WO2022151428A1 - 一种通信方法、装置以及系统 - Google Patents

一种通信方法、装置以及系统 Download PDF

Info

Publication number
WO2022151428A1
WO2022151428A1 PCT/CN2021/072313 CN2021072313W WO2022151428A1 WO 2022151428 A1 WO2022151428 A1 WO 2022151428A1 CN 2021072313 W CN2021072313 W CN 2021072313W WO 2022151428 A1 WO2022151428 A1 WO 2022151428A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
space set
pdcch
candidate
subset
Prior art date
Application number
PCT/CN2021/072313
Other languages
English (en)
French (fr)
Inventor
高飞
焦淑蓉
花梦
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/072313 priority Critical patent/WO2022151428A1/zh
Publication of WO2022151428A1 publication Critical patent/WO2022151428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method, apparatus, and system.
  • a network device may over-configure one or more search space sets, and each search space set includes at least one candidate physical downlink control channel candidate (PDCCH candidate) .
  • PDCCH candidate physical downlink control channel candidate
  • CCEs non-overlapping control channel elements
  • a PDCCH mapping rule is proposed in NR.
  • the process of the PDCCH mapping rule is: the terminal device can determine multiple search space sets configured by the network device; the terminal device can determine the upper limit of the number of remaining blind detections (for example, it can be initialized to the maximum number of blind detections) and the maximum number of remaining non-overlapping CCEs (For example, it can be initialized to the maximum number of non-overlapping CCEs); the terminal device can judge whether the number of blind checks of the search space set is greater than the upper limit of the remaining number of blind checks and whether the number of non-overlapping CCEs is in the order of the index of the search space set from small to large. Greater than the maximum number of remaining non-overlapping CCEs.
  • the terminal device determines that this search space set is not a search space set for monitoring , that is, will not listen (or will not blindly check) this set of search spaces. Since the PDCCH mapping rule can ensure that the terminal device performs blind detection and/or channel estimation on the candidate PDCCH within its monitoring capability, the PDCCH mapping rule can reduce the data processing pressure and processing complexity caused by the over-configuration on the terminal device.
  • the network device may configure two search space sets as search space sets used for PDCCH repeated transmission, so as to improve the reliability of PDCCH transmission.
  • the two candidate PDCCHs in the two search space sets are used for repeated transmission of the same PDCCH, and the two candidate PDCCHs belong to different search space sets. How to monitor the candidate PDCCHs in the two search space sets is a technical problem to be solved in the art.
  • the present application provides a communication method, apparatus, and system, so as to realize the repeated transmission of PDCCH in the scenario of network equipment over-provisioning, and improve the reliability of PDCCH transmission.
  • the present application provides a communication method, which can be executed by a terminal device or by a component of the terminal device (such as a chip or a chip system, etc.).
  • the terminal device may receive configuration information from the network device, and the configuration information may include information of the first search space set and information of the second search space set, wherein all PDCCHs in the first search space set are related to the first search space set. All candidate PDCCHs in the second search space set are configured for PDCCH repeated transmission, and the index of the first search space set is smaller than the index of the second search space set; and, after determining that the first search space set is the search space set for monitoring At the same time, the second search space set is determined as the search space set for monitoring.
  • the terminal device when the terminal device determines that the first search space set is the search space set for monitoring, the terminal device may also determine that the second search space set is also the search space set for monitoring.
  • the index of the first search space set is smaller than the second search space set, which is equivalent to that the terminal device increases the mapping priority of the second search space set, so that the mapping priority of the second search space set is the same as the mapping priority of the first search space set same.
  • the monitoring capability of the terminal device supports the mapping of the first search space set, but does not support the mapping of the first search space set.
  • the second search space set is mapped, resulting in the problem that the repeated transmission of the PDCCH cannot be realized.
  • the configuration information may further indicate that the first candidate PDCCH of the first search space set and the second candidate PDCCH of the second search space set are configured for repeated transmission of the same PDCCH.
  • the index of the first candidate PDCCH in the first search space set and the index of the second candidate PDCCH in the second search space set may be the same.
  • the configuration information sent by the network device to the terminal device can implicitly indicate which two candidate PDCCHs in the first search space set and the second search space set are used for repeated transmission of the same PDCCH, thereby reducing signaling overhead.
  • the index of the first candidate PDCCH in the first search space set and the index of the second candidate PDCCH in the second search space set may be different, so that the first search space set and Candidate PDCCHs in the second search space set for PDCCH repeated transmission.
  • the configuration information may further include a third search space set, the candidate PDCCHs in the third search space set are not configured for PDCCH repeated transmission, and the index of the third search space set is greater than the first search space set and the index of the second search space set is smaller than the index of the second search space set, the method may further include: after determining that the first search space set is a search space set for monitoring and determining that the second search space set is a search space set for monitoring , the terminal device can determine whether the third search space set is a search space set for monitoring.
  • the configuration information may further include a third search space set, the candidate PDCCHs in the third search space set are not configured for PDCCH repeated transmission, and the index of the third search space set is smaller than the first search space
  • the method may further include: after determining that the first set of search spaces is the set of search spaces for monitoring and the second set of search spaces to be the set of search spaces for monitoring, the terminal device may determine the third search space Whether the collection is a search space collection for listening.
  • the present application provides a communication method, which can be performed by a terminal device or by a component of the terminal device.
  • the terminal device may receive configuration information from the network device, and the configuration information may include information of the first search space set and information of the second search space set, wherein the first search space set includes the first candidate PDCCH, and the first search space set includes the first candidate PDCCH.
  • the second search space set includes a second candidate PDCCH, and the first candidate PDCCH and the second candidate PDCCH are configured for repeated transmission of the same PDCCH;
  • the second candidate PDCCH is a candidate PDCCH for monitoring.
  • the index of the first search space set may be smaller than the index of the second search space set.
  • the terminal device when the terminal device determines that the first candidate PDCCH is a candidate PDCCH for monitoring, it can also determine that the second candidate PDCCH is also a candidate PDCCH for monitoring.
  • the index of the first search space set may be smaller than that of the second search space set, which is equivalent to that the terminal device increases the mapping priority of the second candidate PDCCH in the second search space set, so that the mapping priority of the second candidate PDCCH is the same as that of the first PDCCH candidate.
  • the mapping priorities of the first candidate PDCCHs in the search space set are the same.
  • the monitoring capability of the terminal device supports the mapping of the first candidate PDCCH, but does not support the mapping of the first candidate PDCCH.
  • the two candidate PDCCHs are mapped, resulting in the problem that the repeated transmission of the PDCCH cannot be realized.
  • the index of the first candidate PDCCH in the first search space set and the index of the second candidate PDCCH in the second search space set may be the same.
  • the configuration information sent by the network device to the terminal device can implicitly indicate which two candidate PDCCHs in the first search space set and the second search space set are used for repeated transmission of the same PDCCH, thereby reducing signaling overhead.
  • the index of the first candidate PDCCH in the first search space set and the index of the second candidate PDCCH in the second search space set may be different, so that the first search space set and Candidate PDCCHs in the second search space set for PDCCH repeated transmission.
  • the first search space set may further include a third candidate PDCCH, and the third candidate PDCCH is not configured for PDCCH repeated transmission, and the method may further include: after determining that the first candidate PDCCH is used for monitoring After the candidate PDCCH and the second candidate PDCCH are determined as the candidate PDCCH for monitoring, the terminal device may determine whether the third candidate PDCCH is the candidate PDCCH for monitoring.
  • the present application provides a communication method, which can be performed by a terminal device or by a component of the terminal device.
  • the terminal device may receive configuration information from the network device, where the configuration information includes information of a first search space set and information of a second search space set, wherein the first search space set includes a first subset, and the second search space set includes a first subset.
  • the search space set includes a second subset, and all candidate PDCCHs in the first subset and all candidate PDCCHs in the second subset are configured for PDCCH repeated transmission; and, after determining that the first subset is a search space set for monitoring At the same time, the terminal device may determine that the second subset is a subset of the search space set for monitoring.
  • the index of the first search space set may be smaller than the index of the second search space set.
  • the terminal device when the terminal device determines that the first subset is a subset of the search space set for monitoring, the terminal device may also determine that the second subset is also a subset of the search space set for monitoring.
  • the index of the first search space set is smaller than that of the second search space set, which means that the terminal device increases the mapping priority of the second subset of the second search space set, so that the mapping priority of the second subset is the same as that of the first search space set.
  • the mapping priority of the first subset of the spatial set is the same.
  • the monitoring capability of the terminal device supports the mapping of the first subset, but does not support the mapping of the first subset. Two subsets are mapped, which leads to the problem that the repeated transmission of PDCCH cannot be realized.
  • the configuration information may further indicate that the first candidate PDCCH of the first subset and the second candidate PDCCH of the second subset are configured for repeated transmission of the same PDCCH.
  • the index of the first candidate PDCCH in the first subset is the same as the index of the second candidate PDCCH in the second subset.
  • the configuration information sent by the network device to the terminal device can implicitly indicate which two candidate PDCCHs in the first subset and the second subset are used for repeated transmission of the same PDCCH, thereby reducing signaling overhead.
  • the index of the first candidate PDCCH in the first subset may be different from the index of the second candidate PDCCH in the second subset, so that the first and second subsets can be configured flexibly Candidate PDCCH for repeated transmission on PDCCH.
  • the first search space set may further include a third subset, and the candidate PDCCHs of the third subset are not configured for PDCCH repeated transmission, and the method may further include: after determining that the first subset is used for After the subset of search spaces for listening and the second subset being determined to be a subset of the set of search spaces for listening, the terminal device may determine whether the third subset is a subset of the set of search spaces for listening.
  • the present application provides a communication method, which can be performed by a network device or by a component of the network device.
  • the network device may send configuration information to the terminal device, where the configuration information includes information of the first search space set and information of the second search space set, wherein all candidate physical downlink control channels PDCCH in the first search space set All candidate PDCCHs in the second search space set are configured for PDCCH repeated transmission, and the index of the first search space set is smaller than the index of the second search space set; after determining that the first search space set is the search used by the terminal device for monitoring At the same time as the space set, the second search space set is determined as a search space set used by the terminal device for monitoring.
  • the configuration information further indicates that the first candidate PDCCH of the first search space set and the second candidate PDCCH of the second search space set are configured for repeated transmission of the same PDCCH.
  • the index of the first candidate PDCCH in the first search space set is the same as the index of the second candidate PDCCH in the second search space set.
  • the configuration information further includes a third search space set
  • the candidate PDCCHs in the third search space set are not configured for PDCCH repeated transmission
  • the index of the third search space set is greater than the index of the first search space set , and is smaller than the index of the second search space set
  • the method further includes: after determining that the first search space set is a search space set used by the terminal device for monitoring and determining the second search space set is a search space set used by the terminal device for monitoring. , and determine whether the third search space set is a search space set used by the terminal device for monitoring.
  • the present application provides a communication method, which can be performed by a network device or by a component of the network device.
  • the network device may send configuration information to the terminal device, where the configuration information includes information of the first search space set and information of the second search space set, wherein the first search space set includes the first candidate physical downlink control channel PDCCH , the second search space set includes a second candidate PDCCH, and the first candidate PDCCH and the second candidate PDCCH are configured for repeated transmission of the same PDCCH; while determining that the first candidate PDCCH is the candidate PDCCH used by the terminal device for monitoring, determine The second candidate PDCCH is a candidate PDCCH used by the terminal device for monitoring.
  • the index of the first candidate PDCCH in the first search space set is the same as the index of the second candidate PDCCH in the second search space set.
  • the first search space set further includes a third candidate PDCCH
  • the third candidate PDCCH is not configured for PDCCH repeated transmission
  • the method further includes: determining the first candidate PDCCH as a candidate for monitoring by the terminal device After the PDCCH and the second candidate PDCCH are determined to be the candidate PDCCHs used by the terminal device for monitoring, it is determined whether the third candidate PDCCH is the candidate PDCCH used by the terminal device for monitoring.
  • the present application provides a communication method, which can be performed by a network device or by a component of the network device.
  • the network device may send configuration information to the terminal device, where the configuration information includes information of the first search space set and information of the second search space set, wherein the first search space set includes the first subset, and the second search space set includes the first subset.
  • the space set includes a second subset, and all candidate physical downlink control channel PDCCHs in the first subset and all candidate PDCCHs in the second subset are configured for PDCCH repeated transmission; after determining that the first subset is used by the terminal device for monitoring While searching for the subset of the set of spaces, the second subset is determined to be the subset of the set of search spaces used by the terminal device for monitoring.
  • the configuration information further indicates that the first candidate PDCCH of the first subset and the second candidate PDCCH of the second subset are configured for repeated transmission of the same PDCCH.
  • the index of the first candidate PDCCH in the first subset is the same as the index of the second candidate PDCCH in the second subset.
  • the first search space set further includes a third subset, the candidate PDCCHs of the third subset are not configured for PDCCH repeated transmission, and the method further includes: determining that the first subset is used by the terminal equipment for After the subset of the monitored search space set and the second subset is determined to be a subset of the search space set used by the terminal device for monitoring, it is determined whether the third subset is a subset of the search space set used by the terminal device for monitoring.
  • the present application provides a communication apparatus, the communication apparatus may include a processing module and a transceiver module, and these modules may perform the corresponding functions performed by the terminal device in any of the design examples of the first aspect, or perform the second Corresponding functions performed by the terminal device in any design example of the aspect, or corresponding functions performed by the terminal device in any design example of the third aspect above.
  • the present application provides a communication apparatus, the communication apparatus may include a processing module and a transceiver module, and these modules may perform the corresponding functions performed by the network device in any of the design examples of the fourth aspect above, or perform the fifth aspect above.
  • the present application provides a communication device, where the communication device may be a terminal device or a device in a terminal device.
  • the communication device may include a processor and interface circuitry.
  • the interface circuit can be used to receive signals from other communication devices than the communication device and transmit to the processor or send signals from the processor to other communication devices than the communication device.
  • the processor may be used to implement any one of the methods performed by the terminal device in the first aspect, the second aspect, or the third aspect through a logic circuit or executing code instructions.
  • the present application provides a communication device, where the communication device may be a network device or a device in a network device.
  • the communication device may include a processor and interface circuitry.
  • the interface circuit can be used to receive signals from other communication devices than the communication device and transmit to the processor or send signals from the processor to other communication devices than the communication device.
  • the processor may be configured to implement any one of the methods performed by the network device in the fourth aspect, the fifth aspect, or the sixth aspect through a logic circuit or executing code instructions.
  • the present application provides a computer program, which, when executed by a communication device, can implement the method in any one of the design examples of the first aspect, the second aspect, or the third aspect.
  • the present application provides a computer program, which, when executed by a communication device, can implement the method in any one of the design examples of the fourth aspect, the fifth aspect, or the sixth aspect.
  • the present application provides a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is executed, the above-mentioned first aspect, or the second aspect, or the first aspect can be implemented.
  • the method in any of the three design examples.
  • the present application provides a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is executed, the above-mentioned fourth aspect, or the fifth aspect, or the first The method in any one of the six aspects of the design example.
  • the present application further provides a computer program product, comprising instructions, when the instructions are run on a computer, causing the computer to execute any design of the first aspect, or the second aspect, or the third aspect The method performed by the terminal device in the example.
  • the present application further provides a computer program product, comprising instructions, when the instructions are run on a computer, the computer is made to execute any design of the fourth aspect, the fifth aspect, or the sixth aspect The method performed by the network device in the example.
  • the present application further provides a communication system, the communication system comprising the communication device in any one of the design examples of the seventh aspect or the ninth aspect, and any of the eighth aspect or the tenth aspect.
  • the communication system comprising the communication device in any one of the design examples of the seventh aspect or the ninth aspect, and any of the eighth aspect or the tenth aspect.
  • FIG. 1 is a schematic diagram of a communication system to which an embodiment of the application is applied;
  • FIG. 2 is a schematic diagram of a search space set according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of non-overlapping CCEs according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a PDCCH mapping rule according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of PDCCH repeated transmission according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a search space set #i and a search space set #j provided by an embodiment of the present application for PDCCH repeated transmission;
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an index of a first candidate PDCCH and an index of a second candidate PDCCH provided by an embodiment of the present application;
  • FIG. 9 is still another schematic diagram of an index of a first candidate PDCCH and an index of a second candidate PDCCH according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of multiple search space sets provided by an embodiment of the present application.
  • FIG. 11 is still another schematic diagram of multiple search space sets provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a PDCCH mapping method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of still another communication method provided by an embodiment of the present application.
  • FIG. 14 is another schematic diagram of multiple search space sets provided by an embodiment of the present application.
  • 15 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • 16 is a schematic diagram of a subset of a search space set provided by an embodiment of the present application.
  • 17 is still another schematic diagram of a subset of a search space set provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 19 is another schematic diagram of a communication apparatus provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 to which an embodiment of the present application is applied.
  • the communication system includes a radio access network 100 and a core network 200 .
  • the communication system 1000 may further include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless way, and the wireless access network device is connected to the core network in a wireless or wired way.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment. Terminals and terminals and wireless access network devices and wireless access network devices can be connected to each other in a wired or wireless manner.
  • FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the communication system may further include terminals connected to multiple wireless access devices, such as the next generation in an evolved base station (evolved NodeB, eNodeB) and a fifth generation (5th generation, 5G) mobile communication system.
  • eNodeB evolved NodeB
  • 5G fifth generation
  • a base station (next generation NodeB, gNB) establishes a terminal of dual connectivity (dual connectivity), which is not shown in FIG. 1 .
  • Radio access network equipment can also be called network equipment, which can be base station (base station), eNodeB, transmission reception point (TRP), gNB, 6th generation (6th generation, 6G) mobile communication system.
  • the radio access network device may be a macro base station (110a in FIG. 1), a micro base station or an indoor station (110b in FIG. 1), a relay node or a donor node, and the like.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • a terminal may also be referred to as terminal equipment, user equipment (UE), mobile station, mobile terminal, and the like.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed in the air on aircraft, balloons, and satellites. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or drone 120i in FIG. 1 may be configured as a mobile base station, for those terminals 120j accessing the radio access network 100 through 120i, the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • the communication between 110a and 120i may also be performed through an interface protocol between the base station and the base station.
  • both the base station and the terminal may be collectively referred to as communication devices, 110a and 110b in FIG. 1 may be referred to as communication devices with base station functions, and 120a-120j in FIG. 1 may be referred to as communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals and terminals can be carried out through licensed spectrum, through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time;
  • the frequency spectrum below gigahertz (GHz) is used for communication, the frequency spectrum above 6GHz can also be used for communication, and the frequency spectrum below 6GHz and the frequency spectrum above 6GHz can be used for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the embodiment of the present application takes the communication system shown in FIG. 1 as an example for description, that is, the network device in the following may be the radio access network device 110a or the radio access network device 110b in FIG.
  • the terminal device can be any one of the terminal 120a to the terminal 120j in FIG. 1 .
  • the set of search spaces may include one or more search spaces.
  • a search space is for a specific aggregation level (aggregation level, AL), that is, a search space is composed of one or more candidate PDCCHs under the same AL.
  • a candidate PDCCH is composed of n consecutive control channel elements (CCEs). Wherein, n is AL, for example, the value range of n can be ⁇ 1, 2, 4, 8, 16 ⁇ .
  • One candidate PDCCH may be configured to carry downlink control information (DCI).
  • the network-side device may send configuration information of a search space set to the terminal device, and the configuration information may include the initial orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol of PDCCH monitoring, the PDCCH monitoring period, and the search space.
  • the set of control resources associated with the set (control resource set, CORESET), etc.
  • the terminal device can receive the PDCCH by listening to the search space set.
  • the search space set can be divided into a common search space set (common search space set, CSS set) and a UE-specific search space set (UE-specific search space set, USS set).
  • the common search space set can be used to send a common control channel for transmitting paging, system information, etc. to the terminal device.
  • the UE-specific set of search spaces may be used to send a control channel for transmitting certain UE-specific control information to the terminal device.
  • the common search space set may also be used to send a control channel for transmitting a certain UE-specific control information to a terminal device, which is not limited in this embodiment of the present application.
  • the index of the set of search spaces can be used to uniquely identify the set of search spaces within a serving cell.
  • the index of the search space set may be numbered from 0, such as search space set #0 to search space set #j, where j is an integer greater than 0.
  • the index of the search space set may be configured by higher layer signaling.
  • the index of candidate PDCCHs may be used to uniquely identify candidate PDCCHs within a set of search spaces or a subset of a set of search spaces.
  • the indices of the candidate PDCCHs may be numbered from 0, for example, candidate PDCCH#0 to candidate PDCCH#j, where j is an integer greater than 0.
  • the index of the candidate PDCCH may be configured by high-layer signaling, or determined by a mapping relationship predefined by a protocol, or determined by a combination of high-layer signaling and a mapping relationship predefined by the protocol.
  • the network device may configure the number of candidate PDCCHs. For example, the network device may configure multiple candidate PDCCHs for the terminal device. However, not all the candidate PDCCHs in the multiple candidate PDCCHs carry the DCI expected by the terminal equipment, that is, not all the candidate PDCCHs carry the DCI sent to the terminal equipment, so the terminal equipment needs to Decoding is performed on each candidate PDCCH to determine whether the DCI expected to be received by the candidate PDCCH is carried on these candidate PDCCHs.
  • the behavior of the terminal device trying to decode each candidate PDCCH in one or more search space sets may be called blind detection (may be referred to as blind detection for short). Monitoring DCI on a certain candidate PDCCH can be understood as performing blind detection on a certain candidate PDCCH.
  • the cyclic redundancy check (CRC) of the DCI that the terminal device expects to receive is masked by a cell-radio network temporary identifier (C-RNTI).
  • C-RNTI cell-radio network temporary identifier
  • the terminal device may perform CRC check on each candidate PDCCH in the search space set according to the C-RNTI. If the CRC check is successful, the terminal device determines that the DCI that it expects to receive is decoded on the candidate PDCCH; otherwise, the terminal device determines that the DCI that it expects to receive has not been decoded on the candidate PDCCH.
  • the upper limit of the number of blind detections may refer to the maximum number of blind detections supported by the terminal device within a time slot or within a time span (span).
  • the maximum number of blind detections can be understood as the maximum number of monitored candidate PDCCHs.
  • the terminal device will not monitor (or blindly detect) candidate PDCCHs that exceed the maximum number of monitored candidate PDCCHs.
  • the upper limit of the number of blind checks may be predefined by the protocol.
  • the upper limit of the number of blind detections may be related to information such as subcarrier spacing and UE capability. For example, in a cell with a subcarrier spacing of 15 kHz, the upper limit of the number of blind detections corresponding to one time slot is 44.
  • the counting rule for the number of blind detections is: two or more configured candidate PDCCHs are counted as one blind detection number, and the two or more configured candidate PDCCHs need to satisfy four conditions at the same time; Two different candidate PDCCHs in a search space set, in which a candidate PDCCH with a larger index is counted as a candidate PDCCH to be monitored and the other candidate PDCCH with a smaller index is not counted as a candidate PDCCH to be monitored Or, two candidate PDCCHs belonging to different search space sets, wherein the candidate PDCCH in the search space set with a larger index is counted as a candidate PDCCH to be monitored, and the candidate PDCCH in the search space set with a smaller index It is not counted as 1 candidate PDCCH to be monitored.
  • the four conditions are: the aggregation levels of the two or more configured candidate PDCCHs are the same, and the CCE sets of the two or more configured candidate PDCCHs are the same (it can be understood that the two or more configured candidate PDCCHs have the same CCE set
  • the time-frequency resources of the configured candidate PDCCHs are the same); the scrambling sequences of the two or more configured candidate PDCCHs are the same; the CORESETs where the configured candidate PDCCHs are located are the same;
  • the size of the DCI to be monitored on the candidate PDCCHs is the same, for example, the number of bits or the load size of the DCI is the same.
  • the number of blind detections of a search space set can be understood as the number of candidate PDCCHs to be monitored obtained after a search space set passes the counting rule of the number of blind detections.
  • CCE is the smallest unit of resource allocation of control information, that is, the resource allocation of control information is based on CCE as the smallest unit
  • CCE is the smallest unit of resource allocation of control information, that is, the resource allocation of control information is allocated in CCE as the smallest unit of.
  • One CCE is equal to six resource element groups (REGs), and one REG is defined as one physical resource block (PRB) on one OFDM symbol.
  • REGs resource element groups
  • PRB physical resource block
  • the DCI will be affected by the wireless channel environment during the transmission process, which greatly affects the transmission performance. Therefore, before performing blind detection, the terminal equipment needs to offset the influence of the wireless channel on the transmission signal by performing channel estimation on the pilot frequency inserted in the PDCCH, and try to recover the transmitted signal of the transmitter end as accurately as possible at the receiver end.
  • the pattern of the pilot sequence on one RB is #1, #5, #9 resource element (RE), and PDCCH is allocated with CCE as the smallest unit, so the terminal equipment does PDCCH channel estimation
  • the number of times is counted in units of CCE. For multiple overlapping CCEs, the terminal equipment only needs to perform PDCCH channel estimation once, while for multiple non-overlapping CCEs, the terminal equipment needs to perform PDCCH channel estimation multiple times.
  • the counting rule for non-overlapping CCEs is: a CCE corresponding to a configured candidate PDCCH is counted as a non-overlapping CCE; or, the CCEs corresponding to multiple configured candidate PDCCHs that overlap in time-frequency resource positions are counted as non-overlapping.
  • CCE the multiple configured candidate PDCCHs overlapping in time-frequency resource positions need to satisfy at least one of two conditions.
  • the two conditions are: the CCEs corresponding to the multiple configured candidate PDCCHs that overlap in the time-frequency resource positions belong to different CORESETs, for example, whether they belong to different CORESETs can be determined according to the index of the CORESET;
  • the reception start symbols of each candidate PDCCH among the candidate PDCCHs that overlap in position are different.
  • PDCCH#1 belongs to CORESET#1
  • the AL of PDCCH#1 is 2, that is, PDCCH#1 occupies 2 CCEs
  • the candidate PDCCH#2 belongs to CORESET#2
  • the AL of PDCCH#2 is also 2, that is, PDCCH#2 also Occupies 2 CCEs. Since PDCCH#1 and PDCCH#2 belong to different CORESETs, even if the time-frequency resource positions of PDCCH#1 and PDCCH#2 are the same, the four CCEs corresponding to PDCCH#1 and PDCCH#2 are non-overlapping CCEs, that is, a total of 4 non-overlapping CCEs.
  • the number of non-overlapping CCEs in a search space set can be understood as the number of non-overlapping CCEs corresponding to candidate PDCCHs for monitoring obtained after a search space set passes the counting rule of non-overlapping CCEs.
  • CCE 0 belongs to CORESET#0, and the receiving start symbol of the PDCCH corresponding to CCE 0 is OFDM symbol #0, even if CCE 0 and CCE 1 belong to the same CORESET, and the PDCCH corresponding to CCE 0 and CCE 1
  • the receiving start symbols are also the same, but since the two CCEs do not overlap in frequency domain resources, CCE 0 and CCE 1 are two non-overlapping CCEs. Because CCE 0 and CCE 2 do not overlap in frequency domain resources, CCE 0 and CCE 2 are two non-overlapping CCEs.
  • CCE 1 and CCE 2 overlap in time-frequency resources
  • CCE 1 and CCE2 are termed two control resource sets
  • CCE 1 and CCE 2 are also two non-overlapping CCEs.
  • CCE 0 and CCE 3 do not overlap in time-frequency resources, so CCE 0 and CCE 3 are two non-overlapping CCEs.
  • CCE 1 and CCE 3 are also two non-overlapping CCEs
  • CCE 2 and CCE 3 are also two non-overlapping CCEs. are two non-overlapping CCEs. That is, 4 non-overlapping CCEs are included in FIG. 3 .
  • the upper limit of non-overlapping CCEs may refer to the maximum number of non-overlapping CCEs supported by a terminal device in one time slot or one time span (span). For example, the terminal device will not listen (or blindly detect) candidate PDCCHs beyond the maximum number of non-overlapping CCEs.
  • the upper limit of non-overlapping CCEs may be predefined by the protocol.
  • the upper limit of non-overlapping CCEs may be related to information such as subcarrier spacing, UE capability, etc. For example, in a cell with a subcarrier spacing of 15 kHz, the upper limit of non-overlapping CCEs corresponding to one time slot is 56.
  • One or more search space sets configured by the network device within a certain time range (eg, a time slot, or a span, or other time ranges).
  • the network device is over-configured: the number of blind checks obtained by the one or more search space sets through the counting rule of the number of blind checks is greater than the upper limit of the number of blind checks Or, the number of candidate PDCCHs for monitoring in the one or more search space sets is greater than the maximum number of candidate PDCCHs for monitoring; Or, the one or more search space sets are obtained by the counting rule of non-overlapping CCEs The number of non-overlapping CCEs is greater than the upper limit of non-overlapping CCEs; or, the number of non-overlapping CCEs corresponding to candidate PDCCHs for monitoring in the one or more search space sets is greater than the maximum number of non-overlapping CCEs corresponding to candidate PDCCHs for monitoring.
  • the terminal device needs to use the PDCCH mapping rule (or the search space set mapping rule, or the search space set subset mapping rule) to determine that the number of candidate PDCCHs for monitoring does not exceed the number of PDCCH candidates for monitoring.
  • the maximum number of candidate PDCCHs and the number of non-overlapping CCEs corresponding to the candidate PDCCHs determined for monitoring do not exceed the maximum number of non-overlapping CCEs corresponding to the candidate PDCCHs for monitoring, that is, do not exceed the monitoring capability of the terminal device.
  • the network device also needs to determine that the PDCCH used to send DCI can be detected by the terminal device through the PDCCH mapping rule or the search space set mapping rule, or the search space set subset mapping rule) to ensure that the network device and the terminal device can use the same.
  • the number of candidate PDCCHs for monitoring, the number of non-overlapping CCEs corresponding to the candidate PDCCHs for monitoring, and the corresponding time-frequency resource positions are consistent.
  • Section 10.1 of the technical specification (TS) 38.213V15.12.0 of the 3rd generation partnership project (3GPP) defines the flow of the PDCCH mapping rule, as shown in Figure 4.
  • S401 The terminal device determines multiple search space sets.
  • the terminal device may determine the multiple search space sets according to the configuration information of the search space sets sent by the network device.
  • the multiple search space sets may include at least one CSS set, or at least one USS set, or at least one CSS set and at least one USS set.
  • the network device is configured with at least one CSS set and multiple USS sets as an example for description.
  • the indices of multiple USS sets may start from 1 and end at j, where j is a positive integer greater than 1, that is, the indices of multiple USS sets configured by the network device may be continuous or discontinuous.
  • j is a positive integer greater than 1
  • the terminal device determines the number of candidate PDCCHs for monitoring in all configured CSS sets, and determines the number of non-overlapping CCEs corresponding to the candidate PDCCHs for monitoring in all configured CSS sets.
  • the terminal device can calculate the number of candidate PDCCHs used for monitoring in all CSS sets and the number of candidate PDCCHs used for monitoring in all CSS sets through the counting rule of blind detection times and the counting rule of non-overlapping CCEs respectively.
  • the terminal device determines the number of candidate PDCCHs for monitoring in all CSS sets, and determines the sequence of the number of non-overlapping CCEs corresponding to the candidate PDCCHs for monitoring in all CSS sets. Not limited.
  • the terminal device determines the upper limit of the number of remaining blind detections for the USS set (hereinafter referred to as the upper limit of the number of remaining blind detections) and the maximum number of remaining non-overlapping CCEs used for the USS set (hereinafter referred to as the remaining non-overlapping CCE for short) the maximum number of CCEs).
  • the terminal device can subtract the number of candidate PDCCHs used for monitoring in all CSS sets from the upper limit of the number of blind detections (that is, the maximum number of candidate PDCCHs to be monitored) to obtain the upper limit of the number of remaining blind detections for the USS set (that is, the maximum number of candidate PDCCHs for the remaining monitoring of the USS set).
  • the terminal device can subtract the number of non-overlapping CCEs corresponding to candidate PDCCHs for monitoring in all CSS sets from the upper limit of non-overlapping CCEs (that is, the maximum number of non-overlapping CCEs corresponding to monitoring candidate PDCCHs) , to obtain the upper limit of the number of remaining non-overlapping CCEs used for the USS set (that is, the maximum number of non-overlapping CCEs corresponding to the remaining monitored candidate PDCCHs used for the USS set).
  • the embodiments of the present application do not limit the order in which the terminal device determines the upper limit of the number of remaining blind checks for the USS set and the maximum number of remaining non-overlapping CCEs for the USS set.
  • S404 The terminal device determines the number of blind detections of USS set#i and the number of non-overlapping CCEs.
  • the terminal device can calculate the number of candidate PDCCHs used for monitoring in USS set#i and the number of candidate PDCCHs used for monitoring in USS set#i through the counting rule of blind detection times and the counting rule of non-overlapping CCEs respectively. The number of non-overlapping CCEs.
  • S405 The terminal device determines that the number of blind checks of USS set#i is less than or equal to the upper limit of the number of remaining blind checks, and the number of non-overlapping CCEs of USS set#i is less than or equal to the maximum number of remaining non-overlapping CCEs. If the number of blind checks of USS set#i is less than or equal to the upper limit of the number of remaining blind checks, and the number of non-overlapping CCEs of USS set#i is less than or equal to the maximum number of remaining non-overlapping CCEs, the terminal device executes steps S406 and S406 The content shown in S407; otherwise, the terminal device executes the content shown in S408. Among them, i can be a positive integer greater than 0 and less than j, and i can be initialized to the minimum index in multiple USS sets.
  • the terminal device can execute the content shown in step S406 and step S407; if USS set#i The number of blind detections of i and the number of non-overlapping CCEs are 25 and 10 respectively, that is, the number of blind detections of USS set#i is greater than the upper limit of the remaining number of blind detections, then the terminal device can execute the content shown in step S408; if USS set#i The number of blind detection times and the number of non-overlapping CCEs are 15 and 25 respectively, that is, the number
  • the terminal device allocates the USS set#i as the USS set for monitoring.
  • the terminal device can determine the USS set#i as the USS set for monitoring.
  • the terminal device updates the upper limit of the number of remaining blind checks, the maximum number of remaining non-overlapping CCEs, and updates i to i plus 1.
  • the terminal device may subtract the number of blind checks of USS set#i from the upper limit of the number of remaining blind checks to obtain the updated upper limit of the number of remaining blind checks.
  • the terminal device may subtract the number of non-overlapping CCEs of USS set#i from the number of remaining non-overlapping CCEs to obtain the maximum number of remaining non-overlapping CCEs after updating. If the indices of the multiple USS sets are not consecutive, the terminal device updates i to the index of the next USS set whose index is greater than USS set#i according to the ascending order of the indices of the multiple USS sets.
  • multiple USS sets include USS set#0, USS set#2, USS set#4 and USS set#5. If i is 0, the terminal device can update i to 2; if i is 2, the terminal device i can be updated to 4; if i is 4, the terminal device can update i to 5.
  • the terminal device may execute the content described in step S404.
  • the embodiments of the present application do not limit the order in which the terminal device updates the upper limit of the remaining blind detection times, the maximum number of remaining non-overlapping CCEs, and updates i to i plus 1.
  • the terminal device does not allocate the USS set#i and the USS set index larger than the USS set#i among the multiple USS sets as the USS set used for monitoring.
  • the terminal device may determine that the USS set#i and the USS set index larger than the USS set#i among the multiple USS sets are not the USS set used for monitoring.
  • the search space set mapping may refer to the network device determining the search space set used by the terminal device for monitoring from multiple search space sets within the monitoring capability of the terminal device (it can be understood as determining the search space set used for monitoring from the multiple search space sets to the terminal device.
  • the search space set in which the device sends the DCI may refer to the terminal device determining a search space set for monitoring from multiple search space sets within the monitoring capability of the terminal device.
  • Candidate PDCCH mapping may refer to the network device determining the candidate PDCCH for monitoring by the terminal device from multiple candidate PDCCHs or a search space set within the monitoring capability of the terminal device (which can be understood as a search space from multiple candidate PDCCHs or a search space).
  • a candidate PDCCH for sending DCI to the terminal device is determined in the set); alternatively, it may refer to the terminal device determining a candidate PDCCH for monitoring from a plurality of candidate PDCCHs or a search space set within the monitoring capability of the terminal device.
  • the subset mapping of the search space set may refer to that within the monitoring capability of the terminal device, the network device determines, from at least one search space set, a subset of the search space set used by the terminal device for monitoring (which can be understood as a subset of the search space set used by the terminal device for monitoring from at least one search space set.
  • the subset of the search space set for which the DCI is to be sent to the terminal device may refer to the terminal device determining the subset of the search space set for monitoring from at least one search space set within the monitoring capability of the terminal device set.
  • the mapping priority may refer to the order in which the terminal equipment performs search space set mapping on multiple search space sets; or, it may refer to the order in which the terminal equipment performs candidate PDCCH mapping on multiple candidate PDCCHs; or, may refer to the terminal equipment to multiple subsets.
  • the plurality of search space sets include search space set #0, search space set #1, and search space set #2. If the mapping priority of search space set #0 is greater than the mapping priority of search space set #1, it means that the terminal device can first determine whether search space set #0 is a search space set for monitoring, and then determine search space set # 0 is the search space set for monitoring, and the number of blind detections in search space set #0 is less than the upper limit of the number of remaining blind detections, and the number of non-overlapping CCEs in search space set #0 is less than the maximum number of remaining non-overlapping CCEs Next, determine whether the search space set #1 is the search space set for monitoring.
  • mapping priority of the search space set #0 is equal to the mapping priority of the search space set #2, it means that the terminal device can determine whether the search space set #0 is the search space set used for monitoring and at the same time. Whether search space set #2 is a search space set for listening.
  • PDCCH repeated transmission may refer to multiple PDCCHs scheduling the same physical downlink shared channel (PDSCH), or multiple PDCCHs scheduling multiple PDSCHs, and the multiple PDSCHs correspond to the same hybrid automatic repeat request (hybrid automatic repeat request). request, HARQ) process identifier.
  • the multiple PDCCHs refer to two or more PDCCHs, and the method provided in this embodiment of the present application is described below by taking two PDCCHs for PDCCH repeated transmission as an example.
  • the two candidate PDCCHs used for PDCCH repeated transmission have the following characteristics: the DCI sizes of the two candidate PDCCHs are the same; the aggregation levels where the two candidate PDCCHs are located are the same, or the number of CCEs corresponding to the two candidate PDCCHs is the same. ; the coded bits corresponding to the two candidate PDCCHs are the same; coding or rate matching is performed based on one of the two candidate PDCCHs; as shown in FIG. 5 .
  • the network device may over-configure one or more search space sets, and each search space set includes at least one candidate PDCCH, that is, the network device may over-configure the number of candidate PDCCHs.
  • the number of candidate PDCCHs for monitoring determined by the terminal device according to the counting rule of the number of blind detections may exceed the upper limit of the number of blind detections
  • the number of PDCCH candidates determined by the terminal device according to the counting rule of non-overlapping CCEs may exceed the upper limit of the number of blind detections.
  • the number of non-overlapping CCEs corresponding to the monitored candidate PDCCHs may exceed the upper limit of non-overlapping CCEs.
  • the PDCCH mapping rule can ensure that the terminal device performs blind detection and/or channel estimation on the candidate PDCCH configured by the network device within its monitoring capability, that is, the PDCCH mapping rule can reduce the data processing pressure and processing complexity of the terminal device caused by the over-configuration of the network device. .
  • the PDCCH mapping rule reference may be made to the content shown in FIG. 4 , which will not be repeated here.
  • the network device can configure a search space set for the terminal device for repeated PDCCH transmission with the search space set as the granularity, so as to improve the robustness of PDCCH transmission.
  • all candidate PDCCHs in search space set #i and all candidate PDCCHs in search space set #j may be configured for repeated PDCCH transmission.
  • candidate PDCCH #1 of search space set #i and candidate PDCCH #1 of search space set #j can be configured for repeated transmission of the same PDCCH; candidate PDCCH #2 of search space set #i and search space set #j
  • the candidate PDCCH #2 of 1 can be configured for repeated transmission of the same PDCCH, and the candidate PDCCH #3 of search space set #i and the candidate PDCCH #3 of search space set #j can be configured for repeated transmission of the same PDCCH.
  • the terminal device determines the search space set for monitoring according to the index of the search space set from small to large, there may be the following problems: the monitoring capability of the terminal device only supports the terminal device to The search space set with the smaller index among the two search space sets is determined as the search space set used for monitoring, and the search space set with the larger index among the two search space sets is discarded, so that the repeated transmission of the PDCCH cannot be realized.
  • the terminal device determines that the number of blind detections of the search space set #k-1 is less than the upper limit of the remaining number of blind detections, and the search space set #k-1 The number of non-overlapping CCEs is less than the maximum number of remaining non-overlapping CCEs, and k-1 is a positive integer greater than or equal to i and less than j. That is, the terminal device determines that the search space set #i and the search space set #k-1 are the search space sets used for monitoring.
  • the terminal device determines that the number of blind checks of the search space set #k is greater than the upper limit of the number of remaining blind checks after the update (and/or the number of non-overlapping CCEs of the search space set #k is greater than the maximum number of the remaining non-overlapping CCEs after the update. number). It means that the terminal device can determine that the search space set #k and the search space set with an index larger than k are not search space sets for listening. That is, the terminal device does not monitor the search space set #k, and k is less than or equal to j, so it does not monitor the search space set #j, so that the repeated transmission of the PDCCH cannot be implemented.
  • embodiments of the present application provide a communication method, apparatus, and communication system, which are used to implement PDCCH repeated transmission in a scenario of network equipment over-provisioning, which can improve the reliability of PDCCH transmission.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • S701 The network device sends configuration information to the terminal device. Accordingly, the terminal device receives the configuration information.
  • the configuration information may include information of the first search space set and information of the second search space set
  • the information of the first search space set may include the index of the first search space set, the index of the associated CORESET, One or more of the monitoring period, the aggregation level, the number of corresponding candidate PDCCHs or the monitored DCI format.
  • the information of the second search space set may include the index of the second search space set, the index of the associated CORESET, the listening period, the aggregation level, the corresponding number of candidate PDCCHs or one or more of the monitored DCI formats.
  • the embodiments of the present application do not limit the specific forms of the information of the first search space set and the information of the second search space set.
  • the network device may over-configure one or more search space sets for the terminal device.
  • each of the one or more search space sets may include one or more candidate PDCCHs.
  • the multiple search space sets may only include multiple UE-specific search space sets, or include at least one common search space set and at least one UE-specific search space set.
  • the specific form is not limited.
  • the network device may configure search space set #0, search space set #1 and search space set #2 for the terminal device, where search space set #0 is a common search space set, search space set #1 and search space set # 2 are UE-specific search space sets.
  • the indexes of the multiple search space sets may be continuous or discontinuous.
  • the multiple search space sets include search space set #2, search space set #4, and search space set #7.
  • the configuration information may include information of each search space set in a plurality of search space sets configured by the network device. That is, the network device may use different configuration information to indicate to the terminal device the information of the two search space sets used for PDCCH repeated transmission and the information of the search space set not used for PDCCH repeated transmission, or may use the same configuration information to indicate
  • the information of all search space sets is not limited in this embodiment of the present application.
  • a network device is used as a terminal device to over-configure multiple search space sets, the multiple search space sets are multiple UE-specific search space sets, and the indexes of the multiple search space sets are consecutive described as an example.
  • the multiple search space sets may include a first search space set and a second search space set.
  • the index of the first search space set is smaller than the index of the second search space set, and all candidate PDCCHs in the first search space set and all candidate PDCCHs in the second search space set are configured for PDCCH repeated transmission.
  • all candidate PDCCHs in the first search space set and all candidate PDCCHs in the second search space set are configured for PDCCH repeated transmission, which can be understood as two candidate PDCCHs in the two search space sets are configured for the same one Repeated transmission of PDCCH, and the two candidate PDCCHs belong to different search space sets respectively, rather than belong to the same search space set.
  • the first candidate PDCCH of the first search space set and the second candidate PDCCH of the second search space set are configured for repeated transmission of the same PDCCH, as shown in FIG. 6 .
  • All candidate PDCCHs in the first search space set are configured for PDCCH repeated transmission, which can be understood as each candidate PDCCH in the first search space set can be used for repetition together with a certain candidate PDCCH in another search space set A certain PDCCH is transmitted.
  • the configuration information may further indicate that the first candidate PDCCH of the first search space set and the second candidate PDCCH of the second search space set are configured for repeated transmission of the same PDCCH.
  • the two candidate PDCCHs in the following refer to two candidate PDCCHs used for repeated transmission of the same PDCCH, and the two candidate PDCCHs belong to different searches. A collection of spaces or a subset belonging to a different collection of search spaces.
  • the configuration for PDCCH repeated transmission means that the candidate PDCCH can be used for PDCCH repeated transmission, but whether the candidate PDCCH is used for PDCCH repeated transmission needs to be determined according to the scheduling result of the network device. That is, a candidate PDCCH configured for PDCCH repeated transmission can be used for PDCCH repeated transmission, and can also be used for PDCCH non-repetitive transmission.
  • the following configuration for PDCCH repeated transmission may be understood as being used for PDCCH repeated transmission, and the configuration used for the same PDCCH repeated transmission may be understood as being used for the same PDCCH repeated transmission
  • the repeated transmission of one PDCCH is described as an example.
  • the index of the first candidate PDCCH in the first search space set and the index of the second candidate PDCCH in the second search space set may be the same, that is, the indices of the two candidate PDCCHs used for repeated transmission of the same PDCCH same.
  • the network device may implicitly indicate that two candidate PDCCHs with the same index are used for PDCCH repeated transmission. Repeated transmission of the same PDCCH can reduce signaling overhead, as shown in FIG. 6 .
  • the index of the first candidate PDCCH in the first search space set and the index of the second candidate PDCCH in the second search space set may be different, that is, the index of the two candidate PDCCHs used for repeated transmission of the same PDCCH The index is different.
  • the network device can flexibly configure two candidate PDCCHs for repeated transmission of the same PDCCH. It can be understood that when the network device indicates to the terminal device that all candidate PDCCHs in the first search space set and all candidate PDCCHs in the second search space set are used for PDCCH repeated transmission, it also needs to indicate to the terminal device that all PDCCH candidates in the first search space set are used for the same PDCCH transmission.
  • the indices of the two candidate PDCCHs for repeated transmission of the PDCCH, or a mapping relationship may be pre-defined by the protocol to implicitly indicate the association relationship between the indices of the two candidate PDCCHs for the repeated transmission of the same PDCCH.
  • candidate PDCCH #0 of search space set #i and candidate PDCCH #1 of search space set #j are used for repeated transmission of the same PDCCH; candidate PDCCH 1 of search space set #i and search space set # Candidate PDCCH #0 of j is used for repeated transmission of the same PDCCH; candidate PDCCH #2 of search space set #i and candidate PDCCH #3 of search space set #j are used for repeated transmission of the same PDCCH; search space set #i The candidate PDCCH #3 of the search space set #j and the candidate PDCCH #2 of the search space set #j are used for repeated transmission of the same PDCCH.
  • indexes of two candidate PDCCHs in the two search space sets that are partially used for repeated transmission of the same PDCCH may be the same, and the indexes of the remaining two candidate PDCCHs that are used for repeated transmission of the same PDCCH may be different.
  • the signaling overhead for indicating the two candidate PDCCHs with the same index is reduced, and the two candidate PDCCHs with different indexes can be flexibly configured.
  • candidate PDCCH #0 of search space set #i and candidate PDCCH #1 of search space set #j are used for repeated transmission of the same PDCCH; candidate PDCCH #1 of search space set #i and the search space set Candidate PDCCH #0 of #j is used for repeated transmission of the same PDCCH; candidate PDCCH #2 of search space set #i and candidate PDCCH #2 of search space set #j are used for repeated transmission of the same PDCCH.
  • the plurality of search space sets include search space set #0, search space set #1, search space set #2, and search space set #3, wherein all candidate PDCCHs of search space set #0 and search space set #3 All candidate PDCCHs are used for PDCCH repeated transmission, and all candidate PDCCHs of search space set #1 and all candidate PDCCHs of search space set #2 are used for PDCCH repeated transmission, as shown in FIG. 10 .
  • the multiple search space sets include search space set #0, search space set #1, and search space set #2, wherein all candidate PDCCHs of search space set #0 and all candidate PDCCHs of search space set #2 are used for For PDCCH repeated transmission, all candidate PDCCHs in search space set #2 are not used for PDCCH repeated transmission, as shown in FIG. 11 .
  • the network device When determining that the first search space set is a search space set used for monitoring by the terminal device, the network device also determines that the second search space set is also a search space set used for monitoring.
  • the terminal device When determining that the first search space set is the search space set used for monitoring, the terminal device also determines that the second search space set is also the above-mentioned space set used for monitoring.
  • step S702 is substantially the same as the specific implementation process of step S703.
  • steps S702 and S703 are described below by taking a terminal device as an example.
  • the network device configures multiple search space sets for the terminal device, and not all search space sets in the multiple search space sets need to be monitored by the terminal device.
  • the terminal device may determine the search space set for monitoring among the multiple search space sets according to the information predefined in the protocol or its own capability information, that is, map the configured search space set to the search space set for monitoring.
  • the information predefined in the protocol may include information related to monitoring the PDCCH such as the upper limit of the number of blind detections and the upper limit of non-overlapping CCEs; the capability information may include information related to monitoring the PDCCH such as the upper limit of the number of blind detections and the upper limit of non-overlapping CCEs.
  • the terminal device may send capability information to the network device through high-layer signaling, and correspondingly, the network device receives the capability information of the terminal device.
  • the high-layer signaling may be radio resource control (radio resource control, RRC) signaling or medium access control control element (medium access control control element, MAC CE).
  • the terminal device may determine that the second search space set is also the search space set for monitoring while determining the first search space set as the search space set for monitoring. For example, if the index of the first search space set is smaller than the index of the second search space set, the terminal device determines the search space set for monitoring according to the index of the search space set from small to large; after determining that the first search space set is used for monitoring While monitoring the search space set for monitoring, the terminal device may determine that the second search space set that is used for repeated transmission of the PDCCH with the first search space set is also the search space set for monitoring.
  • the plurality of search space sets may include a third search space set, where candidate PDCCHs in the third search space set are not configured for PDCCH repeated transmission, and the index of the third search space set is greater than the index of the first search space set The index is smaller than the index of the second set of search spaces.
  • the terminal device may determine whether the third set of search spaces is a set of search spaces for listening after determining that the first set of search spaces is a set of search spaces for monitoring and the second set of search spaces to be a set of search spaces for monitoring The collection of search spaces to listen to.
  • the terminal device increases the mapping priority of the search space set with the larger index in the two search space sets, so that the two search space sets have different indexes.
  • the mapping priorities of the sets are the same, so that the two search space sets configured for the repeated transmission of the PDCCH can be preferentially mapped within the monitoring capability of the terminal device, thereby realizing the repeated transmission of the PDCCH.
  • the candidate PDCCH in the third search space set is not configured for PDCCH repeated transmission, which means that the candidate PDCCH in the third search space set is not used for PDCCH repeated transmission.
  • candidate PDCCHs in the third search space set are not used for PDCCH repeat transmission.
  • the mapping priority size relationship of the first search space set (search space set #0), the second search space set (search space set #2), and the third search space set (search space set #1) may be: the first search The mapping priority of the space set is equal to the mapping priority of the second search space set, and the mapping priority of the second search space set is greater than the mapping priority of the third search space set. That is, after the terminal device determines that the first search space set is the search space set used for monitoring and the second search space set is the search space set used for monitoring at the same time, it determines that the third search space set is the search space not used for monitoring by the terminal device.
  • Space collection as shown in Figure 11.
  • the plurality of search space sets may include a fourth search space set (search space set #2), and the index of the fourth search space set is greater than the index of the first search space set (search space set #0).
  • Candidate PDCCHs in the third search space set (search space set #1) and candidate PDCCHs in the fourth search space set are used for PDCCH repeated transmission.
  • the mapping priorities of the first search space set, the second search space set (search space set #3), the third search space set, and the fourth search space set may be: the mapping priority of the first search space set is greater than that of the third search space set The priority of the space set, and the priority of the first search space set is equal to the priority of the second search space set, and the mapping priority of the third search space set is equal to the mapping priority of the fourth search space set. That is, after determining the first search space set as the search space set for monitoring and the second search space set as the search space set for monitoring at the same time, the terminal device simultaneously determines the third search space set as the search space for monitoring The set and the fourth search space set are search space sets for monitoring, as shown in 10 .
  • Step S703 will be described below with reference to FIG. 12 .
  • FIG. 12 shows a schematic flowchart of a search space set mapping method provided by an embodiment of the present application. As shown in Figure 12, the method may include the following.
  • the terminal device determines multiple search space sets, where the multiple search space sets include search space set #0 to search space set #j.
  • step S1201 is the same as the specific implementation process of step S401, and details are not repeated here.
  • the terminal device determines the upper limit of the number of remaining blind checks and the maximum number of remaining non-overlapping CCEs.
  • the specific implementation process of step S1202 may refer to the specific implementation process of step S403, which will not be repeated here; if If the multiple search space sets only include multiple UE-specific search space sets, the terminal device may initialize the upper limit of the number of remaining blind detections as the upper limit of the number of blind detections, and initialize the maximum number of remaining non-overlapping CCEs as the upper limit of non-overlapping CCEs.
  • the terminal device determines a search space set #k used for PDCCH repeated transmission together with the search space set #i.
  • k is a positive integer greater than i and less than j.
  • the terminal device may determine the search space set #k according to the configuration information of the search space set #i and the high-level parameter (eg RRC parameter) indication information contained in the configuration information of the search space set #k respectively.
  • the terminal device may determine whether the search space set #i is the search space set used for PDCCH repeated transmission. If the terminal device determines that the search space set #i is not the search space set used for PDCCH repeated transmission, the terminal device may execute the contents shown in steps S404 to S408 shown in FIG. 4 , which are not shown in FIG. 12 ; otherwise, then The terminal device may determine the search space set #k, and execute the contents shown in steps S1204 to S1208.
  • the terminal device determines the number of blind detections and the number of non-overlapping CCEs for the search space set #i and the search space set #k.
  • all candidate PDCCHs in the search space set #k and all candidate PDCCHs in the search space set #i are used for PDCCH repeated transmission, and the terminal device determines the number of blind detections of the search space set #i and the search space set #k and The number of non-overlapping CCEs is equivalent to determining the number of blind detections and the number of non-overlapping CCEs in the search space set #i by the terminal device, or determining the number of blind detections and the number of non-overlapping CCEs in the search space set #k.
  • step S1204 For the specific implementation process of step S1204, reference may be made to the specific implementation process of step S404, which will not be repeated here.
  • the embodiments of the present application determine the counting rules for the number of blind checks of the search space set #i and the search space set #k, and determine the number of non-overlapping CCEs of the search space set #i and the search space set #k.
  • the counting rules are not limited.
  • the embodiments of the present application do not determine the number of blind checks of the search space set #i and the search space set #k, and the sequence of determining the number of non-overlapping CCEs of the search space set #i and the search space set #k. limited.
  • the terminal device can simultaneously determine the number of blind checks of search space set #i and search space set #k and the number of non-overlapping CCEs; it can also first determine the number of blind checks of search space set #i and search space set #k, Then determine the number of non-overlapping CCEs between search space set #i and search space set #k; also determine the number of CCEs that search space set #i and search space set #k do not overlap, and then determine search space sets #i and #k. Number of blind checks for search space set #k.
  • S1205 The terminal device determines that the number of blind checks of search space set #i and search space set #k is less than or equal to the upper limit of the remaining number of blind checks, and the number of non-overlapping CCEs of search space set #i and search space set #k is less than or equal to or equal to the maximum number of remaining non-overlapping CCEs.
  • the terminal device can execute the content shown in step S1206 and step S1207; otherwise, the terminal device can execute the content shown in step S1208.
  • step S1205 For the specific implementation process of step S1205, reference may be made to the specific implementation process of step S405, which will not be repeated here.
  • the terminal device can simultaneously map the search space set #i and the search space set #k as the search space set for listening.
  • S1207 The terminal device updates the upper limit of the number of remaining blind checks, the maximum number of remaining non-overlapping CCEs, and updates i to i plus 1.
  • step S1207 may refer to the specific implementation process of step S407.
  • step S1207 the terminal device executes the content shown in step S1203.
  • S1208 The terminal device determines that the search space set #i, and the search space sets with an index larger than i and unmapped search space sets in the multiple search space sets are not search space sets used by the terminal device for monitoring.
  • the plurality of search space sets may include search space set #0, search space set #1, search space set #2, search space set #3, and search space set #4.
  • the search space set #0 and the search space set #4 are used for the repeated PDCCH transmission
  • the search space set #1 and the search space set #2 are used for the repeated transmission of the PDCCH.
  • the candidate PDCCH of the search space set #3 is not used for PDCCH repeated transmission, or the index of the search space set used for the PDCCH repeated transmission together with the search space set #3 is greater than 1, which means that when the search space set #1 is mapped, The terminal device has not yet mapped the search space set #3.
  • the terminal device Since before determining whether the search space set #1 is the search space set for monitoring, the terminal device has determined that the search space set #0 and the search space set #4 are the search space sets for monitoring at the same time. Therefore, in the search space The number of blind checks of set #1 and search space set #2 is greater than the upper limit of the remaining number of blind checks, and/or the number of non-overlapping CCEs of search space set #1 and search space set #2 is greater than the maximum number of remaining non-overlapping CCEs In the case of the number of search spaces, the terminal device may determine that the search space set #1, the search space set #2, and the search space set #3 are not search space sets used by the terminal device for monitoring.
  • the terminal device determines the search space set used by the terminal device for monitoring among the multiple search space sets, and the process ends.
  • all candidate PDCCHs of search space set #0 and all candidate PDCCHs of search space set #3 are used for PDCCH repeated transmission
  • all candidate PDCCHs of search space set #1 and all candidate PDCCHs of search space set #2 For PDCCH repeated transmission, the relationship between the mapping priorities of the four search space sets is: the mapping priority of search space set #0 is greater than the mapping priority of search space set #1, and the mapping priority of search space set #0 level is equal to the mapping priority of search space set #3, and the mapping priority of search space set #1 is equal to the mapping priority of search space set #2. That is, the terminal device first simultaneously determines that search space set #0 and search space set #3 are search space sets used for monitoring, and then simultaneously determines whether search space set #1 and search space set #2 are search space sets used for monitoring .
  • all candidate PDCCHs of search space set #0 and all candidate PDCCHs of search space set #2 are used for PDCCH repeated transmission, and all candidate PDCCHs of search space set #1 are not used for PDCCH repeated transmission.
  • the size relationship of the mapping priority of the space set is: the mapping priority of the search space set #0 is greater than the mapping priority of the search space set #1, and the mapping priority of the search space set #0 is equal to the search space set #2 Search space set Mapping priority of #0. That is, the terminal device first simultaneously determines that the search space set #0 and the search space set #2 are the search space sets used for monitoring, and then determines whether the search space set #1 is the search space set used for monitoring.
  • the terminal device while determining that the first search space set is the search space set used for monitoring, the terminal device determines that the first search space set is used together with the first search space set for repeated transmission of PDCCH and whose index is greater than the first search space set
  • the second search space set of is also the search space set for listening. In this way, it can be avoided that the terminal device has not yet been mapped to the second search space according to the index from small to large, and the number of blind checks is greater than the upper limit of the number of remaining blind checks (and/or the number of non-overlapping CCEs is greater than the maximum number of remaining non-overlapping CCEs). number), so that the terminal device determines that the second search space set is not a search space set for monitoring, that is, it will not monitor (or will not blindly detect) the second search space set, resulting in the problem that repeated PDCCH transmission cannot be realized.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 13 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • S1301 The network device sends configuration information to the terminal device. Accordingly, the terminal device receives the configuration information.
  • the configuration information may include information of the first search space set and information of the second search space set.
  • the first search space set may include a first candidate PDCCH
  • the second search space set may include a second candidate PDCCH
  • the first candidate PDCCH and the second candidate PDCCH may be configured for repeated transmission of the same PDCCH.
  • step S130 For the specific implementation process of step S1301, reference may be made to the specific implementation process of the above-mentioned step S701, which will not be repeated here.
  • the network device determines that the second candidate PDCCH is also the candidate PDCCH used by the terminal device for monitoring.
  • the terminal device determines that the second candidate PDCCH is also the candidate PDCCH for monitoring.
  • step S1302 is substantially the same as the specific implementation process of step S1303.
  • steps S71302 and S1303 are described below by taking a terminal device as an example.
  • the network device may over-configure multiple search space sets for the terminal device, and not all candidate PDCCHs in each search space set need to be monitored by the terminal device.
  • the terminal device may determine the candidate PDCCH for monitoring according to the information predefined in the protocol or its own capability information, that is, map the configured candidate PDCCH to the candidate PDCCH used by the terminal device for monitoring.
  • the terminal device may determine whether a candidate PDCCH in the search space set is a candidate PDCCH according to the order of indexes of multiple search space sets from small to large and the indexes of multiple candidate PDCCHs in each search space set from small to large. Candidate PDCCH for listening.
  • the multiple search space sets may include search space set #0 to search space set #h, where h is a positive integer greater than 0.
  • the terminal device may first perform candidate PDCCH mapping on the candidate PDCCH of the search space set #0 according to the index of the multiple search space sets in ascending order.
  • the search space set #0 includes candidate PDCCH #0 to candidate PDCCH #i, where i is a positive integer greater than 0, and the terminal device can determine one by one according to the index of the candidate PDCCHs in ascending order.
  • each candidate PDCCH is a candidate PDCCH for monitoring, for example, map candidate PDCCH #0 first, and then map candidate PDCCH #1 until the mapping of candidate PDCCH #i is completed.
  • the terminal device can map the search space set #1.
  • the mapping process for the search space set #1 is the same as the mapping process for the search space set #0, and details are not repeated here.
  • the terminal device stops mapping. For details, please refer to Figure 4 or as shown in Figure 12.
  • the terminal device may also determine that the second candidate PDCCH is also a candidate PDCCH for monitoring. For example, if the index of the first search space set is smaller than the second search space set, the terminal device will first determine whether the candidate PDCCH in the first search space is a candidate PDCCH for monitoring according to the index of the search space set from small to large. Further, the terminal device may determine whether each candidate PDCCH in the first search space set is a candidate PDCCH for monitoring according to the index of the candidate PDCCHs in the first search space set in ascending order.
  • the terminal device may determine that the candidate PDCCH is the candidate PDCCH used for monitoring, and at the same time determine that the candidate PDCCH is used for repeated transmission of the same PDCCH, And the candidate PDCCHs belonging to the search space set whose index is greater than the first search space set (ie, the unmapped search space set) are also the candidate PDCCHs used for monitoring.
  • the first search space set may further include a third candidate PDCCH that is not configured for repeated PDCCH transmission.
  • the index of the third candidate PDCCH may be greater than the index of the first candidate PDCCH.
  • the terminal device may determine whether the third candidate PDCCH is a candidate PDCCH for monitoring after determining that the first candidate PDCCH is a candidate PDCCH for monitoring and the second candidate PDCCH is a candidate PDCCH for monitoring. For example, the terminal device may map each candidate PDCCH in the first search space set according to the index of the candidate PDCCHs in ascending order.
  • the third candidate PDCCH is not configured for PDCCH repeated transmission, which means that the third candidate PDCCH is not used for PDCCH repeated transmission.
  • the first search space set may further include a third candidate PDCCH that is not used for PDCCH repeated transmission.
  • the index of the third candidate PDCCH may be smaller than the index of the first candidate PDCCH.
  • the terminal device may determine whether the third candidate PDCCH is a candidate PDCCH for monitoring after determining that the first candidate PDCCH is a candidate PDCCH for monitoring and the second candidate PDCCH is a candidate PDCCH for monitoring. For example, the terminal device may preferentially map at least one candidate PDCCH for PDCCH repeated transmission in a search space set, so that the implementation of PDCCH repeated transmission may be ensured preferentially.
  • the first search space set may further include a third candidate PDCCH that is not used for PDCCH repeated transmission.
  • the index of the third candidate PDCCH may be smaller than the index of the first candidate PDCCH.
  • the terminal device may simultaneously determine the first candidate PDCCH and the second candidate PDCCH as candidate PDCCHs for monitoring. For example, the terminal device may preferentially map at least one candidate PDCCH that is not used for repeated PDCCH transmission in one search space set.
  • the embodiments of the present application provide the following three ways to perform candidate PDCCH mapping.
  • the terminal equipment may perform candidate PDCCH mapping according to the index of the candidate PDCCHs in ascending order, wherein, for the candidate PDCCH used for PDCCH repeated transmission, the terminal equipment maps the candidate PDCCH and the candidate PDCCH while mapping the candidate PDCCH.
  • candidate PDCCHs for repeated transmission of the same PDCCH are mapped.
  • the terminal device may first map at least one candidate PDCCH in the search space set for PDCCH repeated transmission, and then map at least one candidate PDCCH in the search space set not used for PDCCH repeated transmission.
  • the terminal equipment maps the candidate PDCCH used for the repeated transmission of the same PDCCH as the candidate PDCCH while mapping the candidate PDCCH.
  • the terminal device may perform the mapping according to the index of the at least one candidate PDCCH in ascending order, that is, the first method is used for mapping.
  • the terminal device may first map at least one candidate PDCCCH in the search space set that is not used for PDCCH repeated transmission, and then map at least one candidate PDCCH in the search space set for PDCCH repeated transmission.
  • the terminal equipment maps the candidate PDCCH used for the repeated transmission of the same PDCCH as the candidate PDCCH while mapping the candidate PDCCH.
  • the terminal device may perform the mapping according to the index of the at least one candidate PDCCH in ascending order, that is, the first method is used for mapping.
  • the multiple search space sets include search space set #0, search space set #1, and search space set #2, and search space set #0 includes candidate PDCCH#0, candidate PDCCH# 1 and candidate PDCCH#2.
  • candidate PDCCH#0, candidate PDCCH#1, and candidate PDCCH#2 in search space set #0 are denoted as candidate PDCCH 0_0, candidate PDCCH 0_1, and candidate PDCCH 0_2, respectively.
  • the search space set #1 includes candidate PDCCH 1_0 and candidate PDCCH 1_1
  • the search space set #2 includes candidate PDCCH 2_0, candidate PDCCH 2_1 and candidate PDCCH 2_2.
  • candidate PDCCH 0_0 and candidate PDCCH 2_0 are used for repeated transmission of the same PDCCH
  • candidate PDCCH 0_2 and candidate PDCCH 2_2 are used for repeated transmission of the same PDCCH
  • candidate PDCCH 0_1, candidate PDCCH 1_0, candidate PDCCH 1_1 and candidate PDCCH 2_1 are all Not used for PDCCH repeat transmission.
  • the terminal device may determine whether each candidate PDCCH is a candidate PDCCH for monitoring in the order of search space set #0, search space set #1, and search space set #2. That is, the terminal device first maps each candidate PDCCH in the search space set #0, and maps each candidate PDCCH in the search space set #1. After completing the mapping of each candidate PDCCH of search space set #1, the terminal device maps each candidate PDCCH of search space set #2. It should be understood that, after the terminal device performs candidate PDCCH mapping on search space set #0, whether to perform PDCCH mapping on search space set #1 and search space set #2 is determined by the monitoring capability of the terminal device. Refer to the description of FIG. 4 or FIG. 12 . Here, as an example, it is only used to understand the embodiments of the present application and does not constitute a limitation to the embodiments of the present application.
  • the terminal device may determine whether each candidate PDCCH in the search space set is a candidate PDCCH for monitoring (ie, map each candidate PDCCH) in any of the above three ways.
  • the size relationship between the mapping priorities of the three candidate PDCCHs in the search space set #0 is: the mapping priority of the candidate PDCCH 0_0 is greater than the mapping priority of the candidate PDCCH 0_1, and the mapping priority of the candidate PDCCH 0_1 is greater than that of the candidate PDCCH
  • the mapping priority of candidate PDCCH 0_0 is equal to the mapping priority of candidate PDCCH 2_0
  • the mapping priority of candidate PDCCH 0_2 is equal to the mapping priority of candidate PDCCH 2_2. That is, the terminal device can firstly map the candidate PDCCH 0_0 and the candidate PDCCH 2_0, and then map the candidate PDCCH 0_1. After completing the mapping of the candidate PDCCH 0_1, the terminal device may simultaneously map the candidate PDCCH 0_2 and the candidate PDCCH 2_2.
  • the size relationship between the mapping priorities of the 8 candidate PDCCHs of the search space set #0, the search space set #1 and the search space set #2 is: the mapping priority of the candidate PDCCH 0_0 is greater than the mapping priority of the candidate PDCCH 0_1, the candidate PDCCH
  • the mapping priority of PDCCH 0_1 is higher than the mapping priority of candidate PDCCH 0_2
  • the mapping priority of candidate PDCCH 0_2 is higher than the mapping priority of candidate PDCCH 1_0
  • the mapping priority of candidate PDCCH 1_0 is higher than the mapping priority of candidate PDCCH 1_1
  • the mapping priority of candidate PDCCH 1_1 is greater than the mapping priority of candidate PDCCH 2_1
  • the mapping priority of candidate PDCCH 0_0 is equal to the mapping priority of candidate PDCCH 2_0
  • the mapping priority of candidate PDCCH 0_2 is equal to the mapping priority of candidate PDCCH 2_2.
  • the size relationship between the mapping priorities of the three candidate PDCCHs in the search space set #0 is: the mapping priority of candidate PDCCH 0_0 is greater than the mapping priority of candidate PDCCH 0_2, and the mapping priority of candidate PDCCH 0_2 is greater than that of candidate PDCCH 0_2
  • the mapping priority of candidate PDCCH 0_0 is equal to the mapping priority of candidate PDCCH 2_0
  • the mapping priority of candidate PDCCH 0_2 is equal to the mapping priority of candidate PDCCH 2_2. That is, the terminal device can firstly map the candidate PDCCH 0_0 and the candidate PDCCH 2_0, and then simultaneously map the candidate PDCCH 0_2 and the candidate PDCCH 2_2. After completing the mapping of the candidate PDCCH 0_2 and the candidate PDCCH 2_2, the terminal device may map the candidate PDCCH 0_1.
  • the size relationship between the mapping priorities of the 8 candidate PDCCHs of search space set #0, search space set #1 and search space set #2 is: the mapping priority of candidate PDCCH 0_0 is greater than the mapping priority of candidate PDCCH 0_2, the candidate PDCCH
  • the mapping priority of PDCCH 0_2 is higher than the mapping priority of candidate PDCCH 0_1 is higher than the mapping priority of candidate PDCCH 1_0
  • the mapping priority of candidate PDCCH 1_0 is higher than the mapping priority of candidate PDCCH 1_1
  • the mapping priority of candidate PDCCH 1_1 is greater than the mapping priority of candidate PDCCH 2_1
  • the mapping priority of candidate PDCCH 0_0 is equal to the mapping priority of candidate PDCCH 2_0
  • the mapping priority of candidate PDCCH 0_2 is equal to the mapping priority of candidate PDCCH 2_2.
  • the size relationship of the mapping priorities of the three candidate PDCCHs in the search space set #0 is: the mapping priority of candidate PDCCH 0_1 is greater than the mapping priority of candidate PDCCH 0_0, and the mapping priority of candidate PDCCH 0_0 is greater than that of candidate PDCCH 0_0
  • the mapping priority of candidate PDCCH 0_0 is equal to the mapping priority of candidate PDCCH 2_0, and the mapping priority of candidate PDCCH 0_2 is equal to the mapping priority of candidate PDCCH 2_2. That is, the terminal device maps the candidate PDCCH 0_1 first, and then simultaneously maps the candidate PDCCH 0_0 and the candidate PDCCH 2_0. After completing the mapping of the candidate PDCCH 0_0 and the candidate PDCCH 2_0, the terminal device may simultaneously map the candidate PDCCH 0_2 and the candidate PDCCH 2_2.
  • the size relationship between the mapping priorities of the 8 candidate PDCCHs of search space set #0, search space set #1 and search space set #2 is: the mapping priority of candidate PDCCH 0_1 is greater than the mapping priority of candidate PDCCH 0_0, the candidate PDCCH The mapping priority of PDCCH 0_0 is higher than the mapping priority of candidate PDCCH 0_2, the mapping priority of candidate PDCCH 0_2 is higher than the mapping priority of candidate PDCCH 1_0, the mapping priority of candidate PDCCH 1_0 is higher than the mapping priority of candidate PDCCH 1_1, the mapping priority of candidate PDCCH 1_1 The mapping priority of candidate PDCCH 2_1 is greater than the mapping priority of candidate PDCCH 2_1, and the mapping priority of candidate PDCCH 0_0 is equal to the mapping priority of candidate PDCCH 2_0, and the mapping priority of candidate PDCCH 0_2 is equal to the mapping priority of candidate PDCCH 2_2.
  • the terminal device may map each candidate PDCCH of the search space set #1 until the number of blind detections exceeds the upper limit of the remaining number of blind detections and/or the number of non-overlapping CCEs exceeds the remaining number of blind detections. Up to the maximum number of non-overlapping CCEs, specific reference may be made to the content shown in FIG. 4 or FIG. 12 , which will not be repeated here.
  • mapping priority of candidate PDCCHs used for PDCCH repeated transmission in a search space set is the same as the mapping priority of candidate PDCCHs not used for PDCCH repeated transmission, the terminal device can use the search space set as the granularity to perform the mapping.
  • mapping please refer to the content described in FIG. 7 for details.
  • the terminal device while determining that the first candidate PDCCH is a candidate PDCCH for monitoring, determines that the first candidate PDCCH is used for repeated transmission of the same PDCCH and belongs to a set whose index is greater than the first search space set.
  • the second candidate PDCCH of the second search space set is also a candidate PDCCH for monitoring.
  • the terminal device has not yet been mapped to the second search space set according to the index from small to large, and the number of blind checks is greater than the upper limit of the remaining blind checks and/or the number of non-overlapping CCEs is greater than the maximum number of remaining non-overlapping CCEs number), so that the terminal device determines that the second search space set is not a search space set for monitoring, that is, it will not monitor (or will not blindly detect) the second search space set, and will not monitor (or will not blindly detect)
  • the second candidate PDCCH cannot realize the problem of repeated transmission of the PDCCH.
  • FIG. 15 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • S1501 The network device sends configuration information to the terminal device. Accordingly, the terminal device receives the configuration information.
  • the configuration information may include information of the first search space set and information of the second search space.
  • the first search space set may include a first subset
  • the second search space set may include a second subset
  • all candidate PDCCHs in the first subset and all candidate PDCCHs in the second subset are configured for PDCCH repetition
  • the first candidate PDCCH of the first subset and the second candidate PDCCH of the second subset are configured for repeated transmission of the same PDCCH.
  • the index of the first candidate PDCCH in the first subset and the index of the second candidate PDCCH in the second subset may be the same.
  • each search space set in the multiple search space sets may include at least one subset.
  • each search space set may include a subset used for PDCCH repeated transmission, or a subset not used for PDCCH repeated transmission, or a subset used for PDCCH repeated transmission and a subset not used for PDCCH repeated transmission, This embodiment of the present application does not limit this.
  • each search space set may include at least a subset used for PDCCH repeated transmission, or a subset not used for PDCCH repeated transmission, or at least a subset used for PDCCH repeated transmission and not used for PDCCH repetition.
  • a subset of transfers wherein, when the number of at least one subset used for PDCCH repeated transmission is multiple, each subset in the multiple subsets may be used for PDCCH repeated transmission together with subsets of different search space sets.
  • the plurality of search space sets include a search space set #0, a search space set #1, and a search space set #2.
  • the search space set #0 includes subset #0 and subset #1.
  • subset #0 and subset #1 in search space set #0 are denoted as subset 0_0 and subset 0_1, respectively.
  • the subset 1_0 is included in the search space set #1
  • the subset 2_0 is included in the search space set #2.
  • the candidate PDCCH#0 of subset 0_0 and the candidate PDCCH#0 of subset 2_0 are configured for repeated transmission of the same PDCCH
  • the candidate PDCCH#1 of subset 0_0 and the candidate PDCCH#1 of subset 2_0 are configured for the same PDCCH
  • the subset 0_1 and all candidate PDCCHs in the subset 1_0 are not used for the repeated transmission of the PDCCH.
  • the plurality of search space sets include a search space set #0, a search space set #1, a search space set #2, and a search space set #3.
  • the search space set #0 includes subset #0, subset #1, and subset #2.
  • subset #0, subset #1, and subset #2 in the search space set #0 are denoted as subset 0_0, subset 0_1, and subset 0_2, respectively.
  • search space set #1 includes subset 1_0
  • search space set #2 includes subset 2_0
  • search space set #3 includes subset 3_0.
  • the candidate PDCCH#0 of subset 0_0 and the candidate PDCCH#0 of subset 2_0 are configured for repeated transmission of the same PDCCH
  • the candidate PDCCH#1 of subset 0_0 and the candidate PDCCH#1 of subset 2_0 are configured for the same PDCCH Repeated transmission of one PDCCH.
  • the candidate PDCCH#0 of subset 0_2 and the candidate PDCCH#0 of subset 3_0 are configured for repeated transmission of the same PDCCH.
  • Subset 0_1 and all candidate PDCCHs in subset 1_0 are not used for PDCCH repeat transmission.
  • the indexes in the respective search space sets may be the same or different; the same search space set
  • the indices of candidate PDCCHs belonging to different subsets may be the same or different; this is not limited in this embodiment of the present application.
  • step S150 for the specific implementation process of step S1501, reference may be made to the specific implementation process of the above-mentioned step S701 or the above-mentioned step S1301, which will not be repeated here.
  • the network device While determining that the first subset is a subset of the search space used by the terminal device for monitoring, the network device also determines that the second subset is also a subset of the search space used by the terminal device for monitoring.
  • step S1502 is substantially the same as the specific implementation process of step S1503.
  • steps S1502 and S1503 are described below by taking a terminal device as an example.
  • the network device may configure multiple search space sets for the terminal device, and not all subsets in each search space set need to be monitored by the terminal device.
  • the terminal device may determine the subset of the search space set for monitoring according to the information predefined by the protocol or its own capability information, that is, map the configured subset of the search space set to the subset of the search space set for monitoring.
  • the terminal device may determine whether each subset in the search space set is based on the order of indexes of multiple search space sets from small to large and the index of at least one subset in each search space set from small to large. is a subset of the set of search spaces used for listening.
  • the multiple search space sets include search space set #0 to search space set #h, where h is a positive integer greater than 0, and the terminal device may first perform subset mapping of the search space set in search space set #0.
  • the search space set #0 includes subsets #0 to #i of the search space set, where i is a positive integer greater than 0.
  • the terminal device may determine whether each subset in the search space set #0 is a subset of the search space set used for monitoring according to the index of the subsets of the search space set in ascending order, for example, perform the search on the subset #0 first. map, and then map subset #1.
  • the terminal device when the terminal device determines that the first subset is a subset of the search space set used for monitoring, the terminal device also determines that the second subset is also a subset of the search space set used for monitoring. For example, if the index of the first search space set is smaller than that of the second search space set, the terminal device will first determine whether the subset of the first search space is part of the search space set for monitoring according to the index of the search space set from small to large. Subset. Further, the terminal device may determine whether each subset of the first search space set is a subset of the search space set used for monitoring in ascending order of the indexes of the subsets in the first search space set.
  • the terminal device can determine that the subset is a subset of the search space set used for monitoring, and at the same time determine that the subset is used for PDCCH repeated transmission and belongs to the index relatively
  • a subset of the large set of search spaces is also a subset of the set of search spaces used for listening.
  • the first search space set may further include a third subset, the candidate PDCCHs of the third subset are not configured for PDCCH repeated transmission.
  • the index of the third subset may be greater than the index of the first subset.
  • the third subset is not configured for PDCCH repeated transmission, which means that the candidate PDCCHs of the third subset are not used for PDCCH repeated transmission.
  • the first set of search spaces may further include a third subset whose candidate PDCCHs are not used for PDCCH repeated transmission.
  • the index of the third subset may be smaller than the index of the first subset.
  • the terminal device may determine whether the third subset is for monitoring after determining that the first subset is a subset of the search space set for monitoring and the second subset is a subset of the search space set for monitoring Candidate PDCCH.
  • the terminal device may preferentially map at least a subset of a search space set used for the repeated transmission of the PDCCH, so that the repeated transmission of the PDCCH can be ensured preferentially.
  • the first set of search spaces may further include a third subset whose candidate PDCCHs are not used for PDCCH repeated transmission.
  • the index of the third subset may be smaller than the index of the first subset.
  • the terminal device may simultaneously determine the first subset and the second subset as subsets of the search space set used for monitoring. For example, the terminal device may preferentially map at least a subset of a search space set that is not used for PDCCH repeated transmission.
  • step S1303 can also be adapted to the subset mapping of the search space set.
  • the three methods in step S1303 can also be adapted to the subset mapping of the search space set.
  • the size relationship of the mapping priorities of the three subsets of the search space set #0 is: the mapping priority of subset 0_0 is greater than the mapping priority of subset 0_1, and the mapping priority of subset 0_1
  • the priority is greater than the mapping priority of subset 0_2
  • the mapping priority of subset 0_0 is equal to the mapping priority of subset 2_0
  • the mapping priority of subset 0_2 is equal to the mapping priority of subset 3_0. That is, the terminal device can firstly map the subset 0_0 and the subset 2_0, and then map the subset 0_1. After completing the mapping of the subset 0_1, the terminal device may simultaneously map the subset 0_2 and the subset 3_0.
  • mapping priority of subset 0_0 is greater than that of subset 0_1 Mapping priority
  • mapping priority of subset 0_1 is greater than the mapping priority of subset 0_2
  • mapping priority of subset 0_2 is greater than the mapping priority of subset 1_0
  • mapping priority of subset 0_0 is equal to the mapping priority of subset 2_0
  • mapping priority of subset 0_2 is equal to the mapping priority of subset 3_0.
  • the size relationship between the mapping priorities of the three subsets of the search space set #0 is: the mapping priority of subset 0_0 is greater than the mapping priority of subset 0_2, and the mapping priority of subset 0_2 is greater than that of subset 0_1
  • the mapping priority of subset 0_0 is equal to the mapping priority of subset 2_0
  • the mapping priority of subset 0_2 is equal to the mapping priority of subset 3_0. That is, the terminal device can firstly map the subset 0_0 and the subset 2_0 at the same time, and then map the subset 0_2 and the subset 3_0 at the same time. After completing the mapping of the subset 0_2 and the subset 3_0, the terminal device may map the subset 0_1.
  • mapping priority of subset 0_0 is greater than that of subset 0_2 Mapping priority
  • mapping priority of subset 0_2 is greater than the mapping priority of subset 0_1
  • mapping priority of subset 0_1 is greater than the mapping priority of subset 1_0
  • mapping priority of subset 0_0 is equal to the mapping priority of subset 2_0
  • mapping priority of subset 0_2 is equal to the mapping priority of subset 3_0.
  • the size relationship of the mapping priorities of the three subsets of the search space set #0 is: the mapping priority of subset 0_1 is greater than the mapping priority of subset 0_0, and the mapping priority of subset 0_0 is greater than that of subset 0_2
  • the mapping priority of subset 0_0 is equal to the mapping priority of subset 2_0
  • the mapping priority of subset 0_2 is equal to the mapping priority of subset 3_0. That is, the terminal device may perform mapping on subset 0_1 first, and then perform mapping on subset 0_0 and subset 2_0 at the same time. After completing the mapping of the subset 0_0 and the subset 2_0, the terminal device can simultaneously map the subset 0_2 and the subset 3_0.
  • mapping priority of subset 0_1 is greater than that of subset 0_0 Mapping priority
  • mapping priority of subset 0_0 is greater than the mapping priority of subset 0_2
  • mapping priority of subset 0_2 is greater than the mapping priority of subset 1_0
  • mapping priority of subset 0_0 is equal to the mapping priority of subset 2_0
  • mapping priority of subset 0_2 is equal to the mapping priority of subset 3_0.
  • the terminal device while determining the first subset as a candidate PDCCH for monitoring, the terminal device also determines the first subset that is used for repeated PDCCH transmission together with the first subset and belongs to the first search space set whose index is greater than that of the first search space set.
  • the second subset of the second set of search spaces is also a subset of the set of search spaces for listening. This can prevent the terminal device from being mapped to the second search space set according to the index from small to large, and the number of blind checks is greater than the upper limit of the number of remaining blind checks (and/or the number of non-overlapping CCEs is greater than the maximum number of remaining non-overlapping CCEs).
  • the terminal device determines that the second search space set is not a search space set for monitoring, that is, it will not monitor (or will not blindly detect) the second search space set, and will not monitor (or will not blindly detect) In the second subset, the problem of repeated PDCCH transmission cannot be realized.
  • the network device and the terminal device include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 18 and FIG. 18 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal equipment or the network equipment in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be any one of the terminal equipment 120a to 120j shown in FIG. 1, or may be the wireless access network equipment 110a or 110b shown in FIG. It can be a module (such as a chip) applied to terminal equipment or network equipment.
  • the communication apparatus 1800 includes a processing module 1810 and a transceiver module 1820 .
  • the communication apparatus 1800 is configured to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 7 , FIG. 13 or FIG. 15 .
  • the transceiver module 1820 may be configured to receive configuration information from the network device, where the configuration information includes the first search space the information of the set and the information of the second search space set;
  • the processing module 1810 may be used to determine the first search space set as the search space set for monitoring. At the same time, it is determined that the second search space set is also a search space set for monitoring;
  • the processing module 1810 may be configured to determine that the first candidate PDCCH is used for monitoring At the same time as the candidate PDCCH, determine that the second candidate PDCCH is also a candidate PDCCH for monitoring;
  • the processing module 1810 may be used to determine the first subset as a At the same time as the subset of the search space set for monitoring, it is determined that the second subset is also a subset of the search space set for monitoring.
  • the transceiver module 1820 may be configured to send configuration information to the terminal device, where the configuration information includes the first search space set and the second set of search spaces;
  • the processing module 1810 may be configured to determine the first search space set as the search space used by the terminal device for monitoring At the same time as the collection, it is determined that the second search space collection is also the search space collection used by the terminal device for monitoring;
  • the processing module 1810 may be used to determine the first candidate PDCCH as the terminal device for the repeated transmission. While monitoring the candidate PDCCH, determine that the second candidate PDCCH is also the candidate PDCCH used by the terminal device for monitoring;
  • the processing module 1810 can be used to determine that the first subset is the terminal device At the same time as the subset of the search space set used for monitoring, it is determined that the second subset is also a subset of the search space set used by the terminal device for monitoring.
  • processing module 1810 and the transceiver module 1820 can be obtained directly by referring to the relevant descriptions in the method embodiments shown in FIG. 7 , FIG. 13 or FIG. 15 , and details are not repeated here.
  • the communication device 1900 includes a processor 1910 and an interface circuit 1920 .
  • the processor 1910 and the interface circuit 1920 are coupled to each other.
  • the interface circuit 1920 can be a transceiver or an input-output interface.
  • the communication device 1900 may further include a memory 1930 for storing instructions executed by the processor 1910 or input data required by the processor 1910 to execute the instructions or data generated after the processor 1910 executes the instructions.
  • the processor 1910 is used to implement the function of the above-mentioned processing module 1810
  • the interface circuit 1920 is used to implement the function of the above-mentioned transceiver module 1820 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions may be composed of corresponding software modules, and software modules may be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or in an end device.
  • the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, or the like that integrates one or more available media.
  • the usable media may be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital video discs; and semiconductor media, such as solid-state drives.
  • the computer-readable storage medium may be a volatile or non-volatile storage medium, or may include both types of storage media, volatile and non-volatile.

Abstract

本申请公开了一种通信方法、装置以及系统。在该方法中,终端设备接收来自网络设备的、包括第一搜索空间集合的信息和第二搜索空间集合的信息的配置信息,第一搜索空间集合的索引小于第二搜索空间集合的索引,第一搜索空间集合的所有候选PDCCH与第二搜索空间集合的所有候选PDCCH配置用于PDCCH重复传输;在确定第一搜索空间集合为用于监听的搜索空间集合的同时,确定第二搜索空间集合为用于监听的搜索空间集合。这样可以避免根据搜索空间集合的索引从小到大的顺序对多个搜索空间集合进行映射时,终端设备的监听能力支持对第一搜索空间集合进行映射,但不支持对第二搜索空间集合进行映射,导致无法实现PDCCH重复传输的问题。

Description

一种通信方法、装置以及系统 技术领域
本申请涉及无线通信技术领域,具体涉及一种通信方法、装置以及系统。
背景技术
在新无线(new radio,NR)通信系统中,网络设备可以超额配置一个或多个搜索空间集合,每个搜索空间集合中包括至少一个候选物理下行控制信道(physical downlink control channel candidate,PDCCH candidate)。意味着,若终端设备对网络设备配置的所有候选PDCCH都进行盲检,对所有候选PDCCH对应的不重叠控制信道单元(control channel element,CCE)都进行信道估计,会给终端设备造成极大的数据处理压力,以及极大地增加终端设备的处理复杂度,即超出了终端设备的监听能力。
NR中提出了一种PDCCH映射规则。该PDCCH映射规则的流程为:终端设备可以确定网络设备配置的多个搜索空间集合;终端设备可以确定剩余盲检次数上限(例如可以初始化为最大盲检次数)和剩余不重叠CCE的最大个数(例如可以初始化为最大不重叠CCE个数);终端设备可以按照搜索空间集合的索引从小到大的顺序判断搜索空间集合的盲检次数是否大于剩余盲检次数上限、不重叠CCE的个数是否大于剩余不重叠CCE的最大个数。若某一个搜索空间集合的盲检次数大于剩余盲检次数上限,或不重叠CCE的个数大于剩余不重叠CCE的最大个数,则终端设备确定这个搜索空间集合不是用于监听的搜索空间集合,即不会监听(或不会盲检)这个搜索空间集合。由于PDCCH映射规则可以确保终端设备在其监听能力范围内对候选PDCCH进行盲检和/或信道估计,因此该PDCCH映射规则可以减少因超额配置对终端设备造成的数据处理压力和处理复杂度。
随着通信技术的日益发展,通信系统对传输可靠性的需求也越来越高。PDCCH重复传输技术能够有效提高传输可靠性。目前,网络设备可以将两个搜索空间集合配置为用于PDCCH重复传输的搜索空间集合,以提高PDCCH传输的可靠性。其中,该两个搜索空间集合中的两个候选PDCCH用于同一个PDCCH的重复传输、且该两个候选PDCCH属于不同的搜索空间集合。如何对这两个搜索空间集合中的候选PDCCH进行监听是本领域需要解决的技术问题。
发明内容
本申请提供一种通信方法、装置以及系统,以实现网络设备超额配置场景下的PDCCH重复传输,提高PDCCH传输的可靠性。
第一方面,本申请提供一种通信方法,该方法可以由终端设备执行或者由终端设备的部件(如芯片或芯片系统等)执行。在该方法中,终端设备可以接收来自网络设备的配置信息,该配置信息可以包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,第一搜索空间集合中的所有PDCCH与第二搜索空间集合中的所有候选PDCCH均配置用于PDCCH重复传输,第一搜索空间集合的索引小于第二搜索空间集合的索引;以及,在确定第一搜索空间集合为用于监听的搜索空间集合的同时,确定第二搜索空间集合为用于监听的搜索空间集合。
在上述实施例中,终端设备在确定第一搜索空间集合为用于监听的搜索空间集合的同时,可以确定第二搜索空间集合也为用于监听的搜索空间集合。第一搜索空间集合的索引小于第二搜索空间集合,相当于终端设备提高了第二搜索空间集合的映射优先级,使得第二搜索空间集合的映射优先级与第一搜索空间集合的映射优先级相同。这样可以避免终端设备根据搜索空间集合的索引从小到大的顺序、对网络设备配置的多个搜索空间集合进行映射时,终端设备的监听能力支持对第一搜索空间集合进行映射,但不支持对第二搜索空间集合进行映射,导致无法实现PDCCH重复传输的问题。
在一种可能的设计中,配置信息还可以指示第一搜索空间集合的第一候选PDCCH与第二搜索空间集合的第二候选PDCCH配置用于同一个PDCCH的重复传输。
在一种可能的设计中,第一候选PDCCH在第一搜索空间集合中的索引、与第二候选PDCCH在第二搜索空间集合中的索引可以相同。
通过该设计,网络设备向终端设备发送的配置信息可以隐式指示第一搜索空间集合与第二搜索空间集合中的哪两个候选PDCCH是用于同一个PDCCH的重复传输,从而可以减少信令开销。
在另一种可能的设计中,第一候选PDCCH在第一搜索空间集合中的索引、与第二候选PDCCH在第二搜索空间集合中的索引可以不同,这样可以灵活配置第一搜索空间集合和第二搜索空间集合中用于PDCCH重复传输的候选PDCCH。
在一种可能的设计中,该配置信息还可以包括第三搜索空间集合,第三搜索空间集合中的候选PDCCH未配置用于PDCCH重复传输,第三搜索空间集合的索引大于第一搜索空间集合的索引、且小于第二搜索空间集合的索引,该方法还可以包括:在确定第一搜索空间集合为用于监听的搜索空间集合和确定第二搜索空间集合为用于监听的搜索空间集合之后,终端设备可以确定第三搜索空间集合是否为用于监听的搜索空间集合。
在另一种可能的设计中,该配置信息还可以包括第三搜索空间集合,第三搜索空间集合中的候选PDCCH未配置用于PDCCH重复传输,第三搜索空间集合的索引小于第一搜索空间集合的索引,该方法还可以包括:在确定第一搜索空间集合为用于监听的搜索空间集合和确定第二搜索空间集合为用于监听的搜索空间集合之后,终端设备可以确定第三搜索空间集合是否为用于监听的搜索空间集合。
第二方面,本申请提供一种通信方法,该方法可以由终端设备执行或者由终端设备的部件执行。在该方法中,终端设备可以接收来自网络设备的配置信息,配置信息可以包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,第一搜索空间集合包括第一候选PDCCH,第二搜索空间集合包括第二候选PDCCH,第一候选PDCCH与第二候选PDCCH配置用于同一个PDCCH的重复传输;以及,终端设备在确定第一候选PDCCH为用于监听的候选PDCCH的同时,确定第二候选PDCCH为用于监听的候选PDCCH。
可选的,第一搜索空间集合的索引可以小于第二搜索空间集合的索引。
在上述实施例中,终端设备在确定第一候选PDCCH为用于监听的候选PDCCH的同时,可以确定第二候选PDCCH也为用于监听的候选PDCCH。例如,第一搜索空间集合的索引可以小于第二搜索空间集合,相当于终端设备提高了第二搜索空间集合的第二候选PDCCH的映射优先级,使得第二候选PDCCH的映射优先级与第一搜索空间集合的第一候选PDCCH的映射优先级相同。这样可以避免终端设备根据搜索空间集合的索引从小到大的顺序、对网络设备配置的多个搜索空间集合进行映射时,终端设备的监听能力支持对第 一候选PDCCH进行映射,但不支持对第二候选PDCCH进行映射,导致无法实现PDCCH重复传输的问题。
在一种可能的设计中,第一候选PDCCH在第一搜索空间集合中的索引、与第二候选PDCCH在第二搜索空间集合中的索引可以相同。
通过该设计,网络设备向终端设备发送的配置信息可以隐式指示第一搜索空间集合与第二搜索空间集合中的哪两个候选PDCCH是用于同一个PDCCH的重复传输,从而可以减少信令开销。
在另一种可能的设计中,第一候选PDCCH在第一搜索空间集合中的索引、与第二候选PDCCH在第二搜索空间集合中的索引可以不同,这样可以灵活配置第一搜索空间集合和第二搜索空间集合中用于PDCCH重复传输的候选PDCCH。
在一种可能的设计中,第一搜索空间集合还可以包括第三候选PDCCH,第三候选PDCCH未配置用于PDCCH重复传输,该方法还可以包括:在确定第一候选PDCCH为用于监听的候选PDCCH和确定第二候选PDCCH为用于监听的候选PDCCH之后,终端设备可以确定第三候选PDCCH是否为用于监听的候选PDCCH。
第三方面,本申请提供一种通信方法,该方法可以由终端设备执行或者由终端设备的部件执行。在该方法中,终端设备可以接收来自网络设备的配置信息,配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,第一搜索空间集合包括第一子集,第二搜索空间集合包括第二子集,第一子集中的所有候选PDCCH与第二子集中的所有候选PDCCH均配置用于PDCCH重复传输;以及,在确定第一子集为用于监听的搜索空间集合的子集的同时,终端设备可以确定第二子集为用于监听的搜索空间集合的子集。
可选的,第一搜索空间集合的索引可以小于第二搜索空间集合的索引。
在上述实施例中,终端设备在确定第一子集为用于监听的搜索空间集合的子集的同时,可以确定第二子集也为用于监听的搜索空间集合的子集。例如,第一搜索空间集合的索引小于第二搜索空间集合,相当于终端设备提高了第二搜索空间集合的第二子集的映射优先级,使得第二子集的映射优先级与第一搜索空间集合的第一子集的映射优先级相同。这样可以避免终端设备根据搜索空间集合的索引从小到大的顺序、对网络设备配置的多个搜索空间集合进行映射时,终端设备的监听能力支持对第一子集进行映射,但不支持对第二子集进行映射,导致无法实现PDCCH重复传输的问题。
在一种可能的设计中,配置信息还可以指示第一子集的第一候选PDCCH与第二子集的第二候选PDCCH配置用于同一个PDCCH的重复传输。
在一种可能的设计中,第一候选PDCCH在第一子集中的索引、与第二候选PDCCH在第二子集中的索引相同。
通过该设计,网络设备向终端设备发送的配置信息可以隐式指示第一子集与第二子集中的哪两个候选PDCCH是用于同一个PDCCH的重复传输,从而可以减少信令开销。
在另一种可能的设计中,第一候选PDCCH在第一子集中的索引、与第二候选PDCCH在第二子集中的索引可以不同,这样可以灵活配置第一子集和第二子集中用于PDCCH重复传输的候选PDCCH。
在一种可能的设计中,第一搜索空间集合还可以包括第三子集,第三子集的候选PDCCH未配置用于PDCCH重复传输,该方法还可以包括:在确定第一子集为用于监听的搜索空间的子集和确定第二子集为用于监听的搜索空间集合的子集之后,终端设备可以确 定第三子集是否为用于监听的搜索空间集合的子集。
第四方面,本申请提供一种通信方法,该方法可以由网络设备执行或者由网络设备的部件执行。在该方法中,网络设备可以向终端设备发送配置信息,配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,第一搜索空间集合中的所有候选物理下行控制信道PDCCH与第二搜索空间集合中的所有候选PDCCH均配置用于PDCCH重复传输,第一搜索空间集合的索引小于第二搜索空间集合的索引;在确定第一搜索空间集合为终端设备用于监听的搜索空间集合的同时,确定第二搜索空间集合为终端设备用于监听的搜索空间集合。
在一种可能的设计中,配置信息还指示第一搜索空间集合的第一候选PDCCH与第二搜索空间集合的第二候选PDCCH配置用于同一个PDCCH的重复传输。
在一种可能的设计中,第一候选PDCCH在第一搜索空间集合中的索引、与第二候选PDCCH在第二搜索空间集合中的索引相同。
在一种可能的设计中,配置信息还包括第三搜索空间集合,第三搜索空间集合中的候选PDCCH未配置用于PDCCH重复传输,第三搜索空间集合的索引大于第一搜索空间集合的索引、且小于第二搜索空间集合的索引,方法还包括:在确定第一搜索空间集合为终端设备用于监听的搜索空间集合和确定第二搜索空间集合为终端设备用于监听的搜索空间集合之后,确定第三搜索空间集合是否为终端设备用于监听的搜索空间集合。
第五方面,本申请提供一种通信方法,该方法可以由网络设备执行或者由网络设备的部件执行。在该方法中,网络设备可以向终端设备发送配置信息,配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,第一搜索空间集合包括第一候选物理下行控制信道PDCCH,第二搜索空间集合包括第二候选PDCCH,第一候选PDCCH与第二候选PDCCH配置用于同一个PDCCH的重复传输;在确定第一候选PDCCH为终端设备用于监听的候选PDCCH的同时,确定第二候选PDCCH为终端设备用于监听的候选PDCCH。
在一种可能的设计中,第一候选PDCCH在第一搜索空间集合中的索引、与第二候选PDCCH在第二搜索空间集合中的索引相同。
在一种可能的设计中,第一搜索空间集合还包括第三候选PDCCH,第三候选PDCCH未配置用于PDCCH重复传输,方法还包括:在确定第一候选PDCCH为终端设备用于监听的候选PDCCH和确定第二候选PDCCH为终端设备用于监听的候选PDCCH之后,确定第三候选PDCCH是否为终端设备用于监听的候选PDCCH。
第六方面,本申请提供一种通信方法,该方法可以由网络设备执行或者由网络设备的部件执行。在该方法中,网络设备可以向终端设备发送配置信息,配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,第一搜索空间集合包括第一子集,第二搜索空间集合包括第二子集,第一子集中的所有候选物理下行控制信道PDCCH与第二子集中的所有候选PDCCH均配置用于PDCCH重复传输;在确定第一子集为终端设备用于监听的搜索空间集合的子集的同时,确定第二子集为终端设备用于监听的搜索空间集合的子集。
在一种可能的设计中,配置信息还指示第一子集的第一候选PDCCH与第二子集的第二候选PDCCH配置用于同一个PDCCH的重复传输。
在一种可能的设计中,第一候选PDCCH在第一子集中的索引、与第二候选PDCCH 在第二子集中的索引相同。
在一种可能的设计中,第一搜索空间集合还包括第三子集,第三子集的候选PDCCH未配置用于PDCCH重复传输,方法还包括:在确定第一子集为终端设备用于监听的搜索空间集合的子集和确定第二子集为终端设备用于监听的搜索空间集合的子集之后,确定第三子集是否为终端设备用于监听的搜索空间集合的子集。
第七方面,本申请提供一种通信装置,该通信装置可以包括处理模块和收发模块,这些模块可以执行上述第一方面任一种设计示例中终端设备所执行的相应功能,或者执行上述第二方面任一种设计示例中终端设备所执行的相应功能,或者执行上述第三方面任一种设计示例中终端设备所执行的相应功能。
第八方面,本申请提供一种通信装置,该通信装置可以包括处理模块和收发模块,这些模块可以执行上述第四方面任一种设计示例中网络设备所执行的相应功能,或者执行上述第五方面任一种设计示例中网络设备所执行的相应功能,或者执行上述第六方面任一种设计示例中网络设备所执行的相应功能。
第九方面,本申请提供一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置。该通信装置可以包括处理器和接口电路。该接口电路可以用于接收来自该通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给该通信装置之外的其它通信装置。处理器可以通过逻辑电路或执行代码指令用于实现上述第一方面、或第二方面、或第三方面中终端设备所执行的任意一种方法。
第十方面,本申请提供一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置。该通信装置可以包括处理器和接口电路。该接口电路可以用于接收来自该通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给该通信装置之外的其它通信装置。处理器可以通过逻辑电路或执行代码指令用于实现上述第四方面、或第五方面、或第六方面中网络设备所执行的任意一种方法。
第十一方面,本申请提供一种计算机程序,当该计算机程序被通信装置执行时,可实现上述第一方面、或第二方面、或第三方面的任意一种设计示例中的方法。
第十二方面,本申请提供一种计算机程序,当该计算机程序被通信装置执行时,可实现上述第四方面、或第五方面、或第六方面的任意一种设计示例中的方法。
第十三方面,本申请提供一种计算机可读存储介质,该存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,可实现上述第一方面、或第二方面、或第三方面的任一种设计示例中的方法。
第十四方面,本申请提供一种计算机可读存储介质,该存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,可实现上述第四方面、或第五方面、或第六方面的任意一种设计示例中的方法。
第十五方面,本申请还提供一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行上述第一方面、或第二方面、或第三方面的任一种设计示例中终端设备所执行的方法。
第十六方面,本申请还提供一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行上述第四方面、或第五方面、或第六方面的任一种设计示例中网络设备所执行的方法。
第十七方面,本申请还提供一种通信系统,该通信系统包括上述第七方面、或第九方 面的任一种设计示例中的通信装置,以及上述第八方面、或第十方面的任一种设计示例中的通信装置。
上述第四方面至第十七方面及其实现方式的有益效果可以参考对第一方面至第三方面及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例适用的一种通信系统的示意图;
图2为本申请实施例的搜索空间集合的一种示意图;
图3为本申请实施例的不重叠CCE的一种示意图;
图4为本申请实施例的PDCCH映射规则的一种流程示意图;
图5为本申请实施例的PDCCH重复传输的一种示意图;
图6为本申请实施例提供的搜索空间集合#i与搜索空间集合#j用于PDCCH重复传输的一种示意图;
图7为本申请实施例提供的一种通信方法的流程示意图;
图8为本申请实施例提供的第一候选PDCCH的索引与第二候选PDCCH的索引的一种示意图;
图9为本申请实施例提供的第一候选PDCCH的索引与第二候选PDCCH的索引的再一种示意图;
图10为本申请实施例提供的多个搜索空间集合的一种示意图;
图11为本申请实施例提供的多个搜索空间集合的再一种示意图;
图12为本申请实施例提供的一种PDCCH映射方法的流程示意图;
图13为本申请实施例提供的再一种通信方法的流程示意图;
图14为本申请实施例提供的多个搜索空间集合的另一种示意图;
图15为本申请实施例提供的另一种通信方法的流程示意图;
图16为本申请实施例提供的搜索空间集合的子集的一种示意图;
图17为本申请实施例提供的搜索空间集合的子集的再一种示意图;
图18为本申请实施例提供的通信装置的一种示意图;
图19为本申请实施例提供的通信装置的另一种示意图。
具体实施方式
下面结合附图介绍本申请实施例应用的通信场景。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通 过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
示例性的,该通信系统中还可以包括与多个无线接入设备相连的终端,如与演进型基站(evolved NodeB,eNodeB)和第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)建立双连接(dual connectivity)的终端,在图1中未画出。
无线接入网设备也可以称为网络设备,可以是基站(base station)、eNodeB、发送接收点(transmission reception point,TRP)、gNB、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
为了便于表述,本申请实施例中以图1所示的通信系统为例进行说明,即下文中的网络设备可以为图1中的无线接入网设备110a或无线接入网设备110b,下文中的终端设备可以为图1中的终端120a至终端120j中的任一个。
下面先对本申请实施例所涉及的术语、或技术特征进行简单介绍。
(1)搜索空间集合(search space set)
搜索空间集合可以包括一个或多个搜索空间。一个搜索空间是针对一个具体的聚集级别(aggregation level,AL)而言的,即一个搜索空间是由相同AL下的一个或多个候选PDCCH组成。一个候选PDCCH是由n个连续的控制信道单元(control channel element,CCE)组成。其中,n为AL,例如,n的取值范围可以为{1,2,4,8,16}。一个候选PDCCH可以配置用于承载下行控制信息(downlink control information,DCI)。网络侧设备可以向终端设备发送一个搜索空间集合的配置信息,该配置信息可以包括PDCCH监听的起始正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、PDCCH监听周期以及与该搜索空间集合关联的控制资源集合(control resource set,CORESET)等。终端设备通过监听搜索空间集合可以接收PDCCH。
搜索空间集合可以分为公共搜索空间集合(common search space set,CSS set)和UE特定搜索空间集合(UE-specific search space set,USS set)。其中,公共搜索空间集合可以用于向终端设备发送用于传输寻呼(paging)、系统信息等的公共控制信道。UE特定的搜索空间集合可以用于向终端设备发送用于传输某个UE特定的控制信息的控制信道。可以理解的是,公共搜索空间集合也可以用于向终端设备发送用于传输某个UE特定的控制信息的控制信道,本申请实施例对此并不限定。
如图2所示,CCE 0~CCE 15对应的AL=8的搜索空间和CCE 0~CCE 7对应的AL=4的搜索空间一起组成了公共搜索空间集合;CCE 16~CCE 31对应的AL=8的搜索空间,CCE 28~CCE 35对应的AL=8的搜索空间,CCE 6~CCE 17对应的AL=2的搜索空间,以及CCE 22~CCE 27对应的AL=1的搜索空间一起组成了UE特定搜索空间集合。
(2)搜索空间集合的索引、候选PDCCH的索引
搜索空间集合的索引可以用于在一个服务小区内唯一标识搜索空间集合。示例性的,搜索空间集合的索引可以从0开始编号,如搜索空间集合#0~搜索空间集合#j,j为大于0的整数。搜索空间集合的索引可以由高层信令配置。
候选PDCCH的索引可以用于在一个搜索空间集合或一个搜索空间集合的子集内唯一标识候选PDCCH。示例性的,候选PDCCH的索引可以从0开始编号,如候选PDCCH#0~候选PDCCH#j,j为大于0的整数。候选PDCCH的索引可以由高层信令配置,或者由协议预定义的映射关系确定,或者由高层信令和协议预定义的映射关系共同确定。
(3)盲检测(blind detection,BD)以及盲检次数上限
网络设备可以配置候选PDCCH的个数。例如,网络设备可以为终端设备配置多个候选PDCCH。但该多个候选PDCCH中并不是所有的候选PDCCH都承载终端设备期待接收的DCI,即并不是所有的候选PDCCH都承载发送给终端设备的DCI,所以,终端设备需要对搜索空间集合中的每个候选PDCCH进行尝试解码,来确定这些候选PDCCH上是否承载了自己期待接收的DCI。其中,终端设备在对1个或多个搜索空间集合中的每个候选PDCCH进行尝试解码的这一行为可称为盲检测(可简称为盲检)。在某一个候选PDCCH上监听DCI可以理解为在某一个候选PDCCH上进行盲检测。
例如,终端设备期待接收的DCI的循环冗余校验码(cyclic redundancy check,CRC)由小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)加掩。终端设备可以根据C-RNTI对搜索空间集合中的每个候选PDCCH进行CRC校验。若CRC校验成功,则终端设备确定在候选PDCCH上解码到自己期待接收的DCI,反之,则终端设备确定在该候选PDCCH上未解码到自己期待接收的DCI。
盲检次数上限,可以指终端设备在一个时隙内或一个时间跨度(span)内支持的最大盲检次数。最大盲检次数可以理解为监听的候选PDCCH的最大个数。例如,终端设备不会监听(或不会盲检测)超过监听的候选PDCCH的最大个数以外的候选PDCCH。其中,盲检次数上限可以是协议预定义的。该盲检次数上限可以与子载波间隔、UE能力等信息有关,例如子载波间隔15kHz的小区,1个时隙对应的盲检次数上限为44。
示例性的,盲检次数的计数规则为:两个或两个以上配置的候选PDCCH计数为一次盲检次数,该两个或两个以上配置的候选PDCCH需要同时满足四个条件;或者,同一个搜索空间集合内的两个不同的候选PDCCH,其中索引较大的一个候选PDCCH算作1个待监听的候选PDCCH而另一个索引较小的一个候选PDCCH不算作1个待监听的候选PDCCH;或者,属于不同搜索空间集合的两个候选PDCCH,其中索引较大的搜索空间集合内的候选PDCCH算作1个待监听的候选PDCCH,而另一个索引较小的搜索空间集合内的候选PDCCH不算作1个待监听的候选PDCCH。
该四个条件分别为:该两个或两个以上配置的候选PDCCH的聚集级别相同,且该两个或两个以上配置的候选PDCCH的CCE集合相同(可以理解为该两个或两个以上配置的候选PDCCH的时频资源相同);该两个或两个以上配置的候选PDCCH的扰码序列相同;所述配置的候选PDCCH所在的CORESET相同;以及,该两个或两个以上配置的候选PDCCH上需要监听的DCI的大小相同,例如DCI的比特数或负载大小相同。
值得注意的是,一个搜索空间集合的盲检次数可以理解为一个搜索空间集合通过盲检次数的计数规则后得到的待监听的候选PDCCH个数。
(4)CCE、不重叠CCE以及不重叠CCE上限(non-overlapping CCE limit)
CCE,是控制信息的资源分配的最小单位,即控制信息的资源分配是以CCE为最小单位CCE,是控制信息的资源分配的最小单位,即控制信息的资源分配是以CCE为最小单位进行分配的。1个CCE等于6个资源单元组(resource element group,REG),1个REG定义为在1个OFDM符号上的1个物理资源块(physical resource block,PRB)。
DCI在传输过程中会受到无线信道环境的影响,极大影响传输性能。因此,在做盲检之前,终端设备需要通过对PDCCH中插入的导频进行信道估计,来抵消无线信道对传输信号的影响,尽量在接收端准确地恢复发送端的发射信号。导频序列位于1个RB上的图案为第#1,#5,#9个资源元素(resource element,RE)上,而PDCCH是以CCE为最小单位来分配的,因此终端设备做PDCCH信道估计的次数是按照CCE为单位来进行计数。对于多个重叠的CCE,终端设备进行一次PDCCH信道估计即可,而对于不重叠的多个CCE,终端设备需要进行多次PDCCH信道估计。
示例性的,不重叠CCE的计数规则为:一个配置的候选PDCCH对应的CCE计数为一个不重叠CCE;或者,多个配置的在时频资源位置上重叠的候选PDCCH对应的CCE计数为不重叠CCE,该多个配置的在时频资源位置上重叠的候选PDCCH需要满足两个条件中至少一个条件。该两个条件分别为:多个配置的在时频资源位置上重叠的候选PDCCH对应的CCE属于不同的CORESET,例如可以根据CORESET的索引确定是否属于不同的CORESET;多个配置的在时频资源位置上重叠的候选PDCCH中每个候选PDCCH的接收起始符号不同。例如,PDCCH#1属于CORESET#1,PDCCH#1的AL为2,即PDCCH#1占用2个CCEs,候选PDCCH#2属于CORESET#2,PDCCH#2的AL也为2,即PDCCH#2也占用2个CCEs。由于PDCCH#1与PDCCH#2属于不同的CORESET,所以即使PDCCH#1 与PDCCH#2的时频资源位置相同,PDCCH#1与PDCCH#2对应的4个CCE也是不重叠CCE,即一共计为4个不重叠CCE。
值得注意的是,一个搜索空间集合的不重叠CCE个数可以理解为一个搜索空间集合通过不重叠CCE的计数规则后得到的用于监听的候选PDCCH对应的不重叠CCE个数。
如图3所示,CCE 0属于CORESET#0,CCE 0对应的PDCCH的接收起始符号为OFDM符号#0,即使CCE 0与CCE 1属于相同的CORESET,且CCE 0与CCE 1对应的PDCCH的接收起始符号也相同,但由于两个CCE在频域资源上并不重叠,所以CCE 0与CCE 1为不重叠的两个CCE。因为CCE 0和CCE 2在频域资源上不重叠,所以CCE 0与CCE 2为不重叠的两个CCE。即使CCE1与CCE 2在时频资源上重叠,但由于CCE1和CCE2术语两个控制资源集合,所以CCE 1与CCE 2也为不重叠的两个CCE。CCE 0和CCE 3在时频资源上不重叠,所以CCE 0与CCE 3为不重叠的两个CCE,同理,CCE 1与CCE 3也为不重叠的两个CCE,CCE 2与CCE 3也为不重叠的两个CCE。即图3中包括4个不重叠CCE。
不重叠CCE上限,可以指终端设备在一个时隙内或一个时间跨度(span)内支持的不重叠CCE的最大个数。例如,终端设备不会监听(或不会盲检测)超过不重叠CCE的最大个数以外的候选PDCCH。其中,不重叠CCE上限可以是协议预定义的。该不重叠CCE上限可以与子载波间隔、UE能力等信息有关,例如子载波间隔15kHz的小区,1个时隙对应的不重叠CCE上限为56。
(5)超额配置(overbooking)以及PDCCH映射规则
网络设备在一定时间范围内(例如一个时隙,或者一个span,或者其他时间范围)配置的一个或多个搜索空间集合。当该一个或多个搜索空间集合满足如下至少一项时,可以称网络设备进行了超额配置:该一个或多个搜索空间集合通过盲检次数的计数规则得到的盲检次数大于盲检次数上限;或者,该一个或多个搜索空间集合中用于监听的候选PDCCH的个数大于监听的候选PDCCH的最大个数;或者,该一个或多个搜索空间集合通过不重叠CCE的计数规则得到的不重叠CCE个数大于不重叠CCE上限;或者,该一个或多个搜索空间集合中用于监听的候选PDCCH对应的不重叠CCE个数大于监听的候选PDCCH对应的不重叠CCE的最大个数。
在网络设备进行超额配置的场景下,终端设备需要通过PDCCH映射规则(或搜索空间集合映射规则,或搜索空间集合的子集映射规则)来确定用于监听的候选PDCCH的个数不超过监听的候选PDCCH的最大个数,以及确定用于监听的候选PDCCH对应的不重叠CCE个数不超过监听的候选PDCCH对应的不重叠CCE的最大个数,即不超过终端设备的监听能力。网络设备也需要通过PDCCH映射规则或搜索空间集合映射规则,或搜索空间集合的子集映射规则)来确定用于发送DCI的PDCCH能够被终端设备所检测到,来保证网络设备和终端设备对用于监听的候选PDCCH的个数、用于监听的候选PDCCH对应的不重叠CCE的个数以及对应的时频资源位置的理解一致。
第三代合作伙伴计划(3rd generation partnership project,3GPP)的技术规划(technical specification,TS)38.213V15.12.0中的第10.1节定义了PDCCH映射规则的流程,具体如图4所示。
S401:终端设备确定多个搜索空间集合。
例如,终端设备可以根据网络设备发送的搜索空间集合的配置信息确定该多个搜索空间集合。其中,该多个搜索空间集合可以包括至少一个CSS set,或者至少一个USS set,或者至少一个CSS set和至少一个USS set。在图4中以网络设备配置至少一个CSS set和多个USS set为例进行描述。例如,多个USS set的索引可以1开始到j结束,j为大于1的正整数,即网络设备配置的多个USS set的索引可以是连续的,也可以是不连续的。为了便于表述,本申请实施例中以多个USS set的索引是连续的为例。
S402:终端设备确定所有配置的CSS set中用于监听的候选PDCCH的个数,以及确定所有配置的CSS set中用于监听的候选PDCCH对应的不重叠CCE的个数。
例如,终端设备可以将配置的所有CSS set分别通过盲检次数的计数规则和不重叠CCE的计数规则,计算得到所有CSS set中用于监听的候选PDCCH的个数和所有CSS set中用于监听的候选PDCCH对应的不重叠CCE的个数。
可以理解的是,本申请实施例对终端设备确定所有CSS set中用于监听的候选PDCCH的个数,以及确定所有CSS set中用于监听的候选PDCCH对应的不重叠CCE的个数的先后顺序并不限定。
S403:终端设备确定用于USS set的剩余盲检次数上限(下文中可以简称为剩余盲检次数上限)和用于USS set的剩余不重叠CCE的最大个数(下文中可以简称为剩余不重叠CCE的最大个数)。
例如,终端设备可以将所有CSS set中用于监听的候选PDCCH的个数从盲检次数上限(即监听的候选PDCCH的最大个数)中减掉,得到用于USS set的剩余盲检次数上限(即用于USS set的、剩余的监听的候选PDCCH的最大个数)。同理的,终端设备可以将所有CSS set中用于监听的候选PDCCH对应的不重叠CCE的个数从不重叠CCE上限(即监听的候选PDCCH对应的不重叠CCE的最大个数)中减掉,得到用于USS set的剩余不重叠CCE的个数上限(即用于USS set的、剩余的监听的候选PDCCH对应的不重叠CCE的最大个数)。
可以理解的是,本申请实施例对终端设备确定用于USS set的剩余盲检次数上限和用于USS set的剩余不重叠CCE的最大个数的先后顺序并不限定。
S404:终端设备确定USS set#i的盲检次数和不重叠CCE的个数。
例如,终端设备可以分别通过盲检次数的计数规则和不重叠CCE的计数规则计算得到USS set#i中用于监听的候选PDCCH的个数和USS set#i中用于监听的候选PDCCH对应的不重叠CCE的个数。
S405:终端设备确定USS set#i的盲检次数小于或等于剩余盲检次数上限,且USS set#i的不重叠CCE的个数小于或等于剩余不重叠CCE的最大个数。若USS set#i的盲检次数小于或等于剩余盲检次数上限,且USS set#i的不重叠CCE的个数小于或等于剩余不重叠CCE的最大个数,则终端设备执行步骤S406以及步骤S407所示内容;反之,则终端设备执行S408所示的内容。其中,i可以为大于0、且小于j的正整数,i可以初始化为多个USS set中的最小索引。
以剩余盲检次数上限为20,剩余不重叠CCE的最大个数为15为例,若USS set#i的盲检次数和不重叠CCE的个数分别为15、10,即USS set#i的盲检次数小于剩余盲检次数上限,且USS set#i的不重叠CCE的个数小于剩余不重叠CCE的最大个数,则终端设备可以执行步骤S406以及步骤S407所示内容;若USS set#i的盲检次数和不重叠CCE的个数 分别为25、10,即USS set#i的盲检次数大于剩余盲检次数上限,则终端设备可以执行步骤S408所示内容;若USS set#i的盲检次数和不重叠CCE的个数分别为15、25,即USS set#i的不重叠CCE的个数大于剩余不重叠CCE的最大个数,则终端设备可以执行步骤S408所示内容;若USS set#i的盲检次数和不重叠CCE的个数分别为25、25,即USS set#i的盲检次数大于剩余盲检次数上限,且USS set#i的不重叠CCE的个数也大于剩余不重叠CCE的最大个数,则终端设备可以执行步骤S408所示内容。
S406:终端设备将USS set#i分配为用于监听的USS set。
即,终端设备可以确定USS set#i为用于监听的USS set。
S407:终端设备更新剩余盲检次数上限、剩余不重叠CCE的最大个数,以及将i更新为i加1。
例如,终端设备可以在剩余盲检次数上限中减掉USS set#i的盲检次数,得到更新后的剩余盲检次数上限。终端设备可以在剩余不重叠CCE的个数中减掉USS set#i的不重叠CCE的个数,得到更新后的剩余不重叠CCE的最大个数。若多个USS set的索引不是连续的,则终端设备根据多个USS set的索引从小到大的顺序,将i更新为索引比USS set#i大的下一个USS set的索引。例如,多个USS set包括USS set#0,USS set#2,USS set#4以及USS set#5,若i为0,则终端设备可以将i更新为2;若i为2,则终端设备可以将i更新为4;若i为4,则终端设备可以将i更新为5。
在步骤S407之后,终端设备可以执行步骤S404所述的内容。
可以理解的是,本申请实施例对终端设备更新剩余盲检次数上限、剩余不重叠CCE的最大个数,以及将i更新为i加1的先后顺序并不限定。
S408:终端设备将USS set#i以及多个USS set中比USS set#i索引大的USS set均不分配为用于监听的USS set。
即,终端设备可以确定USS set#i以及多个USS set中比USS set#i索引大的USS set均不是用于监听的USS set。
至此,PDCCH映射规则的流程结束。
(6)搜索空间集合映射、候选PDCCH映射、搜索空间集合的子集映射以及映射优先级
搜索空间集合映射,可以指在终端设备的监听能力内,网络设备从多个搜索空间集合中确定终端设备用于监听的搜索空间集合(可以理解为从多个搜索空间集合中确定用于向终端设备发送DCI的搜索空间集合);或者,可以指在终端设备的监听能力内,终端设备从多个搜索空间集合中确定用于监听的搜索空间集合。
候选PDCCH映射,可以指在终端设备的监听能力内,网络设备从多个候选PDCCH中或一个搜索空间集合中确定终端设备用于监听的候选PDCCH(可以理解为从多个候选PDCCH或一个搜索空间集合中确定用于向终端设备发送DCI的候选PDCCH);或者,可以指在终端设备的监听能力内,终端设备从多个候选PDCCH中或一个搜索空间集合中确定用于监听的候选PDCCH。
类似的,搜索空间集合的子集映射,可以指在终端设备的监听能力内,网络设备从至少一个搜索空间集合中确定终端设备用于监听的搜索空间集合的子集(可以理解为从至少一个搜索空间集合中确定向终端设备发送DCI的搜索空间集合的子集);或者,可以指在终端设备的监听能力内,终端设备从至少一个搜索空间集合中确定用于监听的搜索空间集 合的子集。
映射优先级,可以指终端设备对多个搜索空间集合进行搜索空间集合映射的顺序;或者,可以指终端设备对多个候选PDCCH进行候选PDCCH映射的顺序;或者,可以指终端设备对多个子集进行搜索空间集合的子集映射的顺序;可以指网络设备对多个搜索空间集合进行搜索空间集合映射的顺序;或者,可以指网络设备对多个候选PDCCH进行候选PDCCH映射的顺序;或者,可以指网络设备对多个子集进行搜索空间集合的子集映射的顺序。
例如,多个搜索空间集合包括搜索空间集合#0、搜索空间集合#1以及搜索空间集合#2。若搜索空间集合#0的映射优先级大于搜索空间集合#1的映射优先级,则意味着终端设备可以先确定搜索空间集合#0是否为用于监听的搜索空间集合,在确定搜索空间集合#0为用于监听的搜索空间集合,且搜索空间集合#0的盲检次数小于剩余盲检次数上限,搜索空间集合#0的不重叠CCE的个数小于剩余不重叠CCE的最大个数的情况下,再确定搜索空间集合#1是否为用于监听的搜索空间集合。再例如,若搜索空间集合#0的映射优先级等于搜索空间集合#2的映射优先级,则意味着终端设备可以在确定搜索空间集合#0是否为用于监听的搜索空间集合的同时,确定搜索空间集合#2是否为用于监听的搜索空间集合。
(7)PDCCH重复传输
PDCCH重复传输,可以指多个PDCCH调度同一个物理下行共享信道(physical downlink shared channel,PDSCH),或者多个PDCCH调度多个PDSCH,该多个PDSCH对应同一个混合自动重传请求(hybrid automatic repeat request,HARQ)进程标识。其中,多个PDCCH是指两个或两个以上的PDCCH,在下文中以两个PDCCH用于PDCCH重复传输为例描述本申请实施例提供的方法。
用于PDCCH重复传输的两个候选PDCCH具有以下特点:该两个候选PDCCH的DCI的大小相同;该两个候选PDCCH所在的聚集级别相同,或该两个候选PDCCH对应的CCE的个数相同的;该两个候选PDCCH对应的编码比特相同;编码或速率匹配是基于该两个候选PDCCH中的一个进行的;如图5所示。
(8)本申请实施例中的“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
需要说明的是,本申请中所涉及的多个,是指两个或两个以上。至少一个,是指一个或多个。至少两个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在NR中,网络设备可以超额配置一个或多个搜索空间集合,每个搜索空间集合包括至少一个候选PDCCH,即网络设备可以超额配置候选PDCCH的个数。这就意味着,终端设备根据盲检次数的计数规则确定出的用于监听的候选PDCCH的个数可能会超过盲检次数上限,和/或终端设备根据不重叠CCE的计数规则确定出的用于监听的候选PDCCH对应的不重叠CCE的个数可能会超过不重叠CCE上限。如果终端设备对所有的候选PDCCH都进行盲检和/或对所有的候选PDCCH对应的不重叠CCE都进行信道估计,会给终端设备造成极大的数据处理压力,以及极大地增加了终端设备的处理复杂度。PDCCH映射规 则可以保证终端设备在其监听能力内对网络设备配置的候选PDCCH进行盲检和/或信道估计,即PDCCH映射规则可以减少因网络设备超额配置导致终端设备的数据处理压力和处理复杂度。其中,PDCCH映射规则可以参考图4所示的内容,在此不再赘述。
目前,网络设备可以以搜索空间集合为粒度为终端设备配置用于PDCCH重复传输的搜索空间集合,以提高PDCCH传输的鲁棒性。如图6所示,搜索空间集合#i中的所有候选PDCCH与搜索空间集合#j中的所有候选PDCCH可配置用于PDCCH重复传输。其中,搜索空间集合#i的候选PDCCH#1和搜索空间集合#j的候选PDCCH#1可配置用于同一个PDCCH的重复传输;搜索空间集合#i的候选PDCCH#2和搜索空间集合#j的候选PDCCH#2可配置用于同一个PDCCH的重复传输,搜索空间集合#i的候选PDCCH#3和搜索空间集合#j的候选PDCCH#3可配置用于同一个PDCCH的重复传输。
在网络设备超额配置的场景下,由于终端设备是根据搜索空间集合的索引从小到大的顺序来确定用于监听的搜索空间集合,那么可能存在如下问题:终端设备的监听能力仅支持终端设备将两个搜索空间集合中索引较小的搜索空间集合确定为用于监听的搜索空间集合,而丢弃该两个搜索空间集合中索引较大的搜索空间集合,导致无法实现PDCCH重复传输。
以搜索空间集合#i和搜索空间集合#j用于PDCCH重复传输为例,终端设备确定出搜索空间集合#k-1的盲检次数小于剩余盲检次数上限,且搜索空间集合#k-1的不重叠CCE的个数小于剩余不重叠CCE的最大个数,k-1为大于或等于i、且小于j的正整数。即终端设备确定搜索空间集合#i和搜索空间集合#k-1为用于监听的搜索空间集合。进一步,终端设备确定出搜索空间集合#k的盲检次数大于更新后的剩余盲检次数上限(和/或搜索空间集合#k的不重叠CCE的个数大于更新后的剩余不重叠CCE的最大个数)。意味着,终端设备可以确定搜索空间集合#k以及索引比k大的搜索空间集合不是用于监听的搜索空间集合。即终端设备不监听搜索空间集合#k,而k小于或等于j,也就不监听搜索空间集合#j,从而导致PDCCH重复传输无法实现。
鉴于此,本申请实施例提供一种通信方法、装置以及通信系统,用以实现网络设备超额配置场景下的PDCCH重复传输,可以提高PDCCH传输的可靠性。
实施例一:
图7为本申请实施例提供的一种通信方法的流程示意图。
S701:网络设备向终端设备发送配置信息。相应地,终端设备接收配置信息。
示例性的,该配置信息可以包括第一搜索空间集合的信息和第二搜索空间集合的信息,例如,第一搜索空间集合的信息可以包括第一搜索空间集合的索引,关联的CORESET的索引,监听周期,聚集级别,对应的候选PDCCH个数或监听的DCI格式中的一项或多项。类似的,第二搜索空间集合的信息可以包括第二搜索空间集合的索引,关联的CORESET的索引,监听周期,聚集级别,对应的候选PDCCH个数或监听的DCI格式中的一项或多项。可以理解的是,本申请实施例对第一搜索空间集合的信息以及第二搜索空间集合的信息的具体形式并不限定。
示例性的,网络设备可以为终端设备超额配置一个或多个搜索空间集合。其中,该一个或多个搜索空间集合中的每个搜索空间集合可以包括一个或多个候选PDCCH。该多个搜索空间集合中可以仅包括多个UE特定搜索空间集合,或者包括至少一个公共搜索空间集合和至少一个UE特定搜索空间集合,本申请实施例对网络设备配置的多个搜索空间集 合的具体形式并不限定。例如,网络设备可以为终端设备配置搜索空间集合#0、搜索空间集合#1以及搜索空间集合#2,其中,搜索空间集合#0为公共搜索空间集合,搜索空间集合#1和搜索空间集合#2皆为UE特定搜索空间集合。该多个搜索空间集合的索引可以是连续的,也可以是不连续的。例如,该多个搜索空间集合中包括搜索空间集合#2、搜索空间集合#4以及搜索空间集合#7。
示例性的,该配置信息可以包括网络设备配置的多个搜索空间集合中的每个搜索空间集合的信息。即,网络设备可以使用不同的配置信息分别向终端设备指示用于PDCCH重复传输的两个搜索空间集合的信息、以及不用于PDCCH重复传输的搜索空间集合的信息,也可以使用同一个配置信息指示所有搜索空间集合的信息,本申请实施例对此并不限定。
为了便于理解本申请实施例,在下文中以网络设备为终端设备超额配置多个搜索空间集合,该多个搜索空间集合为多个UE特定搜索空间集合,以及该多个搜索空间集合的索引是连续的为例进行描述。
示例性的,该多个搜索空间集合中可以包括第一搜索空间集合和第二搜索空间集合。第一搜索空间集合的索引小于第二搜索空间集合的索引,并且第一搜索空间集合中的所有候选PDCCH与第二搜索空间集合中的所有候选PDCCH均配置用于PDCCH重复传输。其中,第一搜索空间集合中的所有候选PDCCH与第二搜索空间集合中的所有候选PDCCH均配置用于PDCCH重复传输,可以理解为两个搜索空间集合中的两个候选PDCCH配置用于同一个PDCCH的重复传输,且该两个候选PDCCH分别属于不同的搜索空间集合,而不是属于同一个搜索空间集合。例如,第一搜索空间集合的第一候选PDCCH与第二搜索空间集合的第二候选PDCCH配置用于同一个PDCCH的重复传输,如图6所示。第一搜索空间集合中的所有候选PDCCH均配置用于PDCCH重复传输,可以理解为第一搜索空间集合中的每一个候选PDCCH均可以与另一个搜索空间集合中的某个候选PDCCH一起用于重复传输某一个PDCCH。
示例性的,该配置信息还可以指示第一搜索空间集合的第一候选PDCCH与第二搜索空间集合的第二候选PDCCH配置用于同一个PDCCH的重复传输。
为了便于理解本申请实施例,在没有特殊说明的情况下,下文中的两个候选PDCCH,是指用于重复传输同一个PDCCH的两个候选PDCCH,且该两个候选PDCCH分别属于不同的搜索空间集合或属于不同的搜索空间集合的子集。
值得注意的是,配置用于PDCCH重复传输,是指候选PDCCH可以用于PDCCH重复传输,但具体该候选PDCCH是否用于PDCCH重复传输则需要根据网络设备的调度结果来确定。也就是说,被配置为用于PDCCH重复传输的候选PDCCH可以用于PDCCH重复传输,也可以用于PDCCH非重复传输。
为了便于理解本申请实施例,在没有特殊说明的情况下,可以将下文中的配置用于PDCCH重复传输理解为用于PDCCH重复传输,以及将配置用于同一个PDCCH重复传输理解为用于同一个PDCCH重复传输为例进行描述。
作为一个示例,第一候选PDCCH在第一搜索空间集合中的索引与第二候选PDCCH在第二搜索空间集合中的索引可以相同,即用于同一个PDCCH的重复传输的两个候选PDCCH的索引相同。这样,网络设备在向终端设备指示第一搜索空间集合中的所有候选PDCCH与第二搜索空间集合中的所有候选PDCCH用于PDCCH重复传输时,可以隐式指示相同索引的两个候选PDCCH用于同一个PDCCH的重复传输,可以减少信令开销,如 图6所示。
作为另一个示例,第一候选PDCCH在第一搜索空间集合中的索引与第二候选PDCCH在第二搜索空间集合中的索引可以不同,即用于同一个PDCCH的重复传输的两个候选PDCCH的索引不同。这样,网络设备可以灵活配置用于同一个PDCCH的重复传输的两个候选PDCCH。可以理解的是,网络设备在向终端设备指示第一搜索空间集合中的所有候选PDCCH与第二搜索空间集合中的所有候选PDCCH用于PDCCH重复传输时,还需向终端设备指示用于同一个PDCCH的重复传输的两个候选PDCCH的索引,或可以通过协议预定义一个映射关系来隐式指示用于同一个PDCCH的重复传输的两个候选PDCCH的索引的关联关系。
如图8所示,搜索空间集合#i的候选PDCCH#0与搜索空间集合#j的候选PDCCH#1用于同一个PDCCH的重复传输;搜索空间集合#i的候选PDCCH 1与搜索空间集合#j的候选PDCCH#0用于同一个PDCCH的重复传输;搜索空间集合#i的候选PDCCH#2与搜索空间集合#j的候选PDCCH#3用于同一个PDCCH的重复传输;搜索空间集合#i的候选PDCCH#3与搜索空间集合#j的候选PDCCH#2用于同一个PDCCH的重复传输。
作为另一个示例,两个搜索空间集合中部分用于同一个PDCCH的重复传输的两个候选PDCCH的索引可以相同,剩余部分用于同一个PDCCH的重复传输的两个候选PDCCH的索引可以不同。这样,即减少了用于指示相同索引的两个候选PDCCH的信令开销,也可以灵活配置不同索引的两个候选PDCCH。
如图9所示,搜索空间集合#i的候选PDCCH#0与搜索空间集合#j的候选PDCCH#1用于同一个PDCCH的重复传输;搜索空间集合#i的候选PDCCH#1与搜索空间集合#j的候选PDCCH#0用于同一个PDCCH的重复传输;搜索空间集合#i的候选PDCCH#2与搜索空间集合#j的候选PDCCH#2用于同一个PDCCH的重复传输。
可以理解的是,多个搜索空间集合中所有的搜索空间集合皆用于PDCCH重复传输,或者,多个搜索空间集合中的部分搜索空间集合用于PDCCH重复传输,本申请实施例对此并不限定。
例如,多个搜索空间集合包括搜索空间集合#0、搜索空间集合#1、搜索空间集合#2以及搜索空间集合#3,其中,搜索空间集合#0的所有候选PDCCH与搜索空间集合#3的所有候选PDCCH用于PDCCH重复传输,搜索空间集合#1的所有候选PDCCH与搜索空间集合#2的所有候选PDCCH用于PDCCH重复传输,如图10所示。再例如,多个搜索空间集合包括搜索空间集合#0、搜索空间集合#1、以及搜索空间集合#2,其中,搜索空间集合#0的所有候选PDCCH与搜索空间集合#2的所有候选PDCCH用于PDCCH重复传输,搜索空间集合#2的所有候选PDCCH不用于PDCCH重复传输,如图11所示。
S702:网络设备在确定第一搜索空间集合为终端设备用于监听的搜索空间集合的同时,确定第二搜索空间集合也为用于监听的搜索空间集合。
S703:终端设备在确定第一搜索空间集合为用于监听的搜索空间集合的同时,确定第二搜索空间集合也为用于监听的上述空间集合。
值得注意的是,步骤S702的具体实现过程与步骤S703的具体实现过程实质相同。为了便于理解,下面以终端设备为例对步骤S702和S703进行描述。
网络设备为终端设备配置多个搜索空间集合,该多个搜索空间集合中并不是所有的搜索空间集合都需要终端设备进行监听。终端设备可以根据协议预定义的信息或自身的能力 信息确定该多个搜索空间集合中用于监听的搜索空间集合,即将配置的搜索空间集合映射为用于监听的搜索空间集合。其中,协议预定义的信息中可以包括盲检次数上限和不重叠CCE上限等与监听PDCCH相关的信息;能力信息中可以包括盲检次数上限和不重叠CCE上限等与监听PDCCH相关的信息。例如,终端设备可以通过高层信令将能力信息发送给网络设备,相应地,网络设备接收终端设备的能力信息。在本申请中,高层信令可以是无线资源控制(radio resource control,RRC)信令或媒体接入控制控制单元(medium access control control element,MAC CE)。
示例性的,终端设备可以在确定第一搜索空间集合为用于监听的搜索空间集合的同时,确定第二搜索空间集合也为用于监听的搜索空间集合。例如,第一搜索空间集合的索引小于第二搜索空间集合的索引,终端设备按照搜索空间集合的索引从小到大的顺序确定用于监听的搜索空间集合;在确定第一搜索空间集合为用于监听的搜索空间集合的同时,终端设备可以确定与第一搜索空间集合用于PDCCH重复传输的第二搜索空间集合也为用于监听的搜索空间集合。
作为一个示例,多个搜索空间集合可以包括第三搜索空间集合,该第三搜索空间集合中的候选PDCCH未配置用于PDCCH重复传输,该第三搜索空间集合的索引大于第一搜索空间集合的索引、且小于第二搜索空间集合的索引。在此情况下,终端设备可以在确定第一搜索空间集合为用于监听的搜索空间集合以及确定第二搜索空间集合为用于监听的搜索空间集合之后,确定第三搜索空间集合是否为用于监听的搜索空间集合。也就是说,在用于PDCCH重复传输的两个搜索空间集合的索引不同时,终端设备通过提高该两个搜索空间集合中索引较大的搜索空间集合的映射优先级,使得该两个搜索空间集合的映射优先级相同,这样可以在终端设备的监听能力范围内优先确保配置为用于PDCCH重复传输的两个搜索空间集合优先被映射,从而实现PDCCH重复传输。
其中,第三搜索空间集合中的候选PDCCH未配置用于PDCCH重复传输,是指第三搜索空间集合的候选PDCCH不用于PDCCH重复传输。
例如,第三搜索空间集合中的候选PDCCH不用于PDCCH重复传输。第一搜索空间集合(搜索空间集合#0)、第二搜索空间集合(搜索空间集合#2)以及第三搜索空间集合(搜索空间集合#1)的映射优先级大小关系可以为:第一搜索空间集合的映射优先级等于第二搜索空间集合的映射优先级,且第二搜索空间集合的映射优先级大于第三搜索空间集合的映射优先级。即终端设备在同时确定第一搜索空间集合为用于监听的搜索空间集合和确定第二搜索空间集合为用于监听的搜索空间集合之后,确定第三搜索空间集合为不用于终端设备监听的搜索空间集合,如图11所示。
再例如,多个搜索空间集合可以包括第四搜索空间集合(搜索空间集合#2),第四搜索空间集合的索引大于第一搜索空间集合(搜索空间集合#0)的索引。第三搜索空间集合(搜索空间集合#1)中的候选PDCCH与第四搜索空间集合中的候选PDCCH用于PDCCH重复传输。第一搜索空间集合、第二搜索空间集合(搜索空间集合#3)、第三搜索空间集合以及第四搜索空间集合的映射优先级可以为:第一搜索空间集合的映射优先级大于第三搜索空间集合的优先级,且第一搜索空间集合的优先级等于第二搜索空间集合的优先级,第三搜索空间集合的映射优先级等于第四搜索空间集合的映射优先级。即终端设备在同时确定第一搜索空间集合为用于监听的搜索空间集合和确定第二搜索空间集合为用于监听的搜索空间集合之后,同时确定第三搜索空间集合为用于监听的搜索空间集合以及第四搜 索空间集合为用于监听的搜索空间集合,如10所示。
下面结合图12对步骤S703进行介绍。
图12示出了本申请实施例提供的一种搜索空间集合映射方法的流程示意图。如图12所示,该方法可以包括如下内容。
S1201:终端设备确定多个搜索空间集合,该多个搜索空间集合包括搜索空间集合#0~搜索空间集合#j。
步骤S1201的具体实现过程与步骤S401的具体实现过程一致,在此不再赘述。
S1202:终端设备确定剩余盲检次数上限和剩余不重叠CCE的最大个数。
示例性的,若多个搜索空间集合中包括至少一个公共搜索空间集合和至少一个UE特点搜索空间集合,则步骤S1202的具体实现过程可以参考步骤S403的具体实现过程,在此不再赘述;若多个搜索空间集合中仅包括多个UE特定搜索空间集合,则终端设备可以将剩余盲检次数上限初始化为盲检次数上限,将剩余不重叠CCE的最大个数初始化为不重叠CCE上限。
S1203:终端设备确定与搜索空间集合#i一起用于PDCCH重复传输的搜索空间集合#k。其中,k为大于i、且小于j的正整数。
示例性的,终端设备可以根据搜索空间集合#i的配置信息和搜索空间集合#k的配置信息中分别包含的高层参数(例如RRC参数)指示信息,确定搜索空间集合#k。其中,搜索空间集合#k中的所有候选PDCCH与搜索空间集合#i中的所有候选PDCCH用于PDCCH重复传输。例如,终端设备可以确定搜索空间集合#i是否为用于PDCCH重复传输的搜索空间集合。若终端设备确定搜索空间集合#i不是用于PDCCH重复传输的搜索空间集合,则终端设备可以执行图4示出的步骤S404至步骤S408所示的内容,图12中未示出;反之,则终端设备可以确定搜索空间集合#k,并执行步骤S1204至步骤S1208所示的内容。
S1204:终端设备确定搜索空间集合#i和搜索空间集合#k的盲检次数和不重叠CCE的个数。
作为一个示例,搜索空间集合#k中的所有候选PDCCH与搜索空间集合#i中的所有候选PDCCH用于PDCCH重复传输,终端设备确定搜索空间集合#i和搜索空间集合#k的盲检次数和不重叠CCE的个数,相当于终端设备确定搜索空间集合#i的盲检次数和不重叠CCE的个数,或者确定搜索空间集合#k的盲检次数和不重叠CCE的个数。其中,步骤S1204的具体实现过程可参考步骤S404的具体实现过程,在此不再赘述。
可以理解的是,本申请实施例对确定搜索空间集合#i和搜索空间集合#k的盲检次数的计数规则,以及确定搜索空间集合#i和搜索空间集合#k的不重叠CCE的个数的计数规则并不限定。类似的,本申请实施例对确定搜索空间集合#i和搜索空间集合#k的盲检次数,以及确定搜索空间集合#i和搜索空间集合#k的不重叠CCE的个数的先后次序也不限定。例如,终端设备可以同时确定搜索空间集合#i和搜索空间集合#k的盲检次数和不重叠CCE的个数;也可以先确定搜索空间集合#i和搜索空间集合#k的盲检次数,再确定搜索空间集合#i和搜索空间集合#k不重叠CCE的个数;还可以先确定搜索空间集合#i和搜索空间集合#k不重叠CCE的个数,再确定搜索空间集合#i和搜索空间集合#k的盲检次数。
S1205:终端设备确定搜索空间集#合i和搜索空间集合#k的盲检次数小于或等于剩余盲检次数上限,且搜索空间集合#i和搜索空间集合#k的不重叠CCE的个数小于或等于剩余不重叠CCE的最大个数。若搜索空间集合#i和搜索空间集合#k的盲检次数小于或等于 剩余盲检次数上限,且搜索空间集合#i和搜索空间集合#k的不重叠CCE的个数小于或等于剩余不重叠CCE的最大个数,则终端设备可以执行步骤S1206和步骤S1207所示的内容;反之,则终端设备可以执行步骤S1208所示的内容。
其中,步骤S1205的具体实现过程可参考步骤S405的具体实现过程,在此不再赘述。
S1206:终端设备在确定搜索空间集合#i为用于监听的搜索空间集合的同时,确定搜索空间集合#j也为用于监听的搜索空间集合。
即,终端设备可以同时将搜索空间集合#i和搜索空间集合#k映射为用于监听的搜索空间集合。
S1207:终端设备更新剩余盲检次数上限、剩余不重叠CCE的最大个数,以及将i更新为i加1。
其中,步骤S1207的具体实现过程可参考步骤S407的具体实现过程。
步骤S1207之后,终端设备执行步骤S1203所示的内容。
S1208:终端设备确定搜索空间集合#i,以及多个搜索空间集合中索引比i大、且未映射的搜索空间集合皆不是终端设备用于监听的搜索空间集合。
例如,i为1,多个搜索空间集合可以包括搜索空间集合#0、搜索空间集合#1、搜索空间集合#2、搜索空间集合#3以及搜索空间集合#4。其中,搜索空间集合#0与搜索空间集合#4一起用于PDCCH重复传输,搜索空间集合#1与搜索空间集合#2一起用于PDCCH重复传输。搜索空间集合#3的候选PDCCH不用于PDCCH重复传输,或者与搜索空间集合#3一起用于PDCCH重复传输的搜索空间集合的索引大于1,意味着,在对搜索空间集合#1进行映射时,终端设备还未对搜索空间集合#3进行映射。由于在确定搜索空间集合#1是否为用于监听的搜索空间集合之前,终端设备已经同时确定了搜索空间集合#0和搜索空间集合#4为用于监听的搜索空间集合,所以,在搜索空间集合#1和搜索空间集合#2的盲检次数大于剩余盲检次数上限,和/或,搜索空间集合#1和搜索空间集合#2的不重叠CCE的个数大于剩余不重叠CCE的最大个数的情况下,终端设备可以确定搜索空间集合#1、搜索空间集合#2以及搜索空间集合#3皆不是终端设备用于监听的搜索空间集合。
至此,终端设备确定出多个搜索空间集合中终端设备用于监听的搜索空间集合,流程结束。
以图10为例,搜索空间集合#0的所有候选PDCCH与搜索空间集合#3的所有候选PDCCH用于PDCCH重复传输,搜索空间集合#1的所有候选PDCCH与搜索空间集合#2的所有候选PDCCH用于PDCCH重复传输,这四个搜索空间集合的映射优先级的大小关系为:搜索空间集合#0的映射优先级大于搜索空间集合#1的映射优先级,且搜索空间集合#0的映射优先级等于搜索空间集合#3的映射优先级,搜索空间集合#1的映射优先级等于搜索空间集合#2的映射优先级。即,终端设备先同时确定搜索空间集合#0和搜索空间集合#3为用于监听的搜索空间集合,再同时确定搜索空间集合#1和搜索空间集合#2是否为用于监听的搜索空间集合。
以图11为例,搜索空间集合#0的所有候选PDCCH与搜索空间集合#2的所有候选PDCCH用于PDCCH重复传输,搜索空间集合#1的所有候选PDCCH不用于PDCCH重复传输,这三个搜索空间集合的映射优先级的大小关系为:搜索空间集合#0的映射优先级大于搜索空间集合#1的映射优先级,且搜索空间集合#0的映射优先级等于搜索空间集合#2搜索空间集合#0的映射优先级。即,终端设备先同时确定搜索空间集合#0和搜索空间集 合#2为用于监听的搜索空间集合,再确定搜索空间集合#1是否为用于监听的搜索空间集合。
在上述实施例一中,终端设备在确定第一搜索空间集合为用于监听的搜索空间集合的同时,确定与第一搜索空间集合一起用于PDCCH重复传输的、且索引大于第一搜索空间集合的第二搜索空间集合也为用于监听的搜索空间集合。这样可以避免终端设备根据索引从小到大的顺序还未映射到第二搜索空间,盲检次数就大于剩余盲检次数上限(和/或不重叠CCE的个数就大于剩余不重叠CCE的最大个数),使得终端设备确定第二搜索空间集合不是用于监听的搜索空间集合,即不会监听(或不会盲检)第二搜索空间集合,导致无法实现PDCCH重复传输的问题。
实施例二:
图13为本申请实施例提供的一种通信方法的流程示意图。
S1301:网络设备向终端设备发送配置信息。相应地,终端设备接收配置信息。
示例性的,配置信息可以包括第一搜索空间集合的信息和第二搜索空间集合的信息。其中,第一搜索空间集合中可以包括第一候选PDCCH,第二搜索空间集合中可以包括第二候选PDCCH,该第一候选PDCCH与第二候选PDCCH可配置用于同一个PDCCH的重复传输。
步骤S1301的具体实现过程可参考上述步骤S701的具体实现过程,在此不再赘述。
S1302:网络设备在确定第一候选PDCCH为终端设备用于监听的候选PDCCH的同时,确定第二候选PDCCH也为终端设备用于监听的候选PDCCH。
S1303:终端设备在确定第一候选PDCCH为用于监听的候选PDCCH的同时,确定第二候选PDCCH也为用于监听的候选PDCCH。
值得注意的是,步骤S1302的具体实现过程与步骤S1303的具体实现过程实质相同。为了便于理解,下面以终端设备为例对步骤S71302和S1303进行描述。
网络设备可以为终端设备超额配置多个搜索空间集合,每个搜索空间集合中并不是所有的候选PDCCH都需要终端设备进行监听。终端设备可以根据协议预定义的信息或自身的能力信息确定于监听的候选PDCCH,即将配置的候选PDCCH映射为终端设备用于监听的候选PDCCH。
示例性的,终端设备可以根据多个搜索空间集合的索引从小到大的顺序、以及每个搜索空间集合中多个候选PDCCH的索引从小到大的顺序,确定搜索空间集合中的候选PDCCH是否为用于监听的候选PDCCH。
举例而言,多个搜索空间集合可以包括搜索空间集合#0~搜索空间集合#h,h为大于0的正整数。终端设备可以根据多个搜索空间集合的索引从小到大的顺序,先对搜索空间集合#0的候选PDCCH进行候选PDCCH映射。例如,搜索空间集合#0中包括候选PDCCH#0~候选PDCCH#i,i为大于0的正整数,终端设备可以按照候选PDCCH的索引从小到大的顺序,逐一确定搜索空间集合#0中的每个候选PDCCH是否为用于监听的候选PDCCH,如先对候选PDCCH#0进行映射,再对候选PDCCH#1进行映射,直至完成对候选PDCCH#i的映射为止。
若搜索空间集合#0的盲检次数小于剩余盲检次数上限,且搜索空间集合#0的不重叠CCE的个数小于剩余不重叠CCE的最大个数,则在对搜索空间集合#0的候选PDCCH进 行映射之后,终端设备可以对搜索空间集合#1进行映射。对搜索空间集合#1的映射过程与对搜索空间集#0的映射过程相同,在此不再赘述。以此类推,直至某一个搜索空间集合的盲检次数超过剩余盲检次数上限和/或不重叠CCE的个数超过剩余不重叠CCE的最大个数时,终端设备停止映射,具体可以参考图4或图12所示的内容。
示例性的,终端设备在确定第一候选PDCCH为用于监听的候选PDCCH的同时,可以确定第二候选PDCCH也为用于监听的候选PDCCH。例如,第一搜索空间集合的索引小于第二搜索空间集合,终端设备按照搜索空间集合的索引从小到大的顺序,会先确定第一搜索空间中的候选PDCCH是否为用于监听的候选PDCCH。进一步,终端设备可以按照第一搜索空间集合中的候选PDCCH的索引从小到大的顺序,确定第一搜索空间集合的每个候选PDCCH是否为用于监听的候选PDCCH。其中,对于第一搜索空间集合中用于PDCCH重复传输的候选PDCCH,终端设备可以在确定该候选PDCCH为用于监听的候选PDCCH的同时,确定与该候选PDCCH用于同一个PDCCH的重复传输、且属于索引大于第一搜索空间集合的搜索空间集合(即未被映射的搜索空间集合)的候选PDCCH也为用于监听的候选PDCCH。
作为一个示例,第一搜索空间集合还可以包括第三候选PDCCH,该第三候选PDCCH未配置用于PDCCH重复传输。该第三候选PDCCH的索引可以大于第一候选PDCCH的索引。终端设备可以在确定第一候选PDCCH为用于监听的候选PDCCH和确定第二候选PDCCH为用于监听的候选PDCCH的之后,确定第三候选PDCCH是否为用于监听的候选PDCCH。例如,终端设备可以按照候选PDCCH的索引从小到大的顺序对第一搜索空间集合中的每个候选PDCCH进行映射。
其中,第三候选PDCCH未配置用于PDCCH重复传输,是指第三候选PDCCH不用于PDCCH重复传输。
作为另一个示例,第一搜索空间集合还可以包括第三候选PDCCH,该第三候选PDCCH不用于PDCCH重复传输。该第三候选PDCCH的索引可以小于第一候选PDCCH的索引。终端设备可以在确定第一候选PDCCH为用于监听的候选PDCCH和确定第二候选PDCCH为用于监听的候选PDCCH之后,确定第三候选PDCCH是否为用于监听的候选PDCCH。例如,终端设备可以优先对一个搜索空间集合中用于PDCCH重复传输的至少一个候选PDCCH进行映射,这样,可以优先确保实现PDCCH重复传输。
作为另一个示例,第一搜索空间集合还可以包括第三候选PDCCH,该第三候选PDCCH不用于PDCCH重复传输。第三候选PDCCH的索引可以小于第一候选PDCCH的索引。终端设备可以在确定第三候选PDCCH不是终端设备用于监听的候选PDCCH之后,同时确定第一候选PDCCH和第二候选PDCCH为用于监听的候选PDCCH。例如,终端设备可以优先对一个搜索空间集合中不用于PDCCH重复传输的至少一个候选PDCCH进行映射。
即,对于一个搜索空间集合而言,本申请实施例中提供了如下三种方式进行候选PDCCH映射。
方式一,终端设备可以根据候选PDCCH的索引从小到大的顺序进行候选PDCCH映射,其中,对于用于PDCCH重复传输的候选PDCCH,终端设备在对该候选PDCCH进行映射的同时,对与该候选PDCCH用于同一个PDCCH的重复传输的候选PDCCH进行映射。
方式二,终端设备可以先对搜索空间集合中用于PDCCH重复传输的至少一个候选 PDCCH进行映射,再对搜索空间集合中不用于PDCCH重复传输的至少一个候选PDCCH进行映射。其中,对于用于PDCCH重复传输的候选PDCCH,终端设备在对该候选PDCCH进行映射的同时,对与该候选PDCCH用于同一个PDCCH的重复传输的候选PDCCH进行映射。对至少一个候选PDCCH进行映射时,终端设备可以根据该至少一个候选PDCCH的索引从小到大的顺序进行映射,即采用方式一进行映射。
方式三,终端设备可以先对搜索空间集合中不用于PDCCH重复传输的至少一个候选PDCCCH进行映射,再对搜索空间集合中用于PDCCH重复传输的至少一个候选PDCCH进行映射。其中,对于用于PDCCH重复传输的候选PDCCH,终端设备在对该候选PDCCH进行映射的同时,对与该候选PDCCH用于同一个PDCCH的重复传输的候选PDCCH进行映射。对至少一个候选PDCCH进行映射时,终端设备可以根据该至少一个候选PDCCH的索引从小到大的顺序进行映射,即采用方式一进行映射。
举例而言,如图14所示,多个搜索空间集合中包括搜索空间集合#0、搜索空间集合#1以及搜索空间集合#2,搜索空间集合#0中包括候选PDCCH#0、候选PDCCH#1以及候选PDCCH#2。为了便于表述,将搜索空间集合#0中的候选PDCCH#0、候选PDCCH#1以及候选PDCCH#2分别记为候选PDCCH 0_0、候选PDCCH 0_1以及候选PDCCH 0_2。类似的,搜索空间集合#1中包括候选PDCCH 1_0和候选PDCCH 1_1,搜索空间集合#2中包括候选PDCCH 2_0,候选PDCCH 2_1以及候选PDCCH 2_2。其中,候选PDCCH 0_0与候选PDCCH 2_0用于同一个PDCCH的重复传输,候选PDCCH 0_2与候选PDCCH 2_2用于同一个PDCCH的重复传输,候选PDCCH 0_1、候选PDCCH 1_0、候选PDCCH 1_1以及候选PDCCH 2_1皆不用于PDCCH重复传输。
终端设备可以按照搜索空间集合#0、搜索空间集合#1、搜索空间集合#2的顺序,确定每个候选PDCCH是否为用于监听的候选PDCCH。即终端设备先对搜索空间集合#0的每个候选PDCCH进行映射,对搜索空间集合#1的每个候选PDCCH进行映射。在完成对搜索空间集合#1的每个候选PDCCH的映射后,终端设备对搜索空间集合#2的每个候选PDCCH进行映射。应理解的是,终端设备在对搜索空间集合#0进行候选PDCCH映射后,是否还要对搜索空间集合#1、搜索空间集合#2进行PDCCH映射是由终端设备的监听能力决定的,具体可参考图4或图12的描述。此处作为一个示例,仅用于理解本申请实施例而并不对本申请实施例构成限定。
对于搜索空间集合#0,终端设备可以按照上述三种方式中任一种确定搜索空间集合中的每个候选PDCCH是否为用于监听的候选PDCCH(即对每个候选PDCCH进行映射)。
若采用方式一:搜索空间集合#0的三个候选PDCCH的映射优先级的大小关系为:候选PDCCH 0_0的映射优先级大于候选PDCCH 0_1的映射优先级,候选PDCCH 0_1的映射优先级大于候选PDCCH 0_2的映射优先级,且候选PDCCH 0_0的映射优先级等于候选PDCCH 2_0的映射优先级,候选PDCCH 0_2的映射优先级等于候选PDCCH 2_2的映射优先级。即终端设备可以先同时对候选PDCCH 0_0和候选PDCCH 2_0进行映射,再对候选PDCCH 0_1进行映射。在完成对候选PDCCH 0_1的映射后,终端设备可以同时对候选PDCCH 0_2和候选PDCCH 2_2进行映射。
进一步,搜索空间集合#0,搜索空间集合#1和搜索空间集合#2的8个候选PDCCH的映射优先级的大小关系为:候选PDCCH 0_0的映射优先级大于候选PDCCH 0_1的映射优先级,候选PDCCH 0_1的映射优先级大于候选PDCCH 0_2的映射优先级,候选PDCCH 0_2 的映射优先级大于候选PDCCH 1_0的映射优先级,候选PDCCH 1_0的映射优先级大于候选PDCCH 1_1的映射优先级,候选PDCCH 1_1的映射优先级大于候选PDCCH 2_1的映射优先级,且候选PDCCH 0_0的映射优先级等于候选PDCCH 2_0的映射优先级,候选PDCCH 0_2的映射优先级等于候选PDCCH 2_2的映射优先级。
若采用方式二,搜索空间集合#0的三个候选PDCCH的映射优先级的大小关系为:候选PDCCH 0_0的映射优先级大于候选PDCCH 0_2的映射优先级,候选PDCCH 0_2的映射优先级大于候选PDCCH 0_1的映射优先级,且候选PDCCH 0_0的映射优先级等于候选PDCCH 2_0的映射优先级,候选PDCCH 0_2的映射优先级等于候选PDCCH 2_2的映射优先级。即终端设备可以先同时对候选PDCCH 0_0和候选PDCCH 2_0进行映射,再同时对候选PDCCH 0_2和候选PDCCH 2_2进行映射。在完成对候选PDCCH 0_2和候选PDCCH 2_2的映射后,终端设备可以对候选PDCCH 0_1进行映射。
进一步,搜索空间集合#0,搜索空间集合#1和搜索空间集合#2的8个候选PDCCH的映射优先级的大小关系为:候选PDCCH 0_0的映射优先级大于候选PDCCH 0_2的映射优先级,候选PDCCH 0_2的映射优先级大于候选PDCCH 0_1的映射优先级,候选PDCCH 0_1的映射优先级大于候选PDCCH 1_0的映射优先级,候选PDCCH 1_0的映射优先级大于候选PDCCH 1_1的映射优先级,候选PDCCH 1_1的映射优先级大于候选PDCCH 2_1的映射优先级,且候选PDCCH 0_0的映射优先级等于候选PDCCH 2_0的映射优先级,候选PDCCH 0_2的映射优先级等于候选PDCCH 2_2的映射优先级。
若采用方式三,搜索空间集合#0的三个候选PDCCH的映射优先级的大小关系为:候选PDCCH 0_1的映射优先级大于候选PDCCH 0_0的映射优先级,候选PDCCH 0_0的映射优先级大于候选PDCCH 0_2的映射优先级,且候选PDCCH 0_0的映射优先级等于候选PDCCH 2_0的映射优先级,候选PDCCH 0_2的映射优先级等于候选PDCCH 2_2的映射优先级。即终端设备先对候选PDCCH 0_1进行映射,再同时对候选PDCCH 0_0和候选PDCCH 2_0进行映射。在完成对候选PDCCH 0_0和候选PDCCH 2_0的映射后,终端设备可以同时对候选PDCCH 0_2和候选PDCCH 2_2进行映射。
进一步,搜索空间集合#0,搜索空间集合#1和搜索空间集合#2的8个候选PDCCH的映射优先级的大小关系为:候选PDCCH 0_1的映射优先级大于候选PDCCH 0_0的映射优先级,候选PDCCH 0_0的映射优先级大于候选PDCCH 0_2的映射优先级,候选PDCCH 0_2的映射优先级大于候选PDCCH 1_0的映射优先级,候选PDCCH 1_0的映射优先级大于候选PDCCH 1_1的映射优先级,候选PDCCH 1_1的映射优先级大于候选PDCCH 2_1的映射优先级,且候选PDCCH 0_0的映射优先级等于候选PDCCH 2_0的映射优先级,候选PDCCH 0_2的映射优先级等于候选PDCCH 2_2的映射优先级。
终端设备在完成对搜索空间集合#0的映射后,可以对搜索空间集合#1的每个候选PDCCH进行映射,直至盲检次数超过剩余盲检次数上限和/或不重叠CCE的个数超过剩余不重叠CCE的最大个数为止,具体可参考图4或图12所示的内容,在此不再赘述。
可以理解的时,若一个搜索空间集合中用于PDCCH重复传输的候选PDCCH的映射优先级,与不用于PDCCH重复传输的候选PDCCH的映射优先级相同,则终端设备可以以搜索空间集合为粒度进行映射,具体可参考图7所描述的内容。
在上述实施例二中,终端设备在确定第一候选PDCCH为用于监听的候选PDCCH的 同时,确定与第一候选PDCCH用于同一个PDCCH的重复传输的、且属于索引大于第一搜索空间集合的第二搜索空间集合的第二候选PDCCH也为用于监听的候选PDCCH。这样可以避免终端设备根据索引从小到大的顺序还未映射到第二搜索空间集合,盲检次数就大于剩余盲检次数上限和/或不重叠CCE的个数就大于剩余不重叠CCE的最大个数),使得终端设备确定第二搜索空间集合不是用于监听的搜索空间集合,即不会监听(或不会盲检)第二搜索空间集合,也就不会监听(或不会盲检)第二候选PDCCH,从而无法实现PDCCH重复传输的问题。
实施例三:
图15为本申请实施例提供的一种通信方法的流程示意图。
S1501:网络设备向终端设备发送配置信息。相应地,终端设备接收配置信息。
示例性的,该配置信息可以包括第一搜索空间集合的信息和第二搜索空间的信息。第一搜索空间集合中可以包括第一子集,第二搜索空间集合中可以包括第二子集,该第一子集中的所有候选PDCCH与第二子集中的所有候选PDCCH均配置用于PDCCH重复传输,如第一子集的第一候选PDCCH与第二子集的第二候选PDCCH配置用于同一个PDCCH的重复传输。可选的,第一候选PDCCH在第一子集中的索引与第二候选PDCCH在第二子集中的索引可以相同。
示例性的,网络设备为终端设备超额配置多个搜索空间集合。其中,该多个搜索空间集合中的每个搜索空间集合可以包括至少一个子集。例如,每个搜索空间集合中可以包括用于PDCCH重复传输的子集,或者包括不用于PDCCH重复传输的子集,或者包括用于PDCCH重复传输的子集和不用于PDCCH重复传输的子集,本申请实施例对此并不限定。再例如,每个搜索空间集合中可以包括用于PDCCH重复传输的至少一个子集,或者包括不用于PDCCH重复传输的子集,或者包括用于PDCCH重复传输的至少一个子集和不用于PDCCH重复传输的子集。其中,用于PDCCH重复传输的至少一个子集的个数为多个时,多个子集中的每个子集可以与不同搜索空间集合的子集一起用于PDCCH重复传输。
如图16所示,多个搜索空间集合包括搜索空间集合#0、搜索空间集合#1和搜索空间集合#2。搜索空间集合#0中包括子集#0和子集#1。为了便于描述,将搜索空间集合#0中的子集#0、子集#1分别记为子集0_0、子集0_1。类似的,搜索空间集合#1中包括子集1_0,搜索空间集合#2中包括子集2_0。其中,子集0_0的候选PDCCH#0与子集2_0的候选PDCCH#0配置用于同一个PDCCH的重复传输,子集0_0的候选PDCCH#1与子集2_0的候选PDCCH#1配置用于同一个PDCCH的重复传输,子集0_1以及子集1_0中的所有候选PDCCH皆不用于PDCCH重复传输。
如图17所示,多个搜索空间集合包括搜索空间集合#0、搜索空间集合#1、搜索空间集合#2以及搜索空间集合#3。搜索空间集合#0中包括子集#0、子集#1以及子集#2。为了便于描述,将搜索空间集合#0中的子集#0、子集#1、子集#2分别记为子集0_0、子集0_1、子集0_2。类似的,搜索空间集合#1中包括子集1_0,搜索空间集合#2中包括子集2_0,搜索空间集合#3包括子集3_0。其中,子集0_0的候选PDCCH#0与子集2_0的候选PDCCH#0配置用于同一个PDCCH的重复传输,子集0_0的候选PDCCH#1与子集2_0的候选PDCCH#1配置用于同一个PDCCH的重复传输。子集0_2的候选PDCCH#0与子集3_0的候选PDCCH#0配置用于同一个PDCCH的重复传输。子集0_1以及子集1_0中的所 有候选PDCCH皆不用于PDCCH重复传输。
可以理解是,不同搜索空间集合中具有相同特性(如用于PDCCH重复传输或不用于PDCCH重复传输)的两个子集,在各自搜索空间集合中的索引可以相同也可以不同;同一个搜索空间集合中属于不同子集的候选PDCCH的索引可以相同也可以不同;本申请实施例对此并不限定。
具体的,步骤S1501的具体实现过程可参考上述步骤S701或上述步骤S1301的具体实现过程,在此不再赘述。
S1502:网络设备在确定第一子集为终端设备用于监听的搜索空间的子集的同时,确定第二子集也为终端设备用于监听的搜索空间的子集。
S1503:终端设备在确定第一子集为用于监听的搜索空间的子集的同时,确定第二子集也为用于监听的搜索空间的子集。
值得注意的是,步骤S1502的具体实现过程与步骤S1503的具体实现过程实质相同。为了便于理解,下面以终端设备为例对步骤S1502和S1503进行描述。
网络设备可以为终端设备配置多个搜索空间集合,每个搜索空间集合中并不是所有的子集都需要终端设备进行监听。终端设备可以根据协议预定义的信息或自身的能力信息确定用于监听的搜索空间集合的子集,即将配置的搜索空间集合的子集映射为用于监听的搜索空间集合的子集。
示例性的,终端设备可以根据多个搜索空间集合的索引从小到大的顺序、以及每个搜索空间集合中至少一个子集的索引从小到大的顺序,确定搜索空间集合中的每个子集是否为用于监听的搜索空间集合的子集。例如,多个搜索空间集合包括搜索空间集合#0~搜索空间集合#h,h为大于0的正整数,终端设备可以先对搜索空间集合#0中进行搜索空间集合的子集映射,具体的,搜索空间集合#0中包括搜索空间集合的子集#0~子集#i,i为大于0的正整数。终端设备可以按照搜索空间集合的子集的索引从小到大的顺序,确定搜索空间集合#0中的每个子集是否为用于监听的搜索空间集合的子集,如先对子集#0进行映射,再对子集#1进行映射。
示例性的,终端设备在确定第一子集为用于监听的搜索空间集合的子集的同时,确定第二子集也为用于监听的搜索空间集合的子集。例如,第一搜索空间集合的索引小于第二搜索空间集合,终端设备按照搜索空间集合的索引从小到大的顺序,会先确定第一搜索空间的子集是否为用于监听的搜索空间集合的子集。进一步,终端设备可以按照第一搜索空间集合中的子集的索引从小到大的顺序,确定第一搜索空间集合的每个子集是否为用于监听的搜索空间集合的子集。其中,对于用于PDCCH重复传输的子集,终端设备可以在确定该子集为用于监听的搜索空间集合的子集的同时,确定与该子集一起用于PDCCH重复传输、且属于索引较大的搜索空间集合的子集也为用于监听的搜索空间集合的子集。
作为一个示例,第一搜索空间集合还可以包括第三子集,该第三子集的候选PDCCH未配置用于PDCCH重复传输。该第三子集的索引可以大于第一子集的索引。终端设备可以在确定第一子集为用于终端设备监听的搜索空间集合的子集和确定第二子集为用于监听的搜索空间集合的子集的之后,确定第三子集是否为用于监听的搜索空间集合的子集。例如,终端设备可以按照第一搜索空间集合中至少一个子集的索引从小到大的顺序对第一搜索空间集合中的每个子集进行映射。
其中,第三子集未配置用于PDCCH重复传输,是指该第三子集的候选PDCCH不用 于PDCCH重复传输。
作为另一个示例,第一搜索空间集合还可以包括第三子集,该第三子集的候选PDCCH不用于PDCCH重复传输。该第三子集的索引可以小于第一子集的索引。终端设备可以在确定第一子集为用于监听的搜索空间集合的子集和确定第二子集为用于监听的搜索空间集合的子集之后,确定第三子集是否为用于监听的候选PDCCH。例如,终端设备可以优先对一个搜索空间集合中用于PDCCH重复传输的至少一个子集进行映射,这样,可以优先确保实现PDCCH重复传输。
作为另一个示例,第一搜索空间集合还可以包括第三子集,该第三子集的候选PDCCH不用于PDCCH重复传输。第三子集的索引可以小于第一子集的索引。终端设备可以在确定第三子集不是终端设备用于监听的搜索空间集合的子集之后,同时确定第一子集和第二子集为用于监听的搜索空间集合的子集。例如,终端设备可以优先对一个搜索空间集合中不用于PDCCH重复传输的至少一个子集进行映射。
即,步骤S1303中的三种方式同样可以适应于搜索空间集合的子集映射,具体可参考步骤S1303所示的内容,在此不再赘述。
以图17为例,若采用方式一,搜索空间集合#0的三个子集的映射优先级的大小关系为:子集0_0的映射优先级大于子集0_1的映射优先级,子集0_1的映射优先级大于子集0_2的映射优先级,且子集0_0的映射优先级等于子集2_0的映射优先级,子集0_2的映射优先级等于子集3_0的映射优先级。即终端设备可以先同时对子集0_0和子集2_0进行映射,再对子集0_1进行映射。在完成对子集0_1的映射后,终端设备可以同时对子集0_2和子集3_0进行映射。
进一步,搜索空间集合#0,搜索空间集合#1,搜索空间集合#2和搜索空间集合#3的6个子集的映射优先级的大小关系为:子集0_0的映射优先级大于子集0_1的映射优先级,子集0_1的映射优先级大于子集0_2的映射优先级,子集0_2的映射优先级大于子集1_0的映射优先级,且子集0_0的映射优先级等于子集2_0的映射优先级,子集0_2的映射优先级等于子集3_0的映射优先级。
若采用方式二,搜索空间集合#0的三个子集的映射优先级的大小关系为:子集0_0的映射优先级大于子集0_2的映射优先级,子集0_2的映射优先级大于子集0_1的映射优先级,且子集0_0的映射优先级等于子集2_0的映射优先级,子集0_2的映射优先级等于子集3_0的映射优先级。即终端设备可以先同时对子集0_0和子集2_0进行映射,再对同时对子集0_2和子集3_0进行映射。在完成对子集0_2和子集3_0的映射后,终端设备可以对子集0_1进行映射。
进一步,搜索空间集合#0,搜索空间集合#1,搜索空间集合#2和搜索空间集合#3的6个子集的映射优先级的大小关系为:子集0_0的映射优先级大于子集0_2的映射优先级,子集0_2的映射优先级大于子集0_1的映射优先级,子集0_1的映射优先级大于子集1_0的映射优先级,且子集0_0的映射优先级等于子集2_0的映射优先级,子集0_2的映射优先级等于子集3_0的映射优先级。
若采用方式三,搜索空间集合#0的三个子集的映射优先级的大小关系为:子集0_1的映射优先级大于子集0_0的映射优先级,子集0_0的映射优先级大于子集0_2的映射优先级,且子集0_0的映射优先级等于子集2_0的映射优先级,子集0_2的映射优先级等于子 集3_0的映射优先级。即终端设备可以先子集0_1进行映射,再同时对子集0_0和子集2_0进行映射。在完成对子集0_0和子集2_0的映射后,终端设备可以同时对子集0_2和子集3_0进行映射。
进一步,搜索空间集合#0,搜索空间集合#1,搜索空间集合#2和搜索空间集合#3的6个子集的映射优先级的大小关系为:子集0_1的映射优先级大于子集0_0的映射优先级,子集0_0的映射优先级大于子集0_2的映射优先级,子集0_2的映射优先级大于子集1_0的映射优先级,且子集0_0的映射优先级等于子集2_0的映射优先级,子集0_2的映射优先级等于子集3_0的映射优先级。
应理解的是,终端设备在对搜索空间集合#0进行子集映射后,是否还要对搜索空间集合#1、搜索空间集合#2、搜索空间集合#3进行子集映射是由终端设备的监听能力决定的,具体可参考图4或图12的描述。此处作为一个示例,仅用于理解本申请实施例而并不对本申请实施例构成限定。
在上述实施例三中,终端设备在确定第一子集为用于监听的候选PDCCH的同时,确定与第一子集一起用于PDCCH重复传输的、且属于索引大于第一搜索空间集合的第二搜索空间集合的第二子集也为用于监听的搜索空间集合的子集。这样可以避免终端设备根据索引从小到大的顺序还未映射到第二搜索空间集合盲检次数就大于剩余盲检次数上限(和/或不重叠CCE的个数就大于剩余不重叠CCE的最大个数),使得终端设备确定第二搜索空间集合不是用于监听的搜索空间集合,即不会监听(或不会盲检)第二搜索空间集合,也就不会监听(或不会盲检)第二子集,从而无法实现PDCCH重复传输的问题。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图18和图18为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备120a至终端设备120j中的任一个,也可以是如图1所示的无线接入网设备110a或110b,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图18所示,通信装置1800包括处理模块1810和收发模块1820。通信装置1800用于实现上述图7、图13或图15中所示的方法实施例中终端设备或网络设备的功能。
当通信装置1800用于实现图7、图13或图15所示的方法实施例中终端设备的功能时:收发模块1820可以用于接收来自网络设备的配置信息,该配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息;
若第一搜索空间集合的所有候选PDCCH与第二搜索空间集合的所有候选PDCCH配置用于PDCCH重复传输,则处理模块1810可以用于在确定第一搜索空间集合为用于监听的搜索空间集合的同时,确定第二搜索空间集合也为用于监听的搜索空间集合;
若第一搜索空间集合的第一候选PDCCH与第二搜索空间集合的第二候选PDCCH配置用于同一个PDCCH的重复传输,则处理模块1810可以用于在确定第一候选PDCCH为 用于监听的候选PDCCH的同时,确定第二候选PDCCH也为用于监听的候选PDCCH;
若第一搜索空间集合的第一子集的候选PDCCH与第二搜索空间集合的第二子集的候选PDCCH用于PDCCH重复传输,则处理模块1810可以用于在确定第一子集为用于监听的搜索空间集合的子集的同时,确定第二子集也为用于监听的搜索空间集合的子集。
当通信装置1800用于实现图7、图13或图15所示的方法实施例中网络设备的功能时:收发模块1820可以用于向终端设备发送配置信息,该配置信息包括第一搜索空间集合和第二搜索空间集合;
若第一搜索空间集合的所有候选PDCCH与第二搜索空间集合的所有候选PDCCH配置用于PDCCH重复传输,则处理模块1810可以用于在确定第一搜索空间集合为终端设备用于监听的搜索空间集合的同时,确定第二搜索空间集合也为终端设备用于监听的搜索空间集合;
若第一搜索空间集合的第一候选PDCCH与第二搜索空间集合的第二候选PDCCH配置用于同一个PDCCH的重复传输,则处理模块1810可以用于在确定第一候选PDCCH为终端设备用于监听的候选PDCCH的同时,确定第二候选PDCCH也为终端设备用于监听的候选PDCCH;
若第一搜索空间集合的第一子集的候选PDCCH与第二搜索空间集合的第二子集的候选PDCCH用于PDCCH重复传输,则处理模块1810可以用于在确定第一子集为终端设备用于监听的搜索空间集合的子集的同时,确定第二子集也为终端设备用于监听的搜索空间集合的子集。
有关上述处理模块1810和收发模块1820更详细的描述可以直接参考图7、图13或图15所示的方法实施例中相关描述直接得到,这里不加赘述。
如图19所示,通信装置1900包括处理器1910和接口电路1920。处理器1910和接口电路1920之间相互耦合。可以理解的是,接口电路1920可以为收发器或输入输出接口。可选的,通信装置1900还可以包括存储器1930,用于存储处理器1910执行的指令或存储处理器1910运行指令所需要的输入数据或存储处理器1910运行指令后产生的数据。
当通信装置1900用于实现图7、图13或图15所示的方法时,处理器1910用于实现上述处理模块1810的功能,接口电路1920用于实现上述收发模块1820的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的配置信息,所述配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,所述第一搜索空间集合中的所有候选物理下行控制信道PDCCH与所述第二搜索空间集合中的所有候选PDCCH均配置用于PDCCH重复传输,所述第一搜索空间集合的索引小于所述第二搜索空间集合的索引;
    在确定所述第一搜索空间集合为用于监听的搜索空间集合的同时,确定所述第二搜索空间集合为用于监听的搜索空间集合。
  2. 根据权利要求1所述的方法,其特征在于,所述配置信息还指示所述第一搜索空间集合的第一候选PDCCH与所述第二搜索空间集合的第二候选PDCCH配置用于同一个PDCCH的重复传输。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一候选PDCCH在所述第一搜索空间集合中的索引、与所述第二候选PDCCH在所述第二搜索空间集合中的索引相同。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述配置信息还包括第三搜索空间集合,所述第三搜索空间集合中的候选PDCCH未配置用于PDCCH重复传输,所述第三搜索空间集合的索引大于所述第一搜索空间集合的索引、且小于所述第二搜索空间集合的索引,所述方法还包括:
    在确定所述第一搜索空间集合为用于监听的搜索空间集合和确定所述第二搜索空间集合为用于监听的搜索空间集合之后,确定所述第三搜索空间集合是否为用于监听的搜索空间集合。
  5. 一种通信方法,其特征在于,包括:
    接收来自网络设备的配置信息,所述配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,所述第一搜索空间集合包括第一候选物理下行控制信道PDCCH,所述第二搜索空间集合包括第二候选PDCCH,所述第一候选PDCCH与所述第二候选PDCCH配置用于同一个PDCCH的重复传输;
    在确定所述第一候选PDCCH为用于监听的候选PDCCH的同时,确定所述第二候选PDCCH为用于监听的候选PDCCH。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一候选PDCCH在所述第一搜索空间集合中的索引、与所述第二候选PDCCH在所述第二搜索空间集合中的索引相同。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一搜索空间集合还包括第三候选PDCCH,所述第三候选PDCCH未配置用于PDCCH重复传输,所述方法还包括:
    在确定所述第一候选PDCCH为用于监听的候选PDCCH和确定所述第二候选PDCCH为用于监听的候选PDCCH之后,确定所述第三候选PDCCH是否为用于监听的候选PDCCH。
  8. 一种通信方法,其特征在于,包括:
    接收来自网络设备的配置信息,所述配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,所述第一搜索空间集合包括第一子集,所述第二搜索空间集合 包括第二子集,所述第一子集中的所有候选物理下行控制信道PDCCH与所述第二子集中的所有候选PDCCH均配置用于PDCCH重复传输;
    在确定所述第一子集为用于监听的搜索空间集合的子集的同时,确定所述第二子集为用于监听的搜索空间集合的子集。
  9. 根据权利要求8所述的方法,其特征在于,所述配置信息还指示所述第一子集的第一候选PDCCH与所述第二子集的第二候选PDCCH配置用于同一个PDCCH的重复传输。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一候选PDCCH在所述第一子集中的索引、与所述第二候选PDCCH在所述第二子集中的索引相同。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述第一搜索空间集合还包括第三子集,所述第三子集的候选PDCCH未配置用于PDCCH重复传输,所述方法还包括:
    在确定所述第一子集为用于监听的搜索空间的子集和确定所述第二子集为用于监听的搜索空间集合的子集之后,确定所述第三子集是否为用于监听的搜索空间集合的子集。
  12. 一种通信方法,其特征在于,包括:
    向终端设备发送配置信息,所述配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,所述第一搜索空间集合中的所有候选物理下行控制信道PDCCH与所述第二搜索空间集合中的所有候选PDCCH均配置用于PDCCH重复传输,所述第一搜索空间集合的索引小于所述第二搜索空间集合的索引;
    在确定所述第一搜索空间集合为所述终端设备用于监听的搜索空间集合的同时,确定所述第二搜索空间集合为所述终端设备用于监听的搜索空间集合。
  13. 根据权利要求12所述的方法,其特征在于,所述配置信息还指示所述第一搜索空间集合的第一候选PDCCH与所述第二搜索空间集合的第二候选PDCCH配置用于同一个PDCCH的重复传输。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一候选PDCCH在所述第一搜索空间集合中的索引、与所述第二候选PDCCH在所述第二搜索空间集合中的索引相同。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述配置信息还包括第三搜索空间集合,所述第三搜索空间集合中的候选PDCCH未配置用于PDCCH重复传输,所述第三搜索空间集合的索引大于所述第一搜索空间集合的索引、且小于所述第二搜索空间集合的索引,所述方法还包括:
    在确定所述第一搜索空间集合为所述终端设备用于监听的搜索空间集合和确定所述第二搜索空间集合为所述终端设备用于监听的搜索空间集合之后,确定所述第三搜索空间集合是否为所述终端设备用于监听的搜索空间集合。
  16. 一种通信方法,其特征在于,包括:
    向终端设备发送配置信息,所述配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,所述第一搜索空间集合包括第一候选物理下行控制信道PDCCH,所述第二搜索空间集合包括第二候选PDCCH,所述第一候选PDCCH与所述第二候选PDCCH配置用于同一个PDCCH的重复传输;
    在确定所述第一候选PDCCH为所述终端设备用于监听的候选PDCCH的同时,确定所述第二候选PDCCH为所述终端设备用于监听的候选PDCCH。
  17. 根据权利要求16所述的方法,其特征在于,
    所述第一候选PDCCH在所述第一搜索空间集合中的索引、与所述第二候选PDCCH在所述第二搜索空间集合中的索引相同。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一搜索空间集合还包括第三候选PDCCH,所述第三候选PDCCH未配置用于PDCCH重复传输,所述方法还包括:
    在确定所述第一候选PDCCH为所述终端设备用于监听的候选PDCCH和确定所述第二候选PDCCH为所述终端设备用于监听的候选PDCCH之后,确定所述第三候选PDCCH是否为所述终端设备用于监听的候选PDCCH。
  19. 一种通信方法,其特征在于,包括:
    向终端设备发送配置信息,所述配置信息包括第一搜索空间集合的信息和第二搜索空间集合的信息,其中,所述第一搜索空间集合包括第一子集,所述第二搜索空间集合包括第二子集,所述第一子集中的所有候选物理下行控制信道PDCCH与所述第二子集中的所有候选PDCCH均配置用于PDCCH重复传输;
    在确定所述第一子集为所述终端设备用于监听的搜索空间集合的子集的同时,确定所述第二子集为所述终端设备用于监听的搜索空间集合的子集。
  20. 根据权利要求19所述的方法,其特征在于,所述配置信息还指示所述第一子集的第一候选PDCCH与所述第二子集的第二候选PDCCH配置用于同一个PDCCH的重复传输。
  21. 根据权利要求20所述的方法,其特征在于,
    所述第一候选PDCCH在所述第一子集中的索引、与所述第二候选PDCCH在所述第二子集中的索引相同。
  22. 根据权利要求19至21中任一项所述的方法,其特征在于,所述第一搜索空间集合还包括第三子集,所述第三子集的候选PDCCH未配置用于PDCCH重复传输,所述方法还包括:
    在确定所述第一子集为所述终端设备用于监听的搜索空间集合的子集和确定所述第二子集为所述终端设备用于监听的搜索空间集合的子集之后,确定所述第三子集是否为所述终端设备用于监听的搜索空间集合的子集。
  23. 一种通信装置,其特征在于,包括用于执行如权利要求1至11中任一项所述方法的模块。
  24. 一种通信装置,其特征在于,包括用于执行如权利要求12至22中任一项所述方法的模块。
  25. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至11中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令 用于实现如权利要求12至22中任一项所述的方法。
  27. 一种计算机程序,其特征在于,当所述计算机程序被通信装置执行时,实现如权利要求1至22中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至22中任一项所述的方法。
  29. 一种通信系统,其特征在于,包括如权利要求23或25所述的通信装置,和如权利要求24或26所述的通信装置。
PCT/CN2021/072313 2021-01-15 2021-01-15 一种通信方法、装置以及系统 WO2022151428A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072313 WO2022151428A1 (zh) 2021-01-15 2021-01-15 一种通信方法、装置以及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072313 WO2022151428A1 (zh) 2021-01-15 2021-01-15 一种通信方法、装置以及系统

Publications (1)

Publication Number Publication Date
WO2022151428A1 true WO2022151428A1 (zh) 2022-07-21

Family

ID=82447920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072313 WO2022151428A1 (zh) 2021-01-15 2021-01-15 一种通信方法、装置以及系统

Country Status (1)

Country Link
WO (1) WO2022151428A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404076A (zh) * 2011-11-07 2012-04-04 电信科学技术研究院 信息发送及盲检方法和设备
CN109787710A (zh) * 2017-11-14 2019-05-21 深圳市中兴微电子技术有限公司 一种盲检测方法和装置、计算机可读存储介质
CN110351002A (zh) * 2018-04-03 2019-10-18 北京展讯高科通信技术有限公司 候选pdcch的优先级确定及监听方法、装置、存储介质、基站、终端
CN110662228A (zh) * 2018-06-29 2020-01-07 维沃移动通信有限公司 跨载波调度的pdcch候选分配方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102404076A (zh) * 2011-11-07 2012-04-04 电信科学技术研究院 信息发送及盲检方法和设备
CN109787710A (zh) * 2017-11-14 2019-05-21 深圳市中兴微电子技术有限公司 一种盲检测方法和装置、计算机可读存储介质
CN110351002A (zh) * 2018-04-03 2019-10-18 北京展讯高科通信技术有限公司 候选pdcch的优先级确定及监听方法、装置、存储介质、基站、终端
CN110662228A (zh) * 2018-06-29 2020-01-07 维沃移动通信有限公司 跨载波调度的pdcch候选分配方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Remaining details of NR PDCCH search space", 3GPP DRAFT; R1-1806289 REMAINING DETAILS OF NR PDCCH SEARCH SPACE-FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051441496 *

Similar Documents

Publication Publication Date Title
US11405908B2 (en) Method and apparatus for control channel reception in wireless communication systems
JP2023134448A (ja) マルチセグメントpuschについての送信フォーマット
TW201632027A (zh) 通訊中的載波聚合
EP2946521A1 (en) Method and apparatus for sending and receiving downlink control information
KR20170134695A (ko) Pucch 자원 할당 및 폴백 동작
WO2017000248A1 (zh) 一种资源分配信息指示方法、基站及用户设备
US11902185B2 (en) Sidelink information transmission method, communications device, and network device
WO2019062539A1 (zh) Sps的激活确定方法以及用户设备
WO2021204107A1 (zh) 一种通信方法及装置
WO2020224512A1 (zh) 下行控制信道的检测方法和装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
WO2022151428A1 (zh) 一种通信方法、装置以及系统
TWI513346B (zh) 在無線網路中用於分配無線資源的方法及設備
WO2022082709A1 (zh) 物理下行控制信道的盲检测方法和通信装置
CN114826537A (zh) 一种通信方法及装置
EP3855788A1 (en) Method, device and system for determining channel quality information
WO2024067315A1 (zh) 通信方法和相关产品
WO2024032735A1 (zh) 一种下行控制信息的检测方法及相关装置
WO2023207837A1 (zh) 一种通信方法及装置
WO2023207922A1 (zh) 一种控制信息传输方法和装置
WO2023051420A1 (zh) 通信方法及装置
WO2022178881A1 (zh) 通信方法及装置
US20230209559A1 (en) Method and device for transmitting physical downlink control channel
WO2024032732A1 (zh) Harq-ack码本反馈方法和通信装置
WO2021228182A1 (zh) Pdsch传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918632

Country of ref document: EP

Kind code of ref document: A1