WO2023013579A1 - 銅-ダイヤモンド複合体、放熱部材および電子装置 - Google Patents

銅-ダイヤモンド複合体、放熱部材および電子装置 Download PDF

Info

Publication number
WO2023013579A1
WO2023013579A1 PCT/JP2022/029486 JP2022029486W WO2023013579A1 WO 2023013579 A1 WO2023013579 A1 WO 2023013579A1 JP 2022029486 W JP2022029486 W JP 2022029486W WO 2023013579 A1 WO2023013579 A1 WO 2023013579A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
diamond
diamond particles
particle size
diamond composite
Prior art date
Application number
PCT/JP2022/029486
Other languages
English (en)
French (fr)
Inventor
孝眞 丁
謙嘉 酒井
基 永沢
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202280053902.4A priority Critical patent/CN117813684A/zh
Priority to US18/681,230 priority patent/US20240309495A1/en
Priority to JP2023540331A priority patent/JPWO2023013579A1/ja
Publication of WO2023013579A1 publication Critical patent/WO2023013579A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • B22F2302/406Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to copper-diamond composites, heat dissipation members and electronic devices.
  • Patent Document 1 describes that the average particle size of good thermal conductor particles such as diamond particles and SiC particles is 10 to 100 ⁇ m or less with respect to composite materials of metal matrix-thermal conductor particles (paragraph 0060, etc.).
  • the thermal conductivity of the copper-diamond composite can be improved by appropriately controlling the degree of sphericity of the diamond particles contained in the composite.
  • the present inventors found that the number average sphericity of diamond particles obtained using an image-type particle size distribution analyzer is set to a predetermined value or more, thereby improving the thermal conductivity of the composite. The inventors have found that the properties can be improved, and have completed the present invention.
  • the following copper-diamond composite, heat dissipation member, and electronic device are provided.
  • a copper-diamond composite comprising a plurality of diamond particles dispersed in a metal matrix containing copper, When the particle size distribution of the diamond particles is measured using an image-type particle size distribution measuring device, the number average of the sphericity distribution of the diamond particles is 0.90 or more. Copper-diamond composite.
  • 2. 1. A copper-diamond composite according to The copper-diamond composite, wherein the sphericity S50 at which the cumulative value is 50% is 0.87 or more in the volume particle size distribution of the sphericity of the diamond particles. 3. 1. or 2.
  • a copper-diamond composite according to any one of a metal film bonded to at least one surface of the copper-diamond composite;
  • a heat dissipating member comprising: 14. 13. and the heat dissipating member according to and an electronic component provided on the heat dissipation member.
  • a copper-diamond composite with excellent thermal conductivity, a heat dissipation member and an electronic device using the same are provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a copper-diamond composite according to an embodiment
  • FIG. It is a cross-sectional schematic diagram which shows an example of a structure of the heat radiating member which concerns on this embodiment.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a copper-diamond composite according to this embodiment.
  • the copper-diamond composite 30 of this embodiment has a structure in which a plurality of diamond particles 20 are dispersed in a metal matrix 10 containing copper.
  • This copper-diamond composite 30 is configured so that the number average of the sphericity distribution of the diamond particles 20 is 0.90 or more when the particle size distribution of the diamond particles 20 is measured using an image-type particle size distribution measuring device. be.
  • the thermal conductivity of copper-diamond composites can be stably evaluated, and diamonds having a sphericity of a predetermined value or more It has been found that the use of particles can improve the thermal conductivity of the composite.
  • the detailed mechanism is not clear, but by using diamond particles with a high degree of sphericity, it is possible to reduce the frequency of breakage and cracking due to contact between particles during the filling process, etc. Therefore, heat conduction due to breakage of diamond particles It is considered that the decrease in the rate can be suppressed.
  • diamond particles with a high degree of sphericity can be highly packed in the metal matrix, so that the thermal conductivity of the composite can be further increased.
  • the sphericity and particle size of diamond particles 20 can be measured according to the following procedure.
  • the particle size distribution of the diamond particles 20 is measured using an image-type particle size distribution analyzer (eg, Morphologi 4 manufactured by Malvern).
  • Particle size distribution includes shape distribution and particle size distribution. From the obtained particle size distribution, a volume particle size distribution of sphericity and a volume particle size distribution of particle diameter are created. Then, in the volume particle size distribution of the sphericity of the diamond particles 20, a predetermined cumulative value of sphericity and a predetermined cumulative value of particle diameter are obtained.
  • the particle size D 10 at which the cumulative value is 10%, the particle size D 50 at which the cumulative value is 50%, and the particle size D 90 at which the cumulative value is 90% are determined.
  • sphericity S 10 with a cumulative value of 10%, sphericity S 50 with a cumulative value of 50%, and sphericity S 90 with a cumulative value of 90% are determined.
  • the particle diameter of the diamond particles is in the range of particle diameter D 10 or less, the particle diameter D 10 or more and the particle diameter D 50 or less, the particle diameter D 50 or more and the particle diameter D 90 or less, or the particle diameter D 90 or more.
  • each particle size class is determined for each particle size class classified into four categories. Also, in the particle size distribution and the shape distribution (sphericity distribution), each number average (average particle size based on the number of diamond particles) is calculated.
  • sphericity and particle size are defined as follows. Circularity: Ratio of the circumference of the projected object and the circumference of the object Particle diameter: Maximum length at two points on the contour of the particle image
  • the lower limit of the number average of the sphericity distribution of the diamond particles 20 is, for example, 0.90 or more, preferably 0.91 or more, and more preferably 0.92 or more. As a result, the filling degree of the diamond particles 20 can be increased, and the thermal conductivity of the copper-diamond composite 30 can be increased.
  • the upper limit of the number average of the sphericity distribution of the diamond particles 20 is not particularly limited, but may be 0.99 or less.
  • the lower limit of the sphericity S50 of the diamond particles 20 is, for example, 0.87 or more, preferably 0.90 or more, and more preferably 0.92 or more. This increases the packing degree of the diamond particles 20 and increases the thermal conductivity of the composite.
  • the upper limit of the sphericity S50 of the diamond particles 20 is not particularly limited, but may be 0.99 or less or 0.98 or less.
  • the lower limit of the sphericity S90 of the diamond particles 20 is, for example, 0.91 or more, preferably 0.93 or more, and more preferably 0.95 or more. This increases the packing degree of the diamond particles 20 and increases the thermal conductivity of the composite.
  • the upper limit of the sphericity S90 of the diamond particles 20 is not particularly limited, but may be 0.99 or less.
  • the lower limit of the sphericity S10 of the diamond particles 20 is, for example, 0.80 or more, preferably 0.82 or more, and more preferably 0.85 or more. This increases the packing degree of the diamond particles 20 and increases the thermal conductivity of the composite.
  • the upper limit of the sphericity S10 of the diamond particles 20 is not particularly limited, but may be 0.99 or less or 0.95 or less.
  • the upper limit of the number average particle size distribution of the diamond particles 20 is, for example, 180 ⁇ m or less, preferably 175 ⁇ m or less, and more preferably 170 ⁇ m or less. This increases the packing degree of the diamond particles 20 and increases the thermal conductivity of the composite.
