WO2023013358A1 - Electrode device and brain wave measuring device - Google Patents

Electrode device and brain wave measuring device Download PDF

Info

Publication number
WO2023013358A1
WO2023013358A1 PCT/JP2022/026924 JP2022026924W WO2023013358A1 WO 2023013358 A1 WO2023013358 A1 WO 2023013358A1 JP 2022026924 W JP2022026924 W JP 2022026924W WO 2023013358 A1 WO2023013358 A1 WO 2023013358A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrode device
electrode
section
biopotential
Prior art date
Application number
PCT/JP2022/026924
Other languages
French (fr)
Japanese (ja)
Inventor
慈厚 尾野
雄眞 北添
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2022562326A priority Critical patent/JP7211573B1/en
Publication of WO2023013358A1 publication Critical patent/WO2023013358A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/265Bioelectric electrodes therefor characterised by the electrode materials containing silver or silver chloride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/31Input circuits therefor specially adapted for particular uses for electroencephalography [EEG]

Definitions

  • the present invention relates to an electrode device for acquiring biopotentials and an electroencephalogram measurement device having such an electrode device.
  • a technology is known that observes biological signals emitted from the human body, such as heartbeats and electroencephalograms, and evaluates the state of human health.
  • US Pat. No. 6,200,001 discloses an ear device comprising an ear canal portion having an ear canal electrode configured to be placed in a person's ear canal.
  • the technique of clipping electrodes in the ear sometimes causes pain and discomfort due to the clipping.
  • some people hesitate to wear the device because of the appearance of the device when they wear it.
  • the technique of Patent Document 1 has a configuration for inserting into the external auditory canal, and there is a problem that it is difficult to wear.
  • the present invention has been made in view of such a situation, and aims to provide a technology that makes it easy to attach an electrode device that acquires a biopotential to the ear and makes it less likely to cause discomfort such as pain.
  • An electrode device that is attached to the outer ear and acquires a biopotential, a mounting portion to be mounted in the concave shape of the outer ear;
  • the electrode device comprising: a biopotential acquisition section that is provided in the attachment section and that is a portion that contacts the outer ear and is made of a conductive material.
  • the mounting part has a turbinate mounting part that is fitted into the turbinate vessel of the outer ear.
  • the turbinate attachment section includes the biopotential acquisition section.
  • the wearing part has a helix-wearing part to be worn on the helix of the outer ear,
  • the ear ring mounting part a helix fitting portion having a C-shaped opening at the tip and into which the helix is fitted; a first extending portion extending from one end of the helix fitting portion; a second extending portion extending from the other tip of the helix fitting portion; has The first extending portion has a protrusion projecting in the direction of the second extending portion at a position extended by a predetermined length,
  • the mounting part is a mounting portion main body made of a resin material;
  • the electrode device according to [12], wherein the elastic material comprises a silicone resin.
  • An electroencephalogram measurement apparatus having the electrode device according to any one of [1] to [15] as a reference electrode for electroencephalogram measurement.
  • the present invention it is possible to provide a technology that makes it easy to attach an electrode device that acquires a biopotential to an ear and that makes it difficult to cause discomfort such as pain.
  • FIG. 1 is a schematic diagram showing an electroencephalogram detection system with an electroencephalogram measuring device attached to the head according to the first embodiment
  • FIG. 1 is a schematic diagram showing an electroencephalogram detection system with an electroencephalogram measuring device attached to the head according to the first embodiment
  • FIG. 1 is a front view of an electroencephalogram detection electrode according to a first embodiment
  • FIG. 1 is a plan view of an electroencephalogram detection electrode according to a first embodiment
  • FIG. 4 is an enlarged view of a partial area X1 of FIG. 3 according to the first embodiment
  • FIG. 5 is a cross-sectional view taken along line X2-X2 of FIG. 4 according to the first embodiment
  • FIG. 5 is a diagram showing another example of the X2-X2 cross-sectional view of FIG.
  • FIG. 1 is a perspective view of a reference electrode according to a first embodiment
  • FIG. 3 is an exploded perspective view of a reference electrode according to the first embodiment
  • FIG. 5A and 5B are five views of the reference electrode according to the first embodiment
  • FIG. 4 is a cross-sectional view of a reference electrode according to the first embodiment
  • FIG. 10 is a diagram showing a state in which the reference electrode according to the second embodiment is attached to the outer ear
  • FIG. 5 is a perspective view of a reference electrode according to a second embodiment
  • 5A and 5B are five views of a reference electrode according to a second embodiment
  • FIG. 12 is a diagram showing a state in which the reference electrode according to the third embodiment is attached to the outer ear;
  • FIG. 11 is a perspective view of a reference electrode according to a third embodiment;
  • FIG. 11 is a perspective view of a reference electrode according to a third embodiment; It is a five-sided view of the reference electrode according to the third embodiment.
  • FIG. 14 is a diagram showing a state in which the reference electrode according to the fourth embodiment is attached to the outer ear;
  • FIG. 11 is a perspective view of a reference electrode according to a fourth embodiment; It is a five-sided view of the reference electrode according to the fourth embodiment.
  • FIG. 1 is a front view of a person wearing an electroencephalogram measuring device 10.
  • FIG. 2 is a side view of a person wearing the electroencephalogram measuring device 10.
  • the electroencephalogram detection system 1 includes an electroencephalogram measurement device 10 and an electroencephalogram display device 20 .
  • the electroencephalogram measurement device 10 is attached to a person's head 99 and detects electroencephalograms as potential fluctuations from the living body, and outputs the detected electroencephalograms to the electroencephalogram display device 20 .
  • the electroencephalogram display device 20 acquires electroencephalograms detected by the electroencephalogram measurement device 10, displays them on a monitor, stores data, and performs well-known electroencephalogram analysis processing (measurement processing).
  • the electroencephalogram measurement apparatus 10 includes a rubber-like elastic band member 11 that is worn following the shape of a human head 99, and a reference electrode 40 that is attached to the outer ear 80. , and a mounting portion 50 for connecting the reference electrode 40 and the band member 11 .
  • the reference electrode 40 is configured to be attached to both ears, but may be configured to be attached to only one ear. With such a configuration, it is possible to prevent the both ends of the band member 11 from being lifted from the head 99 and prevent appropriate electroencephalogram measurement from occurring, and to acquire the reference potential at the outer ear 80 . As a result, stable electroencephalogram measurement can be realized.
  • a plurality of elastic protrusions 12 integrally formed with the band member 11 are provided on one surface of the band member 11 (here, the band inner surface 11a on the head 99 side). At least the tip portion of the protrusion 12 constitutes an electrode portion 13 made of a conductive member.
  • a reference electrode 40 attached to the outer ear 80 , a mounting portion 50 attached to the band member 11 , and a portion extending between the reference electrode 40 and the mounting portion 50 .
  • a cable portion 60 connected to the band member 11 is also provided.
  • a female snap button electrode 49 is provided at one end of the cable portion 60 and attached to the male snap button electrode 48 of the reference electrode 40 (see FIG. 8, for example).
  • the cable section 60 transmits the reference potential to the electroencephalogram display device 20 and may be directly connected to the electroencephalogram display device 20 without going through the band member 11 .
  • the reference electrode 40 has a function of acquiring a reference potential and a function of supporting the band member 11 to follow the head 99 . In other words, it is possible to prevent the both ends of the band member 11 from being lifted from the head 99 and thus preventing appropriate electroencephalogram measurement.
  • the electroencephalogram measurement device 10 is provided with connectors, electronic components, etc., and is connected to the electroencephalogram display device 20 .
  • the electroencephalogram measurement device 10 and the electroencephalogram display device 20 may be configured integrally.
  • the electroencephalogram display device 20 may be composed of a smart device (smart phone, tablet terminal) and a predetermined application functioning therewith. In this case, the electroencephalogram measurement device 10 has a communication function of wirelessly transmitting detected electroencephalograms.
  • the electroencephalogram display device 20 has, for example, a control section, a storage section, a user IF, an output section, and an electroencephalogram processing data processing section. These include arithmetic units such as CPUs, memories such as ROMs and RAMs, storage devices such as HDDs and SSDs, monitors, communication IFs, etc., and are capable of using electroencephalograms obtained from the electroencephalogram measuring apparatus 10 according to a predetermined program. Convert to data format and perform well-known electroencephalogram analysis functions.
  • FIG. 3 is a front view of the band member 11.
  • FIG. 4 is a plan view of the band member 11.
  • the band member 11, which was curved in FIG. 1 is shown in a flat state.
  • the thickness direction of the band member 11 is the Z direction (the upward direction is +Z)
  • the longitudinal direction of the rectangular shape is the X direction (the right direction is +X)
  • the lateral direction is the Y direction.
  • the depth direction is +Y).
  • the back side (+Y side) will be described as the front side, and the near side ( ⁇ Y side) as the rear side.
  • the band member 11 is a plate-like body with a predetermined thickness t. Specifically, the band member 11 has a strip-like rectangular shape when viewed from above (plan view). A thickness t of the band member 11 is, for example, 0.1 mm to 30 mm.
  • the longitudinal length L1 of the rectangular shape is, for example, 20 cm to 65 cm.
  • the length L2 of the rectangular shape in the lateral direction is, for example, 0.5 cm to 5 cm.
  • the shape of the band member 11 is not limited to a strip-like rectangular shape. For example, an elongated elliptical shape may be used instead of a rectangular shape.
  • the thickness t of the band member 11 is not limited to a constant value, and the thickness may be partially thinned or thickened. In any case, the band member 11 follows the shape of the head 99 when the electroencephalogram measuring device 10 is worn on the head 99 .
  • a plurality of projecting portions 12 are provided integrally with the band member 11 on one surface of the band member 11 (band inner surface 11a on the head 99 side).
  • the plurality of protrusions 12 are arranged in a row at a predetermined pitch P when viewed from above.
  • the pitch P of the protrusions 12 (that is, the electrode portions 13) is, for example, 1 mm to 20 mm.
  • the pitch P is determined from the viewpoint of the number of electrode units 13 required for brain wave detection and the followability of the band member 11 to the head 99 .
  • FIG. 5 is a diagram showing one protrusion 12 by enlarging the region X1 in the front view of FIG. 6 is a cross-sectional view taken along line X2-X2 in FIG. 4, and is also a cross-sectional view of the protrusion 12 in FIG.
  • the protrusion 12 is formed integrally with the band member 11 so as to protrude from one surface of the band member 11 (in this case, the band inner surface 11a).
  • An attachment portion 50 is attached to the surface on which the protrusion 12 is not provided (here, the band outer surface 11b).
  • the height h1 of the triangular pyramid projection 12 is, for example, 0.5 mm to 20 mm, preferably 3 mm to 15 mm, and more preferably 4 mm to 10 mm.
  • the protrusion 12 As a specific shape of the triangular pyramid that the protrusion 12 exhibits, for example, as shown in FIG. Yes, they are oriented.
  • the vertices of the isosceles triangle are on one side (the front side (+Y side) in the drawing) in the short direction of the rectangular shape, and the base is on the other side (the rear side ( ⁇ Y side) in the drawing).
  • the apex of the triangular pyramid that is, the tip of the protrusion 12
  • the protruding portion 12 is oriented such that the front side (+Y side) is gentle and the rear side ( ⁇ Y side) is steep.
  • the direction of the projection 12 means "the direction in which the vertices of the isosceles triangle face”.
  • the protruding portion 12 is applied to the head 99 from the gentle side (+Y side), so that the subject does not feel discomfort (pain, etc.) and the hair is removed.
  • the electroencephalogram measurement device 10 can be attached smoothly with little resistance from the outside.
  • An electrode portion 13 made of a conductive member is provided at least at the tip of the protrusion 12 so as to cover the surface of the protrusion 12 .
  • the electrode portion 13 is provided on the surface of the projection 12 within a predetermined height h2 from the apex of the triangular pyramid.
  • the predetermined height h2 at which the electrode portion 13 is formed is, for example, 1 mm to 10 mm, depending on the height h1 of the projection portion 12.
  • the conductive member of the electrode portion 13 is, for example, a paste containing a highly conductive metal.
  • Good conductive metals include one or more selected from the group consisting of copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, or alloys thereof.
  • silver, silver chloride, and copper are suitable from the viewpoint of availability and conductivity.
  • the electrode part 13 When forming the electrode part 13 with a paste containing a highly conductive metal, the top of the protrusion 12 made of a rubber-like elastic body is dipped (immersion coating) in a paste-like conductive solution containing a highly conductive metal. do. As a result, the electrode portion 13 is formed on the surface of the tip portion of the projection portion 12 .
  • the electrode part 13 as a conductive resin layer may be formed by applying a conductive solution containing a conductive filler and a solvent to the tip portion of the protrusion 12 . At this time, by using the same type of material (silicone rubber) as the solvent for the protrusions 12, the adhesion of the electrode portions 13 (conductive resin layer) can be enhanced.
  • a conductive signal line 14 connected to the electrode portion 13 is provided inside the projection portion 12 .
  • the material, thickness, and position of the signal line 14 are not particularly limited as long as the connected electroencephalogram display device 20 or the like can appropriately measure electroencephalograms.
  • the electrode portion 13 is provided on the surface of the tip portion of the projection portion 12, for example, as shown in FIG. Line 14 is connected.
  • the signal line 14 is electrically connected to the electrode portion 13 covering the tip of the protrusion 12 and is arranged inside the protrusion 12 from the tip toward the band member 11 .
  • the signal line 14 can use a known one, and can be made of conductive fiber, for example.
  • conductive fiber one or more selected from the group consisting of metal fiber, metal-coated fiber, carbon fiber, conductive polymer fiber, conductive polymer-coated fiber, and conductive paste-coated fiber can be used. These may be used alone or in combination of two or more.
  • the metal material of the metal fibers and metal-coated fibers is not limited as long as it has conductivity, but copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, stainless steel, aluminum, silver/silver chloride. and alloys thereof. These may be used alone or in combination of two or more. Among these, silver can be used from the viewpoint of conductivity. Moreover, it is preferable that the metal material does not contain a metal such as chromium that causes a load on the environment.
  • the fiber materials of the metal-coated fibers, conductive polymer-coated fibers, and conductive paste-coated fibers are not particularly limited, but may be synthetic fibers, semi-synthetic fibers, or natural fibers. Among these, it is preferable to use polyester, nylon, polyurethane, silk, cotton, and the like. These may be used alone or in combination of two or more.
  • Examples of the carbon fibers include PAN-based carbon fibers and pitch-based carbon fibers.
  • the conductive polymer material of the conductive polymer fiber and the conductive polymer-coated fiber is, for example, a mixture of a conductive polymer such as polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene vinylene, polynaphthalene, and derivatives thereof and a binder resin, Alternatively, an aqueous solution of a conductive polymer such as PEDOT-PSS ((3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid)) is used.
  • PEDOT-PSS ((3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid)
  • the resin material contained in the conductive paste of the conductive paste-coated fiber is not particularly limited, but preferably has elasticity. It can contain one or more selected from the group consisting of propylene rubbers. These may be used alone or in combination of two or more.
  • the conductive filler contained in the conductive paste of the conductive paste-coated fiber is not particularly limited, and known conductive materials may be used, such as metal particles, metal fibers, metal-coated fibers, carbon black, acetylene black, graphite, carbon It may contain at least one selected from the group consisting of fibers, carbon nanotubes, conductive polymers, conductive polymer-coated fibers, and metal nanowires.
  • the metal constituting the conductive filler is not particularly limited, but for example, copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, silver/silver chloride, or at least one of these alloys. or, alternatively, two or more of these.
  • silver or copper is preferable because of its high conductivity and high availability.
  • the signal line 14 may be composed of twisted yarn obtained by twisting a plurality of linear conductive fibers. Thereby, disconnection of the signal line 14 at the time of deformation can be suppressed.
  • the coating of the conductive fiber means not only covering the outer surface of the fiber material, but also, in the case of a twisted yarn obtained by twisting single fibers, a metal or a conductive polymer is added between the fibers in the twisted yarn. , or impregnated with a conductive paste to cover each single fiber constituting the twisted yarn.
  • the tensile elongation at break of the signal line 14 is, for example, 1% to 50%, preferably 1.5% to 45%. By setting the value within such a numerical range, it is possible to suppress excessive deformation of the protrusion 12 while suppressing breakage during deformation.
  • the signal line 14 can adopt various arrangement structures as long as it is a mode that conducts the inside of the protrusion 12 .
  • the tip of the signal line 14 may be any of a protruding structure, a structure on substantially the same plane, and a buried structure with respect to the tip of the protrusion 12 or the inclined surface of the tip. From the viewpoint of connection stability with the electrode portion 13, a projecting structure may be used. A projecting portion at the tip of the signal line 14 is partially or entirely covered with the electrode portion 13 .
  • the protruding structure of the tip of the signal line 14 may be unfolded, folded, or wrapped around the surface of the tip of the projection 12 . Also, the signal line 14 may not coincide with the vertical line extending from the tip (apex) of the protrusion 12 and may be inclined with respect to the vertical line.
  • the signal line 14 is connected to the lower end of the electrode portion 13 (on the side of the band member 11), extends along the slope (surface) of the protrusion 12, and extends from a predetermined position. It may be in the form of being drawn into the protrusion 12 .
  • the end on the side connected to the electrode portion 13 and the end on the opposite side may be individually pulled out of the band member 11 .
  • the plurality of signal lines 14 may be connected to a connector or the like provided on the band outer surface 11b of the band member 11 from inside the band member 11 and organized.
  • the band member 11 and the protrusion 12 are rubber-like elastic bodies, more specifically, rubber or thermoplastic elastomer (also simply referred to as “elastomer (TPE)").
  • rubber include silicone rubber.
  • thermoplastic elastomers include styrene-based TPE (TPS), olefin-based TPE (TPO), vinyl chloride-based TPE (TPVC), urethane-based TPE (TPU), ester-based TPE (TPEE), and amide-based TPE (TPAE).
  • the band member 11 and projections 12 of the electroencephalogram measurement device 10 are made of silicone rubber, the surface of the band member 11 (band inner surface 11a and band outer surface 11b) measured at 37°C in accordance with JIS K 6253 (1997).
  • Rubber hardness A is, for example, 15 or more and 55 or less.
  • the silicone rubber-based curable composition will be described.
  • the silicone rubber can be composed of a cured product of a silicone rubber-based curable composition.
  • the curing step of the silicone rubber-based curable resin composition is, for example, heating at 100 to 250° C. for 1 to 30 minutes (primary curing), followed by post-baking (secondary curing) at 100 to 200° C. for 1 to 4 hours. It is done by
  • An insulating silicone rubber is a silicone rubber that does not contain a conductive filler
  • a conductive silicone rubber is a silicone rubber that contains a conductive filler
  • the silicone rubber-based curable composition according to this embodiment can contain a vinyl group-containing organopolysiloxane (A).
  • the vinyl group-containing organopolysiloxane (A) is a polymer that is the main component of the silicone rubber-based curable composition of the present embodiment.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of vinyl group-containing linear organopolysiloxane.
  • the vinyl group-containing linear organopolysiloxane of the same kind includes at least the same vinyl group with the same functional group and has a linear shape. can be different.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different vinyl group-containing organopolysiloxanes.
  • the vinyl group-containing organopolysiloxane (A) can contain a vinyl group-containing linear organopolysiloxane (A1) having a linear structure.
  • the vinyl group-containing linear organopolysiloxane (A1) has a linear structure and contains vinyl groups, and the vinyl groups serve as cross-linking points during curing.
  • the vinyl group content of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but for example, it preferably has two or more vinyl groups in the molecule and is 15 mol % or less. , 0.01 to 12 mol %.
  • the amount of vinyl groups in the vinyl group-containing linear organopolysiloxane (A1) is optimized, and a network can be reliably formed with each component described later.
  • " ⁇ " means including both numerical values.
  • the vinyl group content is the mol % of the vinyl group-containing siloxane units when the total units constituting the vinyl group-containing linear organopolysiloxane (A1) are taken as 100 mol %. .
  • one vinyl group is considered to be one vinyl group-containing siloxane unit.
  • the degree of polymerization of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, it is, for example, preferably in the range of about 1,000 to 10,000, more preferably in the range of about 2,000 to 5,000.
  • the degree of polymerization can be determined, for example, as a polystyrene-equivalent number-average polymerization degree (or number-average molecular weight) in GPC (gel permeation chromatography) using chloroform as a developing solvent.
  • the specific gravity of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but is preferably in the range of about 0.9 to 1.1.
  • the heat resistance, flame retardancy, chemical stability, etc. of the obtained silicone rubber are improved by using those having the degree of polymerization and specific gravity within the ranges described above. can be improved.
  • vinyl group-containing linear organopolysiloxane (A1) those having a structure represented by the following formula (1) are particularly preferable.
  • R 1 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group, or a hydrocarbon group of a combination thereof having 1 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred.
  • the alkenyl group having 1 to 10 carbon atoms includes, for example, vinyl group, allyl group, butenyl group, etc. Among them, vinyl group is preferred.
  • the aryl group having 1 to 10 carbon atoms includes, for example, a phenyl group.
  • R 2 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, or a hydrocarbon group combining these.
  • the alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferable.
  • alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups.
  • the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • R 3 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group combining these.
  • the alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferable.
  • Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group.
  • examples of substituents for R 1 and R 2 in formula (1) include methyl group and vinyl group, and examples of substituents for R 3 include methyl group.
  • a plurality of R 1 are independent of each other and may be different or the same. Furthermore, the same applies to R 2 and R 3 .
  • m and n are the numbers of repeating units constituting the vinyl group-containing linear organopolysiloxane (A1) represented by formula (1), m is an integer of 0 to 2000, and n is 1000 to 10000. is an integer of m is preferably 0-1000 and n is preferably 2000-5000.
  • vinyl group-containing linear organopolysiloxane (A1) represented by formula (1) include, for example, those represented by the following formula (1-1).
  • R 1 and R 2 are each independently a methyl group or a vinyl group, and at least one is a vinyl group.
  • the vinyl group-containing linear organopolysiloxane (A1) a first vinyl group-containing vinyl group having a vinyl group content of 2 or more vinyl groups in the molecule and not more than 0.4 mol% It contains a linear organopolysiloxane (A1-1) and a second vinyl group-containing linear organopolysiloxane (A1-2) having a vinyl group content of 0.5 to 15 mol%. It is preferable to have As crude rubber, which is a raw material of silicone rubber, a first vinyl group-containing linear organopolysiloxane (A1-1) having a general vinyl group content and a second vinyl group-containing linear organopolysiloxane having a high vinyl group content were used.
  • the vinyl groups can be unevenly distributed, and the crosslink density can be more effectively formed in the crosslink network of the silicone rubber. As a result, the tear strength of silicone rubber can be increased more effectively.
  • the vinyl group-containing linear organopolysiloxane (A1) for example, a unit in which R 1 is a vinyl group and/or a unit in which R 2 is a vinyl group in the above formula (1-1) , a first vinyl group-containing linear organopolysiloxane (A1-1) having 2 or more in the molecule and containing 0.4 mol% or less, and a unit in which R 1 is a vinyl group and / or R It is preferable to use a second vinyl group-containing linear organopolysiloxane (A1-2) containing 0.5 to 15 mol % of units in which 2 is a vinyl group.
  • the first vinyl group-containing linear organopolysiloxane (A1-1) preferably has a vinyl group content of 0.01 to 0.2 mol %.
  • the second vinyl group-containing linear organopolysiloxane (A1-2) preferably has a vinyl group content of 0.8 to 12 mol %.
  • (A1-1) and (A1-2) are not particularly limited, but for example, the weight ratio of (A1-1):(A1-2) is preferably 50:50 to 95:5, and 80:20 to 90: 10 is more preferred.
  • the first and second vinyl group-containing linear organopolysiloxanes (A1-1) and (A1-2) may be used singly or in combination of two or more. good.
  • the vinyl group-containing organopolysiloxane (A) may also contain a vinyl group-containing branched organopolysiloxane (A2) having a branched structure.
  • the silicone rubber-based curable composition of the present embodiment may contain a cross-linking agent.
  • Cross-linking agents can include organohydrogenpolysiloxanes (B).
  • Organohydrogenpolysiloxane (B) is classified into linear organohydrogenpolysiloxane (B1) having a linear structure and branched organohydrogenpolysiloxane (B2) having a branched structure. Either or both may be included.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of cross-linking agent.
  • the same type of cross-linking agent should have at least a common structure such as a linear structure or a branched structure, and may contain different molecular weight distributions and different functional groups in the molecule, and the amount added may be different.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different cross-linking agents.
  • the linear organohydrogenpolysiloxane (B1) has a linear structure and a structure ( ⁇ Si—H) in which hydrogen is directly bonded to Si, and is the vinyl group-containing organopolysiloxane (A). It is a polymer that undergoes a hydrosilylation reaction with other vinyl groups and other vinyl groups contained in other components of the silicone rubber-based curable composition to crosslink these components.
  • the molecular weight of the linear organohydrogenpolysiloxane (B1) is not particularly limited, for example, the weight average molecular weight is preferably 20,000 or less, more preferably 1,000 or more and 10,000 or less.
  • the weight average molecular weight of the linear organohydrogenpolysiloxane (B1) can be measured, for example, by polystyrene conversion in GPC (gel permeation chromatography) using chloroform as a developing solvent.
  • the linear organohydrogenpolysiloxane (B1) does not have a vinyl group. Thereby, it is possible to accurately prevent the progress of the cross-linking reaction in the molecule of the linear organohydrogenpolysiloxane (B1).
  • linear organohydrogenpolysiloxane (B1) for example, one having a structure represented by the following formula (2) is preferably used.
  • R 4 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, a hydrocarbon group combining these groups, or a hydride group.
  • the alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred.
  • alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups.
  • the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • R 5 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, a hydrocarbon group combining these, or a hydride group.
  • alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group and propyl group, with methyl group being preferred.
  • alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups.
  • Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • a plurality of R 4 are independent of each other and may be different from each other or may be the same. The same is true for R5 . However, at least two or more of the plurality of R 4 and R 5 are hydride groups.
  • R 6 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group combining these.
  • the alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferable.
  • Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group.
  • a plurality of R 6 are independent from each other and may be different from each other or may be the same.
  • substituents for R 4 , R 5 and R 6 in formula (2) include methyl group and vinyl group, and methyl group is preferred from the viewpoint of preventing intramolecular cross-linking reaction.
  • m and n are the numbers of repeating units constituting the linear organohydrogenpolysiloxane (B1) represented by formula (2), m is an integer of 2 to 150, and n is an integer of 2 to 150. is.
  • m is an integer from 2-100 and n is an integer from 2-100.
  • the straight-chain organohydrogenpolysiloxane (B1) may be used alone or in combination of two or more.
  • the branched organohydrogenpolysiloxane (B2) has a branched structure, it is a component that forms regions with a high crosslink density and greatly contributes to the formation of a loose and dense structure of crosslink density in the silicone rubber system. Further, like the linear organohydrogenpolysiloxane (B1), it has a structure ( ⁇ Si—H) in which hydrogen is directly bonded to Si, and in addition to the vinyl group of the vinyl group-containing organopolysiloxane (A), silicone It is a polymer that undergoes a hydrosilylation reaction with the vinyl groups of the components blended in the rubber-based curable composition to crosslink these components.
  • the specific gravity of the branched organohydrogenpolysiloxane (B2) is in the range of 0.9 to 0.95.
  • the branched organohydrogenpolysiloxane (B2) does not have a vinyl group. Thereby, it is possible to accurately prevent the progress of the cross-linking reaction in the molecule of the branched organohydrogenpolysiloxane (B2).
  • branched organohydrogenpolysiloxane (B2) one represented by the following average compositional formula (c) is preferable.
