is preferably ⁇ 0.02wt%; the mass content of S is preferably ⁇ 0.003wt%; the mass content of Cr is preferably 7.5-7.7%, more preferably 7.6%;
  • the mass content of Mo is preferably 2.2%;
  • the mass content of V is preferably 0.31-0.34%, more preferably 0.32-0.33%; the mass content of Nb is preferably 0.45%; the mass content of Cu is preferably ⁇ 0.2wt%; the mass content of Ni is preferably ⁇ 0.2wt%; the mass content of Al is preferably 0.025%;
  • the mass content of H is preferably ⁇ 2.5ppm; the mass content of O is preferably ⁇ 0.002 wt%.
  • the present invention provides a method for preparing the high-strength and tough cold-working die steel described in the above-mentioned technical solution, comprising:
  • Alloy raw materials are smelted in electric furnace, LF furnace refined and VD vacuum refined in sequence to obtain molten steel with qualified composition;
  • the molten steel is poured to obtain a high-strength and tough cold-working die steel ingot.
  • the preparation method of the high strength and toughness cold working die steel includes:
  • scrap steel as raw material, smelting in 40t electric furnace, refining in 40t LF furnace and vacuum refining in 40t VD furnace are carried out sequentially by returning method to obtain molten steel;
  • the molten steel is then poured into an ingot to obtain a flat ingot of high strength and toughness cold working die steel.
  • the preparation method of the high strength and toughness cold working die steel more preferably includes:
  • Cr12MoV, Cr12, 4Cr13 steel scraps are used as steelmaking raw materials, followed by 40t electric furnace smelting, 40t LF furnace refining and 40t VD furnace vacuum refining to obtain molten steel with qualified components;
  • the molten steel is poured into an ingot to obtain a flat ingot of high strength and toughness cold working die steel.
  • the electric furnace is preferably a 40t electric furnace; the LF furnace is preferably a 40t LF furnace; and the VD vacuum refining is preferably a 40t vacuum refining furnace.
  • the present invention has no special restrictions on the alloy raw materials, and the alloy raw materials well-known to those skilled in the art for preparing cold-working die steel can be used for batching.
  • Scrap steel is preferably used, and one of Cr12MoV steel scrap, Cr12 steel scrap and 4Cr13 steel scrap is more preferably used. species or several.
  • the composition of the alloy raw material is consistent with the composition of the high-strength and toughness cold-working die steel described in the above technical solution.
  • the reduction method is preferably used in the electric furnace smelting process; the tapping temperature in the electric furnace smelting process is preferably ⁇ 1600°C, more preferably 1610-1630°C, and most preferably 1620°C.
  • the molten steel feeding condition is preferably temperature ⁇ 1510°C, more preferably 1520-1540°C, most preferably 1530°C; slag thickness is preferably 31-35mm, more preferably 32mm ⁇ 34mm, most preferably 33mm.
  • the aluminum wire is preferably fed during the refining process of the LF furnace, and the amount of the aluminum wire added is preferably 130-140m/furnace molten steel, more preferably 132-138m/furnace molten steel, most preferably 134-136m / Furnace molten steel.
  • argon gas is preferably fed into the bottom of the furnace while feeding the aluminum wire; the flow rate of the argon gas is preferably 80-100 NL/min, more preferably 85-95 NL/min, most preferably It is 90NL/min.
  • lime and refining slag are preferably added in the refining process of the LF furnace, and then additional lime is added;
  • the addition amount of the lime is preferably 510-580kg/furnace molten steel, more preferably 520-560kg/furnace molten steel, more preferably It is preferably 530-550 kg/steel furnace, most preferably 540 kg/steel furnace.
  • the added amount of the refining slag is preferably 125-140 kg/steel furnace, more preferably 130-135 kg/steel, and most preferably 132-133 kg/steel.
  • the amount of additional lime added is preferably 185-200 kg/steel furnace, more preferably 190-195 kg/steel furnace, and most preferably 192-193 kg/steel furnace.
  • the power transmission reduction is preferably carried out in the refining process of the LF furnace.
  • carbon powder and steel slag are used for reduction.
  • the consumption of the carbon powder is preferably 85-100 kg/furnace molten steel, more preferably 90-95kg/steel furnace, most preferably 92-93kg/steel furnace.
  • the amount of steel slag used is preferably 100-150 kg/steel furnace, more preferably 110-140 kg/steel furnace, and most preferably 120-130 kg/steel furnace.
  • the method for adding steel slag powder preferably includes:
  • the steel slag is preferably added in stages during the refining period, and 35-40kg/furnace molten steel, 30-35kg/furnace molten steel, and 20-30kg/furnace molten steel are added for reduction every 10 minutes.
  • the LF furnace refining process is preferably completely reduced and the slag is white
  • sampling analysis including all Al
  • the sample is returned, and the total Al in molten steel is adjusted to 0.05wt% according to the analysis results, and the retention of white slag
  • the time is preferably 20 to 25 minutes, more preferably 21 to 24 minutes, most preferably 22 to 23 minutes
  • carbon powder is added in the later stage of refining to maintain a reducing atmosphere
  • the amount of carbon powder added is preferably 10 to 15 kg/furnace of molten steel, more preferably 11-14kg/melt steel, most preferably 12-13kg/melt steel.
  • the chemical composition in the refining process of the LF furnace, is preferably adjusted according to the relevant requirements of the chemical composition control of specific steel types and Nb alloying is carried out, and Nb iron is added according to 0.05-0.1% of the weight of molten steel, more preferably 0.06-0.09% %, most preferably 0.07 to 0.08%.
  • the content of total aluminum in molten steel after LF refining is preferably 0.02-0.04wt%, more preferably 0.03wt%; preferably, the mass content of S in molten steel is ⁇ 0.003%, and the temperature is 1610-1640°C After the slag is removed by the hanging bag, it enters the VD vacuum refining.
