WO2023013529A1 - Method for producing connected body, and connected body - Google Patents

Method for producing connected body, and connected body Download PDF

Info

Publication number
WO2023013529A1
WO2023013529A1 PCT/JP2022/029230 JP2022029230W WO2023013529A1 WO 2023013529 A1 WO2023013529 A1 WO 2023013529A1 JP 2022029230 W JP2022029230 W JP 2022029230W WO 2023013529 A1 WO2023013529 A1 WO 2023013529A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
metal substrate
adhesive layer
conductive adhesive
less
Prior art date
Application number
PCT/JP2022/029230
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 柴田
正樹 大脇
政孝 望月
寛 両角
Original Assignee
パナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナック株式会社 filed Critical パナック株式会社
Priority to JP2022578556A priority Critical patent/JPWO2023013529A1/ja
Priority to KR1020237022829A priority patent/KR20230114290A/en
Priority to CN202280006439.8A priority patent/CN116171311A/en
Publication of WO2023013529A1 publication Critical patent/WO2023013529A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Definitions

  • the present invention relates to a connection body manufacturing method and a connection body.
  • a representative example of an isotropic conductive adhesive is an adhesive that uses carbon black as a conductive agent.
  • An isotropic conductive adhesive needs to contain a large amount of a conductive agent in order to make an electrical connection. For this reason, the connecting body using the isotropic conductive adhesive has a problem that the interlayer adhesion tends to deteriorate. Moreover, the connecting body using the isotropic conductive adhesive has a problem that the resistance value cannot be lowered sufficiently.
  • a representative example of a connection using an anisotropically conductive adhesive is a connection using an anisotropically conductive film (ACF).
  • ACF is an adhesive film in which conductive particles such as metal particles and metal-plated resin particles are uniformly dispersed.
  • ACF is, for example, a connecting material that is placed between circuit boards and then heated and pressed to electrically connect the circuit boards in the direction of pressure while ensuring insulation in the direction perpendicular to the direction of pressure. is.
  • Patent Documents 1 and 2 have been proposed as connectors using ACF.
  • connection bodies using ACF such as those disclosed in Patent Documents 1 and 2, electrically connect in the pressurizing direction. For this reason, since it is not necessary to include a large amount of conductive particles in the adhesive in a connecting body using ACF, an improvement in interlayer adhesion can be expected. However, since a connecting body using ACF requires an alignment step for aligning the positions of the upper plate and the lower plate, and a thermocompression bonding step after the alignment step, it cannot be manufactured continuously, and the manufacturing efficiency is low. was inferior to
  • a method for manufacturing a connected body comprising the following steps 1 and 2.
  • Step 1 A conductive adhesive layer coating liquid containing an adhesive and conductive particles having a conductive layer on the surface of a resin core is applied onto a first metal substrate and dried to form a conductive adhesive. forming a layer;
  • step 1 when the average thickness of the conductive adhesive layer is defined as T1 [ ⁇ m] and the average particle diameter of the conductive particles is defined as D1 [ ⁇ m], the relationship T1 ⁇ D1 is satisfied.
  • Step 2 Laminating a second metal substrate on the conductive adhesive layer to have the first metal substrate, the conductive adhesive layer and the second metal substrate in this order.
  • connection [2] The method for manufacturing a connected body according to [1], wherein the compression recovery rate of the resin core is 5% or more and 55% or less. [3] The method for manufacturing a connected body according to [1] or [2], wherein 0.1 parts by mass or more and 2.0 parts by mass or less of the conductive particles are included with respect to 100 parts by mass of the adhesive. [4] The connector according to any one of [1] to [3], wherein in step 1, the adhesive contains a main agent and a curing agent, and the main agent has a glass transition temperature of ⁇ 5° C. or higher. Production method.
  • [5] Manufacture of a connected body according to any one of [1] to [4], wherein the adhesive contains a main agent and a curing agent, and the lamination temperature in step 2 is equal to or higher than the glass transition temperature of the main agent.
  • Method. [6] A method for manufacturing a connected body according to any one of [1] to [5], further comprising the following step 3.
  • Step 3: A step of aging the connector.
  • the conductive adhesive layer comprises an adhesive and a conductive layer having a conductive layer on the surface of a resin core.
  • Tn [ ⁇ m] the average thickness of the conductive adhesive layer
  • Dn [ ⁇ m] the average diameter of the conductive particles in the thickness direction
  • Dn/Tn 1.00.
  • S is the area of the connecting body when the connecting body is viewed in plan; S1 is the area of the first metal base when the connecting body is viewed in plan;
  • the connecting body according to [11] or [12], which satisfies the following formulas (1) and (2) when the area of the material is S2. 0.99 ⁇ S1/S ⁇ 1.01 (1) 0.99 ⁇ S2/S ⁇ 1.01 (2)
  • S1 is the area of the first metal base when the connection body is viewed in plan;
  • S2 is the area of the second metal base when the connection body is viewed in plan;
  • the connector according to any one of [11] to [13], which satisfies the following formulas (3) and (4), where S3 is the area of the adhesive layer.
  • the manufacturing method of the connected body of the present invention can continuously manufacture the connected body, and can improve the manufacturing efficiency.
  • the connector of the present invention can electrically connect two metal substrates with a simple configuration.
  • FIG. 4 is a cross-sectional view showing an embodiment of the state after step 1 in the manufacturing method of the connected body of the present invention
  • FIG. 4 is a cross-sectional view showing an embodiment of the state after step 2 in the manufacturing method of the connected body of the present invention
  • It is a schematic diagram which shows one embodiment of the manufacturing method by roll to roll which is one embodiment of the manufacturing method of the connection body of this invention.
  • the manufacturing method of the connected body of the present invention has the following steps 1 and 2.
  • Step 1 A conductive adhesive layer coating liquid containing an adhesive and conductive particles having a conductive layer on the surface of a resin core is applied onto a first metal substrate and dried to form a conductive adhesive. forming a layer;
  • step 1 when the average thickness of the conductive adhesive layer is defined as T1 [ ⁇ m] and the average particle diameter of the conductive particles is defined as D1 [ ⁇ m], the relationship T1 ⁇ D1 is satisfied.
  • Step 2 Laminating a second metal substrate on the conductive adhesive layer to have the first metal substrate, the conductive adhesive layer and the second metal substrate in this order. , obtaining the connection.
  • Step 1 a conductive adhesive layer coating liquid containing an adhesive and conductive particles having a conductive layer on the surface of a resin core is applied on a first metal substrate, dried, and conductive adhesion is performed. This is the step of forming the agent layer.
  • T1 [ ⁇ m] the average thickness of the conductive adhesive layer
  • D1 [ ⁇ m] the average particle size of the conductive particles
  • FIG. 1 is a cross-sectional view showing one embodiment after step 1.
  • FIG. Laminate 50 of FIG. 1 has conductive adhesive layer 30 on first metal substrate 10 .
  • the conductive adhesive layer 30 has an adhesive 31 and conductive particles 32 having a conductive layer on the surface of a resin core.
  • step 1 it is necessary to satisfy the relationship T1 ⁇ D1.
  • the first metal base and the second metal base can be easily laminated by a simple lamination process without the need for high temperature and high pressure treatment during manufacturing as in the conventional connected body using ACF. can be electrically connected to the metal substrate.
  • the ratio of D1 to T1 is preferably 1.03 or more, more preferably 1.05 or more, and even more preferably 1.10 or more. By setting the ratio to 1.03 or more, the electrical connection between the first metal base and the second metal base can be facilitated.
  • the ratio of D1 to T1 (D1/T1) is preferably 1.50 or less, more preferably 1.30 or less, and even more preferably 1.20 or less. By setting the ratio to 1.50 or less, the interlayer adhesion of the connector can be easily improved.
  • the difference (D1-T1) between D1 and T1 is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and even more preferably 0.4 ⁇ m or more. By setting the difference to be 0.1 ⁇ m or more, the electrical connection between the first metal base and the second metal base can be facilitated.
  • the difference (D1-T1) between D1 and T1 is preferably 2.0 ⁇ m or less, more preferably 1.0 ⁇ m or less, and even more preferably 0.7 ⁇ m or less. By setting the difference to 2.0 ⁇ m or less, the interlayer adhesion of the connector can be easily improved.
  • T1 and D1 are not particularly limited as long as the relationship of T1 ⁇ D1 is satisfied, but the following ranges are preferable.
  • T1 which indicates the average thickness of the conductive adhesive layer, is preferably from 1.0 ⁇ m to 10.0 ⁇ m, more preferably from 2.0 ⁇ m to 8.0 ⁇ m, and even more preferably from 3.0 ⁇ m to 6.0 ⁇ m.
  • D1 which indicates the average particle diameter of the conductive particles, is preferably 1.5 ⁇ m or more and 12.0 ⁇ m or less, more preferably 2.5 ⁇ m or more and 9.0 ⁇ m or less, and even more preferably 3.5 ⁇ m or more and 7.0 ⁇ m or less.
  • T1 which indicates the average thickness of the conductive adhesive layer
  • T1 is the average thickness of 30 randomly selected conductive adhesive layers. It is assumed that the thickness measurement at the 30 locations described above is performed after the step 1 is completed and before the step 2 is started. The thickness at the 30 locations described above can be measured, for example, from a cross-sectional photograph of the conductive adhesive layer taken with an SEM or the like.
  • D1 which indicates the average particle size of the conductive particles
  • A1 and A2 can be measured by the following procedures A1 and A2, for example.
  • A1 and A2 below shall be performed after Step 1 is completed and before Step 2 is started.
  • D1 is the average of the maximum diameters of a total of 30 conductive particles.
  • the metal constituting the first metal substrate used in step 1 and the second metal substrate used in step 2 is one or two selected from copper, stainless steel, brass, silver, aluminum, nickel, and the like. The above are mentioned.
  • the metals forming the first metal base and the second metal base may be of the same type or of different types.
  • the first metal substrate and the second metal substrate may be subjected to processing such as roughening the substrate surface or removing residual oil from the substrate surface.
  • the thickness of the first metal substrate and the second metal substrate is preferably 1 ⁇ m or more and 200 ⁇ m or less, more preferably 3 ⁇ m or more and 100 ⁇ m or less, and even more preferably 6 ⁇ m or more and 50 ⁇ m or less.
  • a predetermined strength can be imparted to the first metal base material and the second metal base material, and damage to the base material can be suppressed when tension is applied to the base material. can be done easily.
  • the thickness By setting the thickness to 200 ⁇ m or less, the first metal base material and the second metal base material are easily wound up, so that the connected body can be easily manufactured by roll-to-roll.
  • the first metal base material and the second metal base material may be sheet-shaped, but are preferably roll-shaped.
  • roll-to-roll production which will be described later, becomes possible, and the production efficiency can be dramatically improved.
  • the conductive adhesive layer is formed by applying and drying a conductive adhesive layer coating liquid containing an adhesive and conductive particles having a conductive layer on the surface of a resin core.
  • the coating liquid for the conductive adhesive layer preferably contains a solvent.
  • solvents include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons (cyclohexane, etc.), aromatic hydrocarbons (toluene, xylene, etc.).
  • the mixed solvent of the said organic solvent and water can also be used.
  • the solvent may be a solvent consisting of one type, or a mixed solvent of two or more types.
  • coating means include general-purpose coating means such as gravure coating, bar coating, roll coating, reverse roll coating, comma coating, and die coating.
  • the drying conditions may be adjusted according to the characteristics of the metal base material, the materials constituting the conductive adhesive layer coating liquid, the coating amount of the coating liquid, and the like.
  • the drying temperature is preferably 80° C. or higher and 120° C. or lower, and the drying time is preferably 30 seconds or longer and 90 seconds or shorter. Within the above temperature range, the expansion of the metal substrate can be easily suppressed, and the quality of the connected body can be easily improved.
  • -glue- Adhesives include urethane-based adhesives, acrylic-based adhesives, epoxy-based adhesives, polyester-based adhesives, olefin-based adhesives, rubber-based adhesives, and the like. Among these adhesives, urethane-based adhesives and acrylic-based adhesives are preferable, and urethane-modified acrylic-based adhesives are more preferable.
  • the adhesive is preferably a thermosetting adhesive.
  • the adhesive preferably contains a main agent and a curing agent in order to stabilize the resistance value over time.
  • a general-purpose compound can be used as the main agent of the adhesive.
  • the main agent include acrylic resins; polyester resins; polyimide resins; polyol compounds such as polyether polyol, polyester polyol and acrylic polyol; compounds having epoxy groups such as epoxy resins; mentioned.
  • the polyol compound may be modified. Modified polyol compounds include urethane-modified acrylic polyols.
  • the glass transition temperature of the main agent of the adhesive is preferably ⁇ 5° C. or higher, more preferably 10° C. or higher, even more preferably 20° C. or higher, and even more preferably 30° C. or higher. .
  • the glass transition temperature of the main agent of the adhesive may be less than -5°C.
  • the glass transition temperature of the main agent of the adhesive is preferably 100° C. or lower, more preferably 80° C. or lower, and even more preferably 70° C. or lower.
  • the adhesive is easily softened by the heat during lamination in step 2.
  • the contact area between the adhesive layer and the second metal substrate can be easily increased, and the adhesion can be easily improved.
  • the adhesive present above the conductive particles is It becomes easy to spread thinly by the pressure of the time, and it becomes easy to contact a conductive particle and a 2nd metal base material.
  • the glass transition temperature of the main agent can be adjusted by general-purpose means such as weight average molecular weight.
  • a general-purpose compound can be used for the curing agent of the adhesive.
  • curing agents include isocyanate compounds such as aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate, and aliphatic polyisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate.
  • other specific examples of curing agents include amine compounds, phenol compounds, active ester compounds, and the like.
  • the equivalent ratio of the isocyanate group of the isocyanate to the hydroxyl group of the main agent is preferably 0.1 or more and 2.0 or less, more preferably 0.5 or more and 1.0 or less. more preferred.
  • the glass transition temperature of the adhesive after completion of the connected body can be easily set to ⁇ 1° C. or more.
  • the ratio to 2.0 or less it is possible to suppress swelling due to carbon dioxide generated by reaction with moisture unexpectedly contained during lamination.
  • particles having a conductive layer on the surface of a resin core are used as the conductive particles. Since such conductive particles have a conductive layer on the surface, they can electrically connect the first metal substrate and the second metal substrate. In addition, since the core of such conductive particles is a resin, the particle diameter in the thickness direction becomes smaller due to the pressure during lamination in step 2. By reducing the particle size of the conductive particles in the thickness direction, the contact area between the conductive adhesive layer and the second metal substrate increases, and the adhesion can be easily improved (see FIGS. 1 and 2). ). A particle having a conductive layer on the surface of a resin core can be obtained, for example, by plating or vapor-depositing a metal on the resin core.
  • the conductive particles are preferably particles having protrusions on their surfaces.
  • Oxide films may be formed on the surfaces of the first metal base and the second metal base.
  • the conductive particles having protrusions on the surface can easily break through the oxide film by the protrusions, so that the first metal substrate and the second metal substrate can be easily electrically connected.
  • Particles having protrusions on their surfaces can be obtained, for example, by placing a plurality of core substances that form protrusions on the surface of a resin core, and then plating or depositing a metal thereon.
  • a method of adhering the core substance to the surface of the resin core particles for example, a method of adding the core substance to a dispersion liquid of the resin core and accumulating the core substance on the surface of the resin core particle by Van der Waals force or the like. etc.
  • resins that make up the resin core include benzoguanamine resin, acrylic resin, styrene resin, silicone resin and polybutadiene resin.
  • resin constituting the resin core a copolymer obtained by combining two or more of the above-described monomers constituting the resin can be used.
  • the resin core preferably has a compression recovery rate of 55% or less, more preferably 47% or less, more preferably 40% or less, more preferably 30% or less, and 18% or less. is more preferable.
  • the resin core preferably has a compression recovery rate of 5% or more, more preferably 6% or more, and even more preferably 7% or more.
  • the compression recovery rate of the resin core can be adjusted by, for example, the components of the resin constituting the resin core and the degree of cross-linking of the resin constituting the resin core. Specifically, when the degree of cross-linking of the resin is increased, the compression recovery rate tends to increase, and when the degree of cross-linking of the resin is decreased, the compression recovery rate tends to decrease.
  • the compression recovery rate can be measured as follows. Sprinkle the resin cores on the sample stage. Using a micro-compression tester, a load (reversal load value) is applied to the resin core in the direction toward the center thereof until the resin core is compressed and deformed by 30%. After that, unloading is performed to the origin load value (0.40 mN). By measuring the load-compression displacement during this period, the compression recovery rate can be obtained from the following formula. Note that the load speed is 0.33 mN/sec. As the microcompression tester, for example, "Fischer Scope H-100" manufactured by Fisher Co. is used.
  • Compression recovery rate (%) [(L1-L2) / L1] ⁇ 100
  • L1 Compressive displacement from the origin load value to the reverse load value when the load is applied
  • L2 Unloading displacement from the reverse load value to the origin load value when releasing the load
  • the core substance preferably has a Mohs hardness of 5 or more, more preferably 7 or more, and even more preferably 9 or more.
  • Materials for the core material include nickel (5 on Mohs' hardness), zirconia (8 to 9 on Mohs' hardness), alumina (9 on Mohs' hardness), tungsten carbide (9 on Mohs' hardness), and diamond (10 on Mohs' hardness).
  • the core substance may be used alone or in combination of two or more.
  • the average particle size of the core substance is preferably 50 nm or more and 250 nm or less, more preferably 100 nm or more and 200 nm or less.
  • the number of protrusions formed on the surface of the resin core is preferably 1 to 500, more preferably 30 to 200.
  • the conductive layer is preferably made of metal.
  • Metals constituting the conductive layer include gold, palladium, nickel, copper, silver, tin and aluminum.
  • the metal forming the conductive layer may be an alloy.
  • the thickness of the conductive layer is preferably 50 nm or more and 250 nm or less, more preferably 80 nm or more and 150 nm or less, from the viewpoint of the balance between conductivity and economy.
  • the content of the conductive particles is preferably 0.1 parts by mass or more and 2.0 parts by mass or less, and 0.15 parts by mass or more and 1.8 parts by mass or less with respect to 100 parts by mass of the adhesive. more preferably 0.2 parts by mass or more and 1.7 parts by mass or less.
  • Step 2 a second metal substrate is laminated on the conductive adhesive layer, and the first metal substrate, the conductive adhesive layer and the second metal substrate are laminated in this order. It is a step of obtaining a connecting body.
  • FIG. 2 is a cross-sectional view of one embodiment after step 2.
  • FIG. The connecting body 100 of FIG. 2 has a conductive adhesive layer 30 and a second metal substrate 20 in this order on the first metal substrate 10 .
  • the first metal base 10 and the second metal base 20 are electrically connected via the conductive particles 30 .
  • the conductive particles 30 in FIG. 2 have a smaller particle size in the thickness direction by being crushed in the thickness direction.
  • the adhesive present above the conductive particles (the adhesive 31 present above the conductive particles 32 in FIG. 1) is It becomes easy to spread in the width direction.
  • the contact area between the conductive adhesive layer and the second metal substrate can be easily increased, and the interlayer adhesion of the connector can be easily improved.
  • the conductive adhesive layer 30 and the second metal substrate 20 are not in contact with each other on the left and right ends in FIG. Such places are air bubbles mixed in during lamination. As will be described later, air bubbles can be easily reduced by adjusting the temperature during lamination.
  • the embodiment of the second metal substrate used in step 2 is as described above.
  • the adhesive contains a main agent and a curing agent, and the lamination temperature in step 2 is higher than the glass transition temperature of the main agent. That is, the lamination temperature in step 2 and the glass transition temperature of the main agent of the adhesive preferably satisfy the following relationship. By satisfying the following relationship, it is possible to easily reduce the initial resistance value and to easily suppress an increase in the resistance value of the connecting body over time. Glass transition temperature of main agent of adhesive ⁇ Lamination temperature in step 2
  • the lamination temperature is preferably 55° C. or higher, more preferably 60° C. or higher, and even more preferably 70° C. or higher.
  • the lamination temperature is preferably 55° C. or higher.
  • the lamination temperature is preferably 110° C. or lower, more preferably 100° C. or lower, and still more preferably 90° C. or lower.
  • the laminating pressure in step 2 is preferably 0.1 MPa or more and 1.0 MPa or less, more preferably 0.2 MPa or more and 0.7 MPa or less, and even more preferably 0.3 MPa or more and 0.5 MPa or less.
  • the conductive particles can be easily crushed in the thickness direction.
  • the adhesive present above the conductive particles (adhesive 31 present above the conductive particles 32 in FIG. 1) is moved in the width direction by the pressure during lamination. can spread easily.
  • the pressure By setting the pressure to 1.0 MPa or less, it becomes unnecessary to apply a high pressure, so that the production of the connection body can be simplified, the production of the connection body is stable, and the connection body can be continuously produced. can be manufactured easily.
  • the lamination speed in step 2 is preferably 0.2 m/min or more and 30 m/min or less, more preferably 0.4 m/min or more and 20.0 m/min or less, and 1.0 m/min or more and 15.0 m/min or less. More preferred.
  • the step 1 is performed by continuously feeding the first metal base material from a roll of the first metal base material, and the second metal base material is produced.
  • step 2 is performed by continuously feeding the second metal substrate from a roll of material.
  • FIG. 3 is a schematic diagram showing an embodiment of the roll-to-roll manufacturing method.
  • step 1 is performed by continuously feeding the first metal substrate 10 from the first metal substrate roll 11 .
  • step 2 is performed by continuously feeding the second metal substrate 20 from the second metal substrate roll 21 .
  • process 1 and process 2 are performed continuously on one line.
  • the laminate in which the conductive adhesive layer is formed on the first metal substrate may be once wound up. That is, there may be a predetermined time interval between steps 1 and 2.
  • FIG. 3 does not show the steps after the second metal substrate 20 is laminated on the conductive adhesive layer 30 to obtain the connection body 100 .
  • After the second metal substrate 20 is laminated on the conductive adhesive layer 30 to obtain the connecting body 100, it is preferable to wind the connecting body 100 into a roll.
  • the area of the connecting body when viewed in plan is S
  • the area of the first metal base when the connecting body is viewed in plan is S1
  • the area of the second metal base when the connecting body is viewed in plan. is S2
  • S1 and S2 described above and S3 preferably satisfy the following formulas (3) and (4). Alignment can be made unnecessary by satisfying the following formulas (3) and (4). Moreover, by satisfying the following formulas (3) and (4), it becomes easier to electrically connect the first metal base and the second metal base. 1.00 ⁇ S1/S3 ⁇ 1.02 (3) 1.00 ⁇ S2/S3 ⁇ 1.02 (4)
  • the manufacturing method of the connection body of the present invention may further include the following step 3.
  • Step 3 A step of aging the connector.
  • step 3 By performing the aging treatment in step 3, the curing of the adhesive in the conductive adhesive layer can be advanced. Therefore, in the connected body subjected to step 3, the adhesive tends to suppress the conductive particles from restoring their original shape, so it is possible to easily suppress changes in the resistance value of the connected body over time. .
  • step 3 the temperature and time of aging treatment can be appropriately adjusted depending on the type of adhesive used, etc., but the following range is preferable.
  • the temperature of the aging treatment is preferably 55° C. or lower, more preferably 50° C. or lower, and even more preferably 47° C. or lower. By setting the temperature of the aging treatment to 55° C. or lower, it is possible to easily suppress the restoration of the original shape of the conductive particles during the aging treatment.
  • the lower limit of the aging treatment temperature is preferably 25° C. or higher, more preferably 30° C. or higher, and even more preferably 40° C. or higher, in order to promote curing of the adhesive.
  • the aging treatment time is not particularly limited, it is preferably 1 day or more and 9 days or less, more preferably 3 days or more and 7 days or less. When the aging treatment temperature is high, the aging treatment time is preferably less than one day.
  • the adhesive after step 3 preferably has a glass transition temperature of ⁇ 1° C. or higher, more preferably 23° C. or higher, still more preferably 30° C. or higher, and even more preferably 40° C. or higher.
  • the glass transition temperature of the adhesive after step 3 may be less than -1°C.
  • the upper limit of the glass transition temperature of the adhesive after step 3 is not particularly limited, it is preferably 100°C or less, more preferably 90°C or less, more preferably 70°C or less, and 50°C. The following are more preferable.
  • the average thickness of the conductive adhesive layer after step 3 is defined as Tn [ ⁇ m], and the average diameter of the conductive particles in the thickness direction is defined as Dn [ ⁇ m].
  • Tn and Dn preferably satisfy the relationship of Tn ⁇ Dn.
  • Tn ⁇ Dn the first metal base and the second metal base can be electrically connected.
  • the ratio of Dn to Tn is preferably greater than 1.00, more preferably 1.01 or more, and even more preferably 1.03 or more. By setting Dn/Tn to be more than 1.00, electrical connection between the first metal base and the second metal base can be facilitated.
  • the ratio of Dn to Tn (Dn/Tn) is preferably 1.50 or less, more preferably 1.40 or less, and even more preferably 1.30 or less. By setting the ratio to 1.50 or less, the interlayer adhesion of the connector can be easily improved.
  • the difference between Dn and Tn is preferably greater than 0 ⁇ m, more preferably 0.01 ⁇ m or more, further preferably 0.03 ⁇ m or more, and 0.05 ⁇ m or more. is even more preferable. By making the difference more than 0 ⁇ m, the electrical connection between the first metal base and the second metal base can be facilitated.
  • the difference between Dn and Tn (Dn-Tn) is preferably 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less, and even more preferably 0.7 ⁇ m or less. By setting the difference to 1.0 ⁇ m or less, the interlayer adhesion of the connector can be easily improved.
  • Tn is the average thickness of 30 randomly selected conductive adhesive layers. It is assumed that the thickness measurement at the 30 locations described above is performed after step 3 is completed. The thickness at the 30 locations described above can be measured, for example, from a cross-sectional photograph of the conductive adhesive layer taken with an SEM or the like. Tn is often substantially the same as T1 described above.
  • Dn can be measured, for example, by the procedures of B1 and B2 below. B1 and B2 below shall be performed after step 3 is completed. Dn is smaller than D1 mentioned above.
  • connection body preferably has a resistance value of 10.0 m ⁇ or less, more preferably 8.0 m ⁇ or less, and even more preferably 6.0 m ⁇ or less.
  • the lower limit of the resistance value of the connector is not particularly limited, it is preferably 1.0 m ⁇ or more, more preferably 2.0 m ⁇ or more.
  • the above resistance value is preferably satisfied after step 2, more preferably after steps 2 and 3.
  • the resistance value of the connecting body can be measured by the four-terminal method by setting one terminal on the first metal substrate and setting the other terminal on the second metal substrate.
  • connection body of the present invention has a first metal substrate, a conductive adhesive layer and a second metal substrate in this order, and the conductive adhesive layer comprises an adhesive and a conductive adhesive on the surface of a resin core.
  • Tn [ ⁇ m] the average thickness of the conductive adhesive layer
  • Dn [ ⁇ m] the average diameter of the conductive particles in the thickness direction
  • the first metal base and the second metal base can be electrically connected.
  • Embodiments of the first metal substrate, the second metal substrate, the conductive adhesive layer, the adhesive, and the conductive particles having a conductive layer on the surface of the resin core in the connection body of the present invention are described above.
  • the first metal base material, the second metal base material, the conductive adhesive layer, the adhesive, and the conductive particles having a conductive layer on the surface of the resin core are implemented. Similar to morphology.
  • the ratio of Dn to Tn (Dn/Tn) is preferably greater than 1.00, more preferably 1.01 or more, and even more preferably 1.03 or more.
  • the ratio of Dn to Tn is preferably 1.50 or less, more preferably 1.40 or less, and even more preferably 1.30 or less. Further, the difference between Dn and Tn (Dn ⁇ Tn) is preferably greater than 0 ⁇ m, more preferably 0.01 ⁇ m or more, further preferably 0.03 ⁇ m or more, and 0.05 ⁇ m or more. It is even more preferable to have Also, the difference between Dn and Tn (Dn-Tn) is preferably 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less, and even more preferably 0.7 ⁇ m or less. Also, S1/S is preferably 0.99 or more and 1.01 or less.
  • S2/S is preferably 0.99 or more and 1.01 or less.
  • S1/S3 is preferably between 1.00 and 1.02.
  • S2/S3 is preferably between 1.00 and 1.02.
  • the conductive particles are preferably particles having protrusions on their surfaces.
  • the resin core of the conductive particles preferably has a compression recovery rate of 55% or less, more preferably 47% or less, more preferably 40% or less, and 30% or less. More preferably, it is 18% or less.
  • the resin core preferably has a compression recovery rate of 5% or more, more preferably 6% or more, and even more preferably 7% or more.
  • the content of the conductive particles is preferably 0.1 parts by mass or more and 2.0 parts by mass or less, and 0.15 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of the adhesive. more preferably 0.2 parts by mass or more and 0.8 parts by mass or less.
  • the glass transition temperature of the adhesive is preferably ⁇ 1° C. or higher, more preferably 23° C. or higher, still more preferably 30° C. or higher, and even more preferably 40° C. or higher.
  • Measurement 1-1 Average particle size and thickness According to the text of the specification, T1 indicating the average thickness of the conductive adhesive layer after step 1, D1 indicating the average particle size of the conductive particles after step 1, and after step 3 Tn, which indicates the average thickness of the conductive adhesive layer, and Dn, which indicates the average diameter of the conductive particles in the thickness direction after step 3, were measured. Since the conductive particles of Comparative Example 1 have nano-level particle diameters, the measurement was omitted.
  • Resistance Value The resistance value of the connection bodies produced in Examples and Comparative Examples was measured. One pair of terminals was installed on the first metal substrate and the other pair of terminals was installed on the second metal substrate, and the resistance value was measured by the four-probe method. As a measuring device, Hioki Electric Co., Ltd.'s product name "Resistor RM3544" was used. Resistance values were measured immediately after step 2 and after step 3. In Comparative Example 1, the resistance value immediately after step 2 was extremely high, so the measurement of the resistance value after step 3 was omitted.
  • Adhesion peel strength
  • Two samples were prepared by cutting the connected body prepared in the example and the comparative example into a width of 15 mm and a length of 10 cm.
  • a second metal substrate of 10 mm at the tip of one sample is peeled off, the peeled second metal substrate is gripped with a chuck, and a peeling angle of 180° is obtained using Shimadzu Corporation's trade name "AUTOGRAPH AGS-50D".
  • Peel force 1 was measured by peeling at a peel speed of 200 mm/min. Peel off the first metal substrate of 10 mm from the tip of the other sample, grab the peeled first metal substrate with a chuck, and use Shimadzu Corporation's trade name "AUTOGRAPH AGS-50D” to measure the peel angle.
  • Peel force 2 was measured by peeling at a 180° peel rate of 200 mm/min. Table 1 shows the weaker of the peel force 1 and the peel force 2. A weaker peel force of 0.10 N/mm or more is an acceptable level.
  • Preparation of Conductive Particle 1 (1) Preparation of Polymer Seed Particle Dispersion 2500 g of ion-exchanged water, 250 g of styrene, 50 g of octyl mercaptan, and 0.5 g of sodium chloride were placed in a separable flask and stirred under a nitrogen atmosphere. Thereafter, the mixture was heated to 70° C., 2.5 g of potassium persulfate was added, and reaction was carried out for 24 hours to obtain polymer seed particles.
  • the resulting emulsion was added in several portions to the polymer seed particle dispersion and stirred for 12 hours. After that, 500 g of a 5% by weight aqueous solution of polyvinyl alcohol was added, and the mixture was reacted for 9 hours in a nitrogen atmosphere at 85° C. to obtain resin cores (average particle size: 4.4 ⁇ m). The compression recovery rate of the resin core was 46%.
  • (3) Preparation of Conductive Particles (3-1) Palladium Adhesion Step The obtained resin core was etched and washed with water. Next, the resin core was added to 100 mL of a palladium catalyst solution containing 8% by weight of palladium catalyst and stirred. It was then filtered and washed.
  • a resin core was added to a 0.5% by weight dimethylamine borane solution at pH 6 to obtain a resin core with palladium attached.
  • (3-2) Step of Attaching Core Substance The resin core with palladium attached thereto was stirred for 3 minutes in 300 mL of ion-exchanged water and dispersed to obtain a dispersion. Next, 1 g of metal nickel particle slurry (average particle size: 100 nm) was added to the dispersion liquid over 3 minutes to obtain a resin core with a core substance adhered thereto.
  • a conductive particle 1 having protrusions on the surface was obtained (average particle size 4.5 ⁇ m).
  • conductive particles 2 According to the description in Example 3 of JP-A-2020-97739, a conductive layer (nickel layer) having a thickness of about 0.1 ⁇ m is formed on the surface of a resin core (compression recovery rate: 9.8%) ) was formed to obtain conductive particles 2 (average particle diameter 3.1 ⁇ m).
  • connection body of Example 1 was produced by the following steps 1 to 3.
  • Step 1 The following conductive adhesive layer coating solution 1 was applied onto a first metal substrate (aluminum having a thickness of 50 ⁇ m) by gravure coating. Then, it was dried at 100° C. for 1 minute to form a conductive adhesive layer with an average thickness of 4.0 ⁇ m. Step 1 was performed continuously by continuously feeding the first metal substrate from a roll of the first metal substrate.
  • Step 2 Laminating a second metal substrate on the conductive adhesive layer to form a connecting body having the first metal substrate, the conductive adhesive layer and the second metal substrate in this order. Obtained.
  • the lamination conditions were as follows. Step 2 was performed continuously by continuously feeding the second metal substrate from a roll of the second metal substrate. Steps 1 and 2 were performed continuously on one line. ⁇ Lamination conditions> ⁇ Temperature of laminate roll: 60°C ⁇ Lamination pressure: 0.4 MPa ⁇ Lamination speed: 0.8m/min
  • Step 3 The connected body obtained in Step 2 was wound up and aged at 45°C for 5 days.
  • Example 2 A connection body of Example 2 was produced in the same manner as in Example 1, except that the amount of the conductive particles added in the conductive adhesive layer coating liquid 1 was changed to 0.20 parts by mass.
  • Example 3 A connecting body of Example 3 was produced in the same manner as in Example 1, except that the conductive adhesive layer coating liquid 1 was changed to the following conductive adhesive layer coating liquid 2.
  • Example 4 The procedure of Example 1 was repeated except that the conductive adhesive layer coating solution 1 was changed to the following conductive adhesive layer coating solution 3, and the average thickness of the conductive adhesive layer was changed to 2.9 ⁇ m. Thus, a connection body of Example 4 was produced.
  • Example 5 A connection body of Example 5 was produced in the same manner as in Example 1, except that the conductive adhesive layer coating liquid 1 was changed to the following conductive adhesive layer coating liquid 4.
  • Example 6 Conducted in the same manner as in Example 1, except that the conductive adhesive layer coating liquid 1 was changed to the following conductive adhesive layer coating liquid 5, and the aging conditions in step 3 were changed to the following conditions. A connection of Example 6 was made.
  • ⁇ Coating Liquid 5 for Conductive Adhesive Layer> ⁇ Conductive particles 1 0.20 parts by mass prepared in "2-1" above ⁇ Main agent 1 30 parts by mass of adhesive (polyimide resin) (Arakawa Chemical Industry Co., Ltd., trade name: PIAD200, solid content 30% by mass) ⁇ Adhesive main agent 2 70 parts by mass (polyimide resin) (Arakawa Chemical Industries, trade name: PIAD150H, solid content 30% by mass) ⁇ Adhesive main agent 3 2.3 parts by mass (epoxy resin) (Mitsubishi Chemical Company, trade name: jER630, solid content 100% by mass) ⁇ Adhesive curing agent 8.0 parts by mass (active ester compound) (DIC Corporation, product name: HPC-8000,
  • Example 7 Conducted in the same manner as in Example 1, except that the conductive adhesive layer coating liquid 1 was changed to the following conductive adhesive layer coating liquid 6, and the aging conditions in step 3 were changed to the following conditions. A connection of Example 7 was made.
  • ⁇ Coating Liquid 6 for Conductive Adhesive Layer> ⁇ Conductive particles 1 0.10 parts by mass prepared in "2-1" above ⁇ Main agent 1 100 parts by mass of adhesive (polyimide resin) (Arakawa Chemical Industry Co., Ltd., trade name: PIAD152H, solid content 42% by mass) ⁇ Adhesive main agent 2 11.5 parts by mass (epoxy resin) (Mitsubishi Chemical Company, trade name: YL980, solid content 100% by mass) ⁇ Adhesive curing agent 12.8 parts by mass (phenolic compound) (Arakawa Chemical Industries, trade name: Tamanol 759, solid content 100% by mass) ⁇ Curing accelerator 0.24 parts by mass (Shikoku Kasei Co., Ltd., trade name; Cursol 2
  • Comparative Example 1 A connection body of Comparative Example 1 was produced in the same manner as in Example 1, except that the conductive adhesive layer coating liquid 1 was changed to the following conductive adhesive layer coating liquid 7.
  • ⁇ Coating Liquid 7 for Conductive Adhesive Layer> ⁇ Carbon black dispersion 115.3 parts by mass (Mikuni Color Co., Ltd., trade name: RK046, solid content 26.5% by mass)
  • Mainn agent of adhesive 100 parts by mass (polyester resin) Toyo-Morton Co., Ltd., trade name: AD76P1, solid content 51% by mass
  • Adhesive curing agent 10 parts by mass (isocyanate compound) Toyo-Morton, trade name: CAT10L, solid content 53% by mass
  • Comparative Example 2 A connector of Comparative Example 2 was produced in the same manner as in Example 1, except that the average thickness of the conductive adhesive layer was changed to 7.0 ⁇ m.
  • the manufacturing method of the connected body of the example can be applied either immediately after manufacturing the connected body (immediately after step 2) or after aging treatment of the connected body (after step 3). Also, it can be confirmed that the resistance value of the connecting body can be lowered. In addition, since the manufacturing method of the connected body of the embodiment is roll-to-roll manufacturing, manufacturing efficiency can be dramatically increased. Although not shown in the table, S1/S, S2/S, S1/S3 and S2/S3 in the specification are all 1.00.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

A connector manufacturing method with excellent production efficiency is provided. This connector manufacturing method involves processes 1 and 2 below. Step 1: a step in which a coating liquid for a conductive adhesive agent layer, which contains an adhesive agent and conductive particles with a conductive layer on the surface of the resin core, is coated on a first metal substrate and dried to form a conductive adhesive agent layer. In step 1, defining the average thickness of the conductive adhesive agent layer as T1 [μm] and the average particle diameter of the conductive particles as D1 [μm], the relation T1 < D1 is satisfied. Step 2: a step in which a second metal substrate is laminated on the conductive adhesive agent layer to obtain a connector that comprises the first metal substrate, the conductive adhesive agent layer and the second metal substrate in that order.