  • R 7 is a monovalent organic group, a is an integer ranging from 1 to 3, m is the number of H a (R 7 ) 3-a SiO 1/2 units, n is SiO 4/ is a number of 2 units)
  • R 7 is a monovalent organic group, preferably a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an aryl group, or a hydrocarbon group combining these.
  • the alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred.
  • Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • a is the number of hydride groups (hydrogen atoms directly bonded to Si) and is an integer in the range of 1 to 3, preferably 1.
  • m is the number of H a (R 7 ) 3-a SiO 1/2 units
  • n is the number of SiO 4/2 units.
  • the branched organohydrogenpolysiloxane (B2) has a branched structure.
  • the linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpolysiloxane (B2) differ in that their structures are linear or branched.
  • the number of bound alkyl groups R (R/Si) is 1.8 to 2.1 for the linear organohydrogenpolysiloxane (B1) and 0.8 to 1 for the branched organohydrogenpolysiloxane (B2). .7 range.
  • the branched organohydrogenpolysiloxane (B2) has a branched structure, for example, when heated to 1000° C. at a heating rate of 10° C./min in a nitrogen atmosphere, the residual amount is 5% or more. becomes.
  • the straight-chain organohydrogenpolysiloxane (B1) is straight-chain, the amount of residue after heating under the above conditions is almost zero.
  • branched organohydrogenpolysiloxane (B2) include those having a structure represented by the following formula (3).
  • R 7 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, a hydrocarbon group combining these, or a hydrogen atom.
  • the alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred.
  • Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group.
  • the substituent of R7 include a methyl group and the like.
  • a plurality of R 7 are independent of each other and may be different from each other or may be the same.
  • the branched organohydrogenpolysiloxane (B2) may be used alone or in combination of two or more.
  • the amount of hydrogen atoms (hydride groups) directly bonded to Si is not particularly limited.
  • linear organohydrogenpolysiloxane (B1) and branched organohydrogenpolysiloxane are The total amount of hydride groups in the siloxane (B2) is preferably from 0.5 to 5 mol, more preferably from 1 to 3.5 mol.
  • the silicone rubber-based curable composition according to this embodiment contains a non-conductive filler.
  • the non-conductive filler may contain silica particles (C) as needed. Thereby, the hardness and mechanical strength of the elastomer can be improved.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of non-conductive filler.
  • Non-conductive fillers of the same type may have at least common constituent materials, and may differ in particle size, specific surface area, surface treatment agent, or addition amount thereof.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different silane coupling agents.
  • the silica particles (C) are not particularly limited, but for example, fumed silica, calcined silica, precipitated silica, etc. are used. These may be used alone or in combination of two or more.
  • the silica particles (C) preferably have a BET specific surface area of, for example, 50 to 400 m 2 /g, more preferably 100 to 400 m 2 /g. Also, the average primary particle size of the silica particles (C) is, for example, preferably 1 to 100 nm, more preferably about 5 to 20 nm.
  • silica particles (C) having a specific surface area and an average particle size within the above ranges, the hardness and mechanical strength of the formed silicone rubber can be improved, especially the tensile strength can be improved.
  • the silicone rubber-based curable composition of the present embodiment can contain a silane coupling agent (D).
  • Silane coupling agent (D) can have a hydrolyzable group. The hydrolyzable group is hydrolyzed with water to form a hydroxyl group, and the hydroxyl group undergoes a dehydration condensation reaction with the hydroxyl group on the surface of the silica particle (C), thereby modifying the surface of the silica particle (C).
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of silane coupling agent.
  • the silane coupling agents of the same kind should have at least a common functional group, and may differ in other functional groups in the molecule and in the amount added.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different silane coupling agents.
  • this silane coupling agent (D) can contain a silane coupling agent having a hydrophobic group.
  • the hydrophobic group is imparted to the surface of the silica particles (C), so that the cohesive force of the silica particles (C) in the silicone rubber-based curable composition and further in the silicone rubber is reduced (hydrogen aggregation due to bonding is reduced), and as a result, it is presumed that the dispersibility of the silica particles (C) in the silicone rubber-based curable composition is improved. This increases the interface between the silica particles (C) and the rubber matrix, increasing the reinforcing effect of the silica particles (C).
  • the slipperiness of the silica particles (C) within the matrix is improved when the rubber matrix is deformed.
  • the improved dispersibility and slipperiness of the silica particles (C) improve the mechanical strength (for example, tensile strength and tear strength) of the silicone rubber due to the silica particles (C).
  • the silane coupling agent (D) can contain a silane coupling agent having a vinyl group.
  • vinyl groups are introduced onto the surfaces of the silica particles (C). Therefore, during curing of the silicone rubber-based curable composition, that is, a hydrosilylation reaction occurs between the vinyl group of the vinyl group-containing organopolysiloxane (A) and the hydride group of the organohydrogenpolysiloxane (B). , When a network (crosslinked structure) is formed by these, the vinyl groups possessed by the silica particles (C) also participate in the hydrosilylation reaction with the hydride groups possessed by the organohydrogenpolysiloxane (B). Silica particles (C) also come to be taken in. As a result, it is possible to reduce the hardness and increase the modulus of the formed silicone rubber.
  • silane coupling agent (D) a silane coupling agent having a hydrophobic group and a silane coupling agent having a vinyl group can be used together.
  • silane coupling agent (D) examples include those represented by the following formula (4).
  • n represents an integer of 1-3.
  • Y represents a functional group having a hydrophobic group, a hydrophilic group or a vinyl group, and when n is 1 it is a hydrophobic group, and when n is 2 or 3 at least one of It is a hydrophobic group.
  • X represents a hydrolyzable group.
  • the hydrophobic group is an alkyl group having 1 to 6 carbon atoms, an aryl group, or a hydrocarbon group having a combination thereof, and examples thereof include a methyl group, an ethyl group, a propyl group, a phenyl group, and the like. Methyl groups are preferred.
  • the hydrophilic group includes, for example, a hydroxyl group, a sulfonic acid group, a carboxyl group, a carbonyl group, etc. Among them, a hydroxyl group is particularly preferable.
  • the hydrophilic group may be contained as a functional group, but is preferably not contained from the viewpoint of imparting hydrophobicity to the silane coupling agent (D).
  • the hydrolyzable group includes an alkoxy group such as a methoxy group and an ethoxy group, a chloro group, a silazane group, and the like.
  • a silazane group is preferable because of its high reactivity with the silica particles (C).
  • a compound having a silazane group as a hydrolyzable group has two structures of (Y n —Si—) in the above formula (4) due to its structural characteristics.
  • silane coupling agent (D) represented by the above formula (4) are as follows.
  • Those having a hydrophobic group as the functional group include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, alkoxysilanes such as n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane; hexamethyldisilazane.
  • silane coupling agent having a trimethylsilyl group containing one or more selected from the group consisting of hexamethyldisilazane, trimethylchlorosilane, trimethylmethoxysilane, and trimethylethoxysilane is preferred.
  • Examples of those having a vinyl group as the functional group include methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, vinyltriethoxysilane, and vinyltrimethoxysilane.
  • alkoxysilanes such as silane and vinylmethyldimethoxysilane
  • chlorosilanes such as vinyltrichlorosilane and vinylmethyldichlorosilane
  • divinyltetramethyldisilazane divinyltetramethyldisilazane.
  • a silane coupling agent having a vinyl group-containing organosilyl group containing one or more selected from the group consisting of methyldimethoxysilane is preferred.
  • silane coupling agent (D) contains two kinds of a silane coupling agent having a trimethylsilyl group and a silane coupling agent having a vinyl group-containing organosilyl group
  • those having a hydrophobic group include hexamethyldisilazane, Divinyltetramethyldisilazane is preferably included as one having a vinyl group.
  • the ratio of (D1) and (D2) is not particularly limited, but for example, (D1):(D2) in a weight ratio of 1:0.001 to 1:0.35, preferably 1:0.01 to 1:0.20, more preferably 1:0.03 to 1:0 .15. Desired physical properties of the silicone rubber can be obtained by setting it to such a numerical range. Specifically, it is possible to balance the dispersibility of silica in the rubber and the crosslinkability of the rubber.
  • the lower limit of the content of the silane coupling agent (D) is preferably 1% by mass or more with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A). It is more preferably at least 5% by mass, even more preferably at least 5% by mass.
  • the upper limit of the content of the silane coupling agent (D) is preferably 100% by mass or less, and 80% by mass or less, with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A). It is more preferable that the content is 40% by mass or less.
  • the silicone rubber can have appropriate mechanical properties.
  • the silicone rubber-based curable composition according to this embodiment may contain a catalyst.
  • the catalyst may contain platinum or a platinum compound (E).
  • Platinum or a platinum compound (E) is a catalytic component that acts as a catalyst during curing.
  • the amount of platinum or platinum compound (E) added is a catalytic amount.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of catalyst. Catalysts of the same kind may have at least common constituent materials, and the catalysts may contain different compositions and may differ in addition amount.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different catalysts.
  • platinum or platinum compound (E) a known one can be used, for example, platinum black, platinum supported on silica or carbon black, chloroplatinic acid or an alcohol solution of chloroplatinic acid, A complex salt of platinic acid and olefin, a complex salt of chloroplatinic acid and vinyl siloxane, and the like are included.
  • the platinum or platinum compound (E) may be used alone or in combination of two or more.
  • the content of platinum or platinum compound (E) in the silicone rubber-based curable composition means the amount of catalyst, and can be set as appropriate.
  • (A), silica particles (C), the total amount of 100 parts by weight of the silane coupling agent (D), platinum group metal is an amount of 0.01 to 1000 ppm by weight unit, preferably 0. The amount is 1 to 500 ppm.
  • the silicone rubber-based curable composition according to the present embodiment may contain water (F) in addition to the above components (A) to (E).
  • Water (F) is a component that functions as a dispersion medium for dispersing each component contained in the silicone rubber-based curable composition and contributes to the reaction between the silica particles (C) and the silane coupling agent (D). . Therefore, the silica particles (C) and the silane coupling agent (D) can be linked to each other more reliably in the silicone rubber, and uniform properties can be exhibited as a whole.
  • the silicone rubber-based curable composition of the present embodiment may further contain other components in addition to the above components (A) to (F).
  • Other components include silica particles (C) such as diatomaceous earth, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, cerium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, glass wool, and mica.
  • additives such as inorganic fillers, reaction inhibitors, dispersants, pigments, dyes, antistatic agents, antioxidants, flame retardants, and thermal conductivity improvers.
  • the conductive solution (conductive silicone rubber composition) according to the present embodiment contains the conductive filler and solvent in addition to the silicone rubber-based curable composition containing no conductive filler.
  • solvents can be used as the solvent, and for example, a high boiling point solvent can be included. These may be used alone or in combination of two or more.
  • solvents examples include aliphatic hydrocarbons such as pentane, hexane, cyclohexane, heptane, methylcyclohexane, ethylcyclohexane, octane, decane, dodecane, and tetradecane; benzene, toluene, ethylbenzene, xylene, trifluoromethylbenzene; , aromatic hydrocarbons such as benzotrifluoride; diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, cyclopentyl ethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, 1,4-dioxane, 1,3 - ethers such as dioxane and tetrahydrofuran; haloalkanes such as
  • the conductive solution can have a viscosity suitable for various coating methods such as spray coating and dip coating.
  • the lower limit of the content of the silica particles (C) contained in the electrode portion 13 is the amount of the silica particles (C) and the conductive filler. For example, it is 1% by mass or more, preferably 3% by mass or more, and more preferably 5% by mass or more, relative to the total amount of 100% by mass. Thereby, the mechanical strength of the electrode portion 13 can be improved.
  • the upper limit of the content of the silica particles (C) contained in the electrode portion 13 is, for example, 20% by mass or less with respect to 100% by mass of the total amount of the silica particles (C) and the conductive filler, It is preferably 15% by mass or less, more preferably 10% by mass or less. Thereby, it is possible to achieve a balance between conductivity, mechanical strength, and flexibility in the electrode portion 13 .
  • a conductive silicone rubber can be obtained by heating and drying the conductive solution as necessary.
  • the conductive silicone rubber may be configured without silicone oil. As a result, it is possible to suppress a decrease in conductivity due to bleeding out of the silicone oil onto the surface of the electrode portion 13 .
  • the band member 11 and the plurality of protrusions 12 are seamlessly joined by molding a curable elastomer composition such as a silicone rubber-based curable composition. you get a body As a result, the electroencephalogram measurement device 10 that is excellent in flexibility (that is, flexibility that can follow the head 99 ) and strength and that can follow the head 99 well can be realized.
  • the rubber hardness A ie flexibility, can be controlled by appropriately selecting the type and amount of each component contained in the silicone rubber curable composition, the preparation method of the silicone rubber curable composition, and the like.
  • An example of the method for manufacturing the band member 11 can include the following steps. First, using a mold, the silicone rubber-based curable composition is molded under heat and pressure to obtain a molded body comprising the band member 11 and the protrusions 12 . Subsequently, the signal wire 14 was passed through the interior of each columnar portion of the molded body obtained using a sewing needle. A pasty conductive solution is dip-coated on the surface (predetermined height h2) of the tip portion of the protruding portion 12 of the molded body obtained thereafter, and post-curing is performed after heating and drying. Thereby, the electrode portion 13 can be formed on the surface of the projection portion 12 . As described above, the band member 11 can be manufactured. During the molding process, insert molding may be used in which the silicone rubber-based curable composition is introduced into the molding space in which the signal line 14 is arranged, and pressurized and heat-molded.
  • the attachment portions 50 are attached to both longitudinal ends of the band outer surface 11 b of the band member 11 .
  • the attachment portion 50 functions as a fixing portion that attaches the reference electrode 40 to the band member 11 and also functions as an adjustment portion that adjusts the attachment state of the band member 11 to the head portion 99 .
  • the mounting portion 50 has a plate member 52 and a locking portion 51 .
  • the plate-like member 52 has a long strip shape with a plurality of rows of teeth.
  • the locking portion 51 is provided with an opening having a claw formed therein, and the plate-like member 52 is inserted through the opening and locked at a desired position. Further, the lock portion 51 is provided with a releasing portion that releases the locked state in conjunction with the claw.
  • Various plastics can be used as the material of the mounting portion 50, although there is no particular limitation. From the viewpoint of physical properties, workability, cost, etc., 66 nylon can be preferably used.
  • a hook-and-loop fastener mechanism As examples of the mounting portion 50, a hook-and-loop fastener mechanism, a cam buckle mechanism, a buckle mechanism, a button mechanism, or the like can be adopted.
  • FIG. 8 is a perspective view showing the reference electrode 40 with the female snap button electrode 49 provided at the end of the cable portion 60 removed.
  • FIG. 9 is an exploded perspective view of the reference electrode 40.
  • FIG. 10A and 10B are five views of the reference electrode 40.
  • FIG. 10A is a front view
  • FIG. 10B is a left side view
  • FIG. 10C is a right side view
  • FIG. 10D is a plan view.
  • FIG. 10(e) is a bottom view.
  • FIG. 11 is a cross-sectional view of the reference electrode 40, showing the X3-X3 cross section of FIG. 10(d).
  • the reference electrode 40 functions as an electrode device that is attached to the outer ear 80 and acquires a biopotential.
  • the reference electrode 40 includes a mounting portion 70 to be mounted in the concave shape of the outer ear 80, a male snap button electrode 48, and a portion provided on the mounting portion 70 that contacts the outer ear 80 and is a biopotential electrode made of a conductive material. and an acquisition unit 46 .
  • the male snap button electrode 48 is detachably connected to a female snap button electrode 49 provided at the end of the cable portion 60 .
  • the turbinate attachment part 45 is fitted into the turbinate 81, and the lower surface 43 of the base 41 is arranged to face the anterior crus.
  • the reference electrodes 40 are attached to both ears in this embodiment, they may be attached to only one ear from the viewpoint of function as a reference electrode.
  • the mounting portion 70 has a base portion 41 , an extension portion 44 , a concha navicular mounting portion 45 , and a biopotential acquisition portion 46 .
  • the base portion 41, the extending portion 44, and the concha-navus mounting portion 45 are integrally formed of a resin material as a mounting portion main body.
  • the resin material for example, the elastic material exemplified as the material of the band member 11 can be used.
  • a silicone resin can be preferably used as the elastic material.
  • the entire mounting portion body (the base portion 41, the extension portion 44, and the turbinate mounting portion 45) may be made of a conductive material such as silicone rubber containing a conductive filler.
  • the base portion 41 has a predetermined thickness and a substantially disk shape.
  • the thickness can be, for example, about 1 to 2 mm.
  • the disc-shaped outer diameter can be, for example, about 10 to 15 mm in diameter.
  • a male snap button electrode 48 is attached to the upper surface 42 of the base 41 .
  • the outer diameter of the male snap button electrode 48 can be approximately the same as the outer diameter of the disc-shaped base 41 .
  • the extending portion 44 integrally extends from the side portion of the base portion 41 by a predetermined length.
  • the upper surface 42 of the base portion 41 and the upper surface of the extension portion 44 are flush with each other.
  • ⁇ Auricle turbinate mounting part 45> The turbinate attachment part 45 protrudes from the lower surface side of the extension part 44 by a predetermined length.
  • the turbinate attachment part 45 fits into the concave shape (hollow) of the turbinate 81 when the reference electrode 40 is attached to the outer ear 80 .
  • the size of the turbinate mounting part 45 is such that when the base part 41 is placed on the contralateral leg, it fits into the concave turbinate 81, and the biopotential acquisition part 46 at the tip is the size of the turbinate. It is sized to contact 81 .
  • the protrusion length of the turbinate attachment part 45 can be, for example, 5 to 10 mm.
  • the tip of the turbinate attachment part 45 has a curved surface so that pain does not occur when it comes into contact with the turbinate 81 .
  • the biopotential acquisition part 46 is provided by coating the tip surface of the conchal scapular attachment part 45 with a conductive material.
  • a conductive material the materials exemplified as the conductive member of the electrode portion 13 of the band member 11 can be used, for example, silver paste can be used. That is, it is obtained by dipping (immersion coating) the tip surface of the turbinate attachment part 45 in a pasty conductive solution containing a highly conductive metal.
  • the method of providing the biopotential acquisition part 46 on the surface of the projecting tip of the concha sac mounting part 45 can be the same as the method of providing the electrode part 13 .
  • ⁇ Signal line 47> A signal path from the biopotential acquisition unit 46 to the male snap button electrode 48 will be described with reference to the cross-sectional view of FIG. As a signal path, a signal line 47 passing through the interior of the mounting portion main body (the base portion 41, the extension portion 44, and the conchal scapula mounting portion 45) is provided.
  • the signal line 47 may be made of the same material as the signal line 14 of the band member 11 and have the same configuration. It should be noted that the signal line 47 may be omitted when the mounting portion main body is made of a conductive material.
  • the signal line 47 is electrically connected to the biopotential acquisition part 46 covering the tip surface of the concha navicular mounting part 45 , passes through the extension part 44 from the tip and the interior of the base 41 , and extends to the upper surface 42 of the base 41 . Protruding.
  • a male snap button electrode 48 is attached so as to press the projecting portion of the upper surface 42 .
  • the reference electrode 40 when attaching the electrode device (here, the reference electrode 40) that acquires the biopotential to the outer ear 80, it is easy to attach and discomfort such as pain is less likely to occur. Since the reference electrode 40 is accommodated in the concave shape of the area surrounded by the auricle, it is possible to suppress the influence on the appearance. Since there is no part protruding from the edge of the ear (that is, the outer ear 80), it is possible to prevent it from coming off due to catching. In addition, when the reference electrode 40 is attached to the outer ear 80 , it is easy to attach the reference electrode 40 because only the turbinate attachment part 45 is engaged with the turbinate sac 81 . Further, by adjusting the length of the cable portion 60 between the reference electrode 40 and the band member 11, the band member 11 can appropriately follow the head portion 99. FIG.
  • the reference electrode 140 of this embodiment will be described with reference to FIGS. 12 to 14.
  • FIG. The reference electrode 140 of this embodiment is a modified example of the first embodiment, and mainly different parts will be explained, and explanations of the same parts will be omitted as appropriate.
  • FIG. 12 is a diagram showing a state in which the reference electrode 140 is attached to the outer ear 80.
  • FIG. FIG. 13 is a perspective view of the reference electrode 140.
  • FIG. 14A and 14B are five views of the reference electrode 140.
  • FIG. 14A is a front view
  • FIG. 14B is a left side view
  • FIG. 14C is a right side view
  • FIG. 14D is a plan view.
  • FIG. 14(e) is a bottom view.
  • the reference electrode 140 of this embodiment includes a mounting portion 170 that is mounted in the concave shape of the outer ear 80, a male snap button electrode 48, and a portion that is provided in the mounting portion 170 and contacts the outer ear 80, and is made of a conductive material. biopotential acquisition units 146a and 146b.
  • the mounting portion 170 is made of a resin material as in the first embodiment, and includes a substantially disc-shaped base portion 141, an extension portion 144a extending from the base portion 141, and an extension portion 144a extending downward from the extension portion 144a. and a turbinate attachment part 145a.
  • a biopotential acquisition section 146a made of the same conductive material as in the first embodiment is provided on the tip surface of the concha sac mounting section 145a.
  • the mounting portion 170 has an extension portion 144b and a scaphoid mounting portion 145b.
  • the extending portion 144b extends integrally from the base portion 141 from a position facing the extending portion 144a with the base portion 141 interposed therebetween.
  • the scaphoid mounting portion 145b integrally extends downward from the extension portion 144b.
  • the scaphoid mounting part 145b is fitted into the concave shape (hollow) of the scaphoid 83. As shown in FIG.
  • the size of the scaphoid mounting part 145 b is such that the biopotential acquisition part 146 b at the tip thereof contacts the scaphoid 83 .
  • the shape and size of the scaphoid mounting part 145b may be the same as or different from the turbinate scapula mounting part 145a.
  • the scaphoid mounting portion 145b is provided shorter than the concha navicular mounting portion 145a.
  • a biopotential acquiring section 146b is provided on the distal surface of the scaphoid mounting section 145b.
  • the reference electrode 140 when the reference electrode 140 is attached to the outer ear 80, the turbinate attachment part 145a fits into the turbinate scapula 81, and the scaphoid attachment part 145b fits into the scaphoid fossa 83. , the reference electrode 140 is locked to the outer ear 80 at two points. As a result, the same effect as in the first embodiment can be obtained, and the attached state of the reference electrode 140 can be stabilized. In addition, since the reference potential can be obtained at two points, the scapula 81 and the scaphoid fossa 83, a stable reference potential can be obtained.
  • the turbinate scapula attachment part 145a is fitted into the scaphoid fossa 83.
  • the scaphoid mounting part 145b may be used to fit the turbinate navicular 81 .
  • FIG. 15 is a diagram showing a state in which the reference electrode 240 is attached to the outer ear 80.
  • FIG. FIG. 16 is a top perspective view of the reference electrode 240.
  • FIG. FIG. 17 is a bottom perspective view of the reference electrode 240.
  • FIG. 18 are five views of the reference electrode 240, FIG. 18(a) is a front view, FIG. 18(b) is a left side view, FIG. 18(c) is a right side view, and FIG. 18(d) is a plan view.
  • FIG. 18(e) is a bottom view.
  • the reference electrode 240 includes a mounting portion 270 and a male snap button electrode 48 , is mounted in the auricle hole 84 of the outer ear 80 and is locked to the turbinate 81 .
  • the mounting portion 270 is made of the same resin material as in the first and second embodiments, and includes an auricle hole mounting portion 271 that is mounted in the auricle hole 84 , an extension portion 244 , and a turbinate 81 . and a turbinate attachment 245 to be locked.
  • the auricle hole mounting part 271 has a cylindrical base part 241 and a curved surface part 242 provided on the lower side of the base part 241 , and a part of the curved surface part 242 is fitted into the auricle hole 84 .
  • the sizes of the base portion 241 and the curved surface portion 242 are such that they can be fitted into the auricle hole 84 .
  • a male snap button electrode 48 is attached to the upper surface 243 of the base 241 .
  • a biopotential acquiring portion 246b made of the same conductive material as in the first embodiment is provided in the lower surface region of the curved surface portion 242. It contacts the via hole 84 .
  • the extending portion 244 extends like a plate from the upper side surface of the base portion 241 .
  • the upper surface 243 of the base portion 241 and the upper surface of the extending portion 244 are flush with each other.
  • a convexly extending turbinate attachment part 245 is provided on the lower surface of the extending tip of the extending part 244 . As shown in FIGS. 17 and 18(e), the turbinate attachment part 245 has a shape that draws an arc when viewed from below, and is related to the concave shape of the crustacean 81. It is easier to stop.
  • a biopotential acquisition section 246a made of the same conductive material as in the first embodiment is provided at the tip of the turbinate attachment section 245 .
  • the turbinate attachment part 245 fits into the concave shape (hollow) of the turbinate 81 when the reference electrode 240 is attached to the outer ear 80 , and the biopotential acquisition part 246 a contacts the turbinate 81 .
  • the concha navicular mounting portion 245 may be configured as a scaphoid mounting portion that fits into the scaphoid fossa 83 .
  • extension part 244 by extending the extension part 244 longer, it is possible to realize a configuration in which the extension part 244 is fitted into the scaphoid fossa 83 that is longer than the distance from the auricle hole 84 to the turbinate scapula 81 .
  • the reference electrode 240 when the reference electrode 240 is attached to the outer ear 80, the auricle hole attachment part 271 fits into the auricle hole 84, and the concha navula attachment part 245 fits into the concha navula 81. , the reference electrode 240 is locked to the outer ear 80 at two points. This provides the same effects as those of the first and second embodiments.
  • FIG. 19 is a diagram showing a state in which the reference electrode 340 is attached to the outer ear 80.
  • FIG. FIG. 20 is a perspective view of the reference electrode 340.
  • FIG. 21A and 21B are five views of the reference electrode 340, in which FIG. 21(a) is a front view, FIG. 21(b) is a left side view, FIG. 21(c) is a right side view, and FIG. FIG. 21(e) is a bottom view.
  • the reference electrode 340 of this embodiment has a helix mounting part 370 and a male snap button electrode 48 and is mounted on the helix 82 of the outer ear 80 .
  • the ear ring mounting portion 370 is made of the same resin material as the mounting portions of the first to third embodiments, and includes an ear ring mounting portion 341, a first extension portion 342, and a second extension portion. 343 integrally.
  • the helix fitting part 341 is a plate-shaped member that is curved to have a C-shaped cross section.
  • the first extending portion 342 is a plate-like body integrally extending a predetermined length from one end (here, the upper end) of the C-shaped portion of the helix fitting portion 341 .
  • a male snap button electrode 48 is provided on an upper surface 342 a of the first extension 342 .
  • the second extending portion 343 is a plate-like body integrally extending a predetermined length from the other end (here, the lower end) of the C-shaped portion of the helix fitting portion 341 .
  • the first extending portion 342 and the second extending portion 343 are spaced apart by a predetermined distance and extend substantially in parallel with approximately the same length.
  • the first extending portion 342 has a projecting portion 344 projecting in the direction of the second extending portion 343 from the lower surface 342b at a position extended by a predetermined length.
  • a biopotential acquisition section 346 made of a conductive material is provided at the tip of the projecting section 344 .
  • the tip of the projecting portion 344 and the second extending portion 343 are separated by a predetermined distance.
  • the helix fitting portion 341 fits the helix 82, and the outer ear 80 is sandwiched between the first extension portion 342 and the second extension portion 343.
  • the biopotential acquisition part 346 of the protruding part 344 can be reliably brought into contact with the outer ear 80 and the contact state can be appropriately maintained, stable biopotential measurement (here, electroencephalogram measurement) can be realized.
  • electroencephalogram detection system 10 electroencephalogram detection electrode 11 band member 11a band inner surface 11b band outer surface 12 protrusion 13 electrodes 14, 47 signal line 20 electroencephalogram display device 40, 140, 240, 340 reference electrode 41, 141, 241 base 44, 144a , 144b extending portions 45, 145a, 245 concha navicular mounting portions 46, 146a, 146b, 246a, 246b, 346 biopotential acquisition portion 48 male snap button electrode 49 female snap button electrode 50 attaching portion 51 locking portion 52 Plate-like member 60 Cable portions 70, 170, 270 Mounting portion 81 Conch navula 82 Helix 83 Scaphoid fossa 84 Auricle hole 145b Scaphoid mounting portion 242 Curved surface portion 271 Auricle hole mounting portion 341 Helix fitting portion 342 1 extension part 343 second extension part 344 projection part 370 ear ring mounting part