  • the thickness of VD slag is preferably ⁇ 80mm, more preferably 70-80mm, and most preferably 75mm.
  • the ultimate vacuum degree in the VD vacuum refining process is preferably ⁇ 60Pa, more preferably 50-60Pa, most preferably 55Pa; the holding time under the ultimate vacuum is preferably ⁇ 20min, more preferably 20-25min, most preferably It is 22-23 minutes.
  • the flow rate of blowing Ar is preferably ⁇ 130NL/min, more preferably 130-150NL/min, most preferably 140NL/min; For 1-2 minutes, adjust the Ar blowing flow rate to 20-40 NL/min, more preferably 25-35 NL/min, most preferably 30 NL/min.
  • the [H] content in molten steel is preferably controlled to be ⁇ 2.5 ppm.
  • rare earth Re 13-17kg/melt steel immediately after the VD vacuum furnace is broken, more preferably 14-16kg/melt steel, most preferably 15kg/melt steel.
  • the adding method of the rare earth preferably includes:
  • the soft argon blowing time be greater than or equal to 25 minutes before hanging ladle pouring. If the soft blowing time exceeds 50 minutes, the fixed [H] operation needs to be performed again.
  • the hanging bag temperature during the pouring process is preferably 1505-1515°C, more preferably 1508-1512°C, most preferably 1510°C.
  • the invention provides a high-strength and tough cold-work die steel with specific composition and preparation process, which can reduce or improve the problem of eutectic carbides. unqualified flaw detection problem.
  • Cr12MoV, Cr12, 4Cr13 steel scraps are used as raw materials for steelmaking, followed by 40t electric furnace smelting, 40t LF furnace refining and 40t VD vacuum refining to obtain molten steel with qualified chemical composition;
  • the reduction method is used for smelting, and the tapping temperature is 1620°C;
  • the temperature of molten steel after entering the LF furnace is 1550°C, and the slag thickness is 35mm;
  • Power transmission reduction uses a total of 100kg of carbon powder and a total of 100kg of steel slag for reduction.
  • the method of adding steel slag 100kg of steel slag is added after 15 minutes of power transmission and refining, and 40kg, 30kg, and 30kg of steel slag are added at intervals of 10 minutes during the refining period reduction;
  • the chemical composition is adjusted according to the relevant requirements of the specific steel chemical composition control, and Nb iron is added according to 0.06% of the total weight of molten steel; after the LF furnace refining is completed, all aluminum [Al]: 0.04wt%;
  • the thickness of the VD slag is 70mm
  • VD furnace vacuum treatment requirements the ultimate vacuum degree is 50Pa, and the holding time under the ultimate vacuum is 25min;
  • the hanging bag temperature during the pouring process was 1514°C.
  • Table 1 The composition detection results of the high-strength and high-toughness cold work die steel prepared in Example 1 of the present invention
  • Example 1 of the present invention After the slab prepared in Example 1 of the present invention is rolled into a flat steel with a thickness of 70 mm, the edge and center of the cross section are sampled and analyzed for metallographic structure, as shown in Figure 1 and Figure 2, Figure 1 is The metallographic structure of the edge, Figure 2 is the metallographic structure of the center; according to the standard of GB/T 14979-1994 "Eutectic Carbide Inhomogeneity Rating Method for Steel", the eutectic carbide inhomogeneity is rated, and the results are all 0.5 class.
  • Cr12MoV, Cr12, 4Cr13 steel scraps are used as raw materials for steelmaking, followed by 40t electric furnace smelting, 40t LF furnace refining and 40t VD vacuum refining to obtain molten steel with qualified chemical composition;
  • the reduction method is used for smelting, and the tapping temperature is 1610°C;
  • the temperature of molten steel after entering the LF furnace is 1560°C, and the slag thickness is 31mm;
  • Power transmission reduction uses a total of 80kg of carbon powder and a total of 130kg of steel slag for reduction; the method of adding steel slag: 130kg of steel slag is added after 12 minutes of power transmission and refining, and 50kg, 40kg, and 40kg of steel slag are added every 10 minutes during the refining period reduction;
  • the chemical composition is adjusted according to the relevant requirements of the specific steel chemical composition control, and Nb iron is added according to 0.1% of the total weight of molten steel; after the LF furnace refining is completed, all aluminum [Al]: 0.03wt%;
  • the thickness of the VD slag is 72 mm;
  • VD furnace vacuum treatment requirements the ultimate vacuum degree is 55Pa, and the holding time under the ultimate vacuum is 21min;
  • the hanging bag temperature during the pouring process was 1506°C.
  • Example 2 According to the method of Example 1, the composition of the high-strength and high-toughness cold-working die steel prepared in Example 2 of the present invention is detected, and the test results are as shown in Table 2:
  • Example 2 of the present invention After rolling the slab prepared in Example 2 of the present invention into a flat steel with a thickness of 70mm, the edge and center of the cross section were sampled for metallographic analysis, as shown in Figures 3 and 4, according to Example 1 Eutectic carbide inhomogeneity rating was carried out according to the method, and the results were all grade 1.0.
  • the invention provides a high-strength and tough cold-work die steel with specific composition and preparation process, which can reduce or improve the problem of eutectic carbides. unqualified flaw detection problem.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明提供了一种高强韧冷作模具钢,成分为:0.9wt%~0.94wt%的C;1.35wt%~1.45wt%的Si;0.4wt%~0.6wt%的Mn;≤0.02wt%的P;≤0.003wt%的S;7.4wt%~7.8wt%的Cr;2.1wt%~2.3wt%的Mo;0.3wt%~0.35wt%的V;0.4wt%~0.5wt%的Nb;≤0.2wt%的Cu;≤0.2wt%的Ni;0.02%~0.03wt%的Al;≤2.5ppm的H;≤0.002wt%的O;稀土Re痕量;余量为Fe。本发明提供了一种特定成分以及制备工艺的高强韧冷作模具钢,这种冷作模具钢具有较好的组织性能,避免大块碳化物引起的探伤不合格问题。本发明还提供了一种高强韧冷作模具钢的制备方法。