Description

接続体の製造方法及び接続体Method for manufacturing connected body and connected body
 本発明は、接続体の製造方法及び接続体に関する。 The present invention relates to a connection body manufacturing method and a connection body.
 電気及び電子機器等の材料として、2つの金属基材を接着剤層を介して電気的に接続した接続体が用いられる場合がある。
 接続体に用いられる接着剤は、等方導電性接着剤及び異方導電性接着剤が挙げられる。
2. Description of the Related Art As a material for electrical and electronic equipment, there are cases where a connecting body in which two metal substrates are electrically connected via an adhesive layer is used.
An isotropic conductive adhesive and an anisotropic conductive adhesive are exemplified as the adhesive used for the connection body.
 等方導電性接着剤の代表例として、導電剤としてカーボンブラックを用いた接着剤が挙げられる。等方導電性接着剤は、電気的に接続するために、接着剤中に導電剤を多量に含む必要がある。このため、等方導電性接着剤を用いた接続体は、層間密着性が低下しやすいという問題がある。また、等方導電性接着剤を用いた接続体は、抵抗値を十分に低くできないという問題がある。 A representative example of an isotropic conductive adhesive is an adhesive that uses carbon black as a conductive agent. An isotropic conductive adhesive needs to contain a large amount of a conductive agent in order to make an electrical connection. For this reason, the connecting body using the isotropic conductive adhesive has a problem that the interlayer adhesion tends to deteriorate. Moreover, the connecting body using the isotropic conductive adhesive has a problem that the resistance value cannot be lowered sufficiently.
 異方導電性接着剤を用いた接続体の代表例として、異方導電フィルム(ACF:Anisotropically Conductive Film)を用いた接続体が挙げられる。ACFは、金属粒子及び金属メッキ樹脂粒子等の導電粒子を均一に分散させた接着フィルムである。
 ACFは、例えば、回路基板間に配置した後、加熱及び加圧することにより、回路基板間の加圧方向を電気的に接続する一方で、加圧方向の垂直方向では絶縁性を確保する接続材料である。
A representative example of a connection using an anisotropically conductive adhesive is a connection using an anisotropically conductive film (ACF). ACF is an adhesive film in which conductive particles such as metal particles and metal-plated resin particles are uniformly dispersed.
ACF is, for example, a connecting material that is placed between circuit boards and then heated and pressed to electrically connect the circuit boards in the direction of pressure while ensuring insulation in the direction perpendicular to the direction of pressure. is.
 ACFを用いた接続体として、例えば、特許文献1~2が提案されている。 For example, Patent Documents 1 and 2 have been proposed as connectors using ACF.
特開2016-1562号公報JP 2016-1562 A 特開2019-179647号公報JP 2019-179647 A
 特許文献1及び2等のACFを用いた接続体は、加圧方向を電気的に接続する。このため、ACFを用いた接続体は、接着剤中に導電粒子を多量に含む必要がないため、層間密着性の向上が期待できる。
 しかし、ACFを用いた接続体は、上面板と下面板との位置を合わせるアライメント工程、及び、アライメント工程後の加熱圧着工程が必要であるため、連続的に製造することができず、製造効率に劣るものであった。
The connection bodies using ACF, such as those disclosed in Patent Documents 1 and 2, electrically connect in the pressurizing direction. For this reason, since it is not necessary to include a large amount of conductive particles in the adhesive in a connecting body using ACF, an improvement in interlayer adhesion can be expected.
However, since a connecting body using ACF requires an alignment step for aligning the positions of the upper plate and the lower plate, and a thermocompression bonding step after the alignment step, it cannot be manufactured continuously, and the manufacturing efficiency is low. was inferior to
 本発明は、製造効率に優れた接続体の製造方法を提供することを課題とする。また、本発明は、簡易な構成により2つの金属基材を電気的に接続し得る接続体を提供することを課題とする。 An object of the present invention is to provide a method of manufacturing a connected body with excellent manufacturing efficiency. Another object of the present invention is to provide a connection body capable of electrically connecting two metal substrates with a simple structure.
 上記課題を解決すべく、本発明は、以下[1]~[17]を提供する。
[1] 下記の工程1~2を有する、接続体の製造方法。
工程1:第1の金属基材上に、接着剤と、樹脂コアの表面に導電層を有する導電性粒子とを含む導電性接着剤層用塗布液を塗布、乾燥して、導電性接着剤層を形成する工程。工程1では、前記導電性接着剤層の平均厚みをT1[μm]、前記導電性粒子の平均粒子径をD1[μm]と定義した際に、T1<D1の関係を満たすようにする。
工程2:前記導電性接着剤層上に、第2の金属基材をラミネートして、前記第1の金属基材、前記導電性接着剤層及び前記第2の金属基材とをこの順に有する、接続体を得る工程。
[2] 前記樹脂コアの圧縮回復率が5%以上55%以下である、[1]に記載の接続体の製造方法。
[3] 前記接着剤100質量部に対して、前記導電性粒子を0.1質量部以上2.0質量部以下含む、[1]又は[2]に記載の接続体の製造方法。
[4] 工程1において、前記接着剤が、主剤と硬化剤とを含み、前記主剤のガラス転移温度が-5℃以上である、[1]~[3]の何れかに記載の接続体の製造方法。
[5] 前記接着剤が、主剤と硬化剤とを含み、工程2のラミネート温度を、前記主剤のガラス転移温度以上とする、[1]~[4]の何れかに記載の接続体の製造方法。
[6] さらに、下記の工程3を有する、[1]~[5]の何れかに記載の接続体の製造方法。
 工程3:接続体をエージング処理する工程。
[7] 工程3において、エージング処理の温度を55℃以下とする、[6]に記載の接続体の製造方法。
[8] 工程3の後の前記接着剤のガラス転移温度が-1℃以上である、[6]又は[7]に記載の接続体の製造方法。
[9] 工程3の後の導電性接着剤層の平均厚みをTn[μm]、導電性粒子の厚み方向の径の平均をDn[μm]と定義した際に、Tn≦Dnの関係を満たす、[6]~[8]の何れかに記載の接続体の製造方法。
[10] 前記第1の金属基材のロール状物から前記第1の金属基材を連続的に送り出すことにより、前記工程1を行うとともに、前記第2の金属基材のロール状物から前記第2の金属基材を連続的に送り出すことにより、前記工程2を行う、[1]~[9]の何れかに記載の接続体の製造方法。
In order to solve the above problems, the present invention provides the following [1] to [17].
[1] A method for manufacturing a connected body, comprising the following steps 1 and 2.
Step 1: A conductive adhesive layer coating liquid containing an adhesive and conductive particles having a conductive layer on the surface of a resin core is applied onto a first metal substrate and dried to form a conductive adhesive. forming a layer; In step 1, when the average thickness of the conductive adhesive layer is defined as T1 [μm] and the average particle diameter of the conductive particles is defined as D1 [μm], the relationship T1<D1 is satisfied.
Step 2: Laminating a second metal substrate on the conductive adhesive layer to have the first metal substrate, the conductive adhesive layer and the second metal substrate in this order. , obtaining the connection.
[2] The method for manufacturing a connected body according to [1], wherein the compression recovery rate of the resin core is 5% or more and 55% or less.
[3] The method for manufacturing a connected body according to [1] or [2], wherein 0.1 parts by mass or more and 2.0 parts by mass or less of the conductive particles are included with respect to 100 parts by mass of the adhesive.
[4] The connector according to any one of [1] to [3], wherein in step 1, the adhesive contains a main agent and a curing agent, and the main agent has a glass transition temperature of −5° C. or higher. Production method.
[5] Manufacture of a connected body according to any one of [1] to [4], wherein the adhesive contains a main agent and a curing agent, and the lamination temperature in step 2 is equal to or higher than the glass transition temperature of the main agent. Method.
[6] A method for manufacturing a connected body according to any one of [1] to [5], further comprising the following step 3.
Step 3: A step of aging the connector.
[7] The method for manufacturing a connected body according to [6], wherein in step 3, the temperature of the aging treatment is 55°C or lower.
[8] The method for producing a connected body according to [6] or [7], wherein the glass transition temperature of the adhesive after step 3 is -1°C or higher.
[9] When the average thickness of the conductive adhesive layer after step 3 is defined as Tn [μm], and the average diameter of the conductive particles in the thickness direction is defined as Dn [μm], the relationship Tn≦Dn is satisfied. , a method for manufacturing a connected body according to any one of [6] to [8].
[10] The step 1 is performed by continuously feeding the first metal substrate from the roll of the first metal substrate, and the roll of the second metal substrate is The method for manufacturing a connected body according to any one of [1] to [9], wherein the step 2 is performed by continuously feeding the second metal base material.
[11] 第1の金属基材、導電性接着剤層及び第2の金属基材をこの順に有し、前記導電性接着剤層は、接着剤と、樹脂コアの表面に導電層を有する導電性粒子とを含み、前記導電性接着剤層の平均厚みをTn[μm]、前記導電性粒子の厚み方向の径の平均をDn[μm]と定義した際に、Dn/Tnが1.00超の関係を満たす、接続体。
[12] Dn/Tnが1.01以上1.50以下の関係を満たす、[11]に記載の接続体。
[13] 接続体を平面視した際の接続体の面積をS、接続体を平面視した際の第1の金属基材の面積をS1、接続体を平面視した際の第2の金属基材の面積をS2とした際に、下記式(1)及び(2)を満たす、[11]又は[12]に記載の接続体。
 0.99≦S1/S≦1.01 (1)
 0.99≦S2/S≦1.01 (2)
[14] 接続体を平面視した際の第1の金属基材の面積をS1、接続体を平面視した際の第2の金属基材の面積をS2、接続体を平面視した際の導電性接着剤層の面積をS3とした際に、下記式(3)及び(4)を満たす、[11]~[13]の何れかに記載の接続体。
 1.00≦S1/S3≦1.02 (3)
 1.00≦S2/S3≦1.02 (4)
[15] 前記樹脂コアの圧縮回復率が5%以上55%以下である、[11]~[14]の何れかに記載の接続体。
[16] 前記接着剤100質量部に対して、前記導電性粒子を0.1質量部以上2.0質量部以下含む、[11]~[15]の何れかに記載の接続体。
[17] 前記接着剤のガラス転移温度が-1℃以上である、[11]~[16]の何れかに記載の接続体。
[11] It has a first metal substrate, a conductive adhesive layer and a second metal substrate in this order, and the conductive adhesive layer comprises an adhesive and a conductive layer having a conductive layer on the surface of a resin core. When the average thickness of the conductive adhesive layer is defined as Tn [μm] and the average diameter of the conductive particles in the thickness direction is defined as Dn [μm], Dn/Tn is 1.00. A connection that satisfies a super-relationship.
[12] The connector according to [11], wherein Dn/Tn satisfies the relationship of 1.01 or more and 1.50 or less.
[13] S is the area of the connecting body when the connecting body is viewed in plan; S1 is the area of the first metal base when the connecting body is viewed in plan; The connecting body according to [11] or [12], which satisfies the following formulas (1) and (2) when the area of the material is S2.
0.99≦S1/S≦1.01 (1)
0.99≦S2/S≦1.01 (2)
[14] S1 is the area of the first metal base when the connection body is viewed in plan; S2 is the area of the second metal base when the connection body is viewed in plan; The connector according to any one of [11] to [13], which satisfies the following formulas (3) and (4), where S3 is the area of the adhesive layer.
1.00≦S1/S3≦1.02 (3)
1.00≤S2/S3≤1.02 (4)
[15] The connector according to any one of [11] to [14], wherein the compression recovery rate of the resin core is 5% or more and 55% or less.
[16] The connector according to any one of [11] to [15], which contains 0.1 parts by mass or more and 2.0 parts by mass or less of the conductive particles with respect to 100 parts by mass of the adhesive.
[17] The connector according to any one of [11] to [16], wherein the adhesive has a glass transition temperature of -1°C or higher.
 本発明の接続体の製造方法は、接続体を連続的に製造することができ、製造効率を良好にすることができる。また、本発明の接続体は、簡易な構成により2つの金属基材を電気的に接続することができる。 The manufacturing method of the connected body of the present invention can continuously manufacture the connected body, and can improve the manufacturing efficiency. In addition, the connector of the present invention can electrically connect two metal substrates with a simple configuration.
本発明の接続体の製造方法において、工程1の後の状態の一実施形態を示す断面図である。FIG. 4 is a cross-sectional view showing an embodiment of the state after step 1 in the manufacturing method of the connected body of the present invention; 本発明の接続体の製造方法において、工程2の後の状態の一実施形態を示す断面図である。FIG. 4 is a cross-sectional view showing an embodiment of the state after step 2 in the manufacturing method of the connected body of the present invention; 本発明の接続体の製造方法の一実施形態である、ロールトウーロールでの製造方法の一実施形態を示す模式図である。It is a schematic diagram which shows one embodiment of the manufacturing method by roll to roll which is one embodiment of the manufacturing method of the connection body of this invention.
 以下、本発明の接続体の製造方法の実施の形態、及び、本発明の接続体の実施の形態を説明する。 Embodiments of the manufacturing method of the connection body of the present invention and embodiments of the connection body of the present invention will be described below.
[接続体の製造方法]
 本発明の接続体の製造方法は、下記の工程1~2を有する。
工程1:第1の金属基材上に、接着剤と、樹脂コアの表面に導電層を有する導電性粒子とを含む導電性接着剤層用塗布液を塗布、乾燥して、導電性接着剤層を形成する工程。工程1では、前記導電性接着剤層の平均厚みをT1[μm]、前記導電性粒子の平均粒子径をD1[μm]と定義した際に、T1<D1の関係を満たすようにする。
工程2:前記導電性接着剤層上に、第2の金属基材をラミネートして、前記第1の金属基材、前記導電性接着剤層及び前記第2の金属基材とをこの順に有する、接続体を得る工程。
[Manufacturing Method of Connected Body]
The manufacturing method of the connected body of the present invention has the following steps 1 and 2.
Step 1: A conductive adhesive layer coating liquid containing an adhesive and conductive particles having a conductive layer on the surface of a resin core is applied onto a first metal substrate and dried to form a conductive adhesive. forming a layer; In step 1, when the average thickness of the conductive adhesive layer is defined as T1 [μm] and the average particle diameter of the conductive particles is defined as D1 [μm], the relationship T1<D1 is satisfied.
Step 2: Laminating a second metal substrate on the conductive adhesive layer to have the first metal substrate, the conductive adhesive layer and the second metal substrate in this order. , obtaining the connection.
<工程1>
 工程1は、第1の金属基材上に、接着剤と、樹脂コアの表面に導電層を有する導電性粒子とを含む導電性接着剤層用塗布液を塗布、乾燥して、導電性接着剤層を形成する工程である。工程1では、前記導電性接着剤層の平均厚みをT1[μm]、前記導電性粒子の平均粒子径をD1[μm]と定義した際に、T1<D1の関係を満たすようにすることを要する。
<Step 1>
In step 1, a conductive adhesive layer coating liquid containing an adhesive and conductive particles having a conductive layer on the surface of a resin core is applied on a first metal substrate, dried, and conductive adhesion is performed. This is the step of forming the agent layer. In step 1, when the average thickness of the conductive adhesive layer is defined as T1 [μm] and the average particle size of the conductive particles is defined as D1 [μm], the relationship T1<D1 is satisfied. need.
 図1は、工程1の後の状態の一実施形態を示す断面図である。
 図1の積層体50は、第1の金属基材10の上に導電性接着剤層30を有している。図1において、導電性接着剤層30は、接着剤31、及び、樹脂コアの表面に導電層を有する導電性粒子32を有している。
FIG. 1 is a cross-sectional view showing one embodiment after step 1. FIG.
Laminate 50 of FIG. 1 has conductive adhesive layer 30 on first metal substrate 10 . In FIG. 1, the conductive adhesive layer 30 has an adhesive 31 and conductive particles 32 having a conductive layer on the surface of a resin core.
 工程1では、T1<D1の関係を満たすようにすることを要する。
 T1<D1の関係を満たすことにより、従来のACFを用いた接続体のように、製造時に高温及び高圧で処理をしなくても、簡易なラミネート工程により、第1の金属基材と第2の金属基材とを電気的に接続することができる。
In step 1, it is necessary to satisfy the relationship T1<D1.
By satisfying the relationship of T1<D1, the first metal base and the second metal base can be easily laminated by a simple lamination process without the need for high temperature and high pressure treatment during manufacturing as in the conventional connected body using ACF. can be electrically connected to the metal substrate.
 D1とT1との比(D1/T1)は、1.03以上であることが好ましく、1.05以上であることがより好ましく、1.10以上であることがさらに好ましい。前記比を1.03以上とすることにより、第1の金属基材と第2の金属基材とを電気的に接続しやすくできる。
 D1とT1との比(D1/T1)は、1.50以下であることが好ましく、1.30以下であることがより好ましく、1.20以下であることがさらに好ましい。前記比を1.50以下とすることにより、接続体の層間密着性を良好にしやすくできる。
The ratio of D1 to T1 (D1/T1) is preferably 1.03 or more, more preferably 1.05 or more, and even more preferably 1.10 or more. By setting the ratio to 1.03 or more, the electrical connection between the first metal base and the second metal base can be facilitated.
The ratio of D1 to T1 (D1/T1) is preferably 1.50 or less, more preferably 1.30 or less, and even more preferably 1.20 or less. By setting the ratio to 1.50 or less, the interlayer adhesion of the connector can be easily improved.
 D1とT1との差(D1-T1)は、0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.4μm以上であることがさらに好ましい。前記差を0.1μm以上とすることにより、第1の金属基材と第2の金属基材とを電気的に接続しやすくできる。
 D1とT1との差(D1-T1)は、2.0μm以下であることが好ましく、1.0μm以下であることがより好ましく、0.7μm以下であることがさらに好ましい。前記差を2.0μm以下とすることにより、接続体の層間密着性を良好にしやすくできる。
The difference (D1-T1) between D1 and T1 is preferably 0.1 μm or more, more preferably 0.3 μm or more, and even more preferably 0.4 μm or more. By setting the difference to be 0.1 μm or more, the electrical connection between the first metal base and the second metal base can be facilitated.
The difference (D1-T1) between D1 and T1 is preferably 2.0 μm or less, more preferably 1.0 μm or less, and even more preferably 0.7 μm or less. By setting the difference to 2.0 μm or less, the interlayer adhesion of the connector can be easily improved.
 T1及びD1の範囲は、T1<D1の関係を満たす限り特に制限されないが、以下の範囲であることが好ましい。
 導電性接着剤層の平均厚みを示すT1は、1.0μm以上10.0μm以下が好ましく、2.0μm以上8.0μm以下がより好ましく、3.0μm以上6.0μm以下がさらに好ましい。T1を1.0μm以上とすることにより、接続体の層間密着性を良好にしやすくできるとともに、第1の金属基材と第2の金属基材とが導電性粒子を介さずに接触することを抑制しやすくできる。T1を10.0μm以下とすることにより、導電性接着剤層の塗工安定性を良好にしやすくできる。