Abstract

This electrode device is a reference electrode (40) that is worn on the external ear to acquire a biopotential, and has a worn part (70) that is worn on the recessed shape of the external ear and a biopotential acquisition unit (46) that is provided on the mounting part (70), is brought into contact with the external ear, and is formed from an electric conductive material.

Description

電極装置及び脳波測定装置Electrode device and electroencephalogram measurement device
 本発明は、生体電位を取得する電極装置及びそのような電極装置を有する脳波測定装置に関する。 The present invention relates to an electrode device for acquiring biopotentials and an electroencephalogram measurement device having such an electrode device.
 心拍や脳波など、人間の体から発せられる生体信号を観察して、人間の健康状態等を評価する技術が知られている。 A technology is known that observes biological signals emitted from the human body, such as heartbeats and electroencephalograms, and evaluates the state of human health.
 そのような技術として、例えば耳(外耳)にクリップ型の電極を挟む技術がある。また、特許文献1には、人の外耳道内に配置されるように構成される耳穴電極を有する耳穴部を備えるイヤー・デバイスが開示されている。 As such a technology, for example, there is a technology to clip a clip-shaped electrode to the ear (outer ear). In addition, US Pat. No. 6,200,001 discloses an ear device comprising an ear canal portion having an ear canal electrode configured to be placed in a person's ear canal.
特許6852162号Patent No. 6852162
 ところで、上記の技術は各種の課題を有している。例えば、耳にクリップ型の電極を挟む技術では、挟むことで痛みや不快感が生じることがあった。また、人によっては、装着したときの外見から装着することに対してためらうケースがあった。またさらに、耳の端部かつ表裏に出ている部分が多く、引っ掛かりにより外れる原因になりやすいという課題があった。特許文献1の技術では、外耳道の挿入する構成であり、装着しづらいという課題があった。 By the way, the above technology has various problems. For example, the technique of clipping electrodes in the ear sometimes causes pain and discomfort due to the clipping. In addition, some people hesitate to wear the device because of the appearance of the device when they wear it. Furthermore, there is a problem that there are many parts protruding from the ends of the ears and on the front and back, and it is likely to become a cause of detachment due to catching. The technique of Patent Document 1 has a configuration for inserting into the external auditory canal, and there is a problem that it is difficult to wear.
 本発明はこのような状況に鑑みなされたものであって、生体電位を取得する電極装置を耳に取り付ける場合に、取り付けやすく痛み等の不快を生じ難くする技術を提供することを目的とする。 The present invention has been made in view of such a situation, and aims to provide a technology that makes it easy to attach an electrode device that acquires a biopotential to the ear and makes it less likely to cause discomfort such as pain.
 本発明によると、以下の技術が提供される。
[1]
 外耳に取り付けられ生体電位を取得する電極装置であって、
 前記外耳の凹形状に装着させる装着部と、
 前記装着部に設けられ、前記外耳に接触する部分であって導電性材料で構成された生体電位取得部と、を有している、電極装置。
[2]
 前記装着部は、前記外耳の耳甲介舟に嵌め込まれる耳甲介舟装着部を有する、[1]に記載の電極装置。
[3]
 前記耳甲介舟装着部は、前記生体電位取得部を有する[2]に記載の電極装置。
[4]
 前記装着部は、前記外耳の舟状窩に嵌め込まれる舟状窩装着部を有する、[1]から[3]までのいずれか1に記載の電極装置。
[5]
 前記舟状窩装着部は、前記生体電位取得部を有する[4]に記載の電極装置。
[6]
 前記装着部は、前記外耳の耳介孔に嵌め込まれる耳介孔装着部を有する、[1]から[5]までのいずれか1に記載の電極装置。
[7]
 前記耳介孔装着部は、前記生体電位取得部を有する、[6]に記載の電極装置。
[8]
 前記装着部は外耳の耳輪に装着される耳輪装着部を有し、
 前記耳輪装着部は、
  C字状に先端を開口しており前記耳輪を嵌め込む耳輪嵌込部と、
  前記耳輪嵌込部の一方の先端から延出する第1の延出部と、
  前記耳輪嵌込部の他方の先端から延出する第2の延出部と、
 を有し、
 前記第1の延出部は、所定長延出した位置に前記第2の延出部の方向に突出する突出部を有し、
 前記突出部に前記生体電位取得部が設けられている、[1]に記載の電極装置。
[9]
 前記装着部は、
  樹脂材料で構成された装着部本体と、
  前記装着部本体に設けられた前記生体電位取得部と
を有する、[1]から[8]までのいずれか1に記載の電極装置。
[10]
 前記生体電位取得部は、前記装着部本体の表面に前記導電性材料として銀ペーストがコーティングされて設けられている、[9]に記載の電極装置。
[11]
 前記装着部本体の全体が導電性材料で構成されている、[9]または[10]に記載の電極装置。
[12]
 前記装着部本体は弾性材料で構成されている、[9]から[11]までのいずれか1に記載の電極装置。
[13]
 前記弾性材料はシリコーン樹脂を有して構成されている、[12]に記載の電極装置。
[14]
 前記装着部本体に設けられ、取得した前記生体電位を外部に取り出す信号取出部を有する、[9]から[13]までのいずれか1に記載の電極装置。
[15]
 前記生体電位取得部と前記信号取出部とを前記装着部本体を通して導通させる導通部材を備える、[14]に記載の電極装置。
[16]
 [1]から[15]までのいずれか1に記載の電極装置を脳波測定の際の参照電極として有する脳波測定装置。
According to the present invention, the following techniques are provided.
[1]
An electrode device that is attached to the outer ear and acquires a biopotential,
a mounting portion to be mounted in the concave shape of the outer ear;
The electrode device, comprising: a biopotential acquisition section that is provided in the attachment section and that is a portion that contacts the outer ear and is made of a conductive material.
[2]
The electrode device according to [1], wherein the mounting part has a turbinate mounting part that is fitted into the turbinate vessel of the outer ear.
[3]
The electrode device according to [2], wherein the turbinate attachment section includes the biopotential acquisition section.
[4]
The electrode device according to any one of [1] to [3], wherein the attachment part has a fossa navicular attachment part that is fitted into the fossa navicularis of the external ear.
[5]
The electrode device according to [4], wherein the scaphoid attachment part has the biopotential acquisition part.
[6]
The electrode device according to any one of [1] to [5], wherein the attachment part has an auricle hole attachment part that is fitted into the auricle hole of the outer ear.
[7]
The electrode device according to [6], wherein the auricular hole attachment section has the biopotential acquisition section.
[8]
The wearing part has a helix-wearing part to be worn on the helix of the outer ear,
The ear ring mounting part
a helix fitting portion having a C-shaped opening at the tip and into which the helix is fitted;
a first extending portion extending from one end of the helix fitting portion;
a second extending portion extending from the other tip of the helix fitting portion;
has
The first extending portion has a protrusion projecting in the direction of the second extending portion at a position extended by a predetermined length,
The electrode device according to [1], wherein the projection is provided with the biopotential acquisition section.
[9]
The mounting part is
a mounting portion main body made of a resin material;
The electrode device according to any one of [1] to [8], including the biopotential acquisition section provided in the attachment section main body.
[10]
The electrode device according to [9], wherein the biopotential acquisition section is provided by coating the surface of the mounting section main body with silver paste as the conductive material.
[11]
The electrode device according to [9] or [10], wherein the entire mounting portion main body is made of a conductive material.
[12]
The electrode device according to any one of [9] to [11], wherein the mounting portion main body is made of an elastic material.
[13]
The electrode device according to [12], wherein the elastic material comprises a silicone resin.
[14]
The electrode device according to any one of [9] to [13], which has a signal extracting portion provided in the attachment portion main body and extracting the acquired biopotential to the outside.
[15]
The electrode device according to [14], further comprising a conductive member that electrically connects the biopotential acquisition section and the signal extraction section through the attachment section main body.
[16]
An electroencephalogram measurement apparatus having the electrode device according to any one of [1] to [15] as a reference electrode for electroencephalogram measurement.
 本発明によれば、生体電位を取得する電極装置を耳に取り付ける場合に、取り付けやすく痛み等の不快を生じ難くする技術を提供することができる。 According to the present invention, it is possible to provide a technology that makes it easy to attach an electrode device that acquires a biopotential to an ear and that makes it difficult to cause discomfort such as pain.
第1の実施形態に係る頭部に脳波測定装置を装着した状態の脳波検出システムを示す模式図である。1 is a schematic diagram showing an electroencephalogram detection system with an electroencephalogram measuring device attached to the head according to the first embodiment; FIG. 第1の実施形態に係る頭部に脳波測定装置を装着した状態の脳波検出システムを示す模式図である。1 is a schematic diagram showing an electroencephalogram detection system with an electroencephalogram measuring device attached to the head according to the first embodiment; FIG. 第1の実施形態に係る脳波検出用電極の正面図である。1 is a front view of an electroencephalogram detection electrode according to a first embodiment; FIG. 第1の実施形態に係る脳波検出用電極の平面図である。1 is a plan view of an electroencephalogram detection electrode according to a first embodiment; FIG. 第1の実施形態に係る図3の一部領域X1の拡大図である。4 is an enlarged view of a partial area X1 of FIG. 3 according to the first embodiment; FIG. 第1の実施形態に係る図4のX2-X2断面図である。5 is a cross-sectional view taken along line X2-X2 of FIG. 4 according to the first embodiment; FIG. 第1の実施形態に係る図4のX2-X2断面図の別の例を示す図である。5 is a diagram showing another example of the X2-X2 cross-sectional view of FIG. 4 according to the first embodiment; FIG. 第1の実施形態に係る参照電極の斜視図である。1 is a perspective view of a reference electrode according to a first embodiment; FIG. 第1の実施形態に係る参照電極の分解斜視図である。3 is an exploded perspective view of a reference electrode according to the first embodiment; FIG. 第1の実施形態に係る参照電極の五面図である。5A and 5B are five views of the reference electrode according to the first embodiment; FIG. 第1の実施形態に係る参照電極の断面図である。4 is a cross-sectional view of a reference electrode according to the first embodiment; FIG. 第2の実施形態に係る参照電極が外耳に装着された状態を示す図である。FIG. 10 is a diagram showing a state in which the reference electrode according to the second embodiment is attached to the outer ear; 第2の実施形態に係る参照電極の斜視図である。FIG. 5 is a perspective view of a reference electrode according to a second embodiment; 第2の実施形態に係る参照電極の五面図である。5A and 5B are five views of a reference electrode according to a second embodiment; FIG. 第3の実施形態に係る参照電極が外耳に装着された状態を示す図である。FIG. 12 is a diagram showing a state in which the reference electrode according to the third embodiment is attached to the outer ear; 第3の実施形態に係る参照電極の斜視図である。FIG. 11 is a perspective view of a reference electrode according to a third embodiment; 第3の実施形態に係る参照電極の斜視図である。FIG. 11 is a perspective view of a reference electrode according to a third embodiment; 第3の実施形態に係る参照電極の五面図である。It is a five-sided view of the reference electrode according to the third embodiment. 第4の実施形態に係る参照電極が外耳に装着された状態を示す図である。FIG. 14 is a diagram showing a state in which the reference electrode according to the fourth embodiment is attached to the outer ear; 第4の実施形態に係る参照電極の斜視図である。FIG. 11 is a perspective view of a reference electrode according to a fourth embodiment; 第4の実施形態に係る参照電極の五面図である。It is a five-sided view of the reference electrode according to the fourth embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。
 本実施形態では、耳に生体電位を取得する電極装置を取り付けて脳波測定を行う脳波検出システムについて例示する。また、脳波検出システムでは、頭部で脳波を検出する際の参照電極として使用する例を説明する。
 生体電位として脳波信号の他に、例えば、心電図信号、皮膚電気反射信号、筋電図信号、眼球電位図信号などが有あり、直接それらを取得する電極として用いられてもよいし、参照電極として用いられてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
This embodiment will exemplify an electroencephalogram detection system that performs electroencephalogram measurement by attaching an electrode device that acquires a biopotential to the ear. Also, in the electroencephalogram detection system, an example of using it as a reference electrode when detecting electroencephalograms in the head will be described.
In addition to electroencephalogram signals, biopotentials include, for example, electrocardiogram signals, electrodermal reflection signals, electromyogram signals, and electrooculogram signals, and may be used as electrodes for directly acquiring them, or as reference electrodes. may be used.
<<第1の実施形態>>
<脳波測定装置10の概要>
 図1及び図2は人の頭部99に脳波測定装置10を装着した状態の脳波検出システム1を示す模式図である。図1は脳波測定装置10を装着した人を正面から見た図である。図2は脳波測定装置10を装着した人を横から見た図である。脳波検出システム1は、脳波測定装置10と脳波表示装置20とを備える。
<<First Embodiment>>
<Outline of electroencephalogram measurement device 10>
1 and 2 are schematic diagrams showing the electroencephalogram detection system 1 with the electroencephalogram measuring device 10 attached to the head 99 of a person. FIG. 1 is a front view of a person wearing an electroencephalogram measuring device 10. FIG. FIG. 2 is a side view of a person wearing the electroencephalogram measuring device 10. FIG. The electroencephalogram detection system 1 includes an electroencephalogram measurement device 10 and an electroencephalogram display device 20 .
 脳波測定装置10は、人の頭部99に装着され脳波を生体からの電位変動として検出し、検出した脳波を脳波表示装置20に出力する。脳波表示装置20は、脳波測定装置10が検出した脳波を取得して、モニタ表示したり、データ保存したり、周知の脳波解析処理(測定処理)を行う。 The electroencephalogram measurement device 10 is attached to a person's head 99 and detects electroencephalograms as potential fluctuations from the living body, and outputs the detected electroencephalograms to the electroencephalogram display device 20 . The electroencephalogram display device 20 acquires electroencephalograms detected by the electroencephalogram measurement device 10, displays them on a monitor, stores data, and performs well-known electroencephalogram analysis processing (measurement processing).
<脳波測定装置10の概略構造>
 図1や図2に示すように、脳波測定装置10は、人間の頭部99の形状に追随して装着されるゴム状の弾性体のバンド部材11と、外耳80に取り付けられる参照電極40と、参照電極40とバンド部材11とを連結する取付部50とを有する。
<Schematic structure of electroencephalogram measurement device 10>
As shown in FIGS. 1 and 2, the electroencephalogram measurement apparatus 10 includes a rubber-like elastic band member 11 that is worn following the shape of a human head 99, and a reference electrode 40 that is attached to the outer ear 80. , and a mounting portion 50 for connecting the reference electrode 40 and the band member 11 .
 ここでは、参照電極40として両耳に取り付けられる構成としているが、一方の耳だけに取り付けられる構成でもよい。このような構成により、バンド部材11の両端部が頭部99から浮いてしまって適切に脳波計測ができなくなってしまうことを防止するとともに、外耳80で基準電位を取得することができる。その結果、安定した脳波測定を実現できる。 Here, the reference electrode 40 is configured to be attached to both ears, but may be configured to be attached to only one ear. With such a configuration, it is possible to prevent the both ends of the band member 11 from being lifted from the head 99 and prevent appropriate electroencephalogram measurement from occurring, and to acquire the reference potential at the outer ear 80 . As a result, stable electroencephalogram measurement can be realized.
 バンド部材11の一面(ここでは頭部99側のバンド内面11a)には、バンド部材11と一体に設けられた複数の弾性体の突起部12が設けられている。突起部12の少なくとも先端部が、導電部材からなる電極部13を構成している。 A plurality of elastic protrusions 12 integrally formed with the band member 11 are provided on one surface of the band member 11 (here, the band inner surface 11a on the head 99 side). At least the tip portion of the protrusion 12 constitutes an electrode portion 13 made of a conductive member.
 バンド部材11の長手方向の両端部のそれぞれには、外耳80に装着される参照電極40と、バンド部材11に取り付けられた取付部50と、参照電極40と取付部50との間にわたされてさらにバンド部材11に接続されるケーブル部60とを備える。ケーブル部60の一端に雌型スナップボタン電極49が設けられており、参照電極40の雄型スナップボタン電極48(例えば図8参照)に取り付けられる。 At both ends of the band member 11 in the longitudinal direction, there are provided a reference electrode 40 attached to the outer ear 80 , a mounting portion 50 attached to the band member 11 , and a portion extending between the reference electrode 40 and the mounting portion 50 . A cable portion 60 connected to the band member 11 is also provided. A female snap button electrode 49 is provided at one end of the cable portion 60 and attached to the male snap button electrode 48 of the reference electrode 40 (see FIG. 8, for example).
 ケーブル部60は、参照電位を脳波表示装置20に伝えるものであり、バンド部材11を経由せず脳波表示装置20に直接接続されてもよい。 The cable section 60 transmits the reference potential to the electroencephalogram display device 20 and may be directly connected to the electroencephalogram display device 20 without going through the band member 11 .
 本実施形態では、参照電極40が、参照電位を取得する機能とともに、バンド部材11が頭部99に追従をすることを支援する機能を果たす。すなわち、バンド部材11の両端部が頭部99から浮いてしまって適切に脳波計測ができなくなってしまうことを防止することができる。 In this embodiment, the reference electrode 40 has a function of acquiring a reference potential and a function of supporting the band member 11 to follow the head 99 . In other words, it is possible to prevent the both ends of the band member 11 from being lifted from the head 99 and thus preventing appropriate electroencephalogram measurement.
<脳波表示装置20のシステム概要構成>
 脳波測定装置10は、コネクタや電子部品等を備えて、脳波表示装置20と接続する。なお、脳波測定装置10と脳波表示装置20とが一体に構成されてもよい。また、脳波表示装置20がスマートデバイス(スマートホン、タブレット端末)及びそれらで機能する所定のアプリケーションにより構成されてもよい。この場合、脳波測定装置10は、検出した脳波を無線で送信する通信機能を有する。
<System overview configuration of electroencephalogram display device 20>
The electroencephalogram measurement device 10 is provided with connectors, electronic components, etc., and is connected to the electroencephalogram display device 20 . The electroencephalogram measurement device 10 and the electroencephalogram display device 20 may be configured integrally. Also, the electroencephalogram display device 20 may be composed of a smart device (smart phone, tablet terminal) and a predetermined application functioning therewith. In this case, the electroencephalogram measurement device 10 has a communication function of wirelessly transmitting detected electroencephalograms.
 脳波表示装置20は、例えば、制御部と、記憶部と、ユーザIFと、出力部と、脳波処理データ処理部と、を有する。これらは、CPU等の演算装置、ROMやRAM等のメモリや、HDD、SSD等の記憶装置、モニタ、通信IF等を備え、所定のプログラムにより、脳波測定装置10から取得した脳波を利用可能なデータ形式に変換し、また周知の脳波解析機能を実行する。 The electroencephalogram display device 20 has, for example, a control section, a storage section, a user IF, an output section, and an electroencephalogram processing data processing section. These include arithmetic units such as CPUs, memories such as ROMs and RAMs, storage devices such as HDDs and SSDs, monitors, communication IFs, etc., and are capable of using electroencephalograms obtained from the electroencephalogram measuring apparatus 10 according to a predetermined program. Convert to data format and perform well-known electroencephalogram analysis functions.
<脳波測定装置10の具体的構成>
 脳波測定装置10の具体的な構造について、まずバンド部材11及び電極部13の構成について説明し、つづいて取付部50及び参照電極40の構成について説明する。
<Specific Configuration of Electroencephalogram Measurement Device 10>
Regarding the specific structure of the electroencephalogram measurement device 10, the structures of the band member 11 and the electrode section 13 will be described first, and then the structures of the attachment section 50 and the reference electrode 40 will be described.
<バンド部材11>
 図3はバンド部材11の正面図である。図4はバンド部材11の平面図である。ここでは、図1で湾曲していたバンド部材11を平らな状態にして示している。なお、各図の説明において、便宜的に、バンド部材11の厚さ方向をZ方向(上方向が+Z)、矩形形状の長手方向をX方向(右方向が+X)、短手方向をY方向(奥方向が+Y)として説明する。また奥側(+Y側)を前、手前側(-Y側)を後として説明する。
<Band member 11>
FIG. 3 is a front view of the band member 11. FIG. 4 is a plan view of the band member 11. FIG. Here, the band member 11, which was curved in FIG. 1, is shown in a flat state. In the explanation of each figure, for the sake of convenience, the thickness direction of the band member 11 is the Z direction (the upward direction is +Z), the longitudinal direction of the rectangular shape is the X direction (the right direction is +X), and the lateral direction is the Y direction. (The depth direction is +Y). Further, the back side (+Y side) will be described as the front side, and the near side (−Y side) as the rear side.
<バンド部材11の形状>
 バンド部材11は、所定厚さtの板状体である。具体的には、バンド部材11は、上面視(平面図)で帯状の矩形形状を呈する。
 バンド部材11の厚さtは、例えば、0.1mm~30mmである。
 矩形形状の長手方向の長さL1は、例えば20cm~65cmである。
 矩形形状の短手方向の長さL2は、例えば0.5cm~5cmである。
 なお、バンド部材11の形状は、帯状の矩形形状に限る趣旨ではない。例えば、矩形形状の代わりに長細い楕円形状であってよい。また、バンド部材11の厚さtが一定に限る趣旨ではなく、一部の厚さが薄くなったり厚くなったりしてもよい。いずれにせよ、バンド部材11は、脳波測定装置10が頭部99に装着された際に、その頭部99の形状に追従する。
<Shape of band member 11>
The band member 11 is a plate-like body with a predetermined thickness t. Specifically, the band member 11 has a strip-like rectangular shape when viewed from above (plan view).
A thickness t of the band member 11 is, for example, 0.1 mm to 30 mm.
The longitudinal length L1 of the rectangular shape is, for example, 20 cm to 65 cm.
The length L2 of the rectangular shape in the lateral direction is, for example, 0.5 cm to 5 cm.
Note that the shape of the band member 11 is not limited to a strip-like rectangular shape. For example, an elongated elliptical shape may be used instead of a rectangular shape. Moreover, the thickness t of the band member 11 is not limited to a constant value, and the thickness may be partially thinned or thickened. In any case, the band member 11 follows the shape of the head 99 when the electroencephalogram measuring device 10 is worn on the head 99 .
<突起部12の配置>
 突起部12は、バンド部材11の一面(頭部99側のバンド内面11a)に、バンド部材11と一体に複数設けられる。例えば図4の平面図に示すように、複数の突起部12は、上面視で一列に所定ピッチPで並んで設けられる。突起部12(すなわち電極部13)のピッチPは、例えば、1mm~20mmである。ピッチPは、脳波の検知に必要とされる電極部13の数及び頭部99へのバンド部材11の追従性の観点から定まる。
<Arrangement of Projection 12>
A plurality of projecting portions 12 are provided integrally with the band member 11 on one surface of the band member 11 (band inner surface 11a on the head 99 side). For example, as shown in the plan view of FIG. 4, the plurality of protrusions 12 are arranged in a row at a predetermined pitch P when viewed from above. The pitch P of the protrusions 12 (that is, the electrode portions 13) is, for example, 1 mm to 20 mm. The pitch P is determined from the viewpoint of the number of electrode units 13 required for brain wave detection and the followability of the band member 11 to the head 99 .
<突起部12の形状>
 図5及び図6に突起部12を手前側(後側)から見た図を示す。図5は、図3の正面図の領域X1を拡大して一つの突起部12を示した図である。図6は、図4のX2-X2断面図であり、図5の突起部12の断面図でもある。
<Shape of protrusion 12>
5 and 6 show views of the protrusion 12 viewed from the front side (rear side). FIG. 5 is a diagram showing one protrusion 12 by enlarging the region X1 in the front view of FIG. 6 is a cross-sectional view taken along line X2-X2 in FIG. 4, and is also a cross-sectional view of the protrusion 12 in FIG.
 突起部12は、バンド部材11の一面(ここではバンド内面11a)から突出するようにバンド部材11と一体に形成されている。なお、突起部12が設けられない側の面(ここではバンド外面11b)には取付部50が取り付けられる。
 三角錐の突起部12の高さh1は、例えば、0.5mm~20mmであり、好ましくは3mm~15mmであり、より好ましく4mm~10mmである。
The protrusion 12 is formed integrally with the band member 11 so as to protrude from one surface of the band member 11 (in this case, the band inner surface 11a). An attachment portion 50 is attached to the surface on which the protrusion 12 is not provided (here, the band outer surface 11b).
The height h1 of the triangular pyramid projection 12 is, for example, 0.5 mm to 20 mm, preferably 3 mm to 15 mm, and more preferably 4 mm to 10 mm.