  • the lower limit of the number average particle size distribution of the diamond particles 20 is not particularly limited, but is, for example, 30 ⁇ m or more, preferably 50 ⁇ m or more, and more preferably 100 ⁇ m or more.
  • the volume particle size distribution of the particle diameter of the diamond particles may be configured to include one peak, or may be configured to include two or more peaks.
  • the upper limit of the particle diameter D50 of the diamond particles 20 is, for example, 180 ⁇ m or less, preferably 175 ⁇ m or less, and more preferably 170 ⁇ m or less. This increases the packing degree of the diamond particles 20 and increases the thermal conductivity of the composite.
  • the lower limit of the particle diameter D50 of the diamond particles 20 is not particularly limited, but is, for example, 30 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more.
  • the upper limit of the particle diameter D90 of the diamond particles 20 is, for example, 210 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 190 ⁇ m or less. This increases the packing degree of the diamond particles 20 and increases the thermal conductivity of the composite.
  • the lower limit of the particle diameter D90 of the diamond particles 20 is not particularly limited, but is, for example, 30 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 110 ⁇ m or more.
  • the upper limit of the particle diameter D10 of the diamond particles 20 is, for example, 160 ⁇ m or less, preferably 158 ⁇ m or less, and more preferably 155 ⁇ m or less. This increases the packing degree of the diamond particles 20 and increases the thermal conductivity of the composite.
  • the lower limit of the particle diameter D10 of the diamond particles 20 is not particularly limited, but is, for example, 30 ⁇ m or more, preferably 50 ⁇ m or more, and more preferably 100 ⁇ m or more.
  • the sphericity of the diamond particles 20 belonging to the range of the particle diameter of the diamond particles 20 larger than the particle diameter of D50 and equal to or smaller than the particle diameter of D90 is, for example, 0.90 or more, preferably 0.91 or more, more preferably 0.92 or more. This increases the packing degree of the diamond particles 20 and increases the thermal conductivity of the composite.
  • the upper limit of the sphericity of the diamond particles 20 is not particularly limited, but may be 0.99 or less.
  • the sphericity of the diamond particles 20 belonging to the range of the particle diameter of the diamond particles 20 larger than the particle diameter of D10 and equal to or smaller than the particle diameter of D50 is, for example, 0.90 or more, preferably 0.91 or more, more preferably 0.92 or more. This increases the packing degree of the diamond particles 20 and increases the thermal conductivity of the composite.
  • the upper limit of the sphericity of the diamond particles 20 is not particularly limited, but may be 0.99 or less.
  • a copper-diamond composite 30 (hereinafter sometimes simply referred to as “composite”) includes a metal matrix 10 containing copper and a plurality of diamond particles 20 present in the metal matrix 10 .
  • the diamond particles 20 in the composite are in a state in which all of the plurality of particles are embedded in the metal matrix 10, but at least a portion of one or more particles is from the surface of the copper-diamond composite 30. It may be exposed.
  • the lower limit of the thermal conductivity of the copper-diamond composite 30 is, for example, 610 W/m ⁇ K or more, preferably 620 W/m ⁇ K or more, more preferably 630 W/m ⁇ K or more. Thereby, the heat dissipation property of the heat dissipation member can be enhanced.
  • the upper limit of the thermal conductivity of the copper-diamond composite 30 is not particularly limited, but is, for example, 900 W/m K or less, preferably 890 W/m K or less, more preferably 880 W/m K or less. .
  • the shape and size of the copper-diamond composite 30 can be appropriately set according to the application.
  • Examples of the shape of the copper-diamond composite 30 include flat plate-like, block-like, rod-like, and the like.
  • the metal matrix 10 may contain copper, and may contain other highly thermally conductive metals than copper. That is, the metal matrix 10 is composed of a copper phase and/or a copper alloy phase.
  • the main component in the metal matrix 10 is preferably copper from the viewpoint of thermal conductivity and cost.
  • the lower limit of the content of copper as the main component is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and particularly preferably 80% by mass or more in 100% by mass of the metal matrix 10. , and most preferably at least 90% by mass. This takes advantage of the good thermal conductivity of copper and copper alloys.
  • the same copper as the matrix can be used as the surface layer to ensure brazing properties and surface smoothness, and the formation of other surface coating layers can be omitted.
  • the upper limit of the content of copper, which is the main component is not particularly limited in 100% by mass of the metal matrix 10, but may be 100% by mass or less or 99% by mass or less.
  • highly thermally conductive metals include, for example, silver, gold, and aluminum. These may be used alone or in combination of two or more. When combining copper with other highly thermally conductive metals, alloys or composite materials formed of copper and other highly thermally conductive metals can be used. Note that the metal matrix 10 may be made of metal other than the highly thermally conductive metal as long as it does not impair the effects of the present invention.
  • examples of the copper alloy include CuAg, CuAl, CuSn, CuZr, and CrCu.
  • the metal matrix 10 is, for example, a sintered body of metal powder containing copper (and other photothermally conductive metals as necessary).
  • the metal matrix 10 is composed of a sintered body in which at least some of the plurality of diamond particles 20 are embedded.
  • the diamond particles 20 include at least one of non-coated diamond particles that do not have a metal-containing coating layer on their surfaces and coated diamond particles that have a metal-containing coating layer on their surfaces. Coated diamond particles are more preferable from the viewpoint of improving adhesion and dispersibility between diamond and metal particles.
  • the lower limit of the volume content of diamond particles 20 in copper-diamond composite 30 is preferably 10% by volume or more, more preferably 20% by volume or more, and still more preferably 30% by volume or more. Thereby, the thermal conductivity of the copper-diamond composite 30 can be enhanced.
  • the upper limit of the volume content of the diamond particles 20 in the copper-diamond composite 30 is, for example, preferably 80% by volume or less, more preferably 70% by volume or less, and even more preferably 65% by volume or less.
  • the metal-containing coating layer in the coated diamond particles may contain molybdenum, tungsten, chromium, zirconium, hafnium, vanadium, niobium, tantalum, and alloys thereof. These may be used alone or in combination of two or more. Also, the metal-containing coating layer is configured to cover at least a portion or the entire surface of the particle.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the heat radiating member according to this embodiment.
  • the heat dissipation member 100 of this embodiment includes a copper-diamond composite 30 and a metal film 50 bonded to at least one surface of the copper-diamond composite 30 .
  • the lower limit of the thermal conductivity of the heat radiating member 100 is, for example, 600 W/m ⁇ K or more, preferably 630 W/m ⁇ K or more, more preferably 650 W/m ⁇ K or more. Thereby, the heat dissipation property of the heat dissipation member can be enhanced.
  • the upper limit of the thermal conductivity of the heat radiating member 100 is not particularly limited, but is, for example, 780 W/m ⁇ K or less, preferably 760 W/m ⁇ K or less, more preferably 760 W/m ⁇ K or less.
  • the metal film 50 may be formed on at least one surface of the copper-diamond composite 30, and may be formed on both surfaces of the flat copper-diamond composite 30, for example.
  • the metal film 50 may contain one or more selected from the group consisting of copper, silver, gold, aluminum, nickel, zinc, tin, and magnesium.
  • the metal film 50 contains the same metal as the main component metal in the metal matrix 10, and preferably contains at least copper or a copper alloy.
  • the content of copper, which is the main component, in 100% by mass of the metal film 50 is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, particularly preferably 80% by mass or more, and most preferably Preferably, it is 90% by mass or more.