Description

一种高强韧冷作模具钢及其制备方法 技术领域
本发明属于冷作模具钢技术领域,尤其涉及一种高强韧冷作模具钢及其制备方法。
背景技术
冷冲压模具使用量逐年增加,已经成为生产各类板材类零件的重要工艺装备。作为冷冲压模具的金属材料在使用中受到冷挤压成形、冲裁力的影响很大,特别是重要部件凸、凹模,因此,要求冷作模具钢具有较强的强度、韧性及耐磨性。冷冲压模具常用的钢种一般为Cr12MoV、SKD11和D2,三种钢的化学成分基本相当。
为了进一步提高冷冲压模具的韧性并维持原有的强度不变,日本大同公司在Cr12MoV钢的基础上开发了DC53(国内牌号为Cr8Mo2SiV),在化学成分设计时,降低了碳、铬含量的比例,进而减少共晶碳化物的析出来提高韧性。但是,实际生产实践表明,该类钢种仍然存在因大块共碳化物而引起的探伤不合格的质量问题。
发明内容
有鉴于此,本发明的目的在于提供一种高强韧冷作模具钢及其制备方法,以达到降低或者改善共晶碳化物的目的。
本发明提供了一种高强韧冷作模具钢,成分为:
0.9wt%~0.94wt%的C;
1.35wt%~1.45wt%的Si;
0.4wt%~0.6wt%的Mn;
≤0.02wt%的P;
≤0.003wt%的S;
7.4wt%~7.8wt%的Cr;
2.1wt%~2.3wt%的Mo;
0.3wt%~0.35wt%的V;
0.4wt%~0.5wt%的Nb;
≤0.2wt%的Cu;
≤0.2wt%的Ni;
0.02%~0.03wt%的Al;
≤2.5ppm的H;
≤0.002wt%的O;
稀土Re痕量;
余量为Fe。
本发明提供了一种上述技术方案所述的高强韧冷作模具钢的制备方法,包括:
将合金原料依次进行电炉冶炼、LF炉精炼和VD真空精炼,得到钢水;
将所述钢水进行浇注,得到高强韧冷作模具钢。
优选的,所述高强韧冷作模具钢的制备方法,包括:
以废钢为原料,采用返回法依次进行40t电炉冶炼、40t LF炉精炼和40t VD炉真空精炼,得到钢水;
再将所述钢水进行浇注成锭,得到高强韧冷作模具钢扁锭。
优选的,所述高强韧冷作模具钢的制备方法,包括:
将Cr12MoV、Cr12、4Cr13废钢作为炼钢原料,依次进行40t电炉冶炼、40t LF炉精炼和40t VD炉真空精炼,得到目标成分钢水;
将所述钢水进行浇注成锭,得到高强韧冷作模具钢扁锭。
优选的,所述电炉冶炼过程中的出钢温度≥1600℃。
优选的,所述LF炉精炼过程中钢水入炉温度≥1510℃,渣厚为31~35mm;
所述LF炉精炼过程中先进行喂铝线操作,铝线的加入量为120~150m/炉钢水,同时炉底通入氩气,流量为80~100NL/min。
优选的,所述LF炉精炼过程中加入事先配好的渣料石灰和精炼渣,再补加石灰;
所述渣料石灰的加入量为500~580kg/炉钢水,所述精炼渣的加入量为120~140kg/炉钢水,所述补加石灰的加入量为180~200kg/炉钢水。
优选的,所述LF炉精炼过程中进行送电还原,所述送电还原过程中加入碳粉和钢渣友;
所述碳粉的用量为80~100kg/炉钢水,所述钢渣友的用量为100~150kg/炉钢水;所述钢渣友加入方式为:送电精炼10~15min后加入钢渣友100~150kg/炉钢水,精炼期每间隔10min按35~40kg/炉钢水、30~35kg/炉钢水、20~30kg/炉钢水加入钢渣友还原;还原彻底后,渣白,取样分析(包括全Al),样回、根据分析结果调整全Al至0.05wt%。
优选的,所述LF炉精炼过程中白渣保持时间20~25min,精炼后期补加10~15kg/炉钢水碳粉保持还原气氛。
优选的,所述LF炉精炼过程中根据取样分析结果,按具体各化学成分控制相关要求调整化学成分并进行Nb合金化,按钢水重量的0.05%~0.1%加入Nb铁;LF炉精炼结束全铝控制要求:[Al]:0.02~0.04wt%。
优选的,所述LF炉精炼过程中合金化完成后,取样全分析,当化学成分进入内控范围、[S]≤0.003wt%、温度在1610~1640℃时,进行VD炉操作。
优选的,所述VD真空精炼过程中的吊包温度为1610~1640℃;
入VD炉渣厚≤80mm。
优选的,所述VD真空精炼过程中的极限真空度≤60Pa,极限真空下的保持时间≥20min。
优选的,所述VD真空精炼过程中极限真空下保持大流量吹Ar,吹Ar流量≥130NL/min;破空前1~2min,将吹Ar流量调整到20~40NL/min。
优选的,所述VD真空间料过程中包括:
破空、测温、取[H]样,要求[H]≤2.5ppm;
VD真空炉破空后,立即加入稀土Re 13~17kg/炉钢水,将稀土Re置入铝制饭盒中,然后直接扔进钢包中;
稀土加完后,软吹氩时间≥25min后方可吊包浇注,如软吹时间超过50min,需要重新进行定[H]操作。
优选的,所述浇注过程中的吊包温度为1505~1515℃,最终浇铸成锭。
本发明提供了一种特定成分以及制备工艺的高强韧冷作模具钢,能够达到降低或改善共晶碳化物的问题,这种冷作模具钢具有较好的组织性能,避免大块碳化物引起的探伤不合格问题。
附图说明
图1为本发明实施例1制备的扁钢边部共晶碳化物金相图片;
图2为本发明实施例1制备的扁钢心部共晶碳化物金相图片;
图3为本发明实施例2制备的扁钢边部共晶碳化物金相图片;
图4为本发明实施例2制备的扁钢心部共晶碳化物金相图片。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员经改进或润饰的所有其它实例,都属于本发明保护的范围。应理解,本发明实施例仅用于说明本发明的技术效果,而非用于限制本发明的保护范围。实施例中,所用方法如无特别说明,均为常规方法。
本发明提供了一种高强韧冷作模具钢,成分为:
0.90wt%~0.94wt%的C;
1.35wt%~1.45wt%的Si;
0.4wt%~0.6wt%的Mn;
≤0.02wt%的P;
≤0.003wt%的S;
7.4wt%~7.8wt%的Cr;
2.1wt%~2.3wt%的Mo;
0.3wt%~0.35wt%的V;
0.4wt%~0.5wt%的Nb;
≤0.2wt%的Cu;
≤0.2wt%的Ni;
0.02%~0.03wt%的Al;
≤2.5ppm的H;
≤0.002wt%的O;
稀土Re痕量;
余量为Fe。
在本发明中,所述C的质量含量优选为0.91~0.93%,更优选为0.92%;所述Si的质量含量优选为1.38~1.42%,最优选为1.4%;所述Mn的质量含量优选 为0.5%;所述P的质量含量优选为≤0.02wt%;所述S的质量含量优选为≤0.003wt%;所述Cr的质量含量优选为7.5~7.7%,更优选为7.6%;所述Mo的质量含量优选为2.2%;所述V的质量含量优选为0.31~0.34%,更优选为0.32~0.33%;所述Nb的质量含量优选为0.45%;所述Cu的质量含量优选为≤0.2wt%;所述Ni的质量含量优选为≤0.2wt%;所述Al的质量含量优选为0.025%;所述H的质量含量优选为≤2.5ppm;所述O的质量含量优选为≤0.002wt%。
本发明提供了一种上述技术方案所述的高强韧冷作模具钢的制备方法,包括:
将合金原料依次进行电炉冶炼、LF炉精炼和VD真空精炼,得到成分合格的钢水;
将所述钢水进行浇注,得到高强韧冷作模具钢锭。
在本发明中,所述高强韧冷作模具钢的制备方法,包括:
以废钢为原料,采用返回法依次进行40t电炉冶炼、40t LF炉精炼和40t VD炉真空精炼,得到钢水;
再将所述钢水进行浇注成锭,得到高强韧冷作模具钢扁锭。
在本发明中,所述高强韧冷作模具钢的制备方法,更优选包括:
将Cr12MoV、Cr12、4Cr13废钢作为炼钢原料,依次进行40t电炉冶炼、40t LF炉精炼和40t VD炉真空精炼,得到成分合格的钢水;
将所述钢水进行浇注成锭,得到高强韧冷作模具钢扁锭。
在本发明中,所述电炉优选为40t电炉;所述LF炉优选为40t LF炉;所述VD真空精炼优选采用40t真空精炼炉。
本发明对所述合金原料没有特殊的限制,采用本领域技术人员熟知的制备冷作模具钢的合金原料进行配料即可,优选采用废钢,更优选采用Cr12MoV废钢、Cr12废钢和4Cr13废钢中的一种或几种。在本发明中,所述合金原料的成分与上述技术方案所述高强韧冷作模具钢的成分一致。
在本发明中,所述电炉冶炼过程中优选采用还原法进行冶炼;所述电炉冶炼过程中的出钢温度优选≥1600℃,更优选为1610~1630℃,最优选为1620℃。
在本发明中,所述LF炉精炼过程中钢水入炉条件优选为温度≥1510℃,更优选为1520~1540℃,最优选为1530℃;渣厚优选为31~35mm,更优选为 32~34mm,最优选为33mm。
在本发明中,所述LF炉精炼过程中优选进行喂铝线,所述铝线的加入量优选为130~140m/炉钢水,更优选为132~138m/炉钢水,最优选为134~136m/炉钢水。
在本发明中,所述LF炉精炼过程中喂铝线的同时优选炉底通入氩气;所述氩气的流量优选为80~100NL/min,更优选为85~95NL/min,最优选为90NL/min。
在本发明中,所述LF炉精炼过程中优选加入石灰和精炼渣,再补加石灰;所述石灰的加入量优选为510~580kg/炉钢水,更优选为520~560kg/炉钢水,更优选为530~550kg/炉钢水,最优选为540kg/炉钢水。
在本发明中,所述精炼渣的加入量优选为125~140kg/炉钢水,更优选为130~135kg/炉钢水,最优选为132~133kg/炉钢水。
在本发明中,所述补加石灰的加入量优选为185~200kg/炉钢水,更优选为190~195kg/炉钢水,最优选为192~193kg/炉钢水。
在本发明中,所述LF炉精炼过程中优选进行送电还原,所述送电还原过程中采用碳粉和钢渣友还原,所述碳粉的用量优选为85~100kg/炉钢水,更优选为90~95kg/炉钢水,最优选为92~93kg/炉钢水。
在本发明中,所述钢渣友的用量优选为100~150kg/炉钢水,更优选为110~140kg/炉钢水,最优选为120~130kg/炉钢水。
在本发明中,所述钢渣友的加入方法优选包括:
送电精炼10~15min后,加入钢渣友100~150kg/炉钢水,优选为110~140kg/炉钢水,最优选为120~130kg/炉钢水。
在本发明中,所述钢渣友在精炼期优选分段加入,每间隔10min按35~40kg/炉钢水、30~35kg/炉钢水、20~30kg/炉钢水加入钢渣友还原。
在本发明中,所述LF炉精炼过程中优选还原彻底后、渣白,进行取样分析(包括全Al),样回,根据分析结果调整钢水中的全Al至0.05wt%,白渣的保持时间优选为20~25min,更优选为21~24min,最优选为22~23min;精炼后期补加碳粉保持还原气氛;所述碳粉的加入量优选为10~15kg/炉钢水,更优选为11~14kg/炉钢水,最优选为12~13kg/炉钢水。
在本发明中,所述LF炉精炼过程中优选按照具体钢种的化学成分控制相 关要求调整化学成并进行Nb合金化,按钢水重量的0.05~0.1%加入Nb铁,更优选为0.06~0.09%,最优选为0.07~0.08%。
在本发明中,所述LF精炼结束后钢水中全铝的含量优选为0.02~0.04wt%,更优选为0.03wt%;优选在钢水中S的质量含量≤0.003%,温度为1610~1640℃吊包除渣后进入VD真空精炼。
在本发明中,所述VD真空精炼过程中优选入VD炉渣厚≤80mm,更优选为70~80mm,最优选为75mm。
在本发明中,所述VD真空精炼过程中的极限真空度优选≤60Pa,更优选为50~60Pa,最优选为55Pa;极限真空下保持时间优选≥20min,更优选为20~25min,最优选为22~23min。
在本发明中,所述VD真空精炼过程中优选极限真空下保持大流量吹Ar,吹Ar流量优选≥130NL/min,更优选为130~150NL/min,最优选为140NL/min;优选破空前1~2min,将吹Ar流量调到20~40NL/min,更优选为25~35NL/min,最优选为30NL/min。
在本发明中,所述VD真空精炼过程中优选进行破空、测温、取[H]样,钢水中[H]含量优选控制为≤2.5ppm。
在本发明中,所述VD真空精炼过程中优选VD真空炉破空后,立即加入稀土Re13~17kg/炉钢水,更优选为14~16kg/炉钢水,最优选为15kg/炉钢水。
在本发明中,所述稀土的加入方法优选包括:
将稀土Re置入铝制饭盒中,然后直接扔进钢包中。
在本发明中,所述稀土加完后,优选软吹氩时间≥25min后方可吊包浇注,如软吹时间超过50min,需要重新进行定[H]操作。
在本发明中,所述浇注过程中的吊包温度优选为1505~1515℃,更优选为1508~1512℃,最优选为1510℃。
本发明提供了一种特定成分以及制备工艺的高强韧冷作模具钢,能够达到降低或改善共晶碳化物的问题,这种冷作模具钢具有较好的组织性能,避免大块碳化物引起的探伤不合格问题。
实施例1
将Cr12MoV、Cr12、4Cr13废钢作为炼钢原料依次进行40t电炉冶炼、40t LF炉精炼和40t VD真空精炼,得到化学成分合格钢水;
将钢水进行浇注,得到高强高韧冷作模具钢扁锭;
所述电炉冶炼过程中:按常规冶炼工艺采用还原法进行冶炼,出钢温度1620℃;
所述LF炉精炼过程中:钢水入LF炉后温度1550℃,渣厚35mm;
喂铝线150m,调整好氩气流量90NL/min,并加入事先配好的渣料石灰570kg+精炼渣120kg,并补加石灰200kg;
