WO2023011324A1 - 资源分配方法、装置及系统 - Google Patents

资源分配方法、装置及系统 Download PDF

Info

Publication number
WO2023011324A1
WO2023011324A1 PCT/CN2022/108748 CN2022108748W WO2023011324A1 WO 2023011324 A1 WO2023011324 A1 WO 2023011324A1 CN 2022108748 W CN2022108748 W CN 2022108748W WO 2023011324 A1 WO2023011324 A1 WO 2023011324A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
resource
resources
terminal device
frequency domain
Prior art date
Application number
PCT/CN2022/108748
Other languages
English (en)
French (fr)
Inventor
韩丰
余龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020247006003A priority Critical patent/KR20240035875A/ko
Publication of WO2023011324A1 publication Critical patent/WO2023011324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the field of communication technology, and in particular to a resource allocation method, device and system.
  • the terminal device can determine the network device as the PDCCH resources allocated by the terminal equipment. Specifically, the terminal device may perform blind detection on the candidate PDCCH resources in the PDCCH candidate set in a certain order, and if the verification is successful, the terminal device may determine the PDCCH resources that have passed the verification as the PDCCH resources allocated to itself by the network device.
  • the sequence in which the terminal equipment blindly detects the PDCCH candidate set may be referred to as a blind detection sequence.
  • the network device allocates PDCCH resources to the terminal equipment according to the blind detection sequence, starting from the starting position of the blind detection, and determines the PDCCH resources allocated to the terminal equipment according to the aggregation level of the terminal equipment. How many. However, in some scenarios, this solution may easily cause the problem of PDCCH resource fragmentation.
  • Embodiments of the present application provide a resource allocation method, device, and system, which are used to solve the problem that fragmentation of PDCCH resources tends to occur during PDCCH resource allocation.
  • a method for resource allocation is provided, and the communication device for executing the method may be a network device or a module applied to the network device, such as a chip.
  • the following description is made by taking the execution subject as a network device as an example.
  • the network device determines at least two PDCCH resources for at least two terminal devices, the at least two PDCCH resources are in one-to-one correspondence with the at least two terminal devices, and the frequency domain position of each PDCCH resource in the at least two PDCCH resources and the reference frequency domain position The distance between them satisfies a preset condition, or the distance between frequency domain positions of two adjacent PDCCH resources in the frequency domain among at least two PDCCH resources satisfies a preset condition.
  • the network device respectively sends information to at least two terminal devices on at least two PDCCH resources.
  • the frequency domain position of the PDCCH resource allocated by the network device to the terminal device can meet the preset conditions, so that the distribution of the frequency domain position of the PDCCH resource is no longer randomized, and the occurrence of PDCCH resource fragmentation is reduced. probability of the problem.
  • the distance between the frequency domain position of each PDCCH resource in the at least two PDCCH resources and the reference frequency domain position satisfies a preset condition includes: in at least two PDCCH resources
  • Each PDCCH resource is a PDCCH resource that is in an allocatable state among one or more candidate PDCCH resources satisfying the first formula, and the distance between the frequency domain position and the reference frequency domain position is the smallest; wherein, the first formula satisfies the following relationship :
  • L represents the aggregation level of the terminal equipment corresponding to one or more candidate PDCCH resources; Indicates the randomization parameter corresponding to the terminal device;
  • N CCE,p indicates the number of control channel unit CCE resources included in the PDCCH time-frequency resource range indicated by the control resource set with index p, wherein the control resource set with index p is the network equipment
  • the set of control resources configured for the terminal device Indicates the maximum number of blind detection times of the terminal equipment; Indicates the
  • the candidate PDCCH resources whose frequency domain positions are close to the reference frequency domain position can be preferentially selected and allocated to the terminal equipment, so that the PDCCH resources allocated to multiple terminal equipment More centralized, so as to successfully allocate PDCCH resources for terminal equipment with high aggregation level, and avoid PDCCH resource fragmentation when allocating PDCCH resources when the frequency domain position of the first candidate PDCCH resource is only related to randomization parameters, which cannot The problem of allocating PDCCH resources for terminal equipment with a high aggregation level.
  • each of the at least two PDCCH resources is one or more candidate PDCCH resources that satisfy the first formula, is in an allocatable state, and is consistent with the reference frequency domain
  • the PDCCH resource with the smallest distance between the positions includes: each of the at least two PDCCH resources is one or more candidate PDCCH resources satisfying the first formula, and the distance between the frequency domain position and the reference frequency domain position is the smallest
  • the network device can be determined to be in an allocatable state and The PDCCH resource with the smallest distance from the reference frequency domain position is allocated to the terminal equipment, so that when the PDCCH resource with the smallest distance between the frequency domain position and the reference frequency domain position is occupied, it can still be allocated to multiple The PDCCH resources of the terminal equipment are more concentrated.
  • the reference frequency domain position is determined according to at least two identifiers of the cells accessed by the terminal device and the third formula; wherein, the identifier of the cell accessed by the terminal device
  • the third formula satisfies the following relation:
  • PCI represents the identity of the cell accessed by the terminal device
  • k is a positive integer greater than or equal to 0
  • n takes a value in ⁇ 1,...,N CCE,p ⁇
  • N CCE,p represents the control resource whose index is p
  • m is a positive integer, 0 ⁇ m ⁇ n-1
  • the distance between the frequency domain positions of two adjacent PDCCH resources in the frequency domain among the at least two PDCCH resources satisfying a preset condition includes: two adjacent PDCCH resources
  • the resources include a first PDCCH resource and a second PDCCH resource, and the second PDCCH resource is a PDCCH resource that is in an assignable state and has the smallest distance from the first PDCCH resource among one or more candidate PDCCH resources that satisfy the first formula; wherein,
  • the first formula satisfies the following relationship: Wherein, L represents the aggregation level of the terminal equipment corresponding to one or more candidate PDCCH resources; Indicates the randomization parameter corresponding to the terminal device; N CCE,p indicates the number of CCE resources included in the PDCCH time-frequency resource range indicated by the control resource set with index p, wherein the control resource set with index p is configured for the terminal by the network device
  • the control resource set of the device Indicates the maximum number of blind detection times of the terminal equipment
  • the candidate PDCCH resource whose frequency domain position is closest to another PDCCH resource can be preferentially selected and allocated to the terminal device, so that the PDCCH resources allocated to multiple terminal devices More concentrated resources, so as to successfully allocate PDCCH resources for high-level terminal equipment, and avoid PDCCH resource fragmentation when allocating PDCCH resources when the frequency domain position of the first candidate PDCCH resource is only related to randomization parameters.
  • the cells accessed by at least two terminal devices meet the following conditions: within the target period, the utilization rate of CCE resources is greater than the first threshold corresponding to the target period; or, within the target period Within the target period, the ratio of the number of the first type of terminal equipment accessing the cell to the data of the second type of terminal equipment is greater than the third threshold corresponding to the target period, wherein the first type of terminal equipment is not successfully allocated PDCCH resources and aggregated A terminal device whose level is greater than a second threshold, the second type of terminal device is a terminal device whose aggregation level is greater than the second threshold and requests scheduling.
  • the PDCCH resource fragmentation problem in the cell accessed by the terminal device is serious according to the utilization rate of candidate PDCCH resources or the probability of PDCCH resource allocation failure of terminal devices at a large aggregation level. If the preset conditions are met, it means that the PDCCH resource The fragmentation problem is serious, and it is necessary to apply the resource allocation method provided by the embodiment of the present application to reduce the probability of occurrence of the PDCCH resource fragmentation problem, thereby improving the success rate of PDCCH resource allocation. If the preset condition is not met, it means that the problem of PDCCH resource fragmentation is not serious, and it is not necessary to apply the resource allocation method provided by the embodiment of the present application.
  • the target period is determined according to load states corresponding to cells accessed by at least two terminal devices. Based on this solution, different target periods and thresholds corresponding to the target periods can be determined according to cell load states in different scenarios, so as to meet different requirements.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a processing module and a transceiver module; the processing module is configured to determine at least two physical downlink control channel PDCCH resources for at least two terminal devices, at least two PDCCH resources are in one-to-one correspondence with at least two terminal devices, and the distance between the frequency domain position of each PDCCH resource in the at least two PDCCH resources and the reference frequency domain position satisfies the preset condition, or at least two PDCCH resources in the frequency domain The distance between frequency domain positions of two adjacent PDCCH resources satisfies a preset condition.
  • the transceiver module is configured to respectively send information to at least two terminal devices on at least two PDCCH resources.
  • the distance between the frequency domain position of each PDCCH resource in the at least two PDCCH resources and the reference frequency domain position satisfies a preset condition includes: in at least two PDCCH resources
  • Each PDCCH resource is a PDCCH resource that is in an allocatable state among one or more candidate PDCCH resources satisfying the first formula, and the distance between the frequency domain position and the reference frequency domain position is the smallest; wherein, the first formula satisfies the following relationship :
  • L represents the aggregation level of the terminal equipment corresponding to one or more candidate PDCCH resources; Indicates the randomization parameter corresponding to the terminal equipment;
  • N CCE,p indicates the number of control channel unit CCE resources included in the PDCCH time-frequency resource range indicated by the control resource set with index p, wherein the control resource set with index p is a communication device
  • the set of control resources configured for the terminal device; Indicates the maximum number of blind detection times of the terminal equipment; Indicates
  • each of the at least two PDCCH resources is one or more candidate PDCCH resources that satisfy the first formula, is in an allocatable state, and is consistent with the reference frequency domain
  • the PDCCH resource with the smallest distance between the positions includes: each of the at least two PDCCH resources is one or more candidate PDCCH resources satisfying the first formula, and the distance between the frequency domain position and the reference frequency domain position is the smallest
  • the reference frequency domain position is determined according to at least two identifiers of the cells accessed by the terminal device and the third formula; wherein, the identifier of the cell accessed by the terminal device
  • the third formula satisfies the following relation:
  • PCI represents the identity of the cell accessed by the terminal device
  • k is a positive integer greater than or equal to 0
  • n takes a value in ⁇ 1,...,N CCE,p ⁇
  • N CCE,p represents the control resource whose index is p
  • m is a positive integer, 0 ⁇ m ⁇ n-1; Indicates the index of the CCE resource corresponding to the reference frequency domain position.
  • the distance between the frequency domain positions of two adjacent PDCCH resources in the frequency domain among the at least two PDCCH resources satisfying the preset condition includes: two adjacent PDCCH resources
  • the resource includes a first PDCCH resource and a second PDCCH resource
  • the second PDCCH resource is a PDCCH resource that is in an assignable state and has the smallest distance from the first PDCCH resource among one or more candidate PDCCH resources satisfying the first formula;
  • the first formula satisfies the following relationship: Wherein, L represents the aggregation level of the terminal equipment corresponding to one or more candidate PDCCH resources; Indicates the randomization parameter corresponding to the terminal device; N CCE,p indicates the number of CCE resources included in the PDCCH time-frequency resource range indicated by the control resource set with index p, wherein the control resource set with index p is configured for the terminal by the communication device
  • the control resource set of the device Indicates the maximum number of blind detection times of the terminal equipment;
  • the cells accessed by at least two terminal devices meet the following conditions: within the target period, the utilization rate of CCE resources is greater than the first threshold corresponding to the target period; or, within the target period Within the target period, the ratio of the number of the first type of terminal equipment accessing the cell to the data of the second type of terminal equipment is greater than the third threshold corresponding to the target period, wherein the first type of terminal equipment is not successfully allocated PDCCH resources and aggregated A terminal device whose level is greater than a second threshold, the second type of terminal device is a terminal device whose aggregation level is greater than the second threshold and requests scheduling.
  • the target period is determined according to load states corresponding to cells accessed by at least two terminal devices.
  • a communication device including: a processor; the processor is configured to be coupled with a memory, and after reading a computer instruction stored in the memory, execute the method according to the above first aspect according to the instruction.
  • the communication device further includes a memory; the memory is used to store computer instructions.
  • the communication device further includes a communication interface; the communication interface is used for the communication device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the communication device may be a chip or a chip system.
  • the communication device when the communication device is a system-on-a-chip, the communication device may be composed of a chip, or may include a chip and other discrete devices.
  • the above communication interface may be an input/output interface, an interface circuit, an output circuit, or an input circuit on the chip or the chip system. , pins or related circuits, etc.
  • the aforementioned processor may also be embodied as a processing circuit or a logic circuit.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, the computer can execute the method described in the above-mentioned first aspect.
  • a computer program product containing instructions is provided, and when it is run on a computer, the computer can execute the method described in the first aspect above.
  • the technical effect brought by any possible implementation manner in the third aspect to the fifth aspect may refer to the technical effect brought by different implementation manners in the above-mentioned first aspect, which will not be repeated here.
  • a communication system which includes a network device executing the method described in the first aspect above, and a terminal device executing the method described in the first aspect above.
  • FIG. 1 is a schematic diagram of candidate PDCCH resources of a terminal device provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of candidate PDCCH resources of another terminal device provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a PDCCH resource allocation result provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another PDCCH resource allocation result provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network device and a terminal device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another terminal device provided in an embodiment of the present application.
  • FIG. 8 is an interactive schematic diagram of a resource allocation method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a centralized PDCCH resource allocation result provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another centralized PDCCH resource allocation result provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • a terminal device In an LTE system, a new radio (new radio, NR) system, or a 5G system, a terminal device needs to go through a blind detection process to determine the PDCCH resources allocated by the network device to the terminal device.
  • the terminal device can determine the PDCCH candidate set according to the blind detection formula, and check the candidate PDCCH resources in the PDCCH candidate set according to the blind detection sequence. If the terminal device successfully checks a candidate PDCCH resource, then the terminal device can use The PDCCH resource that succeeds in the verification is determined to be the PDCCH resource allocated by the network device, and the blind detection process is terminated.
  • the unit of the PDCCH resource is a CCE resource.
  • a candidate PDCCH resource may include one or more candidate CCE resources.
  • the network device determines a candidate PDCCH resource according to the aggregation level (AggLvl) of the terminal device. The number of candidate CCE resources.
  • the terminal device can obtain the search space (search space) and the information encapsulated in the control resource set (coreset) according to the radio resource control (RRC) message from the network device, and then Information such as the PDCCH time-frequency resource range information corresponding to the terminal device, the scheduling period, the aggregation level range of the terminal device, and the maximum number of blind detection times of the terminal device corresponding to each aggregation level in the aggregation level range of the terminal device are obtained.
  • search space search space
  • coreset the information encapsulated in the control resource set
  • RRC radio resource control
  • the terminal device can determine one or more candidate PDCCH resources included in the PDCCH time-frequency resource range indicated by the control resource set according to the acquired information and the blind detection formula, where each candidate PDCCH resource corresponds to one or more candidate CCEs resource.
  • the terminal device may check the candidate PDCCH resources sequentially according to the blind checking sequence associated with the index of the candidate PDCCH resource until the check is successful.
  • each candidate PDCCH resource (or candidate CCE resource) has the same time domain position (the number of starting symbols and occupied symbols in the time domain numbers are the same).
  • the blind detection formula satisfies the following relationship:
  • the terminal device obtains the value range of L according to the information in the search space, and then determines one or more values of L corresponding to the terminal device according to the value range of L and the possible values of L , the terminal device needs to determine the candidate PDCCH resource according to each value of L among the one or more values of L corresponding to the terminal device, respectively in combination with a blind detection formula. For example, the terminal device knows that the value of L ranges from 4 to 16, because the possible values of L are ⁇ 1, 2, 4, 8, 16 ⁇ , so the terminal device can determine that the value of L corresponding to the terminal device includes 4 , 8 or 16.
  • N CCE,p is a fixed value determined by the terminal device according to the information in the control resource set. is the value determined by the terminal device based on the information in the search space, where each value of L in one or more L values corresponding to the terminal device corresponds to one value of .
  • the maximum value of the terminal equipment according to The value of is determined.
  • n CI is determined by the terminal device according to the currently accessed cell.
  • the maximum value of i is determined by the terminal device according to the value of L.
  • the network device determines a fixed aggregation level L for one terminal device.
  • the maximum number of blind detection times of the terminal equipment determined by the network equipment Also a fixed value corresponding to the determined aggregation level L.
  • a mod b means the remainder obtained by dividing a by b. Indicates that a/b is rounded down. I won't repeat them in the future.
  • the terminal device can determine candidate PDCCH resources according to the above blind detection formula. For ease of understanding, the following describes how to determine the candidate PDCCH resource according to the blind detection formula in the scenario where the terminal device determines the candidate PDCCH resource according to an aggregation level value in conjunction with the following figure 1. As shown in Figure 1 (m in Figure 1 is the index ), assuming that the PDCCH time-frequency resource range indicated by the control resource set with the index p includes 17 candidate CCE resources: CCE0 ⁇ CCE16, and these 17 candidate CCE resources are all located in symbol (symbol) 0 in the time domain, and the time domain same location.
  • the index n CI of the cell accessed by the first terminal device is 0.
  • formula (1) is ⁇ 0,1 ⁇ is obtained, so the candidate PDCCH resource with index 0 includes candidate CCE resource with index ⁇ 0,1 ⁇ , therefore, it can be obtained that the candidate PDCCH resource with index 0 includes CCE0 and CCE1.
  • formula (1) is Calculate ⁇ 4,5 ⁇ , that is, the candidate PDCCH resources with index 1 include CCE4 and CCE5, when When , the calculation gets ⁇ 8,9 ⁇ , when When , the calculation gets ⁇ 12,13 ⁇ .
  • the candidate PDCCH resources that the first terminal device may perform blind detection include the shaded part of the candidate PDCCH resources in the left column: index
  • the candidate PDCCH resource includes CCE0+CCE1, index Candidate PDCCH resources include CCE4+CCE5, index Candidate PDCCH resources include CCE8+CCE9 and index
  • the candidate PDCCH resources include CCE12+CCE13.
  • the candidate PDCCH resources of the first terminal device and the second terminal device are the same, that is, the first terminal device
  • the frequency domain position of the candidate PDCCH resource is the same as that of the second terminal device, and PDCCH resource congestion is likely to occur.
  • the randomization parameter is introduced, if the randomization parameter is inconsistent, even if other parameters are consistent, the frequency domain positions of the candidate PDCCH resources are different.
  • the randomization parameter of the first terminal device is 2, and the randomization parameter of the second terminal device is 5, the distribution of candidate PDCCH resources of the first terminal device and candidate PDCCH resources of the second terminal device is shown in the figure 2 (Yk in Figure 2 is the randomization parameter m is the index L is the aggregation level), it can be seen that the frequency domain positions of the two candidate PDCCH resources are staggered.
  • the network device determines a fixed aggregation level for a terminal device.
  • the network device determines the candidate PDCCH resources of the terminal device according to the aggregation level corresponding to the terminal device, combined with the blind detection formula, and allocates the candidate PDCCH resources sequentially from the candidate PDCCH resource whose index is 0.
  • the order of allocation is the same as the blind detection sequence of the terminal device.
  • the network equipment will skip the candidate PDCCH resource and query the next candidate PDCCH resource according to the blind detection sequence. If the candidate PDCCH resource is not occupied, the candidate PDCCH resource will be allocated to the terminal equipment.
  • the candidate PDCCH resource is still occupied, and then query other candidate PDCCH resources of the terminal device according to the blind detection order until PDCCH resources are successfully allocated to the terminal device, or all candidate PDCCH resources of the terminal device are queried.
  • Yk in Figure 3 is a randomization parameter m is the index L is an aggregation level
  • the first candidate PDCCH resource of the first terminal device includes CCE4 and CCE5 and is not occupied, and the network device determines CCE4 and CCE5 as PDCCH resources allocated to the first terminal device.
  • the first candidate PDCCH resource of the second terminal device includes CCE10 and CCE11 and is not occupied, and the network device determines CCE10 and CCE11 as PDCCH resources allocated to the second terminal device.
  • the formula (1) is In the case that the control resource sets and search spaces determined by different terminal devices are the same, and they access the same cell, L, i, N CCE, p , and n CI are all constant values, so the first candidate PDCCH of each terminal device The position change of resources in the frequency domain is only related to the randomization parameters.
  • the network device allocates PDCCH resources for the terminal device from the first candidate PDCCH resource of the terminal device, the following situation may occur: location, after allocating PDCCH resources for terminal devices of small aggregation level, it is necessary to allocate PDCCH resources for terminal devices of large aggregation level.
  • location after allocating PDCCH resources for terminal devices of small aggregation level, it is necessary to allocate PDCCH resources for terminal devices of large aggregation level.
  • the frequency domain position of the first candidate PDCCH resource of the terminal device is randomized, the distribution of the PDCCH resources allocated by the network device to the terminal Resource blocks cannot be allocated to terminal devices with a high aggregation level that require more PDCCH resources, resulting in failure of the network device to allocate PDCCH resources to these terminal devices with a high aggregation level.
  • the network device allocates PDCCH resources to the third terminal device whose aggregation level is 8 and needs to allocate 8 CCE resources, but CCE4 and CCE5 in the candidate PDCCH resource 0 of the third terminal device have been occupied by the first terminal device, and the candidate PDCCH resources In 1, CCE10 and CCE11 are already occupied by the second terminal device, so that the network device cannot allocate PDCCH resources for the third terminal device.
  • the present application proposes a resource allocation method, device and system to reduce the probability of PDCCH resource fragmentation and further improve the success rate of PDCCH resource allocation.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner for easy understanding.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the resource allocation method provided by the embodiment of the present application may be applicable to various communication systems.
  • the resource allocation method provided in the embodiment of the present application may be applied to an LTE system, or a 5G system, or other similar new systems facing the future, which is not specifically limited in the embodiment of the present application.
  • the term “system” and “network” may be used interchangeably.
  • the communication system 50 includes a network device 60 and at least two terminal devices 70 connected to the network device 60 .
  • the terminal device 70 is connected to the network device 60 in a wireless manner.
  • different terminal devices 70 may communicate with each other.
  • the terminal device 70 may be fixed or mobile.
  • FIG. 5 is only a schematic diagram.
  • the communication system 50 may also include other network devices, such as the communication system 50 may also include core network devices, wireless relay devices and wireless backhaul devices. One or more of them are not specifically limited here.
  • the network device may be connected to the core network device in a wireless or wired manner.
  • the core network device and the network device 60 may be independent and different physical devices, or the functions of the core network device and the logical functions of the network device 60 may be integrated on the same physical device, or a physical device may integrate some
  • the functions of the core network device and the functions of part of the network device 60 are not specifically limited in this embodiment of the present application.
  • the network device 60 is configured to determine at least two PDCCH resources for at least two terminal devices 70, at least The two PDCCH resources are in one-to-one correspondence with at least two terminal devices 70, and the distance between the frequency domain position of each PDCCH resource in the at least two PDCCH resources and the reference frequency domain position satisfies a preset condition, or the intermediate frequency of at least two PDCCH resources The distance between frequency domain positions of two adjacent PDCCH resources on the domain satisfies a preset condition.
  • the network device 60 is further configured to respectively send information to at least two terminal devices on at least two PDCCH resources.
  • the terminal device 70 is configured to receive information from the network device 60 on at least two PDCCH resources.
  • the network device 60 in the embodiment of the present application is a device for connecting the terminal device 70 to a wireless network, and may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a sending and receiving point (transmission reception point, TRP), next generation base station (next generation NodeB, gNB) in 5G mobile communication system, base station in future mobile communication system or access in wireless-fidelity (wireless-fidelity, Wi-Fi) system A node, etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • network equipment refers to radio access network equipment.
  • the terminal device 70 in this embodiment of the present application may be a device for implementing a wireless communication function, such as a terminal or a chip that may be used in a terminal.
  • the terminal may also be called user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and wireless terminals in smart grids.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the network device 60 and the terminal device 70 in this embodiment of the application can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airplanes, balloons and artificial on the satellite.
  • the embodiments of the present application do not limit the application scenarios of the network device 60 and the terminal device 70 .
  • the communication between the network device 60 and the terminal device 70 in this embodiment of the present application may be performed through the licensed spectrum, the communication may be performed through the unlicensed spectrum, or the communication may be performed through the licensed spectrum and the unlicensed spectrum at the same time.
  • the communication between the network device 60 and the terminal device 70 may be performed through a frequency spectrum below 6 gigahertz (GHz), or may be performed through a frequency spectrum above 6 GHz, or may be performed using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • GHz gigahertz
  • the embodiment of the present application does not limit the frequency spectrum resources used between the network device 60 and the terminal device 70 .
  • the network device 60 and the terminal device 70 in the embodiment of the present application may also be referred to as communication devices, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • FIG. 6 it is a schematic structural diagram of a network device 60 and a terminal device 70 provided in this embodiment of the present application.
  • the terminal device 70 includes at least one processor 701 and at least one transceiver 703 .
  • the terminal device 70 may further include at least one memory 702 , at least one output device 704 or at least one input device 705 .
  • a communication link may include a pathway for the transfer of information between the aforementioned components.
  • the processor 701 may be a general-purpose central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), on-site Programmable gate array (fieldprogrammable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the processor 701 may also include multiple CPUs, and the processor 701 may be a single-core processor or a multi-core processor.
  • a processor here may refer to one or more devices, circuits, or processing cores for processing data.
  • the memory 702 may be a device having a storage function.
  • it may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM) or other types of memory that can store information and instructions
  • Dynamic storage devices can also be programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory , EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage medium or other A magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • the memory 702 may exist independently and be connected to the processor 70
  • the memory 702 is used to store computer-executed instructions for implementing the solutions of the present application, and the execution is controlled by the processor 701 .
  • the processor 701 is configured to execute computer-executed instructions stored in the memory 702, so as to implement the resource allocation method described in the embodiment of the present application.
  • the processor 701 may also perform processing-related functions in the resource allocation method provided in the following embodiments of the present application, and the transceiver 703 is responsible for communicating with other devices or communication networks.
  • the embodiment of the application does not specifically limit this.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes or computer program codes, which are not specifically limited in the embodiments of the present application.
  • the transceiver 703 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), or wireless local area networks (wireless local area networks, WLAN) wait.
  • the transceiver 703 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • Output device 704 is in communication with processor 701 and can display information in a variety of ways.
  • the output device 704 can be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector) wait.
  • the input device 705 communicates with the processor 701 and can accept user input in various ways.
  • the input device 705 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the network device 60 includes at least one processor 601 , at least one transceiver 603 and at least one network interface 604 .
  • the network device 60 may further include at least one memory 602 .
  • the processor 601, the memory 602, the transceiver 603 and the network interface 604 are connected through communication lines.
  • the network interface 604 is used to connect to core network equipment through a link (such as an S1 interface), or to connect to a network interface of other network equipment (not shown in FIG. 6 ) through a wired or wireless link (such as an X2 interface).
  • the embodiment of the application does not specifically limit this.
  • FIG. 7 shows a specific structural form of the terminal device 70 provided in the embodiment of the present application.
  • the functions of the processor 701 in FIG. 6 may be implemented by the processor 110 in FIG. 7 .
  • the function of the transceiver 703 in FIG. 6 can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160 and the like in FIG. 7 .
  • the mobile communication module 150 can provide solutions including wireless communication technologies such as LTE, NR or future mobile communication applied on the terminal device 70 .
  • the wireless communication module 160 can provide WLAN (such as Wi-Fi network), Bluetooth (blue tooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM) applied on the terminal device 70. ), near field communication (near field communication, NFC), infrared and other wireless communication technology solutions.
  • the antenna 1 of the terminal device 70 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal device 70 can communicate with the network and other devices through wireless communication technology.
  • the function of the memory 702 in FIG. 6 may be implemented by the internal memory 121 in FIG. 7 or an external memory connected to the external memory interface 120 .
  • the functions of the output device 704 in FIG. 6 can be implemented by the display screen 194 in FIG. 7 .
  • the function of the input device 705 in FIG. 6 can be realized by a mouse, a keyboard, a touch screen device or the sensor module 180 in FIG. 7 .
  • the terminal device 70 may further include an audio module 170, a camera 193, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, a power management module 141 and a battery 142 one or more of the .
  • the structure shown in FIG. 7 does not constitute a specific limitation on the terminal device 70 .
  • the terminal device 70 may include more or fewer components than shown in the illustration, or combine some components, or separate some components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the resource allocation method provided by the embodiment of the present application will be described below with reference to FIG. 1 to FIG. 7 , taking the interaction between the network device 60 shown in FIG. 5 and at least two terminal devices 70 as an example.
  • the resource allocation method includes the following steps S801-S802:
  • the network device determines at least two physical downlink control channel PDCCH resources for at least two terminal devices, the at least two PDCCH resources correspond to at least two terminal devices one-to-one, and the frequency domain position of each PDCCH resource in the at least two PDCCH resources The distance from the reference frequency domain position satisfies a preset condition, or the distance between frequency domain positions of two adjacent PDCCH resources in the frequency domain among at least two PDCCH resources satisfies a preset condition.
  • the network device sends information to at least two terminal devices respectively on at least two PDCCH resources.
  • the terminal device receives information from the network device on at least two PDCCH resources.
  • FIG. 8 is only a schematic diagram. Although not shown, the network device in FIG. 8 can also interact with more than two terminal devices and implement the above steps S801-S802.
  • Step S801 is described below in two embodiments.
  • Embodiment 1 will be described below by taking the interaction between a network device and any terminal device among at least two terminal devices as an example.
  • the network device allocates the PDCCH resource to the terminal device
  • the determined PDCCH resource must satisfy the following condition: the distance between the frequency domain position of the PDCCH resource and the reference frequency domain position satisfies a preset condition. Therefore, the resource allocation method provided by the embodiment of the present application can make the distance between the frequency domain position of the PDCCH resource allocated by the network device to the terminal device and the reference frequency domain position meet the preset condition, so that the frequency domain position distribution of the PDCCH resource is no longer Randomization reduces the probability of fragmentation of PDCCH resources.
  • the distance between the frequency domain position of the PDCCH resource and the reference frequency domain position satisfies a preset condition including:
  • the PDCCH resource is a PDCCH resource that is in an allocatable state and has the smallest distance between a frequency domain position and a reference frequency domain position among one or more candidate PDCCH resources satisfying the first formula.
  • the one or more candidate PDCCH resources are located within the PDCCH time-frequency resource range indicated by the control resource set configured by the network device for the terminal device, and the terminal device blindly detects the candidate PDCCH resources within the PDCCH time-frequency resource range indicated by the control resource set.
  • the candidate PDCCH resources are in an allocatable state, which means that one or more CCE resources included in the candidate PDCCH resources have not been allocated to other terminal devices.
  • the frequency domain position of the candidate PDCCH resource includes the frequency domain position corresponding to any point in a section occupied by the candidate PDCCH resource in the frequency domain, for example, the frequency domain position of one of the two ends or the frequency domain of the middle point
  • the location is not limited in this embodiment of the application.
  • different candidate PDCCH resources have the same definition of frequency domain positions.
  • the frequency domain positions of different candidate PDCCH resources are all frequency domain positions of the middle point in the frequency domain or are all frequency domain positions of the end point in the frequency domain.
  • the reference frequency domain position is determined. Therefore, the network device can select one or more candidate PDCCH resources of the terminal device that are not allocated to other terminal devices and have the smallest distance according to the distance between the frequency domain position of each candidate PDCCH resource and the reference frequency domain position
  • the candidate PDCCH resource is used as the PDCCH resource allocated to the terminal device.
  • the network device determines the PDCCH resource allocated to the terminal device according to the distance between the frequency domain position of the candidate PDCCH resource and the reference frequency domain position is introduced below with reference to FIG. 9 .
  • the first terminal device and the second terminal device access the same cell, both blindly detect PDCCH resources in the PDCCH time-frequency resource range indicated by the control resource set, and the randomization parameters of the first terminal device is 2, the aggregation level L is 2, and the maximum number of blind detections is 4, the randomization parameter of the second terminal device is 5, the aggregation level L is 2, and the maximum number of blind detections is 4, and the index n CI of the cell accessed by the first terminal device and the second terminal device is 0. by Indicates the reference frequency domain position, as shown in Figure 9, which is the frequency domain position corresponding to the starting point of CCE0 in the frequency domain (according to the order from bottom to top of the frequency domain axis), in the frequency domain
  • each candidate PDCCH resource of the first terminal device and each candidate PDCCH resource of the second terminal device are determined. As shown in Figure 2, it is the distribution of the candidate PDCCH resources of the first terminal device and the candidate PDCCH resources of the second terminal device. state.
  • the candidate PDCCH resources include CCE0 and CCE1
  • the candidate PDCCH resources are used as the PDCCH resources allocated to the first terminal device.
  • the starting point of the candidate PDCCH resource in the frequency domain (according to the order from bottom to top of the frequency domain axis) is used as the frequency domain position of the candidate PDCCH resource, and according to the frequency domain position of each candidate PDCCH resource of the second terminal device
  • the reference frequency domain position the distance between the available frequency domain position and the reference frequency domain position is the smallest, or the closest to the reference frequency domain position is the index is 2 candidate PDCCH resources
  • the PDCCH resources include CCE2 and CCE3
  • the candidate PDCCH resources are used as the PDCCH resources allocated to the second terminal device.
  • FIG. 9 it is a schematic diagram of distribution of PDCCH resources allocated to the first terminal device and PDCCH resources allocated to the second terminal device determined according to the above process.
  • the first terminal device and the second terminal device respectively perform blind detection according to the blind detection sequence shown in FIG. 9 until the PDCCH resource allocated to them is detected.
  • the PDCCH resources of the first terminal device and the second terminal device can be pooled together.
  • the network device allocates PDCCH resources to the third terminal device, and the third terminal device also blindly detects the PDCCH resources in the PDCCH time-frequency resource range indicated by the control resource set with index p.
  • Randomization parameters of the third terminal device is 0, the aggregation level L is 8, and the maximum number of blind detections is 2, the third terminal device accesses the same cell as the first terminal device and the second terminal device, and the cell index n CI is 0.
  • the network device determines the candidate PDCCH resources of the third terminal device according to the first formula and the above parameters, wherein the candidate PDCCH resources with index 0 include CCE0 to CCE7, and the candidate PDCCH resources with index 1 include CCE8-CCE15. Because CCE0-CCE3 is occupied by the first terminal device and the second terminal device, among the candidate PDCCH resources of the third terminal device, the candidate PDCCH resources in the allocatable state are candidate PDCCH resources with an index of 1, and the network device selects the candidate PDCCH resource The PDCCH resource is allocated to the third terminal device.
  • the resource allocation method provided by the embodiment of the present application can preferentially select candidate PDCCH resources whose frequency domain positions are close to the reference frequency domain position from the candidate PDCCH resources of the terminal equipment and allocate them to the terminal equipment, so that the PDCCH resources allocated to multiple terminal equipment The resources are more concentrated, so as to successfully allocate PDCCH resources for high-level terminal equipment, and avoid the fragmentation of PDCCH resources in the related art when the frequency domain position of the first candidate PDCCH resource is only related to randomization parameters, which cannot be used for A problem of allocating PDCCH resources to a terminal device with a high aggregation level.
  • the candidate PDCCH resource whose frequency domain position of the first terminal device or the second terminal device is the smallest from the reference frequency domain position is not occupied, so the allocation for the first terminal device or the second terminal device is Candidate PDCCH resources closest to the reference frequency domain position.
  • the candidate PDCCH resources closest to the reference frequency domain position of the terminal device are already occupied.
  • the network device determines that one or more candidate PDCCH resources of the terminal device are in an allocatable state, and the same as The PDCCH resource with the smallest distance between the reference frequency domain positions includes: the network device determines each candidate PDCCH resource of the terminal device according to the first formula, and determines the distance between the frequency domain position of each candidate PDCCH resource and the reference frequency domain position Among the candidate PDCCH resources not allocated to other terminal devices, the candidate PDCCH resource with the smallest distance is selected as the PDCCH resource allocated to the terminal device.
  • the network device determines each candidate PDCCH resource of the terminal device according to the first formula, and then determines the candidate PDCCH resource whose index satisfies the second formula as the PDCCH resource allocated to the terminal device.
  • the network device In the case that the PDCCH resource with the smallest distance between the frequency domain position and the reference frequency domain position is occupied, the network device first determines the distance between the frequency domain position of each candidate PDCCH resource and the reference frequency domain position, and then For an implementation manner of selecting a candidate PDCCH resource with the smallest distance among candidate PDCCH resources allocated to other terminal devices as a PDCCH resource allocated to the terminal device, reference may be made to the description above.
  • the following introduces a solution in which the network device determines, according to the second formula, candidate PDCCH resources whose indexes satisfy the second formula are in an allocatable state and have the smallest distance between the frequency domain position and the reference frequency domain position.
  • the following takes the second formula satisfying formula (2) as an example to introduce how to determine according to the second formula that one or more candidate PDCCH resources satisfying the first formula are in an allocatable state, and the frequency domain position is the same as the reference frequency
  • the PDCCH resource with the smallest distance between field locations Assume that there are 17 candidate CCE resources in the PDCCH time-frequency resource range indicated by the control resource set with index p: CCE0-CCE16, and these 17 candidate CCE resources are all located in symbol 0 in the time domain, and the time domain positions are the same.
  • the first terminal device blindly detects PDCCH resources in the PDCCH time-frequency resource range indicated by the control resource set, and the randomization parameter of the first terminal device is 2, the aggregation level L is 2, and the maximum number of blind detections is 4, the reference frequency domain position
  • Candidate PDCCH resources satisfying the first formula of the first terminal device have indexes
  • the candidate PDCCH resource is 0, the candidate PDCCH resource includes CCE4 and CCE5, index is a candidate PDCCH resource of 1, the candidate PDCCH resource includes CCE8 and CCE9, index is 2 candidate PDCCH resources, the candidate PDCCH resources include CCE12 and CCE13, index is 3 candidate PDCCH resources, the candidate PDCCH resources include CCE0 and CCE1, where the distance most recent index is 3 candidate PDCCH resources, but the candidate PDCCH resources have been allocated to other terminal devices and are in an unallocated state.
  • the network device can index Candidate PDCCH resources including CCE4 and CCE5 are used as PDCCH resources that are in an allocatable state and have the smallest distance between the frequency domain position and the reference frequency domain position.
  • the network device can be determined to be in an allocatable state and The PDCCH resource with the smallest distance from the reference frequency domain position is allocated to the terminal equipment, so that when the PDCCH resource with the smallest distance between the frequency domain position and the reference frequency domain position is occupied, it can still be allocated to multiple The PDCCH resources of the terminal equipment are more concentrated.
  • the embodiment of the present application further provides the following method for determining a reference frequency domain position, which is used to implement different reference frequency domain positions corresponding to terminal devices accessing different cells, so as to reduce inter-cell interference.
  • the method includes: determining the reference frequency domain position according to the identifier of the cell accessed by the terminal device and the third formula; wherein, when the identifier of the cell accessed by the terminal device satisfies the following relationship:
  • PCI represents the identity of the cell accessed by the terminal device
  • k is a positive integer greater than or equal to 0
  • n takes a value in ⁇ 1,...,N CCE,p ⁇
  • N CCE,p represents the control resource whose index is p
  • m is a positive integer, 0 ⁇ m ⁇ n-1; Indicates the index of the CCE resource corresponding to the reference frequency domain position.
  • the PCI in the above formula (7) may be a physical cell identifier (physical cell identifier, PCI) of the cell accessed by the terminal device, and the network device may determine the PCI according to the cell accessed by the terminal device.
  • PCI physical cell identifier
  • the scheme of determining the reference frequency domain position according to the identifier of the cell accessed by the terminal device and the third formula is introduced below.
  • Yk in Figure 10 is the randomization parameter m is the index L is the aggregation level
  • the PCI of the cell accessed by the first terminal device, the second terminal device and the third terminal device is 1, the first terminal device, the second terminal device and the third terminal device are all in the
  • the PDCCH resource is blindly detected within the PDCCH time-frequency resource range indicated by the control resource set, and the PDCCH time-frequency resource range indicated by the control resource set includes 17 candidate CCE resources: CCE0-CCE16.
  • the reference frequency domain position after determining the CCE resource corresponding to the reference frequency domain position according to the index of the CCE resource corresponding to the reference frequency domain position, the reference frequency domain position includes a section occupied by the CCE resource in the frequency domain.
  • the randomization parameter of the first terminal device is 2
  • the aggregation level L is 2
  • the maximum number of blind detections is 4
  • the randomization parameter of the second terminal device is 5
  • the aggregation level L is 2
  • the maximum number of blind detections is 4
  • the randomization parameter of the third terminal device is 0,
  • the aggregation level L is 8, and the maximum number of blind detections is 2
  • the index n CI of the cell accessed by the first terminal device, the second terminal device and the third terminal device is 0.
  • Embodiment 2 will be described below by taking the interaction between a network device and at least two terminal devices as an example.
  • the network device allocates PDCCH resources to at least two terminal devices, a distance between frequency domain positions of two adjacent PDCCH resources in the frequency domain among the allocated at least two PDCCH resources satisfies a preset condition. Therefore, the resource allocation method provided by the embodiment of the present application can make the distance between the frequency domain position of the PDCCH resource allocated by the network equipment to the terminal equipment and the adjacent PDCCH resource allocated to another terminal equipment meet the preset condition, so that the PDCCH The frequency domain position distribution of resources is no longer randomized, reducing the probability of fragmentation of PDCCH resources.
  • the distance between the frequency domain positions of two adjacent PDCCH resources in the frequency domain among the at least two PDCCH resources satisfying the preset conditions includes:
  • the two adjacent PDCCH resources include the first PDCCH resource and the second PDCCH resource, and the second PDCCH resource is one or more candidate PDCCH resources that satisfy the first formula, is in an assignable state, and has the smallest distance from the first PDCCH resource PDCCH resources.
  • the second PDCCH resource is a PDCCH resource selected by the network device from one or more candidate PDCCH resources of the terminal device and allocated to the terminal device, and the first PDCCH resource is that the network device allocates the second PDCCH resource to the terminal device before, PDCCH resources already allocated to any remaining terminal devices.
  • the network device determines each candidate PDCCH resource of the terminal device according to the first formula, according to the frequency domain position of each candidate PDCCH resource, from the candidate PDCCH resources in the allocation state, select the frequency domain position and the first
  • a candidate PDCCH resource whose frequency domain position distance of a PDCCH resource is the smallest is used as a PDCCH resource allocated to the terminal device.
  • the candidate PDCCH resource whose frequency domain position is closest to another PDCCH resource can be preferentially selected and allocated to the terminal device, so that the PDCCH resources allocated to multiple terminal devices
  • the resources are more concentrated, so as to successfully allocate PDCCH resources for high-aggregation-level terminal equipment, avoiding the fragmentation of PDCCH resources caused by the frequency domain position of the first candidate PDCCH resource in the related art is only related to randomization parameters, which cannot be used for high-aggregation-level terminal equipment
  • the terminal equipment allocates the PDCCH resource problem.
  • Step S802 After determining at least two PDCCH resources allocated to at least two terminal devices, the network device sends information to each terminal device on each PDCCH resource. Correspondingly, after the terminal device blindly detects the PDCCH resource assigned to it according to the blind detection sequence, it can successfully detect and receive the information sent by the network device on the PDCCH resource. After the terminal device successfully checks the information sent by the network device on the PDCCH resource, the terminal device can determine that the PDCCH resource is the PDCCH resource allocated to itself by the network device according to the test result, and stop the blind detection.
  • the information sent by the network device on the PDCCH resource may be downlink control information (downlink control information, DCI). This application does not limit the specific manner of verifying information of the terminal device.
  • the resource allocation method provided in the embodiment of the present application may be applied when at least two cells accessed by terminal devices meet the following conditions:
  • the utilization rate of the CCE resources is greater than the first threshold corresponding to the target period.
  • the utilization rate of CCE resources is the ratio of the number of CCE resources allocated to the terminal equipment to the total number of CCE resources in the PDCCH time-frequency resource range corresponding to the cell.
  • the ratio of the number of the first type of terminal equipment accessing the cell to the data of the second type of terminal equipment is greater than the third threshold corresponding to the target period, wherein the first type of terminal equipment is not successfully assigned a PDCCH resources and whose aggregation level is greater than a second threshold, the second type of terminal device is a terminal device whose aggregation level is greater than the second threshold and requests scheduling.
  • the network device needs to allocate PDCCH resources for the terminal device requesting scheduling.
  • the aggregation level of the access cell is greater than the second threshold (for example, 8) and the terminal device that has not been successfully allocated PDCCH resources, the aggregation level of the access cell is greater than the second threshold and Among the terminal devices requesting scheduling, if the proportion exceeds the third threshold corresponding to the target period, for example, exceeds B%, the resource allocation method provided in the embodiment of the present application is applied.
  • the second threshold for example, 8
  • the resource allocation method provided by the embodiment of the present application may not be applied, but other methods for allocating PDCCH resources (for example, the allocation methods in the related art introduced above) may be applied. Based on this solution, it can be judged whether the PDCCH resource fragmentation problem in the cell accessed by the terminal device is serious according to the utilization rate of candidate PDCCH resources or the probability of PDCCH resource allocation failure of terminal devices at a large aggregation level. If the preset conditions are met, it means that the PDCCH resource The fragmentation problem is serious, and it is necessary to apply the resource allocation method provided by the embodiment of the present application to reduce the probability of occurrence of the PDCCH resource fragmentation problem, thereby improving the success rate of PDCCH resource allocation. If the preset condition is not met, it means that the problem of PDCCH resource fragmentation is not serious, and it is not necessary to apply the resource allocation method provided by the embodiment of the present application.
  • the target period in the above solution may be determined according to load states corresponding to cells accessed by at least two terminal devices.
  • the load state of the cell may be determined according to the traffic volume of the terminal equipments accessing the cell, or the number of terminal equipments accessing the cell.
  • Different load states of cells correspond to different target periods, and different target periods correspond to different first thresholds or third thresholds.
  • the target period when it is judged that the cell is in the "busy” state, the target period is 1s, the corresponding first threshold is A%, and the third threshold is B%.
  • the target period When it is judged that the cell is in the "idle” state, the target period is 1 TTI, that is, 1 ms, the corresponding first threshold is C%, and the third threshold is D%.
  • a magnitude relationship between different first thresholds or different third thresholds corresponding to different target periods may be set. For example, in the above example, set C% to be greater than A%, and D% to be greater than B%. Based on this solution, different target periods and thresholds corresponding to the target periods can be determined according to cell load states in different scenarios, so as to meet different requirements.
  • the actions of the network device in the above steps S801 to S802 can be executed by the processor 601 in the network device 60 shown in FIG. 6 calling the application code stored in the memory 602 to instruct the network device to execute.
  • the actions of the terminal device in the above steps S801 to S802 may be executed by the processor 701 in the terminal device 70 shown in FIG. 6 calling the application program code stored in the memory 702 to instruct the terminal device. This embodiment does not impose any limitation on this.
  • the method and/or steps implemented by the network device may also be implemented by a component (such as a chip or circuit) that can be used for the network device; the method and/or steps implemented by the terminal device, It can also be implemented by components (such as chips or circuits) that can be used in terminal equipment.
  • a component such as a chip or circuit
  • components such as chips or circuits
  • the embodiment of the present application further provides a communication device, and the communication device is used to implement the above-mentioned various methods.
  • the communication device may be the network device in the above-mentioned method embodiment, or a device including the above-mentioned network device, or a component that can be used in a network device; or, the communication device may be the terminal device in the above-mentioned method embodiment, or include the above-mentioned A device for terminal equipment, or a component that can be used for terminal equipment.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the embodiment of the present application may divide the functional modules of the communication device according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 11 shows a schematic structural diagram of a communication device 110 .
  • the communication device 110 includes a processing module 1101 and a transceiver module 1102 .
  • the transceiver module 1102 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 1101 is configured to determine at least two physical downlink control channel PDCCH resources for at least two terminal devices, the at least two PDCCH resources correspond to at least two terminal devices one-to-one, and the frequency of each PDCCH resource in the at least two PDCCH resources The distance between the domain position and the reference frequency domain position satisfies a preset condition, or the distance between the frequency domain positions of at least two adjacent PDCCH resources in the frequency domain among the at least two PDCCH resources satisfies a preset condition.
  • the transceiver module 1102 is configured to respectively send information to at least two terminal devices on at least two PDCCH resources.
  • the distance between the frequency domain position of each PDCCH resource in the at least two PDCCH resources and the reference frequency domain position satisfies the preset condition includes: each PDCCH resource in the at least two PDCCH resources is one that satisfies the first formula Or among the plurality of candidate PDCCH resources, the PDCCH resources that are in an allocatable state and have the smallest distance between the frequency domain position and the reference frequency domain position; wherein, the first formula satisfies the following relationship: Wherein, L represents the aggregation level of the terminal equipment corresponding to one or more candidate PDCCH resources; Indicates the randomization parameter corresponding to the terminal equipment; N CCE,p indicates the number of control channel unit CCE resources included in the PDCCH time-frequency resource range indicated by the control resource set with index p, wherein the control resource set with index p is a communication device The set of control resources configured for the terminal device; Indicates the maximum number of blind detection times of the terminal equipment; Indicates the index of each candidate PDCCH
  • each of the at least two PDCCH resources is a PDCCH resource that is in an allocatable state and has the smallest distance from the reference frequency domain position among one or more candidate PDCCH resources that satisfy the first formula, including :
  • PCI represents the identity of the cell accessed by the terminal device
  • k is a positive
  • the distance between the frequency domain positions of the two adjacent PDCCH resources in the frequency domain among the at least two PDCCH resources satisfying the preset condition includes: the adjacent two PDCCH resources include the first PDCCH resource and the second PDCCH resource , the second PDCCH resource is the PDCCH resource that is in an allocatable state and has the smallest distance from the first PDCCH resource among one or more candidate PDCCH resources satisfying the first formula; wherein, the first formula satisfies the following relationship: Wherein, L represents the aggregation level of the terminal equipment corresponding to one or more candidate PDCCH resources; Indicates the randomization parameter corresponding to the terminal device; N CCE,p indicates the number of CCE resources included in the PDCCH time-frequency resource range indicated by the control resource set with index p, wherein the control resource set with index p is configured for the terminal by the communication device The control resource set of the device; Indicates the maximum number of blind detection times of the terminal equipment; Indicates the index of each candidate PDCCH resource in one
  • the cells accessed by at least two terminal devices meet the following conditions: within the target period, the utilization rate of CCE resources is greater than the first threshold corresponding to the target period; or, within the target period, the first type of access cell
  • the ratio of the number of terminal devices to the data of the second type of terminal device is greater than a third threshold corresponding to the target period, wherein the first type of terminal device is a terminal device that has not been successfully allocated PDCCH resources and has an aggregation level greater than the second threshold, and the second The type terminal device is a terminal device whose aggregation level is greater than the second threshold and requests scheduling.
  • the target period is determined according to load states corresponding to cells accessed by at least two terminal devices.
  • the communication device 110 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the communication device 110 can take the form of the network device 60 shown in FIG. 6 .
  • the processor 601 in the network device 60 shown in FIG. 6 may invoke the computer-executed instructions stored in the memory 602, so that the network device 60 executes the resource allocation method in the foregoing method embodiments.
  • the functions/implementation process of the processing module 1101 and the transceiver module 1102 in FIG. 11 can be implemented by the processor 601 in the network device 60 shown in FIG. 6 invoking computer-executed instructions stored in the memory 602 .
  • the function/implementation process of the processing module 1101 in FIG. 11 can be realized by the processor 601 in the network device 60 shown in FIG. /The implementation process can be implemented by the transceiver 603 in the network device 60 shown in FIG. 6 .
  • the communication device 110 provided in this embodiment can execute the above-mentioned resource allocation method, the technical effect it can obtain can refer to the above-mentioned method embodiment, and details are not repeated here.
  • one or more of the above modules or units may be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and realize the above method flow.
  • the processor can be built into a SoC (system on a chip) or ASIC, or it can be an independent semiconductor chip.
  • the core of the processor is used to execute software instructions for calculation or processing, and can further include necessary hardware accelerators, such as field programmable gate array (field programmable gate array, FPGA), PLD (programmable logic device) , or a logic circuit that implements a dedicated logic operation.
  • the hardware can be CPU, microprocessor, digital signal processing (digital signal processing, DSP) chip, microcontroller unit (microcontroller unit, MCU), artificial intelligence processor, ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator or non-integrated discrete device, which can run necessary software or not depend on software to execute the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • ASIC artificial intelligence processor
  • an embodiment of the present application further provides a chip system, including: at least one processor and an interface, the at least one processor is coupled to the memory through the interface, and when the at least one processor executes the computer program or instruction in the memory When, the method in any one of the above method embodiments is executed.
  • the communication device further includes a memory.
  • the system-on-a-chip may consist of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.

Abstract

本申请适用于通信技术领域。本申请实施例提供资源分配方法、装置及系统,用于解决分配PDCCH资源时容易出现PDCCH资源碎片化的问题。本申请实施例提供的资源分配方法包括:为至少两个终端设备确定至少两个PDCCH资源,至少两个PDCCH资源与至少两个终端设备一一对应,至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件,或者至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件;在至少两个PDCCH资源上分别向至少两个终端设备发送信息。

Description

资源分配方法、装置及系统
本申请要求于2021年07月31日提交中国国家知识产权局、申请号为202110877188.8、申请名称为“资源分配方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及资源分配方法、装置及系统。
背景技术
在长期演进(long term evolution,LTE)系统或者第五代(fifth-generation,5G)系统中,终端设备可以通过盲检物理下行控制信道(physical downlink control channel,PDCCH)的方式确定网络设备为给终端设备分配的PDCCH资源。具体地,终端设备可以按照一定的顺序,对PDCCH候选集中的候选PDCCH资源进行盲检,若检验成功,则终端设备可以将检验成功的PDCCH资源确定为网络设备分配给自己的PDCCH资源。其中,终端设备盲检PDCCH候选集的顺序可以称为盲检顺序。
目前的一种方案中,网络设备为终端设备分配PDCCH资源是根据盲检顺序,从盲检的起始位置开始依次进行分配,并根据终端设备的聚集级别,确定为终端设备分配的PDCCH资源的多少。然而,该方案在一些场景中,容易造成PDCCH资源碎片化的问题。
因此,如何优化目前的PDCCH资源分配方法,从而降低出现PDCCH资源碎片化问题的概率,提高PDCCH资源分配的成功率,是目前亟待解决的问题。
发明内容
本申请实施例提供一种资源分配方法、装置及系统,用于解决在PDCCH资源分配时,容易出现PDCCH资源碎片化的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种资源分配方法,执行该方法的通信装置可以为网络设备也可以为应用于网络设备中的模块,例如芯片。下面以执行主体为网络设备为例进行描述。网络设备为至少两个终端设备确定至少两个PDCCH资源,至少两个PDCCH资源与至少两个终端设备一一对应,至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件,或者至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件。之后,网络设备在至少两个PDCCH资源上分别向至少两个终端设备发送信息。基于本申请实施例提供的资源分配方法,可以使网络设备为终端设备分配的PDCCH资源的频域位置满足预设条件,使得PDCCH资源的频域位置分布不再随机化,降低出现PDCCH资源碎片化问题的概率。
结合上述第一方面,在一种可能的实现方式中,至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件包括:至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与基准频域位置之间的距离最小的PDCCH资源;其中,第一公式满足如下关 系:
Figure PCTCN2022108748-appb-000001
其中,L表示与一个或者多个候选PDCCH资源对应的终端设备的聚集级别;
Figure PCTCN2022108748-appb-000002
表示终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的控制信道单元CCE资源的数量,其中,索引为p的控制资源集为网络设备配置给终端设备的控制资源集;
Figure PCTCN2022108748-appb-000003
表示终端设备的最大盲检次数;
Figure PCTCN2022108748-appb-000004
表示一个或者多个候选PDCCH资源中每个候选PDCCH资源的索引,
Figure PCTCN2022108748-appb-000005
Figure PCTCN2022108748-appb-000006
中的一个值;n CI表示终端设备接入的小区的索引;i={0,1,…,L-1}。基于本申请实施例提供的资源分配方法,可以从终端设备的候选PDCCH资源中,优先选取频域位置临近基准频域位置的候选PDCCH资源分配给终端设备,使分配给多个终端设备的PDCCH资源更集中,从而成功为高聚集级别的终端设备分配PDCCH资源,避免在第一个候选PDCCH资源的频域位置只与随机化参数相关的情况下,分配PDCCH资源时容易出现PDCCH资源碎片化,无法为高聚集级别的终端设备分配PDCCH资源的问题。
结合上述第一方面,在一种可能的实现方式中,至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与基准频域位置之间的距离最小的PDCCH资源,包括:至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,频域位置与基准频域位置之间的距离最小的PDCCH资源被占用的情况下,索引满足第二公式的PDCCH资源,其中,第二公式满足如下关系:
Figure PCTCN2022108748-appb-000007
或者,
Figure PCTCN2022108748-appb-000008
Figure PCTCN2022108748-appb-000009
或者,
Figure PCTCN2022108748-appb-000010
或者,
Figure PCTCN2022108748-appb-000011
Figure PCTCN2022108748-appb-000012
其中,
Figure PCTCN2022108748-appb-000013
表示满足所述第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与所述基准频域位置之间的距离最小的PDCCH资源的索引,其中,i取
Figure PCTCN2022108748-appb-000014
中的一个值;i=1时,
Figure PCTCN2022108748-appb-000015
Figure PCTCN2022108748-appb-000016
表示满足第一公式的一个或者多个候选PDCCH资源中,频域位置与基准频域位置之间的距离最小的PDCCH资源的索引;
Figure PCTCN2022108748-appb-000017
表示终端设备的最大盲检次数。基于本申请实施例提供的资源分配方法,可以使网络设备通过第二公式,在频域位置与基准频域位置之间的距离最小的PDCCH资源被占用的情况下,确定出处于可分配状态且与基准频域位置之间的距离最小的PDCCH资源并分配给终端设备,从而频域位置与基准频域位置之间的距离最小的PDCCH资源被占用的情况下,依然可以实现使分配给多个终端设备的PDCCH资源更集中的效果。
结合上述第一方面,在一种可能的实现方式中,基准频域位置为根据至少两个终端设备接入的小区的标识和第三公式确定的;其中,在终端设备接入的小区的标识满足如下关系的情况下:(PCI+k)mod n=m;第三公式满足如下关系:
Figure PCTCN2022108748-appb-000018
其中,PCI表示终端设备接入的小区的标识;k为大于等于0的正整数;n取{1,…,N CCE,p}中的一个值;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,索引为p的控制资源集为网络设备配置给终端设备的控制资源集;m为正整数,0≤m≤n-1;
Figure PCTCN2022108748-appb-000019
表示基准频域位置对应的CCE资源的索引。基于本申请实施例提供的资源分配方法,可以实现接入不同小区的终端设备对应的基准频域位置不同,以降低小区间的干扰。
结合上述第一方面,在一种可能的实现方式中,至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件包括:相邻的两个PDCCH资源包括第一PDCCH资源和第二PDCCH资源,第二PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与第一PDCCH资源距离最小的PDCCH 资源;其中,第一公式满足如下关系:
Figure PCTCN2022108748-appb-000020
其中,L表示与一个或者多个候选PDCCH资源对应的终端设备的聚集级别;
Figure PCTCN2022108748-appb-000021
表示终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,索引为p的控制资源集为网络设备配置给终端设备的控制资源集;
Figure PCTCN2022108748-appb-000022
表示终端设备的最大盲检次数;
Figure PCTCN2022108748-appb-000023
表示一个或者多个候选PDCCH资源中每个候选PDCCH资源的索引,
Figure PCTCN2022108748-appb-000024
Figure PCTCN2022108748-appb-000025
中的一个值;n CI表示终端设备接入的小区的索引;i={0,1,…,L-1}。基于本申请实施例提供的资源分配方法,可以从终端设备的候选PDCCH资源中,优先选取频域位置最临近另一PDCCH资源的候选PDCCH资源分配给终端设备,使分配给多个终端设备的PDCCH资源更集中,从而成功为高聚集级别的终端设备分配PDCCH资源,避免在第一个候选PDCCH资源的频域位置只与随机化参数相关的情况下,分配PDCCH资源时容易出现PDCCH资源碎片化,无法为高聚集级别的终端设备分配PDCCH资源的问题。
结合上述第一方面,在一种可能的实现方式中,至少两个终端设备接入的小区满足如下条件:在目标周期内,CCE资源的利用率大于目标周期对应的第一阈值;或者,在目标周期内,接入小区的第一类型终端设备的数量与第二类型终端设备的数据的比值大于目标周期对应的第三阈值,其中,第一类型终端设备为未被成功分配PDCCH资源并且聚集级别大于第二阈值的终端设备,第二类型终端设备为聚集级别大于第二阈值并请求调度的终端设备。基于本方案,可以根据候选PDCCH资源的利用率或大聚集级别终端设备分配PDCCH资源失败的概率,判断终端设备接入的小区中PDCCH资源碎片化问题是否严重,若满足预设条件,说明PDCCH资源碎片化问题严重,需要应用本申请实施例提供的资源分配方法来降低出现PDCCH资源碎片化问题的概率,进而提高PDCCH资源的分配成功率。若不满足预设条件,说明PDCCH资源碎片化问题不严重,无需应用本申请实施例提供的资源分配方法。
结合上述第一方面,在一种可能的实现方式中,目标周期是根据至少两个终端设备接入的小区对应的负载状态确定的。基于本方案,可以根据不同场景下的小区负载状态,确定不同的目标周期和与目标周期对应的阈值,从而满足不同的需求。
第二方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第二方面,在一种可能的实现方式中,该通信装置包括:处理模块和收发模块;处理模块,用于为至少两个终端设备确定至少两个物理下行控制信道PDCCH资源,至少两个PDCCH资源与至少两个终端设备一一对应,至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件,或者至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件。收发模块,用于在至少两个PDCCH资源上分别向至少两个终端设备发送信息。
结合上述第二方面,在一种可能的实现方式中,至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件包括:至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与基准频域位置之间的距离最小的PDCCH资源;其中,第一公式满足如下关 系:
Figure PCTCN2022108748-appb-000026
其中,L表示与一个或者多个候选PDCCH资源对应的终端设备的聚集级别;
Figure PCTCN2022108748-appb-000027
表示终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的控制信道单元CCE资源的数量,其中,索引为p的控制资源集为通信装置配置给终端设备的控制资源集;
Figure PCTCN2022108748-appb-000028
表示终端设备的最大盲检次数;
Figure PCTCN2022108748-appb-000029
表示一个或者多个候选PDCCH资源中每个候选PDCCH资源的索引,
Figure PCTCN2022108748-appb-000030
Figure PCTCN2022108748-appb-000031
中的一个值;n CI表示终端设备接入的小区的索引;i={0,1,…,L-1}。
结合上述第二方面,在一种可能的实现方式中,至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与基准频域位置之间的距离最小的PDCCH资源,包括:至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,频域位置与基准频域位置之间的距离最小的PDCCH资源被占用的情况下,索引满足第二公式的PDCCH资源,其中,第二公式满足如下关系:
Figure PCTCN2022108748-appb-000032
或者,
Figure PCTCN2022108748-appb-000033
Figure PCTCN2022108748-appb-000034
或者,
Figure PCTCN2022108748-appb-000035
或者,
Figure PCTCN2022108748-appb-000036
Figure PCTCN2022108748-appb-000037
其中,
Figure PCTCN2022108748-appb-000038
表示满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与基准频域位置之间的距离最小的PDCCH资源的索引,其中,i取
Figure PCTCN2022108748-appb-000039
中的一个值;i=1时,
Figure PCTCN2022108748-appb-000040
表示满足第一公式的一个或者多个候选PDCCH资源中,频域位置与基准频域位置之间的距离最小的PDCCH资源的索引;
Figure PCTCN2022108748-appb-000041
表示终端设备的最大盲检次数。
结合上述第二方面,在一种可能的实现方式中,基准频域位置为根据至少两个终端设备接入的小区的标识和第三公式确定的;其中,在终端设备接入的小区的标识满足如下关系的情况下:(PCI+k)mod n=m;第三公式满足如下关系:
Figure PCTCN2022108748-appb-000042
其中,PCI表示终端设备接入的小区的标识;k为大于等于0的正整数;n取{1,…,N CCE,p}中的一个值;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,索引为p的控制资源集为通信装置配置给终端设备的控制资源集;m为正整数,0≤m≤n-1;
Figure PCTCN2022108748-appb-000043
表示基准频域位置对应的CCE资源的索引。
结合上述第二方面,在一种可能的实现方式中,至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件包括:相邻的两个PDCCH资源包括第一PDCCH资源和第二PDCCH资源,第二PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与第一PDCCH资源距离最小的PDCCH资源;其中,第一公式满足如下关系:
Figure PCTCN2022108748-appb-000044
其中,L表示与一个或者多个候选PDCCH资源对应的终端设备的聚集级别;
Figure PCTCN2022108748-appb-000045
表示终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,索引为p的控制资源集为通信装置配置给终端设备的控制资源集;
Figure PCTCN2022108748-appb-000046
表示终端设备的最大盲检次数;
Figure PCTCN2022108748-appb-000047
表示一个或者多个候选PDCCH资源中每个候选PDCCH资源的索引,
Figure PCTCN2022108748-appb-000048
Figure PCTCN2022108748-appb-000049
中的一个值;n CI表示终端设备接入的小区的索引;i={0,1,…,L-1}。
结合上述第二方面,在一种可能的实现方式中,至少两个终端设备接入的小区满足如下条件:在目标周期内,CCE资源的利用率大于目标周期对应的第一阈值;或者,在目标周期内,接入小区的第一类型终端设备的数量与第二类型终端设备的数据的比值大于目标 周期对应的第三阈值,其中,第一类型终端设备为未被成功分配PDCCH资源并且聚集级别大于第二阈值的终端设备,第二类型终端设备为聚集级别大于第二阈值并请求调度的终端设备。
结合上述第二方面,在一种可能的实现方式中,目标周期是根据至少两个终端设备接入的小区对应的负载状态确定的。
其中,第二方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面中不同实现方式所带来的技术效果,此处不再赘述。
第三方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中存储的计算机指令之后,根据该指令执行如上述第一方面所述的方法。
结合上述第三方面,在一种可能的实现方式中,通信装置还包括存储器;该存储器用于存储计算机指令。
结合上述第三方面,在一种可能的实现方式中,通信装置还包括通信接口;该通信接口用于该通信装置与其它设备进行通信。示例性的,该通信接口可以为收发器、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
结合上述第三方面,在一种可能的实现方式中,该通信装置可以是芯片或芯片系统。其中,当该通信装置是芯片系统时,该通信装置可以由芯片构成,也可以包含芯片和其他分立器件。
结合上述第三方面,在一种可能的实现方式中,当通信装置为芯片或芯片系统时,上述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。上述处理器也可以体现为处理电路或逻辑电路。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面所述的方法。
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面所述的方法。
其中,第三方面至第五方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面中不同实现方式所带来的技术效果,此处不再赘述。
第六方面,提供了一种通信系统,其包括执行上述第一方面所述的方法的网络设备,以及执行上述第一方面所述的方法的终端设备。
附图说明
图1为本申请实施例提供的一种终端设备的候选PDCCH资源示意图;
图2为本申请实施例提供的另一种终端设备的候选PDCCH资源示意图;
图3为本申请实施例提供的一种PDCCH资源分配结果示意图;
图4为本申请实施例提供的另一种PDCCH资源分配结果示意图;
图5为本申请实施例提供的一种通信系统的结构示意图;
图6为本申请实施例提供的网络设备和终端设备的结构示意图;
图7为本申请实施例提供的另一种终端设备的结构示意图;
图8为本申请实施例提供的资源分配方法的交互示意图;
图9为本申请实施例提供的一种集中化PDCCH资源的分配结果示意图;
图10为本申请实施例提供的另一种集中化PDCCH资源的分配结果示意图;
图11为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
详细描述本申请实施例之前,为了便于理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
1、盲检PDCCH的流程
在LTE系统、新空口(new radio,NR)系统或者5G系统中,终端设备需要通过盲检流程,来确定网络设备为终端设备分配的PDCCH资源。在盲检流程中,终端设备可以根据盲检公式确定PDCCH候选集,并按照盲检顺序对PDCCH候选集中的候选PDCCH资源进行检验,若终端设备检验某一个候选PDCCH资源成功,那么终端设备可以将该检验成功的PDCCH资源确定为网络设备分配给自己的PDCCH资源,并终止盲检流程。
网络设备为终端设备分配PDCCH资源时,PDCCH资源的单位为CCE资源,一个候选PDCCH资源可以包括一个或多个候选CCE资源,网络设备根据终端设备的聚集级别(AggLvl)确定一个候选PDCCH资源中包括的候选CCE资源的数量。
以下以NR系统为例,对盲检PDCCH流程进行进一步介绍。NR系统中,在进行盲检之前,终端设备可以根据来自网络设备的无线资源控制(radio resource control,RRC)消息,获取搜索空间(search space)以及控制资源集(coreset)中封装的信息,进而获知该终端设备对应的PDCCH时频资源范围信息、调度周期、终端设备的聚集级别范围,以及与终端设备的聚集级别范围中每个聚集级别对应的终端设备的最大盲检次数等信息。然后,终端设备可以根据获知的信息以及盲检公式,确定控制资源集指示的PDCCH时频资源范围中包括的一个或多个候选PDCCH资源,其中,每个候选PDCCH资源对应一个或多个候选CCE资源。接着,终端设备可以按照与候选PDCCH资源的索引关联的盲检顺序,依次对候选PDCCH资源进行检验,直至检验成功。
需要说明的是,一个控制资源集指示的PDCCH时频资源范围中,每个候选PDCCH资源(或者说候选CCE资源),其时域位置均相同(时域上的起始符号数和占用的符号数均相同)。
一种方案中,以控制资源集的索引为p为例,盲检公式满足如下关系:
Figure PCTCN2022108748-appb-000050
其中,L表示终端设备的聚集级别;
Figure PCTCN2022108748-appb-000051
表示终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围中包括的候选CCE资源的数量,其中,索引为p的控制资源集为网络设备配置给终端设备的控制资源集;
Figure PCTCN2022108748-appb-000052
表示终端设备的最大盲检次数;
Figure PCTCN2022108748-appb-000053
表示候选PDCCH资源的索引,
Figure PCTCN2022108748-appb-000054
Figure PCTCN2022108748-appb-000055
中的一个值;n CI表示终端设备接入的小区的索引;i={0,1,…,L-1}。
以下介绍终端设备确定上述参数:终端设备根据搜索空间中的信息获知L的取值范围,进而根据L的取值范围和L的可能取值确定与终端设备对应的一个或多个L的取值,终端设备需要根据终端设备对应的一个或多个L的取值中每个L的取值,分别结合盲检公式确定候选PDCCH资源。例如,终端设备获知L的取值范围为4到16,因为L的可能取值为{1,2,4,8,16},因此终端设备可确定与终端设备对应的L的取值包括4、8或16。
Figure PCTCN2022108748-appb-000056
为终端设备根据网络设备发送的无线网络临时标识符(radio network temporary identifier,RNTI)以及发送RNTI的时间确定的伪随机值。N CCE,p为终端设备根据控制 资源集中的信息确定的固定值。
Figure PCTCN2022108748-appb-000057
为终端设备根据搜索空间中的信息确定的值,其中,终端设备对应的一个或多个L的取值中每个L的取值均对应一个
Figure PCTCN2022108748-appb-000058
的取值。
Figure PCTCN2022108748-appb-000059
的最大取值为终端设备根据
Figure PCTCN2022108748-appb-000060
的取值确定的。n CI为终端设备根据当前接入的小区确定的。i的最大取值为终端设备根据L的取值确定的。
网络设备确定上述参数时,与终端设备确定上述参数不同的是,对于一个终端设备,网络设备确定一个固定的聚集级别L。相对应的,网络设备确定的终端设备的最大盲检次数
Figure PCTCN2022108748-appb-000061
同样为一个与确定的聚集级别L对应的固定值。其余参数可参考上文介绍,在此不再赘述。
为了避免歧义,在此解释公式(1)中的一些运算符号:a mod b表示取a除以b得到的余数。
Figure PCTCN2022108748-appb-000062
表示对a/b向下取整。以后不再赘述。
终端设备可以根据上述盲检公式,确定候选PDCCH资源。为了便于理解,以下结合下图1,在终端设备根据一个聚集级别取值确定候选PDCCH资源的情景下,介绍如何根据盲检公式确定候选PDCCH资源。如图1所示(图1中的m为索引
Figure PCTCN2022108748-appb-000063
),假设该索引为p的控制资源集指示的PDCCH时频资源范围共包括17个候选CCE资源:CCE0~CCE16,这17个候选CCE资源时域上均位于符号(symbol)0中,时域位置相同。第一终端设备在在该控制资源集指示的PDCCH时频资源范围中盲检PDCCH资源,第一终端设备的随机化参数
Figure PCTCN2022108748-appb-000064
为0,聚集级别L为2,与聚集级别L=2对应的最大盲检次数
Figure PCTCN2022108748-appb-000065
为4,所以根据4-1=3,第一终端位置的候选PDCCH资源的索引
Figure PCTCN2022108748-appb-000066
可以为0、1、2、3,根据2-1=1,i={0,1}。第一终端设备接入的小区的索引n CI为0。
将上述参数代入公式(1),可得当
Figure PCTCN2022108748-appb-000067
时,公式(1)为
Figure PCTCN2022108748-appb-000068
Figure PCTCN2022108748-appb-000069
得到{0,1},所以索引为0的候选PDCCH资源,包括的候选CCE资源的索引为{0,1},因此可得,索引为0的候选PDCCH资源包括CCE0和CCE1。以此类推,当
Figure PCTCN2022108748-appb-000070
时,公式(1)为
Figure PCTCN2022108748-appb-000071
计算得到{4,5},即索引为1的候选PDCCH资源包括CCE4和CCE5,当
Figure PCTCN2022108748-appb-000072
时,计算得到{8,9},当
Figure PCTCN2022108748-appb-000073
时,计算得到{12,13}。因此,如图1所示,第一终端设备可能进行盲检的候选PDCCH资源包括左列候选PDCCH资源中的阴影部分:索引
Figure PCTCN2022108748-appb-000074
的候选PDCCH资源包括的CCE0+CCE1、索引
Figure PCTCN2022108748-appb-000075
的候选PDCCH资源包括的CCE4+CCE5、索引
Figure PCTCN2022108748-appb-000076
的候选PDCCH资源包括的CCE8+CCE9和索引
Figure PCTCN2022108748-appb-000077
的候选PDCCH资源包括的CCE12+CCE13。第一终端设备在进行盲检时,盲检顺序如左列候选PDCCH资源旁边的箭头所示,与候选PDCCH资源的索引对应:0到1到2到3,第一终端设备从索引为0的候选PDCCH资源开始依次盲检,若检验候选PDCCH资源成功,则终止盲检,若一直不成功,则一直检验到索引为3的候选PDCCH资源。
从图1可以看出,因为终端设备的候选PDCCH资源的时域位置相同,所以用于区分终端设备的候选PDCCH资源的是候选PDCCH资源的频域位置。在LTE系统或者NR系统均规定了随机化参数使终端设备的候选PDCCH资源的频域位置分布随机化,来避免不同的终端设备出现PDCCH资源拥塞的情况。例如,若第二终端设备与第一终端设备用于计算公式(1)的参数一致,那么如图1所示,第一终端设备与第二终端设备的候选PDCCH资源相同,即第一终端设备与第二终端设备的候选PDCCH资源的频域位置相同,容易出现PDCCH资源拥塞。而引入随机化参数后,若随机化参数不一致,即使其他参数一致,候选PDCCH资源的频域位置也不同。例如,若上述示例中,第一终端设备的随机化参数是2,第二终端设备的随机化参数是5,第一终端设备的候选PDCCH资源与第二终端设备的候选PDCCH资源的分布如图2所示(图2中的Yk为随机化参数
Figure PCTCN2022108748-appb-000078
m为索引
Figure PCTCN2022108748-appb-000079
L为聚集级别),可见,两者的候选PDCCH资源的频域位置错开了。
另一方面,网络设备在为终端设备配置PDCCH资源时,网络设备为一个终端设备确定一个固定的聚集级别。网络设备根据终端设备对应的聚集级别,结合盲检公式确定终端设备的候选PDCCH资源,从索引为0的候选PDCCH资源开始依次分配,分配的次序与终端设备的盲检顺序相同,若候选PDCCH资源已经被别的终端设备占用,网络设备会跳过该候选PDCCH资源,按照盲检顺序查询下一个候选PDCCH资源,若该候选PDCCH资源没有被占用,则将该候选PDCCH资源分配给终端设备,若该候选PDCCH资源仍然被占用,则接着根据盲检顺序查询终端设备的其他候选PDCCH资源,直到为终端设备成功分配PDCCH资源,或者终端设备所有的候选PDCCH资源被查询完毕。例如,如图3所示(图3中的Yk为随机化参数
Figure PCTCN2022108748-appb-000080
m为索引
Figure PCTCN2022108748-appb-000081
L为聚集级别),为网络设备为第一终端设备和第二终端设备分配PDCCH资源的结果。其中,第一终端设备的第一个候选PDCCH资源包括CCE4和CCE5且没有被占用,网络设备将CCE4和CCE5确定为分配给第一终端设备的PDCCH资源。第二终端设备的第一个候选PDCCH资源包括CCE10和CCE11且没有被占用,网络设备将CCE10和CCE11确定为分配给第二终端设备的PDCCH资源。
根据上文介绍的盲检PDCCH流程和盲检公式可知,因为候选PDCCH索引为0时,公式(1)为
Figure PCTCN2022108748-appb-000082
在不同终端设备确定的控制资源集和搜索空间相同,且接入同一小区的情况下,L,i,N CCE,p,n CI均为定值,所以每个终端设备的第一个候选PDCCH资源在频域上的位置变化只与随机化参数相关。
但是,因为随机化参数的随机化,网络设备从终端设备的第一个候选PDCCH资源开始为终端设备分配PDCCH资源时,可能出现以下情况:网络设备根据小聚集级别的终端设备的盲检起始位置,为小聚集级别的终端设备分配好PDCCH资源后,需要为大聚集级别的终端设备分配PDCCH资源。但是因为终端设备的第一个候选PDCCH资源的频域位置随机化,网络设备为小聚集级别的终端设备分配的PDCCH资源分布分散,导致PDCCH资源被切割为多个小资源块,而这类小资源块无法分配给聚集级别高,需要较多PDCCH资源的终端设备,导致网络设备为这些聚集级别高的终端设备分配PDCCH资源失败。这类情况可以称为PDCCH资源碎片化问题。示例性的,如图4所示(图4中的Yk为随机化参数
Figure PCTCN2022108748-appb-000083
m为索引
Figure PCTCN2022108748-appb-000084
L为聚集级别),网络设备根据第一终端设备和第二终端设备的第一个候选PDCCH资源,先为第一终端设备和第二终端设备分配好PDCCH资源。接下来网络设备为聚集级别为8,需要分配8个CCE资源的第三终端设备分配PDCCH资源,但是第三终端设备的候选PDCCH资源0中CCE4和CCE5已被第一终端设备占用,候选PDCCH资源1中CCE10和CCE11已被第二终端设备占用,导致网络设备无法为第三终端设备分配PDCCH资源。
因此,如何优化上述相关技术中的PDCCH资源分配方法,从而降低出现PDCCH资源碎片化问题的概率,提高PDCCH资源分配的成功率,是目前亟待解决的问题。
为解决以上问题,本申请提出资源分配方法、装置及系统,以降低出现PDCCH资源碎片化问题的概率,进一步提升PDCCH资源分配的成功率。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以 表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的资源分配方法可以适用于各种通信系统。例如,本申请实施例提供的资源分配方法可以应用于LTE系统,或者5G系统,或者其他面向未来的类似新系统,本申请实施例对此不作具体限定。此外,术语“系统”可以和“网络”相互替换。
如图5所示,为本申请实施例提供的一种通信系统50。该通信系统50包括网络设备60,以及与该网络设备60连接的至少两个终端设备70。其中,终端设备70通过无线的方式与网络设备60相连。可选的,不同的终端设备70之间可以相互通信。终端设备70可以是固定位置的,也可以是可移动的。
需要说明的是,图5仅是示意图,虽然未示出,但是该通信系统50中还可以包括其它网络设备,如该通信系统50还可以包括核心网设备、无线中继设备和无线回传设备中的一个或多个,在此不做具体限定。其中,网络设备可以通过无线或有线方式与核心网设备连接。核心网设备与网络设备60可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备60的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备60的功能,本申请实施例对此不做具体限定。
以图5所示的网络设备60与至少两个终端设备70进行交互为例,一种可能的实现方式中,网络设备60,用于为至少两个终端设备70确定至少两个PDCCH资源,至少两个PDCCH资源与至少两个终端设备70一一对应,至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件,或者至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件。网络设备60,还用于在至少两个PDCCH资源上分别向至少两个终端设备发送信息。终端设备70,用于在至少两个PDCCH资源上接收来自网络设备60的信息。其中,该方案的具体实现将在后续方法实施例中详细描述,在此不予赘述。
可选的,本申请实施例中的网络设备60,是一种将终端设备70接入到无线网络的设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central  unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,如果无特殊说明,网络设备均指无线接入网设备。
可选的,本申请实施例中的终端设备70,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。终端也可以称为用户设备(user equipment,UE)、移动台、移动终端等。终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可选的,本申请实施例中的网络设备60和终端设备70可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备60和终端设备70的应用场景不做限定。
可选的,本申请实施例中的网络设备60和终端设备70之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备60和终端设备70之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备60和终端设备70之间所使用的频谱资源不做限定。
可选的,本申请实施例中的网络设备60与终端设备70也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图6所示,为本申请实施例提供的网络设备60和终端设备70的结构示意图。
其中,终端设备70包括至少一个处理器701和至少一个收发器703。可选的,终端设备70还可以包括至少一个存储器702、至少一个输出设备704或至少一个输入设备705。
处理器701、存储器702和收发器703通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器701可以是通用中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(fieldprogrammable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。在具体实现中,作为一种实施例,处理器701也可以包括多个CPU,并且处理器701可以是单核处理器或多核处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据的处理核。
存储器702可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read-only memory, EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器702可以是独立存在,通过通信线路与处理器701相连接。存储器702也可以和处理器701集成在一起。
其中,存储器702用于存储执行本申请方案的计算机执行指令,并由处理器701来控制执行。具体的,处理器701用于执行存储器702中存储的计算机执行指令,从而实现本申请实施例中所述的资源分配方法。
或者,可选的,本申请实施例中,也可以是处理器701执行本申请下述实施例提供的资源分配方法中的处理相关的功能,收发器703负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器703可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器703包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备704和处理器701通信,可以以多种方式来显示信息。例如,输出设备704可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备705和处理器701通信,可以以多种方式接受用户的输入。例如,输入设备705可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备60包括至少一个处理器601、至少一个收发器603和至少一个网络接口604。可选的,网络设备60还可以包括至少一个存储器602。其中,处理器601、存储器602、收发器603和网络接口604通过通信线路相连接。网络接口604用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图6中未示出),本申请实施例对此不作具体限定。另外,处理器601、存储器602和收发器603的相关描述可参考终端设备70中处理器701、存储器702和收发器703的描述,在此不再赘述。
结合图6所示的终端设备70的结构示意图,示例性的,图7为本申请实施例提供的终端设备70的一种具体结构形式。
其中,在一些实施例中,图6中的处理器701的功能可以通过图7中的处理器110实现。
在一些实施例中,图6中的收发器703的功能可以通过图7中的天线1,天线2,移动通信模块150,无线通信模块160等实现。移动通信模块150可以提供应用在终端设备70上的包括LTE、NR或者未来移动通信等无线通信技术的解决方案。无线通信模块160可以提供应用在终端设备70上的包括WLAN(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外等无线通信技术的解决方案。在一些实施例中,终端设备70的天线1和移动通信模块150耦合,天线2和无线通 信模块160耦合,使得终端设备70可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,图6中的存储器702的功能可以通过图7中的内部存储器121或者外部存储器接口120连接的外部存储器等实现。
在一些实施例中,图6中的输出设备704的功能可以通过图7中的显示屏194实现。
在一些实施例中,图6中的输入设备705的功能可以通过鼠标、键盘、触摸屏设备或图7中的传感器模块180来实现。
在一些实施例中,如图7所示,该终端设备70还可以包括音频模块170、摄像头193、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个。
可以理解的是,图7所示的结构并不构成对终端设备70的具体限定。比如,在本申请另一些实施例中,终端设备70可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图7,以图5所示的网络设备60与至少两个终端设备70进行交互为例,对本申请实施例提供的资源分配方法进行展开说明。
如图8所示,为本申请实施例提供的一种资源分配方法,该资源分配方法包括如下步骤S801-S802:
S801、网络设备为至少两个终端设备确定至少两个物理下行控制信道PDCCH资源,至少两个PDCCH资源与至少两个终端设备一一对应,至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件,或者至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件。
S802、网络设备在至少两个PDCCH资源上分别向至少两个终端设备发送信息。相对应的,终端设备在至少两个PDCCH资源上接收来自网络设备的信息。
需要说明的是,图8仅是示意图,虽然未示出,但是图8中网络设备还可以与两个以上的终端设备进行交互并实现上述步骤S801-S802。
下面分两个实施例对步骤S801展开进行描述。
实施例一:以下以网络设备与至少两个终端设备中的任一终端设备进行交互为例对实施例一进行说明。网络设备为终端设备分配PDCCH资源时,确定的PDCCH资源要满足以下条件:PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件。因此,本申请实施例提供的资源分配方法,可以使网络设备分配给终端设备的PDCCH资源的频域位置与基准频域位置间的距离满足预设条件,使得PDCCH资源的频域位置分布不再随机化,降低出现PDCCH资源碎片化问题的概率。
一种可能的实现方式中,本申请实施例中,PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件包括:
PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与基准频域位置之间的距离最小的PDCCH资源。其中,一个或多个候选PDCCH资源位于网络设备为终端设备配置的控制资源集指示的PDCCH时频资源范围内,终端设备在控制资源集指示的PDCCH时频资源范围内盲检候选PDCCH资源。
其中,第一公式的相关描述以及具体如何根据第一公式确定终端设备的候选 PDCCH资源,可参考上文对公式(1)的介绍,在此不再赘述。
本申请实施例中,候选PDCCH资源处于可分配状态,指候选PDCCH资源包括的一个或多个CCE资源没有被分配给其他终端设备。
本申请实施例中,候选PDCCH资源的频域位置包括候选PDCCH资源在频域上所占的一段中的任意一点对应的频域位置,例如两端中一端的频域位置或者中间点的频域位置,本申请实施例对此不做限制。但是需要说明的是,不同的候选PDCCH资源,对于频域位置的定义是相同的。例如,不同的候选PDCCH资源的频域位置,都是频域上中间点的频域位置或者都是频域上末端的频域位置。
本申请实施例中,对于一个控制资源集指示的PDCCH时频资源范围,基准频域位置是确定的。因此,网络设备可以根据每个候选PDCCH资源的频域位置与基准频域位置之间的距离,在终端设备的一个或多个候选PDCCH资源中,选择没有分配给其他终端设备,且距离最小的候选PDCCH资源作为分配给终端设备的PDCCH资源。
为了便于理解,以下结合图9,对网络设备如何根据候选PDCCH资源的频域位置与基准频域位置之间的距离确定分配给终端设备的PDCCH资源进行介绍。
示例性的,如图9所示(图9中的Yk为随机化参数
Figure PCTCN2022108748-appb-000085
m为索引
Figure PCTCN2022108748-appb-000086
L为聚集级别),假设该索引为p的控制资源集指示的PDCCH时频资源范围共有17个候选CCE资源:CCE0~CCE16,这17个候选CCE资源时域上均位于符号0中,时域位置相同。第一终端设备和第二终端设备接入同一小区,均在该控制资源集指示的PDCCH时频资源范围中盲检PDCCH资源,第一终端设备的随机化参数
Figure PCTCN2022108748-appb-000087
为2,聚集级别L为2,最大盲检次数
Figure PCTCN2022108748-appb-000088
为4,第二终端设备的随机化参数
Figure PCTCN2022108748-appb-000089
为5,聚集级别L为2,最大盲检次数
Figure PCTCN2022108748-appb-000090
为4,第一终端设备和第二终端设备接入的小区的索引n CI为0。以
Figure PCTCN2022108748-appb-000091
表示基准频域位置,如图9所示,为CCE0在频域上的起始点对应的频域位置(按照频域轴从下至上的顺序),在频域上
Figure PCTCN2022108748-appb-000092
根据上述参数和第一公式,确定出第一终端设备的每个候选PDCCH资源,以及第二终端设备的每个候选PDCCH资源。如图2所示,为第一终端设备的候选PDCCH资源与第二终端设备的候选PDCCH资源的分布,第一终端设备与第二终端设备的候选PDCCH资源均未被占用,即均处于可分配状态。
以候选PDCCH资源在频域上的起始点(按照频域轴从下至上的顺序)作为候选PDCCH资源的频域位置,根据第一终端设备的每个候选PDCCH资源的频域位置以及基准频域位置,可得频域位置与基准频域位置之间距离最小,或者说与基准频域位置最接近的为索引
Figure PCTCN2022108748-appb-000093
为3的候选PDCCH资源,该候选PDCCH资源包括CCE0和CCE1,将该候选PDCCH资源作为分配给第一终端设备的PDCCH资源。
相对应的,以候选PDCCH资源在频域上的起始点(按照频域轴从下至上的顺序)作为候选PDCCH资源的频域位置,根据第二终端设备的每个候选PDCCH资源的频域位置以及基准频域位置,可得频域位置与基准频域位置之间距离最小,或者说与基准频域位置最接近的为索引
Figure PCTCN2022108748-appb-000094
为2的候选PDCCH资源,该PDCCH资源包括CCE2和CCE3,将该候选PDCCH资源作为分配给第二终端设备的PDCCH资源。
如图9所示,为根据上述流程确定的分配给第一终端设备的PDCCH资源和分配给第二终端设备的PDCCH资源的分布示意图。第一终端设备和第二终端设备进行盲检时,按照如图9所示的盲检顺序,分别进行盲检,直到检验到分配给自己的PDCCH资源。
如图9所示,基于本方案,可以使第一终端设备与第二终端设备的PDCCH资源集中 在一起。接下来,网络设备为第三终端设备分配PDCCH资源,第三终端设备也在索引为p的控制资源集指示的PDCCH时频资源范围中盲检PDCCH资源。第三终端设备的随机化参数
Figure PCTCN2022108748-appb-000095
为0,聚集级别L为8,最大盲检次数
Figure PCTCN2022108748-appb-000096
为2,第三终端设备与第一终端设备、第二终端设备接入同一小区,小区索引n CI为0。网络设备根据第一公式和上述参数确定出第三终端设备的候选PDCCH资源,其中,索引为0的候选PDCCH资源包括CCE0至CCE7,索引为1的候选PDCCH资源包括CCE8-CCE15。因为CCE0-CCE3被第一终端设备和第二终端设备占用,所以,第三终端设备的候选PDCCH资源中,处于可分配状态的候选PDCCH资源为索引为1的候选PDCCH资源,网络设备将该候选PDCCH资源分配给第三终端设备。
因此,本申请实施例提供的资源分配方法,可以从终端设备的候选PDCCH资源中,优先选取频域位置临近基准频域位置的候选PDCCH资源分配给终端设备,使分配给多个终端设备的PDCCH资源更集中,从而成功为高聚集级别的终端设备分配PDCCH资源,避免相关技术中在第一个候选PDCCH资源的频域位置只与随机化参数相关的情况下,导致PDCCH资源碎片化,无法为高聚集级别的终端设备分配PDCCH资源的问题。
在上述示例的情景中,第一终端设备或者第二终端设备的频域位置距离基准频域位置最小的候选PDCCH资源均未被占用,所以为第一终端设备或第二终端设备分配的即是最接近基准频域位置的候选PDCCH资源。然而在一些情景中,终端设备最接近基准频域位置的候选PDCCH资源已经被占用,在这类情景下,网络设备确定终端设备的一个或多个候选PDCCH资源中,处于可分配状态,且与基准频域位置之间的距离最小的PDCCH资源,包括:网络设备根据第一公式,确定终端设备的每个候选PDCCH资源,并确定出每个候选PDCCH资源的频域位置与基准频域位置之间的距离,在没有分配给其他终端设备的候选PDCCH资源中,选择距离最小的候选PDCCH资源作为分配给终端设备的PDCCH资源。或者,网络设备根据第一公式,确定终端设备的每个候选PDCCH资源,再将索引满足第二公式的候选PDCCH资源确定为分配给终端设备的PDCCH资源。
在频域位置与基准频域位置之间的距离最小的PDCCH资源被占用的情况下,网络设备先确定出每个候选PDCCH资源的频域位置与基准频域位置之间的距离,再在没有分配给其他终端设备的候选PDCCH资源中,选择距离最小的候选PDCCH资源作为分配给终端设备的PDCCH资源的实现方式可以参考上文的说明。以下介绍网络设备根据第二公式,将索引满足第二公式的候选PDCCH资源确定为处于可分配状态下,且频域位置与基准频域位置之间的距离最小的PDCCH资源的方案。
其中,第二公式满足如下关系:
Figure PCTCN2022108748-appb-000097
或者,
Figure PCTCN2022108748-appb-000098
或者,
Figure PCTCN2022108748-appb-000099
或者,
Figure PCTCN2022108748-appb-000100
上述公式(2)-(5)中,
Figure PCTCN2022108748-appb-000101
表示满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与基准频域位置之间的距离最小的PDCCH资源的索引,其中,i取
Figure PCTCN2022108748-appb-000102
中的一个值;i=1时,
Figure PCTCN2022108748-appb-000103
Figure PCTCN2022108748-appb-000104
表示满足第一公式的一个或者多个候选PDCCH资源中,频域位置与基准频域位置之间的距离最小的PDCCH资源的索引;
Figure PCTCN2022108748-appb-000105
表示终端设备的最大盲检次数。
示例性的,以下以第二公式满足公式(2)为例,介绍如何根据第二公式确定满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与基准频域位置之间的距离最小的PDCCH资源。假设索引为p的控制资源集指示的PDCCH时频资源范围内共有17个候选CCE资源:CCE0~CCE16,这17个候选CCE资源时域上均位于符号0中,时域位置相同。第一终端设备在该控制资源集指示的PDCCH时频资源范围中盲检PDCCH资源,第一终端设备的随机化参数
Figure PCTCN2022108748-appb-000106
为2,聚集级别L为2,最大盲检次数
Figure PCTCN2022108748-appb-000107
为4,基准频域位置
Figure PCTCN2022108748-appb-000108
第一终端设备满足第一公式的候选PDCCH资源有索引
Figure PCTCN2022108748-appb-000109
为0的候选PDCCH资源,该候选PDCCH资源包括CCE4和CCE5,索引
Figure PCTCN2022108748-appb-000110
为1的候选PDCCH资源,该候选PDCCH资源包括CCE8和CCE9,索引
Figure PCTCN2022108748-appb-000111
为2的候选PDCCH资源,该候选PDCCH资源包括CCE12和CCE13,索引
Figure PCTCN2022108748-appb-000112
为3的候选PDCCH资源,该候选PDCCH资源包括CCE0和CCE1,其中,距离
Figure PCTCN2022108748-appb-000113
最近的为索引
Figure PCTCN2022108748-appb-000114
为3的候选PDCCH资源,但是该候选PDCCH资源已经被分配给其余终端设备,处于不可分配状态。因此,可得
Figure PCTCN2022108748-appb-000115
时,
Figure PCTCN2022108748-appb-000116
的值取3,i取1,将上述参数的取值代入进公式(2),得到:
Figure PCTCN2022108748-appb-000117
可得
Figure PCTCN2022108748-appb-000118
因此,网络设备可以根据第二公式,将索引
Figure PCTCN2022108748-appb-000119
包括CCE4和CCE5的候选PDCCH资源作为处于可分配状态,且频域位置与基准频域位置之间的距离最小的PDCCH资源。
基于本申请实施例提供的资源分配方法,可以使网络设备通过第二公式,在频域位置与基准频域位置之间的距离最小的PDCCH资源被占用的情况下,确定出处于可分配状态且与基准频域位置之间的距离最小的PDCCH资源并分配给终端设备,从而频域位置与基准频域位置之间的距离最小的PDCCH资源被占用的情况下,依然可以实现使分配给多个终端设备的PDCCH资源更集中的效果。
可选的,因为本申请实施例中,若不同控制资源集中的基准频域位置相同,会使接入不同小区的终端设备的PDCCH资源集中于相同的基准频域位置,会增加小区间的干扰。所以,可选的,本申请实施例还提供以下确定基准频域位置的方法,用于实现接入不同小区的终端设备对应的基准频域位置不同,以降低小区间的干扰。
该方法包括:根据终端设备接入的小区的标识和第三公式确定基准频域位置;其中,在终端设备接入的小区的标识满足如下关系的情况下:
(PCI+k)mod n=m;        公式(6)
第三公式满足如下关系:
Figure PCTCN2022108748-appb-000120
其中,PCI表示终端设备接入的小区的标识;k为大于等于0的正整数;n取{1,…,N CCE,p}中的一个值;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,索引为p的控制资源集为网络设备配置给终端设备的控制资源集;m为正整数,0≤m≤n-1;
Figure PCTCN2022108748-appb-000121
表示基准频域位置对应的CCE资源的索引。
上述公式(7)中的PCI可以为终端设备接入的小区的物理小区标识(physical cell identifier,PCI),网络设备可以根据终端设备接入的小区确定PCI。本申请对具体确定的方式不作限定。
具体地,将设定的k和n的取值以及确定的PCI的值代入到公式(6)计算出m,再将计算出的m的取值,以及N CCE,p和n的值代入到公式(7)中,计算出
Figure PCTCN2022108748-appb-000122
为确定的基准频域位置对应的CCE资源的索引。
示例性的,以下结合图10,对根据终端设备接入的小区的标识和第三公式确定基准频 域位置的方案进行介绍。如图10所示(图10中的Yk为随机化参数
Figure PCTCN2022108748-appb-000123
m为索引
Figure PCTCN2022108748-appb-000124
L为聚集级别),假设第一终端设备、第二终端设备及第三终端设备接入的小区的PCI为1,第一终端设备、第二终端设备及第三终端设备均在索引为p的控制资源集指示的PDCCH时频资源范围内盲检PDCCH资源,该控制资源集指示的PDCCH时频资源范围包括17个候选CCE资源:CCE0-CCE16。设定n=4,k=0,将相关参数的取值代入公式(6)中,计算得到m=1,再将m=1,N CCE,p=17和n=4代入公式(7)中,计算得到
Figure PCTCN2022108748-appb-000125
因此确定出的基准频域位置对应的CCE资源的索引为4。
需要说明的是,本申请实施例中,根据基准频域位置对应的CCE资源的索引,确定基准频域位置对应的CCE资源后,基准频域位置包括该CCE资源在频域上所占的一段中的任意一点对应的频域位置,例如两端中一端的频域位置或者中间点的频域位置,本申请实施例对此不做限制。
以该CCE资源在频域上的起始点(按照频域轴从下至上的顺序)作为基准频域位置,假设第一终端设备的随机化参数
Figure PCTCN2022108748-appb-000126
为2,聚集级别L为2,最大盲检次数
Figure PCTCN2022108748-appb-000127
为4,第二终端设备的随机化参数
Figure PCTCN2022108748-appb-000128
为5,聚集级别L为2,最大盲检次数
Figure PCTCN2022108748-appb-000129
为4,第三终端设备的随机化参数
Figure PCTCN2022108748-appb-000130
为0,聚集级别L为8,最大盲检次数
Figure PCTCN2022108748-appb-000131
为2,第一终端设备、第二终端设备和第三终端设备接入的小区的索引n CI为0。结合上述参数和上文中介绍的根据基准频域位置确定为终端设备分配的PDCCH资源的方法,确定为第一终端设备、第二终端设备和第三终端设备分配的PDCCH资源,其分配结果如图10所示。
实施例二、以下以网络设备与至少两个终端设备进行交互为例对实施例二进行说明。网络设备为至少两个终端设备分配PDCCH资源时,分配的至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件。因此,本申请实施例提供的资源分配方法,可以使网络设备分配给终端设备的PDCCH资源的频域位置与相邻的分配给另一终端设备的PDCCH资源间的距离满足预设条件,使得PDCCH资源的频域位置分布不再随机化,降低出现PDCCH资源碎片化问题的概率。
本申请实施例中,至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件包括:
相邻的两个PDCCH资源包括第一PDCCH资源和第二PDCCH资源,第二PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与第一PDCCH资源距离最小的PDCCH资源。其中,第二PDCCH资源为网络设备从终端设备的一个或多个候选PDCCH资源中,选择的分配给终端设备的PDCCH资源,第一PDCCH资源为网络设备在为终端设备分配第二PDCCH资源之前,已经分配给任一其余终端设备的PDCCH资源。
其中,第一公式的相关描述以及具体如何根据第一公式确定终端设备的候选PDCCH资源,可参考上文对公式(1)的介绍,在此不再赘述。
具体地,网络设备根据第一公式确定出终端设备的每个候选PDCCH资源后,根据每个候选PDCCH资源的频域位置,从处于可分配状态的候选PDCCH资源中,选择出频域位置与第一PDCCH资源的频域位置距离最小的候选PDCCH资源作为分配给终端设备的PDCCH资源。具体如何根据第一公式确定候选PDCCH资源可参考上文,在此不再赘述。
基于本申请实施例提供的资源分配方法,可以从终端设备的候选PDCCH资源中,优先选取频域位置最临近另一PDCCH资源的候选PDCCH资源分配给终端设备,使分配给 多个终端设备的PDCCH资源更集中,从而成功为高聚集级别的终端设备分配PDCCH资源,避免因为相关技术中第一个候选PDCCH资源的频域位置只与随机化参数相关导致PDCCH资源碎片化,无法为高聚集级别的终端设备分配PDCCH资源的问题。
下面介绍步骤S802。网络设备在确定分配给至少两个终端设备的至少两个PDCCH资源后,分别在每个PDCCH资源上向每个终端设备发送信息。相对应的,终端设备按照盲检顺序,盲检到分配给自己的PDCCH资源后,可以成功检验并接收网络设备在该PDCCH资源上发送的信息。终端设备在该PDCCH资源上成功检验网络设备发送的信息后,终端设备可以根据检验结果,确定该PDCCH资源为网络设备分配给自己的PDCCH资源,并停止盲检。可选的,网络设备在PDCCH资源上发送的信息可以为下行控制信息(downlink control information,DCI)。本申请对终端设备校验信息的具体方式不作限定。
由于应用本申请实施例提供的资源分配方法,可能会增加终端设备进行盲检时的盲检次数。因此可选的,本申请实施例提供的资源分配方法,可以在至少两个终端设备接入的小区满足以下条件时应用:
在目标周期内,CCE资源的利用率大于目标周期对应的第一阈值。
具体的,在预设的目标周期内,若检测到网络设备为至少两个终端设备接入的小区分配的PDCCH时频资源范围中,CCE资源的利用率大于目标周期对应的第一阈值,例如大于A%,则应用本申请实施例提供的资源分配方法。其中,CCE资源的利用率为小区对应的PDCCH时频资源范围中,已被分配给终端设备的CCE资源数量与CCE资源总数量的比值。
或者,在目标周期内,接入小区的第一类型终端设备的数量与第二类型终端设备的数据的比值大于目标周期对应的第三阈值,其中,第一类型终端设备为未被成功分配PDCCH资源并且聚集级别大于第二阈值的终端设备,第二类型终端设备为聚集级别大于第二阈值的并请求调度的终端设备。其中,网络设备需要为请求调度的终端设备分配PDCCH资源。
具体的,在预设的目标周期内,检测到接入小区的聚集级别大于第二阈值(例如8)且未被成功分配PDCCH资源的终端设备,在接入小区的聚集级别大于第二阈值且请求调度的终端设备中,占比超过目标周期对应的第三阈值,例如超过B%,则应用本申请实施例提供的资源分配方法。
若不满足上述条件,则可以不应用本申请实施例提供的资源分配方法,而是应用其他分配PDCCH资源的方法(例如上文介绍的相关技术中的分配方法)。基于本方案,可以根据候选PDCCH资源的利用率或大聚集级别终端设备分配PDCCH资源失败的概率,判断终端设备接入的小区中PDCCH资源碎片化问题是否严重,若满足预设条件,说明PDCCH资源碎片化问题严重,需要应用本申请实施例提供的资源分配方法来降低出现PDCCH资源碎片化问题的概率,进而提高PDCCH资源的分配成功率。若不满足预设条件,说明PDCCH资源碎片化问题不严重,无需应用本申请实施例提供的资源分配方法。
可选的,上述方案中的目标周期,可以是根据至少两个终端设备接入的小区对应的负载状态确定的。其中,小区的负载状态可以是根据接入小区的终端设备的业务量,或者接入小区的终端设备的数量确定的。
小区的不同负载状态对应不同的目标周期,而不同的目标周期对应不同的第一阈值或第三阈值。示例性的,当判断小区为“忙”状态时,目标周期为1s,对应的第一阈值为A%, 第三阈值为B%。当判断小区为“闲”状态时,目标周期为1TTI,即1ms,对应的第一阈值为C%,第三阈值为D%。可选的,可以根据实际需求,设置不同的目标周期对应的不同第一阈值或不同第三阈值间的大小关系。例如,在上述示例中,设置C%大于A%,D%大于B%。基于本方案,可以根据不同场景下的小区负载状态,确定不同的目标周期和与目标周期对应的阈值,从而满足不同的需求。
其中,上述步骤S801至S802中网络设备的动作可以由图6所示的网络设备60中的处理器601调用存储器602中存储的应用程序代码以指令网络设备执行。上述步骤S801至S802中终端设备的动作可以由图6所示的终端设备70中的处理器701调用存储器702中存储的应用程序代码以指令终端设备执行。本实施例对此不作任何限制。
可以理解的是,以上各个实施例中,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件(例如芯片或者电路)实现;由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现。
上述主要从各个设备之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件;或者,该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
以通信装置为上述方法实施例中的网络设备为例,图11示出了一种通信装置110的结构示意图。该通信装置110包括处理模块1101和收发模块1102。所述收发模块1102,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
处理模块1101,用于为至少两个终端设备确定至少两个物理下行控制信道PDCCH资源,至少两个PDCCH资源与至少两个终端设备一一对应,至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件,或者至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件。收发模块1102,用于在至少两个PDCCH资源上分别向至少两个终端设备发送信息。
可选的,至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件包括:至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与基准频域位置之间的 距离最小的PDCCH资源;其中,第一公式满足如下关系:
Figure PCTCN2022108748-appb-000132
Figure PCTCN2022108748-appb-000133
其中,L表示与一个或者多个候选PDCCH资源对应的终端设备的聚集级别;
Figure PCTCN2022108748-appb-000134
表示终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的控制信道单元CCE资源的数量,其中,索引为p的控制资源集为通信装置配置给终端设备的控制资源集;
Figure PCTCN2022108748-appb-000135
表示终端设备的最大盲检次数;
Figure PCTCN2022108748-appb-000136
表示一个或者多个候选PDCCH资源中每个候选PDCCH资源的索引,
Figure PCTCN2022108748-appb-000137
Figure PCTCN2022108748-appb-000138
Figure PCTCN2022108748-appb-000139
中的一个值;n CI表示终端设备接入的小区的索引;i={0,1,…,L-1}。
可选的,至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与基准频域位置之间的距离最小的PDCCH资源,包括:至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,频域位置与基准频域位置之间的距离最小的PDCCH资源被占用的情况下,索引满足第二公式的PDCCH资源,其中,第二公式满足如下关系:
Figure PCTCN2022108748-appb-000140
Figure PCTCN2022108748-appb-000141
或者,
Figure PCTCN2022108748-appb-000142
或者,
Figure PCTCN2022108748-appb-000143
Figure PCTCN2022108748-appb-000144
或者,
Figure PCTCN2022108748-appb-000145
其中,
Figure PCTCN2022108748-appb-000146
表示满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与基准频域位置之间的距离最小的PDCCH资源的索引,其中,i取
Figure PCTCN2022108748-appb-000147
Figure PCTCN2022108748-appb-000148
中的一个值;i=1时,
Figure PCTCN2022108748-appb-000149
Figure PCTCN2022108748-appb-000150
表示满足第一公式的一个或者多个候选PDCCH资源中,频域位置与基准频域位置之间的距离最小的PDCCH资源的索引;
Figure PCTCN2022108748-appb-000151
表示终端设备的最大盲检次数。
可选的,基准频域位置为根据至少两个终端设备接入的小区的标识和第三公式确定的;其中,在终端设备接入的小区的标识满足如下关系的情况下:(PCI+k)mod n=m;第三公式满足如下关系:
Figure PCTCN2022108748-appb-000152
其中,PCI表示终端设备接入的小区的标识;k为大于等于0的正整数;n取{1,…,N CCE,p}中的一个值;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,索引为p的控制资源集为通信装置配置给终端设备的控制资源集;m为正整数,0≤m≤n-1;
Figure PCTCN2022108748-appb-000153
表示基准频域位置对应的CCE资源的索引。
可选的,至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件包括:相邻的两个PDCCH资源包括第一PDCCH资源和第二PDCCH资源,第二PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与第一PDCCH资源距离最小的PDCCH资源;其中,第一公式满足如下关系:
Figure PCTCN2022108748-appb-000154
其中,L表示与一个或者多个候选PDCCH资源对应的终端设备的聚集级别;
Figure PCTCN2022108748-appb-000155
表示终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,索引为p的控制资源集为通信装置配置给终端设备的控制资源集;
Figure PCTCN2022108748-appb-000156
表示终端设备的最大盲检次数;
Figure PCTCN2022108748-appb-000157
表示一个或者多个候选PDCCH资源中每个候选PDCCH资源的索引,
Figure PCTCN2022108748-appb-000158
Figure PCTCN2022108748-appb-000159
中的一个值;n CI表示终端设备接入的小区的索引;i={0,1,…,L-1}。
可选的,至少两个终端设备接入的小区满足如下条件:在目标周期内,CCE资源的利用率大于目标周期对应的第一阈值;或者,在目标周期内,接入小区的第一类型终端设备的数量与第二类型终端设备的数据的比值大于目标周期对应的第三阈值,其中,第一类型 终端设备为未被成功分配PDCCH资源并且聚集级别大于第二阈值的终端设备,第二类型终端设备为聚集级别大于第二阈值并请求调度的终端设备。
可选的,目标周期是根据至少两个终端设备接入的小区对应的负载状态确定的。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置110以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到该通信装置110可以采用图6所示的网络设备60的形式。
比如,图6所示的网络设备60中的处理器601可以通过调用存储器602中存储的计算机执行指令,使得网络设备60执行上述方法实施例中的资源分配方法。具体的,图11中的处理模块1101和收发模块1102的功能/实现过程可以通过图6所示的网络设备60中的处理器601调用存储器602中存储的计算机执行指令来实现。或者,图11中的处理模块1101的功能/实现过程可以通过图6所示的网络设备60中的处理器601调用存储器602中存储的计算机执行指令来实现,图11中的收发模块1102的功能/实现过程可以通过图6所示的网络设备60中的收发器603来实现。
由于本实施例提供的通信装置110可执行上述资源分配方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片系统,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。在一种可能的实现方式中,该通信装置还包括存储器。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算 机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种资源分配方法,其特征在于,所述方法包括:
    为至少两个终端设备确定至少两个物理下行控制信道PDCCH资源,所述至少两个PDCCH资源与所述至少两个终端设备一一对应,所述至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件,或者所述至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件;
    在所述至少两个PDCCH资源上分别向所述至少两个终端设备发送信息。
  2. 根据权利要求1所述的方法,其特征在于,所述至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件包括:
    所述至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与所述基准频域位置之间的距离最小的PDCCH资源;
    其中,所述第一公式满足如下关系:
    Figure PCTCN2022108748-appb-100001
    其中,L表示与所述一个或者多个候选PDCCH资源对应的终端设备的聚集级别;
    Figure PCTCN2022108748-appb-100002
    表示所述终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的控制信道单元CCE资源的数量,其中,所述索引为p的控制资源集为网络设备配置给所述终端设备的控制资源集;
    Figure PCTCN2022108748-appb-100003
    表示所述终端设备的最大盲检次数;
    Figure PCTCN2022108748-appb-100004
    表示所述一个或者多个候选PDCCH资源中每个候选PDCCH资源的索引,
    Figure PCTCN2022108748-appb-100005
    Figure PCTCN2022108748-appb-100006
    中的一个值;n CI表示所述终端设备接入的小区的索引;i={0,1,…,L-1}。
  3. 根据权利要求2所述的方法,其特征在于,所述至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与所述基准频域位置之间的距离最小的PDCCH资源,包括:
    所述至少两个PDCCH资源中每个PDCCH资源为满足所述第一公式的一个或者多个候选PDCCH资源中,频域位置与所述基准频域位置之间的距离最小的PDCCH资源被占用的情况下,索引满足第二公式的PDCCH资源,其中,所述第二公式满足如下关系:
    Figure PCTCN2022108748-appb-100007
    或者,
    Figure PCTCN2022108748-appb-100008
    或者,
    Figure PCTCN2022108748-appb-100009
    或者,
    Figure PCTCN2022108748-appb-100010
    其中,
    Figure PCTCN2022108748-appb-100011
    表示满足所述第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与所述基准频域位置之间的距离最小的PDCCH资源的索引,其中,i取
    Figure PCTCN2022108748-appb-100012
    中的一个值;i=1时,
    Figure PCTCN2022108748-appb-100013
    表示满足所述第一公式的一个或者多个候选PDCCH资源中,频域位置与所述基准频域位置之间的距离最小的PDCCH资源的索引;
    Figure PCTCN2022108748-appb-100014
    表示所述终端设备的最大盲检次数。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述基准频域位置为根据所述至少两个终端设备接入的小区的标识和第三公式确定的;
    其中,在所述终端设备接入的小区的标识满足如下关系的情况下:
    (PCI+k)mod n=m;
    所述第三公式满足如下关系:
    Figure PCTCN2022108748-appb-100015
    其中,PCI表示所述终端设备接入的小区的标识;k为大于等于0的正整数;n取{1,…,N CCE,p}中的一个值;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,所述索引为p的控制资源集为网络设备配置给所述终端设备的控制资源集;m为正整数,0≤m≤n-1;
    Figure PCTCN2022108748-appb-100016
    表示所述基准频域位置对应的CCE资源的索引。
  5. 根据权利要求1所述的方法,其特征在于,所述至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件包括:
    所述相邻的两个PDCCH资源包括第一PDCCH资源和第二PDCCH资源,所述第二PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与所述第一PDCCH资源距离最小的PDCCH资源;
    其中,所述第一公式满足如下关系:
    Figure PCTCN2022108748-appb-100017
    其中,L表示与所述一个或者多个候选PDCCH资源对应的终端设备的聚集级别;
    Figure PCTCN2022108748-appb-100018
    表示所述终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,所述索引为p的控制资源集为网络设备配置给所述终端设备的控制资源集;
    Figure PCTCN2022108748-appb-100019
    表示所述终端设备的最大盲检次数;
    Figure PCTCN2022108748-appb-100020
    表示所述一个或者多个候选PDCCH资源中每个候选PDCCH资源的索引,
    Figure PCTCN2022108748-appb-100021
    Figure PCTCN2022108748-appb-100022
    中的一个值;n CI表示所述终端设备接入的小区的索引;i={0,1,…,L-1}。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述至少两个终端设备接入的小区满足如下条件:
    在目标周期内,CCE资源的利用率大于所述目标周期对应的第一阈值;
    或者,在所述目标周期内,接入小区的第一类型终端设备的数量与第二类型终端设备的数据的比值大于所述目标周期对应的第三阈值,其中,所述第一类型终端设备为未被成功分配PDCCH资源并且聚集级别大于第二阈值的终端设备,所述第二类型终端设备为聚集级别大于第二阈值并请求调度的终端设备。
  7. 根据权利要求6所述的方法,其特征在于,所述目标周期是根据所述至少两个终端设备接入的小区对应的负载状态确定的。
  8. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于为至少两个终端设备确定至少两个物理下行控制信道PDCCH资源,所述至少两个PDCCH资源与所述至少两个终端设备一一对应,所述至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件,或者所述至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件;
    所述收发模块,用于在所述至少两个PDCCH资源上分别向所述至少两个终端设备发送信息。
  9. 根据权利要求8所述的通信装置,其特征在于,所述至少两个PDCCH资源中每个 PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件包括:
    所述至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与所述基准频域位置之间的距离最小的PDCCH资源;
    其中,所述第一公式满足如下关系:
    Figure PCTCN2022108748-appb-100023
    其中,L表示与所述一个或者多个候选PDCCH资源对应的终端设备的聚集级别;
    Figure PCTCN2022108748-appb-100024
    表示所述终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的控制信道单元CCE资源的数量,其中,所述索引为p的控制资源集为所述通信装置配置给所述终端设备的控制资源集;
    Figure PCTCN2022108748-appb-100025
    表示所述终端设备的最大盲检次数;
    Figure PCTCN2022108748-appb-100026
    表示所述一个或者多个候选PDCCH资源中每个候选PDCCH资源的索引,
    Figure PCTCN2022108748-appb-100027
    Figure PCTCN2022108748-appb-100028
    中的一个值;n CI表示所述终端设备接入的小区的索引;i={0,1,…,L-1}。
  10. 根据权利要求9所述的通信装置,其特征在于,所述至少两个PDCCH资源中每个PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与所述基准频域位置之间的距离最小的PDCCH资源,包括:
    所述至少两个PDCCH资源中每个PDCCH资源为满足所述第一公式的一个或者多个候选PDCCH资源中,频域位置与所述基准频域位置之间的距离最小的PDCCH资源被占用的情况下,索引满足第二公式的PDCCH资源,其中,所述第二公式满足如下关系:
    Figure PCTCN2022108748-appb-100029
    或者,
    Figure PCTCN2022108748-appb-100030
    或者,
    Figure PCTCN2022108748-appb-100031
    或者,
    Figure PCTCN2022108748-appb-100032
    其中,
    Figure PCTCN2022108748-appb-100033
    表示满足所述第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且频域位置与所述基准频域位置之间的距离最小的PDCCH资源的索引,其中,i取
    Figure PCTCN2022108748-appb-100034
    中的一个值;i=1时,
    Figure PCTCN2022108748-appb-100035
    表示满足所述第一公式的一个或者多个候选PDCCH资源中,频域位置与所述基准频域位置之间的距离最小的PDCCH资源的索引;
    Figure PCTCN2022108748-appb-100036
    表示所述终端设备的最大盲检次数。
  11. 根据权利要求8-10任一项所述的通信装置,其特征在于,所述基准频域位置为根据所述至少两个终端设备接入的小区的标识和第三公式确定的;
    其中,在所述终端设备接入的小区的标识满足如下关系的情况下:
    (PCI+k)mod n=m;
    所述第三公式满足如下关系:
    Figure PCTCN2022108748-appb-100037
    其中,PCI表示所述终端设备接入的小区的标识;k为大于等于0的正整数;n取{1,…,N CCE,p}中的一个值;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,所述索引为p的控制资源集为所述通信装置配置给所述终端设备的控制资源集;m为正整数,0≤m≤n-1;
    Figure PCTCN2022108748-appb-100038
    表示所述基准频域位置对应的CCE资源的索引。
  12. 根据权利要求8所述的通信装置,其特征在于,所述至少两个PDCCH资源中频域 上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件包括:
    所述相邻的两个PDCCH资源包括第一PDCCH资源和第二PDCCH资源,所述第二PDCCH资源为满足第一公式的一个或者多个候选PDCCH资源中,处于可分配状态,且与所述第一PDCCH资源距离最小的PDCCH资源;
    其中,所述第一公式满足如下关系:
    Figure PCTCN2022108748-appb-100039
    其中,L表示与所述一个或者多个候选PDCCH资源对应的终端设备的聚集级别;
    Figure PCTCN2022108748-appb-100040
    表示所述终端设备对应的随机化参数;N CCE,p表示索引为p的控制资源集指示的PDCCH时频资源范围包括的CCE资源的数量,其中,所述索引为p的控制资源集为通信装置配置给所述终端设备的控制资源集;
    Figure PCTCN2022108748-appb-100041
    表示所述终端设备的最大盲检次数;
    Figure PCTCN2022108748-appb-100042
    表示所述一个或者多个候选PDCCH资源中每个候选PDCCH资源的索引,
    Figure PCTCN2022108748-appb-100043
    Figure PCTCN2022108748-appb-100044
    中的一个值;n CI表示所述终端设备接入的小区的索引;i={0,1,…,L-1}。
  13. 根据权利要求8-12任一项所述的通信装置,其特征在于,所述至少两个终端设备接入的小区满足如下条件:
    在目标周期内,CCE资源的利用率大于所述目标周期对应的第一阈值;
    或者,在所述目标周期内,接入小区的第一类型终端设备的数量与第二类型终端设备的数据的比值大于所述目标周期对应的第三阈值,其中,所述第一类型终端设备为未被成功分配PDCCH资源并且聚集级别大于第二阈值的终端设备,所述第二类型终端设备为聚集级别大于第二阈值并请求调度的终端设备。
  14. 根据权利要求13所述的通信装置,其特征在于,所述目标周期是根据所述至少两个终端设备接入的小区对应的负载状态确定的。
  15. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,当所述计算机程序被计算机执行时使得所述计算机执行权利要求1-7中任一项所述的方法。
  16. 一种计算机程序产品,其特征在于,包括:指令,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求1-7中任一项所述的方法。
  17. 一种通信系统,其特征在于,所述通信系统包括终端设备和网络设备;
    所述网络设备,用于为至少两个终端设备确定至少两个物理下行控制信道PDCCH资源,所述至少两个PDCCH资源与所述至少两个终端设备一一对应,所述至少两个PDCCH资源中每个PDCCH资源的频域位置与基准频域位置之间的距离满足预设条件,或者所述至少两个PDCCH资源中频域上相邻的两个PDCCH资源的频域位置之间的距离满足预设条件;
    所述网络设备,还用于在所述至少两个PDCCH资源上分别向所述至少两个终端设备发送信息;
    所述终端设备,用于在所述PDCCH资源上接收来自所述网络设备的信息。
PCT/CN2022/108748 2021-07-31 2022-07-28 资源分配方法、装置及系统 WO2023011324A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247006003A KR20240035875A (ko) 2021-07-31 2022-07-28 자원 할당 방법, 장치 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110877188.8 2021-07-31
CN202110877188.8A CN115696592A (zh) 2021-07-31 2021-07-31 资源分配方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023011324A1 true WO2023011324A1 (zh) 2023-02-09

Family

ID=85060052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108748 WO2023011324A1 (zh) 2021-07-31 2022-07-28 资源分配方法、装置及系统

Country Status (3)

Country Link
KR (1) KR20240035875A (zh)
CN (1) CN115696592A (zh)
WO (1) WO2023011324A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301671A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 下行控制信道的传输方法、配置方法及终端、基站
US20200163088A1 (en) * 2017-11-16 2020-05-21 Fujitsu Limited Resource indication method and apparatus and communication system
WO2020166045A1 (ja) * 2019-02-14 2020-08-20 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN111614434A (zh) * 2019-02-25 2020-09-01 华为技术有限公司 搜索空间的盲检方法及通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301671A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 下行控制信道的传输方法、配置方法及终端、基站
US20200163088A1 (en) * 2017-11-16 2020-05-21 Fujitsu Limited Resource indication method and apparatus and communication system
WO2020166045A1 (ja) * 2019-02-14 2020-08-20 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN111614434A (zh) * 2019-02-25 2020-09-01 华为技术有限公司 搜索空间的盲检方法及通信装置

Also Published As

Publication number Publication date
KR20240035875A (ko) 2024-03-18
CN115696592A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
TWI486082B (zh) Method and apparatus for physical random access in a communication network
CN111614434B (zh) 搜索空间的盲检方法及通信装置
US11039448B2 (en) Resource scheduling method and apparatus
US11700630B2 (en) Electronic device and method for the electronic device
CN111436136B (zh) 免授权传输的方法及装置
US20210399986A1 (en) Data communication method, server device, client device and medium
CN113518413A (zh) 一种通信方法、装置及系统
WO2020224512A1 (zh) 下行控制信道的检测方法和装置
US11477794B2 (en) Data transmission method, communications apparatus, storage medium, and program product
CN114258136A (zh) 资源确定方法及装置
WO2023011324A1 (zh) 资源分配方法、装置及系统
US20230354366A1 (en) Resource determining method and apparatus
US20200374913A1 (en) Information transmission method, communications apparatus, and storage medium
WO2019157679A1 (zh) 一种信息指示方法及相关设备
WO2024032231A1 (zh) 资源预留方法、装置及存储介质
WO2023078205A1 (zh) 确定候选资源集合的方法及装置
WO2023130939A1 (zh) 资源选择方法及装置
WO2019028864A1 (zh) 资源分配方法及相关设备
WO2022151428A1 (zh) 一种通信方法、装置以及系统
US20230389042A1 (en) Method and apparatus for determining position of control channel element, and storage medium
WO2024027421A1 (zh) 资源分配方法、装置及系统
CN111656843B (zh) 一种数据传输方法及设备
US20230189222A1 (en) Resource allocation method, apparatus, and system
WO2021078172A1 (zh) 一种配置导频序列的方法及装置
WO2022178881A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247006003

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247006003

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022852037

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022852037

Country of ref document: EP

Effective date: 20240228