 導電性粒子の平均粒子径を示すD1は、1.5μm以上12.0μm以下が好ましく、2.5μm以上9.0μm以下がより好ましく、3.5μm以上7.0μm以下がさらに好ましい。 
The ranges of T1 and D1 are not particularly limited as long as the relationship of T1<D1 is satisfied, but the following ranges are preferable.
T1, which indicates the average thickness of the conductive adhesive layer, is preferably from 1.0 μm to 10.0 μm, more preferably from 2.0 μm to 8.0 μm, and even more preferably from 3.0 μm to 6.0 μm. By setting T1 to 1.0 μm or more, the interlayer adhesion of the connecting body can be easily improved, and the contact between the first metal substrate and the second metal substrate can be prevented without the conductive particles interposed therebetween. It can be easily suppressed. By setting T1 to 10.0 μm or less, the coating stability of the conductive adhesive layer can be easily improved.
D1, which indicates the average particle diameter of the conductive particles, is preferably 1.5 μm or more and 12.0 μm or less, more preferably 2.5 μm or more and 9.0 μm or less, and even more preferably 3.5 μm or more and 7.0 μm or less.
 本明細書において、導電性接着剤層の平均厚みを示すT1は、ランダムに選択した30箇所の導電性接着剤層の厚みの平均値とする。前述した30箇所の厚みの測定は、工程1が完了した後であって、工程2の開始前に実施するものとする。前述した30箇所の厚みは、例えば、SEM等で撮影した導電性接着剤層の断面写真から測定できる。 In this specification, T1, which indicates the average thickness of the conductive adhesive layer, is the average thickness of 30 randomly selected conductive adhesive layers. It is assumed that the thickness measurement at the 30 locations described above is performed after the step 1 is completed and before the step 2 is started. The thickness at the 30 locations described above can be measured, for example, from a cross-sectional photograph of the conductive adhesive layer taken with an SEM or the like.
 本明細書において、導電性粒子の平均粒子径を示すD1は、例えば、下記A1及びA2の手順で測定できる。下記A1及びA2は、工程1が完了した後であって、工程2の開始前に実施するものとする。
A1:SEM等で導電性接着剤層の断面写真を撮影する。
A2:前記断面写真に写った導電性粒子の最大径を測定する。合計30個の導電性粒子の最大径の平均を、D1とする。
In this specification, D1, which indicates the average particle size of the conductive particles, can be measured by the following procedures A1 and A2, for example. A1 and A2 below shall be performed after Step 1 is completed and before Step 2 is started.
A1: Take a cross-sectional photograph of the conductive adhesive layer with a SEM or the like.
A2: Measure the maximum diameter of the conductive particles shown in the cross-sectional photograph. D1 is the average of the maximum diameters of a total of 30 conductive particles.
《金属基材》
 工程1で用いる第1の金属基材、及び、工程2で用いる第2の金属基材を構成する金属としては、銅、ステンレス、黄銅、銀、アルミニウム及びニッケル等から選ばれる1種又は2種以上が挙げられる。
 第1の金属基材及び第2の金属基材を構成する金属は、同一種類であってもよいし、異なる種類であってもよい。
 第1の金属基材及び第2の金属基材は、密着性を良好にするために、基材表面を凹凸化したり、基材表面の残油を取り除く処理をしたりしてもよい。
《Metal substrate》
The metal constituting the first metal substrate used in step 1 and the second metal substrate used in step 2 is one or two selected from copper, stainless steel, brass, silver, aluminum, nickel, and the like. The above are mentioned.
The metals forming the first metal base and the second metal base may be of the same type or of different types.
In order to improve adhesion, the first metal substrate and the second metal substrate may be subjected to processing such as roughening the substrate surface or removing residual oil from the substrate surface.
 第1の金属基材及び第2の金属基材の厚みは、1μm以上200μm以下であることが好ましく、3μm以上100μm以下であることがより好ましく、6μm以上50μm以下であることがさらに好ましい。
 厚みを1μm以上とすることにより、第1の金属基材及び第2の金属基材に所定の強度を付与することができ、基材にテンションがかかった際に基材が破損することを抑制しやすくできる。
 厚みを200μm以下とすることにより、第1の金属基材及び第2の金属基材が巻き取りやすくなるため、接続体をロールトウーロールで製造しやすくできる。
The thickness of the first metal substrate and the second metal substrate is preferably 1 μm or more and 200 μm or less, more preferably 3 μm or more and 100 μm or less, and even more preferably 6 μm or more and 50 μm or less.
By setting the thickness to 1 μm or more, a predetermined strength can be imparted to the first metal base material and the second metal base material, and damage to the base material can be suppressed when tension is applied to the base material. can be done easily.
By setting the thickness to 200 μm or less, the first metal base material and the second metal base material are easily wound up, so that the connected body can be easily manufactured by roll-to-roll.
 第1の金属基材及び第2の金属基材は、枚葉状であってもよいが、ロール状であることが好ましい。第1の金属基材及び第2の金属基材をロール状とすることにより、後述するロールトウーロールでの製造が可能となり、製造効率を飛躍的に高めることができる。 The first metal base material and the second metal base material may be sheet-shaped, but are preferably roll-shaped. By forming the first metal base material and the second metal base material into rolls, roll-to-roll production, which will be described later, becomes possible, and the production efficiency can be dramatically improved.
《導電性接着剤層》
 工程1において、導電性接着剤層は、接着剤と、樹脂コアの表面に導電層を有する導電性粒子とを含む導電性接着剤層用塗布液を塗布、乾燥することにより、形成する。
《Conductive adhesive layer》
In step 1, the conductive adhesive layer is formed by applying and drying a conductive adhesive layer coating liquid containing an adhesive and conductive particles having a conductive layer on the surface of a resin core.
 導電性接着剤層用塗布液は、溶剤を含むことが好ましい。溶剤としては、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、脂肪族炭化水素類(ヘキサン等)、脂環式炭化水素類(シクロヘキサン等)、芳香族炭化水素類(トルエン、キシレン等)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチル等)、アルコール類(イソプロパノール、ブタノール、シクロヘキサノール等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、グリコールエーテル類(プロピレングリコールモノメチルエーテルアセタート等)、等の有機溶剤が挙げられる。また、溶剤としては、前記有機溶剤と水との混合溶剤を用いることもできる。溶剤は、1種類からなる溶剤であってもよいし、2種類以上の混合溶剤であってもよい。 The coating liquid for the conductive adhesive layer preferably contains a solvent. Examples of solvents include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons (cyclohexane, etc.), aromatic hydrocarbons (toluene, xylene, etc.). ), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (isopropanol, butanol, cyclohexanol, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), glycol ethers (propylene glycol monomethyl ether acetate, etc.) ), and other organic solvents. Moreover, as a solvent, the mixed solvent of the said organic solvent and water can also be used. The solvent may be a solvent consisting of one type, or a mixed solvent of two or more types.
 塗布手段としては、グラビアコート、バーコート、ロールコート、リバースロールコート、コンマコート、ダイコート等の汎用の塗布手段が挙げられる。
 乾燥条件は、金属基材の特性、導電性接着剤層用塗布液を構成する材料、塗布液の塗布量等により調整すればよい。例えば、乾燥温度は80℃以上120℃以下、乾燥時間は30秒以上90秒以下とすることが好ましい。前記温度範囲であれば、金属基材の膨張等を抑制しやすくでき、接続体の品質を良好にしやすくできる。
Examples of coating means include general-purpose coating means such as gravure coating, bar coating, roll coating, reverse roll coating, comma coating, and die coating.
The drying conditions may be adjusted according to the characteristics of the metal base material, the materials constituting the conductive adhesive layer coating liquid, the coating amount of the coating liquid, and the like. For example, the drying temperature is preferably 80° C. or higher and 120° C. or lower, and the drying time is preferably 30 seconds or longer and 90 seconds or shorter. Within the above temperature range, the expansion of the metal substrate can be easily suppressed, and the quality of the connected body can be easily improved.
―接着剤―
 接着剤は、ウレタン系接着剤、アクリル系接着剤、エポキシ系接着剤、ポリエステル系接着剤、オレフィン系接着剤及びゴム系接着剤等の接着剤が挙げられる。これら接着剤の中でも、ウレタン系接着剤及びアクリル系接着剤が好ましく、ウレタン変性されたアクリル系接着剤がより好ましい。接着剤は、熱硬化系の接着剤が好ましい。
 接着剤は、抵抗値を経時的に安定させるため、主剤と硬化剤とを含むことが好ましい。
-glue-
Adhesives include urethane-based adhesives, acrylic-based adhesives, epoxy-based adhesives, polyester-based adhesives, olefin-based adhesives, rubber-based adhesives, and the like. Among these adhesives, urethane-based adhesives and acrylic-based adhesives are preferable, and urethane-modified acrylic-based adhesives are more preferable. The adhesive is preferably a thermosetting adhesive.
The adhesive preferably contains a main agent and a curing agent in order to stabilize the resistance value over time.
 接着剤の主剤は、汎用の化合物を用いることができる。主剤の具体例としては、アクリル系樹脂;ポリエステル系樹脂;ポリイミド系樹脂;ポリエーテルポリオール、ポリエステルポリオール及びアクリルポリオール等のポリオール化合物;エポキシ系樹脂等のエポキシ基を有する化合物;オレフィン系樹脂;等が挙げられる。ポリオール化合物は、変性されたものであってもよい。変性されたポリオール化合物としては、ウレタン変性されたアクリルポリオールが挙げられる。 A general-purpose compound can be used as the main agent of the adhesive. Specific examples of the main agent include acrylic resins; polyester resins; polyimide resins; polyol compounds such as polyether polyol, polyester polyol and acrylic polyol; compounds having epoxy groups such as epoxy resins; mentioned. The polyol compound may be modified. Modified polyol compounds include urethane-modified acrylic polyols.
 接着剤の主剤のガラス転移温度は、-5℃以上であることが好ましく、10℃以上であることがより好ましく、20℃以上であることがさらに好ましく、30℃以上であることがよりさらに好ましい。主剤のガラス転移温度を-5℃以上とすることにより、工程2の後に、導電性粒子が元の形状に復元しようとすることを接着剤が抑制しやすくなるため、経時的に接続体の抵抗値が上昇することを抑制しやすくできる。接着剤の主剤のガラス転移温度は、-5℃未満であってもよい。主剤のガラス転移温度を-5℃未満とすることにより、工程2のラミネート温度を下げることができるため、加工性を良好にしやすくできる。
 接着剤の主剤のガラス転移温度は、100℃以下であることが好ましく、80℃以下であることがより好ましく、70℃以下であることがさらに好ましい。主剤のガラス転移温度を100℃以下とすることにより、工程2のラミネート時の熱で接着剤が軟化しやすくなる。このため、接着剤層と第2の金属基材との接触面積が増加しやすくなり、密着性を良好にしやすくできる。また、工程2のラミネート時の熱で接着剤が軟化しやすくなることによって、導電性粒子の上方に存在する接着剤(図1の導電性粒子32の上側に存在する接着剤31)が、ラミネート時の圧力で薄く広がりやすくなり、導電性粒子と第2の金属基材とを接触させやすくできる。
 主剤のガラス転移温度は、重量平均分子量等の汎用の手段で調整できる。
The glass transition temperature of the main agent of the adhesive is preferably −5° C. or higher, more preferably 10° C. or higher, even more preferably 20° C. or higher, and even more preferably 30° C. or higher. . By setting the glass transition temperature of the main agent to −5° C. or higher, the adhesive tends to suppress the conductive particles from restoring their original shape after step 2, so the resistance of the connection body increases over time. It is possible to easily suppress the increase in value. The glass transition temperature of the main agent of the adhesive may be less than -5°C. By setting the glass transition temperature of the base material to less than −5° C., the lamination temperature in step 2 can be lowered, so that workability can be easily improved.
The glass transition temperature of the main agent of the adhesive is preferably 100° C. or lower, more preferably 80° C. or lower, and even more preferably 70° C. or lower. By setting the glass transition temperature of the main agent to 100° C. or less, the adhesive is easily softened by the heat during lamination in step 2. As a result, the contact area between the adhesive layer and the second metal substrate can be easily increased, and the adhesion can be easily improved. In addition, since the adhesive is easily softened by the heat during lamination in step 2, the adhesive present above the conductive particles (adhesive 31 present above the conductive particles 32 in FIG. 1) is It becomes easy to spread thinly by the pressure of the time, and it becomes easy to contact a conductive particle and a 2nd metal base material.
The glass transition temperature of the main agent can be adjusted by general-purpose means such as weight average molecular weight.
 接着剤の硬化剤は、汎用の化合物を用いることができる。硬化剤の具体例としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート及びキシリレンジイソシアネート等の芳香族ポリイソシアネ-ト、ヘキサメチレンジイソシアネート及びイソホロンジイソシアネート等の脂肪族ポリイソシアネート等のイソシアネート系化合物が挙げられる。また、硬化剤の他の具体例として、アミン系化合物、フェノール系化合物、活性エステル系化合物等が挙げられる。 A general-purpose compound can be used for the curing agent of the adhesive. Specific examples of curing agents include isocyanate compounds such as aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate, and aliphatic polyisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate. Further, other specific examples of curing agents include amine compounds, phenol compounds, active ester compounds, and the like.
 硬化剤としてイソシアネート系化合物を用いる場合、主剤の水酸基に対する、イソシアネートのイソシアネート基の当量比を、0.1以上2.0以下とすることが好ましく、0.5以上1.0以下とすることがより好ましい。
 前記比を0.1以上とすることにより、接続体の完成後の接着剤のガラス転移温度を-1℃以上にしやすくできる。前記比を2.0以下とすることにより、ラミネート時に予期せず含まれてしまった水分との反応で発生した二酸化炭素による膨れを抑制することができる。
When an isocyanate-based compound is used as the curing agent, the equivalent ratio of the isocyanate group of the isocyanate to the hydroxyl group of the main agent is preferably 0.1 or more and 2.0 or less, more preferably 0.5 or more and 1.0 or less. more preferred.
By setting the ratio to 0.1 or more, the glass transition temperature of the adhesive after completion of the connected body can be easily set to −1° C. or more. By setting the ratio to 2.0 or less, it is possible to suppress swelling due to carbon dioxide generated by reaction with moisture unexpectedly contained during lamination.
―導電性粒子―
 本発明では、導電性粒子として、樹脂コアの表面に導電層を有する粒子を用いる。かかる導電性粒子は、表面に導電層を有するため、第1の金属基材と第2の金属基材とを電気的に接続することができる。また、かかる導電性粒子は、コアが樹脂であるため、工程2のラミネート時の圧力により、厚み方向の粒子径が小さくなる。そして、導電性粒子の厚み方向の粒子径が小さくなることにより、導電性接着剤層と第2の金属基材との接触面積が増え、密着性を良好にしやすくできる(図1及び図2参照)。
 樹脂コアの表面に導電層を有する粒子は、例えば、樹脂コアに金属をメッキ又は蒸着することにより得ることができる。
―Conductive Particles―
In the present invention, particles having a conductive layer on the surface of a resin core are used as the conductive particles. Since such conductive particles have a conductive layer on the surface, they can electrically connect the first metal substrate and the second metal substrate. In addition, since the core of such conductive particles is a resin, the particle diameter in the thickness direction becomes smaller due to the pressure during lamination in step 2. By reducing the particle size of the conductive particles in the thickness direction, the contact area between the conductive adhesive layer and the second metal substrate increases, and the adhesion can be easily improved (see FIGS. 1 and 2). ).
A particle having a conductive layer on the surface of a resin core can be obtained, for example, by plating or vapor-depositing a metal on the resin core.
 導電性粒子は、表面に突起を有する粒子が好ましい。第1の金属基材及び第2の金属基材の表面に酸化物膜が形成されている場合がある。かかる場合において、表面に突起を有する導電性粒子は、前記突起により酸化物膜を突き破りやすいため、第1の金属基材と第2の金属基材とを電気的に接続しやすくできる。
 表面に突起を有する粒子は、例えば、樹脂コアの表面に、突起を形成する芯物質を複数配置した後、金属をメッキ又は蒸着することにより得ることができる。
 樹脂コア粒子の表面に芯物質を付着させる方法としては、例えば、樹脂コアの分散液中に、芯物質を添加し、ファンデルワールス力等により、樹脂コア粒子の表面に芯物質を集積させる方法等が挙げられる。
The conductive particles are preferably particles having protrusions on their surfaces. Oxide films may be formed on the surfaces of the first metal base and the second metal base. In such a case, the conductive particles having protrusions on the surface can easily break through the oxide film by the protrusions, so that the first metal substrate and the second metal substrate can be easily electrically connected.
Particles having protrusions on their surfaces can be obtained, for example, by placing a plurality of core substances that form protrusions on the surface of a resin core, and then plating or depositing a metal thereon.
As a method of adhering the core substance to the surface of the resin core particles, for example, a method of adding the core substance to a dispersion liquid of the resin core and accumulating the core substance on the surface of the resin core particle by Van der Waals force or the like. etc.
 樹脂コアを構成する樹脂としては、ベンゾグアナミン樹脂、アクリル樹脂、スチレン樹脂、シリコーン樹脂及びポリブタジエン樹脂等が挙げられる。また、樹脂コアを構成する樹脂としては、前述した樹脂を構成するモノマーの2種以上を組み合わせた共重合体も挙げられる。 Examples of resins that make up the resin core include benzoguanamine resin, acrylic resin, styrene resin, silicone resin and polybutadiene resin. Moreover, as the resin constituting the resin core, a copolymer obtained by combining two or more of the above-described monomers constituting the resin can be used.
 樹脂コアは、圧縮回復率が55%以下であることが好ましく、47%以下であることがより好ましく、40%以下であることがより好ましく、30%以下であることがより好ましく、18%以下であることがより好ましい。圧縮回復率を55%以下とすることにより、工程2のラミネート時の圧力により、導電性粒子の厚み方向の粒子径が小さくなりやすくなる。このため、導電性接着剤層と第2の金属基材との接触面積が増え、接続体の層間密着性を良好にしやすくできる。
 樹脂コアは、圧縮回復率が5%以上であることが好ましく、6%以上であることがより好ましく、7%以上であることがさらに好ましい。圧縮回復率を5%以上とすることにより、工程2のラミネート時の圧力により、導電性粒子の厚み方向の粒子径が極端に小さくなることを抑制できる。このため、第1の金属基材と第2の金属基材とを電気的に接続しやすくできる。
 樹脂コアの圧縮回復率は、例えば、樹脂コアを構成する樹脂の成分、樹脂コアを構成する樹脂の架橋度により調整できる。具体的には、樹脂の架橋度を高くすると圧縮回復率は大きくなり、樹脂の架橋度を低くすると圧縮回復率は小さくなる傾向がある。