送电还原,全程使用总量100kg的碳粉和总量100kg的钢渣友还原,钢渣友加入方式:送电精炼15min后加入钢渣友100kg,精炼期每间隔10min按40kg、30kg、30kg加入钢渣友还原;
还原彻底,渣白,取样分析(包括全Al),样回、根据分析结果调整全Al至0.05wt%;精炼过程白渣保持时间24min,精炼后期补加少量C粉(10kg/炉钢水)保持还原气氛;
根据取样分析结果,按具体钢种化学成分控制相关要求调整化学成分,并按钢水总重量的0.06%调加Nb铁;LF炉精炼结束后,全铝[Al]:0.04wt%;
确保合金化好,取样全分析,当化学成分进入内控、[S]≤0.003wt%、温度在1640℃,吊包除渣后吊到VD进行真空处理;
所述VD真空精炼过程中:入VD炉渣厚70mm;
VD炉真空处理要求:极限真空度50Pa,极限真空下保持时间25min;
极限真空下保持大流量吹Ar(吹Ar流量140NL/min),破空前2min,将吹Ar流量调到40NL/min;
破空、测温、取[H]样,[H]为2.5ppm;
VD真空炉破空后,立即加入稀土Re 15kg/炉钢水,将稀土Re置入铝制饭盒中,然后直接扔进钢包中;稀土加完后,软吹氩时间28min后方可吊包浇注,如软吹时间超过50min,需要重新进行定[H]操作;
所述浇注过程中的吊包温度为1514℃。
按照GB/T 4336-2016《碳素钢和中低合金钢多元素含量的测定火花放电原子发射光谱法(常规法)》方法,对本发明实施例1制备的高强高韧冷作模具钢进行成分检测,检测结果如表1所示:
表1本发明实施例1制备的高强高韧冷作模具钢成分检测结果
C Si Mn P S Cr Mo 余量
0.93wt% 1.4wt% 0.55wt% 0.02wt% 0.003wt% 7.75wt% 2.25wt% Fe
V Nb Cu Ni Al H O  
0.34wt% 0.5wt% 0.15wt% 0.2wt% 0.03wt% 2.2ppm 0.002wt%  
将本发明实施例1制备得到的扁锭轧制成厚度为70mm的扁钢后,对横截面的边部和心部进行取样分析金相组织,如图1和图2所示,图1为边部金相组织,图2为心部金相组织;按照GB/T 14979-1994《钢的共晶碳化物不均匀度评级法》标准进行共晶碳化物不均匀度评级,结果均为0.5级。
实施例2
将Cr12MoV、Cr12、4Cr13废钢作为炼钢原料依次进行40t电炉冶炼、40t LF炉精炼和40t VD真空精炼,得到化学成分合格钢水;
将钢水进行浇注,得到高强高韧冷作模具钢扁锭;
所述电炉冶炼过程中:按常规冶炼工艺采用还原法进行冶炼,出钢温度1610℃;
所述LF炉精炼过程中:钢水入LF炉后温度1560℃,渣厚31mm;
喂铝线150m,调整好氩气流量(95NL/min),并加入事先配好的渣料石灰510kg+精炼渣140kg,并补加石灰180kg;
送电还原,全程使用总量80kg的碳粉和总量130kg的钢渣友还原;钢渣友加入方式:送电精炼12min后加入钢渣友130kg,精炼期间每隔10min按50kg、40kg、40kg加入钢渣友还原;
还原彻底,渣白,取样分析(包括全Al),样回、根据分析结果调整全Al至0.05wt%;精炼过程白渣保持时间21min,精炼后期补加少量C粉(10kg/炉钢水)保持还原气氛。
根据取样分析结果,按具体钢种化学成分控制相关要求调整化学成分,并按钢水总重量0.1%调加Nb铁;LF炉精炼结束后,全铝[Al]:0.03wt%;
确保合金化好,取样全分析;当化学成分进入内控、[S]≤0.003wt%、温度在1615℃;吊包除渣后吊到VD进行真空处理;
所述VD真空精炼过程中:入VD炉渣厚72mm;
VD炉真空处理要求:极限真空度55Pa,极限真空下保持时间21min;
极限真空下保持大流量吹Ar(吹Ar流量130NL/min),破空前2min,将吹Ar流量调到50NL/min;
破空、测温、取[H]样,[H]为2ppm;
VD真空炉破空后,立即加入稀土Re 15kg/炉钢水,将稀土Re置入铝制饭盒中,然后直接扔进钢包中;稀土加完后,软吹氩时间25min后方可吊包浇注,如软吹时间超过50min,需要重新进行定[H]操作;
所述浇注过程中的吊包温度为1506℃。
按照实施例1的方法对本发明实施例2制备的高强高韧冷作模具钢进行成分检测,检测结果如表2所示:
表2本发明实施例2制备的高强高韧冷作模具钢成分检测结果
C Si Mn P S Cr Mo 余量