  • the upper limit of the content of copper, which is the main component is not particularly limited in 100% by mass of the metal film 50, but may be 100% by mass or less or 99% by mass or less.
  • the upper limit of the film thickness of the metal film 50 is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, and still more preferably 100 ⁇ m or less. Thereby, the thermal conductivity of the heat radiating member can be increased.
  • the lower limit of the film thickness of the metal film 50 is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and even more preferably 20 ⁇ m or more. As a result, the strength of adhesion to the composite and the durability of itself can be enhanced.
  • the metal film 50 is obtained by, for example, sputtering or plating.
  • the electronic device of the present embodiment includes the above heat dissipation member and an electronic component provided on the heat dissipation member.
  • Examples of electronic components include semiconductor elements.
  • Specific examples of semiconductor elements include power semiconductors, image display elements, microprocessor units, laser diodes, and the like.
  • the heat dissipation member is used for heat sinks, heat spreaders, etc.
  • the heat sink dissipates heat generated during operation of the semiconductor element to an external space, and the heat spreader transfers the heat generated by the semiconductor element to other members.
  • the electronic component may be installed directly on the heat dissipation member or indirectly via a ceramic substrate or the like.
  • An example of a method for producing a copper-diamond composite includes a raw material mixing step and a sintering step.
  • metal powder containing copper such as copper powder and diamond particles are mixed to obtain a mixture.
  • Various dry and wet methods can be applied to mixing the raw material powders, and a dry mixing method may also be used.
  • a mixture of metal powder and diamond particles is fired to obtain a composite sintered body of copper and diamond particles (copper-diamond composite).
  • the firing temperature can be appropriately selected according to the metal species contained in the metal powder, but in the case of copper powder, it is preferably 800° C. or higher and 1100° C. or lower, more preferably 850° C. or higher and 1000° C. or lower.
  • the firing temperature is preferably 800° C. or higher and 1100° C. or lower, more preferably 850° C. or higher and 1000° C. or lower.
  • the firing temperature By setting the firing temperature to 800° C. or higher, the copper-diamond composite is densified and the desired thermal conductivity is obtained.
  • the sintering temperature By setting the sintering temperature to 1100° C. or less, deterioration due to graphitization of the interfaces of the diamond particles can be suppressed, and a decrease in the inherent thermal conductivity of diamond can be prevented.
  • the firing time is not particularly limited, but is preferably 5 minutes or more and 3 hours or less, more preferably 10 minutes or more and 2 hours or less.
  • the firing time is preferably 5 minutes or more and 3 hours or less, more preferably 10 minutes or more and 2 hours or less.
  • the copper-diamond composite is densified and the desired thermal conductivity is obtained.
  • the firing time is set to 3 hours or less, carbide formation and film thickness increase occur between the diamond in the coated diamond particles and the metal coating the surface, resulting in a decrease in thermal conductivity and a difference in coefficient of linear expansion due to phonon scattering. It is possible to suppress the cracks caused by In addition, the productivity of the complex can be increased.
  • the sintering step either the normal pressure sintering method or the pressure sintering method may be used, but the pressure sintering method is preferable in order to obtain a dense composite.
  • pressure sintering methods include hot press sintering, spark plasma sintering (SPS), and hot isostatic pressure sintering (HIP).
  • SPS spark plasma sintering
  • HIP hot isostatic pressure sintering
  • the pressure is preferably 10 MPa or higher, more preferably 30 MPa or higher.
  • the pressure is preferably 100 MPa or less.
  • the pressure By setting the pressure to 100 MPa or less, it is possible to prevent the diamond from cracking, resulting in an increase in the diamond interface and a decrease in adhesion between the crushed diamond surface and the metal, and a decrease in the original thermal conductivity of the diamond. .
  • an example of a method for manufacturing a heat radiating member includes a film forming step of forming a metal film on the composite obtained above.
  • a metal film 50 is formed on at least part of the surface of the copper-diamond composite 30 .
  • a method for forming the metal film a general method such as a sputtering method, a plating method, or a pressurized co-firing method using copper foil may be adopted, but a sputtering method may be used to form a thin film. .
  • at least part of the surface of the metal film may be ground and polished. This can improve the surface smoothness of the metal film after the film formation process.
  • the smoothing step at least part of the surface of the composite sintered body is ground and polished. Further, an annealing step may be added between the firing step and the smoothing step. Moreover, before the film formation step, the copper-diamond composite may be subjected to processing such as shape processing and perforation processing.
  • the particle size distribution (shape distribution/particle size distribution) of the diamond particles was measured using an image-type particle size distribution analyzer (Morphologi 4, manufactured by Malvern).
  • image-type particle size distribution analyzer manufactured by Malvern.
  • the particle size D 10 at which the cumulative value is 10%, the particle size D 50 at which the cumulative value is 50%, and the particle size D 90 at which the cumulative value is 90% were determined.
  • sphericity S 10 with a cumulative value of 10%, sphericity S 50 with a cumulative value of 50%, and sphericity S 90 with a cumulative value of 90% were determined.
  • the particle diameter of the diamond particles is in the range of particle diameter D 10 or less, the particle diameter D 10 or more and the particle diameter D 50 or less, the particle diameter D 50 or more and the particle diameter D 90 or less, or the particle diameter D 90 or more.
  • the sphericity in each particle size class was determined for each particle size class classified into four categories.
  • each number average (number-based average particle size of diamond particles) was calculated. These values are shown in Table 1 as average values of two measurements.
  • the sphericity and particle size were defined as follows. Circularity: Ratio of the circumference of the projected object and the circumference of the object Particle diameter: Maximum length at two points on the contour of the particle image
  • Example 1 The copper powder and the diamond particles A (Mo coat) were weighed at a ratio of 50% by volume:50% by volume, and the weighed powders were uniformly mixed in a V-type mixer to obtain a mixture (raw material mixing step). Subsequently, using an SPS sintering device, the obtained mixture was filled in a mold and heat-sintered at 900° C. for 1 hour under a pressure condition of 30 MPa to disperse a plurality of diamond particles in the copper matrix. A disk-shaped composite sintered body (copper-diamond composite) was obtained (sintering step).
  • the content of diamond particles in the copper-diamond composite was 50% by volume.
  • the thermal conductivity of the copper-diamond composite was measured by a laser flash method and found to be 747 W/m ⁇ K. In addition, the measurement by the laser flash method was carried out at room temperature with carbon coating applied to the sample surface in accordance with JIS H7801.
  • Example 2-4 Comparative Examples 1-4
  • a copper-diamond composite was obtained in the same manner as in Example 1, except that the type of diamond particles and the content of diamond particles were changed according to Table 2. The same evaluation as in Example 1 was performed on the obtained composite.
  • the copper-diamond composites of Examples 1 to 4 use diamond particles with a higher sphericity than those of Comparative Examples 1 to 4, so the thermal conductivity is improved. showed the results.
  • a heat dissipating member having excellent thermal conductivity can be provided.
  • metal matrix 10 metal matrix 20 diamond particles 30 copper-diamond composite 50 metal film 100 heat dissipation member

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明の銅-ダイヤモンド複合体(30)は、銅を含有する金属マトリックス(10)中に複数のダイヤモンド粒子(20)が分散した、銅-ダイヤモンド複合体であって、画像式粒度分布測定装置を用いてダイヤモンド粒子(20)の粒度分布を測定したとき、ダイヤモンド粒子(20)の球形度分布の数平均が0.90以上となるものである。

Description

銅-ダイヤモンド複合体、放熱部材および電子装置
 本発明は、銅-ダイヤモンド複合体、放熱部材および電子装置に関する。
 これまで銅-ダイヤモンド複合体について様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、金属マトリクス-熱伝導体粒子の複合材料に関して、ダイヤモンド粒子やSiC粒子などの良熱伝導体粒子の平均粒子系が10~100μm以下と記載されている(段落0060等)。
国際公開第2016/035796号
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の複合材料において、熱伝導率の点で改善の余地があることが判明した。
 本発明者がさらに検討したところ、銅-ダイヤモンド複合体中に含まれるダイヤモンド粒子の球形度合を適切に制御することにより、複合体における熱伝導性を向上できることを見出した。
 このような知見に基づいて鋭意研究したところ、本発明者は、画像式粒度分布測定装置を用いて求められるダイヤモンド粒子の球形度の数平均を所定値以上とすることにより、複合体の熱伝導性を向上できることを見出し、本発明を完成するに至った。
 本発明の一態様によれば、以下の銅-ダイヤモンド複合体、放熱部材および電子装置が提供される。
1. 銅を含有する金属マトリックス中に複数のダイヤモンド粒子が分散した、銅-ダイヤモンド複合体であって、
 画像式粒度分布測定装置を用いて前記ダイヤモンド粒子の粒度分布を測定したとき、前記ダイヤモンド粒子の球形度分布の数平均が0.90以上である、
銅-ダイヤモンド複合体。
2. 1.に記載の銅-ダイヤモンド複合体であって、
 前記ダイヤモンド粒子の球形度の体積粒度分布において、累積値が50%となる球形度S50が0.87以上である、銅-ダイヤモンド複合体。
3. 1.又は2.に記載の銅-ダイヤモンド複合体であって、
 前記ダイヤモンド粒子の球形度の体積粒度分布において、累積値が90%となる球形度S90が0.91以上である、銅-ダイヤモンド複合体。
4. 1.~3.のいずれか一つに記載の銅-ダイヤモンド複合体であって、
 前記ダイヤモンド粒子の球形度の体積粒度分布において、累積値が10%となる球形度S10が0.8以上である、銅-ダイヤモンド複合体。
5. 1.~4.のいずれか一つに記載の銅-ダイヤモンド複合体であって、
 前記ダイヤモンド粒子の粒子径分布の数平均が180μm以下である、銅-ダイヤモンド複合体。
6. 1.~5.のいずれか一つに記載の銅-ダイヤモンド複合体であって、
 前記ダイヤモンド粒子の粒子径の体積粒度分布において、累積値が50%となる粒子径D50が180μm以下である、銅-ダイヤモンド複合体。
7. 1.~6.のいずれか一つに記載の銅-ダイヤモンド複合体であって、
 前記ダイヤモンド粒子の粒子径の体積粒度分布において、累積値が90%となる粒子径D90が210μm以下である、銅-ダイヤモンド複合体。
8. 1.~7.のいずれか一つに記載の銅-ダイヤモンド複合体であって、
 前記ダイヤモンド粒子の粒子径の体積粒度分布において、累積値が10%となる粒子径D10が160μm以下である、銅-ダイヤモンド複合体。
9. 1.~8.のいずれか一つに記載の銅-ダイヤモンド複合体であって、
 前記ダイヤモンド粒子の粒子径が粒子径D50より大きく粒子径D90以下の範囲に属する、前記ダイヤモンド粒子の球形度が0.90以上である、銅-ダイヤモンド複合体。
10. 1.~9.のいずれか一つに記載の銅-ダイヤモンド複合体であって、
 前記ダイヤモンド粒子の粒子径が粒子径D10より大きく粒子径D50以下の範囲に属する、前記ダイヤモンド粒子の球形度が0.90以上である、銅-ダイヤモンド複合体。
11. 1.~10.のいずれか一つに記載の銅-ダイヤモンド複合体であって、
 熱伝導率が610W/m・K以上である、銅-ダイヤモンド複合体。
12. 1.~11.のいずれか一つに記載の銅-ダイヤモンド複合体であって、
 前記ダイヤモンド粒子の体積含有率が10体積%以上である、銅-ダイヤモンド複合体。
13. 1.~12.のいずれか一つに記載の銅-ダイヤモンド複合体と、
 前記銅-ダイヤモンド複合体の少なくとも一方の面に接合した金属膜と、
を含む、放熱部材。
14. 13.に記載の放熱部材と、
 前記放熱部材上に設けられた電子部品と、を備える、電子装置。
 本発明によれば、熱伝導率に優れた銅-ダイヤモンド複合体、それを用いた放熱部材および電子装置が提供される。
本実施形態に係る銅-ダイヤモンド複合体の構成の一例を示す断面模式図である。 本実施形態に係る放熱部材の構成の一例を示す断面模式図である。
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。
 本実施形態の銅-ダイヤモンド複合体の概要について、図1を用いて説明する。
 図1は、本実施形態に係る銅-ダイヤモンド複合体の構成の一例を示す断面模式図である。
 本実施形態の銅-ダイヤモンド複合体30は、銅を含有する金属マトリックス10中に複数のダイヤモンド粒子20が分散した構造を有する。
 この銅-ダイヤモンド複合体30は、画像式粒度分布測定装置を用いてダイヤモンド粒子20の粒度分布を測定したとき、ダイヤモンド粒子20の球形度分布の数平均が0.90以上となるように構成される。
 本発明者の知見によれば、ダイヤモンド粒子の球形度を指標とすることにより、銅-ダイヤモンド複合体の熱伝導性を安定的に評価することができること、そして、球形度が所定値以上のダイヤモンド粒子を用いることにより、複合体における熱伝導率を向上できることが判明した。
 詳細なメカニズムは定かではないが、球形度が高いダイヤモンド粒子を用いることで、充填の過程等において、粒子同士の接触による破壊やひび割れなどの発生頻度を低減できるため、ダイヤモンド粒子の破損による熱伝導率の低下を抑制できると考えられる。
 また、球形度が高いダイヤモンド粒子は、金属マトリックス中に高充填可能となるため、一層、複合体における熱伝導率を高められる。
 ダイヤモンド粒子20の球形度や粒子径は、以下の手順に従って測定できる。
 ダイヤモンド粒子20の粒度分布を、画像式粒度分布測定装置(例えば、Malvern社製、Morphologi4)を用いて測定する。粒度分布は、形状分布や粒子径分布を含む。
 得られた粒度分布から、球形度の体積粒度分布や粒子径の体積粒度分布を作成する。
 そして、ダイヤモンド粒子20の球形度の体積粒度分布において、所定の累積値の球形度や、所定の累積値の粒子径を求める。
 ダイヤモンド粒子の粒子径の体積粒度分布において、累積値が10%となる粒子径D10、累積値が50%となる粒子径D50、累積値が90%となる粒子径D90を求める。
 ダイヤモンド粒子の球形度の体積粒度分布において、累積値が10%となる球形度S10、累積値が50%となる球形度S50、累積値が90%となる球形度S90を求める。
 また、ダイヤモンド粒子の粒子径が、粒子径D10以下の範囲、粒子径D10超え粒子径D50以下の範囲、粒子径D50超え粒子径D90以下の範囲、粒子径D90超えの範囲の4つの区分に分類される粒子径クラス別において、各粒子径クラスにおける球形度を求める。
 また、粒子径分布、形状分布(球形度分布)において、それぞれの数平均(ダイヤモンド粒子の個数基準の平均粒子径)を算出する。
 ここで、球形度および粒子径を以下のように定義する。
  球形度:投影された物体と同じ面積を持つ円周と物体との円周長の比率
  粒子径:粒子画像の輪郭上の2点における最大長さ
 ダイヤモンド粒子20の球形度分布の数平均の下限は、例えば、0.90以上、好ましくは0.91以上、より好ましくは0.92以上である。これにより、ダイヤモンド粒子20の充填度合を高め、銅-ダイヤモンド複合体30の熱伝導率を高められる。
 一方、ダイヤモンド粒子20の球形度分布の数平均の上限は、特に限定されないが、0.99以下でもよい。
 ダイヤモンド粒子20の球形度S50の下限は、例えば、0.87以上、好ましくは0.90以上、より好ましくは0.92以上である。これにより、ダイヤモンド粒子20の充填度合を高め、複合体の熱伝導率を高められる。
 一方、ダイヤモンド粒子20の球形度S50の上限は、特に限定されないが、0.99以下でもよく、0.98以下でもよい。
 ダイヤモンド粒子20の球形度S90の下限は、例えば、0.91以上、好ましくは0.93以上、より好ましくは0.95以上である。これにより、ダイヤモンド粒子20の充填度合を高め、複合体の熱伝導率を高められる。
 一方、ダイヤモンド粒子20の球形度S90の上限は、特に限定されないが、0.99以下でもよい。
 ダイヤモンド粒子20の球形度S10の下限は、例えば、0.80以上、好ましくは0.82以上、より好ましくは0.85以上である。これにより、ダイヤモンド粒子20の充填度合を高め、複合体の熱伝導率を高められる。
 一方、ダイヤモンド粒子20の球形度S10の上限は、特に限定されないが、0.99以下でもよく、0.95以下でもよい。
 ダイヤモンド粒子20の粒子径分布の数平均の上限は、例えば、180μm以下、好ましくは175μm以下、より好ましくは170μm以下である。これにより、ダイヤモンド粒子20の充填度合を高め、複合体の熱伝導率を高められる。
 一方、ダイヤモンド粒子20の粒子径分布の数平均の下限は、特に限定されないが、例えば、30μm以上、好ましくは50μm以上、より好ましくは100μm以上である。これにより、ダイヤモンド粒子20と金属マトリックス10中の銅相/銅合金相との界面を全体的に小さくすることができ、熱抵抗が増加することを抑制できるため、銅-ダイヤモンド複合体における熱伝導特性を向上できる。
 なお、ダイヤモンド粒子の粒子径の体積粒度分布は、1個のピークを含むように構成されもよく、または2個以上のピークを含むように構成されてもよい。
 ダイヤモンド粒子20の粒子径D50の上限は、例えば、180μm以下、好ましくは175μm以下、より好ましくは170μm以下である。これにより、ダイヤモンド粒子20の充填度合を高め、複合体の熱伝導率を高められる。
 一方、ダイヤモンド粒子20の粒子径D50の下限は、特に限定されないが、例えば、30μm以上、好ましくは50μm以上、より好ましくは100μm以上である。
 ダイヤモンド粒子20の粒子径D90の上限は、例えば、210μm以下、好ましくは200μm以下、より好ましくは190μm以下である。これにより、ダイヤモンド粒子20の充填度合を高め、複合体の熱伝導率を高められる。
 一方、ダイヤモンド粒子20の粒子径D90の下限は、特に限定されないが、例えば、30μm以上、好ましくは50μm以上、より好ましくは110μm以上である。
 ダイヤモンド粒子20の粒子径D10の上限は、例えば、160μm以下、好ましくは158μm以下、より好ましくは155μm以下である。これにより、ダイヤモンド粒子20の充填度合を高め、複合体の熱伝導率を高められる。
 一方、ダイヤモンド粒子20の粒子径D10の下限は、特に限定されないが、例えば、30μm以上、好ましくは50μm以上、より好ましくは100μm以上である。
 ダイヤモンド粒子20の粒子径がD50の粒子径より大きくD90の粒子径以下の範囲に属する、ダイヤモンド粒子20の球形度は、例えば、0.90以上、好ましくは0.91以上、より好ましくは0.92以上である。これにより、ダイヤモンド粒子20の充填度合を高め、複合体の熱伝導率を高められる。
 一方、上記ダイヤモンド粒子20の球形度の上限は、特に限定されないが、0.99以下でもよい。
 ダイヤモンド粒子20の粒子径がD10の粒子径より大きくD50の粒子径以下の範囲に属する、ダイヤモンド粒子20の球形度は、例えば、0.90以上、好ましくは0.91以上、より好ましくは0.92以上である。これにより、ダイヤモンド粒子20の充填度合を高め、複合体の熱伝導率を高められる。
 一方、上記ダイヤモンド粒子20の球形度の上限は、特に限定されないが、0.99以下でもよい。
 本実施形態の銅-ダイヤモンド複合体の構成について詳細を説明する。
(銅-ダイヤモンド複合体)
 銅-ダイヤモンド複合体30(以下、単に「複合体」と呼称することもある)は、銅を含有する金属マトリックス10と、金属マトリックス10中に存在する複数のダイヤモンド粒子20を含む。
 複合体中のダイヤモンド粒子20は、複数の粒子の全体が金属マトリックス10中に埋設された状態であるが、1個または2個以上の粒子における少なくとも一部が銅-ダイヤモンド複合体30の表面から露出した状態であってもよい。
 銅-ダイヤモンド複合体30の熱伝導率の下限は、例えば、610W/m・K以上、好ましくは620W/m・K以上、より好ましくは630W/m・K以上である。これにより、放熱部材の放熱特性を高められる。
 一方、銅-ダイヤモンド複合体30の熱伝導率の上限は、特に限定されないが、例えば、900W/m・K以下、好ましくは890W/m・K以下、より好ましくは880W/m・K以下である。
 銅-ダイヤモンド複合体30の形状、サイズは、用途に応じて適宜設定され得る。
 銅-ダイヤモンド複合体30の形状の一例は、例えば、平板状、ブロック状、棒状等が挙げられる。
 金属マトリックス10は、銅を含有するものであればよく、銅以外の他の高熱伝導性金属を含有してもよい。すなわち、金属マトリックス10は、銅相および/または銅合金相で構成される。
 金属マトリックス10中の主成分は、熱伝導性やコストの観点から、銅が好ましい。
 主成分の銅の含有量の下限は、金属マトリックス10の100質量%中、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、特に好ましくは80質量%以上、最も好ましくは90質量%以上である。これにより、銅および銅合金の良好な熱伝導率を利用できる。また、ロウ付け性や表面平滑性の確保のためマトリックスと同じ銅を表面層として活用でき、他の表面被膜層形成を省ける。
 主成分の銅の含有量の上限は、金属マトリックス10の100質量%中、とくに限定されないが、100質量%以下でもよく、99質量%以下でもよい。
 他の高熱伝導性金属として、例えば、銀、金、アルミニウム等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。銅とともに他の高熱伝導性金属を組み合わせる場合、銅と他の高熱伝導性金属とで形成した合金や、複合材料を用いることができる。
 なお、金属マトリックス10は、本発明の効果を損なわない範囲であれば、高熱伝導性金属以外の金属等を許容する。
 また、金属マトリックス10として、銅合金を用いる場合、銅合金は、CuAg、CuAl、CuSn、CuZr、CrCu等が挙げられる。
 金属マトリックス10は、例えば、銅(および必要に応じて他の光熱伝導性金属)を含む金属粉末の焼結体である。本実施形態において、金属マトリックス10は、複数のダイヤモンド粒子20の少なくとも一部が内部に埋設された焼結体で構成される。
 ダイヤモンド粒子20は、表面に金属含有被覆層を有しないノンコートダイヤモンド粒子、および表面に金属含有被覆層を有するコートダイヤモンド粒子の少なくとも一方を含む。ダイヤモンドと金属粒子間の密着性向上や分散性の観点から、コートダイヤモンド粒子がより好ましい。
 銅-ダイヤモンド複合体30中のダイヤモンド粒子20の体積含有量の下限は、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは30体積%以上である。これにより、銅-ダイヤモンド複合体30の熱伝導性を高められる。
 一方、銅-ダイヤモンド複合体30中のダイヤモンド粒子20の体積含有量の上限は、例えば、好ましくは80体積%以下、より好ましくは70体積%以下、さらに好ましくは65体積%以下である。これにより、銅-ダイヤモンド複合体30中において、ダイヤモンド粒子20の周囲に銅粉の付周りが低下する等により大きな気孔が残留することを抑制でき、製造安定性に優れた構造を実現できる。
 ダイヤモンド粒子20として、コートダイヤモンド粒子を用いる場合、コートダイヤモンド粒子中の金属含有被覆層は、モリブデン、タングステン、クロム、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタルおよびこれらの合金等を含んでもよい。これらを単独で用いても2種以上を組み合わせて用いてもよい。また、金属含有被覆層は、粒子表面の少なくとも一部または全面を覆うように構成される。
(放熱部材)
 図2は、本実施形態に係る放熱部材の構成の一例を示す断面模式図である。
 本実施形態の放熱部材100は、銅-ダイヤモンド複合体30と、銅-ダイヤモンド複合体30の少なくとも一方の面に接合した金属膜50と、を備える。
 放熱部材100の熱伝導率の下限は、例えば、600W/m・K以上、好ましくは630W/m・K以上、より好ましくは650W/m・K以上である。これにより、放熱部材の放熱特性を高められる。
 一方、放熱部材100の熱伝導率の上限は、特に限定されないが、例えば、780W/m・K以下、好ましくは760W/m・K以下、より好ましくは760W/m・K以下である。
 金属膜50は、銅-ダイヤモンド複合体30の少なくとも一面上に形成されていればよく、例えば、平板状の銅-ダイヤモンド複合体30の両面にそれぞれ形成されてもよい。
 金属膜50は、銅、銀、金、アルミニウム、ニッケル、亜鉛、錫、およびマグネシウムからなる群から選ばれる一または二以上を含んでもよい。好ましくは、金属膜50が、金属マトリックス10中の主成分の金属と同種の金属を含むことが好ましく、少なくとも銅または銅合金を含むことが好ましい。
 主成分の銅の含有量は、金属膜50の100質量%中、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、特に好ましくは80質量%以上、最も好ましくは90質量%以上である。
 主成分の銅の含有量の上限は、金属膜50の100質量%中、とくに限定されないが、100質量%以下でもよく、99質量%以下でもよい。
 金属膜50の膜厚の上限は、好ましくは150μm以下、より好ましくは120μm以下、さらに好ましくは100μm以下である。これにより、放熱部材の熱伝導率を高められる。
 一方、金属膜50の膜厚の下限は、好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上である。これにより、複合体との密着強度や自身の耐久性を高められる。
 金属膜50は、例えば、スパッタ法、メッキ法により得られる。
 本実施形態の電子装置は、上記の放熱部材と、放熱部材上に設けられた電子部品とを備える。
 電子部品としては、例えば、半導体素子等が挙げられる。半導体素子の具体例として、例えば、パワー半導体、画像表示素子、マイクロプロセッサユニット、レーザダイオード等が挙げられる。
 放熱部材は、ヒートシンクやヒートスプレッダ等に用いられる。ヒートシンクは、半導体素子の動作時に発生する熱を外部空間に放熱し、ヒートスプレッダは、半導体素子の発熱を他の部材に伝熱する。
 電子部品は、放熱部材に直接またはセラミック基板等を介して間接的に設置されてもよい。
