WO2022178881A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022178881A1
WO2022178881A1 PCT/CN2021/078305 CN2021078305W WO2022178881A1 WO 2022178881 A1 WO2022178881 A1 WO 2022178881A1 CN 2021078305 W CN2021078305 W CN 2021078305W WO 2022178881 A1 WO2022178881 A1 WO 2022178881A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource set
sub
physical downlink
resource
control channel
Prior art date
Application number
PCT/CN2021/078305
Other languages
English (en)
French (fr)
Inventor
张云昊
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180093990.6A priority Critical patent/CN116918416A/zh
Priority to PCT/CN2021/078305 priority patent/WO2022178881A1/zh
Publication of WO2022178881A1 publication Critical patent/WO2022178881A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and apparatus.
  • FIG. 1 a schematic diagram of broadband terminals and narrowband terminals accessing the network, with the development of the Internet of Things and massive machine-type communications (mMTC) technologies, in various application scenarios such as home, industry, and public places , the terminal gradually presents the characteristics of large quantity and multiple forms.
  • monitoring devices monitoring devices
  • machines machines
  • sensors sensors
  • Smart home appliances vehicle terminals, etc.
  • some terminals are broadband capable terminals, such as mobile phones, video, augmented reality (AR)/virtual reality (VR) devices, etc., and the bandwidth capability can be 100MHz, 50MHz, 20MHz, etc.;
  • the terminal is a terminal with narrow bandwidth capability, such as a sensor, wearable device, etc., and the bandwidth capability can be 5MHz, 2MHz, etc.
  • the broadband terminal can determine the candidate physical downlink control channel (physical downlink control channel candidate, PDCCH candidate) through the existing initial access process, and receive the PDCCH on the time-frequency resource corresponding to the candidate PDCCH.
  • PDCCH candidate physical downlink control channel candidate
  • the prior art is only applicable to the wideband terminal and does not consider how the narrowband terminal receives the PDCCH. Therefore, it is necessary to provide a PDCCH receiving method that can be used for the narrowband terminal, to The reliability of detecting PDCCH is improved.
  • the present application provides a communication method and apparatus to solve the problem of how a narrowband terminal determines the frequency domain position of a candidate physical downlink control channel of a narrowband terminal in a broadband control resource set, and improves the reliability of detecting the physical downlink control channel.
  • a communication method comprising: a terminal receiving a first message, where the first message includes frequency domain information of a control resource set and location information of a sub-resource set; and the terminal is in the sub-resource set
  • the physical downlink control channel is detected on the candidate physical downlink control channel resource.
  • the terminal receives a first message sent by the access network device, where the first message includes frequency domain information of the control resource set and location information of the sub-resource set, and detects on the candidate physical downlink control channel resources of the sub-resource set
  • the frequency domain position of the candidate physical downlink control channel of the terminal can be determined in the control resource set, so as to improve the reliability of detecting the physical downlink control channel.
  • the terminal may be a narrowband terminal or a broadband terminal.
  • the access network device before sending the first message, determines the location information of the sub-resource set in the control resource set, and then generates the first message.
  • the set of control resources may be the set of control resources of the aforementioned broadband terminal.
  • the location information of the sub-resource set includes at least one of the following information: frequency domain starting location information of the sub-resource set in the control resource set, frequency of the sub-resource set Resource size information.
  • the terminal determines the frequency position of the candidate physical downlink control channel in the control resource set, therefore, the position information of the sub-resource set includes the frequency domain starting position information and/or the sub-resource of the sub-resource set in the control resource set Frequency resource size information gathered in the control resource set.
  • the frequency domain starting position information is an index of a starting control channel unit corresponding to the sub-resource set
  • the frequency resource size information is an aggregate corresponding to the candidate physical downlink control channel rank or maximum aggregate rank. Therefore, the candidate physical downlink control channel of the terminal can be determined according to the index of the initial control channel element corresponding to the sub-resource set, the aggregation level or the maximum aggregation level corresponding to the candidate physical downlink control channel.
  • the frequency resource size information is an aggregation level corresponding to the candidate physical downlink control channel
  • the physical downlink control channel is detected on the candidate physical downlink control channel resources of the sub-resource set
  • the method includes: starting from the starting position of the sub-resource set in the frequency domain in the control resource set, detecting the physical downlink control channel on the frequency domain resource corresponding to the aggregation level.
  • the frequency resource size information is a maximum aggregation level corresponding to the candidate physical downlink control channel
  • the physical downlink control channel is detected on the candidate physical downlink control channel resources of the sub-resource set , including: starting from the frequency domain starting position of the sub-resource set in the control resource set, detecting the physical downlink on the frequency domain resources corresponding to each aggregation level less than or equal to the maximum aggregation level respectively control channel. Therefore, when the frequency resource size information of the sub-resource set may also be the maximum AL corresponding to the candidate physical downlink control channel, the terminal starts from the starting CCE of the sub-resource set in CORESET#0, and traverses the maximum AL less than or equal to the maximum AL. The physical downlink control channel is detected on the frequency domain resource corresponding to each AL to accurately detect the physical downlink control channel.
  • a communication method comprising: an access network device sending a first message, where the first message includes frequency domain information of a control resource set and location information of a sub-resource set; and the access network device The physical downlink control channel is sent on the candidate physical downlink control channel resources of the sub-resource set.
  • the access network device sends a first message, the first message includes frequency domain information of the control resource set and location information of the sub-resource set, and sends the physical downlink control channel resource to the terminal on the candidate physical downlink control channel resource of the sub-resource set.
  • the narrowband terminal detects the physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set, so that the narrowband terminal can determine the frequency domain position of the candidate physical downlink control channel of the narrowband terminal in the broadband CORESET, and improve the detection of physical downlink control channels. Reliability of downlink control channels.
  • the location information of the sub-resource set includes at least one of the following information: frequency domain starting location information of the sub-resource set in the control resource set, frequency resource of the sub-resource set size information.
  • the frequency domain starting position information is an index of a starting control channel unit corresponding to the sub-resource set
  • the frequency resource size information is an aggregate corresponding to the candidate physical downlink control channel rank or maximum aggregate rank.
  • the frequency domain starting position information is the frequency domain starting position of the sub-resource set.
  • the initial resource block location information, the frequency resource size information is the number of resource blocks in the sub-resource set. Therefore, the terminal can accurately determine the candidate physical downlink control channel of the terminal according to the position information of the initial resource block in the frequency domain of the sub-resource set and the number of resource blocks of the sub-resource set.
  • the control resource set includes one or more frequency domain parts, the sub-resources
  • the location information of the set is the location information of the frequency domain part where the sub-resource set is located.
  • the physical downlink control channel can be accurately detected in the frequency domain part indicated by the first message that the terminal needs to detect.
  • the first set of bits in the first message is used to indicate the sub-resource location information of a set, the first set of bits comprising bits in a physical broadcast channel.
  • the location information of the above-mentioned sub-resource set can be accurately indicated, and the utilization rate of the resources is improved.
  • the first bit set is used to indicate the entry in the preset table, so
  • the preset table includes one or more entries, and each entry includes frequency domain starting position information and frequency resource size information of a sub-resource set.
  • the preset table is horizontal or vertical based on the table used to indicate the control resource set Extended entry.
  • a communication apparatus for performing the first aspect or the method in any possible implementation of the first aspect.
  • the communication device may be the first aspect or a terminal in any possible implementation of the first aspect, or a module applied in the terminal, such as a chip or a chip system.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a transceiver unit and a processing unit; wherein the transceiver unit is configured to receive a first message, where the first message includes a frequency domain of a control resource set information and location information of the sub-resource set; and the processing unit, configured to detect the physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set.
  • the location information of the sub-resource set includes at least one of the following information: frequency domain starting location information of the sub-resource set in the control resource set, and frequency resource size information of the sub-resource set.
  • the frequency domain starting position information is the index of the starting control channel unit corresponding to the sub-resource set
  • the frequency resource size information is the aggregation level or the largest aggregation corresponding to the candidate physical downlink control channel. grade.
  • the frequency resource size information is the aggregation level corresponding to the candidate physical downlink control channel
  • the processing unit is configured to start from the frequency domain starting position of the sub-resource set in the control resource set , detecting the physical downlink control channel on the frequency domain resource corresponding to the aggregation level;
  • the frequency resource size information is the maximum aggregation level corresponding to the candidate physical downlink control channel
  • the processing unit is configured to start from the frequency domain starting position of the sub-resource set in the control resource set, and respectively in The physical downlink control channel is detected on frequency domain resources corresponding to each aggregation level less than or equal to the maximum aggregation level.
  • the communication device includes: an input interface, an output interface, and a processing circuit; wherein the input interface is used to receive a first message, and the first message includes a control resource frequency domain information of the set and location information of the sub-resource set; and the processing circuit, configured to detect the physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set.
  • the location information of the sub-resource set includes at least one of the following information: frequency domain starting location information of the sub-resource set in the control resource set, and frequency resource size information of the sub-resource set.
  • the frequency domain starting position information is the index of the starting control channel unit corresponding to the sub-resource set
  • the frequency resource size information is the aggregation level or the largest aggregation corresponding to the candidate physical downlink control channel. grade.
  • the frequency resource size information is an aggregation level corresponding to the candidate physical downlink control channel
  • the processing circuit is configured to start from the frequency domain starting position of the sub-resource set in the control resource set , detecting the physical downlink control channel on the frequency domain resource corresponding to the aggregation level;
  • the frequency resource size information is the maximum aggregation level corresponding to the candidate physical downlink control channel
  • the processing circuit is configured to start from the frequency domain starting position of the sub-resource set in the control resource set, and respectively in The physical downlink control channel is detected on frequency domain resources corresponding to each aggregation level less than or equal to the maximum aggregation level.
  • the communication device further includes a memory coupled to the at least one processor for executing program instructions stored in the memory to cause the communication device to perform the above-mentioned first aspect or the first aspect method in any possible implementation of .
  • the memory is used to store program instructions and data.
  • the memory is coupled to the at least one processor, and the at least one processor can invoke and execute program instructions stored in the memory to cause the communication device to perform the above-mentioned first aspect or any possible implementation of the first aspect. method.
  • the communication apparatus further includes a communication interface for the communication apparatus to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, a circuit, or the like.
  • the communication device includes: at least one processor and a communication interface for executing the method in the first aspect or any possible implementation of the first aspect, specifically including: the at least one processor
  • the communication device communicates with the outside using the communication interface; the at least one processor is configured to run a computer program, so that the communication device executes the method in the first aspect or any possible implementation of the first aspect.
  • the external may be an object other than the processor, or an object other than the communication device.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or the chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • a communication apparatus for performing the second aspect or the method in any possible implementation of the second aspect.
  • the communication apparatus may be an access network device in the second aspect or any possible implementation of the second aspect, or a module applied in the access network device, such as a chip or a chip system.
  • the communication device includes corresponding modules, units, or means for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: a transceiver unit; wherein the transceiver unit is configured to send a first message, where the first message includes frequency domain information and sub-resources of a control resource set location information of the set; and the transceiver unit is further configured to send the physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set.
  • the location information of the sub-resource set includes at least one of the following information: frequency domain starting location information of the sub-resource set in the control resource set, and frequency resource size information of the sub-resource set.
  • the frequency domain starting position information is the index of the starting control channel unit corresponding to the sub-resource set
  • the frequency resource size information is the aggregation level or the largest aggregation corresponding to the candidate physical downlink control channel. grade.
  • the communication device includes: an input interface, an output interface, and a processing circuit; wherein the output interface is used to send a first message, and the first message includes a control resource frequency domain information of the set and location information of the sub-resource set; and the output interface is further configured to send a physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set.
  • the location information of the sub-resource set includes at least one of the following information: frequency domain starting location information of the sub-resource set in the control resource set, and frequency resource size information of the sub-resource set.
  • the frequency domain starting position information is the index of the starting control channel unit corresponding to the sub-resource set
  • the frequency resource size information is the aggregation level or the largest aggregation corresponding to the candidate physical downlink control channel. grade.
  • the communication device further includes a memory coupled to the at least one processor for executing program instructions stored in the memory to cause the communication device to perform the above-mentioned second aspect or the second aspect method in any possible implementation of .
  • the memory is used to store program instructions and data.
  • the memory is coupled to the at least one processor, and the at least one processor can invoke and execute program instructions stored in the memory to cause the communication device to perform the above-mentioned second aspect or any possible implementation of the second aspect. method.
  • the communication apparatus further includes a communication interface for the communication apparatus to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit or the like.
  • the communication device includes: at least one processor and a communication interface for executing the method in the second aspect or any possible implementation of the second aspect, specifically including: the at least one processor
  • the communication device communicates with the outside using the communication interface; the at least one processor is used for running a computer program, so that the communication device executes the method in the second aspect or any possible implementation of the second aspect.
  • the external may be an object other than the processor, or an object other than the communication device.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc. on the chip or the chip system.
  • the processor may also be embodied as processing circuitry or logic circuitry.
  • the frequency domain starting position information is the frequency domain starting position of the sub-resource set.
  • the initial resource block location information, the frequency resource size information is the number of resource blocks in the sub-resource set.
  • control resource set includes one or more frequency domain parts, the sub-resources
  • the location information of the set is the location information of the frequency domain part where the sub-resource set is located.
  • the first set of bits in the first message is used to indicate the sub-resource location information of a set, the first set of bits comprising bits in a physical broadcast channel.
  • the first bit set is used to indicate the entry in the preset table, so
  • the preset table includes one or more entries, and each entry includes frequency domain starting position information and frequency resource size information of a sub-resource set.
  • a communication system including the communication apparatus in any of the implementations of the third aspect or the third aspect, and the communication apparatus in any implementation of the fourth aspect or the fourth aspect.
  • a computer-readable storage medium storing a computer program, and when it is executed on a computer, the above-mentioned aspects or any one of the above-mentioned aspects to implement the described method is executed.
  • a computer program product which, when run on a computer, causes the above aspects or any one of the above aspects to be executed.
  • a computer program which, when run on a computer, causes the above-mentioned aspects or any one of the above-mentioned aspects to be executed.
  • 1 is a schematic diagram of broadband terminals and narrowband terminals accessing a network
  • FIG. 2 is a schematic flowchart of initial access by a broadband terminal
  • FIG. 3 is a schematic diagram of the internal structure of a synchronization signal/physical broadcast channel block
  • Fig. 4 is the mapping schematic diagram of CCE and REG in CORESET#0;
  • FIG. 5 is a schematic diagram of the architecture of a communication system to which an embodiment of the application is applied;
  • FIG. 6 is a schematic structural diagram of a communication apparatus 400 provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of indicating location information of a sub-resource set according to an example of an embodiment of the present application.
  • FIG. 9 is a schematic diagram of indicating location information of another sub-resource set according to an example of an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a simplified terminal provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a simplified access network device according to an embodiment of the present application.
  • the broadband terminal can detect the candidate physical downlink control channel at any bandwidth position in CORESET#0.
  • the purpose of the initial access is mainly to obtain downlink synchronization with the base station and to obtain system information of the cell where the terminal is located.
  • FIG. 2 it is a schematic flowchart of the initial access of a broadband terminal.
  • the horizontal axis is the time domain, and the unit can be subframe, time slot, micro-slot, symbol, etc.
  • the unit of the horizontal axis is a time slot;
  • the vertical axis is the frequency domain, and the unit may be a subcarrier, a bandwidth part (BWP), etc.
  • the unit of the vertical axis is a subcarrier.
  • the initial access process mainly includes the following steps:
  • Step 1 The terminal tries one by one at multiple frequency domain positions, and realizes downlink synchronization with the base station and acquires the SSB through symbol-by-symbol detection of the synchronization sequence at each frequency domain position.
  • the SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH), the structure of which is shown in Figure 3.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • RE resource element
  • Step 2 The terminal obtains a master information block (master information block, MIB) from the PBCH.
  • MIB master information block
  • Step 3 The terminal determines the common search space (common search space, CSS) from the physical downlink control channel-ConfigSIB1 field in the MIB, such as the two time slots indicated by the arrows in Figure 2, and determines CORESET#0.
  • the CSS is used for the terminal to determine the time position where CORESET#0 exists, and the CORESET#0 is used for the terminal to determine the time-frequency resource range for retrieving a physical downlink control channel (physical downlink control channel, physical downlink control channel).
  • the specific configuration of CORESET#0 will be described later.
  • Step 4 Blindly detect the DCI scrambled by the SI-RNTI from the time-frequency resources determined by CORESET#0 and the CSS in Step 3. The blind detection method will be described later.
  • Step 5 Acquire system information, such as system information block (SIB) 1, in the same time slot according to the instruction of the DCI.
  • SIB system information block
  • the terminal can obtain the configuration information of the initial bandwidth part, as well as the configuration information of the random access resources, the configuration information of the paging resources, and the like from the SIB1.
  • the payload of PBCH includes in, A total of A bits are used to carry MIB information, A total of 8 are used to carry other information. Among them, the MIB information content is shown in Table 1:
  • Table 1 The meaning and number of bits of each field in the MIB
  • the frequency range of CORESET#0 includes three parameters: 24RB, 48RB, and 96RB, of which 96RB only supports 15kHz SCS, and 24RB and 48RB support 15kHz or 30kHz SCS.
  • the time domain range of CORESET#0 includes three parameters: 1 symbol, 2 symbols, and 3 symbols.
  • SSBburst synchronization signal/physical broadcast channel block burst
  • the maximum number of SSBs in SSBburst is 64, are the top three bits indicating the SSB index information.
  • the CSS is used for the terminal to determine the time position where CORESET#0 exists, and the CORESET#0 is used for the terminal to determine the time-frequency resource range for retrieving the physical downlink control channel, that is, the time-frequency resource position of the candidate physical downlink control channel can be determined in CORESET#0.
  • the terminal detects the candidate physical downlink control channel, descrambles the data on the candidate physical downlink control channel, and determines whether there is DCI that it needs to receive on the candidate physical downlink control channel.
  • the resource element group bundle size (REG bundle size) is specified to be 6.
  • the time-frequency resources of the REG bundle are as follows: 1 symbol*6 resource element group (REG), 2 symbols* 3REG, 3 symbols * 2REG.
  • the REG is a physical resource unit that occupies an orthogonal frequency division multiplexing (OFDM) symbol in the time domain and occupies a resource block (RB) in the frequency domain.
  • a REG bundle is 1, 2, 3, or 6 consecutive REGs in the time domain and/or frequency domain.
  • REG is a concept on resources
  • CCE is a concept of a component of a candidate physical downlink control channel. Therefore, it can be considered how CCEs are mapped to REG resources.
  • CORESET#0 it is specified that CCEs and REGs are mapped based on interleaving, and the interleaving rules are:
  • the optional frequency range of CORESET#0 is The optional time domain range of CORESET#0 is symbol.
  • An example CORESET#0 is shown in Table 2 below:
  • the CCE Index corresponding to each REG bundle is marked on the right.
  • the frequency domain bandwidth occupied by the candidate physical downlink control channel is a 6REG bundle (including the bandwidth of the CCEs numbered 0, 2, 4, 6, 1, 3, or the bandwidth of the CCEs numbered 4, 6, 1, 3, 5, 7 The bandwidth where the CCE is located).
  • the number of RBs occupied by the candidate physical downlink control channels in each case is shown in Table 3 below:
  • the bandwidth is greater than 2MHz and less than or equal to 5MHz, indicating that the narrowband terminal with 5MHz bandwidth capability can receive the candidate physical downlink control channel;
  • Table 4 and Table 5 The part with bandwidth less than or equal to 2MHz , which indicates that the narrowband terminal with 2MHz bandwidth capability can receive the candidate physical downlink control channel.
  • the broadband terminal can search for candidate physical downlink control channels at any bandwidth position in CORESET#0.
  • the bandwidth range received by the narrowband terminal is smaller than that of the wideband terminal, the above method is only applicable to the wideband terminal, and does not consider how the narrowband terminal receives the PDCCH.
  • the physical downlink control channel sent by the access network equipment may be Not within the bandwidth retrieved by the narrowband terminal.
  • the narrowband terminal can only obtain candidate physical downlink control channels within its bandwidth capability at one time opportunity, resulting in that the physical downlink control channel sent by the access network device may not be received.
  • the present application provides a communication solution.
  • An access network device sends a first message, where the first message includes frequency domain information of a control resource set and location information of a sub-resource set, and sends the first message to the candidate physical downlink control channel resources of the sub-resource set on the candidate physical downlink control channel resources of the sub-resource set.
  • the terminal sends the physical downlink control channel, and the narrowband terminal detects the physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set, so that the narrowband terminal can determine the frequency domain position of the candidate physical downlink control channel of the narrowband terminal in the broadband CORESET, improving the The reliability of the physical downlink control channel is detected.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • eLTE enhanced long term evolution
  • 5G 5th generation
  • the 5G mobile communication system involved in this application includes a non-standalone (NSA) 5G mobile communication system or a standalone (SA) network ) 5G mobile communication system.
  • SA standalone
  • the technical solutions provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system may also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, an object Internet of things (IoT), Internet of Vehicles communication systems or other communication systems.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT object Internet of things
  • IoT Internet of Vehicles communication systems or other communication systems.
  • FIG. 5 is a schematic structural diagram of a communication system to which the embodiments of the present application are applied.
  • the communication system may include at least one access network device 100 (only one is shown in the figure) and one or more narrowband terminals 200 (only one is shown in the figure) connected to the access network device 100, and may also include One or more broadband terminals 300 (only one is shown in the figure) connected to the access network device 100 .
  • the access network equipment transmits SSB on beams #1 to #4, etc., and the broadband terminal and/or narrowband terminal receives SSB on any one or more beams of beams #1 to #4.
  • the broadband terminal in the embodiment of the present application refers to a terminal that can initially access the network and obtain system information defined by the existing 3GPP NR standard (for example, 3GPP Release 15 or 3GPP Release 16), and its bandwidth capability is greater than or is equal to 100MHz; or the broadband terminal may be a terminal that may initially access the network and obtain system information as defined by the 3GPP Release 17 standard, and its bandwidth capability is greater than or equal to 20MHz.
  • the narrowband terminal in the embodiment of the present application refers to a terminal that cannot fully utilize the existing standard to initially access the network and obtain system information, and its bandwidth capability may be 5MHz, 2MHz, or the like.
  • a wearable device may also be referred to as a wearable smart device, which is a general term for intelligently designing daily wear and developing wearable devices using wearable technology, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the narrowband terminal may also be a terminal in the IoT system.
  • IoT is an important part of the future development of information technology. Connected, the intelligent network of the interconnection of things and things.
  • the IoT technology can achieve massive connections, deep coverage, and power saving of terminals through, for example, a narrow band (narrow band, NB) technology.
  • NB narrow band
  • the narrowband terminal may also include sensors such as smart printers, train detectors, gas stations, etc., and the main functions include collecting data (part of the terminals), receiving control information and downlink data of access network equipment, and sending them. Electromagnetic waves transmit uplink data to access network equipment.
  • the broadband terminal in this embodiment of the present application may specifically be an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal, a user equipment (user equipment, UE), terminal (terminal), wireless communication equipment, user agent, user equipment, cellular phone, cordless phone, session initiation protocol (session initiation protocol, SIP) phone, wireless local loop (wireless local loop, WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, terminals in 5G networks or in future evolved PLMNs
  • a terminal or a terminal in the future Internet of Vehicles, etc. is not limited in this embodiment of the present application.
  • the broadband terminal may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality terminal, an augmented reality terminal, a wireless terminal in industrial control, and a wireless terminal in unmanned driving.
  • the access network device in this embodiment of the present application may be any communication device with a wireless transceiver function that is used to communicate with a narrowband terminal and a broadband terminal.
  • the access network equipment includes but is not limited to: evolved node B (evolved node B, eNB), baseband unit (baseband unit, BBU), access point (access point, wireless fidelity, WIFI) system AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission reception point (TRP), etc.
  • the access network device may also be a gNB or TRP or TP in the 5G system, or one or a group (including multiple antenna panels) antenna panels of a base station in the 5G system.
  • the access network device may also be a network node that constitutes a gNB or a TP, such as a BBU, or a distributed unit (distributed unit, DU).
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical layer (PHY).
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the access network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the access network device and the broadband terminal in the embodiment of the present application may communicate through licensed spectrum, may also communicate through unlicensed spectrum, or may communicate through licensed spectrum and unlicensed spectrum at the same time.
  • the access network equipment and the broadband terminal can communicate through the frequency spectrum below 6 GHz (gigahertz, GHz), and can also communicate through the frequency spectrum above 6 GHz, and can also use the frequency spectrum below 6 GHz and the frequency spectrum above 6 GHz for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used between the access network device and the broadband terminal.
  • the terminal or access network device in this embodiment of the present application may be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; may also be deployed on water; and may also be deployed in airborne aircraft, balloons, and artificial satellites. superior.
  • the embodiments of the present application do not limit the application scenarios of the terminal or the access network device.
  • the terminal or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, and the program provided by the embodiments of the present application can be executed by running a program that records the codes of the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal or an access network device, or a functional module in the terminal or access network device that can call and execute a program.
  • the related functions of the terminal or the access network device in the embodiments of the present application may be implemented by one device, or jointly implemented by multiple devices, and may also be implemented by one or more functional modules in one device.
  • the embodiment does not specifically limit this. It is to be understood that the above-mentioned functions can be either network elements in hardware devices, or software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (eg, a cloud platform). Virtualization capabilities.
  • FIG. 6 is a schematic structural diagram of a communication apparatus 400 according to an embodiment of the present application.
  • the communication device 400 includes one or more processors 401, 407, a communication line 402, and at least one communication interface (in FIG. 6, it is only exemplary to include the communication interface 404 for illustration).
  • a memory 403 may also be included.
  • the processor 401 may be a CPU, a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the programs of the present application.
  • ASIC application-specific integrated circuit
  • Communication line 402 may include a path for connecting the various components.
  • the communication interface 404 which can be a transceiver module, is used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), and the like.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 404 may also be a transceiver circuit located in the processor 401 to implement signal input and signal output of the processor.
  • the memory 403 may be a device having a storage function. For example, it may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types of storage devices that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being stored by a computer any other medium taken, but not limited to this.
  • the memory may exist independently and be connected to the processor through communication line 402 .
  • the memory can also be integrated with the processor.
  • the memory 403 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processors 401 and 407 .
  • the processors 401 and 407 are configured to execute the computer-executed instructions stored in the memory 403, thereby implementing the communication methods provided in the embodiments of the present application.
  • the processors 401 and 407 may also perform processing-related functions in the communication methods provided in the following embodiments of the present application, and the communication interface 404 is responsible for communicating with other devices or communication networks. This is not specifically limited.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processors 401 and 407 may respectively include one or more CPUs.
  • the processor 401 includes CPU0 and CPU1
  • the processor 407 includes CPU0 and CPU1.
  • the communication apparatus 400 may include multiple processors, for example, the processor 401 and the processor 407 in FIG. 6 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication apparatus 400 may further include an output device 405 and an input device 406 .
  • the output device 405 is in communication with the processor 401 and can display information in a variety of ways.
  • the above-mentioned communication device 400 may be a general-purpose device or a dedicated device.
  • the communication device 400 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal, an embedded device, or a device with a similar structure in FIG. 6 .
  • PDA personal digital assistant
  • This embodiment of the present application does not limit the type of the communication device 400.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application, exemplarily, the method may include the following steps:
  • An access network device sends a first message, where the first message includes frequency domain information of a control resource set and location information of a sub-resource set. Accordingly, the terminal receives the first message.
  • the access network device sends a first message, where the first message includes frequency domain information of the control resource set and location information of the sub-resource set in the control resource set.
  • the terminal receives the first message.
  • the first message may be an SSB.
  • the terminal may be the aforementioned narrowband terminal, or may be the aforementioned broadband terminal.
  • the access network device determines the location information of the sub-resource set in the control resource set, and then generates the first message.
  • the set of control resources may be the set of control resources of the aforementioned broadband terminal. Therefore, the terminal can determine the candidate physical downlink control channel of the terminal by receiving the first message.
  • the location information of the sub-resource set is used to indicate the location where the terminal detects the candidate physical downlink control channel.
  • the terminal determines the frequency position of the candidate physical downlink control channel of the terminal in the control resource set.
  • the location information of the sub-resource set includes at least one of the following information: frequency domain start position information of the sub-resource set in the control resource set, and frequency resource size information of the sub-resource set.
  • the frequency domain starting position information of the sub-resource set is the index of the starting CCE corresponding to the sub-resource set
  • the control resource set is CORESET#0 as an example for description. This application does not limit the control resource set, and may also be a CORESET configured by all public signaling or terminal-specific signaling. Therefore, the candidate physical downlink control channel of the terminal can be determined according to the index of the starting CCE corresponding to the sub-resource set, the AL corresponding to the candidate physical downlink control channel or the largest AL.
  • CCEs with the same index in CORESET#0 there may be multiple CCEs with the same index in CORESET#0. As shown in FIG. 8 , there are 3 CCEs with an index of 4, and it can also indicate which CCE with an index of 4 in CORESET#0 is the starting CCE corresponding to the sub-resource set. For example, the first CCE with an index of 4 is indicated as the starting CCE corresponding to the sub-resource set. During specific implementation, it may be indicated in the first message or through other messages that the number of CCEs with an index of 4 is the starting CCE corresponding to the sub-resource set.
  • the access network device and the terminal may also pre-negotiate or pre-configure the number of CCEs with an index of 4 as the starting CCE corresponding to the sub-resource set. Therefore, through pre-negotiation, pre-configuration or instruction, it is possible to accurately determine the number of CCE indexes among multiple identical CCE indexes, so that the terminal can accurately determine the candidate physical downlink control channel of the terminal.
  • the terminal can detect a variety of AL candidate physical downlink control channels within its bandwidth capability.
  • the frequency resource size information of the sub-resource set may be the AL corresponding to the candidate physical downlink control channel, then the terminal starts from the starting CCE of the sub-resource set in CORESET#0, and detects the physical downlink control on the frequency domain resource corresponding to the AL. channel.
  • the frequency resource size information of the sub-resource set can also be the maximum AL corresponding to the candidate physical downlink control channel, then the terminal starts from the starting CCE of the sub-resource set in CORESET#0, and is in each AL less than or equal to the maximum AL.
  • the physical downlink control channel is detected on the corresponding frequency domain resources.
  • the starting CCE corresponding to the sub-resource set is 4, and the maximum AL corresponding to the candidate physical downlink control channel is 4.
  • the frequency-domain starting position information of the sub-resource set is the frequency-domain starting resource block position information of the sub-resource set
  • the frequency resource size information of the sub-resource set is the number of resource blocks in the sub-resource set.
  • a frequency position offset in CORESET#0 relative to the starting resource block of CORESET#0 or SSB may be indicated as the starting resource block position in the frequency domain of the sub-resource set of the terminal, or the position of the starting resource block in CORESET#0 may be indicated.
  • One RB index is used as the starting resource block position in the frequency domain of the terminal's sub-resource set, and the number of one resource block is indicated as the frequency resource size of the terminal's sub-resource set.
  • the frequency domain starting resource block location information about the sub-resource set of the terminal and the frequency resource size information about the sub-resource set can be implemented in combination.
  • the sub-resource of the terminal The initial resource block position in the frequency domain of the set is the index of the initial control channel unit corresponding to the sub-resource set
  • the frequency resource size information of the sub-resource set is the number of resource blocks in the sub-resource set.
  • the position of the starting resource block in the frequency domain of the sub-resource set of the terminal is the position information of the starting resource block in the frequency domain of the sub-resource set
  • the size information of the frequency resource of the sub-resource set is the aggregate corresponding to the candidate physical downlink control channel. rank or maximum aggregate rank.
  • the set of control resources may include one or more frequency domain portions.
  • the location information of the sub-resource set of the terminal is the location information of the frequency domain part where the sub-resource set is located.
  • CORESET#0 may be equally divided into 4 frequency domain parts, and of course it may also be divided into 4 frequency domain parts unevenly.
  • the first message may include the frequency domain part that the terminal needs to detect. Further, the first message may also indicate the total number of divided frequency domain parts, or the total number of frequency domain parts is divided according to a pre-negotiated rule.
  • the physical downlink control channel can be accurately detected in the frequency domain part indicated by the first message that the terminal needs to detect.
  • a first set of bits in the first message may be used to indicate the location information of the foregoing sub-resource set, where the first set of bits includes bits in the PBCH.
  • the bits in the PBCH may include reserved A total of 2 bits; or, the bits in the PBCH include 1 bit reserved in the MIB shown in Table 1; or, the bits in the PBCH include 1 bit and 1 bit reserved in the MIB; or, the first set of bits is a part of bits in a newly defined PBCH, and the newly defined PBCH includes fields that may be different from the fields defined in the PBCH described above.
  • 1-bit indication information may be used to further indicate that the first bit set is part of the newly defined PBCH, or the first bit set is bits and/or reserved bits in the MIB.
  • the indication information is "1" it indicates that the first bit set is part of bits in the newly defined PBCH, and the terminal receives the first message on part of the bits in the newly defined PBCH to obtain its indication
  • the location information of the sub-resource set when the indication information is "0", it indicates that the first bit set is bits and/or reserved bits in the MIB, the terminal receives the first message and parses the and/or a reserved bit in the MIB to obtain the location information of the sub-resource set.
  • the first set of bits is A bit terminal can receive and parse the first bit set at the physical layer to obtain the location information of the sub-resource set; the first bit set is a reserved bit in the MIB, and the terminal can use the radio resource control (RRC) ) layer or the physical layer parses the first bit set to obtain the location information of the sub-resource set; or the first bit set is bits and reserved bits in the MIB, the terminal can parse the first bit set at the physical layer or the RRC layer to obtain the location information of the sub-resource set. Therefore, the location information of the above-mentioned sub-resource set can be accurately indicated by the reserved bits in the PBCH defined by the existing protocol or some bits in the newly defined PBCH, and the utilization rate of the resources is improved.
  • RRC radio resource control
  • the first bit set is used to indicate an entry in a preset table
  • the preset table includes one or more entries, and each entry includes frequency domain starting position information and frequency resources of a sub-resource set size information.
  • the preset table may be as shown in Tables 6 to 9 below:
  • any row in the following Table 6 can be indicated by the above-mentioned first bit set (assuming 1 bit):
  • any row in the following Table 7 can be indicated by the above-mentioned first bit set (assuming 1 bit):
  • any row in the following Table 8 can be indicated by the above-mentioned first bit set (assuming 1 bit):
  • the above indication about the first bit set is only an example, and the embodiment of the present application is not limited to the above example.
  • the terminal detects the physical downlink control channel on the candidate physical downlink control channel of the sub-resource set. If the physical downlink control channel schedules the DCI of the system information (for example, SIB1), the above Tables 6 to 9 can be used in It is defined in the protocol; if the physical downlink control channel schedules DCI in other CORESETs, the above Tables 6 to 9 can be indicated in the system message, that is, indicated by common RRC signaling.
  • SIB1 system information
  • the preset table may also be based on the above Table 2, and the location information of the terminal's sub-resource set is added after each row, that is, the preset table is based on the horizontal expansion of the table used to indicate the control resource set table entry.
  • Table 10 An example is shown in Table 10 below:
  • the position of the sub-resource set of the terminal may be indicated by the first bit set of 4 bits.
  • each row in Table 10 indicated by the 4 bits of CORSET#0 it may correspond to a different table, for example, the 13th row in Table 10 corresponds to the above-mentioned Table 6, and the 14th row in Table 10 corresponds to the above-mentioned Table 7, etc.
  • the behavior reserved field with index 15 in the existing protocol in this embodiment, the number of resource blocks in CORSET#0, the number of symbols in CORSET#0, and the number of symbols in CORSET#0 can be customized.
  • the preset table may also be an entry based on the horizontal and vertical expansion of the table used to indicate the control resource set.
  • the first bit set may also be larger than 4 bits, for example, 5 bits, then indexes 15 to 31 can be used to customize more resource blocks in CORSET#0 and symbols in CORSET#0, and The starting resource block position in the frequency domain of the sub-resource set and the frequency resource size of the sub-resource set in this CORSET#0.
  • Table 11 An example is shown in Table 11 below.
  • the access network device sends the physical downlink control channel on the candidate physical downlink control channel resources in the sub-resource set.
  • the access network device sends the physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set configured for the terminal.
  • the physical downlink control channel is used to carry the SI-RNTI scrambled DCI.
  • the terminal detects the physical downlink control channel on the candidate physical downlink control channel resources in the sub-resource set.
  • the terminal detects the physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set according to the location information of the sub-resource set included in the first message. If the DCI scrambled by the SI-RNTI is detected, the DCI is descrambled, and the system information is acquired in the time slot, so that the initial access of the terminal can be realized according to the system information.
  • the terminal When the frequency range of the candidate physical downlink control channel obtained by the terminal through the first message exceeds its own bandwidth capability, for example, a terminal with a bandwidth capability of 2MHz determines that the bandwidth of the candidate physical downlink control channel indicated by the first message is 5MHz, Then it is considered that the cell rejects its own access. At this time, the terminal does not need to try to access the cell in other ways.
  • an access network device sends a first message, where the first message includes frequency domain information of a control resource set and location information of a sub-resource set, and is controlled in the candidate physical downlink of the sub-resource set.
  • the physical downlink control channel is sent to the terminal on the channel resource, and the terminal detects the physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set, so that the terminal can determine the frequency domain position of the candidate physical downlink control channel of the terminal in the broadband CORESET, The reliability of detecting the physical downlink control channel is improved.
  • the above-mentioned first message may also be system information, or terminal-specific (UE-specific) radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the first message is system information or RRC signaling, it may not be limited to the indication in a table lookup manner.
  • the RRC signaling format is as follows:
  • Start frequency is used to indicate the frequency domain starting position information of the sub-resource set in the control resource set
  • Frequency range is used to indicate the frequency resource size information of the sub-resource set in the control resource set.
  • a potential aggregation level (Potential AL) may also be included.
  • the potential aggregation level refers to the aggregation level that the terminal may adopt.
  • the AL corresponding to the broadband terminal is 2, 4, 6, 8, 10, etc., while the terminal's Potential aggregation levels are 2,4.
  • the methods and/or steps implemented by the terminal may also be implemented by components (such as chips or circuits) that can be used in the terminal; the methods and/or steps implemented by the access network equipment, It can also be implemented by components (eg chips or circuits) available for access network equipment.
  • an embodiment of the present application further provides a communication apparatus, which is used to implement the above-mentioned various methods.
  • the communication device may be a terminal in the foregoing method embodiments, or a device including the foregoing terminal equipment, or a component usable for a terminal device; or, the communication device may be an access network device in the foregoing method embodiments, or including The apparatus of the access network equipment, or a component that can be used for the access network equipment.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the communication device may be divided into functional modules according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • the present application also provides the following communication device:
  • the communication device 600 includes a transceiver unit 61 and a processing unit 62; wherein:
  • the transceiver unit 61 is configured to receive a first message, where the first message includes the frequency domain information of the control resource set and the location information of the sub-resource set; and the processing unit 62 is configured to select a candidate in the sub-resource set
  • the physical downlink control channel is detected on the physical downlink control channel resource.
  • the location information of the sub-resource set includes at least one of the following information: frequency domain starting location information of the sub-resource set in the control resource set, and frequency resource size information of the sub-resource set.
  • the frequency domain starting position information is the index of the starting control channel unit corresponding to the sub-resource set
  • the frequency resource size information is the aggregation level or the largest aggregation corresponding to the candidate physical downlink control channel. grade.
  • the frequency resource size information is the aggregation level corresponding to the candidate physical downlink control channel
  • the processing unit 62 is configured to start from the frequency domain starting position of the sub-resource set in the control resource set Initially, the physical downlink control channel is detected on the frequency domain resource corresponding to the aggregation level.
  • the frequency resource size information is the maximum aggregation level corresponding to the candidate physical downlink control channel
  • the processing unit 62 is configured to start from the frequency domain of the sub-resource set in the control resource set Starting from the position, the physical downlink control channel is detected on the frequency domain resources corresponding to each aggregation level less than or equal to the maximum aggregation level.
  • the frequency domain starting position information is the frequency domain starting resource block position information of the sub-resource set
  • the frequency resource size information is the number of resource blocks of the sub-resource set.
  • control resource set includes one or more frequency domain parts, and the location information of the sub-resource set is the location information of the frequency-domain part where the sub-resource set is located.
  • a first set of bits in the first message is used to indicate location information of the set of sub-resources, and the first set of bits includes bits in a physical broadcast channel.
  • the first bit set is used to indicate an entry in a preset table
  • the preset table includes one or more entries, and each entry includes a frequency domain starting position of a sub-resource set information and frequency resource size information.
  • transceiver unit 61 For the specific implementation of the above-mentioned transceiver unit 61 and the processing unit 62, reference may be made to the relevant description of the terminal in the embodiment shown in FIG. 7 .
  • the apparatus receives a first message sent by an access network device, where the first message includes frequency domain information of a control resource set and location information of a sub-resource set, and a candidate in the sub-resource set
  • the physical downlink control channel is detected on the physical downlink control channel resource, so that the device can determine the frequency domain position of the candidate physical downlink control channel in the broadband CORESET, and the reliability of detecting the physical downlink control channel is improved.
  • the communication device 700 includes a processing unit 71 and a transceiver unit 72; wherein:
  • the processing unit 71 is configured to generate a first message, where the first message includes frequency domain information of the control resource set and location information of the sub-resource set;
  • the transceiver unit 72 configured to send the first message
  • the transceiver unit 72 is further configured to send the physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set.
  • the location information of the sub-resource set includes at least one of the following information: frequency domain starting location information of the sub-resource set in the control resource set, and frequency resource size information of the sub-resource set.
  • the frequency domain starting position information is the index of the starting control channel unit corresponding to the sub-resource set
  • the frequency resource size information is the aggregation level or the largest aggregation corresponding to the candidate physical downlink control channel. grade.
  • the frequency domain starting position information is the frequency domain starting resource block position information of the sub-resource set
  • the frequency resource size information is the number of resource blocks of the sub-resource set.
  • control resource set includes one or more frequency-domain parts, and the location information of the sub-resource set is the location information of the frequency-domain part where the sub-resource set is located.
  • a first set of bits in the first message is used to indicate location information of the set of sub-resources, and the first set of bits includes bits in a physical broadcast channel.
  • the first bit set is used to indicate an entry in a preset table
  • the preset table includes one or more entries, and each entry includes a frequency domain starting position of a sub-resource set information and frequency resource size information.
  • the device sends a first message, where the first message includes frequency domain information of a control resource set and location information of a sub-resource set, and the candidate physical downlink control channel resources of the sub-resource set are
  • the physical downlink control channel is sent to the terminal, and the narrowband terminal detects the physical downlink control channel on the candidate physical downlink control channel resources of the sub-resource set, so that the narrowband terminal can determine the frequency domain position of the candidate physical downlink control channel of the narrowband terminal in the broadband CORESET , which improves the reliability of detecting the physical downlink control channel.
  • FIG. 12 shows a schematic structural diagram of a simplified terminal.
  • the terminal takes a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminals, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 12 only one memory and processor are shown in FIG. 12 . In an actual end product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and radio frequency circuit with transceiving functions can be regarded as the receiving unit and the transmitting unit of the terminal (also collectively referred to as transceiving units), and the processor with processing functions can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 81 and a processing unit 82 .
  • the transceiving unit 81 may also be referred to as a receiver/transmitter (transmitter), a receiver/transmitter, a receiver/transmitter circuit, or the like.
  • the processing unit 82 may also be referred to as a processor, a processing board, a processing module, a processing device, or the like.
  • the transceiver unit 81 is used to implement the functions of the transceiver unit 61 in the embodiment shown in FIG. 10 .
  • the transceiver unit 81 is configured to execute the functions performed by the terminal in steps S101 and S102 of the embodiment shown in FIG. 7 ; the processing unit 82 is configured to execute step S103 of the embodiment shown in FIG. 7 .
  • FIG. 13 shows a schematic structural diagram of a simplified access network device.
  • the access network equipment includes a radio frequency signal transceiving and converting part and a part 92 , and the radio frequency signal transceiving and converting part also includes a transceiving unit 91 part.
  • the radio frequency signal transceiver and conversion part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 92 part is mainly used for baseband processing and control of access network equipment.
  • the transceiving unit 91 may also be referred to as a receiver/transmitter (transmitter), a receiver/transmitter, a receiver/transmitter circuit, or the like.
  • Part 92 is usually the control center of the access network device, which can usually be referred to as a processing unit, and is used to control the source access network device to perform the steps performed by the access network device in the foregoing FIG. 7 .
  • the transceiver unit 91 can be used to implement the functions of the transceiver unit 71 in the embodiment shown in FIG. 11 .
  • the 92 part may include one or more single boards, and each single board may include one or more processors and one or more memories, and the processors are used to read and execute programs in the memories to implement baseband processing functions and access to control of network equipment. If there are multiple boards, each board can be interconnected to increase processing capacity. As an optional implementation manner, one or more processors may be shared by multiple boards, or one or more memories may be shared by multiple boards, or one or more processors may be shared by multiple boards at the same time. device.
  • the transceiver unit 91 is configured to perform the functions performed by the access network device in steps S101 and S102 of the embodiment shown in FIG. 7 .
  • Embodiments of the present application further provide a computer-readable storage medium, where computer programs or instructions are stored in the computer-readable storage medium, and when the computer programs or instructions are executed, the methods in the foregoing embodiments are implemented.
  • the embodiments of the present application also provide a computer program product containing instructions, when the instructions are executed on a computer, the computer executes the methods in the above embodiments.
  • An embodiment of the present application further provides a communication system, including the above communication device.
  • one or more of the above units or units may be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built into a system on chip (SoC) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • the internal processing of the processor may further include necessary hardware accelerators, such as field programmable gate arrays (FPGA), programmable logic devices (programmable logic devices). device, PLD), or a logic circuit that implements dedicated logic operations.
  • the hardware may be CPU, microprocessor, digital signal processing (DSP) chip, microcontroller unit (MCU), artificial intelligence processor, ASIC, Any or any combination of SoCs, FPGAs, PLDs, dedicated digital circuits, hardware accelerators, or non-integrated discrete devices that may or may not run the necessary software to perform the above method flows.
  • DSP digital signal processing
  • MCU microcontroller unit
  • ASIC any or any combination of SoCs, FPGAs, PLDs, dedicated digital circuits, hardware accelerators, or non-integrated discrete devices that may or may not run the necessary software to perform the above method flows.
  • an embodiment of the present application further provides a chip system, including: at least one processor and an interface, the at least one processor is coupled to the memory through the interface, and when the at least one processor runs a computer program or instruction in the memory At the time, the chip system is made to execute the method in any of the above method embodiments.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which are not specifically limited in this embodiment of the present application.
  • At least one (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner to facilitate understanding.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置。接入网设备发送第一消息,该第一消息包括控制资源集合的频域信息和子资源集合的位置信息,并在子资源集合的候选物理下行控制信道资源上向终端发送物理下行控制信道,窄带终端在子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,使得窄带终端可以在宽带CORESET中确定窄带终端的候选物理下行控制信道的频域位置,提高检测出物理下行控制信道的可靠性。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
如图1所示的宽带终端和窄带终端接入网络的示意图,随着物联网和海量机器类通信(massive machine-type communications,mMTC)技术的发展,在家庭、工业、公共场所等各应用场景中,终端逐渐呈现大数量、多形态等特征。例如,一种工业自动化场景中,一个厂房存在大量的监控设备(monitoring device)、机器(machine)、传感器(sensor)等;又例如,一种家庭和生活场景中,存在手机、穿戴式设备、智能家电、车载终端等。多形态终端中,部分终端是宽带宽能力终端,如手机、视频、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备等,带宽能力可以为100MHz、50MHz、20MHz等;部分终端是窄带宽能力终端,如传感器、穿戴式设备等,带宽能力可以为5MHz、2MHz等。
宽带终端可以通过现有的初始接入过程确定候选物理下行控制信道(physical downlink control channel candidate,PDCCH candidate),并在候选PDCCH对应的时频资源上接收PDCCH。然而,由于窄带终端接收的带宽范围小于宽带终端的接收范围,现有技术只适用于宽带终端,并未考虑窄带终端如何接收PDCCH,因此需要提供一种可用于窄带终端的PDCCH的接收方法,以提高检测出PDCCH的可靠性。
发明内容
本申请提供了一种通信方法及装置,以解决窄带终端如何在宽带控制资源集合中确定窄带终端的候选物理下行控制信道的频域位置的问题,提高检测出物理下行控制信道的可靠性。
第一方面,提供了一种通信方法,所述方法包括:终端接收第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;以及终端在所述子资源集合的候选物理下行控制信道资源上检测物理下行控制信道。在该方面中,终端接收接入网设备发送的第一消息,该第一消息包括控制资源集合的频域信息和子资源集合的位置信息,并在子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,可以在控制资源集合中确定该终端的候选物理下行控制信道的频域位置,提高检测出物理下行控制信道的可靠性。该终端可以是窄带终端或宽带终端。
在一种可能的实现中,接入网设备在发送第一消息之前,在控制资源集合中确定子资源集合的位置信息,然后生成第一消息。示例性的,该控制资源集合可以是前述宽带终端的控制资源集合。
在又一种可能的实现中,所述子资源集合的位置信息包括以下至少一个信息:所述子资源集合在所述控制资源集合中的频域起始位置信息,所述子资源集合的频率资源大小信息。在该实现中,终端在控制资源集合中确定候选物理下行控制信道的频率位置,因此,子资源集合的位置信息包括子资源集合在控制资源集合中的频域起始位置信息和/或子资 源集合在控制资源集合中的频率资源大小信息。
在又一种可能的实现中,所述频域起始位置信息为所述子资源集合对应的起始控制信道单元的索引,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级或最大的聚合等级。从而,根据子资源集合对应的起始控制信道单元的索引、候选物理下行控制信道对应的聚合等级或最大的聚合等级可以确定该终端的候选物理下行控制信道。
在又一种可能的实现中,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级,所述在所述子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,包括:从所述子资源集合在所述控制资源集合中的频域起始位置开始,在所述聚合等级对应的频域资源上检测所述物理下行控制信道。
在又一种可能的实现中,所述频率资源大小信息为所述候选物理下行控制信道对应的最大聚合等级,所述在所述子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,包括:从所述子资源集合在所述控制资源集合中的频域起始位置开始,分别在小于或等于所述最大聚合等级的每个聚合等级对应的频域资源上检测所述物理下行控制信道。从而,当该子资源集合的频率资源大小信息也可以是候选物理下行控制信道对应的最大AL时,终端从子资源集合在CORESET#0中的起始CCE开始,遍历小于或等于该最大AL的每个AL对应的频域资源上检测物理下行控制信道,以准确地检测物理下行控制信道。
第二方面,提供了一种通信方法,所述方法包括:接入网设备发送第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;以及接入网设备在所述子资源集合的候选物理下行控制信道资源上发送物理下行控制信道。在该方面中,接入网设备发送第一消息,该第一消息包括控制资源集合的频域信息和子资源集合的位置信息,并在子资源集合的候选物理下行控制信道资源上向终端发送物理下行控制信道,窄带终端在子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,使得窄带终端可以在宽带CORESET中确定窄带终端的候选物理下行控制信道的频域位置,提高检测出物理下行控制信道的可靠性。
在一种可能的实现中,所述子资源集合的位置信息包括以下至少一个信息:所述子资源集合在所述控制资源集合中的频域起始位置信息,所述子资源集合的频率资源大小信息。
在又一种可能的实现中,所述频域起始位置信息为所述子资源集合对应的起始控制信道单元的索引,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级或最大的聚合等级。
结合上述第一方面或第二方面或第一方面、第二方面的任一种实现,在又一种可能的实现中,所述频域起始位置信息为所述子资源集合的频域起始资源块位置信息,所述频率资源大小信息为所述子资源集合的资源块数量。从而,终端根据子资源集合的频域起始资源块位置信息和子资源集合的资源块数量,可以准确地确定该终端的候选物理下行控制信道。
结合上述第一方面或第二方面或第一方面、第二方面的任一种实现,在又一种可能的实现中,所述控制资源集合包括一个或多个频域部分,所述子资源集合的位置信息为所述子资源集合所在的频域部分的位置信息。在该实现中,在第一消息指示的终端所需检测的频域部分,可以准确地检测物理下行控制信道。
结合上述第一方面或第二方面或第一方面、第二方面的任一种实现,在又一种可能的实现中,所述第一消息中的第一比特集合用于指示所述子资源集合的位置信息,所述第一比特集合包括物理广播信道中的比特。通过现有协议定义的PBCH中的预留比特或新定义的PBCH中的部分比特,可以准确地指示上述子资源集合的位置信息,提高了资源的利用率。
结合上述第一方面或第二方面或第一方面、第二方面的任一种实现,在又一种可能的实现中,所述第一比特集合用于指示预设表格中的表项,所述预设表格包括一个或多个表项,每个表项中包括一个子资源集合的频域起始位置信息和频率资源大小信息。
结合上述第一方面或第二方面或第一方面、第二方面的任一种实现,在又一种可能的实现中,所述预设表格为基于用于指示控制资源集合的表格横向或纵向扩展的表项。
第三方面,提供了一种通信装置用于执行上述第一方面或第一方面的任一可能的实现中的方法。该通信装置可以为上述第一方面或第一方面的任一可能的实现中的终端,或者应用于终端中的模块,例如芯片或芯片系统。其中,该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第三方面,在一种可能的实现中,通信装置包括:收发单元和处理单元;其中,所述收发单元,用于接收第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;以及所述处理单元,用于在所述子资源集合的候选物理下行控制信道资源上检测物理下行控制信道。
可选地,所述子资源集合的位置信息包括以下至少一个信息:所述子资源集合在所述控制资源集合中的频域起始位置信息,所述子资源集合的频率资源大小信息。
可选地,所述频域起始位置信息为所述子资源集合对应的起始控制信道单元的索引,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级或最大的聚合等级。
可选地,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级,所述处理单元,用于从所述子资源集合在所述控制资源集合中的频域起始位置开始,在所述聚合等级对应的频域资源上检测所述物理下行控制信道;
所述频率资源大小信息为所述候选物理下行控制信道对应的最大聚合等级,所述处理单元,用于从所述子资源集合在所述控制资源集合中的频域起始位置开始,分别在小于或等于所述最大聚合等级的每个聚合等级对应的频域资源上检测所述物理下行控制信道。
结合上述第三方面,在又一种可能的实现中,通信装置包括:输入接口、输出接口和处理电路;其中,所述输入接口,用于接收第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;以及所述处理电路,用于在所述子资源集合的候选物理下行控制信道资源上检测物理下行控制信道。
可选地,所述子资源集合的位置信息包括以下至少一个信息:所述子资源集合在所述控制资源集合中的频域起始位置信息,所述子资源集合的频率资源大小信息。
可选地,所述频域起始位置信息为所述子资源集合对应的起始控制信道单元的索引,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级或最大的聚合等级。
可选地,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级,所述处理电路,用于从所述子资源集合在所述控制资源集合中的频域起始位置开始,在所述聚合等级对应的频域资源上检测所述物理下行控制信道;
所述频率资源大小信息为所述候选物理下行控制信道对应的最大聚合等级,所述处理电路,用于从所述子资源集合在所述控制资源集合中的频域起始位置开始,分别在小于或等于所述最大聚合等级的每个聚合等级对应的频域资源上检测所述物理下行控制信道。
示例性地,该通信装置还包括存储器,该存储器与该至少一个处理器耦合,该至少一个处理器用于运行存储器中存储的程序指令,以使得所述通信装置执行上述第一方面或第一方面的任一可能的实现中的方法。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该至少一个处理器耦合,该至少一个处理器可以调用并执行该存储器中存储的程序指令,以使得所述通信装置执行上述第一方面或第一方面的任一可能的实现中的方法。
示例性地,该通信装置还包括通信接口,该通信接口用于该通信装置与其它设备进行通信。当该通信装置为终端时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该通信装置包括:至少一个处理器和通信接口,用于执行上述第一方面或第一方面的任一可能的实现中的方法,具体地包括:该至少一个处理器利用该通信接口与外部通信;该至少一个处理器用于运行计算机程序,使得该通信装置执行上述第一方面或第一方面的任一可能的实现中的方法。可以理解,该外部可以是处理器以外的对象,或者是该通信装置以外的对象。
在另一种可能的设计中,该通信装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
其中,第三方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第四方面,提供了一种通信装置用于执行上述第二方面或第二方面的任一可能的实现中的方法。该通信装置可以为上述第二方面或第二方面的任一可能的实现中的接入网设备,或者应用于接入网设备中的模块,例如芯片或芯片系统。其中,该通信装置包括实现上述方法相应的模块、单元、或means,该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第四方面,在一种可能的实现中,通信装置包括:收发单元;其中,所述收发单元,用于发送第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;以及所述收发单元,还用于在所述子资源集合的候选物理下行控制信道资源上发送物理下行控制信道。
可选地,所述子资源集合的位置信息包括以下至少一个信息:所述子资源集合在所述控制资源集合中的频域起始位置信息,所述子资源集合的频率资源大小信息。
可选地,所述频域起始位置信息为所述子资源集合对应的起始控制信道单元的索引,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级或最大的聚合等级。
结合上述第四方面,在又一种可能的实现中,通信装置包括:输入接口、输出接口和处理电路;其中,所述输出接口,用于发送第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;以及所述输出接口,还用于在所述子资源集合的候选物理下行控制信道资源上发送物理下行控制信道。
可选地,所述子资源集合的位置信息包括以下至少一个信息:所述子资源集合在所述控制资源集合中的频域起始位置信息,所述子资源集合的频率资源大小信息。
可选地,所述频域起始位置信息为所述子资源集合对应的起始控制信道单元的索引,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级或最大的聚合等级。
示例性地,该通信装置还包括存储器,该存储器与该至少一个处理器耦合,该至少一个处理器用于运行存储器中存储的程序指令,以使得所述通信装置执行上述第二方面或第二方面的任一可能的实现中的方法。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该至少一个处理器耦合,该至少一个处理器可以调用并执行该存储器中存储的程序指令,以使得所述通信装置执行上述第二方面或第二方面的任一可能的实现中的方法。
示例性地,该通信装置还包括通信接口,该通信接口用于该通信装置与其它设备进行通信。当该通信装置为接入网设备时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该通信装置包括:至少一个处理器和通信接口,用于执行上述第二方面或第二方面的任一可能的实现中的方法,具体地包括:该至少一个处理器利用该通信接口与外部通信;该至少一个处理器用于运行计算机程序,使得该通信装置执行上述第二方面或第二方面的任一可能的实现中的方法。可以理解,该外部可以是处理器以外的对象,或者是该通信装置以外的对象。
在另一种可能的设计中,该通信装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
其中,第四方面中任一种设计方式所带来的技术效果可参见上述第二方面中不同设计方式所带来的技术效果,此处不再赘述。
结合上述第三方面或第四方面或第三方面、第四方面的任一种实现,在又一种可能的实现中,所述频域起始位置信息为所述子资源集合的频域起始资源块位置信息,所述频率资源大小信息为所述子资源集合的资源块数量。
结合上述第三方面或第四方面或第三方面、第四方面的任一种实现,在又一种可能的实现中,所述控制资源集合包括一个或多个频域部分,所述子资源集合的位置信息为所述子资源集合所在的频域部分的位置信息。
结合上述第三方面或第四方面或第三方面、第四方面的任一种实现,在又一种可能的实现中,所述第一消息中的第一比特集合用于指示所述子资源集合的位置信息,所述第一比特集合包括物理广播信道中的比特。
结合上述第三方面或第四方面或第三方面、第四方面的任一种实现,在又一种可能的实现中,所述第一比特集合用于指示预设表格中的表项,所述预设表格包括一个或多个表项,每个表项中包括一个子资源集合的频域起始位置信息和频率资源大小信息。
第五方面,提供了一种通信系统,包括上述第三方面或第三方面的任一种实现中的通信装置、以及第四方面或第四方面的任一种实现中的通信装置。
第六方面,提供了一种计算机可读存储介质,存储有计算机程序,当其在计算机上运行时,上述各方面或各方面的任一种实现所述的方法被执行。
第七方面,提供了一种计算机程序产品,当其在计算机上运行时,使得上述各方面或各方面的任一种实现所述的方法被执行。
第八方面,提供了一种计算机程序,当其在计算机上运行时,使得上述各方面或各方面的任一种实现所述的方法被执行。
附图说明
图1为宽带终端和窄带终端接入网络的示意图;
图2为宽带终端初始接入的流程示意图;
图3为同步信号/物理广播信道块的内部结构示意图;
图4为CORESET#0中CCE和REG的映射示意图;
图5为本申请实施例适用的一种通信系统的架构示意图;
图6为本申请实施例提供的通信装置400的结构示意图;
图7为本申请实施例提供的一种通信方法的流程示意图;
图8为本申请实施例示例的一种子资源集合的位置信息的指示示意图;
图9为本申请实施例示例的又一种子资源集合的位置信息的指示示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的又一种通信装置的结构示意图;
图12为本申请实施例提供的一种简化的终端的结构示意图;
图13为本申请实施例提供的一种简化的接入网设备的结构示意图。
具体实施方式
通过初始接入过程,宽带终端可以在CORESET#0中的任意带宽位置上检测候选物理下行控制信道。下面对宽带终端的初始接入过程进行简要介绍。
初始接入的目的主要是获得与基站的下行同步,以及获取终端所在小区的系统信息。
如图2所示,为宽带终端初始接入的流程示意图。在图2所示的同步信号块(synchronization signal block,SSB)所在的资源图中,横轴为时域,单位可以是子帧、时隙、微时隙、符号等,这里示例横轴的单位为时隙;纵轴为频域,单位可以是子载波、带宽部分(bandwidth part,BWP)等,这里示例纵轴的单位为子载波。初始接入过程主要包括如下步骤:
步骤一:终端在多个频域位置上逐一尝试,在每个频域位置上通过对同步序列的逐符号检测,实现与基站下行同步,并获取SSB。SSB中包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)以及物理广播信道(physical broadcast channel,PBCH),其结构如图3所示。图3中,左侧数字表示频域位置,单位为资源单元(resource element,RE),即频域上为一个子载波;右侧数字表示当子载波间 隔(subcarrier space,SCS)=15kHz时,PSS/SSS占用带宽为1.92MHz,PBCH占用带宽为3.6MHz;或者,右侧数字表示当SCS=30kHz时,PSS/SSS占用带宽为3.84MHz,PBCH占用带宽为7.2MHz。
步骤二:终端从PBCH中获取主信息块(master information block,MIB)。PBCH与MIB的详细介绍请见后文。
步骤三:终端从MIB中的物理下行控制信道-ConfigSIB1字段中,确定公共搜索空间(common search space,CSS),如图2中箭头所指的两个时隙,以及确定CORESET#0。其中,CSS用于终端确定CORESET#0存在的时间位置,CORESET#0用于终端确定检索物理下行控制信道(physical downlink control channel,物理下行控制信道)的时频资源范围。CORESET#0的具体配置将在后文中阐述。
步骤四:从步骤三中的CORESET#0和CSS确定的时频资源中盲检测SI-RNTI加扰的DCI,盲检测的方法将在后文中阐述。
步骤五:根据该DCI的指示,在同时隙中获取系统信息,例如系统信息块(system information block,SIB)1。终端从SIB1中可以获得初始带宽部分的配置信息,以及随机接入资源的配置信息、寻呼资源的配置信息等。
PBCH与MIB
PBCH的载荷(payload)包括
Figure PCTCN2021078305-appb-000001
其中,
Figure PCTCN2021078305-appb-000002
共A个比特用于承载MIB信息,
Figure PCTCN2021078305-appb-000003
共8个用于承载其他信息。其中,MIB信息内容如表1所示:
表1 MIB中各字段的含义及比特数
Figure PCTCN2021078305-appb-000004
其中,PDCCH-ConfigSIB1指示的8比特信息中,4比特为CSS的指示信息,4比特为CORESET#0的指示信息,均通过查找协议中对应表格的方式获得具体参数。CORESET#0的频率范围包括24RB、48RB、96RB三种参数,其中96RB仅支持15kHz的SCS,24RB、48RB支持15kHz或30kHz的SCS。CORESET#0的时域范围包括1个符号、2个符号、3个符号三种参数。
其中,
Figure PCTCN2021078305-appb-000005
共8个比特用于指示以下信息:
1)
Figure PCTCN2021078305-appb-000006
是系统帧号的低四位,与MIB中的systemFrameNumber字段一起(共10bit)指示系统帧号。
2)
Figure PCTCN2021078305-appb-000007
作为半帧指示
Figure PCTCN2021078305-appb-000008
指示该同步信号/物理广播信道块突发(SSBburst)位于一个帧的前半帧还是后半帧。
3)其余三个比特
Figure PCTCN2021078305-appb-000009
根据SSB所在频段和子载波间隔的不同,按照如下规则进行使用:
a)在频率范围(frequency range,FR)1频段(<6GHz)的授权频谱上,当SSB的子载波间隔为15kHz时,SSBburst中的SSB数量最多为4;当SSB的子载波间隔为30kHz时,SSBburst中的SSB数量最多为8,
Figure PCTCN2021078305-appb-000010
是k SS/PBCHblock的最高位,
Figure PCTCN2021078305-appb-000011
保留。
b)在FR2频段(>24GHz)授权频谱上,SSBburst中的SSB数量最多为64,
Figure PCTCN2021078305-appb-000012
是指示SSB索引(index)信息的最高三位。
根据以上描述,
Figure PCTCN2021078305-appb-000013
共8个比特中,根据所在频段的不同,会有0~2比特的保留字段。本申请中,将考虑利用这几个保留比特,和/或MIB中的spare字段,指示其他信息。
物理下行控制信道
CSS用于终端确定CORESET#0存在的时间位置,CORESET#0用于终端确定检索物理下行控制信道的时频资源范围,即在CORESET#0中可以确定候选物理下行控制信道的时频资源位置。终端检测候选物理下行控制信道,将候选物理下行控制信道上的数据进行解扰,确定该候选物理下行控制信道上是否有自己需要接收的DCI。
CORESET#0中,规定资源单元组捆绑大小(REG bundle size)为6,此时REG bundle的时频资源为以下三种:1符号*6资源单元组(resource element group,REG),2符号*3REG,3符号*2REG。其中,REG是时域占用一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,频域占用一个资源块(resource block,RB)的物理资源单位。REG bundle为时域和/或频域连续的1、2、3、6个REG。
控制信道单元(control-channel element,CCE)是构成候选物理下行控制信道的基本单元,占用6个REG,一个候选物理下行控制信道可由1、2、4、8、16个CCE组成,该数量被称为聚合等级(aggregation level,AL)。CORESET#0中,规定AL=4、8、16。
可以理解的是,REG为资源上的概念,CCE为候选物理下行控制信道的组成部分的概念。因此,可以考虑CCE是如何映射到REG资源上的。CCE映射到REG存在确定的规则,包括基于非交织的映射和基于交织的映射。CORESET#0中,规定CCE与REG是基于交织映射的,交织规则为:
Figure PCTCN2021078305-appb-000014
x=cR+r
r=0,1,…,R-1
c=0,1,…,C-1
Figure PCTCN2021078305-appb-000015
其中,对于CORESET#0,L=6,R=2,
Figure PCTCN2021078305-appb-000016
Figure PCTCN2021078305-appb-000017
Figure PCTCN2021078305-appb-000018
通过MIB中的物理下行控制信道-ConfigSIB1信令查表指示。其中,CORESET#0的可选频率范围为
Figure PCTCN2021078305-appb-000019
CORESET#0的可选时域范围为
Figure PCTCN2021078305-appb-000020
个符号。一种示例的CORESET#0如下表2所示:
表2
Figure PCTCN2021078305-appb-000021
CORESET#0中的候选物理下行控制信道的检索规则
根据上面的描述,针对CORESET#0的
Figure PCTCN2021078305-appb-000022
三种情况,以及
Figure PCTCN2021078305-appb-000023
符号三种情况,共有9种情况的REG bundle排布,并将REG bundle与CCE索引的对应关系进行了整理,如图4所示。图4中,竖方向表示频域(一个格子表示1个RB),横方向表示时域(一个格子表示1个符号)。
Figure PCTCN2021078305-appb-000024
产生的影响假设为0。
图4中,每个REG bundle对应的CCE Index标在右侧。确定候选物理下行控制信道时,UE认为CCE的索引连续的4、8或16个CCE为一个候选物理下行控制信道。以
Figure PCTCN2021078305-appb-000025
Figure PCTCN2021078305-appb-000026
(图4的第二列)为例,当终端尝试AL=4时,终端认为index=0、1、2、3的CCE组成一个候选物理下行控制信道,index=4、5、6、7的CCE组成另一个候选物理下行控制信道。此时该候选物理下行控制信道占据的频域带宽为6REG bundle(包括编号为0、2、4、6、1、3的CCE所在带宽,或编号为4、6、1、3、5、7的CCE所在带宽)。 各种情况下候选物理下行控制信道占据RB数如下表3所示:
表3
Figure PCTCN2021078305-appb-000027
当SCS=15kHz时,上述候选物理下行控制信道的对应带宽如下表4所示:
表4
Figure PCTCN2021078305-appb-000028
当SCS=30kHz时,上述候选物理下行控制信道的对应带宽如下表5所示:
表5
Figure PCTCN2021078305-appb-000029
Figure PCTCN2021078305-appb-000030
其中,表4和表5中带宽大于2MHz且小于或等于5MHz的部分,表示5MHz带宽能力的窄带终端可以接收到候选物理下行控制信道的情况;表4和表5中带宽小于或等于2MHz的部分,表示2MHz带宽能力的窄带终端可以接收到候选物理下行控制信道的情况。
宽带终端可以在CORESET#0中的任意带宽位置上检索候选物理下行控制信道。然而,由于窄带终端接收的带宽范围小于宽带终端的接收范围,上述方法只适用于宽带终端,并未考虑窄带终端如何接收PDCCH。对于窄带终端来说,即使候选物理下行控制信道带宽未超过窄带终端的带宽能力,由于窄带终端不知道这些候选物理下行控制信道所在的具体频域位置,接入网设备发送的物理下行控制信道可能不在窄带终端检索的带宽范围内。窄带终端在一个时间机会上只能获得其带宽能力之内的候选物理下行控制信道,导致可能收不到接入网设备发送的物理下行控制信道。
本申请提供一种通信方案,接入网设备发送第一消息,该第一消息包括控制资源集合的频域信息和子资源集合的位置信息,并在子资源集合的候选物理下行控制信道资源上向终端发送物理下行控制信道,窄带终端在子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,使得窄带终端可以在宽带CORESET中确定窄带终端的候选物理下行控制信道的频域位置,提高检测出物理下行控制信道的可靠性。
本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、增强的LTE(enhanced long term evolution,eLTE)、第五代(5th generation,5G)系统或NR等,本申请中涉及的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of things,IoT)、车联网通信系统或者其他通信系统。
图5给出了本申请实施例适用的一种通信系统的结构示意图。该通信系统可以包括至少一个接入网设备100(图中仅示出1个)以及与接入网设备100连接的一个或多个窄带终端200(图中仅示出1个),还可以包括与接入网设备100连接的一个或多个宽带终端300(图中仅示出1个)。接入网设备在#1~#4波束上发送SSB等,宽带终端和/或窄带终端在 #1~#4波束中的任一个或多个波束上接收SSB。
可选地,本申请实施例中的宽带终端,是指可以利用3GPP现有NR标准(例如,3GPP Release 15或3GPP Release16)定义的初始接入网络、获取系统信息的终端,其带宽能力大于或等于100MHz;或者宽带终端可以是3GPP Release 17标准可能定义的初始接入网络、获取系统信息的终端,其带宽能力大于或等于20MHz。本申请实施例中的窄带终端,是指不能完全利用现有标准初始接入网络、获取系统信息的终端,其带宽能力可以为5MHz、2MHz等。
作为示例而非限定,在本申请实施例中,穿戴式设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。穿戴式设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。穿戴式设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,窄带终端还可以是IoT系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,窄带终端还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端)、接收接入网设备的控制信息与下行数据,并发送电磁波,向接入网设备传输上行数据。
可选地,本申请实施例中的宽带终端具体可以是接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理、用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备,5G网络中的终端或者未来演进的PLMN中的终端或者未来车联网中的终端等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,宽带终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端、增强现实终端、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。
可选的,本申请实施例中的接入网设备可以是用于与窄带终端和宽带终端通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限于:演进型节点B(evolved node B,eNB),基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者传输接收点(transmission reception point,TRP)等。该接入网设备还可以为5G 系统中的gNB或TRP或TP,或者5G系统中的基站的一个或一组(包括多个天线面板)天线面板。此外,该接入网设备还可以为构成gNB或TP的网络节点,如BBU,或分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。此外,gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层(physical layer,PHY)的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。
可选的,本申请实施例中的接入网设备和宽带终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。接入网设备和宽带终端之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对接入网设备和宽带终端之间所使用的频谱资源不做限定。
可选的,本申请实施例中的终端或者接入网设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对终端或者接入网设备的应用场景不做限定。
可选的,在本申请实施例中,终端或接入网设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或接入网设备,或者,是终端或接入网设备中能够调用程序并执行程序的功能模块。
换言之,本申请实施例中的终端或者接入网设备的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的终端或者接入网设备的相关功能可以通过图6中的通信装置 400来实现。图6所示为本申请实施例提供的通信装置400的结构示意图。该通信装置400包括一个或多个处理器401、407,通信线路402,以及至少一个通信接口(图6中仅是示例性的以包括通信接口404为例进行说明)。可选地,还可以包括存储器403。
处理器401可以是一个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路402可包括一通路,用于连接不同组件之间。
通信接口404,可以是收发模块,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。例如,该收发模块可以是收发器、收发机一类的装置。可选地,该通信接口404也可以是位于处理器401内的收发电路,用以实现处理器的信号输入和信号输出。
存储器403可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路402与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的计算机执行指令,并由处理器401、407来控制执行。处理器401、407用于执行存储器403中存储的计算机执行指令,从而实现本申请实施例中提供的通信方法。
或者,本申请实施例中,也可以是处理器401、407执行本申请下述实施例提供的通信方法中的处理相关的功能,通信接口404负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401、407可以分别包括一个或多个CPU,例如图6中,处理器401包括CPU0和CPU1,处理器407包括CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置400可以包括多个处理器,例如图6中的处理器401和处理器407。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置400还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。
上述的通信装置400可以是一个通用装置或者是一个专用装置。例如通信装置400可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端、嵌入式设备或具有图6中类似结构的设备。本申请实施例不 限定通信装置400的类型。
下面将结合图1至图11对本申请实施例提供的通信方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不做具体限定。
如图7所示,为本申请实施例提供的一种通信方法的流程示意图,示例性地,该方法可以包括以下步骤:
S101、接入网设备发送第一消息,该第一消息包括控制资源集合的频域信息和子资源集合的位置信息。相应地,终端接收该第一消息。
本实施例中,接入网设备发送第一消息,该第一消息包括控制资源集合的频域信息和控制资源集合中的子资源集合的位置信息。终端接收该第一消息。举例说明,该第一消息可以是SSB。该终端可以是上述窄带终端,也可以是上述宽带终端。其中,接入网设备在发送第一消息之前,在控制资源集合中确定子资源集合的位置信息,然后生成第一消息。示例性的,该控制资源集合可以是前述宽带终端的控制资源集合。从而,该终端可以通过接收该第一消息,确定该终端的候选物理下行控制信道。
该子资源集合的位置信息用于指示终端检测候选物理下行控制信道的位置。终端在控制资源集合中确定终端的候选物理下行控制信道的频率位置。具体地,该子资源集合的位置信息包括以下至少一个信息:子资源集合在控制资源集合中的频域起始位置信息,子资源集合的频率资源大小信息。
在一个实现中,该子资源集合的频域起始位置信息为子资源集合对应的起始CCE的索引,该频率资源大小信息为候选物理下行控制信道对应的AL或最大的AL。举例说明,如图8所示,
Figure PCTCN2021078305-appb-000031
个RB、
Figure PCTCN2021078305-appb-000032
个符号时,假设子资源集合在CORESET#0中的频域起始位置信息为CORESET#0中索引为4的CCE,且频率资源大小信息为CORESET#0对应的AL=2,则该子资源集合占据CCE index=4、6、1、3、5对应的5个REG。又例如,
Figure PCTCN2021078305-appb-000033
个RB、
Figure PCTCN2021078305-appb-000034
个符号时,假设子资源集合在CORESET#0中的频域起始位置信息为CORESET#0中索引为4的CCE,且频率资源大小信息为CORESET#0对应的AL=4,则该子资源集合占据CCE index=4,6,1,3,5,7对应的6个REG。需要说明的是,本实施例中,是以控制资源集合为CORESET#0为例进行描述,本申请不限制该控制资源集合,也可以是所有公共信令或终端专属信令配置的CORESET。从而,根据子资源集合对应的起始CCE的索引、候选物理下行控制信道对应的AL或最大的AL可以确定该终端的候选物理下行控制信道。
举例说明,CORESET#0中可能存在多个具有相同索引的CCE。如图8所示,存在3个索引为4的CCE,还可以指示子资源集合对应的起始CCE是CORESET#0中的哪个索引为4的CCE。例如,指示第一个索引为4的CCE为子资源集合对应的起始CCE。具体实现时,可以是在第一消息中或通过其他的消息指示第几个索引为4的CCE为子资源集合对应的起始CCE。当然,接入网设备和终端之间也可以预先协商或预先配置第几个索引为4 的CCE为子资源集合对应的起始CCE。从而,通过预先协商、预先配置或指示,可以准确地确定具体是多个相同的CCE index中的第几个CCE index,从而终端可以准确地确定该终端的候选物理下行控制信道。
另外,终端在其带宽能力范围内,可以检测多种AL的候选物理下行控制信道。该子资源集合的频率资源大小信息可以是候选物理下行控制信道对应的AL,则终端从子资源集合在CORESET#0中的起始CCE开始,在该AL对应的频域资源上检测物理下行控制信道。举例说明,在图8中,子资源集合对应的起始CCE=4,候选物理下行控制信道对应的AL=4,则终端检测CCE index=4、6、1、3、5、7对应的6个REG。该子资源集合的频率资源大小信息也可以是候选物理下行控制信道对应的最大AL,则终端从子资源集合在CORESET#0中的起始CCE开始,在小于或等于该最大AL的每个AL对应的频域资源上检测物理下行控制信道。举例说明,在图8中,子资源集合对应的起始CCE=4,候选物理下行控制信道对应的最大AL=4,假设小于或等于最大AL=4的AL包括AL=2和AL=4两种情况,则终端分别在AL=2和AL=4对应的频域资源上检测物理下行控制信道。具体地,AL=2时,终端检测CCE index=4、6、1、3、5对应的5个REG;AL=4时,终端检测CCE index=4、6、1、3、5、7对应的6个REG。即当该子资源集合的频率资源大小信息也可以是候选物理下行控制信道对应的最大AL时,终端从子资源集合在CORESET#0中的起始CCE开始,遍历小于或等于该最大AL的每个AL对应的频域资源上检测物理下行控制信道,以准确地检测物理下行控制信道。
在另一个实现中,该子资源集合的频域起始位置信息为子资源集合的频域起始资源块位置信息,该子资源集合的频率资源大小信息为子资源集合的资源块数量。具体地,可以指示CORESET#0中相对于CORESET#0或SSB的起始资源块的一个频率位置偏移量作为终端的子资源集合的频域起始资源块位置,或者指示CORESET#0中的一个RB索引作为终端的子资源集合的频域起始资源块位置,且指示一个资源块数量作为终端的子资源集合的频率资源大小。如图9所示,
Figure PCTCN2021078305-appb-000035
个RB、
Figure PCTCN2021078305-appb-000036
个符号时,可以指示终端的子资源集合的频域起始资源块位置为相对于CORESET#0或SSB的频率起始位置偏移6个RB的频率资源位置,以及指示子资源集合的资源块数量为18RB,则终端的子资源集合的频率资源大小为18RB。或者,假设SCS=30kHz,可以指示终端的子资源集合的频域起始资源块位置为相对于CORESET#0或SSB的频率起始位置偏移0MHz的频率资源位置,终端的子资源集合的频率资源大小为5MHz。从而,终端根据子资源集合的频域起始资源块位置信息和子资源集合的资源块数量,可以准确地确定该终端的候选物理下行控制信道。
可以理解的是,上述实现中关于终端的子资源集合的频域起始资源块位置信息和关于子资源集合的频率资源大小信息可以组合实现,举例说明,在又一个实现中,终端的子资源集合的频域起始资源块位置为子资源集合对应的起始控制信道单元的索引,子资源集合的频率资源大小信息为子资源集合的资源块数量。在又一个实现中,终端的子资源集合的频域起始资源块位置为子资源集合的频域起始资源块位置信息,子资源集合的频率资源大 小信息为候选物理下行控制信道对应的聚合等级或最大的聚合等级。
在又一个实现中,控制资源集合可以包括一个或多个频域部分。终端的子资源集合的位置信息为子资源集合所在的频域部分的位置信息。举例说明,CORESET#0可以平均地划分为4个频域部分,当然也可以不平均地划分为4个频域部分。则第一消息可以包括终端所需检测的频域部分。进一步地,第一消息还可以指示划分的频域部分总数,或者该频域部分总数是按照预先协商的规则划分的。在该实现中,在第一消息指示的终端所需检测的频域部分,可以准确地检测物理下行控制信道。
在上述一个或多个实现中,可以通过第一消息中的第一比特集合用于指示上述子资源集合的位置信息,该第一比特集合包括PBCH中的比特。举例说明,PBCH中的比特可以包括当频率范围<6GHz时,保留的
Figure PCTCN2021078305-appb-000037
共2比特;或者,PBCH中的比特包括表1所示的MIB中保留的1比特;或者,PBCH中的比特包括
Figure PCTCN2021078305-appb-000038
个比特和MIB中保留的1比特;或者,第一比特集合为新定义的PBCH中的部分比特,该新定义的PBCH包括的字段与前述描述的PBCH所定义的字段可以不同。具体地,可以进一步通过1比特的指示信息指示该第一比特集合为新定义的PBCH中的部分比特,或者该第一比特集合为
Figure PCTCN2021078305-appb-000039
个比特和/或MIB中的预留比特。例如,该指示信息为“1”时,则指示该第一比特集合为新定义的PBCH中的部分比特,终端在该新定义的PBCH中的部分比特上接收该第一消息,以获取其指示的子资源集合的位置信息;该指示信息为“0”时,则指示该第一比特集合为
Figure PCTCN2021078305-appb-000040
个比特和/或MIB中的预留比特,终端接收到该第一消息,解析
Figure PCTCN2021078305-appb-000041
和/或MIB中的预留比特,获取该子资源集合的位置信息。该第一比特集合为
Figure PCTCN2021078305-appb-000042
个比特终端可以在物理层接收并解析该第一比特集合,获得该子资源集合的位置信息;该第一比特集合为MIB中的预留比特,终端可以在无线资源控制(radio resource control,RRC)层或物理层解析该第一比特集合,获取该子资源集合的位置信息;或者该第一比特集合为
Figure PCTCN2021078305-appb-000043
个比特和MIB中的预留比特,终端可以在物理层或RRC层解析该第一比特集合,获取该子资源集合的位置信息。从而,通过现有协议定义的PBCH中的预留比特或新定义的PBCH中的部分比特,可以准确地指示上述子资源集合的位置信息,提高了资源的利用率。
具体地,第一比特集合用于指示预设表格中的表项,该预设表格包括一个或多个表项,每个表项中包括一个子资源集合的频域起始位置信息和频率资源大小信息。
在一个实现中,预设表格可以如下表6~表9所示:
举例说明,可以通过上述第一比特集合(假设为1比特)指示如下表6中的任一行:
表6
第一比特集合取值 子资源集合的频域起始资源块位置 子资源集合的频率资源大小
0 CCE index=0(第二个) AL=4,8
1 CCE index=4(第一个) AL=4
举例说明,可以通过上述第一比特集合(假设为1比特)指示如下表7中的任一行:
表7
Figure PCTCN2021078305-appb-000044
举例说明,假设CORESET#0包括2个频域部分,可以通过上述第一比特集合(假设为1比特)指示如下表8中的任一行:
表8
Figure PCTCN2021078305-appb-000045
举例说明,也可以对上述多个实现进行综合指示,通过上述第一比特集合(假设为2比特)指示如下表9中的任一行:
表9
Figure PCTCN2021078305-appb-000046
以上关于第一比特集合的指示仅为示例,本申请实施例不限于上述示例。
需要说明的是,终端在子资源集合的候选物理下行控制信道上检测物理下行控制信道,若该物理下行控制信道调度的是系统信息(例如SIB1)的DCI,则上述表6~表9可以在协议中定义;若该物理下行控制信道调度的是其他CORESET中的DCI,则上述表6~表9可以在系统消息中指示,即通过公共RRC信令指示。
在另一个实现中,预设表格也可以是在上述表2的基础上,在每一行后增加终端的子资源集合的位置信息,即预设表格为基于用于指示控制资源集合的表格横向扩展的表项。一种示例如下表10所示:
可以通过4个比特的第一比特集合指示终端的子资源集合的位置。
另外,对于CORSET#0的4比特所指示的表10中的每一行,均可以对应不同的表格,例如表10中的第13行,对应上述表6,表10中的第14行,对应上述表7,等等。
另外,根据表2,现有协议中索引为15的这一行为保留字段,本实施例中,可以自定义CORSET#0中的资源块数以及CORSET#0中的符号数,以及在该CORSET#0中的子资源集合的频域起始资源块位置和子资源集合的频率资源大小。
表10
Figure PCTCN2021078305-appb-000047
在另一个示例中,预设表格也可以为基于用于指示控制资源集合的表格横向和纵向扩展的表项。具体地,第一比特集合还可以大于4个比特,例如5个比特,则索引15~31可以用于自定义更多的CORSET#0中的资源块数以及CORSET#0中的符号数,以及在该CORSET#0中的子资源集合的频域起始资源块位置和子资源集合的频率资源大小。一个示例如下表11所示。
S102、接入网设备在子资源集合的候选物理下行控制信道资源上发送物理下行控制信道。
接入网设备在给终端配置的子资源集合的候选物理下行控制信道资源上发送物理下行控制信道。该物理下行控制信道用于承载SI-RNTI加扰的DCI。
S103、终端在子资源集合的候选物理下行控制信道资源上检测物理下行控制信道。
终端根据第一消息中包括的子资源集合的位置信息,在子资源集合的候选物理下行控制信道资源上检测物理下行控制信道。如果检测到SI-RNTI加扰的DCI,则解扰该DCI,在同时隙中获取系统信息,从而可以根据该系统信息实现终端的初始接入。
当终端通过第一消息获取的候选物理下行控制信道的频率范围超出自己的带宽能力时,例如,一个带宽能力为2MHz的终端,判断出第一消息指示的候选物理下行控制信道带宽为5MHz时,则认为该小区拒绝自己的接入。此时,终端无需再通过其它方式尝试接入该小区。
表11
Figure PCTCN2021078305-appb-000048
根据本申请实施例提供的一种通信方法,接入网设备发送第一消息,该第一消息包括控制资源集合的频域信息和子资源集合的位置信息,并在子资源集合的候选物理下行控制信道资源上向终端发送物理下行控制信道,终端在子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,使得终端可以在宽带CORESET中确定终端的候选物理下行 控制信道的频域位置,提高了检测出物理下行控制信道的可靠性。
在另外的实施例中,上述第一消息也可以是系统信息,或者终端专用(UE-specific)的无线资源控制(radio resource control,RRC)信令。该第一消息为系统信息或RRC信令时,可不限于查表方式指示。举例说明,RRC信令格式如下:
Figure PCTCN2021078305-appb-000049
其中,Start frequency用于指示子资源集合在控制资源集合中的频域起始位置信息,Frequency range用于指示子资源集合在控制资源集合中的频率资源大小信息。另外,还可以包括潜在的聚合等级(Potential AL),该潜在的聚合等级是指终端可能采用的聚合等级,例如,宽带终端对应的AL为2,4,6,8,10等,而终端的潜在的聚合等级为2,4。
可以理解的是,以上各个实施例中,由终端实现的方法和/或步骤,也可以由可用于终端的部件(例如芯片或者电路)实现;由接入网设备实现的方法和/或步骤,也可以由可用于接入网设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应地,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的接入网设备,或者包含上述接入网设备的装置,或者为可用于接入网设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
基于上述通信方法的同一构思,本申请还提供了如下通信装置:
如图10所示,为本申请实施例提供的一种通信装置的结构示意图,该通信装置600包括收发单元61和处理单元62;其中:
所述收发单元61,用于接收第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;以及所述处理单元62,用于在所述子资源集合的候选物理下行控制信道资源上检测物理下行控制信道。
可选地,所述子资源集合的位置信息包括以下至少一个信息:所述子资源集合在所述控制资源集合中的频域起始位置信息,所述子资源集合的频率资源大小信息。
可选地,所述频域起始位置信息为所述子资源集合对应的起始控制信道单元的索引,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级或最大的聚合等级。
可选地,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级,所述处理单元62,用于从所述子资源集合在所述控制资源集合中的频域起始位置开始,在所述聚合等级对应的频域资源上检测所述物理下行控制信道。
可选地,所述频率资源大小信息为所述候选物理下行控制信道对应的最大聚合等级,所述处理单元62,用于从所述子资源集合在所述控制资源集合中的频域起始位置开始,分别在小于或等于所述最大聚合等级的每个聚合等级对应的频域资源上检测所述物理下行控制信道。
可选地,所述频域起始位置信息为所述子资源集合的频域起始资源块位置信息,所述频率资源大小信息为所述子资源集合的资源块数量。
可选地,所述控制资源集合包括一个或多个频域部分,所述子资源集合的位置信息为所述子资源集合所在的频域部分的位置信息。
可选地,所述第一消息中的第一比特集合用于指示所述子资源集合的位置信息,所述第一比特集合包括物理广播信道中的比特。
可选地,所述第一比特集合用于指示预设表格中的表项,所述预设表格包括一个或多个表项,每个表项中包括一个子资源集合的频域起始位置信息和频率资源大小信息。
上述收发单元61和处理单元62的具体实现可参考图7所示实施例中终端的相关描述。
根据本申请实施例提供的一种通信装置,该装置接收接入网设备发送的第一消息,该第一消息包括控制资源集合的频域信息和子资源集合的位置信息,在子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,使得该装置可以在宽带CORESET中确定候选物理下行控制信道的频域位置,提高了检测出物理下行控制信道的可靠性。
如图11所示,为本申请实施例提供的又一种通信装置的结构示意图。该通信装置700包括处理单元71和收发单元72;其中:
所述处理单元71,用于生成第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;
所述收发单元72,用于发送所述第一消息;以及
所述收发单元72,还用于在所述子资源集合的候选物理下行控制信道资源上发送物理下行控制信道。
可选地,所述子资源集合的位置信息包括以下至少一个信息:所述子资源集合在所述控制资源集合中的频域起始位置信息,所述子资源集合的频率资源大小信息。
可选地,所述频域起始位置信息为所述子资源集合对应的起始控制信道单元的索引,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级或最大的聚合等级。
可选地,所述频域起始位置信息为所述子资源集合的频域起始资源块位置信息,所述频率资源大小信息为所述子资源集合的资源块数量。
可选地,所述控制资源集合包括一个或多个频域部分,所述子资源集合的位置信息为 所述子资源集合所在的频域部分的位置信息。
可选地,所述第一消息中的第一比特集合用于指示所述子资源集合的位置信息,所述第一比特集合包括物理广播信道中的比特。
可选地,所述第一比特集合用于指示预设表格中的表项,所述预设表格包括一个或多个表项,每个表项中包括一个子资源集合的频域起始位置信息和频率资源大小信息。
有关上述处理单元71和收发单元72的具体实现可参考图7所示实施例中接入网设备的相关描述。
根据本申请实施例提供的一种通信装置,该装置发送第一消息,该第一消息包括控制资源集合的频域信息和子资源集合的位置信息,并在子资源集合的候选物理下行控制信道资源上向终端发送物理下行控制信道,窄带终端在子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,使得窄带终端可以在宽带CORESET中确定窄带终端的候选物理下行控制信道的频域位置,提高了检测出物理下行控制信道的可靠性。
图12示出了一种简化的终端的结构示意图。便于理解和图示方便,图12中,终端以手机作为例子。如图12所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端的处理单元。如图12所示,终端包括收发单元81和处理单元82。收发单元81也可以称为接收/发送(发射)器、接收/发送机、接收/发送电路等。处理单元82也可以称为处理器,处理单板,处理模块、处理装置等。该收发单元81用于实现图10所示实施例中收发单元61的功能。
例如,在一个实施例中,收发单元81用于执行图7所示实施例的步骤S101和S102中终端所执行的功能;处理单元82用于执行图7所示实施例的步骤S103。
图13示出了一种简化的接入网设备的结构示意图。接入网设备包括射频信号收发及转换部分以及92部分,该射频信号收发及转换部分又包括收发单元91部分。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;92部分主要用于基带处理,对接入网设备进行控制等。收发单元91也可以称为接收/发送(发射)器、接收/发送机、接收/发送电路等。92部分通常是接入网设备的控制中心,通常可以称为处理单元, 用于控制源接入网设备执行上述图7中关于接入网设备所执行的步骤。具体可参见上述相关部分的描述。收发单元91可用于实现图11所示实施例中收发单元71的功能。
92部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对接入网设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,收发单元91用于执行图7所示实施例的步骤S101和S102中接入网设备所执行的功能。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,实现上述实施例中的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行上述实施例中的方法。
本申请实施例还提供了一种通信系统,包括上述的通信装置。
需要说明的是,以上单元或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一单元或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于片上系统(system on chip,SoC)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、或者实现专用逻辑运算的逻辑电路。
当以上单元或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片系统,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器运行存储器中的计算机程序或指令时,使得该芯片系统执行上述任一方法实施例中的方法。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
应理解,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如” 等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;
    在所述子资源集合的候选物理下行控制信道资源上检测物理下行控制信道。
  2. 一种通信方法,其特征在于,所述方法包括:
    发送第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;
    在所述子资源集合的候选物理下行控制信道资源上发送物理下行控制信道。
  3. 根据权利要求1或2所述的方法,其特征在于,所述子资源集合的位置信息包括以下至少一个信息:所述子资源集合在所述控制资源集合中的频域起始位置信息,所述子资源集合的频率资源大小信息。
  4. 根据权利要求3所述的方法,其特征在于,所述频域起始位置信息为所述子资源集合对应的起始控制信道单元的索引,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级或最大的聚合等级。
  5. 根据权利要求3或4所述的方法,其特征在于,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级,所述在所述子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,包括:从所述子资源集合在所述控制资源集合中的频域起始位置开始,在所述聚合等级对应的频域资源上检测所述物理下行控制信道。
  6. 根据权利要求3或4所述的方法,其特征在于,所述频率资源大小信息为所述候选物理下行控制信道对应的最大聚合等级,所述在所述子资源集合的候选物理下行控制信道资源上检测物理下行控制信道,包括:从所述子资源集合在所述控制资源集合中的频域起始位置开始,分别在小于或等于所述最大聚合等级的每个聚合等级对应的频域资源上检测所述物理下行控制信道。
  7. 根据权利要求1~6任意一项所述的方法,其特征在于,所述频域起始位置信息为所述子资源集合的频域起始资源块位置信息,所述频率资源大小信息为所述子资源集合的资源块数量。
  8. 根据权利要求1~7任意一项所述的方法,其特征在于,所述控制资源集合包括一个或多个频域部分,所述子资源集合的位置信息为所述子资源集合所在的频域部分的位置信息。
  9. 根据权利要求1~8任意一项所述的方法,其特征在于,所述第一消息中的第一比特集合用于指示所述子资源集合的位置信息,所述第一比特集合包括物理广播信道中的比特。
  10. 根据权利要求9所述的方法,其特征在于,所述第一比特集合用于指示预设表格中的表项,所述预设表格包括一个或多个表项,每个表项中包括一个子资源集合的频域起始位置信息和频率资源大小信息。
  11. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于接收第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;
    处理单元,用于在所述子资源集合的候选物理下行控制信道资源上检测物理下行控制 信道。
  12. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于生成第一消息,所述第一消息包括控制资源集合的频域信息和子资源集合的位置信息;
    收发单元,用于发送所述第一消息;
    所述收发单元,还用于在所述子资源集合的候选物理下行控制信道资源上发送物理下行控制信道。
  13. 根据权利要求11或12所述的装置,其特征在于,所述子资源集合的位置信息包括以下至少一个信息:所述子资源集合在所述控制资源集合中的频域起始位置信息,所述子资源集合的频率资源大小信息。
  14. 根据权利要求13所述的装置,其特征在于,所述频域起始位置信息为所述子资源集合对应的起始控制信道单元的索引,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级或最大的聚合等级。
  15. 根据权利要求13或14所述的装置,其特征在于,所述频率资源大小信息为所述候选物理下行控制信道对应的聚合等级,所述处理单元,用于从所述子资源集合在所述控制资源集合中的频域起始位置开始,在所述聚合等级对应的频域资源上检测所述物理下行控制信道。
  16. 根据权利要求13或14所述的装置,其特征在于,所述频率资源大小信息为所述候选物理下行控制信道对应的最大聚合等级,所述处理单元,用于从所述子资源集合在所述控制资源集合中的频域起始位置开始,分别在小于或等于所述最大聚合等级的每个聚合等级对应的频域资源上检测所述物理下行控制信道。
  17. 根据权利要求11~16任意一项所述的装置,其特征在于,所述频域起始位置信息为所述子资源集合的频域起始资源块位置信息,所述频率资源大小信息为所述子资源集合的资源块数量。
  18. 根据权利要求11~17任意一项所述的装置,其特征在于,所述控制资源集合包括一个或多个频域部分,所述子资源集合的位置信息为所述子资源集合所在的频域部分的位置信息。
  19. 根据权利要求11~18任意一项所述的装置,其特征在于,所述第一消息中的第一比特集合用于指示所述子资源集合的位置信息,所述第一比特集合包括物理广播信道中的比特。
  20. 根据权利要求19所述的装置,其特征在于,所述第一比特集合用于指示预设表格中的表项,所述预设表格包括一个或多个表项,每个表项中包括一个子资源集合的频域起始位置信息和频率资源大小信息。
  21. 一种通信装置,其特征在于,包括处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的指令,当所述指令被运行时,使得所述通信装置执行如1、3~10中任意一项所述的方法。
  22. 一种通信装置,其特征在于,包括处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的指令,当所述指令被运行时,使得所述通信装置执行如2、3~10中任 意一项所述的方法。
  23. 一种通信装置,其特征在于,包括:处理器,所述处理器用于执行如1、3~10中任意一项所述的方法。
  24. 一种通信装置,其特征在于,包括:处理器,所述处理器用于执行如2、3~10中任意一项所述的方法。
  25. 一种通信系统,其特征在于,包括如权利要求11~20任意一项所述的通信装置。
  26. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,如权利要求1~10任意一项所述的方法被执行。
  27. 一种计算机程序产品,当其在计算机上运行时,使得如权利要求1~10任意一项所述的方法被执行。
PCT/CN2021/078305 2021-02-27 2021-02-27 通信方法及装置 WO2022178881A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180093990.6A CN116918416A (zh) 2021-02-27 2021-02-27 通信方法及装置
PCT/CN2021/078305 WO2022178881A1 (zh) 2021-02-27 2021-02-27 通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078305 WO2022178881A1 (zh) 2021-02-27 2021-02-27 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022178881A1 true WO2022178881A1 (zh) 2022-09-01

Family

ID=83047641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078305 WO2022178881A1 (zh) 2021-02-27 2021-02-27 通信方法及装置

Country Status (2)

Country Link
CN (1) CN116918416A (zh)
WO (1) WO2022178881A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190045490A1 (en) * 2018-09-10 2019-02-07 Intel IP Corporation Downlink control channel design in new radio systems
CN109495966A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 用于传输下行数据的资源的确定和配置方法、终端和基站
CN109511169A (zh) * 2017-09-15 2019-03-22 华为技术有限公司 一种控制资源集合的获取方法、装置以及系统
CN111294150A (zh) * 2019-07-05 2020-06-16 北京展讯高科通信技术有限公司 物理下行控制信道盲检方法及用户设备、可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495966A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 用于传输下行数据的资源的确定和配置方法、终端和基站
CN109511169A (zh) * 2017-09-15 2019-03-22 华为技术有限公司 一种控制资源集合的获取方法、装置以及系统
US20190045490A1 (en) * 2018-09-10 2019-02-07 Intel IP Corporation Downlink control channel design in new radio systems
CN111294150A (zh) * 2019-07-05 2020-06-16 北京展讯高科通信技术有限公司 物理下行控制信道盲检方法及用户设备、可读存储介质

Also Published As

Publication number Publication date
CN116918416A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
AU2018315385A1 (en) Communication method, communications apparatus, and computer storage medium
WO2019214424A1 (zh) 通信方法和通信装置
TWI556678B (zh) D2d發現信號的發送方法和發送裝置
CN109392182B (zh) 一种信息发送、信息接收方法及装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2022027694A1 (zh) 一种资源信息指示方法及装置
US20230049307A1 (en) Device-to-Device Based Resource Determining Method and Device
WO2019015445A1 (zh) 一种通信方法及装置
CN111511037B (zh) 获取系统信息的方法、装置及计算机可读存储介质
US20210204312A1 (en) Downlink control information transmission method and apparatus
CN114402657A (zh) 通信方法、设备及系统
WO2022178881A1 (zh) 通信方法及装置
WO2021239113A1 (zh) 数据传输方法及装置
WO2021207908A1 (zh) 一种随机接入方法及终端设备
WO2021184140A1 (zh) 一种信息处理方法及装置
CN112399618B (zh) 通信方法和装置
WO2019096147A1 (zh) 一种控制信息的检测方法及装置
WO2021228182A1 (zh) Pdsch传输方法及装置
WO2023134606A1 (zh) 数据传输方法及装置、存储介质、终端设备、网络设备
WO2024008096A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
WO2022067723A1 (zh) 信息发送和接收方法、装置及系统
CN111756509B (zh) 一种传输公共信号块的方法和装置
WO2022213653A1 (zh) 频域资源位置确定方法与装置、终端和网络设备
WO2022237763A1 (zh) 信道监听方法与装置、终端和网络设备
WO2022027683A1 (zh) 确定传输使用的天线面板的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093990.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927316

Country of ref document: EP

Kind code of ref document: A1