0.91wt% 1.36wt% 0.41wt% 0.02wt% 0.003wt% 7.45wt% 2.15wt% Fe
V Nb Cu Ni Al H O  
0.32wt% 0.4wt% 0.15wt% 0.15wt% 0.025wt% 2ppm 0.002  
将本发明实施例2制备的扁锭轧制成厚度为70mm的扁钢后,对横截面的边部和心部进行取样金相组织分析,如图3和图4所示,按照实施例1的方法进行共晶碳化物不均匀度评级,结果均为1.0级。
本发明提供了一种特定成分以及制备工艺的高强韧冷作模具钢,能够达到降低或改善共晶碳化物的问题,这种冷作模具钢具有较好的组织性能,避免大块碳化物引起的探伤不合格问题。
以上所述的仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种高强韧冷作模具钢,成分为:
    0.9wt%~0.94wt%的C;
    1.35wt%~1.45wt%的Si;
    0.4wt%~0.6wt%的Mn;
    ≤0.02wt%的P;
    ≤0.003wt%的S;
    7.4wt%~7.8wt%的Cr;
    2.1wt%~2.3wt%的Mo;
    0.3wt%~0.35wt%的V;
    0.4wt%~0.5wt%的Nb;
    ≤0.2wt%的Cu;
    ≤0.2wt%的Ni;
    0.02%~0.03wt%的Al;
    ≤2.5ppm的H;
    ≤0.002wt%的O;
    稀土Re痕量;
    余量为Fe。
  2. 一种权利要求1所述的高强韧冷作模具钢的制备方法,包括:
    将合金原料依次进行电炉冶炼、LF炉精炼和VD真空精炼,得到钢水;
    将所述钢水进行浇注,得到高强韧冷作模具钢。
  3. 根据权利要求2所述的方法,其特征在于,所述电炉冶炼过程中的出钢温度≥1600℃。
  4. 根据权利要求2所述的方法,其特征在于,所述LF炉精炼过程中钢水入炉温度≥1510℃,渣厚为31~35mm;
    所述LF炉精炼过程中先进行喂铝线操作,铝线的加入量为120~150m/炉钢水。
  5. 根据权利要求2所述的方法,其特征在于,所述LF炉精炼过程中加入渣料石灰和精炼渣,再补加石灰;
    所述石灰的加入量为500~580kg/炉钢水,所述精炼渣的加入量为120~140kg/炉钢水,所述补加石灰的加入量为180~200kg/炉钢水。
  6. 根据权利要求2所述的方法,其特征在于,所述LF炉精炼过程中进行送电还原,所述送电还原过程中采用碳粉和钢渣友;
    所述碳粉的用量为80~100kg/炉钢水,所述钢渣友的用量为100~150kg/炉钢水。
  7. 根据权利要求2所述的方法,其特征在于,所述VD真空精炼过程中的吊包温度为1610~1640℃;
    入VD炉渣厚≤80mm。
  8. 根据权利要求2所述的方法,其特征在于,所述VD真空精炼过程中的极限真空度≤60Pa,极限真空下的保持时间≥20min。
  9. 根据权利要求2所述的方法,其特征在于,所述VD真空精炼过程中极限真空下保持大流量吹Ar,吹Ar流量≥130NL/min;破空前1~2min,将吹Ar流量调整到20~40NL/min。
  10. 根据权利要求2所述的方法,其特征在于,所述浇注过程中的吊包温度为1505~1515℃。
PCT/CN2022/106861 2021-08-10 2022-07-20 一种高强韧冷作模具钢及其制备方法 WO2023016219A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022325314A AU2022325314B2 (en) 2021-08-10 2022-07-20 High-toughness, cold-worked die steel and preparation method therefor
KR1020237019602A KR20230104949A (ko) 2021-08-10 2022-07-20 고강도 및 고인성 냉간 가공 금형강 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110912796.8 2021-08-10
CN202110912796.8A CN113604744B (zh) 2021-08-10 2021-08-10 一种高强韧冷作模具钢及其制备方法

Publications (1)

Publication Number Publication Date
WO2023016219A1 true WO2023016219A1 (zh) 2023-02-16

Family

ID=78307924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106861 WO2023016219A1 (zh) 2021-08-10 2022-07-20 一种高强韧冷作模具钢及其制备方法

Country Status (4)

Country Link
KR (1) KR20230104949A (zh)
CN (1) CN113604744B (zh)
AU (1) AU2022325314B2 (zh)
WO (1) WO2023016219A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116287955A (zh) * 2023-03-31 2023-06-23 广东省韶铸集团有限公司(韶关铸锻总厂) 一种低磷低硫低成本母电极的生产工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604744B (zh) * 2021-08-10 2022-12-27 攀钢集团攀枝花钢铁研究院有限公司 一种高强韧冷作模具钢及其制备方法
CN115747671B (zh) * 2022-11-18 2024-05-28 攀钢集团江油长城特殊钢有限公司 一种冷作模具钢的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276954A (ja) * 1985-05-30 1986-12-06 Daido Steel Co Ltd ダイス鋼の製造方法
JP2002012950A (ja) * 2000-06-28 2002-01-15 Nippon Steel Corp 高靭性9%Ni鋼
JP2002012952A (ja) * 2000-06-29 2002-01-15 Sanyo Special Steel Co Ltd 冷間工具鋼
CN103014495A (zh) * 2012-12-01 2013-04-03 滁州市成业机械制造有限公司 高韧性高耐磨冷作模具钢及其加工工艺
CN111518987A (zh) * 2020-04-28 2020-08-11 成都先进金属材料产业技术研究院有限公司 Cr12冷作模具钢精炼稀土添加方法
CN113604744A (zh) * 2021-08-10 2021-11-05 攀钢集团攀枝花钢铁研究院有限公司 一种高强韧冷作模具钢及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511747C2 (sv) * 1998-03-27 1999-11-15 Uddeholm Tooling Ab Kallarbetsstål
JP5345415B2 (ja) * 2008-03-05 2013-11-20 山陽特殊製鋼株式会社 被削性、熱処理変寸特性、衝撃特性に優れた冷間プレス金型用鋼およびプレス金型
JP2014031575A (ja) * 2012-07-09 2014-02-20 Hitachi Metals Ltd 高硬度冷間金型用鋼およびその製造方法
CN103290328A (zh) * 2013-05-30 2013-09-11 钢铁研究总院 一种高铌高耐磨高韧性冷作模具钢
WO2016047396A1 (ja) * 2014-09-26 2016-03-31 日立金属株式会社 冷間工具材料および冷間工具の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276954A (ja) * 1985-05-30 1986-12-06 Daido Steel Co Ltd ダイス鋼の製造方法
JP2002012950A (ja) * 2000-06-28 2002-01-15 Nippon Steel Corp 高靭性9%Ni鋼
JP2002012952A (ja) * 2000-06-29 2002-01-15 Sanyo Special Steel Co Ltd 冷間工具鋼
CN103014495A (zh) * 2012-12-01 2013-04-03 滁州市成业机械制造有限公司 高韧性高耐磨冷作模具钢及其加工工艺
CN111518987A (zh) * 2020-04-28 2020-08-11 成都先进金属材料产业技术研究院有限公司 Cr12冷作模具钢精炼稀土添加方法
CN113604744A (zh) * 2021-08-10 2021-11-05 攀钢集团攀枝花钢铁研究院有限公司 一种高强韧冷作模具钢及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116287955A (zh) * 2023-03-31 2023-06-23 广东省韶铸集团有限公司(韶关铸锻总厂) 一种低磷低硫低成本母电极的生产工艺

Also Published As

Publication number Publication date
AU2022325314A1 (en) 2023-06-29
AU2022325314B2 (en) 2024-05-16
CN113604744B (zh) 2022-12-27
CN113604744A (zh) 2021-11-05
KR20230104949A (ko) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2023016219A1 (zh) 一种高强韧冷作模具钢及其制备方法
CN109811252B (zh) 一种高强度马氏体不锈钢及其制造工艺
CN109536833A (zh) 一种优质合金工具钢42CrMo4调质钢板及其生产方法
CN109680218A (zh) 一种提高锻件冲击功的生产方法
CN114411068A (zh) 用于汽车涡轮壳、排气管的耐热钢及其制备方法
CN113046512A (zh) 一种全工序生产高端稀土轴承钢管的方法
CN112159932A (zh) 超高强度稀土4340钢的制造方法
US20240271252A1 (en) Method for smelting high-temperature alloy with ultrahigh n content in vim furnace
WO2017157351A1 (zh) 含铌的铬镍铁合金的冶炼方法
CN109266965A (zh) 一种热轧钢带及其制备和应用
CN106566953A (zh) 一种耐腐蚀合金锻件及其生产方法
CN108588545B (zh) 一种ggg70l球墨铸铁及其制备方法
CN111748750A (zh) 一种刀具用高韧性钢及其制备方法
CN112391581B (zh) 一种热作盾构钢及其制备方法
CN114000027B (zh) Uns n08120锻环及其制造方法
CN110669999B (zh) 一种超大截面莱氏体型冷作模具钢棒材及其制备方法
CN116065081B (zh) 一种1000MPa级低密度钢棒材及其制备方法
CN112813349B (zh) 一种热挤压模用钢材及其制备方法
CN115821169B (zh) 一种高强钢及其制备方法与应用
CN114855069B (zh) 一种耐高温含铌蠕墨铸铁及其制备方法
CN115323288B (zh) 一种硫系易切削热作模具钢cx2344的制备方法
WO2024082324A1 (zh) 一种超低温工程用高强高韧马氏体时效不锈钢及其制造方法
CN116219230B (zh) 一种高温合金密封板材料及其制备方法
CN115717215B (zh) 一种铅铋快堆燃料组件用不锈钢包壳管材料及其制备方法
CN115852272B (zh) 一种含碲高速钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237019602

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022325314

Country of ref document: AU

Date of ref document: 20220720

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22855202

Country of ref document: EP

Kind code of ref document: A1