 本実施形態の銅-ダイヤモンド複合体の製造方法の一例を説明する。
 銅-ダイヤモンド複合体の製造方法の一例は、原料混合工程、および焼結工程を含む。
 原料混合工程では、銅粉末等の銅を含む金属粉末、およびダイヤモンド粒子を混合し、混合物を得る。
 原料粉末の混合は、乾式、湿式の種々の方法を適用できるが、乾式混合方法を用いてもよい。
 焼成工程では、金属粉末とダイヤモンド粒子との混合物を焼成し、銅とダイヤモンド粒子との複合焼結体(銅-ダイヤモンド複合体)を得る。
 焼成温度は、金属粉末に含まれる金属種に応じて適宜選択できるが、銅粉末の場合、好ましくは800℃以上1100℃以下、より好ましくは850℃以上1000℃以下である。焼成温度を800℃以上とすることにより、銅-ダイヤモンド複合体が緻密化し、所望の熱伝導率が得られる。焼成温度を1100℃以下とすることにより、ダイヤモンド粒子の界面のグラファイト化による劣化を抑制し、ダイヤモンド本来の熱伝導率の低下を防止できる。
 焼成時間は、特に限定されないが、好ましくは5分以上3時間以下、より好ましくは10分以上2時間以下である。焼成時間を5分以上とすることにより、銅-ダイヤモンド複合体が緻密化し、所望の熱伝導率が得られる。焼成時間を3時間以下とすることにより、コートダイヤモンド粒子中のダイヤモンドと表面を被覆する金属との間で炭化物の形成や厚膜化が生じて、フォノン散乱による熱伝導率低下や線膨張率差によるクラックが引き起こされることを抑制できる。また複合体の生産性を高められる。
 焼成工程では、常圧焼結方法でも加圧焼結方法でも構わないが、緻密な複合体を得るために加圧焼結方法が好ましい。
 加圧焼結方法としては、ホットプレス焼結や放電プラズマ焼結(SPS)、熱間等方加圧焼結(HIP)等が挙げられる。ホットプレス焼結やSPS焼結の場合、圧力は、好ましくは10MPa以上、より好ましくは30MPa以上である。一方、ホットプレス焼結やSPS焼結の場合、圧力は、100MPa以下が好ましい。圧力を10MPa以上とすることにより、銅-ダイヤモンド複合体が緻密化し、所望の熱伝導率が得られる。圧力を100MPa以下とすることにより、ダイヤモンドの割れが生じ、ダイヤ界面の増加やダイヤ破砕面と金属間との密着性が低下して、ダイヤモンド本来の熱伝導率が低下してしまうことを防止できる。
 また、放熱部材の製造方法の一例は、上記で得られた複合体に対して、金属膜を形成する成膜工程を含む。
 成膜工程では、銅-ダイヤモンド複合体30の表面の少なくとも一部に金属膜50を形成する。
 金属膜を形成する方法は、スパッタ法、めっき法、銅箔を用いた加圧共焼成法などの一般的な方法を採用してもよいが、薄膜化するためにスパッタ法を用いてもよい。
 また、金属膜の表面の少なくとも一部を平面研削・研磨をしてもよい。これにより、成膜工程後における金属膜の表面平滑性を向上できる。
 また、必要に応じて、焼成工程の後、平滑化工程を行ってもよい。平滑化工程では、複合焼結体の表面の少なくとも一部を研削・研磨する。
 また、焼成工程と平滑化工程との間に、アニール工程を追加して行ってもよい。
 また、成膜工程の前に、銅-ダイヤモンド複合体において、形状加工や穴あき加工等の加工を施す工程を行ってもよい。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
(原料)
・ダイヤモンド粒子A
・ダイヤモンド粒子B
 原料のダイヤモンド粒子A,Bについて、画像式粒度分布測定装置(Malvern社製、Morphologi4)を用いてダイヤモンド粒子の粒度分布(形状分布/粒子径分布)を測定した。
 ダイヤモンド粒子の粒子径の体積粒度分布において、累積値が10%となる粒子径D10、累積値が50%となる粒子径D50、累積値が90%となる粒子径D90を求めた。
 ダイヤモンド粒子の球形度の体積粒度分布において、累積値が10%となる球形度S10、累積値が50%となる球形度S50、累積値が90%となる球形度S90を求めた。
 また、ダイヤモンド粒子の粒子径が、粒子径D10以下の範囲、粒子径D10超え粒子径D50以下の範囲、粒子径D50超え粒子径D90以下の範囲、粒子径D90超えの範囲の4つの区分に分類される粒子径クラス別において、各粒子径クラスにおける球形度を求めた。
 また、粒子径分布、形状分布(球形度分布)において、それぞれの数平均(ダイヤモンド粒子の個数基準の平均粒子径)を算出した。
 これらの値は、2回測定した値の平均値を表1に示す。
 なお、球形度および粒子径を以下のように定義した。
  球形度:投影された物体と同じ面積を持つ円周と物体との円周長の比率
  粒子径:粒子画像の輪郭上の2点における最大長さ
Figure JPOXMLDOC01-appb-T000001
<複合体の作製>
(実施例1)
 銅粉末とダイヤモンド粒子A(Moコート)とを50体積%:50体積%になるように秤量し、秤量した粉末をV型混合機で均一に混合し、混合物を得た(原料混合工程)。
 続いて、SPS焼成装置を用いて、得られた混合物を型内に充填し、30MPaの加圧条件下で、900℃で1時間加熱焼結し、銅マトリックス中に複数のダイヤモンド粒子が分散してなる、円板状の複合焼結体(銅-ダイヤモンド複合体)を得た(焼結工程)。
 銅-ダイヤモンド複合体中のダイヤモンド粒子の含有量が、50体積%であった。
 銅-ダイヤモンド複合体の熱伝導率をレーザーフラッシュ法により測定した結果、747W/m・Kであった。なお、レーザーフラッシュ法の測定は、JIS H 7801に準拠して、サンプル表面にカーボンコーティングを施し、室温下で測定とした。
(実施例2~4、比較例1~4)
 表2に従って、ダイヤモンド粒子の種類、ダイヤモンド粒子の含有量を変更した以外は、実施例1と同様にして、銅-ダイヤモンド複合体を得た。得られた複合体に対して、実施例1と同様の評価を行った。
Figure JPOXMLDOC01-appb-T000002
 表2に示したとおり、実施例1~4の銅-ダイヤモンド複合体は、比較例1~4と比べて、ダイヤモンド粒子の球形度が高いものを使用しているため、熱伝導率が向上する結果を示した。
 このような実施例の複合体を用いることにより、熱伝導率に優れた放熱部材を提供できる。
 この出願は、2021年8月5日に出願された日本出願特願2021-128792号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 金属マトリックス
20 ダイヤモンド粒子
30 銅-ダイヤモンド複合体
50 金属膜
100 放熱部材

Claims (14)

  1.  銅を含有する金属マトリックス中に複数のダイヤモンド粒子が分散した、銅-ダイヤモンド複合体であって、
     画像式粒度分布測定装置を用いて前記ダイヤモンド粒子の粒度分布を測定したとき、前記ダイヤモンド粒子の球形度分布の数平均が0.90以上である、
    銅-ダイヤモンド複合体。
  2.  請求項1に記載の銅-ダイヤモンド複合体であって、
     前記ダイヤモンド粒子の球形度の体積粒度分布において、累積値が50%となる球形度S50が0.87以上である、銅-ダイヤモンド複合体。
  3.  請求項1又は2に記載の銅-ダイヤモンド複合体であって、
     前記ダイヤモンド粒子の球形度の体積粒度分布において、累積値が90%となる球形度S90が0.91以上である、銅-ダイヤモンド複合体。
  4.  請求項1~3のいずれか一項に記載の銅-ダイヤモンド複合体であって、
     前記ダイヤモンド粒子の球形度の体積粒度分布において、累積値が10%となる球形度S10が0.8以上である、銅-ダイヤモンド複合体。
  5.  請求項1~4のいずれか一項に記載の銅-ダイヤモンド複合体であって、
     前記ダイヤモンド粒子の粒子径分布の数平均が180μm以下である、銅-ダイヤモンド複合体。
  6.  請求項1~5のいずれか一項に記載の銅-ダイヤモンド複合体であって、
     前記ダイヤモンド粒子の粒子径の体積粒度分布において、累積値が50%となる粒子径D50が180μm以下である、銅-ダイヤモンド複合体。
  7.  請求項1~6のいずれか一項に記載の銅-ダイヤモンド複合体であって、
     前記ダイヤモンド粒子の粒子径の体積粒度分布において、累積値が90%となる粒子径D90が210μm以下である、銅-ダイヤモンド複合体。
  8.  請求項1~7のいずれか一項に記載の銅-ダイヤモンド複合体であって、
     前記ダイヤモンド粒子の粒子径の体積粒度分布において、累積値が10%となる粒子径D10が160μm以下である、銅-ダイヤモンド複合体。
  9.  請求項1~8のいずれか一項に記載の銅-ダイヤモンド複合体であって、
     前記ダイヤモンド粒子の粒子径が粒子径D50より大きく粒子径D90以下の範囲に属する、前記ダイヤモンド粒子の球形度が0.90以上である、銅-ダイヤモンド複合体。
  10.  請求項1~9のいずれか一項に記載の銅-ダイヤモンド複合体であって、
     前記ダイヤモンド粒子の粒子径が粒子径D10より大きく粒子径D50以下の範囲に属する、前記ダイヤモンド粒子の球形度が0.90以上である、銅-ダイヤモンド複合体。
  11.  請求項1~10のいずれか一項に記載の銅-ダイヤモンド複合体であって、
     熱伝導率が610W/m・K以上である、銅-ダイヤモンド複合体。
  12.  請求項1~11のいずれか一項に記載の銅-ダイヤモンド複合体であって、
     前記ダイヤモンド粒子の体積含有率が10体積%以上である、銅-ダイヤモンド複合体。
  13.  請求項1~12のいずれか一項に記載の銅-ダイヤモンド複合体と、
     前記銅-ダイヤモンド複合体の少なくとも一方の面に接合した金属膜と、
    を含む、放熱部材。
  14.  請求項13に記載の放熱部材と、
     前記放熱部材上に設けられた電子部品と、を備える、電子装置。
PCT/JP2022/029486 2021-08-05 2022-08-01 銅-ダイヤモンド複合体、放熱部材および電子装置 WO2023013579A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280053902.4A CN117813684A (zh) 2021-08-05 2022-08-01 铜-金刚石复合体、散热部件及电子设备
US18/681,230 US20240309495A1 (en) 2021-08-05 2022-08-01 Copper-diamond composite, heat dissipation member, and electronic device
JP2023540331A JPWO2023013579A1 (ja) 2021-08-05 2022-08-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-128792 2021-08-05
JP2021128792 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013579A1 true WO2023013579A1 (ja) 2023-02-09

Family

ID=85154754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029486 WO2023013579A1 (ja) 2021-08-05 2022-08-01 銅-ダイヤモンド複合体、放熱部材および電子装置

Country Status (4)

Country Link
US (1) US20240309495A1 (ja)
JP (1) JPWO2023013579A1 (ja)
CN (1) CN117813684A (ja)
WO (1) WO2023013579A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074720A1 (ja) * 2005-12-28 2007-07-05 A. L. M. T. Corp. 半導体素子実装用基板とそれを用いた半導体装置および半導体素子実装用基板の製造方法
JP2013098491A (ja) * 2011-11-04 2013-05-20 Sumitomo Electric Ind Ltd ヒートシンク、ヒートシンクを作製する方法、半導体装置、半導体モジュール
JP2015160996A (ja) * 2014-02-27 2015-09-07 国立大学法人信州大学 銅−ダイヤモンド複合材及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074720A1 (ja) * 2005-12-28 2007-07-05 A. L. M. T. Corp. 半導体素子実装用基板とそれを用いた半導体装置および半導体素子実装用基板の製造方法
JP2013098491A (ja) * 2011-11-04 2013-05-20 Sumitomo Electric Ind Ltd ヒートシンク、ヒートシンクを作製する方法、半導体装置、半導体モジュール
JP2015160996A (ja) * 2014-02-27 2015-09-07 国立大学法人信州大学 銅−ダイヤモンド複合材及びその製造方法

Also Published As

Publication number Publication date
CN117813684A (zh) 2024-04-02
JPWO2023013579A1 (ja) 2023-02-09
US20240309495A1 (en) 2024-09-19

Similar Documents

Publication Publication Date Title
JP6182084B2 (ja) 緻密質複合材料、その製法、接合体及び半導体製造装置用部材
TWI599553B (zh) Cooling plate, method of manufacturing the same, and device for semiconductor manufacturing apparatus
CN109690760B (zh) 散热板及其制造方法
JPWO2009051094A1 (ja) 高熱伝導性を有する金属−黒鉛複合材料およびその製造方法
CN110656259A (zh) 金刚石复合材料和散热部件
EP3023510A1 (en) Spray coating film, engine having the spray coating film and film-forming method of the spray coating film
CN111742073B (zh) 复合材料和复合材料的制造方法
WO2019188148A1 (ja) 複合焼結体、半導体製造装置部材および複合焼結体の製造方法
US12120852B2 (en) Composite material and heat dissipation part
JPWO2020084903A1 (ja) 複合部材
CN117020209B (zh) 一种散热基板及其制备方法
WO2021153506A1 (ja) 複合材料の製造方法
WO2023013579A1 (ja) 銅-ダイヤモンド複合体、放熱部材および電子装置
WO2023013502A1 (ja) 放熱部材および電子装置
WO2023013500A1 (ja) 放熱部材および電子装置
WO2023013501A1 (ja) 放熱部材および電子装置
WO2023074633A1 (ja) 放熱部材および電子装置
JP2023087658A (ja) 複合材料およびこの複合材料を含む放熱部品
WO2019163710A1 (ja) 複合焼結体、半導体製造装置部材および複合焼結体の製造方法
JP3655207B2 (ja) 電子機器用放熱部材およびその製造方法
WO2023013580A1 (ja) 銅-ダイヤモンド複合体、放熱部材および電子装置
WO2023210395A1 (ja) 放熱部材および電子装置
JP2003078087A (ja) 半導体素子用フィン付き放熱性複合基板
JP2004055577A (ja) アルミニウム−炭化珪素質板状複合体
RU90787U1 (ru) Теплоотводящий элемент

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540331

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280053902.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852998

Country of ref document: EP

Kind code of ref document: A1