 突起部12が呈する三角錐の具体的な形状として、例えば、図4に示すように、三角錐の底面(すなわち、バンド内面11aとの境界部分)の形状が頂点を鋭角とする二等辺三角形であって、向きが揃っている。ここでは、二等辺三角形の頂点が矩形形状の短手方向の一方側(図示では前側(+Y側))にあり、底辺が他方側(図示では後側(-Y側))にある。また、三角錐の頂点(すなわち突起部12の先端)は、図示の例では、上面視で、二等辺三角形の重心に位置する。言い換えると、突起部12は、図示で前側(+Y側)がなだらかな辺で、後側(-Y側)が急になる面となった向きで設けられている。なお、本実施形態において、「突起部12の向き」とは、上記「二等辺三角形の頂点が向いている方向」を意味する。 As a specific shape of the triangular pyramid that the protrusion 12 exhibits, for example, as shown in FIG. Yes, they are oriented. Here, the vertices of the isosceles triangle are on one side (the front side (+Y side) in the drawing) in the short direction of the rectangular shape, and the base is on the other side (the rear side (−Y side) in the drawing). In the illustrated example, the apex of the triangular pyramid (that is, the tip of the protrusion 12) is located at the center of gravity of the isosceles triangle when viewed from above. In other words, the protruding portion 12 is oriented such that the front side (+Y side) is gentle and the rear side (−Y side) is steep. In the present embodiment, "the direction of the projection 12" means "the direction in which the vertices of the isosceles triangle face".
 脳波測定装置10を頭部99に取り付けるときに、なだらかな側(+Y側)から突起部12を頭部99に当てることで、被験者に不快感(痛み等)等を与えることなく、また、頭髪からの抵抗が少なくスムーズに脳波測定装置10を取り付けることができる。 When the electroencephalogram measurement device 10 is attached to the head 99, the protruding portion 12 is applied to the head 99 from the gentle side (+Y side), so that the subject does not feel discomfort (pain, etc.) and the hair is removed. The electroencephalogram measurement device 10 can be attached smoothly with little resistance from the outside.
<電極部13の形状及び材料>
 突起部12の少なくとも先端部には導電部材からなる電極部13が、突起部12の表面を覆うように設けられている。ここでは、突起部12の三角錐の頂点から所定高さh2の範囲の表面に電極部13が設けられている。
 電極部13が形成される所定高さh2は、突起部12の高さh1にもよるが、例えば、1mm~10mmである。
<Shape and Material of Electrode Portion 13>
An electrode portion 13 made of a conductive member is provided at least at the tip of the protrusion 12 so as to cover the surface of the protrusion 12 . Here, the electrode portion 13 is provided on the surface of the projection 12 within a predetermined height h2 from the apex of the triangular pyramid.
The predetermined height h2 at which the electrode portion 13 is formed is, for example, 1 mm to 10 mm, depending on the height h1 of the projection portion 12. FIG.
 電極部13の導電部材は、例えば、良導電性金属を含むペーストである。良導電性金属は、銅、銀、金、ニッケル、錫、鉛、亜鉛、ビスマス、アンチモン、或いはこれらの合金からなる群から選択される一種以上を含む。特に、入手性や導電性の観点から、銀や塩化銀、銅が好適である。 The conductive member of the electrode portion 13 is, for example, a paste containing a highly conductive metal. Good conductive metals include one or more selected from the group consisting of copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, or alloys thereof. In particular, silver, silver chloride, and copper are suitable from the viewpoint of availability and conductivity.
 良導電性金属を含むペーストで電極部13を形成する場合は、ゴム状の弾性体でできた突起部12の頂部を、良導電性金属を含むペースト状の導電性溶液にディップ(浸漬塗布)する。これにより、突起部12の先端部の表面に電極部13が形成される。 When forming the electrode part 13 with a paste containing a highly conductive metal, the top of the protrusion 12 made of a rubber-like elastic body is dipped (immersion coating) in a paste-like conductive solution containing a highly conductive metal. do. As a result, the electrode portion 13 is formed on the surface of the tip portion of the projection portion 12 .
 なお、導電性フィラー及び溶剤を含む導電性溶液を、突起部12の先端部分に塗布することにより、導電性樹脂層としての電極部13を形成してもよい。このとき、溶剤を突起部12と同じ系統の材質(シリコーンゴム)とすることで、電極部13(導電性樹脂層)の密着性を高められる。 The electrode part 13 as a conductive resin layer may be formed by applying a conductive solution containing a conductive filler and a solvent to the tip portion of the protrusion 12 . At this time, by using the same type of material (silicone rubber) as the solvent for the protrusions 12, the adhesion of the electrode portions 13 (conductive resin layer) can be enhanced.
 突起部12の内部には、電極部13に接続する導電性の信号線14が設けられている。信号線14の材料や太さ、配置位置については特に限定せず、接続される脳波表示装置20等で適切に脳波の測定が可能であればよい。電極部13が突起部12の先端部の表面に設けられる場合、例えば、図6に示すように、突起部12の頂部部分の電極部13内面(すなわち突起部12と接する側の面)に信号線14が接続される。 A conductive signal line 14 connected to the electrode portion 13 is provided inside the projection portion 12 . The material, thickness, and position of the signal line 14 are not particularly limited as long as the connected electroencephalogram display device 20 or the like can appropriately measure electroencephalograms. When the electrode portion 13 is provided on the surface of the tip portion of the projection portion 12, for example, as shown in FIG. Line 14 is connected.
 本実施形態の脳波測定装置10に好適な信号線14の具体的態様について以下に説明する。
 信号線14は、突起部12の先端を覆う電極部13と電気的に接続するとともに、先端からバンド部材11に向かって突起部12の内部に配置される。
A specific aspect of the signal line 14 suitable for the electroencephalogram measurement apparatus 10 of this embodiment will be described below.
The signal line 14 is electrically connected to the electrode portion 13 covering the tip of the protrusion 12 and is arranged inside the protrusion 12 from the tip toward the band member 11 .
 信号線14は、公知のものを使用することができるが、例えば、導電繊維で構成され得る。
 導電繊維としては、金属繊維、金属被覆繊維、炭素繊維、導電性ポリマー繊維、導電性ポリマー被覆繊維、及び導電ペースト被覆繊維からなる群から選択される一種以上を用いることができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
The signal line 14 can use a known one, and can be made of conductive fiber, for example.
As the conductive fiber, one or more selected from the group consisting of metal fiber, metal-coated fiber, carbon fiber, conductive polymer fiber, conductive polymer-coated fiber, and conductive paste-coated fiber can be used. These may be used alone or in combination of two or more.
 上記金属繊維や金属被覆繊維の金属材料は、導電性を有するものであれば限定されないが、銅、銀、金、ニッケル、錫、鉛、亜鉛、ビスマス、アンチモン、ステンレス、アルミニウム、銀/塩化銀及びこれらの合金等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。これらの中でも、導通性の観点から、銀を用いることができる。また、金属材料は、クロム等の環境に負荷を与える金属を含まないことが好ましい。 The metal material of the metal fibers and metal-coated fibers is not limited as long as it has conductivity, but copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, stainless steel, aluminum, silver/silver chloride. and alloys thereof. These may be used alone or in combination of two or more. Among these, silver can be used from the viewpoint of conductivity. Moreover, it is preferable that the metal material does not contain a metal such as chromium that causes a load on the environment.
 上記金属被覆繊維、導電性ポリマー被覆繊維、導電ペースト被覆繊維の繊維材料は、特に限定されないが、合成繊維、半合成繊維、天然繊維のいずれでもよい。これらの中でも、ポリエステル、ナイロン、ポリウレタン、絹及び綿等を用いることが好ましい。これらを単独で用いても2種以上を組み合わせて用いてもよい。 The fiber materials of the metal-coated fibers, conductive polymer-coated fibers, and conductive paste-coated fibers are not particularly limited, but may be synthetic fibers, semi-synthetic fibers, or natural fibers. Among these, it is preferable to use polyester, nylon, polyurethane, silk, cotton, and the like. These may be used alone or in combination of two or more.
 上記炭素繊維は、例えば、PAN系炭素繊維、ピッチ系炭素繊維等が挙げられる。 Examples of the carbon fibers include PAN-based carbon fibers and pitch-based carbon fibers.
 上記導電性ポリマー繊維及び導電性ポリマー被覆繊維の導電性ポリマー材料は、例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリフェニレンビニレン、ポリナフタレン、及びこれらの誘導体等の導電性高分子及びバインダ樹脂の混合物、あるいは、PEDOT-PSS((3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))等の導電性高分子の水溶液が用いられる。 The conductive polymer material of the conductive polymer fiber and the conductive polymer-coated fiber is, for example, a mixture of a conductive polymer such as polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene vinylene, polynaphthalene, and derivatives thereof and a binder resin, Alternatively, an aqueous solution of a conductive polymer such as PEDOT-PSS ((3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid)) is used.
 上記導電ペースト被覆繊維の導電ペーストに含まれる樹脂材料は特に限定されないが伸縮性を有することが好ましく、例えばシリコーンゴム、ウレタンゴム、フッ素ゴム、ニトリルゴム、アクリルゴム、スチレンゴム、クロロプレンゴム、及びエチレンプロピレンゴムからなる群から選択される一種以上を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 The resin material contained in the conductive paste of the conductive paste-coated fiber is not particularly limited, but preferably has elasticity. It can contain one or more selected from the group consisting of propylene rubbers. These may be used alone or in combination of two or more.
 上記導電ペースト被覆繊維の導電ペーストに含まれる導電性フィラーは特に限定されないが、公知の導電材料を用いてもよいが、金属粒子、金属繊維、金属被覆繊維、カーボンブラック、アセチレンブラック、グラファイト、炭素繊維、カーボンナノチューブ、導電性ポリマー、導電性ポリマー被覆繊維及び金属ナノワイヤーからなる群から選択される一種以上を含むことができる。 The conductive filler contained in the conductive paste of the conductive paste-coated fiber is not particularly limited, and known conductive materials may be used, such as metal particles, metal fibers, metal-coated fibers, carbon black, acetylene black, graphite, carbon It may contain at least one selected from the group consisting of fibers, carbon nanotubes, conductive polymers, conductive polymer-coated fibers, and metal nanowires.
 上記導電性フィラーを構成する金属は、特に限定はされないが、例えば、銅、銀、金、ニッケル、錫、鉛、亜鉛、ビスマス、アンチモン、銀/塩化銀、或いはこれらの合金のうち少なくとも一種類、あるいは、これらのうちの二種以上を含むことができる。この中でも、導電性の高さや入手容易性の高さから、銀または銅が好ましい。 The metal constituting the conductive filler is not particularly limited, but for example, copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, silver/silver chloride, or at least one of these alloys. or, alternatively, two or more of these. Among these, silver or copper is preferable because of its high conductivity and high availability.
 上記信号線14が、線状の導電繊維を複数本撚り合わせた撚糸で構成されてもよい。これにより、変形時における信号線14の断線を抑制できる。 The signal line 14 may be composed of twisted yarn obtained by twisting a plurality of linear conductive fibers. Thereby, disconnection of the signal line 14 at the time of deformation can be suppressed.
 本明細書において、導電繊維における被覆とは、単に繊維材料の外表面を覆うことのみならず、単繊維を撚り合わせた撚糸などの場合は、その撚糸の中の繊維間隙に金属、導電性ポリマー、または導電ペーストが含浸し、撚糸を構成する単繊維を1本毎に被覆するものを含む。 In the present specification, the coating of the conductive fiber means not only covering the outer surface of the fiber material, but also, in the case of a twisted yarn obtained by twisting single fibers, a metal or a conductive polymer is added between the fibers in the twisted yarn. , or impregnated with a conductive paste to cover each single fiber constituting the twisted yarn.
 上記信号線14の引張破断伸度は、例えば、1%以上~50%以下、好ましくは1.5%以上~45%である。このような数値範囲内とすることで、変形時の破断を抑制しつつも、突起部12の過度な変形を抑制できる。
 信号線14は、突起部12の内部を導通する態様であれば各種の配置構造を採用し得る。
 例えば、信号線14の先端は、突起部12の先端あるいは先端部の傾斜面に対して、突出した構造、略同一面上となる構造、埋没した構造のいずれでもよい。電極部13との接続安定性の観点から、突出した構造を用いてもよい。信号線14の先端の突出部分は、一部または全体が電極部13で覆われている。
The tensile elongation at break of the signal line 14 is, for example, 1% to 50%, preferably 1.5% to 45%. By setting the value within such a numerical range, it is possible to suppress excessive deformation of the protrusion 12 while suppressing breakage during deformation.
The signal line 14 can adopt various arrangement structures as long as it is a mode that conducts the inside of the protrusion 12 .
For example, the tip of the signal line 14 may be any of a protruding structure, a structure on substantially the same plane, and a buried structure with respect to the tip of the protrusion 12 or the inclined surface of the tip. From the viewpoint of connection stability with the electrode portion 13, a projecting structure may be used. A projecting portion at the tip of the signal line 14 is partially or entirely covered with the electrode portion 13 .
 信号線14の先端の突出構造は、折り返し無し、折り返し有り、突起部12の先端部の表面に巻き付ける構造が採用し得る。また、信号線14は、突起部12の先端(頂点)から延びる垂線と一致せず、垂線に対して傾斜してもよい。 The protruding structure of the tip of the signal line 14 may be unfolded, folded, or wrapped around the surface of the tip of the projection 12 . Also, the signal line 14 may not coincide with the vertical line extending from the tip (apex) of the protrusion 12 and may be inclined with respect to the vertical line.
 また、図7に図4のX2-X2断面図の別の例を示す。図7の断面図に示すように、信号線14が電極部13の下側(バンド部材11側)の端部に接続され、突起部12の斜面(表面)に沿って延び、所定の位置から突起部12の内部へ引き込まれる形態であってよい。
 なお、信号線14において、電極部13と接続される側の端部と反対側の端部は、それぞれが個別にバンド部材11の外部に引き出されてもよい。また、複数の信号線14について、バンド部材11のバンド外面11bに設けられたコネクタ等にバンド部材11内部から接続され取りまとめられてもよい。
7 shows another example of a cross-sectional view along the line X2-X2 in FIG. As shown in the cross-sectional view of FIG. 7, the signal line 14 is connected to the lower end of the electrode portion 13 (on the side of the band member 11), extends along the slope (surface) of the protrusion 12, and extends from a predetermined position. It may be in the form of being drawn into the protrusion 12 .
In addition, in the signal line 14 , the end on the side connected to the electrode portion 13 and the end on the opposite side may be individually pulled out of the band member 11 . Further, the plurality of signal lines 14 may be connected to a connector or the like provided on the band outer surface 11b of the band member 11 from inside the band member 11 and organized.
<バンド部材11及び突起部12の材料>
 バンド部材11及び突起部12は、ゴム状の弾性体であり、より具体的にはゴムや熱可塑性エラストマー(単に「エラストマー(TPE)」ともいう)である。ゴムとしては、例えばシリコーンゴムがある。熱可塑性エラストマーとして、例えば、スチレン系TPE(TPS)、オレフィン系TPE(TPO)、塩化ビニル系TPE(TPVC)、ウレタン系TPE(TPU)、エステル系TPE(TPEE)、アミド系TPE(TPAE)などがある。
<Material of band member 11 and projection 12>
The band member 11 and the protrusion 12 are rubber-like elastic bodies, more specifically, rubber or thermoplastic elastomer (also simply referred to as "elastomer (TPE)"). Examples of rubber include silicone rubber. Examples of thermoplastic elastomers include styrene-based TPE (TPS), olefin-based TPE (TPO), vinyl chloride-based TPE (TPVC), urethane-based TPE (TPU), ester-based TPE (TPEE), and amide-based TPE (TPAE). There is
 脳波測定装置10のバンド部材11及び突起部12がシリコーンゴムである場合、37℃、JIS K 6253(1997)に準拠して測定される、バンド部材11の表面(バンド内面11aやバンド外面11b)におけるタイプAデュロメータ硬さをゴム硬度Aとしたとき、ゴム硬度Aが、例えば、15以上55以下である。 When the band member 11 and projections 12 of the electroencephalogram measurement device 10 are made of silicone rubber, the surface of the band member 11 (band inner surface 11a and band outer surface 11b) measured at 37°C in accordance with JIS K 6253 (1997). Rubber hardness A is, for example, 15 or more and 55 or less.
 ここで、上記シリコーンゴム系硬化性組成物について説明する。
 上記シリコーンゴムは、シリコーンゴム系硬化性組成物の硬化物で構成することができる。シリコーンゴム系硬化性樹脂組成物の硬化工程は、例えば、100~250℃で1~30分間加熱(1次硬化)した後、100~200℃で1~4時間ポストベーク(2次硬化)することによって行われる。
Here, the silicone rubber-based curable composition will be described.
The silicone rubber can be composed of a cured product of a silicone rubber-based curable composition. The curing step of the silicone rubber-based curable resin composition is, for example, heating at 100 to 250° C. for 1 to 30 minutes (primary curing), followed by post-baking (secondary curing) at 100 to 200° C. for 1 to 4 hours. It is done by
 絶縁性シリコーンゴムは、導電性フィラーを含まないシリコーンゴムであり、導電性シリコーンゴムは導電性フィラーを含むシリコーンゴムである。 An insulating silicone rubber is a silicone rubber that does not contain a conductive filler, and a conductive silicone rubber is a silicone rubber that contains a conductive filler.
 本実施形態に係るシリコーンゴム系硬化性組成物は、ビニル基含有オルガノポリシロキサン(A)を含むことができる。ビニル基含有オルガノポリシロキサン(A)は、本実施形態のシリコーンゴム系硬化性組成物の主成分となる重合物である。 The silicone rubber-based curable composition according to this embodiment can contain a vinyl group-containing organopolysiloxane (A). The vinyl group-containing organopolysiloxane (A) is a polymer that is the main component of the silicone rubber-based curable composition of the present embodiment.
 絶縁性シリコーンゴム系硬化性組成物及び導電性シリコーンゴム系硬化性組成物は、同種のビニル基含有直鎖状オルガノポリシロキサンを含んでもよい。同種のビニル基含有直鎖状オルガノポリシロキサンとは、少なくとも官能基が同じビニル基を含み、直鎖状を有していればよく、分子中のビニル基量や分子量分布、あるいはその添加量が異なっていてもよい。
 なお、絶縁性シリコーンゴム系硬化性組成物及び導電性シリコーンゴム系硬化性組成物は、互いに異なるビニル基含有オルガノポリシロキサンをさらに含んでもよい。
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of vinyl group-containing linear organopolysiloxane. The vinyl group-containing linear organopolysiloxane of the same kind includes at least the same vinyl group with the same functional group and has a linear shape. can be different.
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different vinyl group-containing organopolysiloxanes.
 上記ビニル基含有オルガノポリシロキサン(A)は、直鎖構造を有するビニル基含有直鎖状オルガノポリシロキサン(A1)を含むことができる。 The vinyl group-containing organopolysiloxane (A) can contain a vinyl group-containing linear organopolysiloxane (A1) having a linear structure.
 上記ビニル基含有直鎖状オルガノポリシロキサン(A1)は、直鎖構造を有し、かつ、ビニル基を含有しており、かかるビニル基が硬化時の架橋点となる。 The vinyl group-containing linear organopolysiloxane (A1) has a linear structure and contains vinyl groups, and the vinyl groups serve as cross-linking points during curing.
 ビニル基含有直鎖状オルガノポリシロキサン(A1)のビニル基の含有量は、特に限定されないが、例えば、分子内に2個以上のビニル基を有し、かつ15モル%以下であるのが好ましく、0.01~12モル%であるのがより好ましい。これにより、ビニル基含有直鎖状オルガノポリシロキサン(A1)中におけるビニル基の量が最適化され、後述する各成分とのネットワークの形成を確実に行うことができる。本実施形態において、「~」は、その両端の数値を含むことを意味する。 The vinyl group content of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but for example, it preferably has two or more vinyl groups in the molecule and is 15 mol % or less. , 0.01 to 12 mol %. As a result, the amount of vinyl groups in the vinyl group-containing linear organopolysiloxane (A1) is optimized, and a network can be reliably formed with each component described later. In the present embodiment, "~" means including both numerical values.
 なお、本明細書中において、ビニル基含有量とは、ビニル基含有直鎖状オルガノポリシロキサン(A1)を構成する全ユニットを100モル%としたときのビニル基含有シロキサンユニットのモル%である。ただし、ビニル基含有シロキサンユニット1つに対して、ビニル基1つであると考える。 In the present specification, the vinyl group content is the mol % of the vinyl group-containing siloxane units when the total units constituting the vinyl group-containing linear organopolysiloxane (A1) are taken as 100 mol %. . However, one vinyl group is considered to be one vinyl group-containing siloxane unit.
 また、ビニル基含有直鎖状オルガノポリシロキサン(A1)の重合度は、特に限定されないが、例えば、好ましくは1000~10000程度、より好ましくは2000~5000程度の範囲内である。なお、重合度は、例えばクロロホルムを展開溶媒としたGPC(ゲル透過クロマトグラフィー)におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。 Although the degree of polymerization of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, it is, for example, preferably in the range of about 1,000 to 10,000, more preferably in the range of about 2,000 to 5,000. The degree of polymerization can be determined, for example, as a polystyrene-equivalent number-average polymerization degree (or number-average molecular weight) in GPC (gel permeation chromatography) using chloroform as a developing solvent.
 さらに、ビニル基含有直鎖状オルガノポリシロキサン(A1)の比重は、特に限定されないが、0.9~1.1程度の範囲であるのが好ましい。 Furthermore, the specific gravity of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but is preferably in the range of about 0.9 to 1.1.
 ビニル基含有直鎖状オルガノポリシロキサン(A1)として、上記のような範囲内の重合度及び比重を有するものを用いることにより、得られるシリコーンゴムの耐熱性、難燃性、化学的安定性等の向上を図ることができる。 As the vinyl group-containing linear organopolysiloxane (A1), the heat resistance, flame retardancy, chemical stability, etc. of the obtained silicone rubber are improved by using those having the degree of polymerization and specific gravity within the ranges described above. can be improved.
 ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、特に、下記式(1)で表される構造を有するものであるが好ましい。 As the vinyl group-containing linear organopolysiloxane (A1), those having a structure represented by the following formula (1) are particularly preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられ、中でも、ビニル基が好ましい。炭素数1~10のアリール基としては、例えば、フェニル基等が挙げられる。 In formula (1), R 1 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group, or a hydrocarbon group of a combination thereof having 1 to 10 carbon atoms. The alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred. The alkenyl group having 1 to 10 carbon atoms includes, for example, vinyl group, allyl group, butenyl group, etc. Among them, vinyl group is preferred. The aryl group having 1 to 10 carbon atoms includes, for example, a phenyl group.
 また、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基が挙げられる。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。 R 2 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, or a hydrocarbon group combining these. The alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferable. Examples of alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
 また、Rは炭素数1~8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~8のアリール基としては、例えば、フェニル基が挙げられる。 R 3 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group combining these. The alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferable. Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group.
 さらに、式(1)中のR及びRの置換基としては、例えば、メチル基、ビニル基等が挙げられ、Rの置換基としては、例えば、メチル基等が挙げられる。 Furthermore, examples of substituents for R 1 and R 2 in formula (1) include methyl group and vinyl group, and examples of substituents for R 3 include methyl group.
 なお、式(1)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。さらに、R、及びRについても同様である。 In formula (1), a plurality of R 1 are independent of each other and may be different or the same. Furthermore, the same applies to R 2 and R 3 .
 さらに、m、nは、式(1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)を構成する繰り返し単位の数であり、mは0~2000の整数、nは1000~10000の整数である。mは、好ましくは0~1000であり、nは、好ましくは2000~5000である。 Furthermore, m and n are the numbers of repeating units constituting the vinyl group-containing linear organopolysiloxane (A1) represented by formula (1), m is an integer of 0 to 2000, and n is 1000 to 10000. is an integer of m is preferably 0-1000 and n is preferably 2000-5000.
 また、式(1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)の具体的構造としては、例えば下記式(1-1)で表されるものが挙げられる。 Further, specific structures of the vinyl group-containing linear organopolysiloxane (A1) represented by formula (1) include, for example, those represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1-1)中、R及びRは、それぞれ独立して、メチル基またはビニル基であり、少なくとも一方がビニル基である。 In formula (1-1), R 1 and R 2 are each independently a methyl group or a vinyl group, and at least one is a vinyl group.
