WO2022163382A1 - Brain wave measuring electrode, brain wave measuring device, and brain wave measuring method - Google Patents

Brain wave measuring electrode, brain wave measuring device, and brain wave measuring method Download PDF

Info

Publication number
WO2022163382A1
WO2022163382A1 PCT/JP2022/001068 JP2022001068W WO2022163382A1 WO 2022163382 A1 WO2022163382 A1 WO 2022163382A1 JP 2022001068 W JP2022001068 W JP 2022001068W WO 2022163382 A1 WO2022163382 A1 WO 2022163382A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
group
electroencephalogram measurement
base
cap
Prior art date
Application number
PCT/JP2022/001068
Other languages
French (fr)
Japanese (ja)
Inventor
隆 八木澤
将志 澤田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2022527131A priority Critical patent/JP7294537B2/en
Publication of WO2022163382A1 publication Critical patent/WO2022163382A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor

Definitions

  • the present invention relates to an electroencephalogram measurement electrode, an electroencephalogram measurement device, and an electroencephalogram measurement method.
  • the electroencephalogram measurement electrode (electroencephalogram detection bioelectrode) disclosed in Patent Document 1 includes a holder portion having a plurality of through holes, a base portion extending outward from the peripheral surface of the through hole, and a base portion protruding from the base portion. an electrode portion formed of at least one conductive elastic body having at least one projecting portion capable of passing through the through hole; and a conductive lid portion sandwiching the base portion and the holder portion.
  • an adhesive may be used for housing.
  • the adhesive may leak into the snap-button-shaped connection member, causing a conduction failure, and there is a problem that the management of the manufacturing process becomes troublesome.
  • the present invention has been made in view of such circumstances, and provides an electroencephalogram measurement electrode in which an electrode portion (base portion, projection portion) of an elastic member is housed in a holder made of resin.
  • the purpose is to provide a technology to properly accommodate the
  • a columnar base formed of an elastic member; a plurality of electrode projections provided at one end of the base; a conductive portion provided at least on the tip side surface of the electrode projection; a signal path extending to the other end of the base; a conductive connection member provided at the other end of the base directly or via a metal foil and having a connection projection extending in a direction opposite to the base; a holder that holds the electrode part,
  • the holder has a cylindrical shape with a bottom, a through hole provided in the bottom surface of the cylindrical shape with a bottom, through which the connection protrusion of the conductive connection member protrudes in a state in which the electrode portion is held by the holder; and a pressing portion that presses the electrode portion in the thickness direction of the base portion at the end portion opposite to the bottom surface.
  • the electroencephalogram measurement electrode a frame holding the plurality of electroencephalogram measurement electrodes; a measurement unit that is connected to the connection projection of the conductive connection member and measures the measured electroencephalogram signal;
  • An electroencephalogram measurement device is provided.
  • An electroencephalogram measurement method is provided in which the electroencephalogram measurement device is mounted on the subject's head to measure electroencephalograms.
  • an electroencephalogram measurement electrode in which an electrode portion (base portion, protruding portion) of an elastic member is housed in a holder made of resin, there is provided a technique for appropriately housing the electrode portion in the holder without using an adhesive. can be done.
  • FIG. 1 is a diagram schematically showing an electroencephalogram measuring device attached to a person's head according to a first embodiment
  • FIG. 1 is a perspective view of a frame according to the first embodiment
  • FIG. 1 is a perspective view of an electroencephalogram measurement electrode according to a first embodiment
  • FIG. 1 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a first embodiment
  • FIG. 5 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a second embodiment
  • FIG. 11 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a third embodiment
  • FIG. 11 is a perspective view of an electroencephalogram detection electrode according to a fourth embodiment
  • FIG. 1 is a diagram schematically showing an electroencephalogram measuring device attached to a person's head according to a first embodiment
  • FIG. 1 is a perspective view of a frame according to the first embodiment
  • FIG. 1 is a perspective view of an electroencephalogram measurement
  • FIG. 11 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a fifth embodiment;
  • FIG. 11 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a sixth embodiment;
  • FIG. 11 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a seventh embodiment;
  • FIG. 1 is a diagram schematically showing the electroencephalogram measurement device 1 attached to the head 99 of a person (subject).
  • the electroencephalogram measurement device 1 is attached to a person's head 99, detects electroencephalograms as potential fluctuations from a living body, and outputs the detected electroencephalograms to a measurement unit (not shown).
  • the measurement unit acquires the electroencephalogram detected by the electroencephalogram measurement electrode 10, displays it on a monitor, stores the data, and performs well-known electroencephalogram analysis processing.
  • the electroencephalogram measurement device 1 has a plurality of electroencephalogram measurement electrodes 10 and a frame 20 .
  • the electroencephalogram measurement electrodes 10 are provided for 5 channels (five pieces).
  • FIG. 20 A perspective view of the frame 20 is shown in FIG.
  • the frame 20 is made of a rigid material such as polyamide resin, and is formed in a strip shape and curved so as to follow the shape of the human head 99 .
  • the frame 20 is provided with five electrode unit attachment portions 21 as openings for attaching the electroencephalogram measurement electrodes 10 .
  • the position of the electrode unit mounting portion 21 (that is, the mounting position of the electroencephalogram measurement electrode 10) corresponds to, for example, positions T3, C3, Cz, C4, and T4 in the International 10-20 Electrode Arrangement Method.
  • the inner peripheral surface of the electrode unit mounting portion 21 is set to have substantially the same outer diameter as the outer peripheral surface of the electroencephalogram measurement electrode 10, and the electroencephalogram measurement electrode 10 is fitted and fixed to the electrode unit mounting portion 21. be done.
  • the inner peripheral surface of the electrode unit attachment portion 21 and the outer peripheral surface of the electroencephalogram measurement electrode 10 may be threaded so that the electroencephalogram measurement electrode 10 is screwed to the electrode unit attachment portion 21 .
  • FIG. 3 shows a perspective view of the electroencephalogram measurement electrode 10.
  • FIG. 4 shows a schematic cross-sectional view of the electroencephalogram measurement electrode 10 .
  • the electroencephalogram measurement electrode 10 has an electrode section 30 , a snap button 40 , a cap 50 and a metal foil 60 .
  • the cap 50 has a bottomed cylindrical shape and functions as a holder, and accommodates the electrode section 30, the snap button 40, and the metal foil 60 therein. As will be described later, the cap 50 has an electrode portion 30, a snap button 40, and a pressing portion 56 for accommodating and fixing the metal foil 60 inside.
  • the electrode portion 30 has a base portion 31 , a projection portion 32 , a conductive contact portion 33 and a signal line portion 34 .
  • the base portion 31 and the projection portion 32 are integrally provided by a rubber-like elastic member. A specific material for the elastic member will be described later. Note that the base portion 31 and the projection portion 32 are not limited to being provided integrally, and may be provided separately and assembled with an adhesive or a fitting structure.
  • the base 31 has a substantially cylindrical shape.
  • a plurality of substantially conical protrusions 32 protruding downward in the drawing are provided at predetermined intervals in the circular circumferential direction on a circular base lower surface 36 on one end side (lower side in the drawing) of the base 31 .
  • the shape of the protrusion 32 is not limited to the conical shape, and various shapes such as pyramids such as triangular pyramids and quadrangular pyramids, and columnar shapes can be employed.
  • a conductive contact portion 33 is provided on at least the tip side surface of the protruding portion 32 .
  • a conductive contact portion 33 may be provided over the entire surface of the protrusion 32 .
  • the outer diameter of the base portion 31 is, for example, 10 mm to 50 mm.
  • the height (thickness) of the base 31 is, for example, 2 mm to 30 mm.
  • the height of the protrusion 32 is, for example, 3 mm to 15 mm.
  • the width of the protrusion 32 (the outer diameter of the root portion) is, for example, 1 mm to 10 mm.
  • the electrode portion 30 is provided with a signal line portion 34 as a signal path connected to the conductive contact portion 33 .
  • Various wiring structures can be employed for the signal line portion 34 as long as they are in a manner that conducts through the base portion 31 and the projection portion 32 .
  • the signal line portion 34 is provided so as to pass from the conductive contact portion 33 at the tip of the protrusion 32 through the inside of the protrusion 32 and the base portion 31 and be exposed on the base upper surface 35 of the base portion 31 .
  • a portion of the signal line portion 34 protruding from the base upper surface 35 is a bent portion 34a that is sandwiched between the metal foil 60 and the electrode portion 30 (base upper surface 35) and bent.
  • the tip of the signal line portion 34 has a protruded structure, a structure that is substantially on the same plane, or a structure that is buried with respect to the tip portion of the protrusion 32 or its vicinity, that is, the region where the conductive contact portion 33 is formed.
  • a projecting structure may be used.
  • a projecting portion at the tip of the signal line portion 34 is partially or entirely covered with the conductive contact portion 33 .
  • the protruding structure of the tip of the signal line portion 34 may be unfolded, folded, or wrapped around the surface of the tip of the projection 32 .
  • the signal line portion 34 As another wiring structure of the signal line portion 34, a structure provided on the surface of the projection portion 32 and the base portion 31 may be used, or a wiring structure in which a portion is provided inside and a portion is provided on the surface. That is, the signal detected by the conductive contact portion 33 should be transmitted to the metal foil 60 and finally transmitted to the snap button 40 .
  • the electrode part 30 is a rubber-like elastic body as described above.
  • the rubber-like elastic body is rubber or a thermoplastic elastomer (also simply referred to as “elastomer (TPE)”).
  • TPE thermoplastic elastomer
  • examples of rubber include silicone rubber.
  • thermoplastic elastomers include styrene-based TPE (TPS), olefin-based TPE (TPO), vinyl chloride-based TPE (TPVC), urethane-based TPE (TPU), ester-based TPE (TPEE), amide-based TPE (TPAE), and the like.
  • rubber hardness A is the type A durometer hardness of the surface of the electrode portion 30 (the base portion 31 and the projection portion 32) measured in accordance with JIS K 6253 (1997) at 37°C.
  • the rubber hardness A is, for example, 15 or more and 55 or less.
  • the silicone rubber-based curable composition will be described.
  • the silicone rubber can be composed of a cured product of a silicone rubber-based curable composition.
  • the curing step of the silicone rubber-based curable resin composition is, for example, heating at 100 to 250° C. for 1 to 30 minutes (primary curing), followed by post-baking (secondary curing) at 100 to 200° C. for 1 to 4 hours. It is done by
  • An insulating silicone rubber is a silicone rubber that does not contain a conductive filler
  • a conductive silicone rubber is a silicone rubber that contains a conductive filler
  • the silicone rubber-based curable composition according to this embodiment can contain a vinyl group-containing organopolysiloxane (A).
  • the vinyl group-containing organopolysiloxane (A) is a polymer that is the main component of the silicone rubber-based curable composition of the present embodiment.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same vinyl group-containing linear organopolysiloxane.
  • the vinyl group-containing linear organopolysiloxane of the same kind includes at least the same vinyl group with the same functional group and has a linear shape. can be different.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different vinyl group-containing organopolysiloxanes.
  • the vinyl group-containing organopolysiloxane (A) can contain a vinyl group-containing linear organopolysiloxane (A1) having a linear structure.
  • the vinyl group-containing linear organopolysiloxane (A1) has a linear structure and contains vinyl groups, and the vinyl groups serve as cross-linking points during curing.
  • the vinyl group content of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but for example, it preferably has two or more vinyl groups in the molecule and is 15 mol % or less. , 0.01 to 12 mol %.
  • the amount of vinyl groups in the vinyl group-containing linear organopolysiloxane (A1) is optimized, and a network can be reliably formed with each component described later.
  • " ⁇ " means including both numerical values.
  • the vinyl group content is the mol % of the vinyl group-containing siloxane units when the total units constituting the vinyl group-containing linear organopolysiloxane (A1) are taken as 100 mol %. .
  • one vinyl group is considered to be one vinyl group-containing siloxane unit.
  • the degree of polymerization of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, it is, for example, preferably in the range of about 1,000 to 10,000, more preferably in the range of about 2,000 to 5,000.
  • the degree of polymerization can be determined, for example, as a polystyrene-equivalent number-average polymerization degree (or number-average molecular weight) in GPC (gel permeation chromatography) using chloroform as a developing solvent.
  • the specific gravity of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but is preferably in the range of about 0.9 to 1.1.
  • the heat resistance, flame retardancy, chemical stability, etc. of the resulting silicone rubber can be improved by using those having the degree of polymerization and specific gravity within the ranges described above. can be improved.
  • vinyl group-containing linear organopolysiloxane (A1) those having a structure represented by the following formula (1) are particularly preferable.
  • R 1 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group, or a hydrocarbon group of a combination thereof having 1 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred.
  • the alkenyl group having 1 to 10 carbon atoms includes, for example, vinyl group, allyl group, butenyl group, etc. Among them, vinyl group is preferred.
  • the aryl group having 1 to 10 carbon atoms includes, for example, a phenyl group.
  • R 2 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, or a hydrocarbon group combining these.
  • the alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred.
  • alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups.
  • Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • R 3 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group combining these.
  • the alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferable.
  • Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group.
  • examples of substituents for R 1 and R 2 in formula (1) include methyl group and vinyl group, and examples of substituents for R 3 include methyl group.
  • a plurality of R 1 are independent of each other and may be different or the same. Furthermore, the same applies to R 2 and R 3 .
  • m and n are the numbers of repeating units constituting the vinyl group-containing linear organopolysiloxane (A1) represented by formula (1), m is an integer of 0 to 2000, and n is 1000 to 10000. is an integer of m is preferably 0-1000 and n is preferably 2000-5000.
  • vinyl group-containing linear organopolysiloxane (A1) represented by formula (1) include, for example, those represented by the following formula (1-1).
  • R 1 and R 2 are each independently a methyl group or a vinyl group, and at least one is a vinyl group.
  • the vinyl group-containing linear organopolysiloxane (A1) a first vinyl group-containing vinyl group having a vinyl group content of 2 or more vinyl groups in the molecule and not more than 0.4 mol% It contains a linear organopolysiloxane (A1-1) and a second vinyl group-containing linear organopolysiloxane (A1-2) having a vinyl group content of 0.5 to 15 mol%. It is preferable to have As crude rubber, which is a raw material of silicone rubber, a first vinyl group-containing linear organopolysiloxane (A1-1) having a general vinyl group content and a second vinyl group-containing linear organopolysiloxane having a high vinyl group content were used.
  • the vinyl groups can be unevenly distributed, and the crosslink density can be more effectively formed in the crosslink network of the silicone rubber. As a result, the tear strength of silicone rubber can be increased more effectively.
  • the vinyl group-containing linear organopolysiloxane (A1) for example, a unit in which R 1 is a vinyl group and/or a unit in which R 2 is a vinyl group in the above formula (1-1) , a first vinyl group-containing linear organopolysiloxane (A1-1) having 2 or more in the molecule and containing 0.4 mol% or less, and a unit in which R 1 is a vinyl group and / or R It is preferable to use a second vinyl group-containing linear organopolysiloxane (A1-2) containing 0.5 to 15 mol % of units in which 2 is a vinyl group.
  • the first vinyl group-containing linear organopolysiloxane (A1-1) preferably has a vinyl group content of 0.01 to 0.2 mol %.
  • the second vinyl group-containing linear organopolysiloxane (A1-2) preferably has a vinyl group content of 0.8 to 12 mol %.
  • (A1-1) and (A1-2) are not particularly limited, but for example, the weight ratio of (A1-1):(A1-2) is preferably 50:50 to 95:5, and 80:20 to 90: 10 is more preferred.
  • the first and second vinyl group-containing linear organopolysiloxanes (A1-1) and (A1-2) may be used singly or in combination of two or more. good.
  • the vinyl group-containing organopolysiloxane (A) may also contain a vinyl group-containing branched organopolysiloxane (A2) having a branched structure.
  • the silicone rubber-based curable composition of the present embodiment may contain a cross-linking agent.
  • Cross-linking agents can include organohydrogenpolysiloxanes (B).
  • Organohydrogenpolysiloxane (B) is classified into linear organohydrogenpolysiloxane (B1) having a linear structure and branched organohydrogenpolysiloxane (B2) having a branched structure. Either or both may be included.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of cross-linking agent.
  • the same type of cross-linking agent should have at least a common structure such as a linear structure or a branched structure, and may contain different molecular weight distributions and different functional groups in the molecule, and the amount added may be different.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different cross-linking agents.
  • the linear organohydrogenpolysiloxane (B1) has a linear structure and a structure ( ⁇ Si—H) in which hydrogen is directly bonded to Si, and is the vinyl group-containing organopolysiloxane (A). It is a polymer that undergoes a hydrosilylation reaction with other vinyl groups and other vinyl groups contained in other components of the silicone rubber-based curable composition to crosslink these components.
  • the molecular weight of the linear organohydrogenpolysiloxane (B1) is not particularly limited, for example, the weight average molecular weight is preferably 20,000 or less, more preferably 1,000 or more and 10,000 or less.
  • the weight average molecular weight of the linear organohydrogenpolysiloxane (B1) can be measured, for example, by polystyrene conversion in GPC (gel permeation chromatography) using chloroform as a developing solvent.
  • the linear organohydrogenpolysiloxane (B1) does not have a vinyl group. Thereby, it is possible to accurately prevent the progress of the cross-linking reaction in the molecule of the linear organohydrogenpolysiloxane (B1).
  • linear organohydrogenpolysiloxane (B1) for example, one having a structure represented by the following formula (2) is preferably used.
  • R 4 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, a hydrocarbon group combining these groups, or a hydride group.
  • the alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred.
  • alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups.
  • the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • R 5 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, a hydrocarbon group combining these, or a hydride group.
  • alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group and propyl group, with methyl group being preferred.
  • alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups.
  • Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • a plurality of R 4 are independent of each other and may be different from each other or may be the same. The same is true for R5. However, at least two or more of the plurality of R 4 and R 5 are hydride groups.
  • R 6 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group combining these.
  • the alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred.
  • Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group.
  • a plurality of R 6 are independent from each other and may be different from each other or may be the same.
  • substituents for R 4 , R 5 and R 6 in formula (2) include methyl group and vinyl group, and methyl group is preferred from the viewpoint of preventing intramolecular cross-linking reaction.
  • m and n are the numbers of repeating units constituting the linear organohydrogenpolysiloxane (B1) represented by formula (2), m is an integer of 2 to 150, and n is an integer of 2 to 150. is.
  • m is an integer from 2-100 and n is an integer from 2-100.
  • the straight-chain organohydrogenpolysiloxane (B1) may be used alone or in combination of two or more.
  • the branched organohydrogenpolysiloxane (B2) has a branched structure, it is a component that forms regions with a high crosslink density and greatly contributes to the formation of a loose and dense structure of crosslink density in the silicone rubber system. Further, like the linear organohydrogenpolysiloxane (B1), it has a structure ( ⁇ Si—H) in which hydrogen is directly bonded to Si, and in addition to the vinyl group of the vinyl group-containing organopolysiloxane (A), silicone It is a polymer that undergoes a hydrosilylation reaction with the vinyl groups of the components blended in the rubber-based curable composition to crosslink these components.
  • the specific gravity of the branched organohydrogenpolysiloxane (B2) is in the range of 0.9 to 0.95.
  • the branched organohydrogenpolysiloxane (B2) does not have a vinyl group. Thereby, it is possible to accurately prevent the progress of the cross-linking reaction in the molecule of the branched organohydrogenpolysiloxane (B2).
  • branched organohydrogenpolysiloxane (B2) one represented by the following average compositional formula (c) is preferable.
  • R 7 is a monovalent organic group, a is an integer ranging from 1 to 3, m is the number of H a (R 7 ) 3-a SiO 1/2 units, n is SiO 4/ is a number of 2 units)
  • R 7 is a monovalent organic group, preferably a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an aryl group, or a hydrocarbon group combining these.
  • the alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred.
  • Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
  • a is the number of hydride groups (hydrogen atoms directly bonded to Si) and is an integer in the range of 1 to 3, preferably 1.
  • m is the number of H a (R 7 ) 3-a SiO 1/2 units
  • n is the number of SiO 4/2 units.
  • the branched organohydrogenpolysiloxane (B2) has a branched structure.
  • the linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpolysiloxane (B2) differ in that their structures are linear or branched.
  • the number of bound alkyl groups R (R/Si) is 1.8 to 2.1 for the linear organohydrogenpolysiloxane (B1) and 0.8 to 1 for the branched organohydrogenpolysiloxane (B2). .7 range.
  • the branched organohydrogenpolysiloxane (B2) has a branched structure, for example, when heated to 1000° C. at a heating rate of 10° C./min in a nitrogen atmosphere, the residual amount is 5% or more. becomes.
  • the straight-chain organohydrogenpolysiloxane (B1) is straight-chain, the amount of residue after heating under the above conditions is almost zero.
  • branched organohydrogenpolysiloxane (B2) include those having a structure represented by the following formula (3).
  • R 7 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, a hydrocarbon group combining these, or a hydrogen atom.
  • the alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferable.
  • Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group.
  • the substituent of R7 include a methyl group and the like.
  • a plurality of R 7 are independent of each other and may be different from each other or may be the same.
  • the branched organohydrogenpolysiloxane (B2) may be used alone or in combination of two or more.
  • the amount of hydrogen atoms (hydride groups) directly bonded to Si is not particularly limited.
  • linear organohydrogenpolysiloxane (B1) and branched organohydrogenpolysiloxane are The total amount of hydride groups in the siloxane (B2) is preferably from 0.5 to 5 mol, more preferably from 1 to 3.5 mol.
  • the silicone rubber-based curable composition according to this embodiment contains a non-conductive filler.
  • the non-conductive filler may contain silica particles (C) as needed. Thereby, the hardness and mechanical strength of the elastomer can be improved.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of non-conductive filler.
  • Non-conductive fillers of the same type may have at least common constituent materials, and may differ in particle size, specific surface area, surface treatment agent, or addition amount thereof.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different silane coupling agents.
  • the silica particles (C) are not particularly limited, but for example, fumed silica, calcined silica, precipitated silica, etc. are used. These may be used alone or in combination of two or more.
  • the silica particles (C) preferably have a BET specific surface area of, for example, 50 to 400 m 2 /g, more preferably 100 to 400 m 2 /g. Also, the average primary particle size of the silica particles (C) is, for example, preferably 1 to 100 nm, more preferably about 5 to 20 nm.
  • silica particles (C) having a specific surface area and an average particle size within the above ranges, the hardness and mechanical strength of the formed silicone rubber can be improved, especially the tensile strength can be improved.
  • the silicone rubber-based curable composition of the present embodiment can contain a silane coupling agent (D).
  • Silane coupling agent (D) can have a hydrolyzable group. The hydrolyzable group is hydrolyzed with water to form a hydroxyl group, and the hydroxyl group undergoes a dehydration condensation reaction with the hydroxyl group on the surface of the silica particle (C), thereby modifying the surface of the silica particle (C).
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of silane coupling agent.
  • the silane coupling agents of the same kind should have at least a common functional group, and may differ in other functional groups in the molecule and in the amount added.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different silane coupling agents.
  • this silane coupling agent (D) can contain a silane coupling agent having a hydrophobic group.
  • the hydrophobic group is imparted to the surface of the silica particles (C), so that the cohesive force of the silica particles (C) in the silicone rubber-based curable composition and further in the silicone rubber is reduced (hydrogen aggregation due to bonding is reduced), and as a result, it is presumed that the dispersibility of the silica particles (C) in the silicone rubber-based curable composition is improved. This increases the interface between the silica particles (C) and the rubber matrix, increasing the reinforcing effect of the silica particles (C).
  • the slipperiness of the silica particles (C) within the matrix is improved when the rubber matrix is deformed.
  • the improved dispersibility and slipperiness of the silica particles (C) improve the mechanical strength (for example, tensile strength and tear strength) of the silicone rubber due to the silica particles (C).
  • the silane coupling agent (D) can contain a silane coupling agent having a vinyl group.
  • vinyl groups are introduced onto the surfaces of the silica particles (C). Therefore, during curing of the silicone rubber-based curable composition, that is, a hydrosilylation reaction occurs between the vinyl group of the vinyl group-containing organopolysiloxane (A) and the hydride group of the organohydrogenpolysiloxane (B). , When a network (crosslinked structure) is formed by these, the vinyl groups possessed by the silica particles (C) also participate in the hydrosilylation reaction with the hydride groups possessed by the organohydrogenpolysiloxane (B). Silica particles (C) also come to be taken in. As a result, it is possible to reduce the hardness and increase the modulus of the formed silicone rubber.
  • silane coupling agent (D) a silane coupling agent having a hydrophobic group and a silane coupling agent having a vinyl group can be used in combination.
  • silane coupling agent (D) examples include those represented by the following formula (4).
  • n represents an integer of 1-3.
  • Y represents a functional group having a hydrophobic group, a hydrophilic group or a vinyl group, and when n is 1 it is a hydrophobic group, and when n is 2 or 3 at least one of It is a hydrophobic group.
  • X represents a hydrolyzable group.
  • the hydrophobic group is an alkyl group having 1 to 6 carbon atoms, an aryl group, or a hydrocarbon group having a combination thereof, and examples thereof include a methyl group, an ethyl group, a propyl group, a phenyl group, and the like. Methyl groups are preferred.
  • the hydrophilic group includes, for example, a hydroxyl group, a sulfonic acid group, a carboxyl group, a carbonyl group, etc. Among them, a hydroxyl group is particularly preferable.
  • the hydrophilic group may be contained as a functional group, but is preferably not contained from the viewpoint of imparting hydrophobicity to the silane coupling agent (D).
  • the hydrolyzable group includes an alkoxy group such as a methoxy group and an ethoxy group, a chloro group, a silazane group, and the like.
  • a silazane group is preferable because of its high reactivity with the silica particles (C).
  • a compound having a silazane group as a hydrolyzable group has two structures of (Y n —Si—) in the above formula (4) due to its structural characteristics.
  • silane coupling agent (D) represented by the above formula (4) are as follows.
  • Those having a hydrophobic group as the functional group include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, alkoxysilanes such as n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane; hexamethyldisilazane.
  • silane coupling agent having a trimethylsilyl group containing one or more selected from the group consisting of hexamethyldisilazane, trimethylchlorosilane, trimethylmethoxysilane, and trimethylethoxysilane is preferred.
  • Examples of those having a vinyl group as the functional group include methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, vinyltriethoxysilane, and vinyltrimethoxysilane.
  • alkoxysilanes such as silane and vinylmethyldimethoxysilane
  • chlorosilanes such as vinyltrichlorosilane and vinylmethyldichlorosilane
  • divinyltetramethyldisilazane divinyltetramethyldisilazane.
  • a silane coupling agent having a vinyl group-containing organosilyl group containing one or more selected from the group consisting of methyldimethoxysilane is preferred.
  • silane coupling agent (D) contains two kinds of a silane coupling agent having a trimethylsilyl group and a silane coupling agent having a vinyl group-containing organosilyl group
  • those having a hydrophobic group include hexamethyldisilazane, Divinyltetramethyldisilazane is preferably included as one having a vinyl group.
  • the ratio of (D1) and (D2) is not particularly limited, but for example, (D1):(D2) in a weight ratio of 1:0.001 to 1:0.35, preferably 1:0.01 to 1:0.20, more preferably 1:0.03 to 1:0 .15. Desired physical properties of the silicone rubber can be obtained by setting it to such a numerical range. Specifically, the dispersibility of silica in the rubber and the crosslinkability of the rubber can be balanced.
  • the lower limit of the content of the silane coupling agent (D) is preferably 1% by mass or more with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A). It is more preferably at least 5% by mass, even more preferably at least 5% by mass.
  • the upper limit of the content of the silane coupling agent (D) is preferably 100% by mass or less, and 80% by mass or less with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A). It is more preferable that the content is 40% by mass or less.
  • the silicone rubber can have appropriate mechanical properties.
  • the silicone rubber-based curable composition according to this embodiment may contain a catalyst.
  • the catalyst may contain platinum or a platinum compound (E).
  • Platinum or a platinum compound (E) is a catalytic component that acts as a catalyst during curing.
  • the amount of platinum or platinum compound (E) added is a catalytic amount.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of catalyst. Catalysts of the same kind may have at least common constituent materials, and the catalysts may contain different compositions and may differ in addition amount.
  • the insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different catalysts.
  • platinum or platinum compound (E) a known one can be used, for example, platinum black, platinum supported on silica or carbon black, chloroplatinic acid or an alcohol solution of chloroplatinic acid, A complex salt of platinic acid and olefin, a complex salt of chloroplatinic acid and vinyl siloxane, and the like are included.
  • the platinum or platinum compound (E) may be used alone or in combination of two or more.
  • the content of platinum or platinum compound (E) in the silicone rubber-based curable composition means the amount of catalyst, and can be set as appropriate.
  • (A), silica particles (C), the total amount of 100 parts by weight of the silane coupling agent (D), platinum group metal is an amount of 0.01 to 1000 ppm by weight unit, preferably 0. The amount is 1 to 500 ppm.
  • the silicone rubber-based curable composition according to the present embodiment may contain water (F) in addition to the above components (A) to (E).
  • Water (F) is a component that functions as a dispersion medium for dispersing each component contained in the silicone rubber-based curable composition and contributes to the reaction between the silica particles (C) and the silane coupling agent (D). . Therefore, the silica particles (C) and the silane coupling agent (D) can be linked to each other more reliably in the silicone rubber, and uniform properties can be exhibited as a whole.
  • the silicone rubber-based curable composition of the present embodiment may further contain other components in addition to the above components (A) to (F).
  • Other components include silica particles (C) such as diatomaceous earth, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, cerium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, glass wool, and mica.
  • additives such as inorganic fillers, reaction inhibitors, dispersants, pigments, dyes, antistatic agents, antioxidants, flame retardants, and thermal conductivity improvers.
  • the conductive solution (conductive silicone rubber composition) according to the present embodiment contains the conductive filler and solvent in addition to the silicone rubber-based curable composition containing no conductive filler.
  • solvents can be used as the solvent, and for example, a high boiling point solvent can be included. These may be used alone or in combination of two or more.
  • solvents examples include aliphatic hydrocarbons such as pentane, hexane, cyclohexane, heptane, methylcyclohexane, ethylcyclohexane, octane, decane, dodecane, and tetradecane; benzene, toluene, ethylbenzene, xylene, trifluoromethylbenzene; , aromatic hydrocarbons such as benzotrifluoride; diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, cyclopentyl ethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, 1,4-dioxane, 1,3 - ethers such as dioxane and tetrahydrofuran; haloalkanes such as
  • the conductive solution can have a viscosity suitable for various coating methods such as spray coating and dip coating.
  • the lower limit of the content of the silica particles (C) contained in the electrode part 30 is the silica particles (C) and the conductive filler.
  • it is 1% by mass or more, preferably 3% by mass or more, and more preferably 5% by mass or more, relative to the total amount of 100% by mass.
  • the upper limit of the content of the silica particles (C) contained in the electrode part 30 is, for example, 20% by mass or less with respect to the total amount of 100% by mass of the silica particles (C) and the conductive filler, It is preferably 15% by mass or less, more preferably 10% by mass or less. Thereby, it is possible to achieve a balance between conductivity, mechanical strength, and flexibility in the electrode portion 30 .
  • a conductive silicone rubber can be obtained by heating and drying the conductive solution as necessary.
  • the conductive silicone rubber may be configured without silicone oil. As a result, it is possible to suppress deterioration in conductivity due to bleeding out of the silicone oil onto the surface of the electrode portion 30 .
  • the signal line portion 34 can use a known one, and can be made of conductive fiber, for example.
  • conductive fiber one or more selected from the group consisting of metal fiber, metal-coated fiber, carbon fiber, conductive polymer fiber, conductive polymer-coated fiber, and conductive paste-coated fiber can be used. These may be used alone or in combination of two or more.
  • the metal material of the metal fibers and metal-coated fibers is not limited as long as it has conductivity, but copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, stainless steel, aluminum, silver/chloride silver and alloys thereof; These may be used alone or in combination of two or more. Among these, silver can be used from the viewpoint of conductivity. Moreover, it is preferable that the metal material does not contain a metal such as chromium that causes a load on the environment.
  • the fiber materials of the metal-coated fibers, conductive polymer-coated fibers, and conductive paste-coated fibers are not particularly limited, but may be synthetic fibers, semi-synthetic fibers, or natural fibers. Among these, it is preferable to use polyester, nylon, polyurethane, silk, cotton, and the like. These may be used alone or in combination of two or more.
  • Examples of the carbon fibers include PAN-based carbon fibers and pitch-based carbon fibers.
  • the conductive polymer material of the conductive polymer fiber and the conductive polymer-coated fiber is, for example, a mixture of a conductive polymer such as polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene vinylene, polynaphthalene, and derivatives thereof and a binder resin, Alternatively, an aqueous solution of a conductive polymer such as PEDOT-PSS ((3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid)) is used.
  • PEDOT-PSS ((3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid)
  • the resin material contained in the conductive paste of the conductive paste-coated fiber is not particularly limited, but preferably has elasticity. It can contain one or more selected from the group consisting of propylene rubbers. These may be used alone or in combination of two or more.
  • the conductive filler contained in the conductive paste of the conductive paste-coated fiber is not particularly limited, and known conductive materials may be used, such as metal particles, metal fibers, metal-coated fibers, carbon black, acetylene black, graphite, carbon It may contain one or more selected from the group consisting of fibers, carbon nanotubes, conductive polymers, conductive polymer-coated fibers and metal nanowires.
  • the metal constituting the conductive filler is not particularly limited, but for example, copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, silver/silver chloride, or at least one of these alloys. or, alternatively, two or more of these.
  • silver or copper is preferable because of its high conductivity and high availability.
  • the signal line portion 34 may be composed of twisted yarn obtained by twisting a plurality of linear conductive fibers. As a result, breakage of the signal line portion 34 during deformation can be suppressed.
  • the coating of the conductive fiber means not only covering the outer surface of the fiber material, but also, in the case of a twisted yarn obtained by twisting single fibers, a metal or a conductive polymer is added between the fibers in the twisted yarn. , or impregnated with a conductive paste to cover each single fiber constituting the twisted yarn.
  • the tensile elongation at break of the signal wire portion 34 is, for example, 1% to 50%, preferably 1.5% to 45%. By setting the value within such a numerical range, it is possible to suppress excessive deformation of the protrusion 32 while suppressing breakage during deformation.
  • the conductive member of the conductive contact portion 33 is, for example, a paste containing a highly conductive metal (so-called conductive paste).
  • the highly conductive metal includes one or more selected from the group consisting of copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, or alloys thereof.
  • silver, silver chloride, and copper are suitable from the viewpoint of availability and conductivity.
  • the conductive contact portion 33 is formed with a paste containing a highly conductive metal
  • the top of the protrusion 32 made of a rubber-like elastic body is dipped (immersed) in a paste-like conductive solution containing a highly conductive metal. Apply). Thereby, a conductive contact portion 33 is formed on the surface of the projection portion 32 .
  • the conductive contact portion 33 may be formed as a conductive resin layer by applying a conductive solution containing a conductive filler and a solvent to the projection portion 32 . At this time, by using the same type of material (silicone rubber) as the solvent for the protrusion 32, the adhesion of the conductive contact portion 33 (conductive resin layer) can be enhanced.
  • a conductive silicone rubber can be obtained by heating and drying the conductive solution as necessary.
  • the conductive silicone rubber may be configured without silicone oil. As a result, it is possible to suppress a decrease in conductivity due to bleeding out of the silicone oil onto the surface of the conductive contact portion 33 .
  • An example of the method for manufacturing the electrode part 30 of this embodiment can include the following steps. First, using a mold, the silicone rubber-based curable composition is molded under heat and pressure to obtain a molded body comprising the base portion 31 and the projection portion 32 . Subsequently, the signal wire portion 34 is threaded through each projection portion 32 of the obtained molding using a sewing needle. A pasty conductive solution is dip-coated on the tip portion of the protruding portion 32 of the molded body obtained thereafter, and post-curing is performed after heating and drying. Thereby, the conductive contact portion 33 can be formed on the projection portion 32 .
  • the electrode part 30 can be manufactured by the above. During the molding process, insert molding may be used in which the silicone rubber-based curable composition is introduced into the molding space in which the signal line portion 34 is arranged, and pressurized and heat-molded.
  • the cap 50 is made of, for example, a hard resin material and has a cylindrical shape with a bottom.
  • the cap 50 functions as a holder that accommodates and holds the electrode section 30 , the snap button 40 and the metal foil 60 inside.
  • the electrode section 30 , the snap button 40 and the metal foil 60 are stacked and accommodated, and are compressed and fixed inside the cap 50 in the thickness direction (vertical direction in the drawing) by the pressing section 56 .
  • the bottom surface of the bottomed cylindrical shape of the cap 50 serves as a cap top plate 51 .
  • a cylindrical cap body portion 52 is integrally provided on the peripheral edge of the cap top plate 51 .
  • the cap inner peripheral surface 55 of the cap barrel 52 is formed slightly larger than the base 31 of the electrode section 30, and the outer surface of the base 31 is in contact with the cap inner peripheral surface 55 when the electrode section 30 is accommodated. are set apart.
  • a central opening 53 penetrating in the thickness direction is provided at the center of the circular cap top plate 51 .
  • the size of the central opening 53 is such that at least the button portion 42 of the snap button 40 can protrude from the inside to the outside when the snap button 40 is accommodated in the cap 50 .
  • a holding portion 56 is formed that extends toward the inner side of the cylinder by a predetermined length.
  • the position of the pressing portion 56 in the thickness direction is slightly shallower than the total thickness of the components housed inside the cap 50 (here, the snap button 40, the metal foil 60, and the electrode portion 30). .
  • the pressing portion 56 moves the vicinity of the outer edge of the base lower surface 36 of the base portion 31 of the electrode portion 30 in the thickness direction (cylinder depth direction). ) while compressing.
  • the electrode portion 30 held by the cap 50 that is, with the pressing portion 56 pressing the base portion 31 , the base portion 31 is compressed in a range of 1% or more and 10% or less.
  • the pressing portions 56 may be provided over the entire circumferential direction, or may be provided in a hook shape at a plurality of locations at predetermined intervals in the circumferential direction. It should be noted that the electrode portion 30 is fitted into the cap 50 by arranging the snap button 40 and the metal foil 60 inside the cap 50 and then pushing it in. As shown in FIG. From the viewpoint of preventing a portion of the electrode portion 30 from floating during use in the fitted state, it is preferable that the pressing portion 56 is provided over the entire circumferential direction.
  • the snap button 40 is made of a conductive member and functions as an interface for connecting the signal of the electrode section 30 to an external measuring section.
  • conductive members include conductive metals such as stainless steel, copper alloys, and aluminum alloys.
  • the snap button 40 has a circular disc portion 41 with a predetermined thickness and a cylindrical button portion 42 extending upward from the center of the disc top surface 43 of the disc portion 41 .
  • the disc lower surface 44 of the disc portion 41 is connected to the metal foil 60 .
  • a disc upper surface 43 of the disc portion 41 abuts on the top plate lower surface 54 of the cap top plate 51 of the cap 50 , more specifically, the area near the central opening 53 .
  • the disk portion 41 has a structure in which the bent portion 34 a of the signal line portion 34 is sandwiched between the metal foil 60 and the base upper surface 35 of the electrode portion 30 .
  • the metal foil 60 is provided between the electrode portion 30 and the snap button 40, and is configured as part of the signal path by being conductive and being compressed and deformed.
  • the metal foil 60 has at least a size and shape that can sandwich the bent portions 34a of all the signal line portions 34 when placed and fixed between the electrode portion 30 and the snap button 40.
  • the metal foil 60 is, for example, a foil of aluminum, copper (including alloys thereof), or stainless steel. Aluminum or stainless steel is preferable in consideration of the difficulty of internal maintenance after the electroencephalogram measurement electrode 10 is assembled and deterioration due to sweat on the scalp.
  • the thickness of the metal foil 60 is, for example, 1 ⁇ m to 100 ⁇ m.
  • the snap button 40 is accommodated from the opening on the lower side of the cap body portion 52 of the cap 50, with the button portion 42 facing upward in the figure.
  • the peripheral edge portion of the disc upper surface 43 contacts the opening edge portion of the central opening 53 of the top plate lower surface 54 .
  • the button portion 42 penetrates the central opening portion 53 of the cap 50 and protrudes to the outside.
  • the metal foil 60 is accommodated so as to abut against the disk lower surface 44 of the snap button 40 .
  • the electrode part 30 is arranged so that the base upper surface 35 is pressed against the metal foil 60 .
  • the electrode part 30 is fitted from the lower opening of the cap 50 .
  • the pressing portion 56 compresses the outer edge portion 38 of the base portion 31 of the electrode portion 30 in the thickness direction.
  • the snap button 40, the metal foil 60 and the electrode portion 30 are accommodated in the cylinder of the cap 50 in a compressed state.
  • Electroencephalogram measurement electrode 10 A columnar base 31 formed of an elastic member, a plurality of projections 32 (electrode projections) provided at one end of the base 31 (that is, the lower surface 36 of the base), and at least the tip side surface of the projections 32.
  • a snap button 40 (conductive snap button 40) is provided at the other end of the base portion 31 (base upper surface 35) via a metal foil 60 and has a button portion 42 (connection projection) extending in the direction opposite to the base portion 31. connection member); and a cap 50 (holder) that holds the electrode part 30,
  • the cap 50 has a cylindrical shape with a bottom, and the button portion 42 of the snap button 40 is held in a state in which the electrode portion 30 is provided on the bottom surface (cap top plate 51) of the cylindrical shape with a bottom (cap top plate 51).
  • the pressing portion 56 compresses the outer edge portion 38 of the surface of the base portion 31 on which the projection portion 32 is provided (base portion lower surface 36 ) in the thickness direction of the base portion 31 . Since the base portion 31 of the electrode portion 30 is compressed in the thickness direction and accommodated in the cap 50, a good electrical connection can be maintained. (3) The compressibility of the base portion 31 of the electrode portion 30 held by the cap 50 is 1% or more and 10% or less based on the removed state. By compressing the base portion 31 with a compression ratio within the above range and holding the electrode portion 30 in the cap 50, a balance between the electrical connection state and the holding force can be ensured. (4) The elastic member forming the electrode portion 30 is made of silicone resin.
  • the signal line portion 34 is made of a conductive fiber, protrudes from the other end (base upper surface 35) of the base portion 31, and is bent while being held by the cap 50 of the base portion 31 of the electrode portion 30, It is electrically connected with the snap button 40 via the metal foil 60 .
  • the portion (that is, the bent portion 34a) of the signal line portion 34 of the conductive fiber protruding from the base upper surface 35 is sandwiched between the metal foil 60 and the base upper surface 35, and the snap button 40 presses them.
  • a signal from the signal line portion 34 can be reliably transmitted to the snap button 40.
  • the cap 50 is made from one piece of material.
  • the electroencephalogram measurement device 1 includes an electroencephalogram measurement electrode 10, a frame 20 that holds a plurality of the electroencephalogram measurement electrodes 10, and a measurement unit that is connected via a snap button 40 and measures a measured electroencephalogram signal. , has (8) The electroencephalogram measurement method includes attaching the electroencephalogram measurement device 1 to the subject's head 99 and performing electroencephalogram measurement.
  • FIG. 5 is a cross-sectional view schematically showing the electroencephalogram measurement electrode 110.
  • the metal foil 60 is omitted, the snap button 40 is directly arranged on the electrode section 30, and the bent portion 34a of the signal line section 34 is formed between the snap button 40 and the electrode section 30 (more specifically, the electrode section 30). is directly sandwiched between the base portion upper surface 35).
  • the number of components can be reduced, and an increase in contact resistance due to deterioration of the metal foil 60 can be suppressed.
  • FIG. 6 is a cross-sectional view schematically showing the electroencephalogram measurement electrode 210.
  • the one-piece cap 50 of the first embodiment is replaced with a cap 250 of a plurality of pieces (here, two parts).
  • the cap 250 includes a first cap 250A and a second cap 250B.
  • the electrode section 30, the snap button 40 and the metal foil 60 are accommodated inside the cap 250 and compressed and fixed.
  • the first cap 250A has a cap top plate 51 and a cylindrical first trunk portion 251 extending downward in the drawing from the lower end of the outer edge of the cap top plate 51 .
  • the outer peripheral surface of the first body portion 251 is threaded.
  • the second cap 250B has a tubular second body portion 252 and a pressing portion 56 provided at the lower end thereof.
  • the inner peripheral surface of the second body portion 252 is threaded.
  • the cap 250 is composed of a plurality of pieces (here, two parts of the first cap 250A and the second cap 250B). By screw-fitting the second cap 250B to the second cap 250B, it is compressed and fixed, so the degree of compression can be adjusted. Further, unlike the first embodiment, it is not necessary to strongly fit the electrode section 30 against the holding portion 56, and therefore the size of the holding portion 56 is not limited.
  • FIG. 7 is a perspective view of the electroencephalogram measurement electrode 310.
  • the electroencephalogram measurement electrode 310 of this embodiment is composed of two parts, a first cap 350A and a second cap 350B, as in the third embodiment. A different point is that hook fitting is used as a structure for fitting and fixing the first cap 350A and the second cap 350B.
  • the first cap 350A has a cap top plate 51 and a tubular first barrel portion 351 extending downward in the figure from the lower end of the outer edge of the cap top plate 51 .
  • a hook-shaped male hook portion 351A is provided at the lower end portion of the first body portion 351 in the drawing.
  • the second cap 350B has a tubular second body portion 352 and a pressing portion 56 provided at the lower end thereof.
  • An upper end portion of the second trunk portion 252 is provided with a concave female hook portion 352B into which the male hook portion 351A can be fitted.
  • the male hook portion 351A and the female hook portion 352B are provided at a plurality of locations, for example, four locations from the viewpoint of appropriately compressing and fixing the accommodated electrode portion 30 and the like.
  • the size of the holding section 56 is not limited.
  • FIG. 8 is a cross-sectional view schematically showing the electroencephalogram measurement electrode 410.
  • a recessed fitting portion 437 is provided on the peripheral surface of the base portion 31 of the electrode portion 430 over the entire circumference.
  • the holding portion 56 provided at the lower end portion of the cap body portion 52 of the cap 450 is fitted into the fitting portion 437 .
  • the electrode section 30 , the metal foil 60 and the snap button 40 are compressed and fixed to the cap 50 .
  • the compressibility at the time of compression fixation is smaller than that of the first embodiment, but the cap 450 can be made compact in the thickness direction.
  • FIG. 9 is a cross-sectional view schematically showing the electroencephalogram measurement electrode 510.
  • the peripheral surface of the base portion 31 of the electrode portion 530 is stepped. That is, the base portion 31 has a large diameter on the upper side in the thickness direction and a small diameter on the lower side, and the boundary surface 357 is pressed by the pressing portion 556 . With such a configuration, the cap 550 can be made compact.
  • FIG. 10 is a cross-sectional view schematically showing the electroencephalogram measurement electrode 610.
  • the cap 650 is made up of a plurality of pieces with a snap-fit fitting structure.
  • the structure of the electrode part 30, the snap button 40, etc. accommodated inside the cap 650 can provide the same structure as the above-described embodiment, and the cap 650 will be described below.
  • the cap 650 has a tubular first cap 650A and a tubular second cap 650B fitted in the tubular of the first cap 650A.
  • the first cap 650A and the second cap 650B are integrally fitted with a snap-fit fitting structure, so that the electrode section 30 and the snap button 40 are accommodated inside the cap 650 and are compressed and fixed.
  • a metal foil may be provided between the electrode portion 30 and the snap button 40 as in the third to fifth embodiments.
  • the first cap 650A has a cylindrical cap body 652A and a pressing part 656A provided at the lower end thereof.
  • the upper region of the cap inner peripheral surface 655A of the cap barrel 652A forms a storage space 658A that is slightly enlarged in diameter to accommodate the second cap 650B.
  • a lower portion of the accommodation space 658A is a recessed locking groove 657A in which the locking piece 657B of the second cap 650B is received and locked during snap-fitting.
  • the second cap 650B has an annular cap top plate 651B having a central opening 653B, and a locking piece 657B extending downward in the drawing from the outer peripheral edge of the annular cap top plate 651B.
  • the locking piece 657B has a substantially cylindrical shape and is elastically deformable in the cylinder inner direction.
  • the lower end portion of the locking piece 657B in the drawing has a shape protruding outward like a hook.
  • the tubular shape may be vertically divided into a plurality of pieces (for example, into three or four pieces).
  • the size of the inner peripheral surface 655B of the second cap 650B (that is, the plurality of locking pieces 657B) is approximately the same as the outer diameter of the base portion 31 of the electrode portion 30.
  • the pressing portion 656A of the first cap 650A presses the outer edge portion 38 of the lower surface of the base portion 31 of the electrode portion 30 from below in the drawing.
  • the top plate lower surface 654B of the second cap 650B presses the disc upper surface 43 of the snap button 40 .
  • the electrode part 30 and the snap button 40 are housed and fixed in the cap 650 in a state of being compressed in the thickness direction.
  • the cap body 652A may be provided with a hole penetrating from the outer peripheral surface to the locking groove 657A.
  • the first cap 650A and the second cap 650B of the cap 650 have a snap-fit fitting structure, so that the electrode section 30 and the snap button 40 can be housed inside to assemble the electroencephalogram measurement electrode 610. It can make your work easier. Moreover, since the structure is simple, it is easy to reduce the size of the electroencephalogram measurement electrode 610, and the weight of the electroencephalogram measurement electrode 610 can be reduced.
  • Electroencephalogram measurement device 10 110, 210, 310, 410, 510, 610 electroencephalogram measurement electrode 20 frame 21 electrode unit mounting portion 30, 430, 530 electrode portion 31 base portion 32 projection portion 33 conductive contact portion 34 signal line portion 34a Bent portion 35 Base upper surface 36 Base lower surface 37 Peripheral surface 38 Outer edge portion 40 Snap button 41 Disk portion 42 Button portion 43 Disk upper surface 44 Disk lower surface 50, 250, 350, 450, 550, 650 Cap 51, 651B Cap top plate 52, 652A Cap trunk portion 53 Central opening portion 54 Top plate lower surface 55 Cap inner peripheral surface 56, 456, 556, 656A Pressing portion 60 Metal foil 70 Mold resin 250A, 350A, 650A First cap 250B, 350B, 650B Second cap 251, 351 First barrel portions 252, 352 Second barrel portion 351A Male hook portion 352B Female hook portion 437 Fitting portion 655B Inner peripheral surface 657A Locking groove 657B Locking piece 658A Accommodation space

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This brain wave measuring electrode (10) comprises: an electrode part (30) having a columnar base section (31) which is an elastic member, a plurality of protrusion sections (32) provided to a base section lower surface (36), conductive contact sections (33) provided respectively on the front-end side surface of the protrusion sections (32), and a signal line section (34) extending from the conductive contact sections (33) to a base section upper surface (35); a snap button (40) comprising a button section (42) which is provided on the base section upper surface (35) with a metal foil (60) therebetween and extends in a direction opposite to the base section (31); and a holder (50) which holds the electrode part (30). The holder (50) has a bottomed cylindrical shape, and has: a central opening part (53) which is provided to a gap top plate (51) from which the button section (42) of the snap button (40) protrudes while the electrode part (30) is held by the holder (50); and a push part (56) which pushes the electrode part (30) in the thickness direction of the base section (31) on an end section opposite to the gap top plate (51).

Description

脳波測定用電極、脳波測定装置および脳波測定方法Electroencephalogram measurement electrode, electroencephalogram measurement device, and electroencephalogram measurement method
 本発明は、脳波測定用電極、脳波測定装置および脳波測定方法に関する。 The present invention relates to an electroencephalogram measurement electrode, an electroencephalogram measurement device, and an electroencephalogram measurement method.
 これまで脳波測定用電極に関して様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1に開示の脳波測定用電極(脳波検出用生体電極)は、複数の貫通孔を有するホルダ部と、前記貫通孔の周面よりも外周側に広がる基底部と該基底部から突出した前記貫通孔を貫通可能な少なくとも1つの突出部とを有する少なくとも1つの導電性弾性体から形成された電極部と、前記基底部を前記ホルダ部との間で挟持する導電性の蓋部とを備える。 Various developments have been made on electrodes for electroencephalogram measurement. As this type of technology, for example, the technology described in Patent Document 1 is known. The electroencephalogram measurement electrode (electroencephalogram detection bioelectrode) disclosed in Patent Document 1 includes a holder portion having a plurality of through holes, a base portion extending outward from the peripheral surface of the through hole, and a base portion protruding from the base portion. an electrode portion formed of at least one conductive elastic body having at least one projecting portion capable of passing through the through hole; and a conductive lid portion sandwiching the base portion and the holder portion. Prepare.
国際公開第2019/073740号WO2019/073740
 弾性部材の電極部(基部、突起部)を樹脂製のホルダに収容しスナップボタン形状の接続部材で外部に信号を取り出すタイプの脳波測定用電極において、収容のために接着剤を用いることがある。そのような構成では、スナップボタン形状の接続部材に接着剤が漏れ出し導通不良を起こすことも懸念され、製造プロセスの管理が手間になるという課題があった。 Electroencephalogram measurement electrodes of the type in which the electrode part (base part, protruding part) of the elastic member is housed in a resin holder and the signal is extracted to the outside with a snap button-shaped connection member, an adhesive may be used for housing. . In such a configuration, there is a concern that the adhesive may leak into the snap-button-shaped connection member, causing a conduction failure, and there is a problem that the management of the manufacturing process becomes troublesome.
 本発明はこのような状況に鑑みなされたものであって、弾性部材の電極部(基部、突起部)を樹脂製のホルダに収容する脳波測定用電極において、接着剤を用いず電極部をホルダに適切に収容する技術を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides an electroencephalogram measurement electrode in which an electrode portion (base portion, projection portion) of an elastic member is housed in a holder made of resin. The purpose is to provide a technology to properly accommodate the
 本発明によれば、
 弾性部材で形成された柱状の基部と、前記基部の一端に設けられた複数の電極用突起部と、前記電極用突起部の少なくとも先端側表面に設けられた導電部と、前記導電部から前記基部の他の一端まで延びる信号経路と、を有する電極部と、
 前記基部の前記他の一端に直接又は金属箔を介して設けられるとともに、かつ前記基部とは反対方向に延出する接続用突起を備えた導電性接続部材と、
 前記電極部を保持するホルダと、を有し、
 前記ホルダは、有底筒状形状であって、
  前記有底筒状形状の底面に設けられ、前記電極部が前記ホルダに保持された状態で、前記導電性接続部材の前記接続用突起が突出する貫通孔と、
  前記底面と反対側の端部において、前記電極部を前記基部の厚さ方向に押さえる押さえ部と、を有する
 脳波測定用電極が提供される。
 本発明によれば、
 上記脳波測定用電極と、
 複数の前記脳波測定用電極を保持するフレームと、
 前記導電性接続部材の前記接続用突起に接続され、測定した脳波信号を計測する計測部と、
 を有する脳波測定装置が提供される。
 本発明によれば、
 上記脳波測定装置を被験者の頭部に装着して脳波測定を行う脳波測定方法が提供される。
According to the invention,
a columnar base formed of an elastic member; a plurality of electrode projections provided at one end of the base; a conductive portion provided at least on the tip side surface of the electrode projection; a signal path extending to the other end of the base;
a conductive connection member provided at the other end of the base directly or via a metal foil and having a connection projection extending in a direction opposite to the base;
a holder that holds the electrode part,
The holder has a cylindrical shape with a bottom,
a through hole provided in the bottom surface of the cylindrical shape with a bottom, through which the connection protrusion of the conductive connection member protrudes in a state in which the electrode portion is held by the holder;
and a pressing portion that presses the electrode portion in the thickness direction of the base portion at the end portion opposite to the bottom surface.
According to the invention,
the electroencephalogram measurement electrode;
a frame holding the plurality of electroencephalogram measurement electrodes;
a measurement unit that is connected to the connection projection of the conductive connection member and measures the measured electroencephalogram signal;
An electroencephalogram measurement device is provided.
According to the invention,
An electroencephalogram measurement method is provided in which the electroencephalogram measurement device is mounted on the subject's head to measure electroencephalograms.
 本発明によれば、弾性部材の電極部(基部、突起部)を樹脂製のホルダに収容する脳波測定用電極において、接着剤を用いず電極部をホルダに適切に収容する技術を提供することができる。 According to the present invention, in an electroencephalogram measurement electrode in which an electrode portion (base portion, protruding portion) of an elastic member is housed in a holder made of resin, there is provided a technique for appropriately housing the electrode portion in the holder without using an adhesive. can be done.
第1の実施形態に係る、人の頭部に装着した状態の脳波測定装置を模式的に示す図である。1 is a diagram schematically showing an electroencephalogram measuring device attached to a person's head according to a first embodiment; FIG. 第1の実施形態に係る、フレームの斜視図である。1 is a perspective view of a frame according to the first embodiment; FIG. 第1の実施形態に係る、脳波測定用電極の斜視図である。1 is a perspective view of an electroencephalogram measurement electrode according to a first embodiment; FIG. 第1の実施形態に係る、脳波検出用電極を模式的に示した断面図である。1 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a first embodiment; FIG. 第2の実施形態に係る、脳波検出用電極を模式的に示した断面図である。FIG. 5 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a second embodiment; 第3の実施形態に係る、脳波検出用電極を模式的に示した断面図である。FIG. 11 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a third embodiment; 第4の実施形態に係る、脳波検出用電極の斜視図である。FIG. 11 is a perspective view of an electroencephalogram detection electrode according to a fourth embodiment; 第5の実施形態に係る、脳波検出用電極を模式的に示した断面図である。FIG. 11 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a fifth embodiment; 第6の実施形態に係る、脳波検出用電極を模式的に示した断面図である。FIG. 11 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a sixth embodiment; 第7の実施形態に係る、脳波検出用電極を模式的に示した断面図である。FIG. 11 is a cross-sectional view schematically showing an electroencephalogram detection electrode according to a seventh embodiment;
≪第1の実施形態≫
 以下、本発明の実施の形態について、図面を用いて説明する。
 図1は人(被験者)の頭部99に装着した状態の脳波測定装置1を模式的に示す図である。
 脳波測定装置1は、人の頭部99に装着され、脳波を生体からの電位変動として検出し、検出した脳波を計測部(図示せず)に出力する。計測部は、脳波測定用電極10が検出した脳波を取得して、モニタ表示したり、データ保存したり、周知の脳波解析処理を行う。
<<First embodiment>>
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing the electroencephalogram measurement device 1 attached to the head 99 of a person (subject).
The electroencephalogram measurement device 1 is attached to a person's head 99, detects electroencephalograms as potential fluctuations from a living body, and outputs the detected electroencephalograms to a measurement unit (not shown). The measurement unit acquires the electroencephalogram detected by the electroencephalogram measurement electrode 10, displays it on a monitor, stores the data, and performs well-known electroencephalogram analysis processing.
<脳波測定装置1の構造>
 図1に示すように、脳波測定装置1は、複数の脳波測定用電極10と、フレーム20と、を有する。本実施形態では、脳波測定用電極10は、5ch分(5個)設けられている。
<Structure of electroencephalogram measurement device 1>
As shown in FIG. 1 , the electroencephalogram measurement device 1 has a plurality of electroencephalogram measurement electrodes 10 and a frame 20 . In this embodiment, the electroencephalogram measurement electrodes 10 are provided for 5 channels (five pieces).
<フレーム20の構造>
 図2にフレーム20の斜視図を示す。フレーム20は、例えばポリアミド樹脂のような硬質部材で帯状に、かつ人間の頭部99の形状に沿うように湾曲して形成されている。
<Structure of frame 20>
A perspective view of the frame 20 is shown in FIG. The frame 20 is made of a rigid material such as polyamide resin, and is formed in a strip shape and curved so as to follow the shape of the human head 99 .
 フレーム20には、脳波測定用電極10を取り付けるための開孔として電極ユニット取付部21が5カ所設けられている。電極ユニット取付部21の位置(すなわち脳波測定用電極10の取付位置)は、例えば国際10-20電極配置法におけるT3、C3、Cz、C4、T4の位置に対応する。 The frame 20 is provided with five electrode unit attachment portions 21 as openings for attaching the electroencephalogram measurement electrodes 10 . The position of the electrode unit mounting portion 21 (that is, the mounting position of the electroencephalogram measurement electrode 10) corresponds to, for example, positions T3, C3, Cz, C4, and T4 in the International 10-20 Electrode Arrangement Method.
 電極ユニット取付部21の内周面は、脳波測定用電極10の外周面と略同一の外径となるように設定されており、脳波測定用電極10が電極ユニット取付部21に嵌め込まれて固定される。なお、電極ユニット取付部21の内周面及び脳波測定用電極10の外周面を螺刻して、脳波測定用電極10が電極ユニット取付部21に螺着する構成でもよい。 The inner peripheral surface of the electrode unit mounting portion 21 is set to have substantially the same outer diameter as the outer peripheral surface of the electroencephalogram measurement electrode 10, and the electroencephalogram measurement electrode 10 is fitted and fixed to the electrode unit mounting portion 21. be done. The inner peripheral surface of the electrode unit attachment portion 21 and the outer peripheral surface of the electroencephalogram measurement electrode 10 may be threaded so that the electroencephalogram measurement electrode 10 is screwed to the electrode unit attachment portion 21 .
<脳波測定用電極10の構造>
 図3に脳波測定用電極10の斜視図を示す。図4に脳波測定用電極10を模式的に示した断面図を示す。脳波測定用電極10は、電極部30と、スナップボタン40と、キャップ50と、金属箔60とを有する。
<Structure of electroencephalogram measurement electrode 10>
FIG. 3 shows a perspective view of the electroencephalogram measurement electrode 10. As shown in FIG. FIG. 4 shows a schematic cross-sectional view of the electroencephalogram measurement electrode 10 . The electroencephalogram measurement electrode 10 has an electrode section 30 , a snap button 40 , a cap 50 and a metal foil 60 .
 キャップ50は有底円筒形状を呈してホルダとして機能し、その内部に電極部30と、スナップボタン40と、金属箔60を収容する。キャップ50は、後述するように、電極部30と、スナップボタン40と、金属箔60を内部に収容し固定するための押さえ部56を有する。 The cap 50 has a bottomed cylindrical shape and functions as a holder, and accommodates the electrode section 30, the snap button 40, and the metal foil 60 therein. As will be described later, the cap 50 has an electrode portion 30, a snap button 40, and a pressing portion 56 for accommodating and fixing the metal foil 60 inside.
<電極部30>
 電極部30は、基部31と、突起部32と、導電性接触部33と、信号線部34とを有する。基部31と突起部32は、ゴム状の弾性部材によって一体に設けられている。弾性部材の具体的な材料については後述する。なお、基部31と突起部32とは一体に設けられる構成に限らず、別体に設けたものを接着剤や嵌合構造により組み付けた構成でもよい。
<Electrode portion 30>
The electrode portion 30 has a base portion 31 , a projection portion 32 , a conductive contact portion 33 and a signal line portion 34 . The base portion 31 and the projection portion 32 are integrally provided by a rubber-like elastic member. A specific material for the elastic member will be described later. Note that the base portion 31 and the projection portion 32 are not limited to being provided integrally, and may be provided separately and assembled with an adhesive or a fitting structure.
 基部31は略円柱形状である。基部31の一端側(図示では下側)の円形の基部下面36に、図示下側方向に突出する略円錐状の複数の突起部32が円形状の周方向に所定間隔で設けられている。なお、突起部32の形状は円錐形状に限らず、三角錐、四角錐等の角錐や円柱形状など様々な形状を採用することができる。 The base 31 has a substantially cylindrical shape. A plurality of substantially conical protrusions 32 protruding downward in the drawing are provided at predetermined intervals in the circular circumferential direction on a circular base lower surface 36 on one end side (lower side in the drawing) of the base 31 . The shape of the protrusion 32 is not limited to the conical shape, and various shapes such as pyramids such as triangular pyramids and quadrangular pyramids, and columnar shapes can be employed.
 突起部32の少なくとも先端側表面には導電性接触部33が設けられている。突起部32の表面全体に導電性接触部33が設けられてもよい。 A conductive contact portion 33 is provided on at least the tip side surface of the protruding portion 32 . A conductive contact portion 33 may be provided over the entire surface of the protrusion 32 .
 基部31の外径(周面37の径)は、例えば10mm~50mmである。基部31の高さ(厚さ)は、例えば2mm~30mmである。突起部32の高さは、例えば3mm~15mmである。突起部32の幅(根元部分の外径)は例えば1mm~10mmである。 The outer diameter of the base portion 31 (diameter of the peripheral surface 37) is, for example, 10 mm to 50 mm. The height (thickness) of the base 31 is, for example, 2 mm to 30 mm. The height of the protrusion 32 is, for example, 3 mm to 15 mm. The width of the protrusion 32 (the outer diameter of the root portion) is, for example, 1 mm to 10 mm.
<信号線部34の構造>
 図4に示すように、電極部30には、導電性接触部33に接続する信号経路として信号線部34が設けられている。信号線部34は、基部31及び突起部32を介して導通する態様であれば各種の配線構造を採用し得る。ここでは、信号線部34は、突起部32の先端の導電性接触部33から、突起部32及び基部31の内部を通り、基部31の基部上面35に露出するように設けられている。信号線部34のうち、基部上面35から突出している部分が、金属箔60と電極部30(基部上面35)との間に挟まれて折り曲がった折り曲げ部34aとなっている。
<Structure of Signal Line Portion 34>
As shown in FIG. 4 , the electrode portion 30 is provided with a signal line portion 34 as a signal path connected to the conductive contact portion 33 . Various wiring structures can be employed for the signal line portion 34 as long as they are in a manner that conducts through the base portion 31 and the projection portion 32 . Here, the signal line portion 34 is provided so as to pass from the conductive contact portion 33 at the tip of the protrusion 32 through the inside of the protrusion 32 and the base portion 31 and be exposed on the base upper surface 35 of the base portion 31 . A portion of the signal line portion 34 protruding from the base upper surface 35 is a bent portion 34a that is sandwiched between the metal foil 60 and the electrode portion 30 (base upper surface 35) and bent.
 例えば、信号線部34の先端は、突起部32の先端部分またはその近傍、すなわち導電性接触部33が形成される領域に対して、突出した構造、略同一面上となる構造、埋没した構造のいずれでもよい。導電性接触部33との接続安定性の観点から、突出した構造を用いてもよい。信号線部34の先端の突出部分は、一部または全体が導電性接触部33で覆われている。信号線部34の先端の突出構造は、折り返し無し、折り返し有り、突起部32の先端部の表面に巻き付ける構造が採用し得る。 For example, the tip of the signal line portion 34 has a protruded structure, a structure that is substantially on the same plane, or a structure that is buried with respect to the tip portion of the protrusion 32 or its vicinity, that is, the region where the conductive contact portion 33 is formed. Either From the viewpoint of connection stability with the conductive contact portion 33, a projecting structure may be used. A projecting portion at the tip of the signal line portion 34 is partially or entirely covered with the conductive contact portion 33 . The protruding structure of the tip of the signal line portion 34 may be unfolded, folded, or wrapped around the surface of the tip of the projection 32 .
 信号線部34の他の配線構造として、突起部32及び基部31の表面に設けられる構造であってもよいし、一部が内部に一部が表面に設けられる配線構造であってもよい。すなわち、導電性接触部33が検出した信号が金属箔60に伝わり、最終的にスナップボタン40に伝わればよい。 As another wiring structure of the signal line portion 34, a structure provided on the surface of the projection portion 32 and the base portion 31 may be used, or a wiring structure in which a portion is provided inside and a portion is provided on the surface. That is, the signal detected by the conductive contact portion 33 should be transmitted to the metal foil 60 and finally transmitted to the snap button 40 .
<電極部30の材料>
 電極部30(基部31と突起部32)の材料について説明する。電極部30は、上述のようにゴム状の弾性体である。ゴム状の弾性体として、具体的にはゴムや熱可塑性エラストマー(単に「エラストマー(TPE)」ともいう)である。ゴムとしては、例えばシリコーンゴムがある。熱可塑性エラストマーとして、例えば、スチレン系TPE(TPS)、オレフィン系TPE(TPO)、塩化ビニル系TPE(TPVC)、ウレタン系TPE(TPU)、エステル系TPE(TPEE)、アミド系TPE(TPAE)などがある。なお、後述するように、電極部30の基部31は、キャップ50に収容された状態で、取り外された状態を基準として、圧縮率1%以上10%以下の範囲で圧縮された状態となる。したがって、この圧縮率が実現される材料が用いられる。
<Material of electrode part 30>
Materials for the electrode portion 30 (the base portion 31 and the projection portion 32) will be described. The electrode part 30 is a rubber-like elastic body as described above. Specifically, the rubber-like elastic body is rubber or a thermoplastic elastomer (also simply referred to as “elastomer (TPE)”). Examples of rubber include silicone rubber. Examples of thermoplastic elastomers include styrene-based TPE (TPS), olefin-based TPE (TPO), vinyl chloride-based TPE (TPVC), urethane-based TPE (TPU), ester-based TPE (TPEE), amide-based TPE (TPAE), and the like. There is As will be described later, the base portion 31 of the electrode portion 30 is compressed in the range of 1% or more and 10% or less in terms of the detached state while being housed in the cap 50. Therefore, a material that achieves this compressibility is used.
 電極部30がシリコーンゴムである場合、37℃、JIS K 6253(1997)に準拠して測定される、電極部30(基部31や突起部32)の表面におけるタイプAデュロメータ硬さをゴム硬度Aとしたとき、ゴム硬度Aが、例えば、15以上55以下である。 When the electrode portion 30 is made of silicone rubber, rubber hardness A is the type A durometer hardness of the surface of the electrode portion 30 (the base portion 31 and the projection portion 32) measured in accordance with JIS K 6253 (1997) at 37°C. , the rubber hardness A is, for example, 15 or more and 55 or less.
 ここで、上記シリコーンゴム系硬化性組成物について説明する。
 上記シリコーンゴムは、シリコーンゴム系硬化性組成物の硬化物で構成することができる。シリコーンゴム系硬化性樹脂組成物の硬化工程は、例えば、100~250℃で1~30分間加熱(1次硬化)した後、100~200℃で1~4時間ポストベーク(2次硬化)することによって行われる。
Here, the silicone rubber-based curable composition will be described.
The silicone rubber can be composed of a cured product of a silicone rubber-based curable composition. The curing step of the silicone rubber-based curable resin composition is, for example, heating at 100 to 250° C. for 1 to 30 minutes (primary curing), followed by post-baking (secondary curing) at 100 to 200° C. for 1 to 4 hours. It is done by
 絶縁性シリコーンゴムは、導電性フィラーを含まないシリコーンゴムであり、導電性シリコーンゴムは導電性フィラーを含むシリコーンゴムである。 An insulating silicone rubber is a silicone rubber that does not contain a conductive filler, and a conductive silicone rubber is a silicone rubber that contains a conductive filler.
 本実施形態に係るシリコーンゴム系硬化性組成物は、ビニル基含有オルガノポリシロキサン(A)を含むことができる。ビニル基含有オルガノポリシロキサン(A)は、本実施形態のシリコーンゴム系硬化性組成物の主成分となる重合物である。 The silicone rubber-based curable composition according to this embodiment can contain a vinyl group-containing organopolysiloxane (A). The vinyl group-containing organopolysiloxane (A) is a polymer that is the main component of the silicone rubber-based curable composition of the present embodiment.
 絶縁性シリコーンゴム系硬化性組成物および導電性シリコーンゴム系硬化性組成物は、同種のビニル基含有直鎖状オルガノポリシロキサンを含んでもよい。同種のビニル基含有直鎖状オルガノポリシロキサンとは、少なくとも官能基が同じビニル基を含み、直鎖状を有していればよく、分子中のビニル基量や分子量分布、あるいはその添加量が異なっていてもよい。
 なお、絶縁性シリコーンゴム系硬化性組成物および導電性シリコーンゴム系硬化性組成物は、互いに異なるビニル基含有オルガノポリシロキサンをさらに含んでもよい。
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same vinyl group-containing linear organopolysiloxane. The vinyl group-containing linear organopolysiloxane of the same kind includes at least the same vinyl group with the same functional group and has a linear shape. can be different.
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different vinyl group-containing organopolysiloxanes.
 上記ビニル基含有オルガノポリシロキサン(A)は、直鎖構造を有するビニル基含有直鎖状オルガノポリシロキサン(A1)を含むことができる。 The vinyl group-containing organopolysiloxane (A) can contain a vinyl group-containing linear organopolysiloxane (A1) having a linear structure.
 上記ビニル基含有直鎖状オルガノポリシロキサン(A1)は、直鎖構造を有し、かつ、ビニル基を含有しており、かかるビニル基が硬化時の架橋点となる。 The vinyl group-containing linear organopolysiloxane (A1) has a linear structure and contains vinyl groups, and the vinyl groups serve as cross-linking points during curing.
 ビニル基含有直鎖状オルガノポリシロキサン(A1)のビニル基の含有量は、特に限定されないが、例えば、分子内に2個以上のビニル基を有し、かつ15モル%以下であるのが好ましく、0.01~12モル%であるのがより好ましい。これにより、ビニル基含有直鎖状オルガノポリシロキサン(A1)中におけるビニル基の量が最適化され、後述する各成分とのネットワークの形成を確実に行うことができる。本実施形態において、「~」は、その両端の数値を含むことを意味する。 The vinyl group content of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but for example, it preferably has two or more vinyl groups in the molecule and is 15 mol % or less. , 0.01 to 12 mol %. As a result, the amount of vinyl groups in the vinyl group-containing linear organopolysiloxane (A1) is optimized, and a network can be reliably formed with each component described later. In the present embodiment, "~" means including both numerical values.
 なお、本明細書中において、ビニル基含有量とは、ビニル基含有直鎖状オルガノポリシロキサン(A1)を構成する全ユニットを100モル%としたときのビニル基含有シロキサンユニットのモル%である。ただし、ビニル基含有シロキサンユニット1つに対して、ビニル基1つであると考える。 In the present specification, the vinyl group content is the mol % of the vinyl group-containing siloxane units when the total units constituting the vinyl group-containing linear organopolysiloxane (A1) are taken as 100 mol %. . However, one vinyl group is considered to be one vinyl group-containing siloxane unit.
 また、ビニル基含有直鎖状オルガノポリシロキサン(A1)の重合度は、特に限定されないが、例えば、好ましくは1000~10000程度、より好ましくは2000~5000程度の範囲内である。なお、重合度は、例えばクロロホルムを展開溶媒としたGPC(ゲル透過クロマトグラフィー)におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。 Although the degree of polymerization of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, it is, for example, preferably in the range of about 1,000 to 10,000, more preferably in the range of about 2,000 to 5,000. The degree of polymerization can be determined, for example, as a polystyrene-equivalent number-average polymerization degree (or number-average molecular weight) in GPC (gel permeation chromatography) using chloroform as a developing solvent.
 さらに、ビニル基含有直鎖状オルガノポリシロキサン(A1)の比重は、特に限定されないが、0.9~1.1程度の範囲であるのが好ましい。 Furthermore, the specific gravity of the vinyl group-containing linear organopolysiloxane (A1) is not particularly limited, but is preferably in the range of about 0.9 to 1.1.
 ビニル基含有直鎖状オルガノポリシロキサン(A1)として、上記のような範囲内の重合度および比重を有するものを用いることにより、得られるシリコーンゴムの耐熱性、難燃性、化学的安定性等の向上を図ることができる。 As the vinyl group-containing linear organopolysiloxane (A1), the heat resistance, flame retardancy, chemical stability, etc. of the resulting silicone rubber can be improved by using those having the degree of polymerization and specific gravity within the ranges described above. can be improved.
 ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、特に、下記式(1)で表される構造を有するものであるが好ましい。 As the vinyl group-containing linear organopolysiloxane (A1), those having a structure represented by the following formula (1) are particularly preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられ、中でも、ビニル基が好ましい。炭素数1~10のアリール基としては、例えば、フェニル基等が挙げられる。 In formula (1), R 1 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group, or a hydrocarbon group of a combination thereof having 1 to 10 carbon atoms. The alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred. The alkenyl group having 1 to 10 carbon atoms includes, for example, vinyl group, allyl group, butenyl group, etc. Among them, vinyl group is preferred. The aryl group having 1 to 10 carbon atoms includes, for example, a phenyl group.
 また、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基が挙げられる。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。 R 2 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, or a hydrocarbon group combining these. The alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred. Examples of alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
 また、Rは炭素数1~8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~8のアリール基としては、例えば、フェニル基が挙げられる。 R 3 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group combining these. The alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferable. Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group.
 さらに、式(1)中のRおよびRの置換基としては、例えば、メチル基、ビニル基等が挙げられ、Rの置換基としては、例えば、メチル基等が挙げられる。 Furthermore, examples of substituents for R 1 and R 2 in formula (1) include methyl group and vinyl group, and examples of substituents for R 3 include methyl group.
 なお、式(1)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。さらに、R、およびRについても同様である。 In formula (1), a plurality of R 1 are independent of each other and may be different or the same. Furthermore, the same applies to R 2 and R 3 .
 さらに、m、nは、式(1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)を構成する繰り返し単位の数であり、mは0~2000の整数、nは1000~10000の整数である。mは、好ましくは0~1000であり、nは、好ましくは2000~5000である。 Furthermore, m and n are the numbers of repeating units constituting the vinyl group-containing linear organopolysiloxane (A1) represented by formula (1), m is an integer of 0 to 2000, and n is 1000 to 10000. is an integer of m is preferably 0-1000 and n is preferably 2000-5000.
 また、式(1)で表されるビニル基含有直鎖状オルガノポリシロキサン(A1)の具体的構造としては、例えば下記式(1-1)で表されるものが挙げられる。 Further, specific structures of the vinyl group-containing linear organopolysiloxane (A1) represented by formula (1) include, for example, those represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1-1)中、RおよびRは、それぞれ独立して、メチル基またはビニル基であり、少なくとも一方がビニル基である。 In formula (1-1), R 1 and R 2 are each independently a methyl group or a vinyl group, and at least one is a vinyl group.
 さらに、ビニル基含有直鎖状オルガノポリシロキサン(A1)としては、ビニル基含有量が分子内に2個以上のビニル基を有し、かつ0.4モル%以下である第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)と、ビニル基含有量が0.5~15モル%である第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)とを含有するものであるのが好ましい。シリコーンゴムの原料である生ゴムとして、一般的なビニル基含有量を有する第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)と、ビニル基含有量が高い第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)とを組み合わせることで、ビニル基を偏在化させることができ、シリコーンゴムの架橋ネットワーク中に、より効果的に架橋密度の疎密を形成することができる。その結果、より効果的にシリコーンゴムの引裂強度を高めることができる。 Furthermore, as the vinyl group-containing linear organopolysiloxane (A1), a first vinyl group-containing vinyl group having a vinyl group content of 2 or more vinyl groups in the molecule and not more than 0.4 mol% It contains a linear organopolysiloxane (A1-1) and a second vinyl group-containing linear organopolysiloxane (A1-2) having a vinyl group content of 0.5 to 15 mol%. It is preferable to have As crude rubber, which is a raw material of silicone rubber, a first vinyl group-containing linear organopolysiloxane (A1-1) having a general vinyl group content and a second vinyl group-containing linear organopolysiloxane having a high vinyl group content were used. By combining with the chain organopolysiloxane (A1-2), the vinyl groups can be unevenly distributed, and the crosslink density can be more effectively formed in the crosslink network of the silicone rubber. As a result, the tear strength of silicone rubber can be increased more effectively.
 具体的には、ビニル基含有直鎖状オルガノポリシロキサン(A1)として、例えば、上記式(1-1)において、Rがビニル基である単位および/またはRがビニル基である単位を、分子内に2個以上有し、かつ0.4モル%以下を含む第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)と、Rがビニル基である単位および/またはRがビニル基である単位を、0.5~15モル%含む第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)とを用いるのが好ましい。 Specifically, as the vinyl group-containing linear organopolysiloxane (A1), for example, a unit in which R 1 is a vinyl group and/or a unit in which R 2 is a vinyl group in the above formula (1-1) , a first vinyl group-containing linear organopolysiloxane (A1-1) having 2 or more in the molecule and containing 0.4 mol% or less, and a unit in which R 1 is a vinyl group and / or R It is preferable to use a second vinyl group-containing linear organopolysiloxane (A1-2) containing 0.5 to 15 mol % of units in which 2 is a vinyl group.
 また、第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)は、ビニル基含有量が0.01~0.2モル%であるのが好ましい。また、第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)は、ビニル基含有量が、0.8~12モル%であるのが好ましい。 Also, the first vinyl group-containing linear organopolysiloxane (A1-1) preferably has a vinyl group content of 0.01 to 0.2 mol %. The second vinyl group-containing linear organopolysiloxane (A1-2) preferably has a vinyl group content of 0.8 to 12 mol %.
 さらに、第1のビニル基含有直鎖状オルガノポリシロキサン(A1-1)と第2のビニル基含有直鎖状オルガノポリシロキサン(A1-2)とを組み合わせて配合する場合、(A1-1)と(A1-2)の比率は特に限定されないが、例えば、重量比で(A1-1):(A1-2)が50:50~95:5であるのが好ましく、80:20~90:10であるのがより好ましい。 Furthermore, when combining the first vinyl group-containing linear organopolysiloxane (A1-1) and the second vinyl group-containing linear organopolysiloxane (A1-2), (A1-1) and (A1-2) is not particularly limited, but for example, the weight ratio of (A1-1):(A1-2) is preferably 50:50 to 95:5, and 80:20 to 90: 10 is more preferred.
 なお、第1および第2のビニル基含有直鎖状オルガノポリシロキサン(A1-1)および(A1-2)は、それぞれ1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。 The first and second vinyl group-containing linear organopolysiloxanes (A1-1) and (A1-2) may be used singly or in combination of two or more. good.
 また、ビニル基含有オルガノポリシロキサン(A)は、分岐構造を有するビニル基含有分岐状オルガノポリシロキサン(A2)を含んでもよい。 The vinyl group-containing organopolysiloxane (A) may also contain a vinyl group-containing branched organopolysiloxane (A2) having a branched structure.
<<オルガノハイドロジェンポリシロキサン(B)>>
 本実施形態のシリコーンゴム系硬化性組成物は、架橋剤を含んでもよい。架橋剤は、オルガノハイドロジェンポリシロキサン(B)を含むことができる。
 オルガノハイドロジェンポリシロキサン(B)は、直鎖構造を有する直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐構造を有する分岐状オルガノハイドロジェンポリシロキサン(B2)とに分類され、これらのうちのいずれか一方または双方を含むことができる。
<<Organohydrogenpolysiloxane (B)>>
The silicone rubber-based curable composition of the present embodiment may contain a cross-linking agent. Cross-linking agents can include organohydrogenpolysiloxanes (B).
Organohydrogenpolysiloxane (B) is classified into linear organohydrogenpolysiloxane (B1) having a linear structure and branched organohydrogenpolysiloxane (B2) having a branched structure. Either or both may be included.
 絶縁性シリコーンゴム系硬化性組成物および導電性シリコーンゴム系硬化性組成物は、同種の架橋剤を含んでもよい。同種の架橋剤とは、少なくとも直鎖構造や分岐構造などの共通の構造を有していればよく、分子中の分子量分布や異なる官能基が含まれていてもよく、その添加量が異なっていてもよい。
 なお、絶縁性シリコーンゴム系硬化性組成物および導電性シリコーンゴム系硬化性組成物は、互いに異なる架橋剤をさらに含んでもよい。
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of cross-linking agent. The same type of cross-linking agent should have at least a common structure such as a linear structure or a branched structure, and may contain different molecular weight distributions and different functional groups in the molecule, and the amount added may be different. may
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different cross-linking agents.
 直鎖状オルガノハイドロジェンポリシロキサン(B1)は、直鎖構造を有し、かつ、Siに水素が直接結合した構造(≡Si-H)を有し、ビニル基含有オルガノポリシロキサン(A)のビニル基の他、シリコーンゴム系硬化性組成物に配合される成分が有するビニル基とヒドロシリル化反応し、これらの成分を架橋する重合体である。 The linear organohydrogenpolysiloxane (B1) has a linear structure and a structure (≡Si—H) in which hydrogen is directly bonded to Si, and is the vinyl group-containing organopolysiloxane (A). It is a polymer that undergoes a hydrosilylation reaction with other vinyl groups and other vinyl groups contained in other components of the silicone rubber-based curable composition to crosslink these components.
 直鎖状オルガノハイドロジェンポリシロキサン(B1)の分子量は特に限定されないが、例えば、重量平均分子量が20000以下であるのが好ましく、1000以上、10000以下であることがより好ましい。 Although the molecular weight of the linear organohydrogenpolysiloxane (B1) is not particularly limited, for example, the weight average molecular weight is preferably 20,000 or less, more preferably 1,000 or more and 10,000 or less.
 なお、直鎖状オルガノハイドロジェンポリシロキサン(B1)の重量平均分子量は、例えばクロロホルムを展開溶媒としたGPC(ゲル透過クロマトグラフィー)におけるポリスチレン換算により測定することができる。 The weight average molecular weight of the linear organohydrogenpolysiloxane (B1) can be measured, for example, by polystyrene conversion in GPC (gel permeation chromatography) using chloroform as a developing solvent.
 また、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、通常、ビニル基を有しないものであるのが好ましい。これにより、直鎖状オルガノハイドロジェンポリシロキサン(B1)の分子内において架橋反応が進行するのを的確に防止することができる。 In addition, it is generally preferred that the linear organohydrogenpolysiloxane (B1) does not have a vinyl group. Thereby, it is possible to accurately prevent the progress of the cross-linking reaction in the molecule of the linear organohydrogenpolysiloxane (B1).
 以上のような直鎖状オルガノハイドロジェンポリシロキサン(B1)としては、例えば、下記式(2)で表される構造を有するものが好ましく用いられる。 As the above linear organohydrogenpolysiloxane (B1), for example, one having a structure represented by the following formula (2) is preferably used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(2)中、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、これらを組み合わせた炭化水素基、またはヒドリド基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられる。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。 In formula (2), R 4 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, a hydrocarbon group combining these groups, or a hydride group. The alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred. Examples of alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
 また、Rは炭素数1~10の置換または非置換のアルキル基、アルケニル基、アリール基、これらを組み合わせた炭化水素基、またはヒドリド基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアルケニル基としては、例えば、ビニル基、アリル基、ブテニル基等が挙げられる。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。 R 5 is a substituted or unsubstituted alkyl group, alkenyl group, aryl group having 1 to 10 carbon atoms, a hydrocarbon group combining these, or a hydride group. Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group and propyl group, with methyl group being preferred. Examples of alkenyl groups having 1 to 10 carbon atoms include vinyl groups, allyl groups and butenyl groups. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
 なお、式(2)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。Rについても同様である。ただし、複数のRおよびRのうち、少なくとも2つ以上がヒドリド基である。 In formula (2), a plurality of R 4 are independent of each other and may be different from each other or may be the same. The same is true for R5. However, at least two or more of the plurality of R 4 and R 5 are hydride groups.
 また、Rは炭素数1~8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~8のアリール基としては、例えば、フェニル基が挙げられる。複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。 R 6 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, or a hydrocarbon group combining these. The alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred. Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group. A plurality of R 6 are independent from each other and may be different from each other or may be the same.
 なお、式(2)中のR,R,Rの置換基としては、例えば、メチル基、ビニル基等が挙げられ、分子内の架橋反応を防止する観点から、メチル基が好ましい。 Examples of substituents for R 4 , R 5 and R 6 in formula (2) include methyl group and vinyl group, and methyl group is preferred from the viewpoint of preventing intramolecular cross-linking reaction.
 さらに、m、nは、式(2)で表される直鎖状オルガノハイドロジェンポリシロキサン(B1)を構成する繰り返し単位の数であり、mは2~150整数、nは2~150の整数である。好ましくは、mは2~100の整数、nは2~100の整数である。 Further, m and n are the numbers of repeating units constituting the linear organohydrogenpolysiloxane (B1) represented by formula (2), m is an integer of 2 to 150, and n is an integer of 2 to 150. is. Preferably, m is an integer from 2-100 and n is an integer from 2-100.
 なお、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The straight-chain organohydrogenpolysiloxane (B1) may be used alone or in combination of two or more.
 分岐状オルガノハイドロジェンポリシロキサン(B2)は、分岐構造を有するため、架橋密度が高い領域を形成し、シリコーンゴムの系中の架橋密度の疎密構造形成に大きく寄与する成分である。また、上記直鎖状オルガノハイドロジェンポリシロキサン(B1)同様、Siに水素が直接結合した構造(≡Si-H)を有し、ビニル基含有オルガノポリシロキサン(A)のビニル基の他、シリコーンゴム系硬化性組成物に配合される成分のビニル基とヒドロシリル化反応し、これら成分を架橋する重合体である。 Because the branched organohydrogenpolysiloxane (B2) has a branched structure, it is a component that forms regions with a high crosslink density and greatly contributes to the formation of a loose and dense structure of crosslink density in the silicone rubber system. Further, like the linear organohydrogenpolysiloxane (B1), it has a structure (≡Si—H) in which hydrogen is directly bonded to Si, and in addition to the vinyl group of the vinyl group-containing organopolysiloxane (A), silicone It is a polymer that undergoes a hydrosilylation reaction with the vinyl groups of the components blended in the rubber-based curable composition to crosslink these components.
 また、分岐状オルガノハイドロジェンポリシロキサン(B2)の比重は、0.9~0.95の範囲である。 Also, the specific gravity of the branched organohydrogenpolysiloxane (B2) is in the range of 0.9 to 0.95.
 さらに、分岐状オルガノハイドロジェンポリシロキサン(B2)は、通常、ビニル基を有しないものであるのが好ましい。これにより、分岐状オルガノハイドロジェンポリシロキサン(B2)の分子内において架橋反応が進行するのを的確に防止することができる。 Furthermore, it is generally preferred that the branched organohydrogenpolysiloxane (B2) does not have a vinyl group. Thereby, it is possible to accurately prevent the progress of the cross-linking reaction in the molecule of the branched organohydrogenpolysiloxane (B2).
 また、分岐状オルガノハイドロジェンポリシロキサン(B2)としては、下記平均組成式(c)で示されるものが好ましい。 Also, as the branched organohydrogenpolysiloxane (B2), one represented by the following average compositional formula (c) is preferable.
 平均組成式(c)
   (H(R3-aSiO1/2(SiO4/2
(式(c)において、Rは一価の有機基、aは1~3の範囲の整数、mはH(R3-aSiO1/2単位の数、nはSiO4/2単位の数である)
Average composition formula (c)
(H a (R 7 ) 3-a SiO 1/2 ) m (SiO 4/2 ) n
(In formula (c), R 7 is a monovalent organic group, a is an integer ranging from 1 to 3, m is the number of H a (R 7 ) 3-a SiO 1/2 units, n is SiO 4/ is a number of 2 units)
 式(c)において、Rは一価の有機基であり、好ましくは、炭素数1~10の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基である。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~10のアリール基としては、例えば、フェニル基が挙げられる。 In formula (c), R 7 is a monovalent organic group, preferably a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an aryl group, or a hydrocarbon group combining these. The alkyl group having 1 to 10 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferred. Examples of the aryl group having 1 to 10 carbon atoms include a phenyl group.
 式(c)において、aは、ヒドリド基(Siに直接結合する水素原子)の数であり、1~3の範囲の整数、好ましくは1である。 In formula (c), a is the number of hydride groups (hydrogen atoms directly bonded to Si) and is an integer in the range of 1 to 3, preferably 1.
 また、式(c)において、mはH(R3-aSiO1/2単位の数、nはSiO4/2単位の数である。 In formula (c), m is the number of H a (R 7 ) 3-a SiO 1/2 units, and n is the number of SiO 4/2 units.
 分岐状オルガノハイドロジェンポリシロキサン(B2)は分岐状構造を有する。直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)は、その構造が直鎖状か分岐状かという点で異なり、Siの数を1とした時のSiに結合するアルキル基Rの数(R/Si)が、直鎖状オルガノハイドロジェンポリシロキサン(B1)では1.8~2.1、分岐状オルガノハイドロジェンポリシロキサン(B2)では0.8~1.7の範囲となる。 The branched organohydrogenpolysiloxane (B2) has a branched structure. The linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpolysiloxane (B2) differ in that their structures are linear or branched. The number of bound alkyl groups R (R/Si) is 1.8 to 2.1 for the linear organohydrogenpolysiloxane (B1) and 0.8 to 1 for the branched organohydrogenpolysiloxane (B2). .7 range.
 なお、分岐状オルガノハイドロジェンポリシロキサン(B2)は、分岐構造を有しているため、例えば、窒素雰囲気下、1000℃まで昇温速度10℃/分で加熱した際の残渣量が5%以上となる。これに対して、直鎖状オルガノハイドロジェンポリシロキサン(B1)は、直鎖状であるため、上記条件で加熱した後の残渣量はほぼゼロとなる。 Since the branched organohydrogenpolysiloxane (B2) has a branched structure, for example, when heated to 1000° C. at a heating rate of 10° C./min in a nitrogen atmosphere, the residual amount is 5% or more. becomes. On the other hand, since the straight-chain organohydrogenpolysiloxane (B1) is straight-chain, the amount of residue after heating under the above conditions is almost zero.
 また、分岐状オルガノハイドロジェンポリシロキサン(B2)の具体例としては、下記式(3)で表される構造を有するものが挙げられる。 Specific examples of the branched organohydrogenpolysiloxane (B2) include those having a structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(3)中、Rは炭素数1~8の置換または非置換のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基、もしくは水素原子である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基等が挙げられ、中でも、メチル基が好ましい。炭素数1~8のアリール基としては、例えば、フェニル基が挙げられる。Rの置換基としては、例えば、メチル基等が挙げられる。 In formula (3), R 7 is a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, an aryl group, a hydrocarbon group combining these, or a hydrogen atom. The alkyl group having 1 to 8 carbon atoms includes, for example, methyl group, ethyl group, propyl group, etc. Among them, methyl group is preferable. Examples of the aryl group having 1 to 8 carbon atoms include a phenyl group. Examples of the substituent of R7 include a methyl group and the like.
 なお、式(3)中、複数のRは互いに独立したものであり、互いに異なっていてもよいし、同じであってもよい。 In formula (3), a plurality of R 7 are independent of each other and may be different from each other or may be the same.
 また、式(3)中、「-O-Si≡」は、Siが三次元に広がる分岐構造を有することを表している。 Also, in formula (3), "--O--Si.ident." represents that Si has a branched structure that spreads three-dimensionally.
 なお、分岐状オルガノハイドロジェンポリシロキサン(B2)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The branched organohydrogenpolysiloxane (B2) may be used alone or in combination of two or more.
 また、直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)において、Siに直接結合する水素原子(ヒドリド基)の量は、それぞれ、特に限定されない。ただし、シリコーンゴム系硬化性組成物において、ビニル基含有直鎖状オルガノポリシロキサン(A1)中のビニル基1モルに対し、直鎖状オルガノハイドロジェンポリシロキサン(B1)と分岐状オルガノハイドロジェンポリシロキサン(B2)の合計のヒドリド基量が、0.5~5モルとなる量が好ましく、1~3.5モルとなる量がより好ましい。これにより、直鎖状オルガノハイドロジェンポリシロキサン(B1)および分岐状オルガノハイドロジェンポリシロキサン(B2)と、ビニル基含有直鎖状オルガノポリシロキサン(A1)との間で、架橋ネットワークを確実に形成させることができる。 Also, in the linear organohydrogenpolysiloxane (B1) and the branched organohydrogenpolysiloxane (B2), the amount of hydrogen atoms (hydride groups) directly bonded to Si is not particularly limited. However, in the silicone rubber-based curable composition, linear organohydrogenpolysiloxane (B1) and branched organohydrogenpolysiloxane are The total amount of hydride groups in the siloxane (B2) is preferably from 0.5 to 5 mol, more preferably from 1 to 3.5 mol. As a result, a crosslinked network is reliably formed between the linear organohydrogenpolysiloxane (B1), the branched organohydrogenpolysiloxane (B2), and the vinyl group-containing linear organopolysiloxane (A1). can be made
<<シリカ粒子(C)>>
 本実施形態に係るシリコーンゴム系硬化性組成物は、非導電性フィラーを含む。非導電性フィラーは、必要に応じ、シリカ粒子(C)を含んでもよい。これにより、エラストマーの硬さや機械的強度の向上を図ることができる。
<<Silica particles (C)>>
The silicone rubber-based curable composition according to this embodiment contains a non-conductive filler. The non-conductive filler may contain silica particles (C) as needed. Thereby, the hardness and mechanical strength of the elastomer can be improved.
 絶縁性シリコーンゴム系硬化性組成物および導電性シリコーンゴム系硬化性組成物は、同種の非導電性フィラーを含んでもよい。同種の非導電性フィラーとは、少なくとも共通の構成材料を有していればよく、粒子径、比表面積、表面処理剤、又はその添加量が異なっていてもよい。
 なお、絶縁性シリコーンゴム系硬化性組成物および導電性シリコーンゴム系硬化性組成物は、互いに異なるシランカップリング剤をさらに含んでもよい。
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of non-conductive filler. Non-conductive fillers of the same type may have at least common constituent materials, and may differ in particle size, specific surface area, surface treatment agent, or addition amount thereof.
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different silane coupling agents.
 シリカ粒子(C)としては、特に限定されないが、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ等が用いられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 The silica particles (C) are not particularly limited, but for example, fumed silica, calcined silica, precipitated silica, etc. are used. These may be used alone or in combination of two or more.
 シリカ粒子(C)は、例えば、BET法による比表面積が例えば50~400m/gであるのが好ましく、100~400m/gであるのがより好ましい。また、シリカ粒子(C)の平均一次粒径は、例えば1~100nmであるのが好ましく、5~20nm程度であるのがより好ましい。 The silica particles (C) preferably have a BET specific surface area of, for example, 50 to 400 m 2 /g, more preferably 100 to 400 m 2 /g. Also, the average primary particle size of the silica particles (C) is, for example, preferably 1 to 100 nm, more preferably about 5 to 20 nm.
 シリカ粒子(C)として、かかる比表面積および平均粒径の範囲内であるものを用いることにより、形成されるシリコーンゴムの硬さや機械的強度の向上、特に引張強度の向上をさせることができる。 By using silica particles (C) having a specific surface area and an average particle size within the above ranges, the hardness and mechanical strength of the formed silicone rubber can be improved, especially the tensile strength can be improved.
<<シランカップリング剤(D)>>
 本実施形態のシリコーンゴム系硬化性組成物は、シランカップリング剤(D)を含むことができる。
 シランカップリング剤(D)は、加水分解性基を有することができる。加水分解基が水により加水分解されて水酸基になり、この水酸基がシリカ粒子(C)表面の水酸基と脱水縮合反応することで、シリカ粒子(C)の表面改質を行うことができる。
<<Silane coupling agent (D)>>
The silicone rubber-based curable composition of the present embodiment can contain a silane coupling agent (D).
Silane coupling agent (D) can have a hydrolyzable group. The hydrolyzable group is hydrolyzed with water to form a hydroxyl group, and the hydroxyl group undergoes a dehydration condensation reaction with the hydroxyl group on the surface of the silica particle (C), thereby modifying the surface of the silica particle (C).
 絶縁性シリコーンゴム系硬化性組成物および導電性シリコーンゴム系硬化性組成物は、同種のシランカップリング剤を含んでもよい。同種のシランカップリング剤とは、少なくとも共通の官能基を有していればよく、分子中の他の官能基や添加量が異なっていてもよい。
 なお、絶縁性シリコーンゴム系硬化性組成物および導電性シリコーンゴム系硬化性組成物は、互いに異なるシランカップリング剤をさらに含んでもよい。
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of silane coupling agent. The silane coupling agents of the same kind should have at least a common functional group, and may differ in other functional groups in the molecule and in the amount added.
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different silane coupling agents.
 また、このシランカップリング剤(D)は、疎水性基を有するシランカップリング剤を含むことができる。これにより、シリカ粒子(C)の表面にこの疎水性基が付与されるため、シリコーンゴム系硬化性組成物中ひいてはシリコーンゴム中において、シリカ粒子(C)の凝集力が低下(シラノール基による水素結合による凝集が少なくなる)し、その結果、シリコーンゴム系硬化性組成物中のシリカ粒子(C)の分散性が向上すると推測される。これにより、シリカ粒子(C)とゴムマトリックスとの界面が増加し、シリカ粒子(C)の補強効果が増大する。さらに、ゴムのマトリックス変形の際、マトリックス内でのシリカ粒子(C)の滑り性が向上すると推測される。そして、シリカ粒子(C)の分散性の向上及び滑り性の向上によって、シリカ粒子(C)によるシリコーンゴムの機械的強度(例えば、引張強度や引裂強度など)が向上する。 In addition, this silane coupling agent (D) can contain a silane coupling agent having a hydrophobic group. As a result, the hydrophobic group is imparted to the surface of the silica particles (C), so that the cohesive force of the silica particles (C) in the silicone rubber-based curable composition and further in the silicone rubber is reduced (hydrogen aggregation due to bonding is reduced), and as a result, it is presumed that the dispersibility of the silica particles (C) in the silicone rubber-based curable composition is improved. This increases the interface between the silica particles (C) and the rubber matrix, increasing the reinforcing effect of the silica particles (C). Furthermore, it is presumed that the slipperiness of the silica particles (C) within the matrix is improved when the rubber matrix is deformed. The improved dispersibility and slipperiness of the silica particles (C) improve the mechanical strength (for example, tensile strength and tear strength) of the silicone rubber due to the silica particles (C).
 さらに、シランカップリング剤(D)は、ビニル基を有するシランカップリング剤を含むことができる。これにより、シリカ粒子(C)の表面にビニル基が導入される。そのため、シリコーンゴム系硬化性組成物の硬化の際、すなわち、ビニル基含有オルガノポリシロキサン(A)が有するビニル基と、オルガノハイドロジェンポリシロキサン(B)が有するヒドリド基とがヒドロシリル化反応して、これらによるネットワーク(架橋構造)が形成される際に、シリカ粒子(C)が有するビニル基も、オルガノハイドロジェンポリシロキサン(B)が有するヒドリド基とのヒドロシリル化反応に関与するため、ネットワーク中にシリカ粒子(C)も取り込まれるようになる。これにより、形成されるシリコーンゴムの低硬度化および高モジュラス化を図ることができる。 Furthermore, the silane coupling agent (D) can contain a silane coupling agent having a vinyl group. As a result, vinyl groups are introduced onto the surfaces of the silica particles (C). Therefore, during curing of the silicone rubber-based curable composition, that is, a hydrosilylation reaction occurs between the vinyl group of the vinyl group-containing organopolysiloxane (A) and the hydride group of the organohydrogenpolysiloxane (B). , When a network (crosslinked structure) is formed by these, the vinyl groups possessed by the silica particles (C) also participate in the hydrosilylation reaction with the hydride groups possessed by the organohydrogenpolysiloxane (B). Silica particles (C) also come to be taken in. As a result, it is possible to reduce the hardness and increase the modulus of the formed silicone rubber.
 シランカップリング剤(D)としては、疎水性基を有するシランカップリング剤およびビニル基を有するシランカップリング剤を併用することができる。 As the silane coupling agent (D), a silane coupling agent having a hydrophobic group and a silane coupling agent having a vinyl group can be used in combination.
 シランカップリング剤(D)としては、例えば、下記式(4)で表わされるものが挙げられる。 Examples of the silane coupling agent (D) include those represented by the following formula (4).
-Si-(X)4-n・・・(4)
 上記式(4)中、nは1~3の整数を表わす。Yは、疎水性基、親水性基またはビニル基を有するもののうちのいずれかの官能基を表わし、nが1の時は疎水性基であり、nが2または3の時はその少なくとも1つが疎水性基である。Xは、加水分解性基を表わす。
Yn -Si-(X) 4-n (4)
In the above formula (4), n represents an integer of 1-3. Y represents a functional group having a hydrophobic group, a hydrophilic group or a vinyl group, and when n is 1 it is a hydrophobic group, and when n is 2 or 3 at least one of It is a hydrophobic group. X represents a hydrolyzable group.
 疎水性基は、炭素数1~6のアルキル基、アリール基、またはこれらを組み合わせた炭化水素基であり、例えば、メチル基、エチル基、プロピル基、フェニル基等が挙げられ、中でも、特に、メチル基が好ましい。 The hydrophobic group is an alkyl group having 1 to 6 carbon atoms, an aryl group, or a hydrocarbon group having a combination thereof, and examples thereof include a methyl group, an ethyl group, a propyl group, a phenyl group, and the like. Methyl groups are preferred.
 また、親水性基は、例えば、水酸基、スルホン酸基、カルボキシル基またはカルボニル基等が挙げられ、中でも、特に、水酸基が好ましい。なお、親水性基は、官能基として含まれていてもよいが、シランカップリング剤(D)に疎水性を付与するという観点からは含まれていないのが好ましい。 In addition, the hydrophilic group includes, for example, a hydroxyl group, a sulfonic acid group, a carboxyl group, a carbonyl group, etc. Among them, a hydroxyl group is particularly preferable. The hydrophilic group may be contained as a functional group, but is preferably not contained from the viewpoint of imparting hydrophobicity to the silane coupling agent (D).
 さらに、加水分解性基は、メトキシ基、エトキシ基のようなアルコキシ基、クロロ基またはシラザン基等が挙げられ、中でも、シリカ粒子(C)との反応性が高いことから、シラザン基が好ましい。なお、加水分解性基としてシラザン基を有するものは、その構造上の特性から、上記式(4)中の(Y-Si-)の構造を2つ有するものとなる。 Further, the hydrolyzable group includes an alkoxy group such as a methoxy group and an ethoxy group, a chloro group, a silazane group, and the like. Among them, a silazane group is preferable because of its high reactivity with the silica particles (C). A compound having a silazane group as a hydrolyzable group has two structures of (Y n —Si—) in the above formula (4) due to its structural characteristics.
 上記式(4)で表されるシランカップリング剤(D)の具体例は、次の通りである。
 上記官能基として疎水性基を有するものとして、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシランのようなアルコキシシラン;メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシランのようなクロロシラン;ヘキサメチルジシラザンが挙げられる。この中でも、ヘキサメチルジシラザン、トリメチルクロロシラン、トリメチルメトキシシラン、及びトリメチルエトキシシランからなる群から選択される一種以上を含むトリメチルシリル基を有するシランカップリング剤が好ましい。
Specific examples of the silane coupling agent (D) represented by the above formula (4) are as follows.
Those having a hydrophobic group as the functional group include, for example, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, alkoxysilanes such as n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane; hexamethyldisilazane. is mentioned. Among these, a silane coupling agent having a trimethylsilyl group containing one or more selected from the group consisting of hexamethyldisilazane, trimethylchlorosilane, trimethylmethoxysilane, and trimethylethoxysilane is preferred.
 上記官能基としてビニル基を有するものとして、例えば、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシランのようなアルコキシシラン;ビニルトリクロロシラン、ビニルメチルジクロロシランのようなクロロシラン;ジビニルテトラメチルジシラザンが挙げられる。この中でも、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ジビニルテトラメチルジシラザン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、及びビニルメチルジメトキシシランからなる群から選択される一種以上を含むビニル基含有オルガノシリル基を有するシランカップリング剤が好ましい。 Examples of those having a vinyl group as the functional group include methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, vinyltriethoxysilane, and vinyltrimethoxysilane. alkoxysilanes such as silane and vinylmethyldimethoxysilane; chlorosilanes such as vinyltrichlorosilane and vinylmethyldichlorosilane; and divinyltetramethyldisilazane. Among these, methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, divinyltetramethyldisilazane, vinyltriethoxysilane, vinyltrimethoxysilane, and vinyl A silane coupling agent having a vinyl group-containing organosilyl group containing one or more selected from the group consisting of methyldimethoxysilane is preferred.
 またシランカップリング剤(D)がトリメチルシリル基を有するシランカップリング剤およびビニル基含有オルガノシリル基を有するシランカップリング剤の2種を含む場合、疎水性基を有するものとしてはヘキサメチルジシラザン、ビニル基を有するものとしてはジビニルテトラメチルジシラザンを含むことが好ましい。 Further, when the silane coupling agent (D) contains two kinds of a silane coupling agent having a trimethylsilyl group and a silane coupling agent having a vinyl group-containing organosilyl group, those having a hydrophobic group include hexamethyldisilazane, Divinyltetramethyldisilazane is preferably included as one having a vinyl group.
 トリメチルシリル基を有するシランカップリング剤(D1)およびビニル基含有オルガノシリル基を有するシランカップリング剤(D2)を併用する場合、(D1)と(D2)の比率は、特に限定されないが、例えば、重量比で(D1):(D2)が、1:0.001~1:0.35、好ましくは1:0.01~1:0.20、より好ましくは1:0.03~1:0.15である。このような数値範囲とすることにより、所望のシリコーンゴムの物性を得ることができる。具体的には、ゴム中におけるシリカの分散性およびゴムの架橋性のバランスを図ることができる。 When the silane coupling agent (D1) having a trimethylsilyl group and the silane coupling agent (D2) having a vinyl group-containing organosilyl group are used in combination, the ratio of (D1) and (D2) is not particularly limited, but for example, (D1):(D2) in a weight ratio of 1:0.001 to 1:0.35, preferably 1:0.01 to 1:0.20, more preferably 1:0.03 to 1:0 .15. Desired physical properties of the silicone rubber can be obtained by setting it to such a numerical range. Specifically, the dispersibility of silica in the rubber and the crosslinkability of the rubber can be balanced.
 本実施形態において、シランカップリング剤(D)の含有量の下限値は、ビニル基含有オルガノポリシロキサン(A)の合計量100重量部に対して、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることがさらに好ましい。また、シランカップリング剤(D)の含有量上限値は、ビニル基含有オルガノポリシロキサン(A)の合計量100重量部に対して、100質量%以下であることが好ましく、80質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。
 シランカップリング剤(D)の含有量を上記下限値以上とすることにより、エラストマーを含む柱状部と導電性樹脂層との密着性を高めることができる。また、シリコーンゴムの機械的強度の向上に資することができる。また、シランカップリング剤(D)の含有量を上記上限値以下とすることにより、シリコーンゴムが適度な機械特性を持つことができる。
In the present embodiment, the lower limit of the content of the silane coupling agent (D) is preferably 1% by mass or more with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A). It is more preferably at least 5% by mass, even more preferably at least 5% by mass. In addition, the upper limit of the content of the silane coupling agent (D) is preferably 100% by mass or less, and 80% by mass or less with respect to 100 parts by weight of the total amount of the vinyl group-containing organopolysiloxane (A). It is more preferable that the content is 40% by mass or less.
By setting the content of the silane coupling agent (D) to the above lower limit or more, the adhesion between the columnar portion containing the elastomer and the conductive resin layer can be enhanced. Moreover, it can contribute to the improvement of the mechanical strength of silicone rubber. Moreover, by setting the content of the silane coupling agent (D) to the above upper limit or less, the silicone rubber can have appropriate mechanical properties.
<<白金または白金化合物(E)>>
 本実施形態に係るシリコーンゴム系硬化性組成物は、触媒を含んでもよい。触媒は、白金または白金化合物(E)を含むことができる。白金または白金化合物(E)は、硬化の際の触媒として作用する触媒成分である。白金または白金化合物(E)の添加量は触媒量である。
<<platinum or platinum compound (E)>>
The silicone rubber-based curable composition according to this embodiment may contain a catalyst. The catalyst may contain platinum or a platinum compound (E). Platinum or a platinum compound (E) is a catalytic component that acts as a catalyst during curing. The amount of platinum or platinum compound (E) added is a catalytic amount.
 絶縁性シリコーンゴム系硬化性組成物および導電性シリコーンゴム系硬化性組成物は、同種の触媒を含んでもよい。同種の触媒とは、少なくとも共通の構成材料を有していればよく、触媒中に異なる組成が含まれていてもよく、その添加量が異なっていてもよい。
 なお、絶縁性シリコーンゴム系硬化性組成物および導電性シリコーンゴム系硬化性組成物は、互いに異なる触媒をさらに含んでもよい。
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may contain the same type of catalyst. Catalysts of the same kind may have at least common constituent materials, and the catalysts may contain different compositions and may differ in addition amount.
The insulating silicone rubber-based curable composition and the conductive silicone rubber-based curable composition may further contain different catalysts.
 白金または白金化合物(E)としては、公知のものを使用することができ、例えば、白金黒、白金をシリカやカーボンブラック等に担持させたもの、塩化白金酸または塩化白金酸のアルコール溶液、塩化白金酸とオレフィンの錯塩、塩化白金酸とビニルシロキサンとの錯塩等が挙げられる。 As the platinum or platinum compound (E), a known one can be used, for example, platinum black, platinum supported on silica or carbon black, chloroplatinic acid or an alcohol solution of chloroplatinic acid, A complex salt of platinic acid and olefin, a complex salt of chloroplatinic acid and vinyl siloxane, and the like are included.
 なお、白金または白金化合物(E)は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The platinum or platinum compound (E) may be used alone or in combination of two or more.
 本実施形態において、シリコーンゴム系硬化性組成物中における白金または白金化合物(E)の含有量は、触媒量を意味し、適宜設定することができるが、具体的にはビニル基含有オルガノポリシロキサン(A)、シリカ粒子(C)、シランカップリング剤(D)の合計量100重量部に対して、白金族金属が重量単位で0.01~1000ppmとなる量であり、好ましくは、0.1~500ppmとなる量である。
 白金または白金化合物(E)の含有量を上記下限値以上とすることにより、シリコーンゴム系硬化性組成物が適切な速度で硬化することが可能となる。また、白金または白金化合物(E)の含有量を上記上限値以下とすることにより、製造コストの削減に資することができる。
In the present embodiment, the content of platinum or platinum compound (E) in the silicone rubber-based curable composition means the amount of catalyst, and can be set as appropriate. (A), silica particles (C), the total amount of 100 parts by weight of the silane coupling agent (D), platinum group metal is an amount of 0.01 to 1000 ppm by weight unit, preferably 0. The amount is 1 to 500 ppm.
By setting the content of platinum or platinum compound (E) to the above lower limit or more, the silicone rubber-based curable composition can be cured at an appropriate rate. Moreover, by making the content of platinum or platinum compound (E) equal to or less than the above upper limit, it is possible to contribute to the reduction of production costs.
<<水(F)>>
 また、本実施形態に係るシリコーンゴム系硬化性組成物には、上記成分(A)~(E)以外に、水(F)が含まれていてもよい。
<<Water (F)>>
Further, the silicone rubber-based curable composition according to the present embodiment may contain water (F) in addition to the above components (A) to (E).
 水(F)は、シリコーンゴム系硬化性組成物に含まれる各成分を分散させる分散媒として機能するとともに、シリカ粒子(C)とシランカップリング剤(D)との反応に寄与する成分である。そのため、シリコーンゴム中において、シリカ粒子(C)とシランカップリング剤(D)とを、より確実に互いに連結したものとすることができ、全体として均一な特性を発揮することができる。 Water (F) is a component that functions as a dispersion medium for dispersing each component contained in the silicone rubber-based curable composition and contributes to the reaction between the silica particles (C) and the silane coupling agent (D). . Therefore, the silica particles (C) and the silane coupling agent (D) can be linked to each other more reliably in the silicone rubber, and uniform properties can be exhibited as a whole.
(その他の成分)
 さらに、本実施形態のシリコーンゴム系硬化性組成物は、上記(A)~(F)成分以外に、他の成分をさらに含むことができる。この他の成分としては、例えば、珪藻土、酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム、酸化セリウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ガラスウール、マイカ等のシリカ粒子(C)以外の無機充填材、反応阻害剤、分散剤、顔料、染料、帯電防止剤、酸化防止剤、難燃剤、熱伝導性向上剤等の添加剤が挙げられる。
(other ingredients)
Furthermore, the silicone rubber-based curable composition of the present embodiment may further contain other components in addition to the above components (A) to (F). Other components include silica particles (C) such as diatomaceous earth, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, cerium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, glass wool, and mica. additives such as inorganic fillers, reaction inhibitors, dispersants, pigments, dyes, antistatic agents, antioxidants, flame retardants, and thermal conductivity improvers.
 本実施形態に係る導電性溶液(導電性シリコーンゴム組成物)は、導電性フィラーを含まない上記シリコーンゴム系硬化性組成物に加えて、上記導電性フィラーおよび溶剤を含むものである。 The conductive solution (conductive silicone rubber composition) according to the present embodiment contains the conductive filler and solvent in addition to the silicone rubber-based curable composition containing no conductive filler.
 上記溶剤としては、公知の各種溶剤を用いることができるが、例えば、高沸点溶剤を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 Various known solvents can be used as the solvent, and for example, a high boiling point solvent can be included. These may be used alone or in combination of two or more.
 上記溶剤の一例としては、例えば、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、メチルシクロヘキサン、エチルシクロヘキサン、オクタン、デカン、ドデカン、テトラデカンなどの脂肪族炭化水素類;ベンゼン、トルエン、エチルベンゼン、キシレン、トリフルオロメチルベンゼン、ベンゾトリフルオリドなどの芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、シクロペンチルエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフランなどのエーテル類;ジクロロメタン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタンなどのハロアルカン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのカルボン酸アミド類;ジメチルスルホキシド、ジエチルスルホキシドなどのスルホキシド類などを例示することができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 Examples of the above solvents include aliphatic hydrocarbons such as pentane, hexane, cyclohexane, heptane, methylcyclohexane, ethylcyclohexane, octane, decane, dodecane, and tetradecane; benzene, toluene, ethylbenzene, xylene, trifluoromethylbenzene; , aromatic hydrocarbons such as benzotrifluoride; diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, cyclopentyl ethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, 1,4-dioxane, 1,3 - ethers such as dioxane and tetrahydrofuran; haloalkanes such as dichloromethane, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane and 1,1,2-trichloroethane; N,N-dimethyl Carboxylic acid amides such as formamide and N,N-dimethylacetamide; sulfoxides such as dimethylsulfoxide and diethylsulfoxide; These may be used alone or in combination of two or more.
 上記導電性溶液は、溶液中の固形分量などを調整することで、スプレー塗布やディップ塗布等の各種の塗布方法に適切な粘度を備えることができる。 By adjusting the amount of solid content in the solution, the conductive solution can have a viscosity suitable for various coating methods such as spray coating and dip coating.
 また、上記導電性溶液が上記導電性フィラーおよび上記シリカ粒子(C)を含む場合、電極部30が含むシリカ粒子(C)の含有量の下限値は、シリカ粒子(C)および導電性フィラーの合計量100質量%に対して、例えば、1質量%以上であり、好ましくは3質量%以上であり、より好ましくは5質量%以上とすることができる。これにより、電極部30の機械的強度を向上させることができる。一方で、上記電極部30が含むシリカ粒子(C)の含有量の上限値は、シリカ粒子(C)および導電性フィラーの合計量100質量%に対して、例えば、20質量%以下であり、好ましくは15質量%以下であり、より好ましくは10質量%以下である。これにより、電極部30における導電性と機械的強度や柔軟性とのバランスを図ることができる。 Further, when the conductive solution contains the conductive filler and the silica particles (C), the lower limit of the content of the silica particles (C) contained in the electrode part 30 is the silica particles (C) and the conductive filler. For example, it is 1% by mass or more, preferably 3% by mass or more, and more preferably 5% by mass or more, relative to the total amount of 100% by mass. Thereby, the mechanical strength of the electrode part 30 can be improved. On the other hand, the upper limit of the content of the silica particles (C) contained in the electrode part 30 is, for example, 20% by mass or less with respect to the total amount of 100% by mass of the silica particles (C) and the conductive filler, It is preferably 15% by mass or less, more preferably 10% by mass or less. Thereby, it is possible to achieve a balance between conductivity, mechanical strength, and flexibility in the electrode portion 30 .
 導電性溶液を必要に応じて加熱乾燥することで、導電性シリコーンゴムが得られる。
 導電性シリコーンゴムは、シリコーンオイルを含まない構成であってもよい。これにより、電極部30の表面にシリコーンオイルがブリードアウトすることで導通性が低下することを抑制できる。
A conductive silicone rubber can be obtained by heating and drying the conductive solution as necessary.
The conductive silicone rubber may be configured without silicone oil. As a result, it is possible to suppress deterioration in conductivity due to bleeding out of the silicone oil onto the surface of the electrode portion 30 .
<信号線部34の材料>
 信号線部34は、公知のものを使用することができるが、例えば、導電繊維で構成され得る。導電繊維としては、金属繊維、金属被覆繊維、炭素繊維、導電性ポリマー繊維、導電性ポリマー被覆繊維、および導電ペースト被覆繊維からなる群から選択される一種以上を用いることができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
<Material of signal line portion 34>
The signal line portion 34 can use a known one, and can be made of conductive fiber, for example. As the conductive fiber, one or more selected from the group consisting of metal fiber, metal-coated fiber, carbon fiber, conductive polymer fiber, conductive polymer-coated fiber, and conductive paste-coated fiber can be used. These may be used alone or in combination of two or more.
 上記金属繊維、金属被覆繊維、の金属材料は、導電性を有するものであれば限定されないが、銅、銀、金、ニッケル、錫、鉛、亜鉛、ビスマス、アンチモン、ステンレス、アルミニウム、銀/塩化銀およびこれらの合金等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。これらの中でも、導通性の観点から、銀を用いることができる。また、金属材料は、クロム等の環境に負荷を与える金属を含まないことが好ましい。 The metal material of the metal fibers and metal-coated fibers is not limited as long as it has conductivity, but copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, stainless steel, aluminum, silver/chloride silver and alloys thereof; These may be used alone or in combination of two or more. Among these, silver can be used from the viewpoint of conductivity. Moreover, it is preferable that the metal material does not contain a metal such as chromium that causes a load on the environment.
 上記金属被覆繊維、導電性ポリマー被覆繊維、導電ペースト被覆繊維の繊維材料は、特に限定されないが、合成繊維、半合成繊維、天然繊維のいずれでもよい。これらの中でも、ポリエステル、ナイロン、ポリウレタン、絹および綿等を用いることが好ましい。これらを単独で用いても2種以上を組み合わせて用いてもよい。 The fiber materials of the metal-coated fibers, conductive polymer-coated fibers, and conductive paste-coated fibers are not particularly limited, but may be synthetic fibers, semi-synthetic fibers, or natural fibers. Among these, it is preferable to use polyester, nylon, polyurethane, silk, cotton, and the like. These may be used alone or in combination of two or more.
 上記炭素繊維は、例えば、PAN系炭素繊維、ピッチ系炭素繊維等が挙げられる。 Examples of the carbon fibers include PAN-based carbon fibers and pitch-based carbon fibers.
 上記導電性ポリマー繊維および導電性ポリマー被覆繊維の導電性ポリマー材料は、例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリフェニレンビニレン、ポリナフタレン、及びこれらの誘導体等の導電性高分子およびバインダ樹脂の混合物、あるいは、PEDOT-PSS((3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))等の導電性高分子の水溶液が用いられる。 The conductive polymer material of the conductive polymer fiber and the conductive polymer-coated fiber is, for example, a mixture of a conductive polymer such as polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene vinylene, polynaphthalene, and derivatives thereof and a binder resin, Alternatively, an aqueous solution of a conductive polymer such as PEDOT-PSS ((3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid)) is used.
 上記導電ペースト被覆繊維の導電ペーストに含まれる樹脂材料は特に限定されないが伸縮性を有することが好ましく、例えばシリコーンゴム、ウレタンゴム、フッ素ゴム、ニトリルゴム、アクリルゴム、スチレンゴム、クロロプレンゴム、およびエチレンプロピレンゴムからなる群から選択される一種以上を含むことができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。 The resin material contained in the conductive paste of the conductive paste-coated fiber is not particularly limited, but preferably has elasticity. It can contain one or more selected from the group consisting of propylene rubbers. These may be used alone or in combination of two or more.
 上記導電ペースト被覆繊維の導電ペーストに含まれる導電性フィラーは特に限定されないが、公知の導電材料を用いてもよいが、金属粒子、金属繊維、金属被覆繊維、カーボンブラック、アセチレンブラック、グラファイト、炭素繊維、カーボンナノチューブ、導電性ポリマー、導電性ポリマー被覆繊維および金属ナノワイヤーからなる群から選択される一種以上を含むことができる。 The conductive filler contained in the conductive paste of the conductive paste-coated fiber is not particularly limited, and known conductive materials may be used, such as metal particles, metal fibers, metal-coated fibers, carbon black, acetylene black, graphite, carbon It may contain one or more selected from the group consisting of fibers, carbon nanotubes, conductive polymers, conductive polymer-coated fibers and metal nanowires.
 上記導電性フィラーを構成する金属は、特に限定はされないが、例えば、銅、銀、金、ニッケル、錫、鉛、亜鉛、ビスマス、アンチモン、銀/塩化銀、或いはこれらの合金のうち少なくとも一種類、あるいは、これらのうちの二種以上を含むことができる。この中でも、導電性の高さや入手容易性の高さから、銀または銅が好ましい。 The metal constituting the conductive filler is not particularly limited, but for example, copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, silver/silver chloride, or at least one of these alloys. or, alternatively, two or more of these. Among these, silver or copper is preferable because of its high conductivity and high availability.
 上記信号線部34が、線状の導電繊維を複数本撚り合わせた撚糸で構成されてもよい。これにより、変形時における信号線部34の断線を抑制できる。 The signal line portion 34 may be composed of twisted yarn obtained by twisting a plurality of linear conductive fibers. As a result, breakage of the signal line portion 34 during deformation can be suppressed.
 本実施形態において、導電繊維における被覆とは、単に繊維材料の外表面を覆うことのみならず、単繊維を撚り合わせた撚糸などの場合は、その撚糸の中の繊維間隙に金属、導電性ポリマー、または導電ペーストが含浸し、撚糸を構成する単繊維を1本毎に被覆するものを含む。 In the present embodiment, the coating of the conductive fiber means not only covering the outer surface of the fiber material, but also, in the case of a twisted yarn obtained by twisting single fibers, a metal or a conductive polymer is added between the fibers in the twisted yarn. , or impregnated with a conductive paste to cover each single fiber constituting the twisted yarn.
 信号線部34の引張破断伸度は、例えば、1%以上~50%以下、好ましくは1.5%以上~45%である。このような数値範囲内とすることで、変形時の破断を抑制しつつも、突起部32の過度な変形を抑制できる。 The tensile elongation at break of the signal wire portion 34 is, for example, 1% to 50%, preferably 1.5% to 45%. By setting the value within such a numerical range, it is possible to suppress excessive deformation of the protrusion 32 while suppressing breakage during deformation.
<導電性接触部33の材料>
 導電性接触部33の導電部材は、例えば、良導性金属を含むペースト(いわゆる導電性ペースト)である。良導性金属は、銅、銀、金、ニッケル、錫、鉛、亜鉛、ビスマス、アンチモン、或いはこれらの合金からなる群から選択される一種以上を含む。特に、入手性や導電性の観点から、銀や塩化銀、銅が好適である。
<Material of the conductive contact portion 33>
The conductive member of the conductive contact portion 33 is, for example, a paste containing a highly conductive metal (so-called conductive paste). The highly conductive metal includes one or more selected from the group consisting of copper, silver, gold, nickel, tin, lead, zinc, bismuth, antimony, or alloys thereof. In particular, silver, silver chloride, and copper are suitable from the viewpoint of availability and conductivity.
 良導性金属を含むペーストで導電性接触部33を形成する場合は、ゴム状の弾性体でできた突起部32の頂部を、良導性金属を含むペースト状の導電性溶液にディップ(浸漬塗布)する。これにより、突起部32の表面に導電性接触部33が形成される。 When the conductive contact portion 33 is formed with a paste containing a highly conductive metal, the top of the protrusion 32 made of a rubber-like elastic body is dipped (immersed) in a paste-like conductive solution containing a highly conductive metal. apply). Thereby, a conductive contact portion 33 is formed on the surface of the projection portion 32 .
 なお、導電性フィラーおよび溶剤を含む導電性溶液を、突起部32に塗布することにより、導電性樹脂層としての導電性接触部33を形成してもよい。このとき、溶剤を突起部32と同じ系統の材質(シリコーンゴム)とすることで、導電性接触部33(導電性樹脂層)の密着性を高められる。 The conductive contact portion 33 may be formed as a conductive resin layer by applying a conductive solution containing a conductive filler and a solvent to the projection portion 32 . At this time, by using the same type of material (silicone rubber) as the solvent for the protrusion 32, the adhesion of the conductive contact portion 33 (conductive resin layer) can be enhanced.
 導電性溶液を必要に応じて加熱乾燥することで、導電性シリコーンゴムが得られる。
 導電性シリコーンゴムは、シリコーンオイルを含まない構成であってもよい。これにより、導電性接触部33の表面にシリコーンオイルがブリードアウトすることで導通性が低下することを抑制できる。
A conductive silicone rubber can be obtained by heating and drying the conductive solution as necessary.
The conductive silicone rubber may be configured without silicone oil. As a result, it is possible to suppress a decrease in conductivity due to bleeding out of the silicone oil onto the surface of the conductive contact portion 33 .
 これにより、脳波測定装置1を頭部99へ装着する際の毛髪の掻き分け性能を向上させることができる。また、脳波測定装置1を装着した際の導電性接触部33の接触面積の十分な確保が可能となる。 As a result, it is possible to improve the hair parting performance when attaching the electroencephalogram measurement device 1 to the head 99 . In addition, it is possible to secure a sufficient contact area of the conductive contact portion 33 when the electroencephalogram measurement device 1 is worn.
<電極部30の製造方法>
 本実施形態の電極部30の製造方法の一例は次の工程を含むことができる。
 まず、金型を用いて、上記シリコーンゴム系硬化性組成物を加熱加圧成形し、基部31基および突起部32からなる成形体を得る。続いて、得られた成形体の各突起部32の内部に、縫い針を用いて、信号線部34を通す。その後得られた成形体の突起部32の先端部分に、ペースト状の導電性溶液をディップ塗布し、加熱乾燥後、ポストキュアを行う。これにより、突起部32に導電性接触部33を形成できる。以上により、電極部30を製造することができる。なお、上記成形工程時において、信号線部34を配置した成形空間内に、上記シリコーンゴム系硬化性組成物を導入し、加圧加熱成形するインサート成形を用いてもよい。
<Manufacturing Method of Electrode Portion 30>
An example of the method for manufacturing the electrode part 30 of this embodiment can include the following steps.
First, using a mold, the silicone rubber-based curable composition is molded under heat and pressure to obtain a molded body comprising the base portion 31 and the projection portion 32 . Subsequently, the signal wire portion 34 is threaded through each projection portion 32 of the obtained molding using a sewing needle. A pasty conductive solution is dip-coated on the tip portion of the protruding portion 32 of the molded body obtained thereafter, and post-curing is performed after heating and drying. Thereby, the conductive contact portion 33 can be formed on the projection portion 32 . The electrode part 30 can be manufactured by the above. During the molding process, insert molding may be used in which the silicone rubber-based curable composition is introduced into the molding space in which the signal line portion 34 is arranged, and pressurized and heat-molded.
<キャップ50>
 キャップ50は、例えば硬質の樹脂材料からなり、有底筒状形状を呈する。キャップ50は、内部に電極部30、スナップボタン40及び金属箔60を収容し保持するホルダとして機能する。本実施形態では、電極部30、スナップボタン40及び金属箔60は、重ねられて収容され、押さえ部56によりキャップ50の内部に厚み方向(図示では上下方向)に圧縮されて固定される。
<Cap 50>
The cap 50 is made of, for example, a hard resin material and has a cylindrical shape with a bottom. The cap 50 functions as a holder that accommodates and holds the electrode section 30 , the snap button 40 and the metal foil 60 inside. In this embodiment, the electrode section 30 , the snap button 40 and the metal foil 60 are stacked and accommodated, and are compressed and fixed inside the cap 50 in the thickness direction (vertical direction in the drawing) by the pressing section 56 .
 キャップ50の呈する有底筒状形状の底面がキャップ天板51となっている。キャップ天板51の周縁は筒形状のキャップ胴部52が一体に設けられている。キャップ胴部52のキャップ内周面55は、電極部30の基部31よりも僅かに大きく形成されており、電極部30が収容された状態で、基部31の外側面がキャップ内周面55と離間するように設定されている。 The bottom surface of the bottomed cylindrical shape of the cap 50 serves as a cap top plate 51 . A cylindrical cap body portion 52 is integrally provided on the peripheral edge of the cap top plate 51 . The cap inner peripheral surface 55 of the cap barrel 52 is formed slightly larger than the base 31 of the electrode section 30, and the outer surface of the base 31 is in contact with the cap inner peripheral surface 55 when the electrode section 30 is accommodated. are set apart.
 円形のキャップ天板51の円中心には厚さ方向に貫通する中央開口部53が設けられている。中央開口部53の大きさは、スナップボタン40がキャップ50に収納されたときに、少なくともスナップボタン40のボタン部42が内部から外部に突出することができる大きさである。 A central opening 53 penetrating in the thickness direction is provided at the center of the circular cap top plate 51 . The size of the central opening 53 is such that at least the button portion 42 of the snap button 40 can protrude from the inside to the outside when the snap button 40 is accommodated in the cap 50 .
 キャップ胴部52の下側(開口側)の端部には、筒内部側に向かって所定長だけ延出する押さえ部56が形成されている。また、押さえ部56の厚さ方向の位置は、キャップ50の内部に収容される構成要素(ここではスナップボタン40、金属箔60、電極部30)の厚さの合計よりも若干浅い位置となる。これによって、筒内部にスナップボタン40、金属箔60及び電極部30が配置されたときに、押さえ部56が電極部30の基部31の基部下面36の外縁近傍を厚さ方向(筒深さ方向)に圧縮させながら押さえる。電極部30がキャップ50に保持された状態で、すなわち、押さえ部56によって押さえつけられた状態で、基部31は1%以上10%以下の範囲で圧縮された状態となっている。 At the lower (opening side) end of the cap barrel 52, a holding portion 56 is formed that extends toward the inner side of the cylinder by a predetermined length. In addition, the position of the pressing portion 56 in the thickness direction is slightly shallower than the total thickness of the components housed inside the cap 50 (here, the snap button 40, the metal foil 60, and the electrode portion 30). . As a result, when the snap button 40, the metal foil 60 and the electrode portion 30 are arranged inside the cylinder, the pressing portion 56 moves the vicinity of the outer edge of the base lower surface 36 of the base portion 31 of the electrode portion 30 in the thickness direction (cylinder depth direction). ) while compressing. With the electrode portion 30 held by the cap 50 , that is, with the pressing portion 56 pressing the base portion 31 , the base portion 31 is compressed in a range of 1% or more and 10% or less.
 押さえ部56は、周方向に全域に亘って設けられてもよいし、周方向に所定間隔で複数箇所にカギ状に設けられてもよい。なお、電極部30は、スナップボタン40及び金属箔60をキャップ50の内部に配置したうえで、押し込むようにして嵌め込む。嵌め込んだ状態で、使用により電極部30の一部が浮き上がったりしないようにする観点から、周方向に全域に亘って押さえ部56が設けられることが好ましい。 The pressing portions 56 may be provided over the entire circumferential direction, or may be provided in a hook shape at a plurality of locations at predetermined intervals in the circumferential direction. It should be noted that the electrode portion 30 is fitted into the cap 50 by arranging the snap button 40 and the metal foil 60 inside the cap 50 and then pushing it in. As shown in FIG. From the viewpoint of preventing a portion of the electrode portion 30 from floating during use in the fitted state, it is preferable that the pressing portion 56 is provided over the entire circumferential direction.
<スナップボタン40>
 スナップボタン40は、導電性の部材からなり、電極部30の信号を外部の計測部に接続するためのインタフェイスとして機能する。導電性の部材として、ステンレスや銅合金、アルミニウム合金等の導電性の金属がある。
<Snap button 40>
The snap button 40 is made of a conductive member and functions as an interface for connecting the signal of the electrode section 30 to an external measuring section. Examples of conductive members include conductive metals such as stainless steel, copper alloys, and aluminum alloys.
 スナップボタン40は、上面視で円形を呈した所定厚さの円盤部41と、円盤部41の円盤上面43の中央から上方に延出する円柱状のボタン部42とを有する。 The snap button 40 has a circular disc portion 41 with a predetermined thickness and a cylindrical button portion 42 extending upward from the center of the disc top surface 43 of the disc portion 41 .
 円盤部41の円盤下面44は、金属箔60に接続する。円盤部41の円盤上面43は、キャップ50のキャップ天板51の天板下面54、より具体的には中央開口部53近傍領域に当接する。円盤部41は、金属箔60と電極部30の基部上面35との間に信号線部34の折り曲げ部34aを挟み込む構造とする。 The disc lower surface 44 of the disc portion 41 is connected to the metal foil 60 . A disc upper surface 43 of the disc portion 41 abuts on the top plate lower surface 54 of the cap top plate 51 of the cap 50 , more specifically, the area near the central opening 53 . The disk portion 41 has a structure in which the bent portion 34 a of the signal line portion 34 is sandwiched between the metal foil 60 and the base upper surface 35 of the electrode portion 30 .
<金属箔60>
 金属箔60は、電極部30とスナップボタン40の間に設けられ、導電性を有するとともに圧縮されて変形することで、信号経路の一部として構成される。金属箔60は、少なくとも、電極部30とスナップボタン40との間に配置されて固定されたときに、全ての信号線部34の折り曲げ部34aを挟むことができる大きさ・形状を有している。
<Metal foil 60>
The metal foil 60 is provided between the electrode portion 30 and the snap button 40, and is configured as part of the signal path by being conductive and being compressed and deformed. The metal foil 60 has at least a size and shape that can sandwich the bent portions 34a of all the signal line portions 34 when placed and fixed between the electrode portion 30 and the snap button 40. there is
 金属箔60は、例えば、アルミニウムや銅(それらの合金を含む)、ステンレスを箔状にしたものである。脳波測定用電極10を組み立てた後の内部メンテナンスが難しく、頭皮の汗による劣化を考慮すると、アルミニウムやステンレスが好ましい。金属箔60の厚さは、例えば1μm~100μmである。 The metal foil 60 is, for example, a foil of aluminum, copper (including alloys thereof), or stainless steel. Aluminum or stainless steel is preferable in consideration of the difficulty of internal maintenance after the electroencephalogram measurement electrode 10 is assembled and deterioration due to sweat on the scalp. The thickness of the metal foil 60 is, for example, 1 μm to 100 μm.
<キャップ50による電極部30等の収容構造>
 キャップ50に電極部30等を収容した構造について脳波測定用電極10の製造方法とともに説明する。
<Accommodation structure of electrode unit 30 and the like by cap 50>
A structure in which the electrode section 30 and the like are accommodated in the cap 50 will be described together with a method for manufacturing the electroencephalogram measurement electrode 10. FIG.
 まず、キャップ50のキャップ胴部52の下側の開口から、ボタン部42を図示上側として、スナップボタン40を収容する。このとき、円盤上面43の周縁部分は、天板下面54の中央開口部53の開口縁部分に当接する。また、ボタン部42は、キャップ50の中央開口部53を貫通して外部に突出する。 First, the snap button 40 is accommodated from the opening on the lower side of the cap body portion 52 of the cap 50, with the button portion 42 facing upward in the figure. At this time, the peripheral edge portion of the disc upper surface 43 contacts the opening edge portion of the central opening 53 of the top plate lower surface 54 . Further, the button portion 42 penetrates the central opening portion 53 of the cap 50 and protrudes to the outside.
 つぎに、金属箔60をスナップボタン40の円盤下面44に当接させるように収容する。つづいて、電極部30を、その基部上面35が金属箔60に押し当たるように配置する。 Next, the metal foil 60 is accommodated so as to abut against the disk lower surface 44 of the snap button 40 . Next, the electrode part 30 is arranged so that the base upper surface 35 is pressed against the metal foil 60 .
 その後、電極部30をキャップ50の下側開口から嵌め込む。完全に嵌め込むと、上述したように、押さえ部56が、電極部30の基部31の外縁部分38を厚さ方向に圧縮する。その結果、スナップボタン40、金属箔60及び電極部30が、キャップ50の筒内部において圧縮状態で収容される。 After that, the electrode part 30 is fitted from the lower opening of the cap 50 . When completely fitted, as described above, the pressing portion 56 compresses the outer edge portion 38 of the base portion 31 of the electrode portion 30 in the thickness direction. As a result, the snap button 40, the metal foil 60 and the electrode portion 30 are accommodated in the cylinder of the cap 50 in a compressed state.
<脳波測定用電極10の特徴・機能のまとめ>
 本実施形態の脳波測定用電極10の特徴・機能について、以下にまとめて説明する。
(1)脳波測定用電極10は、
 弾性部材で形成された柱状の基部31と、基部31の一端(すなわち基部下面36)に設けられた複数の突起部32(電極用突起部)と、突起部32の少なくとも先端側表面に設けられた導電性接触部33(導電部)と、導電性接触部33から基部31の他の一端(すなわち基部上面35)まで延びる信号線部34(信号経路)と、を有する電極部30と、
 基部31の他の一端(基部上面35)に金属箔60を介して設けられるとともに、かつ基部31とは反対方向に延出するボタン部42(接続用突起)を備えたスナップボタン40(導電性接続部材)と、
 電極部30を保持するキャップ50(ホルダ)と、を有し、
 キャップ50は、有底筒状形状であって、有底筒状形状の底面(キャップ天板51)に設けられ電極部30がキャップ50に保持された状態で、スナップボタン40のボタン部42が突出する中央開口部53(貫通孔)と、キャップ天板51(底面)と反対側の端部において、電極部30を基部31の厚さ方向に押さえる押さえ部56と、を有する。
 スナップボタン40と電極部30との間に、薄い金属箔60が設けられ挟まれる構成であるので、この構成部分で、使用により厚みが変化して接触抵抗が変化するといった影響を排除でき、安定した脳波測定を実現できる。また、電極部30等を収容して固定するために、接着剤や導電性ペースト等を用いることが無く、それらが漏れ出し導電不慮を起こすこともない。
(2)押さえ部56は、基部31の突起部32が設けられている面(基部下面36)の外縁部分38を、前記基部31の厚さ方向に圧縮している。
 電極部30の基部31が厚さ方向に圧縮されてキャップ50に収容されるため、電気的な接続状態を良好に保つことができる。
(3)電極部30の基部31のキャップ50に保持された状態の圧縮率は、取り外された状態を基準として、1%以上10%以下である。
 基部31を上記範囲の圧縮率で圧縮して電極部30をキャップ50に保持することで、電気的な接続状態と保持力とのバランスを確保できる。
(4)電極部30を構成する弾性部材はシリコーン樹脂からなる。
 電極部30がシリコーン樹脂からなる場合、圧縮率とゴム硬度の最適化を実現できる。
(5)信号線部34は導電繊維からなり、基部31の他の一端(基部上面35)から突出しており、電極部30の前記基部31の前記キャップ50に保持された状態で折り曲がって、金属箔60を介してスナップボタン40と導通している。
 導電繊維の信号線部34が基部上面35から飛び出した部分(すなわち折り曲げ部34a)が、金属箔60と基部上面35との間に挟まれ、さらにスナップボタン40がそれらを押さえる構成であるので、信号線部34からの信号が確実にスナップボタン40に伝えることができる。
(6)キャップ50はワンピースの材料で形成されている。
 キャップ50がワンピース(すなわち一つの部品)で構成されるため、部品点数を削減できる。
(7)脳波測定装置1は、脳波測定用電極10と、複数の前記脳波測定用電極10を保持するフレーム20と、スナップボタン40を介して接続され、測定した脳波信号を計測する計測部と、を有する。
(8)脳波測定方法は、脳波測定装置1を被験者の頭部99に装着して脳波測定を行う。
<Summary of features and functions of the electroencephalogram measurement electrode 10>
Features and functions of the electroencephalogram measurement electrode 10 of the present embodiment will be collectively described below.
(1) Electroencephalogram measurement electrode 10
A columnar base 31 formed of an elastic member, a plurality of projections 32 (electrode projections) provided at one end of the base 31 (that is, the lower surface 36 of the base), and at least the tip side surface of the projections 32. and a signal line portion 34 (signal path) extending from the conductive contact portion 33 to the other end of the base portion 31 (that is, the base upper surface 35);
A snap button 40 (conductive snap button 40) is provided at the other end of the base portion 31 (base upper surface 35) via a metal foil 60 and has a button portion 42 (connection projection) extending in the direction opposite to the base portion 31. connection member);
and a cap 50 (holder) that holds the electrode part 30,
The cap 50 has a cylindrical shape with a bottom, and the button portion 42 of the snap button 40 is held in a state in which the electrode portion 30 is provided on the bottom surface (cap top plate 51) of the cylindrical shape with a bottom (cap top plate 51). It has a protruding central opening 53 (through hole) and a pressing portion 56 that presses the electrode portion 30 in the thickness direction of the base portion 31 at the end opposite to the cap top plate 51 (bottom surface).
Since the thin metal foil 60 is provided and sandwiched between the snap button 40 and the electrode portion 30, it is possible to eliminate the influence of changes in contact resistance due to changes in thickness due to use in this configuration portion, and stability. EEG measurement can be realized. In addition, no adhesive, conductive paste, or the like is used to accommodate and fix the electrode portion 30, etc., and there is no possibility that these will leak out and cause an accidental conduction.
(2) The pressing portion 56 compresses the outer edge portion 38 of the surface of the base portion 31 on which the projection portion 32 is provided (base portion lower surface 36 ) in the thickness direction of the base portion 31 .
Since the base portion 31 of the electrode portion 30 is compressed in the thickness direction and accommodated in the cap 50, a good electrical connection can be maintained.
(3) The compressibility of the base portion 31 of the electrode portion 30 held by the cap 50 is 1% or more and 10% or less based on the removed state.
By compressing the base portion 31 with a compression ratio within the above range and holding the electrode portion 30 in the cap 50, a balance between the electrical connection state and the holding force can be ensured.
(4) The elastic member forming the electrode portion 30 is made of silicone resin.
When the electrode portion 30 is made of silicone resin, it is possible to optimize the compressibility and rubber hardness.
(5) The signal line portion 34 is made of a conductive fiber, protrudes from the other end (base upper surface 35) of the base portion 31, and is bent while being held by the cap 50 of the base portion 31 of the electrode portion 30, It is electrically connected with the snap button 40 via the metal foil 60 .
The portion (that is, the bent portion 34a) of the signal line portion 34 of the conductive fiber protruding from the base upper surface 35 is sandwiched between the metal foil 60 and the base upper surface 35, and the snap button 40 presses them. A signal from the signal line portion 34 can be reliably transmitted to the snap button 40. - 特許庁
(6) The cap 50 is made from one piece of material.
Since the cap 50 is composed of one piece (that is, one part), the number of parts can be reduced.
(7) The electroencephalogram measurement device 1 includes an electroencephalogram measurement electrode 10, a frame 20 that holds a plurality of the electroencephalogram measurement electrodes 10, and a measurement unit that is connected via a snap button 40 and measures a measured electroencephalogram signal. , has
(8) The electroencephalogram measurement method includes attaching the electroencephalogram measurement device 1 to the subject's head 99 and performing electroencephalogram measurement.
<他の実施形態>
 以下、他の実施形態を説明する。以下では、第1の実施形態と異なる点について説明し、同様の構成・機能については同じ符号を付して適宜説明を省略する。
<Other embodiments>
Other embodiments will be described below. In the following, points different from the first embodiment will be described, and similar configurations and functions will be denoted by the same reference numerals, and description thereof will be omitted as appropriate.
≪第2の実施形態≫
 図5を参照して、本実施形態の脳波測定用電極110を説明する。図5は脳波測定用電極110を模式的に示した断面図である。本実施形態の脳波測定用電極110では、金属箔60を省いて、スナップボタン40が電極部30に直接配置され、信号線部34の折り曲げ部34aがスナップボタン40と電極部30(より具体的には基部上面35)との間に直接挟まれた構成となっている。このような構成により、構成要素を削減でき、また金属箔60の劣化による接触抵抗の増加を抑制できる。
<<Second Embodiment>>
The electroencephalogram measurement electrode 110 of this embodiment will be described with reference to FIG. FIG. 5 is a cross-sectional view schematically showing the electroencephalogram measurement electrode 110. As shown in FIG. In the electroencephalogram measurement electrode 110 of the present embodiment, the metal foil 60 is omitted, the snap button 40 is directly arranged on the electrode section 30, and the bent portion 34a of the signal line section 34 is formed between the snap button 40 and the electrode section 30 (more specifically, the electrode section 30). is directly sandwiched between the base portion upper surface 35). With such a configuration, the number of components can be reduced, and an increase in contact resistance due to deterioration of the metal foil 60 can be suppressed.
≪第3の実施形態≫
 図6を参照して、本実施形態の脳波測定用電極210を説明する。図6は脳波測定用電極210を模式的に示した断面図である。本実施形態の脳波測定用電極210では、第1の実施形態のキャップ50がワンピースであったものを、複数ピース(ここでは2部品)のキャップ250としている。
<<Third Embodiment>>
The electroencephalogram measurement electrode 210 of this embodiment will be described with reference to FIG. FIG. 6 is a cross-sectional view schematically showing the electroencephalogram measurement electrode 210. As shown in FIG. In the electroencephalogram measurement electrode 210 of the present embodiment, the one-piece cap 50 of the first embodiment is replaced with a cap 250 of a plurality of pieces (here, two parts).
 具体的には、キャップ250は、第1キャップ250Aと第2キャップ250Bとをする。第1キャップ250Aと第2キャップ250Bはネジ嵌合することで、キャップ250内部に電極部30、スナップボタン40及び金属箔60を収容し、かつ、それらを圧縮固定する。 Specifically, the cap 250 includes a first cap 250A and a second cap 250B. By screwing the first cap 250A and the second cap 250B together, the electrode section 30, the snap button 40 and the metal foil 60 are accommodated inside the cap 250 and compressed and fixed.
 第1キャップ250Aは、キャップ天板51と、キャップ天板51の外縁下端部から図示下方向に延出する筒状の第1胴部251とを有する。第1胴部251の外周面は螺刻されている。第2キャップ250Bは筒状の第2胴部252と、その下端部に設けられた押さえ部56とを有する。第2胴部252の内周面は螺刻されている。 The first cap 250A has a cap top plate 51 and a cylindrical first trunk portion 251 extending downward in the drawing from the lower end of the outer edge of the cap top plate 51 . The outer peripheral surface of the first body portion 251 is threaded. The second cap 250B has a tubular second body portion 252 and a pressing portion 56 provided at the lower end thereof. The inner peripheral surface of the second body portion 252 is threaded.
 このような構成により、第1の実施形態と同様の効果が得られる。さらに、キャップ250が複数ピース(ここでは第1キャップ250Aと第2キャップ250Bの2部品)で構成されており、電極部30、スナップボタン40及び金属箔60を収容する際に、第1キャップ250Aに第2キャップ250Bをネジ嵌合することで、圧縮固定するため、圧縮の程度を調整できる。また、第1の実施形態の様に押さえ部56に抗して電極部30を強く嵌め込む必要はなく、それゆえに押さえ部56の大きさに制限がない。 With such a configuration, effects similar to those of the first embodiment can be obtained. Furthermore, the cap 250 is composed of a plurality of pieces (here, two parts of the first cap 250A and the second cap 250B). By screw-fitting the second cap 250B to the second cap 250B, it is compressed and fixed, so the degree of compression can be adjusted. Further, unlike the first embodiment, it is not necessary to strongly fit the electrode section 30 against the holding portion 56, and therefore the size of the holding portion 56 is not limited.
≪第4の実施形態≫
 図7を参照して、本実施形態の脳波測定用電極310を説明する。図7は脳波測定用電極310の斜視図である。本実施形態の脳波測定用電極310は、第3の実施形態と同様に、第1キャップ350A及び第2キャップ350Bの二つの部品から構成されている。異なる点は、第1キャップ350Aと第2キャップ350Bとを嵌合固定する構造として、フック嵌合を用いている点にある。
<<Fourth Embodiment>>
The electroencephalogram measurement electrode 310 of this embodiment will be described with reference to FIG. FIG. 7 is a perspective view of the electroencephalogram measurement electrode 310. FIG. The electroencephalogram measurement electrode 310 of this embodiment is composed of two parts, a first cap 350A and a second cap 350B, as in the third embodiment. A different point is that hook fitting is used as a structure for fitting and fixing the first cap 350A and the second cap 350B.
 第1キャップ350Aは、キャップ天板51と、キャップ天板51の外縁下端部から図示下方向に延出する筒状の第1胴部351とを有する。第1胴部351の図示で下側端部には、カギ形状のオスフック部351Aが設けられている。第2キャップ350Bは筒状の第2胴部352と、その下端部に設けられた押さえ部56とを有する。第2胴部252の上側端部には、オスフック部351Aが嵌合可能な凹状のメスフック部352Bが設けられている。オスフック部351Aとメスフック部352Bとの嵌合箇所は、収容した電極部30等を適切に圧縮固定する観点から、複数箇所、例えば4箇所に設けられる。 The first cap 350A has a cap top plate 51 and a tubular first barrel portion 351 extending downward in the figure from the lower end of the outer edge of the cap top plate 51 . A hook-shaped male hook portion 351A is provided at the lower end portion of the first body portion 351 in the drawing. The second cap 350B has a tubular second body portion 352 and a pressing portion 56 provided at the lower end thereof. An upper end portion of the second trunk portion 252 is provided with a concave female hook portion 352B into which the male hook portion 351A can be fitted. The male hook portion 351A and the female hook portion 352B are provided at a plurality of locations, for example, four locations from the viewpoint of appropriately compressing and fixing the accommodated electrode portion 30 and the like.
 このような構成とすることで、押さえ部56に抗して電極部30を強く嵌め込む必要はなく、それゆえに押さえ部56の大きさに制限がない。 By adopting such a configuration, it is not necessary to strongly fit the electrode section 30 against the holding section 56, and therefore the size of the holding section 56 is not limited.
≪第5の実施形態≫
 図8を参照して、本実施形態の脳波測定用電極410を説明する。図8は脳波測定用電極410を模式的に示した断面図である。本実施形態の脳波測定用電極410では、電極部430の基部31の周面に凹状の嵌合部437を一周に亘り設けている。この嵌合部437に、キャップ450のキャップ胴部52の下側端部に設けられた押さえ部56が嵌め込まれる。これによって、電極部30、金属箔60、スナップボタン40がキャップ50に圧縮固定される。なお、この構造の場合、圧縮固定の際の圧縮率が第1の実施形態より小さくなるが、キャップ450を厚さ方向にコンパクトにすることができる。
<<Fifth Embodiment>>
The electroencephalogram measurement electrode 410 of this embodiment will be described with reference to FIG. FIG. 8 is a cross-sectional view schematically showing the electroencephalogram measurement electrode 410. As shown in FIG. In the electroencephalogram measurement electrode 410 of the present embodiment, a recessed fitting portion 437 is provided on the peripheral surface of the base portion 31 of the electrode portion 430 over the entire circumference. The holding portion 56 provided at the lower end portion of the cap body portion 52 of the cap 450 is fitted into the fitting portion 437 . As a result, the electrode section 30 , the metal foil 60 and the snap button 40 are compressed and fixed to the cap 50 . In addition, in the case of this structure, the compressibility at the time of compression fixation is smaller than that of the first embodiment, but the cap 450 can be made compact in the thickness direction.
≪第6の実施形態≫
 図9を参照して、本実施形態の脳波測定用電極510を説明する。図9は脳波測定用電極510を模式的に示した断面図である。本実施形態の脳波測定用電極510では、電極部530の基部31の周面を段差状としている。すなわち、基部31は、厚さ方向上側が大径で、下側が小径となっており、その境界面357が押さえ部556に押さえられる。このような構成によりキャップ550をコンパクトにできる。
<<Sixth Embodiment>>
An electroencephalogram measurement electrode 510 of this embodiment will be described with reference to FIG. FIG. 9 is a cross-sectional view schematically showing the electroencephalogram measurement electrode 510. As shown in FIG. In the electroencephalogram measurement electrode 510 of this embodiment, the peripheral surface of the base portion 31 of the electrode portion 530 is stepped. That is, the base portion 31 has a large diameter on the upper side in the thickness direction and a small diameter on the lower side, and the boundary surface 357 is pressed by the pressing portion 556 . With such a configuration, the cap 550 can be made compact.
≪第7の実施形態≫
 図10を参照して、本実施形態の脳波測定用電極610を説明する。図10は脳波測定用電極610を模式的に示した断面図である。本実施形態の脳波測定用電極610では、キャップ650をスナップフィット式嵌合構造の複数ピースとしている。キャップ650の内部に収容される電極部30やスナップボタン40等の構造は上記の実施形態と同様の構造を提供でき、以下ではキャップ650について説明する。
<<Seventh Embodiment>>
The electroencephalogram measurement electrode 610 of this embodiment will be described with reference to FIG. FIG. 10 is a cross-sectional view schematically showing the electroencephalogram measurement electrode 610. As shown in FIG. In the electroencephalogram measurement electrode 610 of this embodiment, the cap 650 is made up of a plurality of pieces with a snap-fit fitting structure. The structure of the electrode part 30, the snap button 40, etc. accommodated inside the cap 650 can provide the same structure as the above-described embodiment, and the cap 650 will be described below.
 キャップ650は、筒状の第1キャップ650Aと、第1キャップ650Aの筒内に嵌め込まれる筒状の第2キャップ650Bとを有する。第1キャップ650Aと第2キャップ650Bはスナップフィット式嵌合構造で一体に嵌合することで、キャップ650内部に電極部30及びスナップボタン40を収容し、かつ、それらを圧縮固定する。なお、電極部30とスナップボタン40との間に、第3~第5の実施形態と同様に金属箔が設けられてもよい。 The cap 650 has a tubular first cap 650A and a tubular second cap 650B fitted in the tubular of the first cap 650A. The first cap 650A and the second cap 650B are integrally fitted with a snap-fit fitting structure, so that the electrode section 30 and the snap button 40 are accommodated inside the cap 650 and are compressed and fixed. A metal foil may be provided between the electrode portion 30 and the snap button 40 as in the third to fifth embodiments.
 具体的には、第1キャップ650Aは、筒状のキャップ胴部652Aと、その下端部に設けられた押さえ部656Aとを有する。 Specifically, the first cap 650A has a cylindrical cap body 652A and a pressing part 656A provided at the lower end thereof.
 キャップ胴部652Aのキャップ内周面655Aの上側領域は、第2キャップ650Bを収容するために若干拡径された収容スペース658Aとなっている。収容スペース658Aの下側部分は、スナップフィット嵌合時に第2キャップ650Bの係止片657Bが収容され係止される凹状に設けられた係止溝657Aとなっている。 The upper region of the cap inner peripheral surface 655A of the cap barrel 652A forms a storage space 658A that is slightly enlarged in diameter to accommodate the second cap 650B. A lower portion of the accommodation space 658A is a recessed locking groove 657A in which the locking piece 657B of the second cap 650B is received and locked during snap-fitting.
 第2キャップ650Bは、中央開口部653Bを有する環状のキャップ天板651Bと、環状のキャップ天板651Bの外周縁から図示で下方向に延出する係止片657Bとを有する。 The second cap 650B has an annular cap top plate 651B having a central opening 653B, and a locking piece 657B extending downward in the drawing from the outer peripheral edge of the annular cap top plate 651B.
 係止片657Bは、略円筒形状を呈しており、筒内側方向に弾性変形可能になっている。係止片657Bの図示で下側端部は、外側にカギ状に突出した形状を有している。なお、筒形状を縦割りで複数に分割した形状(例えば3分割や4分割した形状)であってもよい。 The locking piece 657B has a substantially cylindrical shape and is elastically deformable in the cylinder inner direction. The lower end portion of the locking piece 657B in the drawing has a shape protruding outward like a hook. It should be noted that the tubular shape may be vertically divided into a plurality of pieces (for example, into three or four pieces).
 第2キャップ650B(すなわち、複数の係止片657B)の内周面655Bの大きさは、電極部30の基部31の外径と略同一になっている。電極部30とスナップボタン40を第1キャップ650Aの内部に収容した状態で、電極部30とスナップボタン40の受けから係止溝657Aを被せるように嵌め込むと、係止溝657Aと係止片657Bとが嵌合し固定される。 The size of the inner peripheral surface 655B of the second cap 650B (that is, the plurality of locking pieces 657B) is approximately the same as the outer diameter of the base portion 31 of the electrode portion 30. When the electrode portion 30 and the snap button 40 are accommodated inside the first cap 650A and the electrode portion 30 and the snap button 40 are fitted so as to cover the locking groove 657A, the locking groove 657A and the locking piece are fitted. 657B are fitted and fixed.
 このとき、第1キャップ650Aの押さえ部656Aが電極部30の基部31の基部下面の外縁部分38を図示下側から押さえる。また、第2キャップ650Bの天板下面654Bがスナップボタン40の円盤上面43を押さえる。これによって、電極部30とスナップボタン40は、厚さ方向に圧縮するように挟まれた状態で、キャップ650に収容され固定される。なお、係止溝657Aと係止片657Bの係止を容易に解除できるように、キャップ胴部652Aには外周面から係止溝657Aに貫通する孔を設けてもよい。 At this time, the pressing portion 656A of the first cap 650A presses the outer edge portion 38 of the lower surface of the base portion 31 of the electrode portion 30 from below in the drawing. In addition, the top plate lower surface 654B of the second cap 650B presses the disc upper surface 43 of the snap button 40 . Thereby, the electrode part 30 and the snap button 40 are housed and fixed in the cap 650 in a state of being compressed in the thickness direction. In order to easily release the engagement between the locking groove 657A and the locking piece 657B, the cap body 652A may be provided with a hole penetrating from the outer peripheral surface to the locking groove 657A.
 このように、キャップ650を第1キャップ650Aと第2キャップ650Bはスナップフィット式嵌合構造とすることで、電極部30及びスナップボタン40を内部に収容して脳波測定用電極610を組み立てる際の作業を容易にすることができる。また、構造がシンプルであるので、小型化が容易であり脳波測定用電極610の軽量化が可能である。 In this way, the first cap 650A and the second cap 650B of the cap 650 have a snap-fit fitting structure, so that the electrode section 30 and the snap button 40 can be housed inside to assemble the electroencephalogram measurement electrode 610. It can make your work easier. Moreover, since the structure is simple, it is easy to reduce the size of the electroencephalogram measurement electrode 610, and the weight of the electroencephalogram measurement electrode 610 can be reduced.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above with reference to the drawings, these are examples of the present invention, and various configurations other than those described above can be adopted.
 この出願は、2021年1月27日に出願された日本出願特願2021-010871号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-010871 filed on January 27, 2021, and the entire disclosure thereof is incorporated herein.
1 脳波測定装置
10、110、210、310、410、510、610 脳波測定用電極
20 フレーム
21 電極ユニット取付部
30、430、530 電極部
31 基部
32 突起部
33 導電性接触部
34 信号線部
34a 折り曲げ部
35 基部上面
36 基部下面
37 周面
38 外縁部分
40 スナップボタン
41 円盤部
42 ボタン部
43 円盤上面
44 円盤下面
50、250、350、450、550、650 キャップ
51、651B キャップ天板
52、652A キャップ胴部
53 中央開口部
54 天板下面
55 キャップ内周面
56、456、556、656A 押さえ部
60 金属箔
70 モールド樹脂
250A、350A、650A 第1キャップ
250B、350B、650B 第2キャップ
251、351 第1胴部
252、352 第2胴部
351A オスフック部
352B メスフック部
437 嵌合部
655B 内周面
657A 係止溝
657B 係止片
658A 収容スペース
1 electroencephalogram measurement device 10, 110, 210, 310, 410, 510, 610 electroencephalogram measurement electrode 20 frame 21 electrode unit mounting portion 30, 430, 530 electrode portion 31 base portion 32 projection portion 33 conductive contact portion 34 signal line portion 34a Bent portion 35 Base upper surface 36 Base lower surface 37 Peripheral surface 38 Outer edge portion 40 Snap button 41 Disk portion 42 Button portion 43 Disk upper surface 44 Disk lower surface 50, 250, 350, 450, 550, 650 Cap 51, 651B Cap top plate 52, 652A Cap trunk portion 53 Central opening portion 54 Top plate lower surface 55 Cap inner peripheral surface 56, 456, 556, 656A Pressing portion 60 Metal foil 70 Mold resin 250A, 350A, 650A First cap 250B, 350B, 650B Second cap 251, 351 First barrel portions 252, 352 Second barrel portion 351A Male hook portion 352B Female hook portion 437 Fitting portion 655B Inner peripheral surface 657A Locking groove 657B Locking piece 658A Accommodation space

Claims (11)

  1.  弾性部材で形成された柱状の基部と、前記基部の一端に設けられた複数の電極用突起部と、前記電極用突起部の少なくとも先端側表面に設けられた導電部と、前記導電部から前記基部の他の一端まで延びる信号経路と、を有する電極部と、
     前記基部の前記他の一端に直接又は金属箔を介して設けられるとともに、かつ前記基部とは反対方向に延出する接続用突起を備えた導電性接続部材と、
     前記電極部を保持するホルダと、を有し、
     前記ホルダは、有底筒状形状であって、
      前記有底筒状形状の底面に設けられ、前記電極部が前記ホルダに保持された状態で、前記導電性接続部材の前記接続用突起が突出する貫通孔と、
      前記底面と反対側の端部において、前記電極部を前記基部の厚さ方向に押さえる押さえ部と、を有する
    脳波測定用電極。
    a columnar base formed of an elastic member; a plurality of electrode projections provided at one end of the base; a conductive portion provided at least on the tip side surface of the electrode projection; a signal path extending to the other end of the base;
    a conductive connection member provided at the other end of the base directly or via a metal foil and having a connection projection extending in a direction opposite to the base;
    a holder that holds the electrode part,
    The holder has a cylindrical shape with a bottom,
    a through hole provided in the bottom surface of the cylindrical shape with a bottom, through which the connection protrusion of the conductive connection member protrudes in a state in which the electrode portion is held by the holder;
    an electroencephalogram measuring electrode including a pressing portion that presses the electrode portion in a thickness direction of the base portion at an end portion opposite to the bottom surface.
  2.  前記押さえ部は、前記基部の前記電極用突起部が設けられている面の縁を、前記基部の厚さ方向に圧縮している、請求項1に記載の脳波測定用電極。 The electroencephalogram measurement electrode according to claim 1, wherein the pressing portion compresses the edge of the surface of the base on which the electrode protrusion is provided in the thickness direction of the base.
  3.  前記電極部の前記基部の前記ホルダに保持された状態の圧縮率は、取り外された状態を基準として、1%以上10%以下である、
     請求項1または2に記載の脳波測定用電極。
    The compressibility of the base portion of the electrode portion held by the holder is 1% or more and 10% or less based on the removed state,
    The electrode for electroencephalogram measurement according to claim 1 or 2.
  4.  前記電極部を構成する前記弾性部材はシリコーン樹脂からなる、請求項1から3までのいずれか1項に記載の脳波測定用電極。 The electroencephalogram measurement electrode according to any one of claims 1 to 3, wherein the elastic member constituting the electrode portion is made of silicone resin.
  5.  前記信号経路は導電繊維からなり、前記基部の他の一端から突出しており、前記電極部の前記基部の前記ホルダに保持された状態で折り曲がって、直接又は金属箔を介して前記導電性接続部材と導通している、
     請求項1から4までのいずれか1項に記載の脳波測定用電極。
    The signal path is made of a conductive fiber, protrudes from the other end of the base portion, and is bent while being held by the holder of the base portion of the electrode portion to form the conductive connection directly or via a metal foil. connected to the material,
    The electroencephalogram measurement electrode according to any one of claims 1 to 4.
  6.  前記ホルダはワンピースの材料で形成されている、
     請求項1から5までのいずれか1項に記載の脳波測定用電極。
    the holder is formed of one piece of material;
    The electroencephalogram measurement electrode according to any one of claims 1 to 5.
  7.  前記ホルダは、複数ピースの材料で形成されている、
     請求項1から5までのいずれか1項に記載の脳波測定用電極。
    wherein the holder is formed of multiple pieces of material;
    The electroencephalogram measurement electrode according to any one of claims 1 to 5.
  8.  前記複数ピースはネジ嵌合により一体に形成されている、
     請求項7に記載の脳波測定用電極。
    The plurality of pieces are integrally formed by screw fitting,
    The electrode for electroencephalogram measurement according to claim 7.
  9.  前記複数ピースはスナップフィット式嵌合により一体に形成されている、
     請求項7に記載の脳波測定用電極。
    the pieces are formed together by a snap-fit fitting;
    The electrode for electroencephalogram measurement according to claim 7.
  10.  請求項1から9までのいずれか1項の脳波測定用電極と、
     複数の前記脳波測定用電極を保持するフレームと、
     前記導電性接続部材の前記接続用突起に接続され、測定した脳波信号を計測する計測部と、
     を有する脳波測定装置。
    an electroencephalogram measurement electrode according to any one of claims 1 to 9;
    a frame holding the plurality of electroencephalogram measurement electrodes;
    a measurement unit that is connected to the connection projection of the conductive connection member and measures the measured electroencephalogram signal;
    An electroencephalogram measurement device having
  11.  請求項10に記載の脳波測定装置を被験者の頭部に装着して脳波測定を行う脳波測定方法。 An electroencephalogram measurement method in which the electroencephalogram measurement device according to claim 10 is attached to the subject's head to measure electroencephalograms.
PCT/JP2022/001068 2021-01-27 2022-01-14 Brain wave measuring electrode, brain wave measuring device, and brain wave measuring method WO2022163382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022527131A JP7294537B2 (en) 2021-01-27 2022-01-14 Electroencephalogram measurement electrode, electroencephalogram measurement device, and electroencephalogram measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-010871 2021-01-27
JP2021010871 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163382A1 true WO2022163382A1 (en) 2022-08-04

Family

ID=82654553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001068 WO2022163382A1 (en) 2021-01-27 2022-01-14 Brain wave measuring electrode, brain wave measuring device, and brain wave measuring method

Country Status (2)

Country Link
JP (1) JP7294537B2 (en)
WO (1) WO2022163382A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261559A1 (en) * 2004-05-18 2005-11-24 Mumford John R Wireless physiological monitoring system
JP2011120866A (en) * 2009-11-10 2011-06-23 Japan Health Science Foundation Brain wave measuring electrode, cap with brain wave measuring electrode and brain wave measuring device
JP2014057642A (en) * 2012-09-14 2014-04-03 Sony Corp Biosignal measurement electrode and biosignal measurement apparatus
CN105232035A (en) * 2015-10-15 2016-01-13 苏州格林泰克科技有限公司 Bioelectric signal sensor
JP2016530897A (en) * 2013-03-14 2016-10-06 エンセファロダイナミクス,インコーポレイテッド Electrode assembly and electroencephalogram measurement apparatus, method, and kit
WO2018186212A1 (en) * 2017-04-07 2018-10-11 アルプス電気株式会社 Electrode for biological information measurement, and method for measuring biological information
WO2019073740A1 (en) * 2017-10-10 2019-04-18 Nok株式会社 Brain wave detection bioelectrode
WO2020095589A1 (en) * 2018-11-09 2020-05-14 住友ベークライト株式会社 Biological electrode, biological sensor, and biological signal measurement system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5695653B2 (en) * 2009-11-04 2015-04-08 コーニンクレッカ フィリップス エヌ ヴェ User skull electrode positioning device
CN103767704B (en) * 2014-01-20 2015-08-26 上海交通大学 Dry electrode of a kind of standard for EEG measuring and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261559A1 (en) * 2004-05-18 2005-11-24 Mumford John R Wireless physiological monitoring system
JP2011120866A (en) * 2009-11-10 2011-06-23 Japan Health Science Foundation Brain wave measuring electrode, cap with brain wave measuring electrode and brain wave measuring device
JP2014057642A (en) * 2012-09-14 2014-04-03 Sony Corp Biosignal measurement electrode and biosignal measurement apparatus
JP2016530897A (en) * 2013-03-14 2016-10-06 エンセファロダイナミクス,インコーポレイテッド Electrode assembly and electroencephalogram measurement apparatus, method, and kit
CN105232035A (en) * 2015-10-15 2016-01-13 苏州格林泰克科技有限公司 Bioelectric signal sensor
WO2018186212A1 (en) * 2017-04-07 2018-10-11 アルプス電気株式会社 Electrode for biological information measurement, and method for measuring biological information
WO2019073740A1 (en) * 2017-10-10 2019-04-18 Nok株式会社 Brain wave detection bioelectrode
WO2020095589A1 (en) * 2018-11-09 2020-05-14 住友ベークライト株式会社 Biological electrode, biological sensor, and biological signal measurement system

Also Published As

Publication number Publication date
JPWO2022163382A1 (en) 2022-08-04
JP7294537B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
JP6931738B2 (en) Bioelectrodes, biosensors and biosignal measurement systems
JP2022018252A (en) Electrode for brain wave measurement and brain wave measurement device
JP7495056B2 (en) Electrode for detecting brainwaves and brainwave measuring device
JP7404998B2 (en) Brain wave detection electrodes and brain wave measurement devices
JP7197060B1 (en) EEG detection electrode and electroencephalogram measuring device
JP7294537B2 (en) Electroencephalogram measurement electrode, electroencephalogram measurement device, and electroencephalogram measurement method
JP2022106356A (en) Electrode for brain wave measurement and brain wave measuring device
JP7487597B2 (en) Electrode for measuring electroencephalogram and electroencephalogram measuring device
WO2023157908A1 (en) Eletctrode for biosignal measurement, biosignal measurement device, and biosignal measurement method
WO2024014154A1 (en) Electrode for electroencephalogram measurement, electroencephalogram measurement device, electroencephalogram measurement method, and method for manufacturing electrode for electroencephalogram measurement
JP7145324B2 (en) Biomedical electrode, biosensor, and biomedical signal measurement system
JP7327708B1 (en) Electroencephalogram measurement device and electroencephalogram measurement method
WO2023013358A1 (en) Electrode device and brain wave measuring device
JP7211573B1 (en) Electrode device and electroencephalogram measurement device
WO2023048077A1 (en) Brain wave detection electrode, brain wave measuring device, and brain wave measuring method
WO2023048065A1 (en) Brain wave detection electrode, brain wave measurement device, and brain wave measurement method
JP7468695B2 (en) Electroencephalogram measuring device and electroencephalogram measuring method
JP2023072841A (en) Electrode for brain wave detection
WO2022064907A1 (en) Brainwave detection electrode
JP7004127B1 (en) Electrodes for brain wave detection
JP2024125546A (en) Electroencephalogram measuring device and electroencephalogram measuring method
JP2023083705A (en) Brain wave measuring electrode, brain wave measuring device, and brain wave measuring method
JP2022018263A (en) Electrode for electroencephalogram measurement and electroencephalograph
JP2023088433A (en) Electroencephalogram measuring apparatus and electroencephalogram measuring method
JP2024072960A (en) Biological signal measurement device and biological signal measurement method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022527131

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745607

Country of ref document: EP

Kind code of ref document: A1