The resin core preferably has a compression recovery rate of 55% or less, more preferably 47% or less, more preferably 40% or less, more preferably 30% or less, and 18% or less. is more preferable. By setting the recovery rate from compression to 55% or less, the pressure during lamination in step 2 tends to reduce the particle size of the conductive particles in the thickness direction. Therefore, the contact area between the conductive adhesive layer and the second metal substrate increases, and the interlayer adhesion of the connector can be easily improved.
The resin core preferably has a compression recovery rate of 5% or more, more preferably 6% or more, and even more preferably 7% or more. By setting the recovery rate from compression to 5% or more, it is possible to prevent the particle diameter of the conductive particles in the thickness direction from being extremely reduced due to the pressure during lamination in step 2. Therefore, it is possible to easily electrically connect the first metal base and the second metal base.
The compression recovery rate of the resin core can be adjusted by, for example, the components of the resin constituting the resin core and the degree of cross-linking of the resin constituting the resin core. Specifically, when the degree of cross-linking of the resin is increased, the compression recovery rate tends to increase, and when the degree of cross-linking of the resin is decreased, the compression recovery rate tends to decrease.
 本明細書において、圧縮回復率は、以下のように測定できる。
  試料台上に樹脂コアを散布する。散布された樹脂コア1個について、微小圧縮試験機を用いて、樹脂コアの中心方向に、樹脂コアが30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
  圧縮回復率(%)=[(L1-L2)/L1]×100
  L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでのまでの圧縮変位
  L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
In this specification, the compression recovery rate can be measured as follows.
Sprinkle the resin cores on the sample stage. Using a micro-compression tester, a load (reversal load value) is applied to the resin core in the direction toward the center thereof until the resin core is compressed and deformed by 30%. After that, unloading is performed to the origin load value (0.40 mN). By measuring the load-compression displacement during this period, the compression recovery rate can be obtained from the following formula. Note that the load speed is 0.33 mN/sec. As the microcompression tester, for example, "Fischer Scope H-100" manufactured by Fisher Co. is used.
Compression recovery rate (%) = [(L1-L2) / L1] × 100
L1: Compressive displacement from the origin load value to the reverse load value when the load is applied L2: Unloading displacement from the reverse load value to the origin load value when releasing the load
 芯物質は、モース硬度が5以上であることが好ましく、7以上であることがより好ましく、9以上であることがさらに好ましい。
 芯物質の材質としては、ニッケル(モース硬度5)、ジルコニア(モース硬度8~9)、アルミナ(モース硬度9)、炭化タングステン(モース硬度9)及びダイヤモンド(モース硬度10)等が挙げられる。芯物質は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
The core substance preferably has a Mohs hardness of 5 or more, more preferably 7 or more, and even more preferably 9 or more.
Materials for the core material include nickel (5 on Mohs' hardness), zirconia (8 to 9 on Mohs' hardness), alumina (9 on Mohs' hardness), tungsten carbide (9 on Mohs' hardness), and diamond (10 on Mohs' hardness). The core substance may be used alone or in combination of two or more.
 芯物質の平均粒子径は、好ましくは50nm以上250nm以下、より好ましくは100nm以上200nm以下である。また、樹脂コアの表面に形成する突起の数は、好ましくは1個以上500個以下、より好ましくは30個以上200個以下である。 The average particle size of the core substance is preferably 50 nm or more and 250 nm or less, more preferably 100 nm or more and 200 nm or less. The number of protrusions formed on the surface of the resin core is preferably 1 to 500, more preferably 30 to 200.
 導電層は、金属から構成することが好ましい。導電層を構成する金属としては、金、パラジウム、ニッケル、銅、銀、スズ及びアルミニウム等が挙げられる。導電層を構成する金属は合金であってもよい。 The conductive layer is preferably made of metal. Metals constituting the conductive layer include gold, palladium, nickel, copper, silver, tin and aluminum. The metal forming the conductive layer may be an alloy.
 導電層の厚みは、導電性及び経済性とのバランスの観点から、好ましくは50nm以上250nm以下、より好ましくは80nm以上150nm以下である。 The thickness of the conductive layer is preferably 50 nm or more and 250 nm or less, more preferably 80 nm or more and 150 nm or less, from the viewpoint of the balance between conductivity and economy.
 前記導電性粒子の含有量は、前記接着剤100質量部に対して、0.1質量部以上2.0質量部以下であることが好ましく、0.15質量部以上1.8質量部以下であることがより好ましく、0.2質量部以上1.7質量部以下であることがさらに好ましい。
 導電性粒子の含有量を0.1質量部以上とすることにより、接続体の抵抗値を低くしやすくできる。導電性粒子の含有量を2.0質量部以下とすることにより、導電性粒子の凝集を抑制しやすくできるため、接続体の抵抗値を低くしやすくできる。
The content of the conductive particles is preferably 0.1 parts by mass or more and 2.0 parts by mass or less, and 0.15 parts by mass or more and 1.8 parts by mass or less with respect to 100 parts by mass of the adhesive. more preferably 0.2 parts by mass or more and 1.7 parts by mass or less.
By setting the content of the conductive particles to 0.1 part by mass or more, the resistance value of the connector can be easily lowered. By setting the content of the conductive particles to 2.0 parts by mass or less, aggregation of the conductive particles can be easily suppressed, so that the resistance value of the connector can be easily lowered.
<工程2>
 工程2は、前記導電性接着剤層上に、第2の金属基材をラミネートして、前記第1の金属基材、前記導電性接着剤層及び前記第2の金属基材とをこの順に有する、接続体を得る工程である。
<Step 2>
In step 2, a second metal substrate is laminated on the conductive adhesive layer, and the first metal substrate, the conductive adhesive layer and the second metal substrate are laminated in this order. It is a step of obtaining a connecting body.
 図2は、工程2の後の状態の一実施形態を示す断面図である。
 図2の接続体100は、第1の金属基材10の上に、導電性接着剤層30及び第2の金属基材20をこの順に有している。図2において、第1の金属基材10と第2の金属基材20とは、導電性粒子30を介して電気的に接続されている。
2 is a cross-sectional view of one embodiment after step 2. FIG.
The connecting body 100 of FIG. 2 has a conductive adhesive layer 30 and a second metal substrate 20 in this order on the first metal substrate 10 . In FIG. 2 , the first metal base 10 and the second metal base 20 are electrically connected via the conductive particles 30 .
 図1と図2とを対比すると、図2の導電性粒子30は、厚み方向につぶされることにより、厚み方向の粒子径が小さくなっている。このように、導電性粒子が厚み方向につぶされることにより、導電性粒子の上方に存在する接着剤(図1の導電性粒子32の上側に存在する接着剤31)は、ラミネート時の圧力で幅方向に広がりやすくなる。このため、導電性接着剤層と第2の金属基材との接触面積が増加しやすくなり、接続体の層間密着性を良好にしやすくできる。 Comparing FIG. 1 and FIG. 2, the conductive particles 30 in FIG. 2 have a smaller particle size in the thickness direction by being crushed in the thickness direction. In this way, by crushing the conductive particles in the thickness direction, the adhesive present above the conductive particles (the adhesive 31 present above the conductive particles 32 in FIG. 1) is It becomes easy to spread in the width direction. As a result, the contact area between the conductive adhesive layer and the second metal substrate can be easily increased, and the interlayer adhesion of the connector can be easily improved.
 図2の左右両端は、導電性接着剤層30と第2の金属基材20とが接触していない。このような箇所は、ラミネート時に混入した気泡である。後述するように、ラミネート時の温度を調整することにより、気泡を減らしやすくできる。  The conductive adhesive layer 30 and the second metal substrate 20 are not in contact with each other on the left and right ends in FIG. Such places are air bubbles mixed in during lamination. As will be described later, air bubbles can be easily reduced by adjusting the temperature during lamination.
 工程2で用いる第2の金属基材の実施の形態は上述した通りである。 The embodiment of the second metal substrate used in step 2 is as described above.
 前記接着剤が、主剤と硬化剤とを含み、工程2のラミネート温度を、前記主剤のガラス転移温度以上とすることが好ましい。すなわち、工程2のラミネート温度と、接着剤の主剤のガラス転移温度とは、下記の関係を満たすことが好ましい。下記の関係を満たすことにより、初期の抵抗値を低くしやすくできるとともに、接続体の抵抗値の経時的な上昇を抑制しやすくできる。
 接着剤の主剤のガラス転移温度≦工程2のラミネート温度
Preferably, the adhesive contains a main agent and a curing agent, and the lamination temperature in step 2 is higher than the glass transition temperature of the main agent. That is, the lamination temperature in step 2 and the glass transition temperature of the main agent of the adhesive preferably satisfy the following relationship. By satisfying the following relationship, it is possible to easily reduce the initial resistance value and to easily suppress an increase in the resistance value of the connecting body over time.
Glass transition temperature of main agent of adhesive ≤ Lamination temperature in step 2
 工程2において、ラミネート温度は55℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることがさらに好ましい。特に、接着剤の主剤のガラス転移温度が室温以上の場合に、ラミネート温度を55℃以上とすることが好ましい。
 ラミネート温度を55℃以上とすることにより、ラミネート時の気泡の混入を抑制し、抵抗値を低くしやすくできる。ラミネート時に気泡が混入すると、導電性粒子が元の形状に復元しようとすることを接着剤が抑制しにくくなるため、接続体の抵抗値が経時的に上昇する場合がある。このため、ラミネート温度を上記範囲とすることにより、初期の抵抗値を低くできるとともに、接続体の抵抗値の経時的な上昇を抑制しやすくできる。
 ラミネート温度の上限は特に制限されないが、好ましくは110℃以下、より好ましくは100℃以下、さらに好ましくは90℃以下である。
In step 2, the lamination temperature is preferably 55° C. or higher, more preferably 60° C. or higher, and even more preferably 70° C. or higher. In particular, when the glass transition temperature of the main agent of the adhesive is room temperature or higher, the lamination temperature is preferably 55° C. or higher.
By setting the lamination temperature to 55° C. or higher, it is possible to suppress the inclusion of air bubbles during lamination and to easily lower the resistance value. If air bubbles enter during lamination, it becomes difficult for the adhesive to prevent the conductive particles from restoring their original shape, so the resistance value of the connection may increase over time. Therefore, by setting the lamination temperature within the above range, it is possible to reduce the initial resistance value and easily suppress an increase in the resistance value of the connecting body over time.
Although the upper limit of the lamination temperature is not particularly limited, it is preferably 110° C. or lower, more preferably 100° C. or lower, and still more preferably 90° C. or lower.
 工程2のラミネートの圧力は、0.1MPa以上1.0MPa以下が好ましく、0.2MPa以上0.7MPa以下がより好ましく、0.3MPa以上0.5MPa以下がさらに好ましい。
 圧力を0.1MPa以上とすることにより、導電性粒子を厚み方向に潰しやすくできる。また、圧力を0.1MPa以上とすることにより、導電性粒子の上方に存在する接着剤(図1の導電性粒子32の上側に存在する接着剤31)をは、ラミネート時の圧力で幅方向に広がりやすくできる。
 圧力を1.0MPa以下とすることにより、高い圧力を付加することが不要になるため、接続体の製造を簡易にすることができ、かつ接続体の製造が安定し、さらに、接続体を連続的に製造しやすくできる。
The laminating pressure in step 2 is preferably 0.1 MPa or more and 1.0 MPa or less, more preferably 0.2 MPa or more and 0.7 MPa or less, and even more preferably 0.3 MPa or more and 0.5 MPa or less.
By setting the pressure to 0.1 MPa or more, the conductive particles can be easily crushed in the thickness direction. In addition, by setting the pressure to 0.1 MPa or more, the adhesive present above the conductive particles (adhesive 31 present above the conductive particles 32 in FIG. 1) is moved in the width direction by the pressure during lamination. can spread easily.
By setting the pressure to 1.0 MPa or less, it becomes unnecessary to apply a high pressure, so that the production of the connection body can be simplified, the production of the connection body is stable, and the connection body can be continuously produced. can be manufactured easily.
 工程2のラミネートの速度は、0.2m/min以上30m/min以下が好ましく、0.4m/min以上20.0m/min以下がより好ましく、1.0m/min以上15.0m/min以下がさらに好ましい。 The lamination speed in step 2 is preferably 0.2 m/min or more and 30 m/min or less, more preferably 0.4 m/min or more and 20.0 m/min or less, and 1.0 m/min or more and 15.0 m/min or less. More preferred.
<ロールトウーロール>
 本発明の接続体の製造方法は、前記第1の金属基材のロール状物から前記第1の金属基材を連続的に送り出すことにより、前記工程1を行うとともに、前記第2の金属基材のロール状物から前記第2の金属基材を連続的に送り出すことにより、前記工程2を行うことが好ましい。
 上記手段を採用することにより、接続体を連続的に製造することができ、製造効率を飛躍的に高めることができる。
 なお、工程1の後に、第1の金属基材上に導電性接着剤層を形成した積層体を一旦巻き取ってもよい。そして、巻き取ったロール状の積層体から積層体を連続的に送り出すとともに、前記第2の金属基材のロール状物から前記第2の金属基材を連続的に送り出すことにより、工程2を行ってもよい。このように、工程1と工程2との間に、積層体を巻き取る工程を含んでいても、ロールトウーロールでの製造であるため、製造率を飛躍的に高めることができる。
<Roll to roll>
In the method for manufacturing a connected body of the present invention, the step 1 is performed by continuously feeding the first metal base material from a roll of the first metal base material, and the second metal base material is produced. Preferably, step 2 is performed by continuously feeding the second metal substrate from a roll of material.
By adopting the above-described means, it is possible to continuously manufacture the connected body, and to dramatically improve the manufacturing efficiency.
In addition, after step 1, the laminate in which the conductive adhesive layer is formed on the first metal substrate may be once wound up. Then, step 2 is carried out by continuously feeding the laminate from the wound roll-shaped laminate and continuously feeding the second metal base from the roll of the second metal base. you can go As described above, even if the step of winding the laminate is included between the steps 1 and 2, the production rate can be dramatically increased because roll-to-roll production is performed.
 図3は、ロールトウーロールでの製造方法の一実施形態を示す模式図である。図3では、第1の金属基材のロール状物11から、第1の金属基材10を連続的に送り出すことにより、工程1を行っている。また、図3では、第2の金属基材のロール状物21から、第2の金属基材20を連続的に送り出すことにより、工程2を行っている。図3では、工程1と工程2とを、一つのラインで連続して実施している。
 なお、上述したように、工程1の後に、第1の金属基材上に導電性接着剤層を形成した積層体を一旦巻き取ってもよい。すなわち、工程1と工程2との間には、所定の時間が空いても良い。
 図3では、導電性接着剤層30上に第2の金属基材20をラミネートして、接続体100を得た後の工程が記載されていない。導電性接着剤層30上に第2の金属基材20をラミネートして接続体100を得た後は、接続体100をロール状に巻き取ることが好ましい。
FIG. 3 is a schematic diagram showing an embodiment of the roll-to-roll manufacturing method. In FIG. 3, step 1 is performed by continuously feeding the first metal substrate 10 from the first metal substrate roll 11 . In FIG. 3, step 2 is performed by continuously feeding the second metal substrate 20 from the second metal substrate roll 21 . In FIG. 3, process 1 and process 2 are performed continuously on one line.
As described above, after the step 1, the laminate in which the conductive adhesive layer is formed on the first metal substrate may be once wound up. That is, there may be a predetermined time interval between steps 1 and 2.
FIG. 3 does not show the steps after the second metal substrate 20 is laminated on the conductive adhesive layer 30 to obtain the connection body 100 . After the second metal substrate 20 is laminated on the conductive adhesive layer 30 to obtain the connecting body 100, it is preferable to wind the connecting body 100 into a roll.
 接続体を平面視した際の接続体の面積をS、接続体を平面視した際の第1の金属基材の面積をS1、接続体を平面視した際の第2の金属基材の面積をS2とした際に、下記式(1)及び(2)を満たすことが好ましい。下記式(1)及び(2)を満たすことにより、位置合わせを不要とすることができる。また、下記式(1)及び(2)を満たすことにより、第1の金属基材と第2の金属基材とを電気的に接続しやすくできる。
 0.99≦S1/S≦1.01 (1)
 0.99≦S2/S≦1.01 (2)
The area of the connecting body when viewed in plan is S, the area of the first metal base when the connecting body is viewed in plan is S1, and the area of the second metal base when the connecting body is viewed in plan. is S2, it is preferable to satisfy the following formulas (1) and (2). Alignment can be made unnecessary by satisfying the following formulas (1) and (2). Moreover, by satisfying the following formulas (1) and (2), it is possible to easily electrically connect the first metal base and the second metal base.
0.99≦S1/S≦1.01 (1)
0.99≦S2/S≦1.01 (2)
 接続体を平面視した際の導電性接着剤層の面積をS3とした際に、上述したS1及びS2と、S3とが、下記式(3)及び(4)を満たすことが好ましい。下記式(3)及び(4)を満たすことにより、位置合わせを不要とすることができる。また、下記式(3)及び(4)を満たすことにより、第1の金属基材と第2の金属基材とを電気的に接続しやすくできる。
 1.00≦S1/S3≦1.02 (3)
 1.00≦S2/S3≦1.02 (4)
When S3 is the area of the conductive adhesive layer when the connecting body is viewed in plan, S1 and S2 described above and S3 preferably satisfy the following formulas (3) and (4). Alignment can be made unnecessary by satisfying the following formulas (3) and (4). Moreover, by satisfying the following formulas (3) and (4), it becomes easier to electrically connect the first metal base and the second metal base.
1.00≦S1/S3≦1.02 (3)
1.00≤S2/S3≤1.02 (4)
<工程3>
 本発明の接続体の製造方法は、さらに、下記の工程3を有していてもよい。
 工程3:接続体をエージング処理する工程。
<Step 3>
The manufacturing method of the connection body of the present invention may further include the following step 3.
Step 3: A step of aging the connector.
 工程3のエージング処理を行うことにより、導電性接着剤層中の接着剤の硬化を進行させることができる。このため、工程3を実施した接続体は、導電性粒子が元の形状に復元しようとすることを接着剤が抑制しやすくなるため、接続体の抵抗値の経時的な変化を抑制しやすくできる。 By performing the aging treatment in step 3, the curing of the adhesive in the conductive adhesive layer can be advanced. Therefore, in the connected body subjected to step 3, the adhesive tends to suppress the conductive particles from restoring their original shape, so it is possible to easily suppress changes in the resistance value of the connected body over time. .
 工程3において、エージング処理の温度及び時間は、使用する接着剤の種類等により適宜調整できるが、以下の範囲が好ましい。 In step 3, the temperature and time of aging treatment can be appropriately adjusted depending on the type of adhesive used, etc., but the following range is preferable.
 エージング処理の温度は、55℃以下であることが好ましく、50℃以下であることがより好ましく、47℃以下であることがさらに好ましい。エージング処理の温度を55℃以下とすることにより、エージング処理中に導電性粒子が元の形状に復元することを抑制しやすくできる。
 エージング処理の温度の下限は、接着剤の硬化を促進するため、25℃以上が好ましく、30℃以上がより好ましく、40℃以上がさらに好ましい。
 エージング処理の時間は特に制限されないが、1日以上9日以下が好ましく、3日以上7日以下がより好ましい。エージング処理の温度が高温の場合、エージング処理の時間は、1日未満が好ましい。
The temperature of the aging treatment is preferably 55° C. or lower, more preferably 50° C. or lower, and even more preferably 47° C. or lower. By setting the temperature of the aging treatment to 55° C. or lower, it is possible to easily suppress the restoration of the original shape of the conductive particles during the aging treatment.
The lower limit of the aging treatment temperature is preferably 25° C. or higher, more preferably 30° C. or higher, and even more preferably 40° C. or higher, in order to promote curing of the adhesive.
Although the aging treatment time is not particularly limited, it is preferably 1 day or more and 9 days or less, more preferably 3 days or more and 7 days or less. When the aging treatment temperature is high, the aging treatment time is preferably less than one day.
<諸物性>
 工程3の後の接着剤は、ガラス転移温度が-1℃以上であることが好ましく、より好ましくは23℃以上、さらに好ましくは30℃以上、よりさらに好ましくは40℃以上である。エージング処理後の接着剤のガラス転移温度を高くすることにより、導電性粒子が元の形状に復元しようとすることを接着剤が抑制しやすくできるため、接続体の抵抗値の経時的な変化を抑制しやすくできる。工程3の後の接着剤のガラス転移温度は、-1℃未満であってもよい。エージング処理後の接着剤のガラス転移温度を-1℃未満とすることにより、第1の金属基材と第2の金属基材との初期接着力を高くすることができる。
 工程3の後の接着剤のガラス転移温度の上限は特に制限されないが、100℃以下であることが好ましく、90℃以下であることがより好ましく、70℃以下であることがより好ましく、50℃以下であることがより好ましい。
<Physical properties>
The adhesive after step 3 preferably has a glass transition temperature of −1° C. or higher, more preferably 23° C. or higher, still more preferably 30° C. or higher, and even more preferably 40° C. or higher. By increasing the glass transition temperature of the adhesive after aging treatment, the adhesive can easily suppress attempts to restore the original shape of the conductive particles. It can be easily suppressed. The glass transition temperature of the adhesive after step 3 may be less than -1°C. By setting the glass transition temperature of the adhesive after aging to less than −1° C., the initial adhesive strength between the first metal substrate and the second metal substrate can be increased.
Although the upper limit of the glass transition temperature of the adhesive after step 3 is not particularly limited, it is preferably 100°C or less, more preferably 90°C or less, more preferably 70°C or less, and 50°C. The following are more preferable.
 工程3の後の導電性接着剤層の平均厚みをTn[μm]、導電性粒子の厚み方向の径の平均をDn[μm]と定義する。この際、Tn及びDnは、Tn≦Dnの関係を満たすことが好ましい。
 Tn≦Dnの関係を満たすことにより、第1の金属基材と第2の金属基材とを電気的に接続することができる。
The average thickness of the conductive adhesive layer after step 3 is defined as Tn [μm], and the average diameter of the conductive particles in the thickness direction is defined as Dn [μm]. At this time, Tn and Dn preferably satisfy the relationship of Tn≦Dn.
By satisfying the relationship Tn≦Dn, the first metal base and the second metal base can be electrically connected.
 DnとTnとの比(Dn/Tn)は、1.00超であることが好ましく、1.01以上であることがより好ましく、1.03以上であることがさらに好ましい。Dn/Tnを1.00超とすることにより、第1の金属基材と第2の金属基材とを電気的に接続しやすくできる。
 DnとTnとの比(Dn/Tn)は、1.50以下であることが好ましく、1.40以下であることがより好ましく、1.30以下であることがさらに好ましい。前記比を1.50以下とすることにより、接続体の層間密着性を良好にしやすくできる。
The ratio of Dn to Tn (Dn/Tn) is preferably greater than 1.00, more preferably 1.01 or more, and even more preferably 1.03 or more. By setting Dn/Tn to be more than 1.00, electrical connection between the first metal base and the second metal base can be facilitated.
The ratio of Dn to Tn (Dn/Tn) is preferably 1.50 or less, more preferably 1.40 or less, and even more preferably 1.30 or less. By setting the ratio to 1.50 or less, the interlayer adhesion of the connector can be easily improved.
 DnとTnとの差(Dn-Tn)は、0μm超であることが好ましく、0.01μm以上であることがより好ましく、0.03μm以上であることがさらに好ましく、0.05μm以上であることがよりさらに好ましい。前記差を0μm超とすることにより、第1の金属基材と第2の金属基材とを電気的に接続しやすくできる。
 DnとTnとの差(Dn-Tn)は、1.0μm以下であることが好ましく、0.8μm以下であることがより好ましく、0.7μm以下であることがさらに好ましい。前記差を1.0μm以下とすることにより、接続体の層間密着性を良好にしやすくできる。
The difference between Dn and Tn (Dn−Tn) is preferably greater than 0 μm, more preferably 0.01 μm or more, further preferably 0.03 μm or more, and 0.05 μm or more. is even more preferable. By making the difference more than 0 μm, the electrical connection between the first metal base and the second metal base can be facilitated.
The difference between Dn and Tn (Dn-Tn) is preferably 1.0 μm or less, more preferably 0.8 μm or less, and even more preferably 0.7 μm or less. By setting the difference to 1.0 μm or less, the interlayer adhesion of the connector can be easily improved.
 本明細書において、Tnは、ランダムに選択した30箇所の導電性接着剤層の厚みの平均値とする。前述した30箇所の厚みの測定は、工程3が完了した後に実施するものとする。前述した30箇所の厚みは、例えば、SEM等で撮影した導電性接着剤層の断面写真から測定できる。Tnは、上述したT1と実質的に一致する場合が多い。 In this specification, Tn is the average thickness of 30 randomly selected conductive adhesive layers. It is assumed that the thickness measurement at the 30 locations described above is performed after step 3 is completed. The thickness at the 30 locations described above can be measured, for example, from a cross-sectional photograph of the conductive adhesive layer taken with an SEM or the like. Tn is often substantially the same as T1 described above.
 本明細書において、Dnは、例えば、下記B1及びB2の手順で測定できる。下記B1及びB2は、工程3が完了した後に実施するものとする。Dnは、上述したD1よりも小さくなる。
B1:SEM等で導電性接着剤層の断面写真を撮影する。
B2:前記断面写真に写った導電性粒子の厚み方向の径を測定する。合計30個の導電性粒子の厚み方向の径の平均を、Dnとする。
In the present specification, Dn can be measured, for example, by the procedures of B1 and B2 below. B1 and B2 below shall be performed after step 3 is completed. Dn is smaller than D1 mentioned above.
B1: Take a cross-sectional photograph of the conductive adhesive layer with an SEM or the like.
B2: Measure the diameter of the conductive particles in the thickness direction shown in the cross-sectional photograph. Let Dn be the average of the diameters in the thickness direction of a total of 30 conductive particles.
<抵抗値>
 接続体は、抵抗値が10.0mΩ以下であることが好ましく、8.0mΩ以下であることがより好ましく、6.0mΩ以下であることがさらに好ましい。接続体の抵抗値の下限は特に制限されないが、1.0mΩ以上であることが好ましく、2.0mΩ以上であることがより好ましい。
 上記の抵抗値は、工程2の後で満たすことが好ましく、工程2及び工程3の後で満たすことがより好ましい。
<Resistance value>
The connection body preferably has a resistance value of 10.0 mΩ or less, more preferably 8.0 mΩ or less, and even more preferably 6.0 mΩ or less. Although the lower limit of the resistance value of the connector is not particularly limited, it is preferably 1.0 mΩ or more, more preferably 2.0 mΩ or more.
The above resistance value is preferably satisfied after step 2, more preferably after steps 2 and 3.
 接続体の抵抗値は、一方の端子を第1の金属基材に設置し、他方の端子を第2の金属基材に設置して、4端子法により測定できる。 The resistance value of the connecting body can be measured by the four-terminal method by setting one terminal on the first metal substrate and setting the other terminal on the second metal substrate.
[接続体]
 本発明の接続体は、第1の金属基材、導電性接着剤層及び第2の金属基材をこの順に有し、前記導電性接着剤層は、接着剤と、樹脂コアの表面に導電層を有する導電性粒子とを含み、前記導電性接着剤層の平均厚みをTn[μm]、前記導電性粒子の厚み方向の径の平均をDn[μm]と定義した際に、Tn≦Dnの関係を満たす、ものである。
[Connector]
The connection body of the present invention has a first metal substrate, a conductive adhesive layer and a second metal substrate in this order, and the conductive adhesive layer comprises an adhesive and a conductive adhesive on the surface of a resin core. When the average thickness of the conductive adhesive layer is defined as Tn [μm] and the average diameter of the conductive particles in the thickness direction is defined as Dn [μm], Tn≦Dn It is a thing that satisfies the relationship of
 Tn≦Dnの関係を満たすことにより、第1の金属基材と第2の金属基材とを電気的に接続することができる。 By satisfying the relationship Tn≦Dn, the first metal base and the second metal base can be electrically connected.
 本発明の接続体における、第1の金属基材、第2の金属基材、導電性接着剤層、接着剤、及び樹脂コアの表面に導電層を有する導電性粒子の実施の形態は、上述した本発明の接続体の製造方法における、第1の金属基材、第2の金属基材、導電性接着剤層、接着剤、及び樹脂コアの表面に導電層を有する導電性粒子の実施の形態と同様である。
 例えば、DnとTnとの比(Dn/Tn)は、1.00超であることが好ましく、1.01以上であることがより好ましく、1.03以上であることがさらに好ましい。また、DnとTnとの比(Dn/Tn)は、1.50以下であることが好ましく、1.40以下であることがより好ましく、1.30以下であることがさらに好ましい。
 また、DnとTnとの差(Dn-Tn)は、0μm超であることが好ましく、0.01μm以上であることがより好ましく、0.03μm以上であることがさらに好ましく、0.05μm以上であることがよりさらに好ましい。また、DnとTnとの差(Dn-Tn)は、1.0μm以下であることが好ましく、0.8μm以下であることがより好ましく、0.7μm以下であることがさらに好ましい。
 また、S1/Sは0.99以上1.01以下であることが好ましい。S2/Sは0.99以上1.01以下であることが好ましい。
 また、S1/S3は1.00上1.02以下であることが好ましい。S2/S3は1.00上1.02以下であることが好ましい。
 また、導電性粒子は、表面に突起を有する粒子が好ましい。
 また、導電性粒子の樹脂コアは、圧縮回復率が55%以下であることが好ましく、47%以下であることがより好ましく、40%以下であることがより好ましく、30%以下であることがより好ましく、18%以下であることがより好ましい。樹脂コアは、圧縮回復率が5%以上であることが好ましく、6%以上であることがより好ましく、7%以上であることがさらに好ましい。
 また、導電性粒子の含有量は、接着剤100質量部に対して、0.1質量部以上2.0質量部以下であることが好ましく、0.15質量部以上1.0質量部以下であることがより好ましく、0.2質量部以上0.8質量部以下であることがさらに好ましい。
 また、接着剤のガラス転移温度は、-1℃以上であることが好ましく、より好ましくは23℃以上、さらに好ましくは30℃以上、よりさらに好ましくは40℃以上である。
Embodiments of the first metal substrate, the second metal substrate, the conductive adhesive layer, the adhesive, and the conductive particles having a conductive layer on the surface of the resin core in the connection body of the present invention are described above. In the method for manufacturing a connected body of the present invention, the first metal base material, the second metal base material, the conductive adhesive layer, the adhesive, and the conductive particles having a conductive layer on the surface of the resin core are implemented. Similar to morphology.
For example, the ratio of Dn to Tn (Dn/Tn) is preferably greater than 1.00, more preferably 1.01 or more, and even more preferably 1.03 or more. Also, the ratio of Dn to Tn (Dn/Tn) is preferably 1.50 or less, more preferably 1.40 or less, and even more preferably 1.30 or less.
Further, the difference between Dn and Tn (Dn−Tn) is preferably greater than 0 μm, more preferably 0.01 μm or more, further preferably 0.03 μm or more, and 0.05 μm or more. It is even more preferable to have Also, the difference between Dn and Tn (Dn-Tn) is preferably 1.0 μm or less, more preferably 0.8 μm or less, and even more preferably 0.7 μm or less.
Also, S1/S is preferably 0.99 or more and 1.01 or less. S2/S is preferably 0.99 or more and 1.01 or less.
Also, S1/S3 is preferably between 1.00 and 1.02. S2/S3 is preferably between 1.00 and 1.02.
Moreover, the conductive particles are preferably particles having protrusions on their surfaces.
In addition, the resin core of the conductive particles preferably has a compression recovery rate of 55% or less, more preferably 47% or less, more preferably 40% or less, and 30% or less. More preferably, it is 18% or less. The resin core preferably has a compression recovery rate of 5% or more, more preferably 6% or more, and even more preferably 7% or more.
In addition, the content of the conductive particles is preferably 0.1 parts by mass or more and 2.0 parts by mass or less, and 0.15 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of the adhesive. more preferably 0.2 parts by mass or more and 0.8 parts by mass or less.
The glass transition temperature of the adhesive is preferably −1° C. or higher, more preferably 23° C. or higher, still more preferably 30° C. or higher, and even more preferably 40° C. or higher.
 以下、本発明を実施例により具体的に説明するが、本発明は以下の例に限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
1.測定
1-1.平均粒子径及び厚み
 明細書本文の記載に従い、工程1の後の導電性接着剤層の平均厚みを示すT1、工程1の後の導電性粒子の平均粒子径を示すD1、工程3の後の導電性接着剤層の平均厚みを示すTn、工程3の後の導電性粒子の厚み方向の径の平均を示すDnを測定した。比較例1の導電性粒子は、粒子径がナノレベルであるため、測定は省略した。
1. Measurement 1-1. Average particle size and thickness According to the text of the specification, T1 indicating the average thickness of the conductive adhesive layer after step 1, D1 indicating the average particle size of the conductive particles after step 1, and after step 3 Tn, which indicates the average thickness of the conductive adhesive layer, and Dn, which indicates the average diameter of the conductive particles in the thickness direction after step 3, were measured. Since the conductive particles of Comparative Example 1 have nano-level particle diameters, the measurement was omitted.
1-2.ガラス転移温度
 実施例及び比較例で用いた接着剤の主剤のガラス転移温度を測定した。さらに、実施例及び比較例で用いた接着剤に関して、工程3のエージング処理後のガラス転移温度を測定した。測定装置は日立ハイテクサイエンス社の商品名「DSC7000X」を用いた。測定温度条件は昇温速度20℃/minとした。
1-2. Glass transition temperature The glass transition temperature of the main component of the adhesive used in Examples and Comparative Examples was measured. Furthermore, the glass transition temperature after the aging treatment in step 3 was measured for the adhesives used in Examples and Comparative Examples. As a measuring device, a product name "DSC7000X" manufactured by Hitachi High-Tech Science Co., Ltd. was used. The measurement temperature condition was a temperature increase rate of 20° C./min.
1-3.抵抗値
 実施例及び比較例で作製した接続体の抵抗値を測定した。一方の一対の端子を第1の金属基材に設置し、他方の一対の端子を第2の金属基材に設置して、4端子法により抵抗値を測定した。測定装置は日置電機社の商品名「抵抗計RM3544」を用いた。抵抗値は、工程2の直後、及び、工程3の後に測定した。比較例1は、工程2の直後の抵抗値が極めて高かったため、工程3の後の抵抗値の測定は省略した。
1-3. Resistance Value The resistance value of the connection bodies produced in Examples and Comparative Examples was measured. One pair of terminals was installed on the first metal substrate and the other pair of terminals was installed on the second metal substrate, and the resistance value was measured by the four-probe method. As a measuring device, Hioki Electric Co., Ltd.'s product name "Resistor RM3544" was used. Resistance values were measured immediately after step 2 and after step 3. In Comparative Example 1, the resistance value immediately after step 2 was extremely high, so the measurement of the resistance value after step 3 was omitted.
1-4.密着性(剥離力)
 実施例及び比較例で作製した接続体を、幅15mm、長さ10cmに切断したサンプルを2つ作製した。一方のサンプルの先端10mmの第2の金属基材を剥離し、剥離した第2の金属基材をチャックでつかみ、島津製作所社の商品名「AUTOGRAPH AGS-50D」を用いて、剥離角度180°剥離速度200mm/minの条件で剥離し、剥離力1を測定した。
 もう1方のサンプルの先端10mmの第1の金属基材を剥離し、剥離した第1の金属基材をチャックでつかみ、島津製作所社の商品名「AUTOGRAPH AGS-50D」を用いて、剥離角度180°剥離速度200mm/minの条件で剥離し、剥離力2を測定した。
 剥離力1及び剥離力2のうち、弱い方の剥離力を表1に示す。弱い方の剥離力が0.10N/mm以上が合格レベルである。
1-4. Adhesion (peel strength)
Two samples were prepared by cutting the connected body prepared in the example and the comparative example into a width of 15 mm and a length of 10 cm. A second metal substrate of 10 mm at the tip of one sample is peeled off, the peeled second metal substrate is gripped with a chuck, and a peeling angle of 180° is obtained using Shimadzu Corporation's trade name "AUTOGRAPH AGS-50D". Peel force 1 was measured by peeling at a peel speed of 200 mm/min.
Peel off the first metal substrate of 10 mm from the tip of the other sample, grab the peeled first metal substrate with a chuck, and use Shimadzu Corporation's trade name "AUTOGRAPH AGS-50D" to measure the peel angle. Peel force 2 was measured by peeling at a 180° peel rate of 200 mm/min.
Table 1 shows the weaker of the peel force 1 and the peel force 2. A weaker peel force of 0.10 N/mm or more is an acceptable level.
2.樹脂コアの表面に導電層を有する導電性粒子の作製
2-1.導電性粒子1の作製
(1)重合体シード粒子分散液の作製
  セパラブルフラスコにイオン交換水2500g、スチレン250g、オクチルメルカプタン50g、及び塩化ナトリウム0.5gを入れ、窒素雰囲気下で攪拌した。その後、70℃に加熱し、過硫酸カリウム2.5gを添加し、24時間反応を行うことにより、重合体シード粒子を得た。
  得られた重合体シード粒子5gと、イオン交換水500gと、ポリビニルアルコール5重量%水溶液100gとを混合し、超音波により分散させた後、セパラブルフラスコに入れて攪拌し、重合体シード粒子分散液を得た。
(2)樹脂コアの作製
  ジメチロール-トリシクロデカンジメタクリレート100gと、メチルメタクリレート90gと、過酸化ベンゾイル2.6gと、ラウリル硫酸トリエタノールアミン10gと、エタノール130gとをイオン交換水1000gに加え、攪拌し、乳化液を得た。得られた乳化液を数回に分けて重合体シード粒子分散液に加え、12時間攪拌した。その後、ポリビニルアルコール5重量%水溶液500gを加え、85℃の窒素雰囲気下で、9時間反応を行い、樹脂コア(平均粒子径4.4μm)を得た。樹脂コアの圧縮回復率は46%であった。
(3)導電性粒子の作製
(3-1)パラジウム付着工程
  得られた樹脂コアをエッチングし、水洗した。次に、パラジウム触媒を8重量%含むパラジウム触媒化液100mL中に樹脂コアを添加し、攪拌した。その後、ろ過し、洗浄した。pH6の0.5重量%ジメチルアミンボラン液に樹脂コアを添加し、パラジウムが付着した樹脂コアを得た。
(3-2)芯物質付着工程
  パラジウムが付着した樹脂コアをイオン交換水300mL中で3分間攪拌し、分散させ、分散液を得た。次に、金属ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着した樹脂コアを得た。
(3-3)無電解ニッケルめっき工程
  硫酸ニッケル0.23mol/L、ジメチルアミンボラン0.92mol/L、及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。芯物質が付着した樹脂コアにイオン交換水500mLを加え、得られた懸濁液を60℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。樹脂コアの表面に、厚み0.1μm程度の導電層(ニッケルとボロンとを含むニッケル-ボロン導電層)が形成されたときに、無電解めっき液の滴下を終了した。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂コアの表面にニッケル-ボロン導電層(厚み96.4nm)が設けられており、ニッケル-ボロン導電層の表面に突起を有する導電性粒子1を得た(平均粒子径4.5μm)。
2. Preparation of conductive particles having a conductive layer on the surface of the resin core 2-1. Preparation of Conductive Particle 1 (1) Preparation of Polymer Seed Particle Dispersion 2500 g of ion-exchanged water, 250 g of styrene, 50 g of octyl mercaptan, and 0.5 g of sodium chloride were placed in a separable flask and stirred under a nitrogen atmosphere. Thereafter, the mixture was heated to 70° C., 2.5 g of potassium persulfate was added, and reaction was carried out for 24 hours to obtain polymer seed particles.
5 g of the obtained polymer seed particles, 500 g of ion-exchanged water, and 100 g of a 5% by weight aqueous solution of polyvinyl alcohol are mixed and dispersed by ultrasonic waves, then placed in a separable flask and stirred to disperse the polymer seed particles. I got the liquid.
(2) Preparation of Resin Core 100 g of dimethylol-tricyclodecane dimethacrylate, 90 g of methyl methacrylate, 2.6 g of benzoyl peroxide, 10 g of triethanolamine lauryl sulfate, and 130 g of ethanol are added to 1000 g of deionized water and stirred. to obtain an emulsion. The resulting emulsion was added in several portions to the polymer seed particle dispersion and stirred for 12 hours. After that, 500 g of a 5% by weight aqueous solution of polyvinyl alcohol was added, and the mixture was reacted for 9 hours in a nitrogen atmosphere at 85° C. to obtain resin cores (average particle size: 4.4 μm). The compression recovery rate of the resin core was 46%.
(3) Preparation of Conductive Particles (3-1) Palladium Adhesion Step The obtained resin core was etched and washed with water. Next, the resin core was added to 100 mL of a palladium catalyst solution containing 8% by weight of palladium catalyst and stirred. It was then filtered and washed. A resin core was added to a 0.5% by weight dimethylamine borane solution at pH 6 to obtain a resin core with palladium attached.
(3-2) Step of Attaching Core Substance The resin core with palladium attached thereto was stirred for 3 minutes in 300 mL of ion-exchanged water and dispersed to obtain a dispersion. Next, 1 g of metal nickel particle slurry (average particle size: 100 nm) was added to the dispersion liquid over 3 minutes to obtain a resin core with a core substance adhered thereto.
(3-3) Electroless Nickel Plating Step A nickel plating solution (pH 8.5) containing 0.23 mol/L nickel sulfate, 0.92 mol/L dimethylamine borane, and 0.5 mol/L sodium citrate was prepared. 500 mL of ion-exchanged water was added to the resin core to which the core substance had adhered, and the resulting suspension was stirred at 60°C while the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. rice field. When a conductive layer (a nickel-boron conductive layer containing nickel and boron) having a thickness of about 0.1 μm was formed on the surface of the resin core, dropping of the electroless plating solution was terminated. After that, by filtering the suspension, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer (thickness: 96.4 nm) on the surface of the resin core. A conductive particle 1 having protrusions on the surface was obtained (average particle size 4.5 μm).
2-2.導電性粒子2の作製
 特開2020-97739号公報の実施例3の記載に準じて、樹脂コア(圧縮回復率:9.8%)の表面に、厚み0.1μm程度の導電層(ニッケル層)が形成された導電性粒子2を得た(平均粒子径3.1μm)。
2-2. Preparation of conductive particles 2 According to the description in Example 3 of JP-A-2020-97739, a conductive layer (nickel layer) having a thickness of about 0.1 μm is formed on the surface of a resin core (compression recovery rate: 9.8%) ) was formed to obtain conductive particles 2 (average particle diameter 3.1 μm).
3.接続体の作製
[実施例1]
 下記の工程1~3により、実施例1の接続体を作製した。
工程1:第1の金属基材(厚み50μmのアルミニウム)上に、下記の導電性接着剤層用塗布液1をグラビアコート法により塗布した。次いで、100℃で1分間乾燥して、平均厚み4.0μmの導電性接着剤層を形成した。工程1は、第1の金属基材のロール状物から、第1の金属基材を連続的に送り出すことにより、連続的に実施した。
3. Preparation of connecting body [Example 1]
A connection body of Example 1 was produced by the following steps 1 to 3.
Step 1: The following conductive adhesive layer coating solution 1 was applied onto a first metal substrate (aluminum having a thickness of 50 μm) by gravure coating. Then, it was dried at 100° C. for 1 minute to form a conductive adhesive layer with an average thickness of 4.0 μm. Step 1 was performed continuously by continuously feeding the first metal substrate from a roll of the first metal substrate.
<導電性接着剤層用塗布液1>
・上記「2-1」で作製した導電性粒子1  0.54質量部
・接着剤の主剤  31.3質量部
(ポリエステル系樹脂)
(東洋紡社、商品名:バイロンGK810、固形分100質量%)
・接着剤の硬化剤  2.64質量部
(イソシアネート系化合物)
(東ソー社、商品名:コロネートHX、固形分100質量%)
・希釈溶剤  適量
<Coating Liquid 1 for Conductive Adhesive Layer>
・ 0.54 parts by mass of the conductive particles 1 prepared in “2-1” above ・ 31.3 parts by mass of the main agent of the adhesive (polyester resin)
(Toyobo, trade name: Vylon GK810, solid content 100% by mass)
・ Adhesive curing agent 2.64 parts by mass (isocyanate compound)
(Tosoh Corporation, product name: Coronate HX, solid content 100% by mass)
・Dilution solvent Appropriate amount
工程2:導電性接着剤層上に、第2の金属基材をラミネートして、第1の金属基材、導電性接着剤層及び第2の金属基材とをこの順に有する、接続体を得た。ラミネート条件は下記の通りとした。
 工程2は、第2の金属基材のロール状物から、第2の金属基材を連続的に送り出すことにより、連続的に実施した。工程1及び工程2は、一つのラインで連続的に実施した。
<ラミネート条件>
・ラミネートロールの温度:60℃
・ラミネートの圧力:0.4MPa
・ラミネート速度:0.8m/min
Step 2: Laminating a second metal substrate on the conductive adhesive layer to form a connecting body having the first metal substrate, the conductive adhesive layer and the second metal substrate in this order. Obtained. The lamination conditions were as follows.
Step 2 was performed continuously by continuously feeding the second metal substrate from a roll of the second metal substrate. Steps 1 and 2 were performed continuously on one line.
<Lamination conditions>
・Temperature of laminate roll: 60°C
・Lamination pressure: 0.4 MPa
・Lamination speed: 0.8m/min
工程3:工程2で得られた接続体を巻き取り、45℃で5日間エージング処理した。 Step 3: The connected body obtained in Step 2 was wound up and aged at 45°C for 5 days.
[実施例2]
 導電性接着剤層用塗布液1中の導電性粒子の添加量を0.20質量部に変更した以外は、実施例1と同様にして、実施例2の接続体を作製した。
[Example 2]
A connection body of Example 2 was produced in the same manner as in Example 1, except that the amount of the conductive particles added in the conductive adhesive layer coating liquid 1 was changed to 0.20 parts by mass.
[実施例3]
 導電性接着剤層用塗布液1を、下記の導電性接着剤層用塗布液2に変更した以外は、実施例1と同様にして、実施例3の接続体を作製した。
<導電性接着剤層用塗布液2>
・上記「2-1」で作製した導電性粒子1  1.1質量部
・接着剤の主剤  100質量部
(ポリエステル系樹脂)
(東亞合成社、商品名:アルフォンUH2170、固形分52質量%)
・接着剤の硬化剤  12.3質量部
(イソシアネート系化合物)
(東ソー社、商品名:コロネートHX、固形分100質量%)
・希釈溶剤  適量
[Example 3]
A connecting body of Example 3 was produced in the same manner as in Example 1, except that the conductive adhesive layer coating liquid 1 was changed to the following conductive adhesive layer coating liquid 2.
<Coating Liquid 2 for Conductive Adhesive Layer>
・ 1.1 parts by mass of the conductive particles 1 prepared in "2-1" above ・ 100 parts by mass of the main agent of the adhesive (polyester resin)
(Toagosei Co., Ltd., trade name: Alfon UH2170, solid content 52% by mass)
・ Adhesive curing agent 12.3 parts by mass (isocyanate compound)
(Tosoh Corporation, product name: Coronate HX, solid content 100% by mass)
・Dilution solvent Appropriate amount
[実施例4]
 導電性接着剤層用塗布液1を、下記の導電性接着剤層用塗布液3に変更し、導電性接着剤層の平均厚みを2.9μmに変更した以外は、実施例1と同様にして、実施例4の接続体を作製した。
<導電性接着剤層用塗布液3>
・上記「2-2」で作製した導電性粒子2  0.24質量部
・接着剤の主剤  100質量部
(ポリエステル系樹脂、ガラス転移温度:0℃)
(東洋モートン社、商品名:AD76P1、固形分51質量%)
・接着剤の硬化剤  10.0質量部
(イソシアネート系化合物)
(東洋モートン社、商品名:CAT10L、固形分53質量%)
・希釈溶剤  適量
[Example 4]
The procedure of Example 1 was repeated except that the conductive adhesive layer coating solution 1 was changed to the following conductive adhesive layer coating solution 3, and the average thickness of the conductive adhesive layer was changed to 2.9 μm. Thus, a connection body of Example 4 was produced.
<Coating Liquid 3 for Conductive Adhesive Layer>
・ 0.24 parts by mass of the conductive particles 2 prepared in “2-2” above ・ 100 parts by mass of the main agent of the adhesive (polyester resin, glass transition temperature: 0 ° C.)
(Toyo-Morton Co., Ltd., trade name: AD76P1, solid content 51% by mass)
・ Adhesive curing agent 10.0 parts by mass (isocyanate compound)
(Toyo-Morton, trade name: CAT10L, solid content 53% by mass)
・Dilution solvent Appropriate amount
[実施例5]
 導電性接着剤層用塗布液1を、下記の導電性接着剤層用塗布液4に変更した以外は、実施例1と同様にして、実施例5の接続体を作製した。
<導電性接着剤層用塗布液4>
・上記「2-1」で作製した導電性粒子1  0.24質量部
・接着剤の主剤  100質量部
(ポリエステル系樹脂)
(東洋モートン社、商品名:AD76P1、固形分51質量%)
・接着剤の硬化剤  10.0質量部
(イソシアネート系化合物)
(東洋モートン社、商品名:CAT10L、固形分53質量%)
・希釈溶剤  適量
[Example 5]
A connection body of Example 5 was produced in the same manner as in Example 1, except that the conductive adhesive layer coating liquid 1 was changed to the following conductive adhesive layer coating liquid 4.
<Coating Liquid 4 for Conductive Adhesive Layer>
・ 0.24 parts by mass of the conductive particles 1 prepared in "2-1" above ・ 100 parts by mass of the main agent of the adhesive (polyester resin)
(Toyo-Morton Co., Ltd., trade name: AD76P1, solid content 51% by mass)
・ Adhesive curing agent 10.0 parts by mass (isocyanate compound)
(Toyo-Morton, trade name: CAT10L, solid content 53% by mass)
・Dilution solvent Appropriate amount
[実施例6]
 導電性接着剤層用塗布液1を、下記の導電性接着剤層用塗布液5に変更し、工程3のエージング条件を下記の条件に変更した以外は、実施例1と同様にして、実施例6の接続体を作製した。
<導電性接着剤層用塗布液5>
・上記「2-1」で作製した導電性粒子1  0.20質量部
・接着剤の主剤1  30質量部
(ポリイミド系樹脂)
(荒川化学工業社、商品名:PIAD200、固形分30質量%)
・接着剤の主剤2  70質量部
(ポリイミド系樹脂)
(荒川化学工業社、商品名:PIAD150H、固形分30質量%)
・接着剤の主剤3  2.3質量部
(エポキシ系樹脂)
(三菱ケミカル社、商品名:jER630、固形分100質量%)
・接着剤の硬化剤  8.0質量部
(活性エステル系化合物)
(DIC社、商品名:HPC-8000、固形分65質量%)
・硬化促進剤  0.0025質量部
(四国化成社、商品名;キュアゾール2E4MZ-a)
・希釈溶剤 適量
<工程3>
 工程2で得られた接続体を巻き取り、160℃で1時間エージング処理した。
[Example 6]
Conducted in the same manner as in Example 1, except that the conductive adhesive layer coating liquid 1 was changed to the following conductive adhesive layer coating liquid 5, and the aging conditions in step 3 were changed to the following conditions. A connection of Example 6 was made.
<Coating Liquid 5 for Conductive Adhesive Layer>
・ Conductive particles 1 0.20 parts by mass prepared in "2-1" above ・ Main agent 1 30 parts by mass of adhesive (polyimide resin)
(Arakawa Chemical Industry Co., Ltd., trade name: PIAD200, solid content 30% by mass)
・ Adhesive main agent 2 70 parts by mass (polyimide resin)
(Arakawa Chemical Industries, trade name: PIAD150H, solid content 30% by mass)
・ Adhesive main agent 3 2.3 parts by mass (epoxy resin)
(Mitsubishi Chemical Company, trade name: jER630, solid content 100% by mass)
・ Adhesive curing agent 8.0 parts by mass (active ester compound)
(DIC Corporation, product name: HPC-8000, solid content 65% by mass)
・ Curing accelerator 0.0025 parts by mass (Shikoku Kasei Co., trade name; Cursol 2E4MZ-a)
・ Dilution solvent appropriate amount <Step 3>
The connected body obtained in step 2 was wound up and aged at 160° C. for 1 hour.
[実施例7]
 導電性接着剤層用塗布液1を、下記の導電性接着剤層用塗布液6に変更し、工程3のエージング条件を下記の条件に変更した以外は、実施例1と同様にして、実施例7の接続体を作製した。
<導電性接着剤層用塗布液6>
・上記「2-1」で作製した導電性粒子1  0.10質量部
・接着剤の主剤1  100質量部
(ポリイミド系樹脂)
(荒川化学工業社、商品名:PIAD152H、固形分42質量%)
・接着剤の主剤2  11.5質量部
(エポキシ系樹脂)
(三菱ケミカル社、商品名:YL980、固形分100質量%)
・接着剤の硬化剤  12.8質量部
(フェノール系化合物)
(荒川化学工業社、商品名:タマノル759、固形分100質量%)
・硬化促進剤  0.24質量部
(四国化成社、商品名;キュアゾール2E4MZ)
・希釈溶剤 適量
<工程3>
 工程2で得られた接続体を巻き取り、120℃で2時間エージング処理した。
[Example 7]
Conducted in the same manner as in Example 1, except that the conductive adhesive layer coating liquid 1 was changed to the following conductive adhesive layer coating liquid 6, and the aging conditions in step 3 were changed to the following conditions. A connection of Example 7 was made.
<Coating Liquid 6 for Conductive Adhesive Layer>
・ Conductive particles 1 0.10 parts by mass prepared in "2-1" above ・ Main agent 1 100 parts by mass of adhesive (polyimide resin)
(Arakawa Chemical Industry Co., Ltd., trade name: PIAD152H, solid content 42% by mass)
・ Adhesive main agent 2 11.5 parts by mass (epoxy resin)
(Mitsubishi Chemical Company, trade name: YL980, solid content 100% by mass)
・ Adhesive curing agent 12.8 parts by mass (phenolic compound)
(Arakawa Chemical Industries, trade name: Tamanol 759, solid content 100% by mass)
・ Curing accelerator 0.24 parts by mass (Shikoku Kasei Co., Ltd., trade name; Cursol 2E4MZ)
・ Dilution solvent appropriate amount <Step 3>
The connected body obtained in step 2 was wound up and aged at 120° C. for 2 hours.
[比較例1]
 導電性接着剤層用塗布液1を、下記の導電性接着剤層用塗布液7に変更した以外は、実施例1と同様にして、比較例1の接続体を作製した。
<導電性接着剤層用塗布液7>
・カーボンブラック分散液 115.3質量部
(御国色素社、商品名:RK046、固形分26.5質量%)
・接着剤の主剤 100質量部
(ポリエステル系樹脂)
(東洋モートン社、商品名:AD76P1、固形分51質量%)
・接着剤の硬化剤 10質量部
(イソシアネート系化合物)
(東洋モートン社、商品名:CAT10L、固形分53質量%)
・希釈溶剤 適量
[Comparative Example 1]
A connection body of Comparative Example 1 was produced in the same manner as in Example 1, except that the conductive adhesive layer coating liquid 1 was changed to the following conductive adhesive layer coating liquid 7.
<Coating Liquid 7 for Conductive Adhesive Layer>
・Carbon black dispersion 115.3 parts by mass (Mikuni Color Co., Ltd., trade name: RK046, solid content 26.5% by mass)
・Main agent of adhesive 100 parts by mass (polyester resin)
(Toyo-Morton Co., Ltd., trade name: AD76P1, solid content 51% by mass)
Adhesive curing agent 10 parts by mass (isocyanate compound)
(Toyo-Morton, trade name: CAT10L, solid content 53% by mass)
・Dilution solvent Appropriate amount
[比較例2]
 導電性接着剤層の平均厚みを7.0μmに変更した以外は、実施例1と同様にして、比較例2の接続体を作製した。
[Comparative Example 2]
A connector of Comparative Example 2 was produced in the same manner as in Example 1, except that the average thickness of the conductive adhesive layer was changed to 7.0 μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例の接続体の製造方法は、接続体の製造直後(工程2の直後)、及び、接続体のエージング処理後(工程3の後)、の何れにおいても、接続体の抵抗値を低くすることができることが確認できる。また、実施例の接続体の製造方法は、ロールトウーロールでの製造であるため、製造効率を飛躍的に高くすることができる。なお、表中には記載していないが、明細書本文のS1/S、S2/S、S1/S3、S2/S3は、何れも1.00である。 As is clear from the results in Table 1, the manufacturing method of the connected body of the example can be applied either immediately after manufacturing the connected body (immediately after step 2) or after aging treatment of the connected body (after step 3). Also, it can be confirmed that the resistance value of the connecting body can be lowered. In addition, since the manufacturing method of the connected body of the embodiment is roll-to-roll manufacturing, manufacturing efficiency can be dramatically increased. Although not shown in the table, S1/S, S2/S, S1/S3 and S2/S3 in the specification are all 1.00.
 10::第1の金属基材
 11::第1の金属基材のロール状物
 20::第2の金属基材
 21::第2の金属基材のロール状物
 30:導電性接着剤層
 31:接着剤
 32:樹脂コアの表面に導電層を有する導電性粒子
 50:積層体
100:接続体
200:塗布装置
DESCRIPTION OF SYMBOLS 10:: First metal substrate 11:: First metal substrate roll 20:: Second metal substrate 21:: Second metal substrate roll 30: Conductive adhesive Layer 31: Adhesive 32: Conductive particles having a conductive layer on the surface of the resin core 50: Laminate 100: Connector 200: Coating device

Claims (17)

  1.  下記の工程1~2を有する、接続体の製造方法。
    工程1:第1の金属基材上に、接着剤と、樹脂コアの表面に導電層を有する導電性粒子とを含む導電性接着剤層用塗布液を塗布、乾燥して、導電性接着剤層を形成する工程。工程1では、前記導電性接着剤層の平均厚みをT1[μm]、前記導電性粒子の平均粒子径をD1[μm]と定義した際に、T1<D1の関係を満たすようにする。
    工程2:前記導電性接着剤層上に、第2の金属基材をラミネートして、前記第1の金属基材、前記導電性接着剤層及び前記第2の金属基材とをこの順に有する、接続体を得る工程。
    A method for manufacturing a connected body, comprising the following steps 1 and 2.
    Step 1: A conductive adhesive layer coating liquid containing an adhesive and conductive particles having a conductive layer on the surface of a resin core is applied onto a first metal substrate and dried to form a conductive adhesive. forming a layer; In step 1, when the average thickness of the conductive adhesive layer is defined as T1 [μm] and the average particle diameter of the conductive particles is defined as D1 [μm], the relationship T1<D1 is satisfied.
    Step 2: Laminating a second metal substrate on the conductive adhesive layer to have the first metal substrate, the conductive adhesive layer and the second metal substrate in this order. , obtaining the connection.
  2.  前記樹脂コアの圧縮回復率が5%以上55%以下である、請求項1に記載の接続体の製造方法。 The method for manufacturing a connected body according to claim 1, wherein the compression recovery rate of the resin core is 5% or more and 55% or less.
  3.  前記接着剤100質量部に対して、前記導電性粒子を0.1質量部以上2.0質量部以下含む、請求項1に記載の接続体の製造方法。 The method for manufacturing a connected body according to claim 1, wherein 0.1 parts by mass or more and 2.0 parts by mass or less of the conductive particles are included with respect to 100 parts by mass of the adhesive.
  4.  工程1において、前記接着剤が、主剤と硬化剤とを含み、前記主剤のガラス転移温度が-5℃以上である、請求項1に記載の接続体の製造方法。 The method for manufacturing a connected body according to claim 1, wherein in step 1, the adhesive contains a main agent and a curing agent, and the main agent has a glass transition temperature of -5°C or higher.
  5.  前記接着剤が、主剤と硬化剤とを含み、工程2のラミネート温度を、前記主剤のガラス転移温度以上とする、請求項1に記載の接続体の製造方法。 The method for manufacturing a connected body according to claim 1, wherein the adhesive contains a main agent and a curing agent, and the lamination temperature in step 2 is set to be equal to or higher than the glass transition temperature of the main agent.
  6.  さらに、下記の工程3を有する、請求項1に記載の接続体の製造方法。
     工程3:接続体をエージング処理する工程。
    2. The manufacturing method of the connected body according to claim 1, further comprising the following step 3.
    Step 3: A step of aging the connector.
  7.  工程3において、エージング処理の温度を55℃以下とする、請求項6に記載の接続体の製造方法。 The manufacturing method of the connected body according to claim 6, wherein in step 3, the temperature of the aging treatment is 55°C or less.
  8.  工程3の後の前記接着剤のガラス転移温度が-1℃以上である、請求項6に記載の接続体の製造方法。 The method for manufacturing a connected body according to claim 6, wherein the glass transition temperature of the adhesive after step 3 is -1°C or higher.
  9.  工程3の後の導電性接着剤層の平均厚みをTn[μm]、導電性粒子の厚み方向の径の平均をDn[μm]と定義した際に、Tn≦Dnの関係を満たす、請求項6に記載の接続体の製造方法。 Claim that satisfies the relationship of Tn ≤ Dn when the average thickness of the conductive adhesive layer after step 3 is defined as Tn [μm] and the average diameter of the conductive particles in the thickness direction is defined as Dn [μm]. 7. The manufacturing method of the connected body according to 6.
  10.  前記第1の金属基材のロール状物から前記第1の金属基材を連続的に送り出すことにより、前記工程1を行うとともに、前記第2の金属基材のロール状物から前記第2の金属基材を連続的に送り出すことにより、前記工程2を行う、請求項1に記載の接続体の製造方法。 The step 1 is performed by continuously feeding the first metal base from the roll of the first metal base, and the second metal base is rolled from the roll of the second metal base. 2. The method of manufacturing a connected body according to claim 1, wherein the step 2 is performed by continuously feeding the metal base material.
  11.  第1の金属基材、導電性接着剤層及び第2の金属基材をこの順に有し、前記導電性接着剤層は、接着剤と、樹脂コアの表面に導電層を有する導電性粒子とを含み、前記導電性接着剤層の平均厚みをTn[μm]、前記導電性粒子の厚み方向の径の平均をDn[μm]と定義した際に、Dn/Tnが1.00超の関係を満たす、接続体。 It has a first metal substrate, a conductive adhesive layer and a second metal substrate in this order, and the conductive adhesive layer comprises an adhesive and conductive particles having a conductive layer on the surface of a resin core. When the average thickness of the conductive adhesive layer is defined as Tn [μm] and the average diameter of the conductive particles in the thickness direction is defined as Dn [μm], Dn/Tn is more than 1.00. A connection body that satisfies
  12.  Dn/Tnが1.01以上1.50以下の関係を満たす、請求項11に記載の接続体。 The connector according to claim 11, wherein Dn/Tn satisfies the relationship of 1.01 or more and 1.50 or less.
  13.  接続体を平面視した際の接続体の面積をS、接続体を平面視した際の第1の金属基材の面積をS1、接続体を平面視した際の第2の金属基材の面積をS2とした際に、下記式(1)及び(2)を満たす、請求項11に記載の接続体。
     0.99≦S1/S≦1.01 (1)
     0.99≦S2/S≦1.01 (2)
    The area of the connecting body when viewed in plan is S, the area of the first metal base when the connecting body is viewed in plan is S1, and the area of the second metal base when the connecting body is viewed in plan. 12. The connector according to claim 11, which satisfies the following formulas (1) and (2) when S2.
    0.99≦S1/S≦1.01 (1)
    0.99≦S2/S≦1.01 (2)
  14.  接続体を平面視した際の第1の金属基材の面積をS1、接続体を平面視した際の第2の金属基材の面積をS2、接続体を平面視した際の導電性接着剤層の面積をS3とした際に、下記式(3)及び(4)を満たす、請求項11に記載の接続体。
     1.00≦S1/S3≦1.02 (3)
     1.00≦S2/S3≦1.02 (4)
    S1 is the area of the first metal base when the connection body is viewed in plan, S2 is the area of the second metal base when the connection body is viewed in plan, and the conductive adhesive when the connection body is viewed in plan 12. The connector according to claim 11, which satisfies the following formulas (3) and (4), where S3 is the area of the layer.
    1.00≦S1/S3≦1.02 (3)
    1.00≤S2/S3≤1.02 (4)
  15.  前記樹脂コアの圧縮回復率が5%以上55%以下である、請求項11に記載の接続体。 The connector according to claim 11, wherein the resin core has a compression recovery rate of 5% or more and 55% or less.
  16.  前記接着剤100質量部に対して、前記導電性粒子を0.1質量部以上2.0質量部以下含む、請求項11に記載の接続体。 The connecting body according to claim 11, containing 0.1 parts by mass or more and 2.0 parts by mass or less of the conductive particles with respect to 100 parts by mass of the adhesive.
  17.  前記接着剤のガラス転移温度が-1℃以上である、請求項11に記載の接続体。