 さらに、ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、ビニル基含有量が分子内に2個以上のビニル基を有し、かつ0.4モル%以下である第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)と、ビニル基含有量が0.5~15モル%である第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)とを含有するものであるのが好ましい。シリコーンゴムの原料である生ゴムとして、一般的なビニル基含有量を有する第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)と、ビニル基含有量が高い第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)とを組み合わせることで、ビニル基を偏在化させることができ、シリコーンゴムの架橋ネットワーク中に、より効果的に架橋密度の疎密を形成することができる。その結果、より効果的にシリコーンゴムの引裂強度を高めることができる。 Furthermore, as the vinyl group-containing linear organopolysiloxane (A1), a first vinyl group-containing vinyl group having a vinyl group content of 2 or more vinyl groups in the molecule and not more than 0.4 mol% It contains a linear organopolysiloxane (A1-1) and a second vinyl group-containing linear organopolysiloxane (A1-2) having a vinyl group content of 0.5 to 15 mol%. It is preferable to have As crude rubber, which is a raw material of silicone rubber, a first vinyl group-containing linear organopolysiloxane (A1-1) having a general vinyl group content and a second vinyl group-containing linear organopolysiloxane having a high vinyl group content were used. By combining with the chain organopolysiloxane (A1-2), the vinyl groups can be unevenly distributed, and the crosslink density can be more effectively formed in the crosslink network of the silicone rubber. As a result, the tear strength of silicone rubber can be increased more effectively.
 具体的には、ビニル基含有直鎖状オルガノポリシロキサン(A1)として、例えば、上記式(1-1)において、Rがビニル基である単位および/またはRがビニル基である単位を、分子内に2個以上有し、かつ0.4モル%以下を含む第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)と、Rがビニル基である単位および/またはRがビニル基である単位を、0.5~15モル%含む第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)とを用いるのが好ましい。 Specifically, as the vinyl group-containing linear organopolysiloxane (A1), for example, a unit in which R 1 is a vinyl group and/or a unit in which R 2 is a vinyl group in the above formula (1-1) , a first vinyl group-containing linear organopolysiloxane (A1-1) having 2 or more in the molecule and containing 0.4 mol% or less, and a unit in which R 1 is a vinyl group and / or R It is preferable to use a second vinyl group-containing linear organopolysiloxane (A1-2) containing 0.5 to 15 mol % of units in which 2 is a vinyl group.
 また、第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)は、ビニル基含有量が0.01~0.2モル%であるのが好ましい。また、第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)は、ビニル基含有量が、0.8~12モル%であるのが好ましい。 Also, the first vinyl group-containing linear organopolysiloxane (A1-1) preferably has a vinyl group content of 0.01 to 0.2 mol %. The second vinyl group-containing linear organopolysiloxane (A1-2) preferably has a vinyl group content of 0.8 to 12 mol %.
 さらに、第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)と第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)とを組み合わせて配合する場合、(A1-1)と(A1-2)の比率は特に限定されないが、例えば、重量比で(A1-1):(A1-2)が50:50~95:5であるのが好ましく、80:20~90:10であるのがより好ましい。 Furthermore, when combining the first vinyl group-containing linear organopolysiloxane (A1-1) and the second vinyl group-containing linear organopolysiloxane (A1-2), (A1-1) and (A1-2) is not particularly limited, but for example, the weight ratio of (A1-1):(A1-2) is preferably 50:50 to 95:5, and 80:20 to 90: 10 is more preferred.
 なお、第1及び第2のビニル基含有直鎖状オルガノポリシロキサン(A1-1)及び(A1-2)は、それぞれ1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。 The first and second vinyl group-containing linear organopolysiloxanes (A1-1) and (A1-2) may be used singly or in combination of two or more. good.
 また、ビニル基含有オルガノポリシロキサン(A)は、分岐構造を有するビニル基含有分岐状オルガノポリシロキサン(A2)を含んでもよい。 The vinyl group-containing organopolysiloxane (A) may also contain a vinyl group-containing branched organopolysiloxane (A2) having a branched structure.
<<オルガノハイドロジェンポリシロキサン(B)>>
 本実施形態のシリコーンゴム系硬化性組成物は、架橋剤を含んでもよい。架橋剤は、オルガノハイドロジェンポリシロキサン(B)を含むことができる。
 オルガノハイドロジェンポリシロキサン(B)は、直鎖構造を有する直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐構造を有する分岐状オルガノハイドロジェンポリシロキサン(B2)とに分類され、これらのうちのいずれか一方または双方を含むことができる。
<<Organohydrogenpolysiloxane (B)>>
The silicone rubber-based curable composition of the present embodiment may contain a cross-linking agent. Cross-linking agents can include organohydrogenpolysiloxanes (B).
Organohydrogenpolysiloxane (B) is classified into linear organohydrogenpolysiloxane (B1) having a linear structure and branched organohydrogenpolysiloxane (B2) having a branched structure. Either or both may be included.
 絶縁性シリコーンゴム系硬化性組成物及び導電性シリコーンゴム系硬化性組成物は、同種の架橋剤を含んでもよい。同種の架橋剤とは、少なくとも直鎖構造や分岐構造などの共通の構造を有していればよく、分子中の分子量分布や異なる官能基が含まれていてもよく、その添加量が異なっていてもよい。
 なお、絶縁性シリコーンゴム系硬化性組成物及び導電性シリコーンゴム系硬化性組成物は、互いに異なる架橋剤をさらに含んでもよい。
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of cross-linking agent. The same type of cross-linking agent should have at least a common structure such as a linear structure or a branched structure, and may contain different molecular weight distributions and different functional groups in the molecule, and the amount added may be different. may
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different cross-linking agents.
 直鎖状オルガノハイドロジェンポリシロキサン(B1)は、直鎖構造を有し、かつ、Siに水素が直接結合した構造(≡Si-H)を有し、ビニル基含有オルガノポリシロキサン(A)のビニル基の他、シリコーンゴム系硬化性組成物に配合される成分が有するビニル基とヒドロシリル化反応し、これらの成分を架橋する重合体である。 The linear organohydrogenpolysiloxane (B1) has a linear structure and a structure (≡Si—H) in which hydrogen is directly bonded to Si, and is the vinyl group-containing organopolysiloxane (A). It is a polymer that undergoes a hydrosilylation reaction with other vinyl groups and other vinyl groups contained in other components of the silicone rubber-based curable composition to crosslink these components.
 直鎖状オルガノハイドロジェンポリシロキサン(B1)の分子量は特に限定されないが、例えば、重量平均分子量が20000以下であるのが好ましく、1000以上、10000以下であることがより好ましい。 Although the molecular weight of the linear organohydrogenpolysiloxane (B1) is not particularly limited, for example, the weight average molecular weight is preferably 20,000 or less, more preferably 1,000 or more and 10,000 or less.
 なお、直鎖状オルガノハイドロジェンポリシロキサン(B1)の重量平均分子量は、例えばクロロホルムを展開溶媒としたGPC(ゲル透過クロマトグラフィー)におけるポリスチレン換算により測定することができる。 The weight average molecular weight of the linear organohydrogenpolysiloxane (B1) can be measured, for example, by polystyrene conversion in GPC (gel permeation chromatography) using chloroform as a developing solvent.
 また、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、通常、ビニル基を有しないものであるのが好ましい。これにより、直鎖状オルガノハイドロジェンポリシロキサン(B1)の分子内において架橋反応が進行するのを的確に防止することができる。 In addition, it is generally preferred that the linear organohydrogenpolysiloxane (B1) does not have a vinyl group. Thereby, it is possible to accurately prevent the progress of the cross-linking reaction in the molecule of the linear organohydrogenpolysiloxane (B1).
 以上のような直鎖状オルガノハイドロジェンポリシロキサン(B1)としては、例えば、下記式(2)で表される構造を有するものが好ましく用いられる。 As the above linear organohydrogenpolysiloxane (B1), for example, one having a structure represented by the following formula (2) is preferably used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(2)中、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、これらを組み合わせた炭化水素基、またはヒドリド基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられる。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。 In formula (2), R 4 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, a hydrocarbon group combining these groups, or a hydride group. The alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred. Examples of alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
 また、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、これらを組み合わせた炭化水素基、またはヒドリド基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられる。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。 R 5 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, a hydrocarbon group combining these, or a hydride group. Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group and propyl group, with methyl group being preferred. Examples of alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
 なお、式(2)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。Rについても同様である。ただし、複数のR及びRのうち、少なくとも2つ以上がヒドリド基である。 In formula (2), a plurality of R 4 are independent of each other and may be different from each other or may be the same. The same is true for R5 . However, at least two or more of the plurality of R 4 and R 5 are hydride groups.
 また、Rは炭素数1~8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~8のアリール基としては、例えば、フェニル基が挙げられる。複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。 R 6 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group combining these. The alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferable. Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group. A plurality of R 6 are independent from each other and may be different from each other or may be the same.
 なお、式(2)中のR,R,Rの置換基としては、例えば、メチル基、ビニル基等が挙げられ、分子内の架橋反応を防止する観点から、メチル基が好ましい。 Examples of substituents for R 4 , R 5 and R 6 in formula (2) include methyl group and vinyl group, and methyl group is preferred from the viewpoint of preventing intramolecular cross-linking reaction.
 さらに、m、nは、式(2)で表される直鎖状オルガノハイドロジェンポリシロキサン(B1)を構成する繰り返し単位の数であり、mは2~150整数、nは2~150の整数である。好ましくは、mは2~100の整数、nは2~100の整数である。 Further, m and n are the numbers of repeating units constituting the linear organohydrogenpolysiloxane (B1) represented by formula (2), m is an integer of 2 to 150, and n is an integer of 2 to 150. is. Preferably, m is an integer from 2-100 and n is an integer from 2-100.
 なお、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The straight-chain organohydrogenpolysiloxane (B1) may be used alone or in combination of two or more.
 分岐状オルガノハイドロジェンポリシロキサン(B2)は、分岐構造を有するため、架橋密度が高い領域を形成し、シリコーンゴムの系中の架橋密度の疎密構造形成に大きく寄与する成分である。また、上記直鎖状オルガノハイドロジェンポリシロキサン(B1)同様、Siに水素が直接結合した構造(≡Si-H)を有し、ビニル基含有オルガノポリシロキサン(A)のビニル基の他、シリコーンゴム系硬化性組成物に配合される成分のビニル基とヒドロシリル化反応し、これら成分を架橋する重合体である。 Because the branched organohydrogenpolysiloxane (B2) has a branched structure, it is a component that forms regions with a high crosslink density and greatly contributes to the formation of a loose and dense structure of crosslink density in the silicone rubber system. Further, like the linear organohydrogenpolysiloxane (B1), it has a structure (≡Si—H) in which hydrogen is directly bonded to Si, and in addition to the vinyl group of the vinyl group-containing organopolysiloxane (A), silicone It is a polymer that undergoes a hydrosilylation reaction with the vinyl groups of the components blended in the rubber-based curable composition to crosslink these components.
 また、分岐状オルガノハイドロジェンポリシロキサン(B2)の比重は、0.9~0.95の範囲である。 Also, the specific gravity of the branched organohydrogenpolysiloxane (B2) is in the range of 0.9 to 0.95.
 さらに、分岐状オルガノハイドロジェンポリシロキサン(B2)は、通常、ビニル基を有しないものであるのが好ましい。これにより、分岐状オルガノハイドロジェンポリシロキサン(B2)の分子内において架橋反応が進行するのを的確に防止することができる。 Furthermore, it is generally preferred that the branched organohydrogenpolysiloxane (B2) does not have a vinyl group. Thereby, it is possible to accurately prevent the progress of the cross-linking reaction in the molecule of the branched organohydrogenpolysiloxane (B2).
 また、分岐状オルガノハイドロジェンポリシロキサン(B2)としては、下記平均組成式(c)で示されるものが好ましい。 Also, as the branched organohydrogenpolysiloxane (B2), one represented by the following average compositional formula (c) is preferable.
 平均組成式(c)
   (H(R3-aSiO1/2(SiO4/2
(式(c)において、Rは一価の有機基、aは1~3の範囲の整数、mはH(R3-aSiO1/2単位の数、nはSiO4/2単位の数である)
Average composition formula (c)
(H a (R 7 ) 3-a SiO 1/2 ) m (SiO 4/2 ) n
(In formula (c), R 7 is a monovalent organic group, a is an integer ranging from 1 to 3, m is the number of H a (R 7 ) 3-a SiO 1/2 units, n is SiO 4/ is a number of 2 units)
 式(c)において、Rは一価の有機基であり、好ましくは、炭素数1~10の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。 In formula (c), R 7 is a monovalent organic group, preferably a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an aryl group, or a hydrocarbon group combining these. The alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
 式(c)において、aは、ヒドリド基(Siに直接結合する水素原子)の数であり、1~3の範囲の整数、好ましくは1である。 In formula (c), a is the number of hydride groups (hydrogen atoms directly bonded to Si) and is an integer in the range of 1 to 3, preferably 1.
 また、式(c)において、mはH(R3-aSiO1/2単位の数、nはSiO4/2単位の数である。 In formula (c), m is the number of H a (R 7 ) 3-a SiO 1/2 units, and n is the number of SiO 4/2 units.
 分岐状オルガノハイドロジェンポリシロキサン(B2)は分岐状構造を有する。直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)は、その構造が直鎖状か分岐状かという点で異なり、Siの数を1とした時のSiに結合するアルキル基Rの数(R/Si)が、直鎖状オルガノハイドロジェンポリシロキサン(B1)では1.8~2.1、分岐状オルガノハイドロジェンポリシロキサン(B2)では0.8~1.7の範囲となる。 The branched organohydrogenpolysiloxane (B2) has a branched structure. The linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpolysiloxane (B2) differ in that their structures are linear or branched. The number of bound alkyl groups R (R/Si) is 1.8 to 2.1 for the linear organohydrogenpolysiloxane (B1) and 0.8 to 1 for the branched organohydrogenpolysiloxane (B2). .7 range.
 なお、分岐状オルガノハイドロジェンポリシロキサン(B2)は、分岐構造を有しているため、例えば、窒素雰囲気下、1000℃まで昇温速度10℃/分で加熱した際の残渣量が5%以上となる。これに対して、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、直鎖状であるため、上記条件で加熱した後の残渣量はほぼゼロとなる。 Since the branched organohydrogenpolysiloxane (B2) has a branched structure, for example, when heated to 1000° C. at a heating rate of 10° C./min in a nitrogen atmosphere, the residual amount is 5% or more. becomes. On the other hand, since the straight-chain organohydrogenpolysiloxane (B1) is straight-chain, the amount of residue after heating under the above conditions is almost zero.
 また、分岐状オルガノハイドロジェンポリシロキサン(B2)の具体例としては、下記式(3)で表される構造を有するものが挙げられる。 Specific examples of the branched organohydrogenpolysiloxane (B2) include those having a structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(3)中、Rは炭素数1~8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基、もしくは水素原子である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~8のアリール基としては、例えば、フェニル基が挙げられる。Rの置換基としては、例えば、メチル基等が挙げられる。 In formula (3), R 7 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, a hydrocarbon group combining these, or a hydrogen atom. The alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred. Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group. Examples of the substituent of R7 include a methyl group and the like.
 なお、式(3)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。 In formula (3), a plurality of R 7 are independent of each other and may be different from each other or may be the same.
 また、式(3)中、「-O-Si≡」は、Siが三次元に広がる分岐構造を有することを表している。 Also, in formula (3), "--O--Si.ident." represents that Si has a branched structure that spreads three-dimensionally.
 なお、分岐状オルガノハイドロジェンポリシロキサン(B2)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The branched organohydrogenpolysiloxane (B2) may be used alone or in combination of two or more.
 また、直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)において、Siに直接結合する水素原子(ヒドリド基)の量は、それぞれ、特に限定されない。ただし、シリコーンゴム系硬化性組成物において、ビニル基含有直鎖状オルガノポリシロキサン(A1)中のビニル基1モルに対し、直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)の合計のヒドリド基量が、0.5~5モルとなる量が好ましく、1~3.5モルとなる量がより好ましい。これにより、直鎖状オルガノハイドロジェンポリシロキサン(B1)及び分岐状オルガノハイドロジェンポリシロキサン(B2)と、ビニル基含有直鎖状オルガノポリシロキサン(A1)との間で、架橋ネットワークを確実に形成させることができる。 Also, in the linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpolysiloxane (B2), the amount of hydrogen atoms (hydride groups) directly bonded to Si is not particularly limited. However, in the silicone rubber-based curable composition, linear organohydrogenpolysiloxane (B1) and branched organohydrogenpolysiloxane are The total amount of hydride groups in the siloxane (B2) is preferably from 0.5 to 5 mol, more preferably from 1 to 3.5 mol. As a result, a crosslinked network is reliably formed between the linear organohydrogenpolysiloxane (B1), the branched organohydrogenpolysiloxane (B2), and the vinyl group-containing linear organopolysiloxane (A1). can be made
<<シリカ粒子(C)>>
 本実施形態に係るシリコーンゴム系硬化性組成物は、非導電性フィラーを含む。非導電性フィラーは、必要に応じ、シリカ粒子(C)を含んでもよい。これにより、エラストマーの硬さや機械的強度の向上を図ることができる。
<<Silica particles (C)>>
The silicone rubber-based curable composition according to this embodiment contains a non-conductive filler. The non-conductive filler may contain silica particles (C) as needed. Thereby, the hardness and mechanical strength of the elastomer can be improved.
 絶縁性シリコーンゴム系硬化性組成物及び導電性シリコーンゴム系硬化性組成物は、同種の非導電性フィラーを含んでもよい。同種の非導電性フィラーとは、少なくとも共通の構成材料を有していればよく、粒子径、比表面積、表面処理剤、又はその添加量が異なっていてもよい。
 なお、絶縁性シリコーンゴム系硬化性組成物及び導電性シリコーンゴム系硬化性組成物は、互いに異なるシランカップリング剤をさらに含んでもよい。
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of non-conductive filler. Non-conductive fillers of the same type may have at least common constituent materials, and may differ in particle size, specific surface area, surface treatment agent, or addition amount thereof.
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different silane coupling agents.
 シリカ粒子(C)としては、特に限定されないが、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ等が用いられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 The silica particles (C) are not particularly limited, but for example, fumed silica, calcined silica, precipitated silica, etc. are used. These may be used alone or in combination of two or more.
 シリカ粒子(C)は、例えば、BET法による比表面積が例えば50~400m/gであるのが好ましく、100~400m/gであるのがより好ましい。また、シリカ粒子(C)の平均一次粒径は、例えば1~100nmであるのが好ましく、5~20nm程度であるのがより好ましい。 The silica particles (C) preferably have a BET specific surface area of, for example, 50 to 400 m 2 /g, more preferably 100 to 400 m 2 /g. Also, the average primary particle size of the silica particles (C) is, for example, preferably 1 to 100 nm, more preferably about 5 to 20 nm.
 シリカ粒子(C)として、かかる比表面積及び平均粒径の範囲内であるものを用いることにより、形成されるシリコーンゴムの硬さや機械的強度の向上、特に引張強度の向上をさせることができる。 By using silica particles (C) having a specific surface area and an average particle size within the above ranges, the hardness and mechanical strength of the formed silicone rubber can be improved, especially the tensile strength can be improved.
<<シランカップリング剤(D)>>
 本実施形態のシリコーンゴム系硬化性組成物は、シランカップリング剤(D)を含むことができる。
 シランカップリング剤(D)は、加水分解性基を有することができる。加水分解基が水により加水分解されて水酸基になり、この水酸基がシリカ粒子(C)表面の水酸基と脱水縮合反応することで、シリカ粒子(C)の表面改質を行うことができる。
<<Silane coupling agent (D)>>
The silicone rubber-based curable composition of the present embodiment can contain a silane coupling agent (D).
Silane coupling agent (D) can have a hydrolyzable group. The hydrolyzable group is hydrolyzed with water to form a hydroxyl group, and the hydroxyl group undergoes a dehydration condensation reaction with the hydroxyl group on the surface of the silica particle (C), thereby modifying the surface of the silica particle (C).
 絶縁性シリコーンゴム系硬化性組成物及び導電性シリコーンゴム系硬化性組成物は、同種のシランカップリング剤を含んでもよい。同種のシランカップリング剤とは、少なくとも共通の官能基を有していればよく、分子中の他の官能基や添加量が異なっていてもよい。
 なお、絶縁性シリコーンゴム系硬化性組成物及び導電性シリコーンゴム系硬化性組成物は、互いに異なるシランカップリング剤をさらに含んでもよい。
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of silane coupling agent. The silane coupling agents of the same kind should have at least a common functional group, and may differ in other functional groups in the molecule and in the amount added.
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different silane coupling agents.
 また、このシランカップリング剤(D)は、疎水性基を有するシランカップリング剤を含むことができる。これにより、シリカ粒子(C)の表面にこの疎水性基が付与されるため、シリコーンゴム系硬化性組成物中ひいてはシリコーンゴム中において、シリカ粒子(C)の凝集力が低下(シラノール基による水素結合による凝集が少なくなる)し、その結果、シリコーンゴム系硬化性組成物中のシリカ粒子(C)の分散性が向上すると推測される。これにより、シリカ粒子(C)とゴムマトリックスとの界面が増加し、シリカ粒子(C)の補強効果が増大する。さらに、ゴムのマトリックス変形の際、マトリックス内でのシリカ粒子(C)の滑り性が向上すると推測される。そして、シリカ粒子(C)の分散性の向上及び滑り性の向上によって、シリカ粒子(C)によるシリコーンゴムの機械的強度(例えば、引張強度や引裂強度など)が向上する。 In addition, this silane coupling agent (D) can contain a silane coupling agent having a hydrophobic group. As a result, the hydrophobic group is imparted to the surface of the silica particles (C), so that the cohesive force of the silica particles (C) in the silicone rubber-based curable composition and further in the silicone rubber is reduced (hydrogen aggregation due to bonding is reduced), and as a result, it is presumed that the dispersibility of the silica particles (C) in the silicone rubber-based curable composition is improved. This increases the interface between the silica particles (C) and the rubber matrix, increasing the reinforcing effect of the silica particles (C). Furthermore, it is presumed that the slipperiness of the silica particles (C) within the matrix is improved when the rubber matrix is deformed. The improved dispersibility and slipperiness of the silica particles (C) improve the mechanical strength (for example, tensile strength and tear strength) of the silicone rubber due to the silica particles (C).
 さらに、シランカップリング剤(D)は、ビニル基を有するシランカップリング剤を含むことができる。これにより、シリカ粒子(C)の表面にビニル基が導入される。そのため、シリコーンゴム系硬化性組成物の硬化の際、すなわち、ビニル基含有オルガノポリシロキサン(A)が有するビニル基と、オルガノハイドロジェンポリシロキサン(B)が有するヒドリド基とがヒドロシリル化反応して、これらによるネットワーク(架橋構造)が形成される際に、シリカ粒子(C)が有するビニル基も、オルガノハイドロジェンポリシロキサン(B)が有するヒドリド基とのヒドロシリル化反応に関与するため、ネットワーク中にシリカ粒子(C)も取り込まれるようになる。これにより、形成されるシリコーンゴムの低硬度化及び高モジュラス化を図ることができる。 Furthermore, the silane coupling agent (D) can contain a silane coupling agent having a vinyl group. As a result, vinyl groups are introduced onto the surfaces of the silica particles (C). Therefore, during curing of the silicone rubber-based curable composition, that is, a hydrosilylation reaction occurs between the vinyl group of the vinyl group-containing organopolysiloxane (A) and the hydride group of the organohydrogenpolysiloxane (B). , When a network (crosslinked structure) is formed by these, the vinyl groups possessed by the silica particles (C) also participate in the hydrosilylation reaction with the hydride groups possessed by the organohydrogenpolysiloxane (B). Silica particles (C) also come to be taken in. As a result, it is possible to reduce the hardness and increase the modulus of the formed silicone rubber.
 シランカップリング剤(D)としては、疎水性基を有するシランカップリング剤及びビニル基を有するシランカップリング剤を併用することができる。 As the silane coupling agent (D), a silane coupling agent having a hydrophobic group and a silane coupling agent having a vinyl group can be used together.
 シランカップリング剤(D)としては、例えば、下記式(4)で表わされるものが挙げられる。 Examples of the silane coupling agent (D) include those represented by the following formula (4).
-Si-(X)4-n・・・(4)
 上記式(4)中、nは1~3の整数を表わす。Yは、疎水性基、親水性基またはビニル基を有するもののうちのいずれかの官能基を表わし、nが1の時は疎水性基であり、nが2または3の時はその少なくとも1つが疎水性基である。Xは、加水分解性基を表わす。
Yn -Si-(X) 4-n (4)
In the above formula (4), n represents an integer of 1-3. Y represents a functional group having a hydrophobic group, a hydrophilic group or a vinyl group, and when n is 1 it is a hydrophobic group, and when n is 2 or 3 at least one of It is a hydrophobic group. X represents a hydrolyzable group.
 疎水性基は、炭素数1~6のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基であり、例えば、メチル基、エチル基、プロピル基、フェニル基等が挙げられ、中でも、特に、メチル基が好ましい。 The hydrophobic group is an alkyl group having 1 to 6 carbon atoms, an aryl group, or a hydrocarbon group having a combination thereof, and examples thereof include a methyl group, an ethyl group, a propyl group, a phenyl group, and the like. Methyl groups are preferred.
 また、親水性基は、例えば、水酸基、スルホン酸基、カルボキシル基またはカルボニル基等が挙げられ、中でも、特に、水酸基が好ましい。なお、親水性基は、官能基として含まれていてもよいが、シランカップリング剤(D)に疎水性を付与するという観点からは含まれていないのが好ましい。 In addition, the hydrophilic group includes, for example, a hydroxyl group, a sulfonic acid group, a carboxyl group, a carbonyl group, etc. Among them, a hydroxyl group is particularly preferable. The hydrophilic group may be contained as a functional group, but is preferably not contained from the viewpoint of imparting hydrophobicity to the silane coupling agent (D).
 さらに、加水分解性基は、メトキシ基、エトキシ基のようなアルコキシ基、クロロ基またはシラザン基等が挙げられ、中でも、シリカ粒子(C)との反応性が高いことから、シラザン基が好ましい。なお、加水分解性基としてシラザン基を有するものは、その構造上の特性から、上記式(4)中の(Y-Si-)の構造を2つ有するものとなる。 Further, the hydrolyzable group includes an alkoxy group such as a methoxy group and an ethoxy group, a chloro group, a silazane group, and the like. Among them, a silazane group is preferable because of its high reactivity with the silica particles (C). A compound having a silazane group as a hydrolyzable group has two structures of (Y n —Si—) in the above formula (4) due to its structural characteristics.
 上記式(4)で表されるシランカップリング剤(D)の具体例は、次の通りである。
 上記官能基として疎水性基を有するものとして、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシランのようなアルコキシシラン;メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシランのようなクロロシラン;ヘキサメチルジシラザンが挙げられる。この中でも、ヘキサメチルジシラザン、トリメチルクロロシラン、トリメチルメトキシシラン、及びトリメチルエトキシシランからなる群から選択される一種以上を含むトリメチルシリル基を有するシランカップリング剤が好ましい。
Specific examples of the silane coupling agent (D) represented by the above formula (4) are as follows.
Those having a hydrophobic group as the functional group include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, alkoxysilanes such as n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane; hexamethyldisilazane. is mentioned. Among these, a silane coupling agent having a trimethylsilyl group containing one or more selected from the group consisting of hexamethyldisilazane, trimethylchlorosilane, trimethylmethoxysilane, and trimethylethoxysilane is preferred.
 上記官能基としてビニル基を有するものとして、例えば、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシランのようなアルコキシシラン;ビニルトリクロロシラン、ビニルメチルジクロロシランのようなクロロシラン;ジビニルテトラメチルジシラザンが挙げられる。この中でも、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ジビニルテトラメチルジシラザン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、及びビニルメチルジメトキシシランからなる群から選択される一種以上を含むビニル基含有オルガノシリル基を有するシランカップリング剤が好ましい。 Examples of those having a vinyl group as the functional group include methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, vinyltriethoxysilane, and vinyltrimethoxysilane. alkoxysilanes such as silane and vinylmethyldimethoxysilane; chlorosilanes such as vinyltrichlorosilane and vinylmethyldichlorosilane; and divinyltetramethyldisilazane. Among these, methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, divinyltetramethyldisilazane, vinyltriethoxysilane, vinyltrimethoxysilane, and vinyl A silane coupling agent having a vinyl group-containing organosilyl group containing one or more selected from the group consisting of methyldimethoxysilane is preferred.
 またシランカップリング剤(D)がトリメチルシリル基を有するシランカップリング剤及びビニル基含有オルガノシリル基を有するシランカップリング剤の2種を含む場合、疎水性基を有するものとしてはヘキサメチルジシラザン、ビニル基を有するものとしてはジビニルテトラメチルジシラザンを含むことが好ましい。 Further, when the silane coupling agent (D) contains two kinds of a silane coupling agent having a trimethylsilyl group and a silane coupling agent having a vinyl group-containing organosilyl group, those having a hydrophobic group include hexamethyldisilazane, Divinyltetramethyldisilazane is preferably included as one having a vinyl group.
 トリメチルシリル基を有するシランカップリング剤(D1)及びビニル基含有オルガノシリル基を有するシランカップリング剤(D2)を併用する場合、(D1)と(D2)の比率は、特に限定されないが、例えば、重量比で(D1):(D2)が、1:0.001~1:0.35、好ましくは1:0.01~1:0.20、より好ましくは1:0.03~1:0.15である。このような数値範囲とすることにより、所望のシリコーンゴムの物性を得ることができる。具体的には、ゴム中におけるシリカの分散性及びゴムの架橋性のバランスを図ることができる。 When a silane coupling agent (D1) having a trimethylsilyl group and a silane coupling agent (D2) having a vinyl group-containing organosilyl group are used in combination, the ratio of (D1) and (D2) is not particularly limited, but for example, (D1):(D2) in a weight ratio of 1:0.001 to 1:0.35, preferably 1:0.01 to 1:0.20, more preferably 1:0.03 to 1:0 .15. Desired physical properties of the silicone rubber can be obtained by setting it to such a numerical range. Specifically, it is possible to balance the dispersibility of silica in the rubber and the crosslinkability of the rubber.
 本実施形態において、シランカップリング剤(D)の含有量の下限値は、ビニル基含有オルガノポリシロキサン(A)の合計量100重量部に対して、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。また、シランカップリング剤(D)の含有量上限値は、ビニル基含有オルガノポリシロキサン(A)の合計量100重量部に対して、100質量%以下であることが好ましく、80質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。
 シランカップリング剤(D)の含有量を上記下限値以上とすることにより、エラストマーを含む柱状部と導電性樹脂層との密着性を高めることができる。また、シリコーンゴムの機械的強度の向上に資することができる。また、シランカップリング剤(D)の含有量を上記上限値以下とすることにより、シリコーンゴムが適度な機械特性を持つことができる。
In the present embodiment, the lower limit of the content of the silane coupling agent (D) is preferably 1% by mass or more with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A). It is more preferably at least 5% by mass, even more preferably at least 5% by mass. In addition, the upper limit of the content of the silane coupling agent (D) is preferably 100% by mass or less, and 80% by mass or less, with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A). It is more preferable that the content is 40% by mass or less.
By setting the content of the silane coupling agent (D) to the above lower limit or more, the adhesion between the columnar portion containing the elastomer and the conductive resin layer can be enhanced. Moreover, it can contribute to the improvement of the mechanical strength of silicone rubber. Moreover, by setting the content of the silane coupling agent (D) to the above upper limit or less, the silicone rubber can have appropriate mechanical properties.
<<白金または白金化合物(E)>>
 本実施形態に係るシリコーンゴム系硬化性組成物は、触媒を含んでもよい。触媒は、白金または白金化合物(E)を含むことができる。白金または白金化合物(E)は、硬化の際の触媒として作用する触媒成分である。白金または白金化合物(E)の添加量は触媒量である。
<<platinum or platinum compound (E)>>
The silicone rubber-based curable composition according to this embodiment may contain a catalyst. The catalyst may contain platinum or a platinum compound (E). Platinum or a platinum compound (E) is a catalytic component that acts as a catalyst during curing. The amount of platinum or platinum compound (E) added is a catalytic amount.
 絶縁性シリコーンゴム系硬化性組成物及び導電性シリコーンゴム系硬化性組成物は、同種の触媒を含んでもよい。同種の触媒とは、少なくとも共通の構成材料を有していればよく、触媒中に異なる組成が含まれていてもよく、その添加量が異なっていてもよい。
 なお、絶縁性シリコーンゴム系硬化性組成物及び導電性シリコーンゴム系硬化性組成物は、互いに異なる触媒をさらに含んでもよい。
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of catalyst. Catalysts of the same kind may have at least common constituent materials, and the catalysts may contain different compositions and may differ in addition amount.
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different catalysts.
 白金または白金化合物(E)としては、公知のものを使用することができ、例えば、白金黒、白金をシリカやカーボンブラック等に担持させたもの、塩化白金酸または塩化白金酸のアルコール溶液、塩化白金酸とオレフィンの錯塩、塩化白金酸とビニルシロキサンとの錯塩等が挙げられる。 As the platinum or platinum compound (E), a known one can be used, for example, platinum black, platinum supported on silica or carbon black, chloroplatinic acid or an alcohol solution of chloroplatinic acid, A complex salt of platinic acid and olefin, a complex salt of chloroplatinic acid and vinyl siloxane, and the like are included.
 なお、白金または白金化合物(E)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The platinum or platinum compound (E) may be used alone or in combination of two or more.
 本実施形態において、シリコーンゴム系硬化性組成物中における白金または白金化合物(E)の含有量は、触媒量を意味し、適宜設定することができるが、具体的にはビニル基含有オルガノポリシロキサン(A)、シリカ粒子(C)、シランカップリング剤(D)の合計量100重量部に対して、白金族金属が重量単位で0.01~1000ppmとなる量であり、好ましくは、0.1~500ppmとなる量である。
 白金または白金化合物(E)の含有量を上記下限値以上とすることにより、シリコーンゴム系硬化性組成物が適切な速度で硬化することが可能となる。また、白金または白金化合物(E)の含有量を上記上限値以下とすることにより、製造コストの削減に資することができる。
In the present embodiment, the content of platinum or platinum compound (E) in the silicone rubber-based curable composition means the amount of catalyst, and can be set as appropriate. (A), silica particles (C), the total amount of 100 parts by weight of the silane coupling agent (D), platinum group metal is an amount of 0.01 to 1000 ppm by weight unit, preferably 0. The amount is 1 to 500 ppm.
By setting the content of platinum or platinum compound (E) to the above lower limit or more, the silicone rubber-based curable composition can be cured at an appropriate rate. Moreover, by making the content of platinum or platinum compound (E) equal to or less than the above upper limit, it is possible to contribute to the reduction of production costs.
<<水(F)>>
 また、本実施形態に係るシリコーンゴム系硬化性組成物には、上記成分(A)~(E)以外に、水(F)が含まれていてもよい。
<<Water (F)>>
Further, the silicone rubber-based curable composition according to the present embodiment may contain water (F) in addition to the above components (A) to (E).
 水(F)は、シリコーンゴム系硬化性組成物に含まれる各成分を分散させる分散媒として機能するとともに、シリカ粒子(C)とシランカップリング剤(D)との反応に寄与する成分である。そのため、シリコーンゴム中において、シリカ粒子(C)とシランカップリング剤(D)とを、より確実に互いに連結したものとすることができ、全体として均一な特性を発揮することができる。 Water (F) is a component that functions as a dispersion medium for dispersing each component contained in the silicone rubber-based curable composition and contributes to the reaction between the silica particles (C) and the silane coupling agent (D). . Therefore, the silica particles (C) and the silane coupling agent (D) can be linked to each other more reliably in the silicone rubber, and uniform properties can be exhibited as a whole.
(その他の成分)
 さらに、本実施形態のシリコーンゴム系硬化性組成物は、上記(A)~(F)成分以外に、他の成分をさらに含むことができる。この他の成分としては、例えば、珪藻土、酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム、酸化セリウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ガラスウール、マイカ等のシリカ粒子(C)以外の無機充填材、反応阻害剤、分散剤、顔料、染料、帯電防止剤、酸化防止剤、難燃剤、熱伝導性向上剤等の添加剤が挙げられる。
(other ingredients)
Furthermore, the silicone rubber-based curable composition of the present embodiment may further contain other components in addition to the above components (A) to (F). Other components include silica particles (C) such as diatomaceous earth, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, cerium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, glass wool, and mica. additives such as inorganic fillers, reaction inhibitors, dispersants, pigments, dyes, antistatic agents, antioxidants, flame retardants, and thermal conductivity improvers.
 本実施形態に係る導電性溶液(導電性シリコーンゴム組成物)は、導電性フィラーを含まない上記シリコーンゴム系硬化性組成物に加えて、上記導電性フィラー及び溶剤を含むものである。 The conductive solution (conductive silicone rubber composition) according to the present embodiment contains the conductive filler and solvent in addition to the silicone rubber-based curable composition containing no conductive filler.
 上記溶剤としては、公知の各種溶剤を用いることができるが、例えば、高沸点溶剤を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 Various known solvents can be used as the solvent, and for example, a high boiling point solvent can be included. These may be used alone or in combination of two or more.
 上記溶剤の一例としては、例えば、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、メチルシクロヘキサン、エチルシクロヘキサン、オクタン、デカン、ドデカン、テトラデカンなどの脂肪族炭化水素類;ベンゼン、トルエン、エチルベンゼン、キシレン、トリフルオロメチルベンゼン、ベンゾトリフルオリドなどの芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、シクロペンチルエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフランなどのエーテル類;ジクロロメタン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタンなどのハロアルカン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのカルボン酸アミド類;ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド類などを例示することができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 Examples of the above solvents include aliphatic hydrocarbons such as pentane, hexane, cyclohexane, heptane, methylcyclohexane, ethylcyclohexane, octane, decane, dodecane, and tetradecane; benzene, toluene, ethylbenzene, xylene, trifluoromethylbenzene; , aromatic hydrocarbons such as benzotrifluoride; diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, cyclopentyl ethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, 1,4-dioxane, 1,3 - ethers such as dioxane and tetrahydrofuran; haloalkanes such as dichloromethane, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane and 1,1,2-trichloroethane; N,N-dimethyl Carboxylic acid amides such as formamide and N,N-dimethylacetamide; sulfoxides such as dimethylsulfoxide and diethylsulfoxide; These may be used alone or in combination of two or more.
 上記導電性溶液は、溶液中の固形分量などを調整することで、スプレー塗布やディップ塗布等の各種の塗布方法に適切な粘度を備えることができる。 By adjusting the amount of solid content in the solution, the conductive solution can have a viscosity suitable for various coating methods such as spray coating and dip coating.
 また、上記導電性溶液が上記導電性フィラー及び上記シリカ粒子(C)を含む場合、電極部13が含むシリカ粒子(C)の含有量の下限値は、シリカ粒子(C)及び導電性フィラーの合計量100質量%に対して、例えば、1質量%以上であり、好ましくは3質量%以上であり、より好ましくは5質量%以上とすることができる。これにより、電極部13の機械的強度を向上させることができる。一方で、上記電極部13が含むシリカ粒子(C)の含有量の上限値は、シリカ粒子(C)及び導電性フィラーの合計量100質量%に対して、例えば、20質量%以下であり、好ましくは15質量%以下であり、より好ましくは10質量%以下である。これにより、電極部13における導電性と機械的強度や柔軟性とのバランスを図ることができる。 Further, when the conductive solution contains the conductive filler and the silica particles (C), the lower limit of the content of the silica particles (C) contained in the electrode portion 13 is the amount of the silica particles (C) and the conductive filler. For example, it is 1% by mass or more, preferably 3% by mass or more, and more preferably 5% by mass or more, relative to the total amount of 100% by mass. Thereby, the mechanical strength of the electrode portion 13 can be improved. On the other hand, the upper limit of the content of the silica particles (C) contained in the electrode portion 13 is, for example, 20% by mass or less with respect to 100% by mass of the total amount of the silica particles (C) and the conductive filler, It is preferably 15% by mass or less, more preferably 10% by mass or less. Thereby, it is possible to achieve a balance between conductivity, mechanical strength, and flexibility in the electrode portion 13 .
 導電性溶液を必要に応じて加熱乾燥することで、導電性シリコーンゴムが得られる。
 導電性シリコーンゴムは、シリコーンオイルを含まない構成であってもよい。これにより、電極部13の表面にシリコーンオイルがブリードアウトすることで導通性が低下することを抑制できる。
A conductive silicone rubber can be obtained by heating and drying the conductive solution as necessary.
The conductive silicone rubber may be configured without silicone oil. As a result, it is possible to suppress a decrease in conductivity due to bleeding out of the silicone oil onto the surface of the electrode portion 13 .
 これにより、頭部99への良好な追従性と所望の強度の両立を実現できる。また、脳波測定装置10を装着した際の突起部12による不快感の発生を回避できる。その結果、安定した脳波検出が可能となる。なお、脳波測定装置10を装着する被験者の特性に応じて、例えば「大人」であるか「子供」であるか、頭皮が敏感であるかないか、頭髪が硬いか柔らかいか等に応じて、ゴム硬度Aが選択されてもよい。 As a result, it is possible to achieve both good followability to the head 99 and desired strength. In addition, it is possible to avoid discomfort caused by the protrusions 12 when the electroencephalogram measuring device 10 is worn. As a result, stable electroencephalogram detection becomes possible. Depending on the characteristics of the subject wearing the electroencephalogram measurement device 10, for example, whether the subject is an “adult” or a “child”, whether the scalp is sensitive or not, whether the hair is hard or soft, etc. A hardness of A may be selected.
 バンド部材11をシリコーンゴムで成形する際に、シリコーンゴム系硬化性組成物等の硬化性エラストマー組成物を金型成形することで、バンド部材11と複数の突起部12とをシームレスで結合した成形体が得られる。これにより、柔軟性(すなわち頭部99に追従可能な可撓性)と強度に優れて、頭部99に良好に追従する脳波測定装置10を実現できる。なお、シリコーンゴム系硬化性組成物中に含まれる各成分の種類や配合量、シリコーンゴム系硬化性組成物の調製方法等を適切に選択することにより、ゴム硬度Aすなわち柔軟性を制御できる。 When molding the band member 11 with silicone rubber, the band member 11 and the plurality of protrusions 12 are seamlessly joined by molding a curable elastomer composition such as a silicone rubber-based curable composition. you get a body As a result, the electroencephalogram measurement device 10 that is excellent in flexibility (that is, flexibility that can follow the head 99 ) and strength and that can follow the head 99 well can be realized. The rubber hardness A, ie flexibility, can be controlled by appropriately selecting the type and amount of each component contained in the silicone rubber curable composition, the preparation method of the silicone rubber curable composition, and the like.
<バンド部材11の製造方法>
 バンド部材11の製造方法の一例は次の工程を含むことができる。
 まず、金型を用いて、上記シリコーンゴム系硬化性組成物を加熱加圧成形し、バンド部材11及び突起部12からなる成形体を得る。続いて、得られた成形体の各柱状部の内部に、縫い針を用いて、信号線14を通した。その後得られた成形体の突起部12の先端部分の表面(所定高さh2)に、ペースト状の導電性溶液をディップ塗布し、加熱乾燥後、ポストキュアを行う。これにより、突起部12の表面に電極部13を形成できる。
 以上により、バンド部材11を製造することができる。
 なお、上記成形工程時において、信号線14を配置した成形空間内に、上記シリコーンゴム系硬化性組成物を導入し、加圧加熱成形するインサート成形を用いてもよい。
<Manufacturing Method of Band Member 11>
An example of the method for manufacturing the band member 11 can include the following steps.
First, using a mold, the silicone rubber-based curable composition is molded under heat and pressure to obtain a molded body comprising the band member 11 and the protrusions 12 . Subsequently, the signal wire 14 was passed through the interior of each columnar portion of the molded body obtained using a sewing needle. A pasty conductive solution is dip-coated on the surface (predetermined height h2) of the tip portion of the protruding portion 12 of the molded body obtained thereafter, and post-curing is performed after heating and drying. Thereby, the electrode portion 13 can be formed on the surface of the projection portion 12 .
As described above, the band member 11 can be manufactured.
During the molding process, insert molding may be used in which the silicone rubber-based curable composition is introduced into the molding space in which the signal line 14 is arranged, and pressurized and heat-molded.
<取付部50>
 取付部50は、バンド部材11のバンド外面11bの長手方向両端のそれぞれに取り付けられる。取付部50は、参照電極40をバンド部材11に取り付ける固定部として機能するとともに、バンド部材11の頭部99への装着状態を調整する調整部として機能する。
<Mounting portion 50>
The attachment portions 50 are attached to both longitudinal ends of the band outer surface 11 b of the band member 11 . The attachment portion 50 functions as a fixing portion that attaches the reference electrode 40 to the band member 11 and also functions as an adjustment portion that adjusts the attachment state of the band member 11 to the head portion 99 .
 具体的には、取付部50は、板状部材52と、ロック部51とを有する。板状部材52は、複数の歯が列設した長尺帯状である。ロック部51には、爪が形成された開口が設けられており、その開口に板状部材52を挿通し所望の位置でロックする。また、ロック部51は、爪と連動してロック状態を解除する解除部が設けられている。 Specifically, the mounting portion 50 has a plate member 52 and a locking portion 51 . The plate-like member 52 has a long strip shape with a plurality of rows of teeth. The locking portion 51 is provided with an opening having a claw formed therein, and the plate-like member 52 is inserted through the opening and locked at a desired position. Further, the lock portion 51 is provided with a releasing portion that releases the locked state in conjunction with the claw.
 取付部50の材料として特に限定はしないが各種のプラスチックを用いることができる。物性、加工性やコスト等の観点から、66ナイロンを好んで用いることができる。 Various plastics can be used as the material of the mounting portion 50, although there is no particular limitation. From the viewpoint of physical properties, workability, cost, etc., 66 nylon can be preferably used.
 取付部50の例として、面ファスナー機構やカムバックル式機構、バックル式機構、ボタン式機構などを採用することができる。 As examples of the mounting portion 50, a hook-and-loop fastener mechanism, a cam buckle mechanism, a buckle mechanism, a button mechanism, or the like can be adopted.
<参照電極40>
 図8は参照電極40を示す斜視図であって、ケーブル部60の端部に設けられた雌型スナップボタン電極49を取り外した状態で示している。図9は参照電極40の分解斜視図である。図10は参照電極40の五面図であって、図10(a)は正面図、図10(b)は左側面図、図10(c)は右側面図、図10(d)は平面図、図10(e)は底面図である。図11は参照電極40の断面図であって、図10(d)のX3-X3断面を示している。
<Reference electrode 40>
FIG. 8 is a perspective view showing the reference electrode 40 with the female snap button electrode 49 provided at the end of the cable portion 60 removed. FIG. 9 is an exploded perspective view of the reference electrode 40. FIG. 10A and 10B are five views of the reference electrode 40. FIG. 10A is a front view, FIG. 10B is a left side view, FIG. 10C is a right side view, and FIG. 10D is a plan view. FIG. 10(e) is a bottom view. FIG. 11 is a cross-sectional view of the reference electrode 40, showing the X3-X3 cross section of FIG. 10(d).
 参照電極40は、外耳80に取り付けられ生体電位を取得する電極装置として機能する。参照電極40は、外耳80の凹形状に装着させる装着部70と、雄型スナップボタン電極48と、装着部70に設けられ外耳80に接触する部分であって導電性材料で構成された生体電位取得部46とを有する。雄型スナップボタン電極48は、ケーブル部60の端部に設けられた雌型スナップボタン電極49と脱着可能に接続される。
 参照電極40を外耳80に装着するときには、耳甲介舟装着部45が耳甲介舟81に嵌め込まれ、基部41の下面43が対輪脚に面するように配置される。
 なお、本実施形態では、両耳に参照電極40を装着しているが、参照電極としての機能の観点では、片方の耳のみに装着される構成であってもよい。
The reference electrode 40 functions as an electrode device that is attached to the outer ear 80 and acquires a biopotential. The reference electrode 40 includes a mounting portion 70 to be mounted in the concave shape of the outer ear 80, a male snap button electrode 48, and a portion provided on the mounting portion 70 that contacts the outer ear 80 and is a biopotential electrode made of a conductive material. and an acquisition unit 46 . The male snap button electrode 48 is detachably connected to a female snap button electrode 49 provided at the end of the cable portion 60 .
When the reference electrode 40 is attached to the outer ear 80, the turbinate attachment part 45 is fitted into the turbinate 81, and the lower surface 43 of the base 41 is arranged to face the anterior crus.
Although the reference electrodes 40 are attached to both ears in this embodiment, they may be attached to only one ear from the viewpoint of function as a reference electrode.
<装着部70>
 装着部70は、基部41と、延出部44と、耳甲介舟装着部45と、生体電位取得部46とを有する。基部41、延出部44及び耳甲介舟装着部45は、装着部本体として樹脂材料で一体に構成されている。樹脂材料として、例えば、バンド部材11の材料として例示した弾性材料とすることができる。弾性材料としてシリコーン樹脂を好適に用いることができる。また、装着部本体(基部41、延出部44及び耳甲介舟装着部45)の全体が、導電性フィラーを含むシリコーンゴム等の導電性材料で構成されてもよい。
<Mounting part 70>
The mounting portion 70 has a base portion 41 , an extension portion 44 , a concha navicular mounting portion 45 , and a biopotential acquisition portion 46 . The base portion 41, the extending portion 44, and the concha-navus mounting portion 45 are integrally formed of a resin material as a mounting portion main body. As the resin material, for example, the elastic material exemplified as the material of the band member 11 can be used. A silicone resin can be preferably used as the elastic material. Also, the entire mounting portion body (the base portion 41, the extension portion 44, and the turbinate mounting portion 45) may be made of a conductive material such as silicone rubber containing a conductive filler.
<基部41>
 基部41は、所定厚さで略円盤形状を呈している。厚さは例えば1~2mm程度とすることができる。円盤形状の外径は、例えば直径10~15mm程度とすることができる。
 基部41の上面42には雄型スナップボタン電極48が取り付けられる。雄型スナップボタン電極48の外径は、基部41が呈する円盤形状の外径と同程度とすることができる。
<Base 41>
The base portion 41 has a predetermined thickness and a substantially disk shape. The thickness can be, for example, about 1 to 2 mm. The disc-shaped outer diameter can be, for example, about 10 to 15 mm in diameter.
A male snap button electrode 48 is attached to the upper surface 42 of the base 41 . The outer diameter of the male snap button electrode 48 can be approximately the same as the outer diameter of the disc-shaped base 41 .
<延出部44>
 延出部44は、基部41の側面部分から所定長だけ一体に延出する。ここでは、基部41の上面42と延出部44の上面が面一となっている。
<Extension 44>
The extending portion 44 integrally extends from the side portion of the base portion 41 by a predetermined length. Here, the upper surface 42 of the base portion 41 and the upper surface of the extension portion 44 are flush with each other.
<耳甲介舟装着部45>
 耳甲介舟装着部45は、延出部44の下面側から所定長だけ凸状に延出する。
 耳甲介舟装着部45は、参照電極40が外耳80に装着された状態で、耳甲介舟81が呈する凹形状(くぼみ)に嵌まるようになっている。
<Auricle turbinate mounting part 45>
The turbinate attachment part 45 protrudes from the lower surface side of the extension part 44 by a predetermined length.
The turbinate attachment part 45 fits into the concave shape (hollow) of the turbinate 81 when the reference electrode 40 is attached to the outer ear 80 .
 耳甲介舟装着部45の大きさは、基部41が対輪脚上に配置されたときに、凹形状の耳甲介舟81に嵌まり、先端の生体電位取得部46が耳甲介舟81に接触するような大きさである。耳甲介舟装着部45の突出長は、例えば5~10mmとすることができる。また、耳甲介舟装着部45の先端は曲面を構成しており、耳甲介舟81との接触時に痛みが生じないようになっている。 The size of the turbinate mounting part 45 is such that when the base part 41 is placed on the contralateral leg, it fits into the concave turbinate 81, and the biopotential acquisition part 46 at the tip is the size of the turbinate. It is sized to contact 81 . The protrusion length of the turbinate attachment part 45 can be, for example, 5 to 10 mm. In addition, the tip of the turbinate attachment part 45 has a curved surface so that pain does not occur when it comes into contact with the turbinate 81 .
<生体電位取得部46>
 生体電位取得部46は、耳甲介舟装着部45の先端表面に導電性材料をコーティングすることで設けられている。導電性材料として、バンド部材11の電極部13の導電部材として例示した材料を用いることができ、例えば、銀ペーストを用いることができる。すなわち、耳甲介舟装着部45の先端表面を、良導電性金属を含むペースト状の導電性溶液にディップ(浸漬塗布)することで得られる。
<Biopotential acquisition unit 46>
The biopotential acquisition part 46 is provided by coating the tip surface of the conchal scapular attachment part 45 with a conductive material. As the conductive material, the materials exemplified as the conductive member of the electrode portion 13 of the band member 11 can be used, for example, silver paste can be used. That is, it is obtained by dipping (immersion coating) the tip surface of the turbinate attachment part 45 in a pasty conductive solution containing a highly conductive metal.
 また、耳甲介舟装着部45の突出先端表面に生体電位取得部46を設ける方法は、電極部13を設ける方法と同じとすることができる。 In addition, the method of providing the biopotential acquisition part 46 on the surface of the projecting tip of the concha sac mounting part 45 can be the same as the method of providing the electrode part 13 .
<信号線47>
 図11の断面図を参照して、生体電位取得部46から雄型スナップボタン電極48までの信号経路を説明する。信号経路として、装着部本体(基部41、延出部44及び耳甲介舟装着部45)の内部を通る信号線47が設けられている。信号線47は、バンド部材11の信号線14と同様の材料で同様の構成とすることができる。なお、装着部本体が導電性材料で構成されている場合、信号線47を省いてもよい。
 信号線47は、耳甲介舟装着部45の先端表面を覆う生体電位取得部46と電気的に接続するとともに、先端から延出部44及び基部41の内部を通り、基部41の上面42に突出している。上面42で突出している部分を押さえつけるようにして雄型スナップボタン電極48が取り付けられる。
<Signal line 47>
A signal path from the biopotential acquisition unit 46 to the male snap button electrode 48 will be described with reference to the cross-sectional view of FIG. As a signal path, a signal line 47 passing through the interior of the mounting portion main body (the base portion 41, the extension portion 44, and the conchal scapula mounting portion 45) is provided. The signal line 47 may be made of the same material as the signal line 14 of the band member 11 and have the same configuration. It should be noted that the signal line 47 may be omitted when the mounting portion main body is made of a conductive material.
The signal line 47 is electrically connected to the biopotential acquisition part 46 covering the tip surface of the concha navicular mounting part 45 , passes through the extension part 44 from the tip and the interior of the base 41 , and extends to the upper surface 42 of the base 41 . Protruding. A male snap button electrode 48 is attached so as to press the projecting portion of the upper surface 42 .
 以上、本実施形態によると、生体電位を取得する電極装置(ここでは参照電極40)を外耳80に取り付ける場合に、取り付けやすく痛み等の不快を生じ難くすることができる。耳介で囲まれている領域の凹形状に参照電極40が収容されるため、外見上の影響を抑えることができる。耳の端部(すなわち外耳80)から出ている部分が無いため、引っ掛かりによって外れてしまうことを防止できる。また、参照電極40を外耳80に装着する際に、耳甲介舟装着部45で耳甲介舟81に係止させるのみなので、装着性が良い。また、参照電極40とバンド部材11との間のケーブル部60の長さを調整することで、バンド部材11の頭部99への追従を適切に行うことができる。 As described above, according to the present embodiment, when attaching the electrode device (here, the reference electrode 40) that acquires the biopotential to the outer ear 80, it is easy to attach and discomfort such as pain is less likely to occur. Since the reference electrode 40 is accommodated in the concave shape of the area surrounded by the auricle, it is possible to suppress the influence on the appearance. Since there is no part protruding from the edge of the ear (that is, the outer ear 80), it is possible to prevent it from coming off due to catching. In addition, when the reference electrode 40 is attached to the outer ear 80 , it is easy to attach the reference electrode 40 because only the turbinate attachment part 45 is engaged with the turbinate sac 81 . Further, by adjusting the length of the cable portion 60 between the reference electrode 40 and the band member 11, the band member 11 can appropriately follow the head portion 99. FIG.
<<第2の実施形態>>
 本実施形態の参照電極140を図12~図14を参照して説明する。本実施形態の参照電極140は、第1の実施形態の変形例であり、主に異なる部分について説明し、同一の部分については適宜説明を省略する。
<<Second Embodiment>>
The reference electrode 140 of this embodiment will be described with reference to FIGS. 12 to 14. FIG. The reference electrode 140 of this embodiment is a modified example of the first embodiment, and mainly different parts will be explained, and explanations of the same parts will be omitted as appropriate.
 図12は参照電極140が外耳80に装着された状態を示す図である。図13は参照電極140の斜視図である。図14は参照電極140の五面図であって、図14(a)は正面図、図14(b)は左側面図、図14(c)は右側面図、図14(d)は平面図、図14(e)は底面図である。 FIG. 12 is a diagram showing a state in which the reference electrode 140 is attached to the outer ear 80. FIG. FIG. 13 is a perspective view of the reference electrode 140. FIG. 14A and 14B are five views of the reference electrode 140. FIG. 14A is a front view, FIG. 14B is a left side view, FIG. 14C is a right side view, and FIG. 14D is a plan view. FIG. 14(e) is a bottom view.
 本実施形態の参照電極140は、外耳80の凹形状に装着させる装着部170と、雄型スナップボタン電極48と、装着部170に設けられ外耳80に接触する部分であって導電性材料で構成された生体電位取得部146a、146bを有する。 The reference electrode 140 of this embodiment includes a mounting portion 170 that is mounted in the concave shape of the outer ear 80, a male snap button electrode 48, and a portion that is provided in the mounting portion 170 and contacts the outer ear 80, and is made of a conductive material. biopotential acquisition units 146a and 146b.
 装着部170は、第1の実施形態と同様に樹脂材料で構成されており、略円盤状の基部141と、基部141から延出する延出部144aと、延出部144aから下方に延出する耳甲介舟装着部145aとを有する。耳甲介舟装着部145aの先端表面には第1の実施形態と同様の導電性材料で構成された生体電位取得部146aが設けられている。 The mounting portion 170 is made of a resin material as in the first embodiment, and includes a substantially disc-shaped base portion 141, an extension portion 144a extending from the base portion 141, and an extension portion 144a extending downward from the extension portion 144a. and a turbinate attachment part 145a. A biopotential acquisition section 146a made of the same conductive material as in the first embodiment is provided on the tip surface of the concha sac mounting section 145a.
 さらに、装着部170は、延出部144bと、舟状窩装着部145bとを有する。
 延出部144bは、基部141を挟んで延出部144aと対向する位置から、基部141から一体に延出している。舟状窩装着部145bは、延出部144bから一体に下側に延出している。舟状窩装着部145bは、舟状窩83が呈する凹形状(くぼみ)に嵌まるようになっている。舟状窩装着部145bの大きさは、先端の生体電位取得部146bが舟状窩83に接触するような大きさである。舟状窩装着部145bの形状・大きさは、耳甲介舟装着部145aと同じであってもよいし異なってもよい。ここでは、舟状窩装着部145bは耳甲介舟装着部145aより短く設けられている。舟状窩装着部145bの先端表面には生体電位取得部146bが設けられている。
Further, the mounting portion 170 has an extension portion 144b and a scaphoid mounting portion 145b.
The extending portion 144b extends integrally from the base portion 141 from a position facing the extending portion 144a with the base portion 141 interposed therebetween. The scaphoid mounting portion 145b integrally extends downward from the extension portion 144b. The scaphoid mounting part 145b is fitted into the concave shape (hollow) of the scaphoid 83. As shown in FIG. The size of the scaphoid mounting part 145 b is such that the biopotential acquisition part 146 b at the tip thereof contacts the scaphoid 83 . The shape and size of the scaphoid mounting part 145b may be the same as or different from the turbinate scapula mounting part 145a. Here, the scaphoid mounting portion 145b is provided shorter than the concha navicular mounting portion 145a. A biopotential acquiring section 146b is provided on the distal surface of the scaphoid mounting section 145b.
 本実施形態によると、参照電極140を外耳80に装着したときに、耳甲介舟装着部145aが耳甲介舟81に嵌まり、舟状窩装着部145bが舟状窩83に嵌まることで、参照電極140が2箇所で外耳80に係止する。これによって、第1の実施形態と同様の効果が得られるとともに、参照電極140の装着状態を安定させることができる。また、耳甲介舟81と舟状窩83の2箇所で参照電位を取得できるため、安定した参照電位が得られる。
 なお、耳甲介舟装着部145aと舟状窩装着部145bの機能は実質的に同じであるので、参照電極140を使用する際に、耳甲介舟装着部145aが舟状窩83に嵌まり、舟状窩装着部145bが耳甲介舟81に嵌まるように使用されてもよい。
According to this embodiment, when the reference electrode 140 is attached to the outer ear 80, the turbinate attachment part 145a fits into the turbinate scapula 81, and the scaphoid attachment part 145b fits into the scaphoid fossa 83. , the reference electrode 140 is locked to the outer ear 80 at two points. As a result, the same effect as in the first embodiment can be obtained, and the attached state of the reference electrode 140 can be stabilized. In addition, since the reference potential can be obtained at two points, the scapula 81 and the scaphoid fossa 83, a stable reference potential can be obtained.
Since the functions of the turbinate scapula attachment part 145a and the scaphoid attachment part 145b are substantially the same, when the reference electrode 140 is used, the turbinate scapula attachment part 145a is fitted into the scaphoid fossa 83. In other words, the scaphoid mounting part 145b may be used to fit the turbinate navicular 81 .
<<第3の実施形態>>
 本実施形態の参照電極240を図15~図18を参照して説明する。以下では第1及び第2の実施形態と異なる部分について説明し、同一の部分については適宜説明を省略する。
<<Third Embodiment>>
The reference electrode 240 of this embodiment will be described with reference to FIGS. 15 to 18. FIG. Below, portions different from those of the first and second embodiments will be described, and descriptions of the same portions will be omitted as appropriate.
 図15は参照電極240が外耳80に装着された状態を示す図である。図16は参照電極240の上から見た斜視図である。図17は参照電極240の下から見た斜視図である。図18は参照電極240の五面図であって、図18(a)は正面図、図18(b)は左側面図、図18(c)は右側面図、図18(d)は平面図、図18(e)は底面図である。 FIG. 15 is a diagram showing a state in which the reference electrode 240 is attached to the outer ear 80. FIG. FIG. 16 is a top perspective view of the reference electrode 240. FIG. FIG. 17 is a bottom perspective view of the reference electrode 240. FIG. 18 are five views of the reference electrode 240, FIG. 18(a) is a front view, FIG. 18(b) is a left side view, FIG. 18(c) is a right side view, and FIG. 18(d) is a plan view. FIG. 18(e) is a bottom view.
 参照電極240は、装着部270と、雄型スナップボタン電極48とを備え、外耳80の耳介孔84に装着されるとともに耳甲介舟81に係止される。装着部270は、第1及び第2の実施形態と同様の樹脂材料で構成され、耳介孔84に装着される耳介孔装着部271と、延出部244と、耳甲介舟81に係止される耳甲介舟装着部245とを備える。 The reference electrode 240 includes a mounting portion 270 and a male snap button electrode 48 , is mounted in the auricle hole 84 of the outer ear 80 and is locked to the turbinate 81 . The mounting portion 270 is made of the same resin material as in the first and second embodiments, and includes an auricle hole mounting portion 271 that is mounted in the auricle hole 84 , an extension portion 244 , and a turbinate 81 . and a turbinate attachment 245 to be locked.
 耳介孔装着部271は、円柱状の基部241と、基部241の下側に設けられた曲面部242とを有し、曲面部242の一部が耳介孔84に嵌め込まれる。換言すると、基部241と曲面部242の大きさは、耳介孔84に嵌め込み可能な大きさとされる。 The auricle hole mounting part 271 has a cylindrical base part 241 and a curved surface part 242 provided on the lower side of the base part 241 , and a part of the curved surface part 242 is fitted into the auricle hole 84 . In other words, the sizes of the base portion 241 and the curved surface portion 242 are such that they can be fitted into the auricle hole 84 .
 基部241の上面243には雄型スナップボタン電極48が取り付けられる。曲面部242の下面領域には、第1の実施形態と同様の導電性材料で構成された生体電位取得部246bが設けられ、耳介孔84に嵌め込まれたときに生体電位取得部246bが耳介孔84に接触する。 A male snap button electrode 48 is attached to the upper surface 243 of the base 241 . A biopotential acquiring portion 246b made of the same conductive material as in the first embodiment is provided in the lower surface region of the curved surface portion 242. It contacts the via hole 84 .
 延出部244は、基部241の上部側面から板状に延出している。基部241の上面243と延出部244の上面が面一となっている。 The extending portion 244 extends like a plate from the upper side surface of the base portion 241 . The upper surface 243 of the base portion 241 and the upper surface of the extending portion 244 are flush with each other.
 延出部244の延出先端の下面には、凸状に延出した耳甲介舟装着部245が設けられている。耳甲介舟装着部245は、図17や図18(e)に示すように、下から見たときに弧を描くような形状となっており、耳甲介舟81が呈する凹形状に係止しやすくなっている。 A convexly extending turbinate attachment part 245 is provided on the lower surface of the extending tip of the extending part 244 . As shown in FIGS. 17 and 18(e), the turbinate attachment part 245 has a shape that draws an arc when viewed from below, and is related to the concave shape of the crustacean 81. It is easier to stop.
 耳甲介舟装着部245の先端には第1の実施形態と同様の導電性材料で構成された生体電位取得部246aが設けられている。耳甲介舟装着部245は、参照電極240が外耳80に装着したときに耳甲介舟81が呈する凹形状(くぼみ)に嵌まり、生体電位取得部246aが耳甲介舟81に接触する。なお、耳甲介舟装着部245は、舟状窩83に嵌まる舟状窩装着部として構成されてもよい。すなわち、延出部244を長めに延出することで、耳介孔84から耳甲介舟81までの距離より長い舟状窩83に嵌め込む構成を実現できる。 A biopotential acquisition section 246a made of the same conductive material as in the first embodiment is provided at the tip of the turbinate attachment section 245 . The turbinate attachment part 245 fits into the concave shape (hollow) of the turbinate 81 when the reference electrode 240 is attached to the outer ear 80 , and the biopotential acquisition part 246 a contacts the turbinate 81 . . Note that the concha navicular mounting portion 245 may be configured as a scaphoid mounting portion that fits into the scaphoid fossa 83 . That is, by extending the extension part 244 longer, it is possible to realize a configuration in which the extension part 244 is fitted into the scaphoid fossa 83 that is longer than the distance from the auricle hole 84 to the turbinate scapula 81 .
 本実施形態によると、参照電極240を外耳80に装着したときに、耳介孔装着部271が耳介孔84に嵌まり、耳甲介舟装着部245が耳甲介舟81に嵌まることで、参照電極240が2箇所で外耳80に係止する。これによって、第1の実施形態や第2の実施形態と同様の効果が得られる。 According to this embodiment, when the reference electrode 240 is attached to the outer ear 80, the auricle hole attachment part 271 fits into the auricle hole 84, and the concha navula attachment part 245 fits into the concha navula 81. , the reference electrode 240 is locked to the outer ear 80 at two points. This provides the same effects as those of the first and second embodiments.
<<第4の実施形態>>
 本実施形態の参照電極340を図19~図21を参照して説明する。以下では第1~第3の実施形態と異なる部分について説明し、同一の部分については適宜説明を省略する。
<<Fourth Embodiment>>
The reference electrode 340 of this embodiment will be described with reference to FIGS. 19 to 21. FIG. In the following, portions different from those of the first to third embodiments will be described, and descriptions of the same portions will be omitted as appropriate.
 図19は参照電極340が外耳80に装着された状態を示す図である。図20は、参照電極340の斜視図である。図21は参照電極340の五面図であって、図21(a)は正面図、図21(b)は左側面図、図21(c)は右側面図、図21(d)は平面図、図21(e)は底面図である。 FIG. 19 is a diagram showing a state in which the reference electrode 340 is attached to the outer ear 80. FIG. FIG. 20 is a perspective view of the reference electrode 340. FIG. 21A and 21B are five views of the reference electrode 340, in which FIG. 21(a) is a front view, FIG. 21(b) is a left side view, FIG. 21(c) is a right side view, and FIG. FIG. 21(e) is a bottom view.
 本実施形態の参照電極340は、耳輪装着部370と、雄型スナップボタン電極48とを有し、外耳80の耳輪82に装着される。 The reference electrode 340 of this embodiment has a helix mounting part 370 and a male snap button electrode 48 and is mounted on the helix 82 of the outer ear 80 .
 耳輪装着部370は、第1~第3の実施形態の装着部と同様の樹脂材料で構成されており、耳輪嵌込部341と、第1の延出部342と、第2の延出部343とを一体に有する。 The ear ring mounting portion 370 is made of the same resin material as the mounting portions of the first to third embodiments, and includes an ear ring mounting portion 341, a first extension portion 342, and a second extension portion. 343 integrally.
 耳輪嵌込部341は、板状の部材が、断面がC字状になるように湾曲した形状を有しており、C字状先端を開口して耳輪82を嵌め込む。 The helix fitting part 341 is a plate-shaped member that is curved to have a C-shaped cross section.
 第1の延出部342は、耳輪嵌込部341のC字状の一方の先端(ここでは上側の端部)から一体に所定長延出する板状体である。第1の延出部342の上面342aには雄型スナップボタン電極48が設けられる。
 第2の延出部343は、耳輪嵌込部341のC字状の他方の先端(ここでは下側の端部)から一体に所定長延出する板状体である。
 第1の延出部342と第2の延出部343とは、所定距離離間して略平行に同程度の長さで延出している。
The first extending portion 342 is a plate-like body integrally extending a predetermined length from one end (here, the upper end) of the C-shaped portion of the helix fitting portion 341 . A male snap button electrode 48 is provided on an upper surface 342 a of the first extension 342 .
The second extending portion 343 is a plate-like body integrally extending a predetermined length from the other end (here, the lower end) of the C-shaped portion of the helix fitting portion 341 .
The first extending portion 342 and the second extending portion 343 are spaced apart by a predetermined distance and extend substantially in parallel with approximately the same length.
 第1の延出部342は、所定長延出した位置に下面342bから第2の延出部343の方向に突出する突出部344を有する。突出部344の先端には導電性材料で構成された生体電位取得部346が設けられている。突出部344の先端と第2の延出部343とは、所定距離だけ離れている。参照電極340が耳輪82に装着されたときに、突出部344の先端と第2の延出部343とが、外耳80(舟状窩83の近傍領域)を挟むことで、突出部344の先端の生体電位取得部346が外耳80と接触する。 The first extending portion 342 has a projecting portion 344 projecting in the direction of the second extending portion 343 from the lower surface 342b at a position extended by a predetermined length. A biopotential acquisition section 346 made of a conductive material is provided at the tip of the projecting section 344 . The tip of the projecting portion 344 and the second extending portion 343 are separated by a predetermined distance. When the reference electrode 340 is attached to the helix 82, the tip of the protrusion 344 and the second extension 343 sandwich the outer ear 80 (region near the fossa scaphoid 83), so that the tip of the protrusion 344 of the biopotential acquisition unit 346 contacts the outer ear 80 .
 本実施形態によると、参照電極340では、耳輪嵌込部341が耳輪82を嵌め込み、第1の延出部342と第2の延出部343とで外耳80を挟む構成であるので、装着状態を安定させることができ、引っ掛かり等によって外れてしまうことを防止できる。さらに、突出部344の生体電位取得部346を確実に外耳80に接触させることができ、かつ接触状態を適切に維持できることから、安定した生体電位測定(ここでは脳波測定)を実現できる。 According to this embodiment, in the reference electrode 340, the helix fitting portion 341 fits the helix 82, and the outer ear 80 is sandwiched between the first extension portion 342 and the second extension portion 343. can be stabilized and can be prevented from coming off due to catching or the like. Furthermore, since the biopotential acquisition part 346 of the protruding part 344 can be reliably brought into contact with the outer ear 80 and the contact state can be appropriately maintained, stable biopotential measurement (here, electroencephalogram measurement) can be realized.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than those described above can also be adopted.
 この出願は、2021年8月3日に出願された日本出願特願2021-127438号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-127438 filed on August 3, 2021, and the entire disclosure thereof is incorporated herein.
1 脳波検出システム
10 脳波検出用電極
11 バンド部材
11a バンド内面
11b バンド外面
12 突起部
13 電極
14、47 信号線
20 脳波表示装置
40、140、240、340 参照電極
41、141、241 基部
44、144a、144b 延出部
45、145a、245 耳甲介舟装着部
46、146a、146b、246a、246b、346 生体電位取得部
48 雄型スナップボタン電極
49 雌型スナップボタン電極
50 取付部
51 ロック部
52 板状部材
60 ケーブル部
70、170、270 装着部
81 耳甲介舟
82 耳輪
83 舟状窩
84 耳介孔
145b 舟状窩装着部
242 曲面部
271 耳介孔装着部
341 耳輪嵌込部
342 第1の延出部
343 第2の延出部
344 突出部
370 耳輪装着部
1 electroencephalogram detection system 10 electroencephalogram detection electrode 11 band member 11a band inner surface 11b band outer surface 12 protrusion 13 electrodes 14, 47 signal line 20 electroencephalogram display device 40, 140, 240, 340 reference electrode 41, 141, 241 base 44, 144a , 144b extending portions 45, 145a, 245 concha navicular mounting portions 46, 146a, 146b, 246a, 246b, 346 biopotential acquisition portion 48 male snap button electrode 49 female snap button electrode 50 attaching portion 51 locking portion 52 Plate-like member 60 Cable portions 70, 170, 270 Mounting portion 81 Conch navula 82 Helix 83 Scaphoid fossa 84 Auricle hole 145b Scaphoid mounting portion 242 Curved surface portion 271 Auricle hole mounting portion 341 Helix fitting portion 342 1 extension part 343 second extension part 344 projection part 370 ear ring mounting part

Claims (16)

  1.  外耳に取り付けられ生体電位を取得する電極装置であって、
     前記外耳の凹形状に装着させる装着部と、
     前記装着部に設けられ、前記外耳に接触する部分であって導電性材料で構成された生体電位取得部と、を有している、電極装置。
    An electrode device that is attached to the outer ear and acquires a biopotential,
    a mounting portion to be mounted in the concave shape of the outer ear;
    The electrode device, comprising: a biopotential acquisition section that is provided in the attachment section and that is a portion that contacts the outer ear and is made of a conductive material.
  2.  前記装着部は、前記外耳の耳甲介舟に嵌め込まれる耳甲介舟装着部を有する、請求項1に記載の電極装置。 The electrode device according to claim 1, wherein the attachment part has a conchal sac attachment part that is fitted into the conchal sac of the outer ear.
  3.  前記耳甲介舟装着部は、前記生体電位取得部を有する請求項2に記載の電極装置。 The electrode device according to claim 2, wherein the turbinate attachment part has the biopotential acquisition part.
  4.  前記装着部は、前記外耳の舟状窩に嵌め込まれる舟状窩装着部を有する、請求項1または2に記載の電極装置。 The electrode device according to claim 1 or 2, wherein the mounting part has a scaphoid mounting part that is fitted into the scaphoid fossa of the external ear.
  5.  前記舟状窩装着部は、前記生体電位取得部を有する請求項4に記載の電極装置。 The electrode device according to claim 4, wherein the scaphoid attachment part has the biopotential acquisition part.
  6.  前記装着部は、前記外耳の耳介孔に嵌め込まれる耳介孔装着部を有する、請求項1または2に記載の電極装置。 The electrode device according to claim 1 or 2, wherein the mounting part has an auricle hole mounting part that is fitted into the auricle hole of the outer ear.
  7.  前記耳介孔装着部は、前記生体電位取得部を有する、請求項6に記載の電極装置。 The electrode device according to claim 6, wherein the auricular hole attachment part has the biopotential acquisition part.
  8.  前記装着部は外耳の耳輪に装着される耳輪装着部を有し、
     前記耳輪装着部は、
      C字状に先端を開口しており前記耳輪を嵌め込む耳輪嵌込部と、
      前記耳輪嵌込部の一方の先端から延出する第1の延出部と、
      前記耳輪嵌込部の他方の先端から延出する第2の延出部と、
     を有し、
     前記第1の延出部は、所定長延出した位置に前記第2の延出部の方向に突出する突出部を有し、
     前記突出部に前記生体電位取得部が設けられている、請求項1に記載の電極装置。
    The wearing part has a helix-wearing part to be worn on the helix of the outer ear,
    The ear ring mounting part
    a helix fitting portion having a C-shaped opening at the tip and into which the helix is fitted;
    a first extending portion extending from one end of the helix fitting portion;
    a second extending portion extending from the other tip of the helix fitting portion;
    has
    The first extending portion has a protrusion projecting in the direction of the second extending portion at a position extended by a predetermined length,
    2. The electrode device according to claim 1, wherein said biopotential acquisition section is provided on said projecting section.
  9.  前記装着部は、
      樹脂材料で構成された装着部本体と、
      前記装着部本体に設けられた前記生体電位取得部と
    を有する請求項1または2に記載の電極装置。
    The mounting part is
    a mounting portion main body made of a resin material;
    3. The electrode device according to claim 1, further comprising the biopotential acquisition section provided in the attachment section main body.
  10.  前記生体電位取得部は、前記装着部本体の表面に前記導電性材料として銀ペーストがコーティングされて設けられている、請求項9に記載の電極装置。 The electrode device according to claim 9, wherein the biopotential acquisition section is provided by coating the surface of the mounting section body with silver paste as the conductive material.
  11.  前記装着部本体の全体が導電性材料で構成されている、請求項9に記載の電極装置。 The electrode device according to claim 9, wherein the entire mounting portion main body is made of a conductive material.
  12.  前記装着部本体は弾性材料で構成されている、請求項9に記載の電極装置。 The electrode device according to claim 9, wherein the mounting portion main body is made of an elastic material.
  13.  前記弾性材料はシリコーン樹脂を有して構成されている、請求項12に記載の電極装置。 The electrode device according to claim 12, wherein the elastic material comprises silicone resin.
  14.  前記装着部本体に設けられ、取得した前記生体電位を外部に取り出す信号取出部を有する、請求項9に記載の電極装置。 The electrode device according to claim 9, further comprising a signal extraction section provided in the attachment section body for extracting the acquired biopotential to the outside.
  15.  前記生体電位取得部と前記信号取出部とを前記装着部本体を通して導通させる導通部材を備える、請求項14に記載の電極装置。 15. The electrode device according to claim 14, further comprising a conducting member that conducts the biopotential acquisition section and the signal extraction section through the attachment section main body.
  16.  請求項1または2に記載の電極装置を脳波測定の際の参照電極として有する脳波測定装置。 An electroencephalogram measurement device having the electrode device according to claim 1 or 2 as a reference electrode for electroencephalogram measurement.
PCT/JP2022/026924 2021-08-03 2022-07-07 Electrode device and brain wave measuring device WO2023013358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022562326A JP7211573B1 (en) 2021-08-03 2022-07-07 Electrode device and electroencephalogram measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021127438 2021-08-03
JP2021-127438 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023013358A1 true WO2023013358A1 (en) 2023-02-09

Family

ID=85155905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026924 WO2023013358A1 (en) 2021-08-03 2022-07-07 Electrode device and brain wave measuring device

Country Status (1)

Country Link
WO (1) WO2023013358A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005176A (en) * 2009-06-29 2011-01-13 Sony Corp Auricle-installed device and bio-signal measurement apparatus
JP2018102404A (en) * 2016-12-22 2018-07-05 グンゼ株式会社 Bioelectrode
JP2019201995A (en) * 2018-05-24 2019-11-28 パナソニックIpマネジメント株式会社 Electrode for acquiring biological signal and biological signal measuring system
JP2020116369A (en) * 2019-01-24 2020-08-06 富士ゼロックス株式会社 Biological information measuring apparatus and biological information measuring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005176A (en) * 2009-06-29 2011-01-13 Sony Corp Auricle-installed device and bio-signal measurement apparatus
JP2018102404A (en) * 2016-12-22 2018-07-05 グンゼ株式会社 Bioelectrode
JP2019201995A (en) * 2018-05-24 2019-11-28 パナソニックIpマネジメント株式会社 Electrode for acquiring biological signal and biological signal measuring system
JP2020116369A (en) * 2019-01-24 2020-08-06 富士ゼロックス株式会社 Biological information measuring apparatus and biological information measuring system

Similar Documents

Publication Publication Date Title
JP6931738B2 (en) Bioelectrodes, biosensors and biosignal measurement systems
JP2022033419A (en) Brain wave detection electrode and brain wave measuring device
WO2023013358A1 (en) Electrode device and brain wave measuring device
JP7211573B1 (en) Electrode device and electroencephalogram measurement device
JP6923107B1 (en) Electrodes for EEG detection and EEG detection system
WO2022259831A1 (en) Brain wave measuring device and brain wave measuring method
JP7197060B1 (en) EEG detection electrode and electroencephalogram measuring device
WO2022064907A1 (en) Brainwave detection electrode
JP7004127B1 (en) Electrodes for brain wave detection
JP2022018252A (en) Electrode for brain wave measurement and brain wave measurement device
WO2023157908A1 (en) Eletctrode for biosignal measurement, biosignal measurement device, and biosignal measurement method
WO2022163382A1 (en) Brain wave measuring electrode, brain wave measuring device, and brain wave measuring method
WO2024014154A1 (en) Electrode for electroencephalogram measurement, electroencephalogram measurement device, electroencephalogram measurement method, and method for manufacturing electrode for electroencephalogram measurement
WO2023112613A1 (en) Brain wave measuring device and brain wave measuring method
WO2023048077A1 (en) Brain wave detection electrode, brain wave measuring device, and brain wave measuring method
US20230020433A1 (en) Biomedical electrode, biomedical sensor, and biomedical signal measurement system
WO2023048065A1 (en) Brain wave detection electrode, brain wave measurement device, and brain wave measurement method
JP7145324B2 (en) Biomedical electrode, biosensor, and biomedical signal measurement system
JP2022106356A (en) Electrode for brain wave measurement and brain wave measuring device
JP2023083705A (en) Brain wave measuring electrode, brain wave measuring device, and brain wave measuring method
JP2024045399A (en) Bioelectrode, biosensor, and biosignal measurement system
JP2023088433A (en) Electroencephalogram measuring apparatus and electroencephalogram measuring method
JP2021142186A (en) Electrode for brain wave measurement and brain wave measuring device
WO2020085035A1 (en) Bioelectrode, biological sensor, and biological signal measurement system
JP2021180700A (en) Brain wave measuring electrode and brain wave measuring apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022562326

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE