WO2023011667A1 - 一种用于挂车后视镜补偿视野盲区的显示系统及方法 - Google Patents

一种用于挂车后视镜补偿视野盲区的显示系统及方法 Download PDF

Info

Publication number
WO2023011667A1
WO2023011667A1 PCT/CN2022/115731 CN2022115731W WO2023011667A1 WO 2023011667 A1 WO2023011667 A1 WO 2023011667A1 CN 2022115731 W CN2022115731 W CN 2022115731W WO 2023011667 A1 WO2023011667 A1 WO 2023011667A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
angle
picture
display
width
Prior art date
Application number
PCT/CN2022/115731
Other languages
English (en)
French (fr)
Inventor
付兵凯
Original Assignee
上海豫兴电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110901387.8A external-priority patent/CN113401059B/zh
Priority claimed from CN202210100871.5A external-priority patent/CN114500864B/zh
Application filed by 上海豫兴电子科技有限公司 filed Critical 上海豫兴电子科技有限公司
Priority to KR1020247007228A priority Critical patent/KR20240041373A/ko
Publication of WO2023011667A1 publication Critical patent/WO2023011667A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion

Definitions

  • the invention relates to the technical field of vehicle-mounted electronic equipment, in particular to a display system and method for compensating a blind spot in a rearview mirror of a trailer.
  • Rearview mirrors and electronic rearview mirrors are an important part of ensuring driving safety during vehicle driving.
  • Motor vehicle rearview mirror performance standard GB-15084 stipulates that the observation range of vehicle rearview mirrors is the field of vision when the vehicle is normally stopped.
  • the field of vision observation range should be extended to 25-45 degrees outside the central axis of the vehicle (caused by different observation eye points), but there is no provision for the observation range of the vehicle's field of vision in some specific environments.
  • the two main bodies of the front and the trailer are connected by axial locking or hinges.
  • the driver needs to observe the images on both sides and directly behind the trailer to assist the driver to smoothly enter the predetermined position. Or drive according to the established track, but the angle of deviation of the front of the vehicle is too large, the rearview mirror or electronic rearview mirror on one side will be blocked by the trailer due to the steering angle, and the driver can only observe the state of the vehicle on one side. Complicated and unfamiliar environments can easily lead to accidents such as unilateral inner wheel differential accidents and vehicle drift accidents.
  • image information is collected by fisheye cameras installed in multiple places on the vehicle body, and the image information is preprocessed and spliced, and the spliced image is presented to the The driver, so that the driver can obtain a 360-degree field of view of the vehicle; the 360-degree field of view is based on 4-6 cameras spliced into a surround-view field of view.
  • the camera must be fixed at a certain position and cannot be shifted. It is suitable for passenger cars or integrated trucks Use at low speed. Because the trailer of the tractor will move at any time, the surround view cannot be spliced into a complete image due to the change of the video collection range.
  • the surround view camera has a large fisheye image distortion because it is an auxiliary driving product. There are no legal requirements for depth of field, object distance, etc., and it can only be used as an auxiliary product.
  • the surround-view camera is installed to look down and illuminate. Due to the angle of the camera's illumination, it can only see the area around the vehicle, and cannot see the field of vision in the distance of the vehicle.
  • the invention is used as a mandatory regulation product to replace the rearview mirror, and the regulation has clear observation range requirements. And it is not an equivalent product in terms of camera performance testing, operating conditions, field of view required by regulations, and safety requirements.
  • the purpose of the present invention is to propose a method for displaying the blind area of the vehicle on one side caused by the offset of the front of the vehicle when turning and reversing, and to facilitate the driver to quickly locate the potentially dangerous position in the blind area.
  • a display system for the rearview mirror of a trailer to compensate for blind spots in the field of view includes an acquisition device, a sensing device, a display control device, and a display device;
  • the acquisition device includes a left front camera, a right front camera, a left rear camera and a right rear camera; left and right sides;
  • the sensing device is an angle sensing sensor arranged on the trailer, and the angle sensing sensor is used to obtain the angle at which the axis of the trailer deviates from the axis of the headstock;
  • the display control device is connected with the acquisition device and the sensing device, and includes a processor, the processor is used to obtain the angle of the axis of the trailer from the axis of the front of the vehicle through the sensing device, and obtain the angle of the acquisition device
  • the picture is directly transmitted to the display device and/or transmitted to the display device after cutting and compositing;
  • the display device is a display installed in the driver's cab, and the display device is connected to the display control device for displaying the image output by the display control device to the driver.
  • the field of view of the picture captured by the left front camera and the right front camera conforms to the type II field of view and/or type IV field of view specified in the label;
  • the display device includes a left display unit and a right display unit; the left display unit is used to display the picture collected by the left front camera or the picture synthesized by the left front camera and the left rear camera; the right display The unit is used to display the picture captured by the right front camera or the picture synthesized by the right front camera and the right rear camera.
  • the processor cuts and synthesizes the picture, removes the preset width or fixed width picture on the front camera compartment shielding side where the front of the car is turned in the opposite direction and/or the front of the car is turned in the opposite direction, and the front of the car is turned in the opposite direction
  • And/or the preset width or fixed width screen on the side of the rear camera compartment in the steering direction of the car is reserved, and the reserved screen is placed at the removed screen for screen synthesis;
  • the processor uses the fixed-width image cropping and compositing;
  • the fixed width is the width occupied by the hanging compartment in the picture of the front camera on the steering side.
  • the display control device includes a storage unit, the storage unit stores a pre-drawn display block diagram X for display on the display device, a set of compensation block diagrams Y and a set of compensation block diagrams Z for compensating the picture;
  • the processor calculates and judges according to the sensing of the sensing device, and calls the compensation block diagram Y a of the preset width in the compensation block diagram Y set stored in advance and the compensation block diagram of fixed width or preset width in the compensation block diagram Z set Z a ;
  • Said processor cuts out the picture of the preset width on the side of the rear camera compartment with the front of the vehicle turning in the opposite direction at the same time, and projects the processed picture into the retrieved compensation block diagram Y a ;
  • the processor cuts out the picture with a fixed width on the side of the rear camera compartment in the steering direction of the vehicle head, and projects the processed picture into the retrieved compensation block diagram Z a .
  • the preset width is set according to the angle between the front of the vehicle and the central axis of the compartment;
  • the preset width is 0;
  • the preset width is 1/3 of the width of the screen
  • the preset width is 2/3 of the width of the screen
  • the preset width is the entire screen width.
  • one or more of the left front camera, right front camera, left rear camera and right rear camera adopts a tilt-shift camera
  • the tilt-shift camera includes a camera body, an image acquisition unit and an imaging lens, and the imaging lens and
  • the image acquisition unit is respectively installed at the front end and the rear end of the camera body, and the camera body has a first angle ⁇ inclined towards a first direction relative to the reference direction, and the image acquisition unit and the imaging lens are opposite to each other.
  • the main axis of the camera body has a second angle ⁇ and a third angle ⁇ which are inclined in opposite directions to the direction in which the camera body is inclined, respectively, and the second angle ⁇ and the third angle ⁇ are different from each other.
  • the The second angle ⁇ is greater than the third angle ⁇ so that the intersection of the plane where the image acquisition unit and the imaging lens are located forms an acute angle.
  • Step 1 the processor acquires video images collected by multiple cameras in real time
  • Step 2 The processor acquires the working status of the trailer
  • Step 3 The processor generates the optimal unobstructed and minimum blind spot scheme according to the working state of the trailer;
  • the working state includes a car state and a driving state; the state of the car includes a mode with a car and a mode without a car; the driving state includes going straight, turning and reversing;
  • the multiple cameras include a left front camera, a right front camera, a left rear camera and a right rear camera; left and right sides.
  • step 3 in the no-carry-on mode, the processor provides the display device with pictures of the left front camera and the right front camera;
  • the processor In the mode with compartments and when the driving state is going straight, the processor provides the display device with pictures of the left front camera and the right front camera;
  • the processor In the mode with a compartment and the driving state is turning, the processor provides images for the display device according to the angle between the front of the vehicle and the central axis of the compartment;
  • the picture with the preset width on the side of the front camera compartment with the front of the car turned in the opposite direction is removed, and the picture with the preset width on the side of the rear camera compartment with the car's head turned in the opposite direction Retain, and place the reserved picture at the removed picture for new picture composition;
  • the fixed width is the width occupied by the hanging compartment in the picture of the front camera on the steering side of the vehicle head.
  • the preset width is set according to the angle between the front of the vehicle and the central axis of the compartment;
  • the preset width is 0;
  • the preset width is 1/3 of the width of the screen
  • the preset width is 2/3 of the width of the screen
  • the preset width is the entire screen width.
  • the present invention sets up multiple cameras, and compensates the area blocked by the hanging box in the rearview mirror during the steering process, effectively solving the problem of the hanging box blocking the field of vision observation; at the same time, compared with the general panoramic image stitched by fisheye lens , the driver can perceive the location of the dangerous factors more intuitively, thereby reducing the thinking time and effectively reducing safety accidents.
  • the front camera has a Class II field of vision that can meet the GB-15084 standard, and has the ability to replace traditional rearview mirrors. At the same time, it cooperates with the rear camera on the trailer to realize the monitoring of the whole vehicle without blind spots.
  • the field of view of the rear camera installed on the hanging box should include the hanging box itself, so that when the picture is compensated, the driver can intuitively perceive the positional relationship between the dangerous unit and the hanging box, thereby shortening the driver's understanding of the content in the picture. Time to make judgments, enabling rapid response to hazardous situations.
  • the invention confirms the size of the compensation area through the steering range of the vehicle, and can realize the matching of the compensation area and the occlusion area, thereby enabling the driver to continuously obtain a more intuitive vision in the blind area.
  • Fig. 1 is a schematic structural diagram of a display system for a rearview mirror of a trailer to compensate for a blind spot in the field of view provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the left front camera and the right front camera in a display system for the trailer rearview mirror to compensate the blind area of the field of view provided by the embodiment of the present invention, which should meet the requirements of the field of view;
  • Fig. 3 is a schematic diagram of the left rear camera and the right rear camera in a display system for compensating the blind area of the field of view provided by the embodiment of the present invention
  • Fig. 4 is a schematic diagram of the distribution of cameras in a display system for the trailer rearview mirror to compensate for blind spots in the field of view provided by an embodiment of the present invention
  • Fig. 5 is a schematic diagram of the field of view of each camera in the steering state of the trailer in a display system for the rearview mirror of the trailer to compensate the blind area of the field of view provided by the embodiment of the present invention
  • Fig. 6 is a schematic diagram of an uncompensated picture provided by the display device on the steering side under the steering state of the trailer in a display system for the rearview mirror of the trailer to compensate for the blind area of the field of view provided by the embodiment of the present invention
  • Fig. 7 is a schematic diagram of an uncompensated picture provided by the display device on the opposite side when the trailer is turned in the steering state of the display system for the rearview mirror of the trailer to compensate for the blind area of the field of view provided by the embodiment of the present invention
  • Fig. 8 is a schematic diagram of a screen after the compensation provided by the display device on the steering side under the steering state of the trailer in a display system for the rearview mirror of a trailer to compensate for blind spots in the field of view provided by an embodiment of the present invention
  • Fig. 9 is a schematic diagram of a picture after the compensation is provided by the display device on the opposite side under the steering state of the trailer in a display system for the rearview mirror of the trailer to compensate for the blind area of the field of view provided by the embodiment of the present invention
  • Fig. 10 is a schematic diagram showing the evolution of the inclined settings of various parts of the camera in a preferred implementation mode, wherein Figs. A-C are schematic side views, and D and E are schematic top views;
  • FIG. 11 is a schematic side view of the angular relationship between the imaging lens 100, the image acquisition unit 200, and the camera body when shooting with a downward tilt;
  • FIG. 12 is a schematic top view of the angle and displacement offset relationship of the imaging lens 100 relative to the main axis of the camera body when shooting with a downward tilt;
  • FIG. 13 is an image captured when the camera is slightly tilted downwards and tilted to the outside of the vehicle body, but the imaging lens 100 and the image acquisition unit 200 are arranged in parallel;
  • Fig. 14 shows that when the camera is installed on the vehicle, the camera body is tilted downward to the rear of the vehicle, and the imaging lens 100 and the image acquisition unit 200 are both tilted at different angles relative to the main axis of the camera body (the central axis of the lens barrel). captured image.
  • Fig. 15 is a schematic flowchart of a display method for compensating a blind area of vision in a rearview mirror of a trailer provided by an embodiment of the present invention.
  • a display system of the present invention for compensating a blind spot in a rearview mirror of a trailer, the display system includes an acquisition device, a sensing device, a display control device and a display device.
  • the acquisition device includes a left front camera, a right front camera, a left rear camera and a right rear camera.
  • the left and right front cameras are respectively installed on the left and right sides of the cab of the trailer.
  • the lenses of the left front camera and the right front camera face the side and rear of the side where they are located, and are used to collect real-time images of the sides and rear of the trailer's cab.
  • the camera is used to capture the Type II field of view and Type IV field of view specified in the GB-15084 standard.
  • the left and right rear cameras are respectively installed on the left and right sides of the trailer compartment close to the cab.
  • the real-time picture of the side and rear; the lens of the left rear camera and the right rear camera are close to the installation height and angle of the left front camera and the right front camera.
  • the sensing device is an angle sensing sensor arranged on the trailer, and the angle sensing sensor is used to obtain the angle between the front of the trailer and the compartment in real time.
  • the sensing device is implemented by software integrated in the processing device, and monitors the real-time images acquired by the acquisition device, and collects images from the camera installed on the front of the vehicle and the camera installed on the compartment through various algorithms. Collect images for analysis, and judge the angle between the front of the car and the trailer from the image.
  • the display control device is respectively connected with the acquisition device and the sensing device, and the display control device includes a processor and a storage unit, and the processor and the storage unit are connected to each other; the processor is used for the angle data between the vehicle head and the trailer acquired by the sensing device, Start the corresponding acquisition device on the carriage, and cut and synthesize the real-time images acquired by the acquisition device; the storage unit is used to store the images acquired by the acquisition device and the images cut by the processor.
  • the picture captured by the left front camera is picture C
  • the picture captured by the right front camera is picture D
  • the picture captured by the left rear camera is picture E
  • the picture collected by the right rear camera is picture F
  • the picture observed by the driver on the left is C shown in Figure 6
  • the picture observed by the driver on the right is D shown in Figure 7
  • a large amount of areas of the left field of vision are filled by the trailer, and there is a large blind area in the right field of vision, so a certain degree of picture compensation is required on both sides.
  • the picture observed by the left driver is shown in Figure 8 C+E shown
  • the picture observed by the driver on the right is D+F shown in accompanying drawing 9.
  • the picture compensation scheme is as follows: first, the processor judges the width of the compensation picture on the right side according to the angle that the axis of the hanging box deviates from the axis of the front of the car; secondly, according to the width of the compensation picture, the corresponding width on the left side of the right rear camera picture near the hanging box is obtained Thirdly, according to the width of the compensation picture, cut out the picture with corresponding width in the left part of the right front camera picture that is blocked by the side of the carriage; finally, fill the right rear camera picture to the cut-off position in the right front camera picture, and synthesize a picture with blind spot compensation image.
  • the processor judges the steering angle of the vehicle according to the angle between the axis of the trailer and the axis of the front of the vehicle; secondly, when the steering angle exceeds the coverage angle of the left front camera When the angle between them), according to the width of the compensation picture, the picture of the right side of the left rear camera picture close to the specific width of the carriage side is obtained; again, the picture of the right side of the left front camera picture with a specific width is cut according to the width of the compensation picture; finally, Fill the image of the left rear camera to the excised position in the image of the left front camera to synthesize an image with blind spot compensation; if the steering angle does not reach the illumination angle of the left front camera, no compensation will be performed, and only the image captured by the left front camera will be displayed.
  • the processor judges the width of the compensation picture by the angle that the car axis deviates from the front axis axis; secondly, according to the width of the compensation picture, the right side of the left rear camera picture is obtained to be close to the picture of the corresponding width of the car side; Thirdly, according to the width of the compensated picture, cut out the corresponding width of the right part of the left front camera picture that is blocked by the carriage side; finally, fill the left rear camera picture to the cut-off position in the left front camera picture, and synthesize an image with blind spot compensation.
  • the processor judges the steering angle of the vehicle according to the angle between the axis of the trailer and the axis of the front of the vehicle; secondly, when the steering angle exceeds the coverage angle of the right front camera When the angle between them), according to the width of the compensation picture, obtain the picture with a specific width on the left side of the right rear camera picture near the side of the compartment; again, cut off the picture with a specific width on the left side of the right front camera picture according to the width of the compensation picture; finally, Fill the image of the right rear camera to the excised position in the image of the right front camera to synthesize an image with blind spot compensation; if the steering angle does not reach the illumination angle of the right front camera, no compensation will be performed, and only the image captured by the right front camera will be displayed.
  • a pre-drawn display block diagram X and a set of compensation frame diagrams Y used to compensate the picture are stored in the memory;
  • the resolution of the display block diagram X is the same as that provided by the corresponding display device The resolution corresponds to the resolution;
  • the display block diagram X is superimposed with a compensation block diagram Y a ,
  • the compensation block diagram Y a is an element in the set of compensation block diagram Y, and the width of the compensation block diagram Y a is determined according to the angle from the axis of the trailer to the axis of the front of the car.
  • the compensation frame Y a of the corresponding width is automatically called;
  • the compensation frame Y a can be a rectangle or a special shape formulated according to the blind area in the specific trailer and trailer model; for the left field of view
  • the compensation block diagram Y and the compensation block diagram Y in the right field of view adopt a symmetrical design, and the compensation block diagram Y in the left field of view is set on the right side of the display block diagram X in the left field of view, and the compensation block diagram Y in the right field of view is set in the right field of view display block diagram to the left of the X.
  • the compensation block diagram Y a is used to obtain the compensation block diagram Y a of the corresponding size according to the angle between the axis of the hanging box and the axis of the headstock.
  • the processor fills the picture of the front camera on the side into the display frame X, and calls the picture of the rear camera on the side to fill in the same transition frame as the display frame X.
  • Cut the picture corresponding to the position of the compensation frame diagram Y a and project the intercepted picture to the position corresponding to the compensation frame diagram Y a in the display frame diagram X, cover the picture corresponding to the position of the compensation frame diagram Y a in the front camera screen, and generate a cropped and compositing a picture with a compensating field of view.
  • the memory also stores a pre-drawn compensation block diagram Z set for compensation picture; the compensation block diagram Z a is superimposed on the display block diagram X, and the compensation block diagram Z a is an element in the compensation block diagram Z set,
  • the specific width of the compensation block diagram Z a can be a fixed width, or can be determined according to the angle at which the axis of the hanging box deviates from the axis of the headstock.
  • the compensation block diagram Z a of the corresponding width is automatically called;
  • the compensation frame Z a can be a rectangle or a special shape formulated according to the blind area in the specific trailer and trailer model; the compensation frame Z in the left field of vision and the compensation frame Z in the right field of view adopt a symmetrical design, and the compensation frame Z in the left field of view Z is set on the left side of the block diagram X displayed in the left field of view, and Z is set on the right side of the block diagram X displayed in the right field of view for the compensation block diagram in the right field of view.
  • the compensation block diagram Z a is used to obtain the corresponding compensation block diagram Z a according to the angle that the axis of the trailer deviates from the front axis.
  • the corresponding dimension generated by the angle of the axis.
  • the processor fills the picture of the front camera on the side into the display frame X, and calls the picture of the rear camera on the side to fill in the same transition frame as the display frame X.
  • Cut the picture corresponding to the position of the compensation block diagram Z a and project the intercepted picture to the position corresponding to the compensation block diagram Z a in the display block diagram X, cover the picture corresponding to the position of the compensation block diagram Z a in the front camera screen, and generate a cropped and compositing a picture with a compensating field of view.
  • the display device is a display arranged in the driver's cab, and the display device is connected with the display control device, and is used to show the synthetic image output by the display control device to the driver;
  • the display device includes a left display unit and a right display unit, and the left display unit is used to display The picture collected by the left front camera or the picture synthesized by the left front camera and the left rear camera, the right display unit is used to display the picture collected by the right front camera or the picture synthesized by the right front camera and the right rear camera;
  • the left and right display units can be integrated into one display
  • the upper partition display can also be an independent display respectively.
  • the display device can also be connected to the control bus of the car or other car control units to display various state parameters of the vehicle to the driver.
  • the display of the display device can be integrated in the central control area or the electronic rearview mirror, and can also be used as the display device of the electronic rearview mirror to be respectively arranged on the A-pillars on both sides of the cab.
  • the processor acquires the video images of the left front camera and the right front camera in real time, and directly sends the video images to the display device without processing, and the display device displays the rear views of the left and right sides of the trailer. picture.
  • the sensing device When the trailer starts to turn or reverse during driving, the sensing device will transmit the detected angle between the front of the vehicle and the central axis of the carriage to the processor in real time;
  • the video images collected by the front camera and the rear camera are cut according to the size corresponding to the angle; during the cutting process, both the original video image and the cropped video image are cached by the storage unit; the processor finally saves the cropped video
  • the pictures are synthesized, and the synthesized video pictures on both sides are respectively sent to the corresponding areas of the display device for display.
  • the driver can manually control the display device to display the display mode of the vehicle class II mirror provided by the left front camera and the right front camera, and the manual control mode has priority over the display screen provided by the present invention.
  • the left display unit and the right display unit are two displays installed on the A-pillars on the left and right sides of the cab respectively.
  • the screen width of each display is 109.5mm, and the resolution rate is 1920* 720 pixels; when the angle between the front and the central axis of the trailer is 15 degrees, the display width of the compensation screen in the monitor is 36.5mm; when the angle between the front and the central axis of the trailer is 30 degrees, the compensation screen in the monitor displays The width is 73mm; when the angle between the front of the car and the central axis of the trailer is 45 degrees, the display fully displays the compensation picture.
  • each tilt-shift camera includes an imaging lens 100 and an image acquisition unit 200 , and the conventional structures of the camera, such as a housing and a control chip, will not be described in detail here.
  • both the imaging lens 100 and the image acquisition unit 200 are oppositely inclined relative to the main axis of the camera body (the central axis of the lens barrel).
  • the inclination direction of the principal axis of is opposite to the horizontal direction, the inclination angles are the second angle ⁇ and the third angle ⁇ respectively, 10 represents the horizontal direction, 20 and 30 represent the normals of the imaging lens 100 and the image acquisition unit 200 respectively.
  • the third angle ⁇ at which the image acquisition unit 200 is tilted is greater than the second angle ⁇ at which the imaging lens 100 is tilted, and the second angle ⁇ is different from the third angle ⁇ .
  • the imaging lens 100 is offset (translated) relative to the main axis of the camera body, and the offset distance is d, which is roughly equal to tan8°-tan15° times Taking the distance L between the imaging lens 100 and the image acquisition unit 200, that is, taking the center of the image acquisition unit as a reference, the distance corresponding to the center of the imaging lens offset by 8-15 degrees relative to the main axis of the camera, the offset direction is away from the vehicle body (This offset can also be realized by the translation of the image acquisition unit 200 relative to the main axis of the camera body toward the vehicle body), at the same time, the imaging lens 100 and the image acquisition unit 200 both rotate relative to their own vertical centerlines , the direction of rotation is the direction away from the vehicle body.
  • the imaging lens 100 and the image acquisition unit 200 are both rotating around their respective central axes in the numerical direction, towards the outside of the rear of the vehicle by a certain angle ⁇ , preferably, the angle is between 8-16 degrees, and more preferably, the angle ⁇ and the offset distance of the imaging lens 100 relative to the main axis of the camera body are positively correlated with each other.
  • the rotation angles of the imaging lens 100 and the image acquisition unit 200 are the same as each other, but it is not excluded that there is a slight difference in the rotation angles between the two. As can be seen in Figures 13-14, the images taken with the tilt-shift camera have minimal distortion.
  • the present invention also provides a kind of display method that is used for trailer rearview mirror to compensate visual field blind area, comprises the following steps:
  • Step 1 the processor acquires video images collected by multiple cameras in real time
  • a plurality of cameras include the left front camera and the right front camera arranged on the left and right sides outside the cab of the trailer, and the left rear camera and the right rear camera arranged on the left and right sides of one end of the trailer close to the cab.
  • the left front camera and the right front camera are used to collect the II and IV types of vision specified in the GB-15084 standard; the left rear camera and the right rear camera are used to collect the rear horizontal angle of 50 degrees on both sides of the trailer compartment , and its field of view should include the body of the carriage on the side where the camera is located.
  • Step 2 The processor acquires the working status of the trailer
  • the working state of the trailer includes the state of the trailer and the state of driving; the state of the trailer includes the mode with the trailer and the mode without the trailer; the driving state includes going straight and turning.
  • the data connection between the processor and the vehicle control bus is carried out, and whether the trailer is installed through the vehicle control bus; the driving state is collected by the sensing device, which can be installed on the trailer
  • the angle sensing sensor is used to obtain the angle at which the axis of the carriage deviates from the axis of the headstock through the angle sensing sensor.
  • the software algorithm loaded by the processor can also be used to judge the angle at which the axis of the carriage deviates from the axis of the headstock through the video images in each camera.
  • Step 3 The processor generates the picture of the optimal non-blocking and minimum blind area scheme according to the working state of the trailer.
  • step 3 the processor provides various forms of images for the display device according to the working state of the trailer.
  • the processor when the state of the trailer is in the mode of no trailer, the trailer is not installed with a trailer, and the processor no longer monitors the angle of the axis of the trailer from the axis of the front of the vehicle.
  • the image signals collected by the camera and the right rear camera; at this time, the processor directly acquires the images in the left front camera and the right front camera and sends them to the display device, providing the driver with a Image of the rearview mirror view.
  • the processor judges the driving state of the trailer through the sensing device.
  • the sensing device detects that the angle of the axis of the trailer from the axis of the front is less than 15 degrees
  • the processor judges that the trailer’s running state is going straight; when the sensing device detects that the angle between the trailer axis and the front axis is greater than or equal to 15 degrees, the processor judges that the trailer’s running state is turning.
  • the processor When the processor judges that the trailer is traveling straight, the processor directly acquires the images from the left front camera and the right front camera and sends them to the display device, providing the driver with the equivalent of left and right main exterior rearview mirrors and left and right wide-angle exterior rearviews. image of the mirror field of view.
  • the processor determines that the trailer is in a steering state, it continuously detects the angle at which the axis of the trailer compartment deviates from the axis of the front of the vehicle, and controls the images displayed by the display device according to the detected angle.
  • the video image of the left display unit is generated when the trailer is turning right or backing up to the right as an example.
  • the video images collected by the left rear camera are sent to the storage unit for caching; secondly, the processor cuts the video images collected by the left front camera and the left rear camera respectively according to the angle of the trailer axis from the front axis.
  • the video image captured by the camera cuts off the 1/3 width of the video image on the right side that is blocked by the hanging box to form a blind area. For the video image collected by the left rear camera, only the 1/3 width of the video image on the right side close to the hanging box is reserved.
  • the images retained after cropping are cached through the storage unit; again, the video images retained by the left rear camera are supplemented to the position where the left front camera cuts out the video images to synthesize the same video image; finally, the left front camera and the left rear The video screen synthesized by the camera is sent to the display system where the left video screen is displayed.
  • the processor obtains the video images captured by the left front camera and the left rear camera, and sends the video images to the storage unit for buffering; secondly, the processor Cut the video images collected by the left front camera and the left rear camera respectively by the angle of the car axis deviating from the front axis axis. For the video images collected by the left front camera, cut out the 2/3 width of the video screen whose right side is blocked by the car and forms a blind area.
  • the video picture captured by the left rear camera only the 2/3 width video picture on the right side close to the compartment is reserved, and the picture retained after cutting is cached by the storage unit; again, the video picture retained by the left rear camera is supplemented The position where the left front camera cuts off the video picture is synthesized into the same video picture; finally, the video picture synthesized by the left front camera and the left rear camera is sent to the display system to display the left video picture.
  • the processor When it is detected that the angle of the carriage axis deviates from the front axis is greater than or equal to 45 degrees, the processor directly acquires the image of the left rear camera and sends it to the display system where the left video image is displayed.
  • the first case uses a fixed-size compensation picture.
  • the processor acquires the video images captured by the right front camera and the right rear camera, and sends the video images to the storage unit for buffering;
  • the captured video images are cropped.
  • the video images that occupy the width of the hanging compartment in the right frame are cut out.
  • the video images collected by the right rear camera only the frame in the right frame is retained.
  • the video screens occupying the width of the hanging compartment are cached by the storage unit after cutting; again, the video screens retained by the right rear camera are supplemented to the position where the right front camera cuts out the video screens to synthesize the same video screen; Finally, the video picture synthesized by the right front camera and the right rear camera is sent to the display system where the right video picture is displayed.
  • the processor judges that the steering angle of the vehicle does not exceed the irradiation angle of the right front camera through the angle of the axis of the carriage that deviates from the axis of the front of the car, no compensation is performed, and the video picture collected by the right front camera is directly sent to the display system to display the right video picture.
  • the compensation size is adapted to the steering angle, and its specific compensation scheme corresponds to the video picture generation scheme of the left display unit.
  • each camera device adopts an automatic exposure adjustment method for exposure conditions when performing video acquisition, and the adjustment steps include:
  • Step 1 collecting data through the photosensitive sensor to generate the current photosensitive parameters
  • Step 2 adjusting the exposure mode through the relationship between the current photosensitive parameter and the first set value
  • Step 3 in the fixed exposure mode, adjust the state of the counter according to the comparison value between the current photosensitive parameter and the second set value;
  • Step 4 adjusting the state of the counter and the exposure mode according to the count value and the third set value.
  • the range of the current photosensitive parameter mapping is determined; the data collected by the photosensitive sensor is used to calculate the current photosensitive average value through the control unit, and the ADC value of the current mapping is determined through analog-to-digital conversion/digital-to-analog conversion.
  • the first set value is used to determine whether to use the automatic exposure mode or the fixed exposure mode for image acquisition with the currently mapped ADC value.
  • the exposure mode adopts the automatic exposure mode by default; if the proportion of the currently mapped ADC value in the mapping range is less than the first set value, the fixed exposure mode will be activated; if the proportion of the currently mapped ADC value in the mapping range If it is greater than or equal to the first set value, the automatic exposure mode is maintained.
  • the first setting value is 28%-33%. Since the automatic exposure adopts the middle gray scale as the standard for brightness adjustment, when the mapped ADC value in the mapping range accounts for less than 33%, the screen display in the automatic exposure state It is darker.
  • the exposure time usually adopts an exposure time of 9ms to 20ms.
  • the relationship between the ADC value and the second set value is continuously monitored. If the proportion of the ADC value in the mapping range is greater than or equal to the second set value, the counter count value is increased by one. If the ADC If the proportion of the value in the mapping range is less than the second set value, the count value of the counter is cleared.
  • the count value is compared with the third set value. If the count value reaches the third set value, the counter is cleared, and the fixed exposure mode is turned off, and the automatic exposure mode is adopted; if the count value does not reach the third set value , then no operation is performed and the above operations are repeated.
  • the automatic exposure mode When the vehicle is outdoors, the automatic exposure mode is automatically turned on when it is started.
  • the current ADC value is 10% of the total mapping range.
  • the value range of the first set value is 28%-33%, which can be 28%, 30% or 33%.
  • the first set value refers to the ratio of the current ADC value to the mapping range
  • the control unit sends a command to the image acquisition device to turn on the fixed exposure mode and turn off the automatic exposure mode, the exposure time is 11ms, and the exposure time can be 9ms to 20ms;
  • the control unit sends a command to the image acquisition device to turn on the fixed exposure mode and turn off the automatic exposure mode.
  • the current three consecutive ADC values account for 61%, 67% and 33% of the mapping range respectively, and the first two proportions are higher than 60% of the second set value.
  • the counter continues to count, but it has not yet reached the third set value. 3 times as specified by the fixed value, the third time is lower than 60% of the second set value, the counter is cleared, and it is still in the fixed exposure mode;
  • the vehicle When the vehicle returns to the bright ground from a dark environment, it is still in the fixed exposure open mode, and the current ADC value collected by the photosensitive sensor is 61% of the mapped range, which is 60% higher than the second set value.
  • the range of the fixed value is 54%-60%, and the value is 55%, 58%, 60%.
  • the three setting values can be 2, 3, 4, the counter is cleared, and the control unit sends a command to the image acquisition device to turn off the fixed exposure mode and turn on the automatic exposure mode.
  • the brightness of the middle section of two similar tunnels is relatively high, and due to the relationship between the tunnels, the brightness when entering the tunnel and when leaving the tunnel is an excessive brightness.
  • the proportion of the mapped ADC value in the mapping range is 38%-50%; if the second setting value is set to 38%, and the proportion of the continuously collected brightness corresponding to the mapped ADC value in the mapping range is 28%, 30%, 40%, 61%, 67%, 44%, 30%, 27%, at this time, the camera will start the automatic exposure mode within a short period of time after exiting the tunnel, and then switch to the fixed exposure mode.
  • the vehicle that restores the automatic exposure mode passes through a dark tunnel, and the current ADC value is 33% of the mapped range, which is higher than 30%, and the control unit sends a command to the image acquisition device to adopt the automatic exposure mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

一种用于挂车后视镜补偿视野盲区的显示系统,包括采集装置、感测装置、显示控制装置和显示装置;采集装置包括左前摄像机、右前摄像机、左后摄像机和右后摄像机;感测装置是设置在挂车上的角度感测传感器,角度感测传感器用于获取挂厢轴线偏离车头轴线的角度;显示控制装置与采集装置和感测装置连接;显示装置是设置在驾驶室的显示器,用于向驾驶员展示由显示控制装置输出的图像。通过多摄像机设置,在转向过程中通过对后视镜中被挂厢遮挡区域进行画面补偿,有效解决了挂厢遮挡视野观察的问题;相比一般的通过鱼眼镜头拼接的全景图像,驾驶员对于其中危险因素所在位置能够更直观的进行察觉,进而降低思考时间,减少安全事故。

Description

一种用于挂车后视镜补偿视野盲区的显示系统及方法
相关申请
本申请主张名称为“一种用于挂车后视镜补偿视野盲区的显示系统及方法”的中国发明专利申请:202110901387.8的优先权以及名称为“一种自动调整曝光方法和装置”的中国发明专利申请:202210100871.5的优先权。
技术领域
本发明涉车载电子设备技术领域,具体涉及一种用于挂车后视镜补偿视野盲区的显示系统及方法。
背景技术
后视镜和电子后视镜是车辆行驶中保障行车安全的重要部分,机动车后视镜性能标准GB-15084规定了车辆后视镜观察范围是在车辆正常停驶状态的视野范围,两侧视野观察范围应以车辆中轴线外拓达25-45度不等(观察眼点不同造成),但是并没有规定车辆某些特定环境中视野的观察范围。
牵引车辆或者绞盘车辆是车头与挂厢两个主体通过轴向锁定或铰链连接,车辆倒车或转弯时,驾驶员需要观察挂厢两侧及正后方的影像,协助驾驶员顺利按照倒入预定位置或按照既定轨迹行驶,但车头偏离角度过大,一侧的后视镜或电子后视镜会因为转向角度存在被挂厢遮挡视线的情况,驾驶员只能观察到车辆一侧的状态,对于复杂、陌生环境很容易引发例如单侧内轮差事故和车辆甩尾事故等。
在现有技术中,例如申请号为201811278439.5的专利,通过设置在车身多处的鱼眼摄像机采集获取图像信息,并对图像信息进行预处理和拼接,并采用显示屏将拼接后的图像呈现给驾驶员,以使驾驶员获取车辆360度的视野;360度视野基于4-6颗摄像机拼接成为环视视野,摄像机必须固定在一定位置,不可以发生偏转移位,适合客车、或者一体式的卡车低速使用。牵引车因为挂厢随时会移动,环视受视频采集范围改变无法拼接成一幅完整图像。
环视摄像机是鱼眼图像畸变很大因为是辅助驾驶产品,对于景深、物距等没有法规规范要求,只能作为辅助类产品使用。
环视摄像机安装是俯视向下照射,受摄像机照射角度原因只能看车辆近周区域范围, 不能看车辆远方的视野范围。
本发明是作为取代后视镜的强制法规产品使用,法规有明确观察范围要求。且在摄像机的性能测试、使用工况、法规要求的视野区域、安全要求等不是等同产品。
发明内容
本发明的目的是针对现有技术提出了一种解决车辆转弯、倒车时车头偏移引起的单侧车厢遮挡的盲区部位显示以及便于驾驶员对盲区可能发生危险的位置快速定位的用于挂车后视镜补偿视野盲区的显示系统及方法,并且,在优选实现方式中,本发明在采集装置的摄像机中增加了移轴设置方式和基于感光的摄像调整方法,进一步提高了本发明的性能。
具体的,一种用于挂车后视镜补偿视野盲区的显示系统,所述显示系统包括采集装置、感测装置、显示控制装置和显示装置;
所述采集装置包括左前摄像机、右前摄像机、左后摄像机和右后摄像机;所述左前摄像机和右前摄像机分别设置在驾驶室外左右两侧,所述左后摄像机和右后摄像机分别设置在挂厢的左右两侧;
所述感测装置是设置在挂车上的角度感测传感器,所述角度感测传感器用于获取挂厢轴线偏离车头轴线的角度;
所述显示控制装置与所述采集装置和感测装置连接,包括处理器,所述处理器用于通过所述感测装置获取所述挂厢轴线偏离车头轴线的角度,并将所述采集装置获取的画面直接传输至所述显示装置和/或进行裁切与合成处理后传输至所述显示装置;
所述显示装置是设置在所述驾驶室的显示器,所述显示装置与所述显示控制装置连接,用于向驾驶员展示由所述显示控制装置输出的图像。
更进一步地,所述左前摄像机和右前摄像机采集的画面视野符合标注规定的II类视野和/或Ⅳ类视野;所述左后摄像机和右后摄像机与左前摄像机和右前摄像机采集的画面内包括摄像机所在侧的挂厢本体。
更进一步地,所述显示装置包括左显示单元和右显示单元;所述左显示单元用于显示所述左前摄像机采集的画面或由所述左前摄像机和左后摄像机合成的画面;所述右显示单元用于显示所述右前摄像机采集的画面或由所述右前摄像机和右后摄像机合成的画面。
更进一步地,所述处理器对画面裁切与合成中,将车头转向相反方向和/或车头转向方向的前摄像机挂厢遮挡侧预设宽度或固定宽度的画面移除,对车头转向相反方向和/或车头 转向方向的后摄像机挂厢侧预设宽度或固定宽度的画面保留,并将保留的画面置于移除画面处进行画面合成;
更进一步地,所述角度感测传感器检测到所述车头与挂厢中轴线之间的角度超过转向侧前摄像机照射角度时,所述处理器采用所述固定宽度的画面裁切与合成;
所述固定宽度为所述转向侧前摄像机的画面中所述挂厢占据的宽度。
更进一步地,所述显示控制装置包括存储单元,所述存储单元存储有预先绘制的用于显示在显示装置上的显示框图X、用于补偿画面的补偿框图Y集合和补偿框图Z集合;所述处理器根据所述感测装置的感测进行计算判断,调取预先存储的补偿框图Y集合中符合预设宽度的补偿框图Y a和补偿框图Z集合中固定宽度或预设宽度的补偿框图Z a
所述处理器同时对车头转向相反方向的后摄像机挂厢侧预设宽度的画面进行裁剪,将处理后的画面投射到调取的补偿框图Y a中;
所述处理器对车头转向方向的后摄像机挂厢侧固定宽度的画面进行裁剪,将处理后的画面投射到调取的补偿框图Z a中。
更进一步地,所述预设宽度依据车头与挂厢中轴线之间的角度设定;
当所述车头与挂厢中轴线之间的角度为0-15度,所述预设宽度为0;
当所述车头与挂厢中轴线之间的角度为15-30度,所述预设宽度为画面宽度的1/3宽度;
当所述车头与挂厢中轴线之间的角度为30-45度,所述预设宽度为画面宽度的2/3宽度;
当所述车头与挂厢中轴线之间的角度大于等于45度,所述预设宽度为整画面宽度。
优选地,所述左前摄像机、右前摄像机、左后摄像机和右后摄像机中的一个或多个采用移轴摄像机,所述移轴摄像机包括相机主体、图像采集单元和成像镜头,所述成像镜头和所述图像采集单元分别安装在所述相机主体的前端和后端,并且所述相机主体相对于基准方向具有朝向第一方向倾斜的第一角度θ,所述图像采集单元和所述成像镜头相对于所述相机主体的主轴分别具有与所述相机主体倾斜方向相反方向倾斜的第二角度α和第三角度β,所述第二角度α和第三角度β彼此不相同,优选地,所述第二角度α大于所述第三角度β以使得所述图像采集单元和所述成像镜头所在平面相交形成一个锐角。
还提供了一种用于挂车后视镜补偿视野盲区的显示方法,所述显示方法包括以下步骤:
步骤1:处理器实时获取多个摄像机采集的视频图像;
步骤2:处理器获取挂车的工作状态;
步骤3:处理器根据挂车工作状态生成最优无遮挡、最小盲区方案的画面;
所述工作状态包括挂厢状态和行驶状态;挂厢状态包括有挂厢模式和无挂厢模式;行驶状态包括直行、转向和倒车;
所述多个摄像机包括左前摄像机、右前摄像机、左后摄像机和右后摄像机;所述左前摄像机和右前摄像机分别设置在驾驶室外左右两侧,所述左后摄像机和右后摄像机分别设置在挂厢的左右两侧。
更进一步地,在步骤3中,在所述无挂厢模式下,所述处理器为显示装置提供左前摄像机和右前摄像机的画面;
在所述有挂厢模式下,且行驶状态为直行时,所述处理器为显示装置提供左前摄像机和右前摄像机的画面;
在所述有挂厢模式下,且行驶状态为转向时,所述处理器依据车头与挂厢中轴线之间的角度为显示装置提供画面;
在对车头转向相反方向的画面裁切与合成中,将车头转向相反方向的前摄像机挂厢遮挡侧预设宽度的画面移除,对车头转向相反方向的后摄像机挂厢侧预设宽度的画面保留,并将保留的画面置于移除画面处进行新的画面合成;
在对车头转向方向的画面裁切与合成中,当所述车头与挂厢中轴线之间的角度超过转向侧前摄像机照射角度时,将车头转向方向的前摄像机转向侧固定宽度的画面移除,对车头转向方向的后摄像机挂厢侧固定宽度的画面保留,并将保留的画面置于移除画面处进行新的画面合成;
所述固定宽度为车头转向侧的前摄像机的画面中所述挂厢占据的宽度。
更进一步地,所述预设宽度依据车头与挂厢中轴线之间的角度设定;
当所述车头与挂厢中轴线之间的角度为0-15度,所述预设宽度为0;
当所述车头与挂厢中轴线之间的角度为15-30度,所述预设宽度为画面宽度的1/3宽度;
当所述车头与挂厢中轴线之间的角度为30-45度,所述预设宽度为画面宽度的2/3宽度;
当所述车头与挂厢中轴线之间的角度大于等于45度,所述预设宽度为整画面宽度。
本发明的优点在于:
本发明通过多摄像机设置,在转向过程中通过对后视镜中被挂厢遮挡区域进行画面补偿,有效解决了挂厢遮挡视野观察的问题;同时相比一般的通过鱼眼镜头拼接的全景图像,驾驶员对于其中危险因素所在位置能够更直观的进行察觉,进而降低思考时间,有效降低安全事故。
本发明中前置摄像机具有能够满足GB-15084标准的II类视野,具有替代传统后视镜的能力,同时配合挂厢上的后置摄像机实现了全车无盲区的监控。
本发明中设置在挂厢上的后置摄像机视野应包含挂厢本身,从而实现在画面补偿时,驾驶员可以直观的察觉危险单位与挂厢的位置关系,进而使驾驶员缩短对画面中内容进行判断的时间,实现对危险情景的快速反应。
本发明通过车辆转向幅度确认需要补偿区域的大小,能够实现补偿区域与遮挡区域相匹配,进而使驾驶员持续获得盲区内更加直观的视野。
附图说明
图1是本发明实施例提供的一种用于挂车后视镜补偿视野盲区的显示系统的结构示意图;
图2是本发明实施例提供的一种用于挂车后视镜补偿视野盲区的显示系统中左前摄像机和右前摄像机的应满足视野范围要求的示意图;
图3是本发明实施例提供的一种用于挂车后视镜补偿视野盲区的显示系统中左后摄像机和右后摄像机的应满足视野范围要求的示意图;
图4是本发明实施例提供的一种用于挂车后视镜补偿视野盲区的显示系统中摄像机分布示意图;
图5是本发明实施例提供的一种用于挂车后视镜补偿视野盲区的显示系统中挂车转向状态下各摄像机视野的示意图;
图6是本发明实施例提供的一种用于挂车后视镜补偿视野盲区的显示系统中挂车转向状态下转向侧显示装置提供未补偿画面的示意图;
图7是本发明实施例提供的种用于挂车后视镜补偿视野盲区的显示系统中挂车转向状态下转向相反侧显示装置提供未补偿画面的示意图;
图8是本发明实施例提供的一种用于挂车后视镜补偿视野盲区的显示系统中挂车转向状态下转向侧显示装置提供补偿后画面的示意图;
图9是本发明实施例提供的一种用于挂车后视镜补偿视野盲区的显示系统中挂车转向 状态下转向相反侧显示装置提供补偿后画面的示意图;
图10为优选实现方式中,摄像机各个部分的倾斜设置的演变示意图,其中,图A-C为侧视示意图,D、E为俯视示意图;
图11为采用向下倾斜拍摄时,成像镜头100、图像采集单元200以及摄像机主体之间角度关系的侧视示意图;
图12为采用向下倾斜拍摄时,成像镜头100相对于相机主体主轴的角度和位移偏移关系的俯视示意图;
图13为摄像机向下略微倾斜、并且向车身外侧倾斜,但成像镜头100与图像采集单元200平行设置时拍摄到的图像;
图14为摄像机安装在车辆上时,相机主体向车辆后方、向下倾斜地拍摄,并且成像镜头100与图像采集单元200均相对于相机主体的主轴(镜筒中轴)反向以不同角度倾斜所拍摄到的图像。
图15是本发明实施例提供的一种用于挂车后视镜补偿视野盲区的显示方法的流程示意图。
具体实施方式
下面结合附图对本发明的技术方案进行更详细的说明,本发明包括但不仅限于下述实施例。
如附图1所示,本发明的一种用于挂车后视镜补偿视野盲区的显示系统,该显示系统包括采集装置、感测装置、显示控制装置和显示装置。
如附图2-4所示,采集装置包括左前摄像机、右前摄像机、左后摄像机和右后摄像机。挂车的驾驶室外左右两侧分别设有左前摄像机和右前摄像机,左前摄像机和右前摄像机的镜头朝向其所在侧的侧后方,用于采集挂车的驾驶室外两侧的侧后方实时画面;左前摄像机和右前摄像机用于采集符合GB-15084标准中规定的II类视野和IV类视野。挂车的挂厢靠近驾驶室一端的左右两侧分别设有左后摄像机和右后摄像机,左后摄像机和右后摄像机的镜头朝向其所在侧的侧后方,用于采集挂车的挂厢两侧的侧后方实时画面;左后摄像机和右后摄像机的镜头与左前摄像机和右前摄像机安装高度及角度接近,左后摄像机和右后摄像机的镜头保持与挂厢的摆动角度一致,其采集的画面内应包括摄像机所在侧的挂厢本体。
感测装置是设置在挂车上的角度感测传感器,角度感测传感器用于实时获取挂车车头 和挂厢之间的角度。在另一种实施方式中,感测装置由集成在处理装置中的软件实现,通过对采集装置获取的实时画面进行监控,并通过多种算法对车头设置的摄像机采集画面和挂厢设置的摄像机采集画面进行分析,从图像中判断车头和挂厢之间的角度。
显示控制装置分别与采集装置和感测装置连接,显示控制装置包括处理器和存储单元,处理器和存储单元互相连接;处理器用于通过感测装置获取的车头和挂厢之间的角度数据,启动挂厢上相应的采集装置,对采集装置获取的实时画面进行裁切和合成;存储单元用于存储采集装置获取的画面和处理器裁切的画面。
如附图5-9所示,左前摄像机采集的画面为画面C,右前摄像机采集的画面为画面D,左后摄像机采集的画面为画面E,右后摄像机采集的画面为画面F;对于合成图像,若车辆如图5所示向左转弯或向左倒车,左侧驾驶员观察到的画面为附图6所示的C,右侧驾驶员观察到的画面为附图7所示的D;对于左侧视野大量区域被挂厢填充,而右侧的视野存在较大的盲区,因此两侧均需进行一定程度的画面补偿,通过补偿后左侧驾驶员观察到的画面为附图8所示的C+E,右侧驾驶员观察到的画面为附图9所示的D+F。
具体的,画面补偿方案如下:首先,处理器通过挂厢轴线偏离车头轴线的角度判断右侧补偿画面的宽度;其次,根据补偿画面的宽度获取右后摄像机画面中左侧靠近挂厢侧相应宽度的画面;再次,根据补偿画面的宽度切除右前摄像机画面中左侧被挂厢侧遮挡部分相应宽度的画面;最后,将右后摄像机画面填充至右前摄像机画面中被切除位置,合成具有盲区补偿的图像。对于左侧补偿画面,首先,处理器通过挂厢轴线偏离车头轴线的角度判断车辆转向角度;其次,当转向角度超过左前摄像机覆盖角度(该覆盖角度指左前摄像机的视场边缘与车头侧壁之间的夹角)时,根据补偿画面的宽度获取左后摄像机画面中右侧靠近挂厢侧特定宽度的画面;再次,根据补偿画面的宽度切除左前摄像机画面中右侧特定宽度的画面;最后,将左后摄像机画面填充至左前摄像机画面中被切除位置,合成具有盲区补偿的图像;若转向角度未达到左前摄像机照射角度则不进行补偿,仅显示左前摄像机采集的画面。
同理的,若车辆向右转弯或向右倒车则对两侧前后摄像机的图像进行合成,两个后摄像机可以一直处于开启状态,也可以是判定车辆右转弯或右倒车后启动两个后摄像机;对于左侧补偿画面,首先,处理器通过挂厢轴线偏离车头轴线的角度判断补偿画面的宽度;其次,根据补偿画面的宽度获取左后摄像机画面中右侧靠近挂厢侧相应宽度的画面;再次,根据补偿画面的宽度切除左前摄像机画面中右侧被挂厢侧遮挡部分相应宽度的画面;最后,将左后摄像机画面填充至左前摄像机画面中被切除位置,合成具有盲区补偿的图像。 对于右侧补偿画面,首先,处理器通过挂厢轴线偏离车头轴线的角度判断车辆转向角度;其次,当转向角度超过右前摄像机覆盖角度(该覆盖角度指右前摄像机的视场边缘与车头侧壁之间的夹角)时,根据补偿画面的宽度获取右后摄像机画面中左侧靠近挂厢侧特定宽度的画面;再次,根据补偿画面的宽度切除右前摄像机画面中左侧特定宽度的画面;最后,将右后摄像机画面填充至右前摄像机画面中被切除位置,合成具有盲区补偿的图像;若转向角度未达到右前摄像机照射角度则不进行补偿,仅显示右前摄像机采集的画面。
在一种实施方式中,对于挂车车头转向方向相反侧画面补偿中,存储器中存储有预先绘制的显示框图X和用于补偿画面的补偿框图Y集合;显示框图X分辨率与对应的显示装置提供的分辨率相对应;显示框图X内叠加有补偿框图Y a,补偿框图Y a是补偿框图Y集合中的元素,补偿框图Y a的宽度依据挂厢轴线偏离车头轴线的角度确定,当挂厢轴线偏离车头轴线的角度达到预设范围则自动调取相应宽度的补偿框图Y a;补偿框图Y a可以是长方形或者依据具体挂车和挂厢型号中盲区而制定的特殊形状;对于左侧视野中补偿框图Y和右侧视野中补偿框图Y采用对称设计,对于左侧视野中补偿框图Y设置在左侧视野显示框图X的右侧,对于右侧视野中补偿框图Y设置在右侧视野显示框图X的左侧。
当挂厢轴线偏离车头轴线的角度达到预设范围,补偿框图Y a则依据挂厢轴线偏离车头轴线的角度调取对应尺寸的补偿框图Y a。对于需要进行补偿一侧的显示框图X中,处理器将该侧前摄像机的画面填充至显示框图X内,并调取该侧后摄像机的画面填充在与显示框图X相同的过渡框图内,裁切其中补偿框图Y a位置对应的画面,并将该截取的画面投射至显示框图X内补偿框图Y a对应的位置,覆盖前摄像机画面中补偿框图Y a对应的位置的画面,生成经过裁切和合成具有补偿视野的画面。
对于挂车转向侧画面补偿中,存储器中还存储有预先绘制的用于补偿画面的补偿框图Z集合;补偿框图Z a叠加在显示框图X上,补偿框图Z a是补偿框图Z集合中的元素,补偿框图Z a的特定宽度可以采用固定宽度,也可以依据挂厢轴线偏离车头轴线的角度确定,当挂厢轴线偏离车头轴线的角度达到预设范围则自动调取相应宽度的补偿框图Z a;补偿框图Z a可以是长方形或者依据具体挂车和挂厢型号中盲区而制定的特殊形状;对于左侧视野中补偿框图Z和右侧视野中补偿框图Z采用对称设计,对于左侧视野中补偿框图Z设置在左侧视野显示框图X的左侧,对于右侧视野中补偿框图Z设置在右侧视野显示框图X的右侧。
补偿框图Z a则依据挂厢轴线偏离车头轴线角度调取对应的补偿框图Z a,补偿框图Z a的尺寸可以是前摄像机的画面中挂厢占据的宽度,也可以是依据挂厢轴线偏离车头轴线的 角度而生成的对应尺寸。对于需要进行补偿一侧的显示框图X中,处理器将该侧前摄像机的画面填充至显示框图X内,并调取该侧后摄像机的画面填充在与显示框图X相同的过渡框图内,裁切其中补偿框图Z a位置对应的画面,并将该截取的画面投射至显示框图X内补偿框图Z a对应的位置,覆盖前摄像机画面中补偿框图Z a对应的位置的画面,生成经过裁切和合成具有补偿视野的画面。
显示装置是设置在驾驶室的显示器,显示装置与显示控制装置连接,用于向驾驶员展示由显示控制装置输出的合成图像;显示装置包括左显示单元和右显示单元,左显示单元用于显示左前摄像机采集的画面或由左前摄像机和左后摄像机合成的画面,右显示单元用于显示右前摄像机采集的画面或由右前摄像机和右后摄像机合成的画面;左右两个显示单元可以集成在一块显示器上分区显示,也可以各自分别是一个独立的显示器。显示装置除了与显示控制装置连接,还可以与汽车的控制总线或其他汽车控制单元相连,以向驾驶员展示车辆的各状态参数。显示装置的显示器可以是集成在中控区或电子后视镜中,也可以作为电子后视镜的显示装置分别设置在驾驶室两侧A柱上。
在一种实施方式中,挂车在直线行驶过程中,处理器实时获取左前摄像机和右前摄像机的视频画面,并将视频画面不进行处理直接输送至显示装置,由显示装置显示挂车左右两侧后视画面。当挂车在行驶过程中开始转弯、倒车,感测装置将检测到的车头与车厢中轴线之间的角度实时传送至处理器;处理器依据车头与车厢中轴线之间的角度分别对两侧的前摄像机和后摄像机采集到的视频画面进行与角度对应尺寸的裁切;在裁切过程中,原始视频画面和裁切后的视频画面均通过存储单元进行缓存;处理器最后将裁切后的视频画面进行合成,并将两侧合成后的视频画面分别输送至显示装置对应的区域进行显示。当然,驾驶者可以手动控制显示装置显示左前摄像机和右前摄像机提供的车辆Ⅱ类镜显示模式,且手动控制模式优先于本发明提供的显示画面。
具体的,对于挂车转向方向相反侧的画面补偿,左显示单元和右显示单元分别是设置在驾驶室左右两侧A柱的两个显示器,各显示器的屏幕宽度为109.5mm,分别率为1920*720像素;当车头与挂厢中轴线之间的角度为15度时,显示器中补偿画面显示宽度为36.5mm;当车头与挂厢中轴线之间的角度为30度时,显示器中补偿画面显示宽度为73mm;当车头与挂厢中轴线之间的角度为45度时,显示器完全显示补偿画面。对于挂车转向侧的画面补偿,当车头与挂厢中轴线之间的角度大于前摄像机视野度数时,显示器中补偿固定宽度的画面进行显示,该固定宽度为前摄像机采集画面中挂厢占据画面的固定宽度;也可以采用与挂车转向方向相反侧相同的角度与宽度的补偿策略。
优选地,左前摄像机、右前摄像机、左后摄像机和右后摄像机中的一个或多个采用移轴摄像机。如图10所示,每个移轴摄像机包括成像镜头100与图像采集单元200,摄像机的机壳、控制芯片等常规构造这里不予详细描述。如图11所示,成像镜头100与图像采集单元200均相对于相机主体的主轴(镜筒中轴)反向倾斜,成像镜头100与图像采集单元200相对于相机主体的主轴的倾斜方向与相机主体的主轴相对于水平方向的倾斜方向相反,倾斜角度分别为第二角度α和第三角度β,10表示水平方向,20、30分别表示成像镜头100与图像采集单元200的法线。优选地,图像采集单元200倾斜的第三角度β大于成像镜头100倾斜的第二角度α,第二角度α和第三角度β不相同。
如图10D、图10E的俯视图中以及图12中所示,成像镜头100相对于相机主体的主轴发生偏移(平移),偏移距离为d,该偏移距离大体等于tan8°-tan15°乘以成像镜头100与图像采集单元200的距离L,即,以图像采集单元的中心为基准、成像镜头中心相对于相机主轴大概偏移8-15度所对应的距离,偏移方向为远离车身方向(这种偏移也可以通过图像采集单元200相对于相机主体的主轴朝向车身方向平移来实现),与此同时,成像镜头100与图像采集单元200均相对于自身的竖直方向中心线发生旋转,旋转方向为远离车身方向,更具体而言,由于相机是朝向车身后方进行拍摄的,成像镜头100和图像采集单元200均在绕各自在数值方向的中心轴,朝向车尾外侧旋转一定角度γ,优选地,该角度在8-16度之间,更优选地,该角度γ与成像镜头100相对于相机主体的主轴偏移的距离彼此正相关。优选地,成像镜头100和图像采集单元200的旋转角度彼此相同,但是不排除二者旋转角度存在少许差异。如图13-14可以看出,采用移轴摄像机拍摄的图像具有最小的变形。
如附图15所示,本发明还提供了一种用于挂车后视镜补偿视野盲区的显示方法,包括以下步骤:
步骤1:处理器实时获取多个摄像机采集的视频图像;
其中,多个摄像机包括设置在挂车的驾驶室外左右两侧的左前摄像机和右前摄像机,以及设置在挂厢靠近驾驶室一端左右两侧的左后摄像机和右后摄像机。左前摄像机和右前摄像机用于采集符合GB-15084标准中规定的II类视野和IV类视野;左后摄像机和右后摄像机用于采集挂车的挂厢两侧的后放水平角度为50度的视野,且其视野内应包括摄像机所在侧的挂厢本体。
步骤2:处理器获取挂车的工作状态;
其中,挂车的工作状态包括挂厢状态和行驶状态;挂厢状态包括有挂厢模式和无挂厢模式;行驶状态包括直行和转向。对于挂厢状态的检测通过处理器与汽车控制总线进行数据连接,并通过汽车控制总线检测挂车是否安装了挂厢;对于行驶状态则由感测装置进行采集,感测装置可以采用设置在挂车上的角度感测传感器,通过角度感测传感器获取挂厢轴线偏离车头轴线的角度,同时也可以采用处理器加载的软件算法通过各摄像机中的视频图像判断挂厢轴线偏离车头轴线的角度。
步骤3:处理器根据挂车工作状态生成最优无遮挡、最小盲区方案的画面。
在步骤3中,处理器通过挂车的工作状态为显示装置提供多种形式的画面。
具体的,在挂厢状态为无挂厢模式下,挂车未安装挂厢,处理器不再对挂厢轴线偏离车头轴线的角度进行监控,同时由于未安装挂厢,处理器也无法获取左后摄像机和右后摄像机采集的图像信号;此时,处理器直接获取左前摄像机和右前摄像机中的图像并将其发送至显示装置上,为驾驶员提供相当于左右主外后视镜和左右广角外后视镜视野的图像。
在挂厢状态为有挂厢模式下,挂车安装了挂厢,同时处理器通过感测装置判断挂车的行驶状态,当挂车直行或感测装置检测到挂厢轴线偏离车头轴线的角度小于15度时,处理器均判断挂车行驶状态为直行;当感测装置检测到挂厢轴线偏离车头轴线的角度大于等于15度时,处理器均判断挂车行驶状态为转向。
当处理器判断挂车行驶状态为直行时,处理器直接获取左前摄像机和右前摄像机中的图像并将其发送至显示装置上,为驾驶员提供相当于左右主外后视镜和左右广角外后视镜视野的图像。
当处理器判断挂车行驶状态为转向时,持续检测挂厢轴线偏离车头轴线的角度,并依据检测到的角度控制显示装置展示的画面。
具体的,以挂车向右转弯或向右倒车过程中左显示单元视频画面生成的情形为例,当检测挂厢轴线偏离车头轴线的角度为15-30度时,首先,处理器获取左前摄像机和左后摄像机采集的视频画面,并将视频画面输送至存储单元进行缓存;其次,处理器依据挂厢轴线偏离车头轴线的角度分别对左前摄像机和左后摄像机采集的视频画面进行裁切,对于左前摄像机采集的视频画面裁切掉其右侧被挂厢遮挡形成盲区的1/3宽度的视频画面,对于左后摄像机采集的视频画面仅保留其右侧靠近挂厢的1/3宽度的视频画面,对于裁切后保留的画面通过存储单元进行缓存;再次,并将左后摄像机保留的视频画面补充至左前摄像机裁切掉视频画面的位置合成为同一视频画面;最后,将左前摄像机和左后摄像机合成的视频画面输送至显示系统显示左侧视频画面处。
当检测挂厢轴线偏离车头轴线的角度为30-45度时,首先,处理器获取左前摄像机和左后摄像机采集的视频画面,并将视频画面输送至存储单元进行缓存;其次,处理器依据挂厢轴线偏离车头轴线的角度分别对左前摄像机和左后摄像机采集的视频画面进行裁切,对于左前摄像机采集的视频画面裁切掉其右侧被挂厢遮挡形成盲区的2/3宽度的视频画面,对于左后摄像机采集的视频画面仅保留其右侧靠近挂厢的2/3宽度的视频画面,对于裁切后保留的画面通过存储单元进行缓存;再次,将左后摄像机保留的视频画面补充至左前摄像机裁切掉视频画面的位置合成为同一视频画面;最后,将左前摄像机和左后摄像机合成的视频画面输送至显示系统显示左侧视频画面处。
当检测挂厢轴线偏离车头轴线的角度大于等于45度时,处理器直接获取左后摄像机的图像并将其发送至显示系统显示左侧视频画面处。
而在挂车向右转弯或向右倒车过程中右显示单元视频画面生成的情形中包括两种情况,第一种情况采用了固定尺寸的补偿画面,首先,当处理器通过挂厢轴线偏离车头轴线的角度判断车辆转向角度超过右前摄像机照射角度时,处理器获取右前摄像机和右后摄像机采集的视频画面,并将视频画面输送至存储单元进行缓存;其次,处理器分别对右前摄像机和右后摄像机采集的视频画面进行裁切,对于右前摄像机采集的视频画面裁切掉其右侧画面中挂厢挂厢占据宽度的视频画面,对于右后摄像机采集的视频画面仅保留其右侧画面中挂厢挂厢占据宽度的视频画面,并对裁切后保留的画面通过存储单元进行缓存;再次,并将右后摄像机保留的视频画面补充至右前摄像机裁切掉视频画面的位置合成为同一视频画面;最后,将右前摄像机和右后摄像机合成的视频画面输送至显示系统显示右侧视频画面处。当处理器通过挂厢轴线偏离车头轴线的角度判断车辆转向角度未超过右前摄像机照射角度时,则不进行补偿,直接将右前摄像机采集的视频画面输送至显示系统显示右侧视频画面处。
第二种情况采用了补偿尺寸与转向角度相适应的方式,其具体的补偿方案与左显示单元视频画面生成方案相对应。
对于挂车向左转弯或向左倒车过程的情形则与上述情况相对应。
在一种优选实现方式中,每个摄像装置在进行视频采集时采用自动的曝光调节方法进行曝光条件,调节步骤包括:
步骤1,通过感光传感器采集数据生成当前感光参数;
步骤2,通过当前感光参数和第一设定值的关系调节曝光模式;
步骤3,在固定曝光模式中,根据当前感光参数和第二设定值的比较值调节计数器状 态;
步骤4,根据计数值和第三设定值调节计数器状态和曝光模式。
具体的,首先,确定当前感光参数映射的范围;感光传感器采集的数据通过控制单元计算当前感光均值,并通过模数转换/数模转换确定当前映射的ADC值。
第一设定值用于与当前映射的ADC值判断应当使用自动曝光模式或固定曝光模式进行图像采集。曝光模式在默认状态下采用自动曝光模式;若当前映射的ADC值在映射范围中的占比小于第一设定值,则启动固定曝光模式;若当前映射的ADC值在映射范围中的占比大于等于第一设定值,则维持自动曝光模式。通常第一设定值为28%-33%,自动曝光由于采用中间灰度作为标准进行亮度调整,当映射的ADC值在映射范围中的占比小于33%时,自动曝光状态下的画面显示较为昏暗。在固定曝光模式下,曝光时间通常采用9ms~20ms的曝光时间。
对于已经启动固定曝光模式的情况下,则持续监控ADC值与第二设定值的关系,若ADC值在映射范围中的占比大于等于第二设定值则计数器计数值加一,若ADC值在映射范围中的占比小于第二设定值则计数器计数值清零。
计数值通过与第三设定值比对大小,若计数值达到第三设定值,则将计数器清零,并关闭固定曝光模式,采用自动曝光模式;若计数值未达到第三设定值,则不进行操作,并重复进行上述操作。
车辆处于室外,启动时自动开启自动曝光模式,当车辆从明亮的地上进入昏暗的环境时,感光传感器采集到的光亮度经过模数与数模转换,当前ADC值为总映射范围的10%,低于第一设定值,第一设定值取值范围为28%-33%,可以取值28%、30%或33%,第一设定值是指当前ADC值与映射范围之比,控制单元发送命令给图像采集装置打开固定曝光模式,关闭自动曝光模式,曝光时间为11ms,曝光时间可以取值9ms~20ms;
当车辆从明亮的地方经过连续的隧道,且隧道间隔较短,隧道中较为昏暗,当车辆进入昏暗的隧道时,感光传感器采集到的当前ADC值为映射范围的9%,低于第一设定值,控制单元发送命令给图像采集装置打开固定曝光模式,关闭自动曝光模式,曝光时间为11ms,当车辆从隧道出来进入另一隧道时,当前仍处于固定曝光开启的模式,感光传感器采集到的当前连续三次ADC值分别占比映射范围的61%、67%和33%,其中前两次占比值高于第二设定值的60%,计数器持续进行计数,但仍未达到第三设定值规定的3次,第三次低于第二设定值的60%,计数器清零,仍处于固定曝光模式;
当车辆从昏暗的环境回到明亮的地上时,当前仍处于固定曝光开启的模式,感光传感 器采集到的当前ADC值为映射范围的61%,高于第二设定值60%,第二设定值取值范围为54%-60%,取值55%、58%、60%,计数器计数,当车辆回到明亮的地上一段时间,即计数器计数值达到第三设定值的3,第三设定值可以取值2,3,4,计数器清零,控制单元发送命令给图像采集装置关闭固定曝光模式,开启自动曝光模式。
两个相近的隧道中间路段亮度较高,而由于隧道的关系,进入隧道时和离开隧道时的亮度是一个过度亮度,该处亮度会低于外界亮度高于隧道内部亮度,一般采集到的亮度映射的ADC值在映射范围中的占比为38%-50%;若第二设定值设定38%,而持续采集到的亮度相对应映射的ADC值在映射范围中的占比分别为28%、30%、40%、61%、67%、44%、30%、27%,此时,摄像机会在出隧道的一小段时间内启动自动曝光模式,而后转为固定曝光模式。
恢复自动曝光模式的车辆经过较暗的隧道,当前ADC值为映射范围的33%,高于30%,控制单元发送命令给图像采集装置采用自动曝光模式。
本发明不仅局限于上述具体实施方式,本领域一般技术人员根据实施例和附图公开内容,可以采用其它多种具体实施方式实施本发明,因此,凡是采用本发明的设计结构和思路,做一些简单的变换或更改的设计,都落入本发明保护的范围。

Claims (11)

  1. 一种用于挂车后视镜补偿视野盲区的显示系统,其特征在于,所述显示系统包括采集装置、感测装置、显示控制装置和显示装置;
    所述采集装置包括左前摄像机、右前摄像机、左后摄像机和右后摄像机;所述左前摄像机和右前摄像机分别设置在驾驶室外左右两侧,所述左后摄像机和右后摄像机分别设置在挂厢的左右两侧;
    所述感测装置是设置在挂车上的角度感测传感器,所述角度感测传感器用于获取挂厢轴线偏离车头轴线的角度;
    所述显示控制装置与所述采集装置和感测装置连接,包括处理器,所述处理器用于通过所述感测装置获取所述挂厢轴线偏离车头轴线的角度,并将所述采集装置获取的画面直接传输至所述显示装置和/或进行裁切与合成处理后传输至所述显示装置;
    所述显示装置是设置在所述驾驶室的显示器,所述显示装置与所述显示控制装置连接,用于向驾驶员展示由所述显示控制装置输出的图像。
  2. 根据权利要求1所述显示系统,其特征在于,所述左前摄像机和右前摄像机采集的画面视野应符合标准规定的II类视野和/或Ⅳ类视野;所述左后摄像机和右后摄像机采集的画面内应包括摄像机所在侧的挂厢本体。
  3. 根据权利要求1所述显示系统,其特征在于,所述显示装置包括左显示单元和右显示单元;所述左显示单元用于显示所述左前摄像机采集的画面或由所述左前摄像机和左后摄像机合成的画面;所述右显示单元用于显示所述右前摄像机采集的画面或由所述右前摄像机和右后摄像机合成的画面。
  4. 根据权利要求1所述显示系统,其特征在于,所述处理器对画面裁切与合成中,将转向相反方向和/或转向方向的前摄像机挂厢遮挡侧预设宽度或固定宽度的画面移除,对转向相反方向和/或转向方向的后摄像机挂厢侧预设宽度或固定宽度的画面保留,并将保留的画面置于移除画面处进行新的画面合成。
  5. 根据权利要求4所述显示系统,其特征在于,所述角度感测传感器检测到所述车头与挂厢中轴线之间的角度超过转向侧前摄像机照射角度时,所述处理器采用所述固定宽度的画面裁切与合成;
    所述固定宽度为所述转向侧前摄像机的画面中所述挂厢占据的宽度。
  6. 根据权利要求1所述显示系统,其特征在于,所述显示控制装置包括存储单元,所述存储单元存储有预先绘制的用于显示在显示装置上的显示框图X、用于补偿画面的补 偿框图Y集合和补偿框图Z集合;所述处理器根据所述感测装置的感测进行计算判断,调取预先存储的补偿框图Y集合中符合预设宽度的补偿框图Y a和补偿框图Z集合中固定宽度或预设宽度的补偿框图Z a
    所述处理器对转向相反方向的后摄像机挂厢侧预设宽度的画面进行裁剪,将处理后的画面投射到调取的补偿框图Y a中;
    所述处理器对转向方向的后摄像机挂厢侧固定宽度的画面进行裁剪,将处理后的画面投射到调取的补偿框图Z a中。
  7. 根据权利要求4或6中任一所述显示系统,其特征在于,所述预设宽度依据车头与挂厢中轴线之间的角度设定;
    当所述车头与挂厢中轴线之间的角度为0-15度,所述预设宽度为0;
    当所述车头与挂厢中轴线之间的角度为15-30度,所述预设宽度为画面宽度的1/3宽度;
    当所述车头与挂厢中轴线之间的角度为30-45度,所述预设宽度为画面宽度的2/3宽度;
    当所述车头与挂厢中轴线之间的角度大于等于45度,所述预设宽度为整画面宽度。
  8. 根据权利要求1所述的显示系统,其特征在于,所述左前摄像机、右前摄像机、左后摄像机和右后摄像机中的一个或多个采用移轴摄像机,所述移轴摄像机包括相机主体、图像采集单元和成像镜头,所述成像镜头和所述图像采集单元分别安装在所述相机主体的前端和后端,并且所述相机主体相对于基准方向具有朝向第一方向倾斜的第一角度θ,所述图像采集单元和所述成像镜头相对于所述相机主体的主轴分别具有与所述相机主体倾斜方向相反方向倾斜的第二角度α和第三角度β,所述第二角度α和第三角度β彼此不相同,优选地,所述第二角度α大于所述第三角度β以使得所述图像采集单元和所述成像镜头所在平面相交形成一个锐角。
  9. 一种基于权利要求1-8所述显示系统的用于挂车后视镜补偿视野盲区的显示方法,其特征在于,所述显示方法包括以下步骤:
    步骤1:处理器实时获取多个摄像机采集的视频图像;
    步骤2:处理器获取挂车的工作状态;
    步骤3:处理器根据挂车工作状态生成最优无遮挡、最小盲区方案的画面;
    所述工作状态包括挂厢状态和行驶状态;挂厢状态包括有挂厢模式和无挂厢模式;行驶状态包括直行、转向和倒车;
    所述多个摄像机包括左前摄像机、右前摄像机、左后摄像机和右后摄像机;所述左前摄像机和右前摄像机分别设置在驾驶室外左右两侧,所述左后摄像机和右后摄像机分别设置在挂厢的左右两侧。
  10. 根据权利要求9所述显示方法,其特征在于,在步骤3中,在所述无挂厢模式下,所述处理器为显示装置提供画面;
    在所述有挂厢模式下,且行驶状态为直行时,所述处理器为显示装置提供左前摄像机和右前摄像机的画面;
    在所述有挂厢模式下,且行驶状态为转向或倒车时,所述处理器依据车头与挂厢中轴线之间的角度为显示装置提供转向侧的前摄像机画面和转向相反侧裁切与合成的画面;
    在对转向相反方向的画面裁切与合成中,将转向相反方向的前摄像机挂厢遮挡侧预设宽度的画面移除,对转向相反方向的后摄像机挂厢侧预设宽度的画面保留,并将保留的画面置于移除画面处进行新的画面合成;
    在对转向方向的画面裁切与合成中,当所述车头与挂厢中轴线之间的角度超过转向侧前摄像机照射角度时,将转向方向的前摄像机转向侧固定宽度的画面移除,对转向方向的后摄像机挂厢侧固定宽度的画面保留,并将保留的画面置于移除画面处进行新的画面合成;
    所述固定宽度为所述转向侧前摄像机的画面中所述挂厢占据的宽度。
  11. 根据权利要求10所述显示方法,其特征在于,所述预设宽度依据车头与挂厢中轴线之间的角度设定;
    当所述车头与挂厢中轴线之间的角度为0-15度,所述预设宽度为0;当所述车头与挂厢中轴线之间的角度为15-30度,所述预设宽度为画面宽度的1/3宽度;当所述车头与挂厢中轴线之间的角度为30-45度,所述预设宽度为画面宽度的2/3宽度;当所述车头与挂厢中轴线之间的角度大于等于45度,所述预设宽度为整画面宽度。
PCT/CN2022/115731 2021-08-06 2022-08-30 一种用于挂车后视镜补偿视野盲区的显示系统及方法 WO2023011667A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247007228A KR20240041373A (ko) 2022-01-27 2022-08-30 트랙터-트레일러 백미러의 시야 사각지대의 보상을 위한 표시시스템 및 표시방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110901387.8 2021-08-06
CN202110901387.8A CN113401059B (zh) 2021-08-06 2021-08-06 一种用于挂车后视镜补偿视野盲区的显示系统及方法
CN202210100871.5 2022-01-27
CN202210100871.5A CN114500864B (zh) 2022-01-27 2022-01-27 一种自动调整曝光方法和装置

Publications (1)

Publication Number Publication Date
WO2023011667A1 true WO2023011667A1 (zh) 2023-02-09

Family

ID=85154878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115731 WO2023011667A1 (zh) 2021-08-06 2022-08-30 一种用于挂车后视镜补偿视野盲区的显示系统及方法

Country Status (1)

Country Link
WO (1) WO2023011667A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046533A (ja) * 2000-08-03 2002-02-12 Isuzu Motors Ltd 車両後方視界支援装置
EP1892150A2 (en) * 2006-08-21 2008-02-27 Sanyo Electric Co., Ltd. Image processor and vehicle surrounding visual field support device
CN111361502A (zh) * 2020-03-23 2020-07-03 长沙立中汽车设计开发股份有限公司 一种用于铰接工程车辆变角度全景环视系统的实现方法
CN111546986A (zh) * 2020-04-30 2020-08-18 北京大椽科技有限公司 一种拖挂车全景环视方法
CN112348741A (zh) * 2020-11-03 2021-02-09 明见(厦门)技术有限公司 全景图像拼接方法、设备及存储介质和显示方法及系统
CN113401059A (zh) * 2021-08-06 2021-09-17 上海豫兴电子科技有限公司 一种用于挂车后视镜补偿视野盲区的显示系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046533A (ja) * 2000-08-03 2002-02-12 Isuzu Motors Ltd 車両後方視界支援装置
EP1892150A2 (en) * 2006-08-21 2008-02-27 Sanyo Electric Co., Ltd. Image processor and vehicle surrounding visual field support device
CN111361502A (zh) * 2020-03-23 2020-07-03 长沙立中汽车设计开发股份有限公司 一种用于铰接工程车辆变角度全景环视系统的实现方法
CN111546986A (zh) * 2020-04-30 2020-08-18 北京大椽科技有限公司 一种拖挂车全景环视方法
CN112348741A (zh) * 2020-11-03 2021-02-09 明见(厦门)技术有限公司 全景图像拼接方法、设备及存储介质和显示方法及系统
CN113401059A (zh) * 2021-08-06 2021-09-17 上海豫兴电子科技有限公司 一种用于挂车后视镜补偿视野盲区的显示系统及方法

Similar Documents

Publication Publication Date Title
JP3773433B2 (ja) 移動体の周囲監視装置
EP1227683B1 (en) Monitor camera, method of adjusting camera, and vehicle monitor system
JP4766841B2 (ja) 車両に搭載されるカメラ装置及び車両周辺監視装置
US5949331A (en) Display enhancements for vehicle vision system
US7212653B2 (en) Image processing system for vehicle
DE102004043257B4 (de) Kameraeinheit und Vorrichtung zur Überwachung der Fahrzeugumgebung
US7190259B2 (en) Surrounding surveillance apparatus and mobile body
US20020075387A1 (en) Arrangement and process for monitoring the surrounding area of an automobile
EP2476587B1 (en) Vehicle surrounding monitor apparatus
JP2003244688A (ja) 車両の画像処理装置
JP3753681B2 (ja) 監視システム
JP5036891B2 (ja) 車両に搭載されるカメラ装置及び車両周辺監視装置
CN210258216U (zh) 搭载360°全景驾驶辅助系统的重型卡车
KR100593594B1 (ko) 파노라마 카메라를 포함하는 차량 주행 보조 장치
JPH04239400A (ja) 車載監視カメラ装置
CN113401059B (zh) 一种用于挂车后视镜补偿视野盲区的显示系统及方法
WO2023011667A1 (zh) 一种用于挂车后视镜补偿视野盲区的显示系统及方法
CN110667477A (zh) 一种车辆夜间影视处理系统及方法
KR20240041373A (ko) 트랙터-트레일러 백미러의 시야 사각지대의 보상을 위한 표시시스템 및 표시방법
JP7384343B2 (ja) 画像処理装置、画像処理プログラム
CN110012262B (zh) 摄影显像控制方法及系统
US11345280B2 (en) Method for adapting an image displayed on a monitor in a vehicle cab to a vehicle configuration
JPH06183298A (ja) 車載用左右確認装置
CN216580341U (zh) 一种影像观测系统及挖掘设备
CN201345701Y (zh) 动态车辆监控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247007228

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022852377

Country of ref document: EP

Effective date: 20240306