     
    The connector according to claim 11, wherein the adhesive has a glass transition temperature of -1°C or higher.

PCT/JP2022/029230 2021-08-06 2022-07-29 Method for producing connected body, and connected body WO2023013529A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022578556A JPWO2023013529A1 (en) 2021-08-06 2022-07-29
KR1020237022829A KR20230114290A (en) 2021-08-06 2022-07-29 Manufacturing method of connected body and connected body
CN202280006439.8A CN116171311A (en) 2021-08-06 2022-07-29 Method for manufacturing connector and connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021130260 2021-08-06
JP2021-130260 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023013529A1 true WO2023013529A1 (en) 2023-02-09

Family

ID=85154702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029230 WO2023013529A1 (en) 2021-08-06 2022-07-29 Method for producing connected body, and connected body

Country Status (4)

Country Link
JP (1) JPWO2023013529A1 (en)
KR (1) KR20230114290A (en)
CN (1) CN116171311A (en)
WO (1) WO2023013529A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278338A (en) * 1988-04-30 1989-11-08 Three Bond Co Ltd Vibration damping laminate
JPH02297433A (en) * 1989-05-11 1990-12-07 Kawasaki Steel Corp Composite steel plate
JPH05187998A (en) * 1992-01-16 1993-07-27 Kawasaki Steel Corp Method and device for measuring scattering concentration of conductive filler in manufacturing process of weldable composite vibration damping material
JPH11157006A (en) * 1997-11-27 1999-06-15 Nisshin Steel Co Ltd Polyolefin resin film laminated metal plate
JP2017182709A (en) * 2016-03-31 2017-10-05 デクセリアルズ株式会社 Anisotropic conductive connection structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6337630B2 (en) 2014-06-12 2018-06-06 日立化成株式会社 Circuit connection material and circuit connection structure
JP2019179647A (en) 2018-03-30 2019-10-17 デクセリアルズ株式会社 Conductive material, and manufacturing method of connection body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278338A (en) * 1988-04-30 1989-11-08 Three Bond Co Ltd Vibration damping laminate
JPH02297433A (en) * 1989-05-11 1990-12-07 Kawasaki Steel Corp Composite steel plate
JPH05187998A (en) * 1992-01-16 1993-07-27 Kawasaki Steel Corp Method and device for measuring scattering concentration of conductive filler in manufacturing process of weldable composite vibration damping material
JPH11157006A (en) * 1997-11-27 1999-06-15 Nisshin Steel Co Ltd Polyolefin resin film laminated metal plate
JP2017182709A (en) * 2016-03-31 2017-10-05 デクセリアルズ株式会社 Anisotropic conductive connection structure

Also Published As

Publication number Publication date
KR20230114290A (en) 2023-08-01
JPWO2023013529A1 (en) 2023-02-09
CN116171311A (en) 2023-05-26

Similar Documents

Publication Publication Date Title
TWI502608B (en) Conducting particle, anisotropic conductive film, and connected structure, and method of connecting
US7851063B2 (en) Polymer particles and conductive particles having enhanced conducting properties, and anisotropic conductive packaging materials containing the same
US8129023B2 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
JP5476280B2 (en) Polymer particles
US4740657A (en) Anisotropic-electroconductive adhesive composition, method for connecting circuits using the same, and connected circuit structure thus obtained
US8932716B2 (en) Conductive particle, and anisotropic conductive film, bonded structure, and bonding method
CN101346449B (en) Adhesive composition, circuit connecting material and connecting structure of circuit member
TWI601159B (en) Conductive particles, resin particles, a conductive material, and a connecting structure
JP2009522716A (en) Conductive particles for anisotropic conductive connection
WO2023013529A1 (en) Method for producing connected body, and connected body
JP7137251B1 (en) Method for manufacturing connected body and connected body
WO2007099965A1 (en) Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
KR20160029369A (en) Graphene Coated Conductive particles, and conductive materials including the same
EP3086411B1 (en) Mounting body manufacturing method
JP2013055047A (en) Conductive particle, anisotropic conductive material and connection structure
JP2012185918A (en) Conductive particulate, and anisotropy conductive material using the same
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
KR100722152B1 (en) Monodisperse Polymer Particles and Conductive Particles for Anisotropic Conductive Packaging Applications
KR20230013642A (en) Connection material
JP2003157717A (en) Conductive particle and conductive connecting member, and conductive connection method
JP4113403B2 (en) Conductive fine particles, anisotropic conductive material, and method for producing conductive fine particles
TWI756215B (en) Conductive adhesive composition and conductive adhesive tape
JP7193512B2 (en) connecting material
JP7358670B1 (en) connection body
JPH083963B2 (en) Circuit connection member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022578556

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237022829

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE