WO2022067723A1 - 信息发送和接收方法、装置及系统 - Google Patents

信息发送和接收方法、装置及系统 Download PDF

Info

Publication number
WO2022067723A1
WO2022067723A1 PCT/CN2020/119542 CN2020119542W WO2022067723A1 WO 2022067723 A1 WO2022067723 A1 WO 2022067723A1 CN 2020119542 W CN2020119542 W CN 2020119542W WO 2022067723 A1 WO2022067723 A1 WO 2022067723A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
pbch
domain position
sub
ssb
Prior art date
Application number
PCT/CN2020/119542
Other languages
English (en)
French (fr)
Inventor
罗之虎
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/119542 priority Critical patent/WO2022067723A1/zh
Priority to CN202080104991.1A priority patent/CN116097787A/zh
Publication of WO2022067723A1 publication Critical patent/WO2022067723A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communications, and in particular, to methods, devices and systems for sending and receiving information.
  • a synchronization signal/physical broadcast channel block (SS/PBCH block, SSB) is defined in the new radio (new radio, NR) of the fifth generation (5G) mobile communication system.
  • the SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • one SSB occupies four consecutive orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the above solution is mainly used for broadband terminals.
  • narrowband terminals are introduced into the system, if this solution is used, there may be some problems.
  • the present application provides methods, devices and systems for information transmission and reception suitable for narrowband terminals.
  • an information sending method is provided.
  • the method is applied to a first communication system.
  • a network device determines and transmits a synchronization signal, first information, and second information.
  • the first information is borne by the first physical broadcast channel PBCH
  • the second information is borne by the second PBCH
  • the first information is different from the second information.
  • the network device sends a synchronization signal, first information and second information, and the first information is carried by the first PBCH, and the second information is carried by the second PBCH.
  • the occupied bandwidth is relatively small, and the working bandwidth of the narrowband terminal may include the bandwidth occupied by the synchronization signal. Therefore, the narrowband terminal may receive the synchronization signal.
  • the narrowband terminal may receive the first PBCH and the second PBCH, or the second PBCH, according to its working bandwidth, so as to receive the first information and the second information, or receive the second information. Therefore, for the narrowband terminal, the present application can provide the synchronization signal and the information carried by the PBCH.
  • the working bandwidth of the broadband terminal in the first communication system may also include the bandwidth occupied by the synchronization signal. Therefore, the broadband terminal may also receive the synchronization signal, that is, the synchronization signal may be narrowband terminals and broadband terminals. Therefore, it is not necessary to provide respective synchronization signals for narrowband terminals and broadband terminals, thereby reducing resource overhead.
  • the second information includes at least one of the following: first sub-information, where the first sub-information is used to schedule the first system information block SIB1, or used to configure the first physical downlink control channel PDCCH, the first sub-information A PDCCH is used to schedule the first SIB1; the second sub-information is used to indicate whether the cell corresponding to the second PBCH is a prohibited cell; the third sub-information is used to indicate whether the selection is allowed to be Intra-frequency cell of the forbidden cell; fourth sub-information, the fourth sub-information is used to indicate whether the system information is updated.
  • the narrowband terminal when the second information includes the first sub-information, the narrowband terminal can be configured to schedule the first PDCCH of the first SIB1, so that when the broadband terminal is configured to schedule the second PDCCH of the second SIB1 in the first information,
  • the number of resource blocks occupied by the control resource set corresponding to the second PDCCH may not be limited, so as not to affect the configuration flexibility of the second PDCCH and the demodulation performance of the second PDCCH; the second information includes the second sub-block.
  • the narrowband terminal can be provided with an independent cell barring indication or an intra-frequency reselection indication to improve configuration flexibility; when the fourth sub-information is included in the second information, the fourth sub-information is used to indicate system information
  • the terminal device receives the updated system information, and when the fourth sub-information is used to indicate that the system information is not updated, the terminal device does not need to receive the system information, thereby reducing unnecessary reception of system information and saving power consumption of the terminal device.
  • the first information includes the system frame number of the frame where the aforementioned synchronization signal is located, and the second information does not include the system frame number; or, the first information includes N high-order bits of the system frame number, and The second information does not include the N high-order bits of the system frame number, where N is a positive integer.
  • the terminal device when the terminal device can receive the first information, and the first information includes the system frame number, the second information may not include the system frame number, and when the first information includes N high-order bits of the system frame number, The second information may not include the N high-order bits of the system frame number.
  • the terminal device may reuse the system frame number included in the first information or the N high-order bits of the system frame number to reduce signaling overhead.
  • the second information includes the system frame number of the frame where the aforementioned synchronization signal is located or the N high-order bits of the system frame number.
  • the second information includes the system frame number of the frame where the synchronization signal is located or the N high-order bits of the system frame number.
  • the bandwidth occupied by the second PBCH is smaller than the bandwidth occupied by the first PBCH.
  • the narrowband terminal may not be able to receive the first information on the first PBCH, and thus cannot obtain the system frame number of the frame where the synchronization signal is located,
  • the second information includes the system frame number of the frame where the synchronization signal is located or the N high-order bits of the system frame number, so that the narrowband terminal can know the system frame number or its N high-order bits, so that according to the system frame number or its N high-order bits for subsequent processing, for example, receiving subsequent system information and paging messages, initiating random access, and the like.
  • the aforementioned synchronization signal and the first PBCH form an SSB
  • the frequency domain position of the second PBCH is adjacent to the frequency domain position of the SSB
  • the time domain position of the second PBCH is the same as the time domain position of the SSB, or includes in the time domain position of the SSB
  • the time domain position of the second PBCH is adjacent to the time domain position of the SSB
  • the frequency domain position of the second PBCH is the same as the frequency domain position of the SSB, or is included in the frequency domain position of the SSB .
  • the time domain position of the second PBCH is included in the time domain position of the SSB composed of the synchronization signal and the first PBCH, and the frequency domain position is adjacent to the frequency domain position of the SSB, and is reduced by frequency division multiplexing.
  • the time domain position of the second PBCH is different from the time domain position of the SSB composed of the synchronization signal and the first PBCH, and the occupation of spectrum resources can be reduced by means of time division multiplexing.
  • the first information includes fifth sub-information, and when the frequency-domain position of the second PBCH is adjacent to the frequency-domain position of the aforementioned SSB, the fifth sub-information is used to indicate that the frequency-domain position of the second PBCH is located in The high frequency position and/or the low frequency position of the frequency domain position of the SSB; when the time domain position of the second PBCH is adjacent to the time domain position of the SSB, the fifth sub-information is used to indicate that the time domain position of the second PBCH is located at before and/or after the time domain position of the SSB.
  • the first information includes sixth sub-information, where the sixth sub-information is used to indicate that the second PBCH exists in the first communication system and/or a cell corresponding to the second PBCH is a non-prohibited cell.
  • the sixth sub-information is used to indicate that the second PBCH does not exist in the first communication system and/or the cell corresponding to the second PBCH is a forbidden cell.
  • the terminal device receives the second information when the sixth sub-information indicates that the second PBCH exists in the first communication system and/or the cell corresponding to the second PBCH is a non-prohibited cell, and the sixth sub-information indicates that the second PBCH exists in the first communication system.
  • the second PBCH does not exist in a communication system and/or the cell corresponding to the second PBCH is a forbidden cell
  • the second information is not received, and the implementation on the network device side is more flexible, and the terminal device can receive or not according to the sixth sub-information.
  • the second information can be prevented from being blindly received when the network device does not send the second information, thereby reducing the power consumption of the terminal device.
  • the first information includes seventh sub-information, where the seventh sub-information indicates the number of resource blocks occupied by the control resource set CORESET corresponding to the second PDCCH, and when the number is greater than the first threshold, the first communication system There is a second PBCH in the second PDCCH, and the second PDCCH is used to schedule the second SIB1.
  • the terminal device can first determine whether there is a second PBCH. The second information is not received, thereby reducing the waste of power consumption of the terminal.
  • sending the first information and the second information by the network device includes: the network device encodes the first information according to the first cyclic redundancy check code CRC, obtains the encoded first information, and obtains the encoded first information according to the first CRC code.
  • the second CRC encodes the second information to obtain the encoded second information.
  • the number of bits of the first CRC is different from the number of bits of the second CRC; the network device sends the encoded first information and the encoded second information. information.
  • the second information is coded and modulated by means of CRC check, and the performance of the second PBCH is guaranteed through the strong error detection capability of the CRC.
  • the system message of CRC is small and easy to use, which can reduce the implementation complexity of the scheme.
  • the second information is represented by a sequence.
  • the second information carried by the second PBCH is represented by a sequence, and the terminal equipment does not need to perform a complex decoding operation when receiving the second information, and only needs to perform a simple correlation operation, so the processing complexity of the terminal equipment can be reduced. Therefore, the requirements for the hardware of the terminal equipment are reduced, thereby reducing the cost of the terminal equipment.
  • the synchronization signal includes the secondary synchronization signal SSS, and the energy EPRE ratio per resource element between the second PBCH and the SSS is X decibels, where X is greater than or equal to 0.
  • the SSS and the first PBCH have the same EPRE, that is, the ratio between the EPRE of the first PBCH and the EPRE of the SSS is 0dB, so when X is greater than 0, the second PBCH has the same EPRE.
  • the EPRE of the first PBCH is larger than the EPRE of the first PBCH, that is, the transmission power of the second PBCH is higher, so that better coverage performance can be achieved than that of the first PBCH.
  • the bandwidth occupied by the second PBCH is smaller than the bandwidth occupied by the first PBCH.
  • an information receiving method is provided.
  • the method is applied to a first communication system.
  • a terminal device receives a synchronization signal from a network device, obtains a cell identifier according to the synchronization signal, and receives first information and second information according to the cell identifier, or, according to the cell identifier
  • the identifier receives second information, the first information is carried by the first PBCH, the second information is carried by the second PBCH, and the first information is different from the second information.
  • the second information includes at least one of the following: first sub-information, where the first sub-information is used to schedule the first system information block SIB1, or used to configure the first physical downlink control channel PDCCH, the first sub-information A PDCCH is used to schedule the first SIB1; the second sub-information is used to indicate whether the cell corresponding to the second PBCH is a prohibited cell; the third sub-information is used to indicate whether the selection is allowed to be Intra-frequency cell of the forbidden cell; fourth sub-information, the fourth sub-information is used to indicate whether the system information is updated.
  • the first information includes the system frame number of the frame where the aforementioned synchronization signal is located, and the second information does not include the system frame number; or, the first information includes N high-order bits of the system frame number, and The second information does not include the N high-order bits of the system frame number, where N is a positive integer.
  • the second information includes the system frame number of the frame where the aforementioned synchronization signal is located or the N high-order bits of the system frame number.
  • the second information includes the system frame number of the frame where the synchronization signal is located or the N high-order bits of the system frame number.
  • the aforementioned synchronization signal and the first PBCH form an SSB
  • the frequency domain position of the second PBCH is adjacent to the frequency domain position of the SSB
  • the time domain position of the second PBCH is the same as the time domain position of the SSB, or includes in the time domain position of the SSB
  • the time domain position of the second PBCH is adjacent to the time domain position of the SSB
  • the frequency domain position of the second PBCH is the same as the frequency domain position of the SSB, or is included in the frequency domain position of the SSB .
  • the first information includes fifth sub-information, and when the frequency-domain position of the second PBCH is adjacent to the frequency-domain position of the aforementioned SSB, the fifth sub-information is used to indicate that the frequency-domain position of the second PBCH is located in The high frequency position and/or the low frequency position of the frequency domain position of the SSB; when the time domain position of the second PBCH is adjacent to the time domain position of the SSB, the fifth sub-information is used to indicate that the time domain position of the second PBCH is located at before and/or after the time domain position of the SSB.
  • the terminal device receiving the second information according to the cell identifier may include: the terminal device determining the frequency domain position of the second PBCH according to the fifth sub-information, and receiving the first PBCH at the frequency domain position of the second PBCH according to the cell identifier. two information; or, the terminal device determines the time domain position of the second PBCH according to the fifth sub-information, and receives the second information at the time domain position of the second PBCH according to the cell identifier.
  • the first information includes sixth sub-information, where the sixth sub-information is used to indicate that the second PBCH exists in the first communication system and/or a cell corresponding to the second PBCH is a non-prohibited cell.
  • the sixth sub-information is used to indicate that the second PBCH does not exist in the first communication system and/or the cell corresponding to the second PBCH is a forbidden cell.
  • the terminal device receives the first information and the second information according to the cell identifier, It may include: the terminal device receives the first information according to the cell identifier, and receives the second information according to the sixth sub-information included in the first information.
  • the first information includes seventh sub-information, where the seventh sub-information indicates the number of resource blocks occupied by the control resource set CORESET corresponding to the second PDCCH, and the information receiving method further includes: when the number is greater than the number of resource blocks occupied by the control resource set CORESET corresponding to the second PDCCH At a threshold, the terminal device determines that a second PBCH exists in the first communication system, and the second PDCCH is used to schedule the second SIB1.
  • the terminal equipment receives the first information and the second information according to the cell identifier, including: the terminal equipment receives the encoded first information and the encoded second information according to the cell identifier, and performs the encoding according to the first CRC. Perform CRC check on the first information to obtain the first information, and perform CRC check on the encoded second information according to the second CRC to obtain the second information, the number of bits of the first CRC is the same as the bits of the second CRC The digits are different.
  • the second information is represented by a sequence.
  • the synchronization signal includes the secondary synchronization signal SSS, and the energy EPRE ratio per resource element between the second PBCH and the SSS is X decibels, where X is greater than or equal to 0.
  • a communication apparatus for implementing the above-mentioned various methods.
  • the communication device may be the network device in the first aspect, or a device including the network device, or a device included in the network device, such as a chip; or, the communication device may be the terminal device in the second aspect, Or a device including the above-mentioned terminal equipment, or a device included in the above-mentioned terminal equipment, such as a chip.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • a communication device comprising: a processor and a memory; the memory is used for storing computer instructions, and when the processor executes the instructions, the communication device executes the method described in any one of the above aspects.
  • the communication device may be the network device in the first aspect, or a device including the network device, or a device included in the network device, such as a chip; or, the communication device may be the terminal device in the second aspect, Or a device including the above-mentioned terminal equipment, or a device included in the above-mentioned terminal equipment, such as a chip.
  • a communication device comprising: a processor; the processor is configured to be coupled to a memory, and after reading an instruction in the memory, execute the method according to any one of the preceding aspects according to the instruction.
  • the communication device may be the network device in the first aspect, or a device including the network device, or a device included in the network device, such as a chip; or, the communication device may be the terminal device in the second aspect, Or a device including the above-mentioned terminal equipment, or a device included in the above-mentioned terminal equipment, such as a chip.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, when the computer-readable storage medium runs on a computer, the computer can perform the method described in any one of the above aspects.
  • a computer program product comprising instructions which, when run on a computer, enable the computer to perform the method of any of the preceding aspects.
  • a communication device comprising: an interface circuit and at least one processor, where the interface circuit can be a code/data read/write interface circuit, and the interface circuit is used to receive a computer-executed instruction (the computer-executed instruction is stored in a memory) , possibly directly from memory, or possibly via other devices) and transferred to the processor; the processor is used to run the computer-executed instructions to perform the method described in any of the above aspects.
  • the communication device may be the network device in the first aspect, or a device including the network device, or a device included in the network device, such as a chip; or, the communication device may be the terminal device in the second aspect, Or a device including the above-mentioned terminal equipment, or a device included in the above-mentioned terminal equipment, such as a chip.
  • a communication apparatus for example, the communication apparatus may be a chip or a chip system
  • the communication apparatus includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be constituted by a chip, or may include a chip and other discrete devices.
  • a tenth aspect provides a communication system, where the communication system includes the terminal device described in the foregoing aspect and the network device described in the foregoing aspect.
  • Fig. 1 is the structural representation of a kind of existing SSB
  • FIG. 2 is a schematic structural diagram of an existing time-frequency resource grid
  • Fig. 3 is a kind of comparative schematic diagram of the working bandwidth of the narrowband terminal and the bandwidth occupied by the SSB;
  • Fig. 4 is a kind of contrast schematic diagram of the working bandwidth of a narrowband terminal and the bandwidth occupied by the SSB;
  • FIG. 5 is a schematic structural diagram of a first communication system according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal device and a network device provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for sending and receiving information according to an embodiment of the present application.
  • 8a is a schematic diagram of a frequency domain location of a second PBCH according to an embodiment of the present application.
  • FIG. 8b is a schematic diagram of a frequency domain location of another second PBCH according to an embodiment of the present application.
  • FIG. 8c is a schematic diagram of a frequency domain location of another second PBCH according to an embodiment of the present application.
  • FIG. 9a is a schematic diagram of a time domain location of a second PBCH according to an embodiment of the present application.
  • FIG. 9b is a schematic diagram of a time domain location of another second PBCH provided by an embodiment of the present application.
  • FIG. 9c is a schematic diagram of a time domain location of still another second PBCH according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another network device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another terminal device provided by an embodiment of the present application.
  • IoT Internet of things
  • IoT is the "Internet of Things Connected”. It extends the user end of the Internet to any item and item, so that information exchange and communication can be carried out between any item and item. This type of communication is also known as machine type communications (MTC). Among them, the communicating nodes are called IoT terminals or IoT devices. Typical IoT applications include Internet of Vehicles, smart communities, industrial inspection and monitoring, smart meter reading, smart grid, smart agriculture, smart transportation, smart home, and environmental monitoring.
  • MTC machine type communications
  • IoT terminals are used in environments with poor coverage, such as electric meters and water meters, which are usually installed indoors or even in basements where wireless network signals are poor. Therefore, coverage enhancement technologies are needed to solve the problem. Or, because the number of IoT terminals in some scenarios is much larger than the number of devices for human-to-human communication, which means large-scale deployment is required, it is required to obtain and use IoT terminals at a very low cost.
  • IoT terminals that support low rates are required. Or, because in most cases, IoT terminals are powered by batteries, but at the same time in many scenarios, IoT terminals are required to be used for more than ten years without battery replacement, which requires IoT terminals to be able to operate with extremely low power. Power consumption to work.
  • the basic unit in the frequency domain is a subcarrier, and the subcarrier spacing (SCS) can be 15kHz, 30kHz, and so on.
  • the unit of uplink or downlink frequency domain resources is a physical resource block (PRB), and each PRB consists of 12 consecutive subcarriers in the frequency domain.
  • PRB physical resource block
  • the NR downlink time-frequency resource grid is shown in FIG. 2 .
  • Each element on the resource grid is called a resource element (RE), and RE is the smallest physical resource, which includes one subcarrier in one OFDM symbol.
  • the uplink time-frequency resource grid is similar to the downlink time-frequency resource network, and details are not repeated here.
  • the basic time unit of NR downlink resource scheduling is a time slot (slot).
  • a time slot consists of 14 OFDM symbols in time.
  • NR transmissions are organized into frames of 10 milliseconds (ms), each frame is identified by a system frame number (SFN), and the period of SFN is equal to 1024.
  • SFN system frame number
  • Each frame includes 10 subframes with a length of 1 ms, and each subframe includes one or more time slots.
  • the number of time slots included in each subframe is determined by the subcarrier spacing. When the subcarrier spacing is 15 kHz, each subframe includes one time slot.
  • the NR SSB is shown in Figure 1 in the background technology, including PSS, SSS, and PBCH, the first OFDM symbol numbered 0 carries the PSS, and the subcarriers numbered 0 to 55 and 183 to 239 are set to 0,
  • the subcarriers numbered 56 to 182 are the subcarriers occupied by the PSS; the OFDM symbols numbered 1 and 3 carry the PBCH, and every 4 consecutive subcarriers has a modulation and demodulation reference signal (demodulation reference signal) corresponding to the PBCH.
  • the OFDM symbol numbered 2 carries SSS and PBCH, the subcarriers numbered 56 to 182 are subcarriers occupied by SSS, and the subcarriers numbered 0 to 47 and 192 to 239 are subcarriers occupied by PBCH , and the rest of the subcarriers are set to 0.
  • the PBCH carries a master information block (master information block, MIB), and the MIB includes the system frame number, which is carried by the systemFrameNumber field and is used for synchronization between the terminal device and the network side.
  • MIB master information block
  • the MIB includes 6 most significant bits (most significant bits, MSBs) in the 10-bit (bit) system frame number.
  • the MIB may also include one or more of the following information:
  • Subcarrier spacing carried by the subCarrierSpacingCommon field, used to indicate system information block (SIB) 1 (ie SIB1), message 2 or message 4 in the initial access process, paging (paging) message, and broadcast system information
  • SIB system information block
  • paging paging
  • broadcast system information The subcarrier spacing used by the (system information, SI) message.
  • Subcarrier offset carried by the ssb-SubcarrierOffset field, and used to calculate the subcarrier offset from subcarrier 0 of a common resource block (CRB) to subcarrier 0 of the SSB.
  • CRB common resource block
  • DMRS position indication carried by the dmrs-TypeA-Position field, used to indicate the position of the first DMRS in the uplink or downlink.
  • the PDCCH configuration of the scheduling SIB1 is carried by the pdcch-ConfigSIB1 field, indicating the control resource set (control-resource set, CORESET) 0 and search space configuration information for receiving the SIB1.
  • Cell barring indication carried by the cellBarred field, to indicate whether the cell is a barred cell.
  • Intra-frequency reselection indication carried by the intraFreqReselection field, indicating that the highest-level cell is prohibited, or is deemed prohibited by the terminal device, whether the terminal device allows to select other cells with the same frequency as the prohibited cell during cell selection/reselection .
  • Idle field spare, this idle field occupies 1 bit.
  • the PBCH also carries another part of the payload (payload) in addition to the MIB.
  • This part of the payload is transmitted in the PBCH transport block as part of the channel coding, that is, the part of the payload is outside the MIB coding, and the part of the payload is before the MIB coding.
  • layer added this part of the payload occupies 8 bits and is used to carry the 4 least significant bits of the system frame number, SSB index, etc. Currently, there are 2 spare bits out of the 8 bits.
  • the PBCH included in the NR SSB is referred to as the first PBCH; the PDCCH configured in the pdcch-ConfigSIB1 field in the MIB carried by the first PBCH is referred to as the second PDCCH;
  • the other part of the load carried in the PBCH other than the MIB is called the first load;
  • the SIB scheduled by the second PDCCH is called the second SIB1, wherein the first PDCCH and the first SIB1 will be described in subsequent embodiments, the second SIB1 It can be understood as SIB1 for broadband terminals.
  • SIB1 for broadband terminals.
  • ADC analog to digital converter
  • DAC digital to analog converter
  • FFT fast flourier transform
  • buffer buffer
  • IoT terminal the narrowband terminal that completes the application of the Internet of Things may also be called an IoT terminal or an IoT device.
  • the narrowband terminal does not have to be used to complete the Internet of Things application, but can also have other uses, that is, the application scenario of the present application is not limited to the IoT scenario.
  • the present application considers multiplexing the PSS and SSS of the NR SSB when introducing a narrowband terminal, and redesigns the PBCH for the narrowband terminal.
  • the configuration information of the PDCCH of the scheduling SIB1 is carried through the pdcch-ConfigSIB1 field.
  • the number of resource blocks (resource blocks, RBs) occupied by the CORESET corresponding to the PDCCH of the scheduling SIB1 configured by this parameter is 24 or 48 or 96. When it occupies at least 24 RBs, the corresponding frequency domain bandwidth is 4.32MHz.
  • a narrowband terminal with a working bandwidth of about 5MHz supports reading the MIB carried by the first PBCH and the second SIB1
  • it is necessary to restrict the configuration of the network device for example, restricting the network device to schedule the CORESET corresponding to the PDCCH (ie the second PDCCH) of the second SIB1
  • the number of occupied RBs is configured as 24. This limitation will affect the configuration flexibility of the network device, and in addition, configuring the number of RBs to 24 will affect the demodulation performance of the second PDCCH.
  • the narrowband terminal cannot be provided with a cell barring indication or an intra-frequency reselection indication.
  • the cellBarred or intraFreqReselection fields respectively carry the cell barring indication or the intra-frequency reselection indication.
  • This function is used to temporarily prevent the terminal from accessing the cell during maintenance. The earlier the notification timing of the indication is, the earlier the terminal can know whether it is allowed to access the cell, so as to avoid more unnecessary receptions. For example, in the prior art, if the MIB indicates that the terminal is prohibited from accessing the cell, the terminal will stop receiving the SIB1 of the cell. Increase the power consumption of the terminal receiving SIB1.
  • the MIB carried by the first PBCH has few idle bits, only 1 bit, which cannot be used to provide a cell barring indication or an intra-frequency reselection indication for the narrowband terminal. If the narrowband terminal reuses the cell prohibition indication or the same-frequency reselection indication in the MIB, the configuration flexibility of the network device will be affected. In order for the narrowband terminal to access the cell, the broadband terminal and the narrowband terminal cannot be configured with different cell prohibition indications or intra-frequency reselection indications of the same cell.
  • the first PBCH within the frequency domain bandwidth of PSS and the SSS accounts for about 50% of the complete first PBCH. If only the first PBCH within the frequency domain bandwidth of PSS and SSS is received, the first PBCH The demodulation performance will be degraded, and the coverage performance will also be degraded. In addition, this implementation also has the problem in the scenario shown in FIG. 3 .
  • the narrowband terminal may not be able to directly use the existing NR SSB. Therefore, the following embodiments of the present application provide an information sending and receiving method to design a reasonable PBCH suitable for narrowband terminals.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (a) of a, b, or c may represent: a, b, c, a and b, a and c, b and c, a and b and c, where a, b, c Can be single or multiple.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner to facilitate understanding.
  • the first communication system 10 includes at least one network device 20 and one or more terminal devices 30 connected to the network device 20 .
  • different terminal devices 30 may communicate with each other.
  • the first communication system 10 may be an NR system, or may be a new future-oriented network system, etc.
  • the embodiments of the present application may be applied to the Internet of Things applications of the NR system.
  • the embodiments of the present application This is not specifically limited. In practical applications, the first communication system is not limited to this, and is described in a unified manner here, and will not be repeated below.
  • the term "system” can be used interchangeably with "network”.
  • the network device determines and sends a synchronization signal, first information, and second information, wherein the first information is passed through The first PBCH is carried, the second information is carried by the second PBCH, and the first information is different from the second information.
  • the terminal device receives the synchronization signal from the network device, obtains the cell identity according to the synchronization signal, and then receives the first information and the second information according to the cell identity, or receives the second information according to the cell identity.
  • the network device sends a synchronization signal, first information and second information, and the first information is carried by the first PBCH, and the second information is carried by the second PBCH.
  • the occupied bandwidth is relatively small, and the working bandwidth of the narrowband terminal may include the bandwidth occupied by the synchronization signal. Therefore, the narrowband terminal may receive the synchronization signal.
  • the narrowband terminal may receive the first PBCH and the second PBCH, or the second PBCH, according to its working bandwidth, so as to receive the first information and the second information, or receive the second information.
  • the present application can provide the synchronization signal and the information carried by the PBCH; on the other hand, the working bandwidth of the broadband terminal in the first communication system can also include the bandwidth occupied by the synchronization signal. Therefore, the broadband terminal also The synchronization signal can be received, that is, the synchronization signal can be shared by the narrowband terminal and the wideband terminal, so that it is not necessary to provide the narrowband terminal and the wideband terminal with respective synchronization signals, thereby reducing resource overhead.
  • the network device 20 in this embodiment of the present application is a device that accesses the terminal device 30 to a wireless network.
  • the network device 20 may be a node in a radio access network, may also be referred to as a base station, or may also be referred to as a radio access network (radio access network, RAN) node (or device).
  • a network device may include a next generation node B (gNB) in a 5G system, or may also include a transmission reception point (TRP), a home base station (eg, a home evolved NodeB, or a home Node).
  • gNB next generation node B
  • TRP transmission reception point
  • home base station eg, a home evolved NodeB, or a home Node
  • B, HNB base band unit
  • baseband pool BBU pool or WiFi access point (access point, AP), etc.
  • CU Centralized unit
  • DU distributed unit
  • CU Centralized unit
  • DU distributed unit
  • IAB access backhaul
  • IAB integrated access and backhual, IAB node
  • devices that implement base station functions in IoT such as vehicle-to-everything (V2X), device to device (D2D), or machine-to-device
  • V2X vehicle-to-everything
  • D2D device to device
  • machine-to-device The device that implements the base station function in a machine (machine to machine, M2M) is not limited in this embodiment of the present application.
  • the base station in this embodiment of the present application may include various forms of base station, for example: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, etc., which are not specifically limited in this embodiment of the present application .
  • the network device 20 in this embodiment of the present application may also refer to a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU), or the network device may also be composed of a CU and a DU.
  • Multiple DUs can share one CU.
  • a DU can also be connected to multiple CUs.
  • CU and DU can be understood as the division of the base station from the perspective of logical functions.
  • the CU and the DU may be physically separated, or may be deployed together, which is not specifically limited in this embodiment of the present application.
  • the CU and the DU can be connected through an interface, such as an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • the functions of the RRC protocol layer, the service data adaptation protocol (SDAP) protocol layer and the packet data convergence protocol (PDCP) protocol layer are set in the CU, while the radio link control
  • the functions of the (radio link control, RLC) protocol layer, the media access control (media access control, MAC) protocol layer, and the physical (physical, PHY) protocol layer are set in the DU.
  • the terminal device 30 in this embodiment of the present application may be a device with a smaller working bandwidth and used to implement a wireless communication function, such as a terminal or a chip that can be used in the terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device in an NR network or a future evolved PLMN. equipment, terminal agent or terminal device, etc.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices or wearable devices, virtual reality (VR) end devices, augmented reality (AR) end devices, industrial control (industrial) wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a wireless communication Functional handheld devices computing devices or other processing devices connected to wireless modems, in-vehicle devices or wearable devices, virtual reality (VR) end devices, augmented reality (AR) end devices, industrial control (industrial) wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal
  • the terminal may be a terminal with a communication function in IoT, such as a terminal in V2X (eg, a vehicle networking device), a terminal in D2D communication, or a terminal in M2M communication, and the like.
  • Terminals can be mobile or stationary.
  • the network device 20 and the terminal device 30 in this embodiment of the present application may also be referred to as communication devices, which may be a general-purpose device or a dedicated device, which is not specifically limited in this embodiment of the present application.
  • FIG. 6 it is a schematic structural diagram of a network device 20 and a terminal device 30 provided in this embodiment of the present application.
  • the terminal device 30 includes at least one processor (in FIG. 6 , it is exemplified by including one processor 301 ) and at least one transceiver (in FIG. 6 , it is exemplified by including one transceiver 303 ) ).
  • the terminal device 30 may further include at least one memory (in FIG. 6 , it is exemplified that one memory 302 is included), at least one output device (in FIG. 6 , one output device 304 is exemplified as an example) for illustration) and at least one input device (in FIG. 6 , one input device 305 is used as an example for illustration).
  • the processor 301, the memory 302 and the transceiver 303 are connected by a communication line.
  • the communication link may include a path to communicate information between the components described above.
  • the processor 301 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the programs of the present application. circuit.
  • the processor 301 may also include multiple CPUs, and the processor 301 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 302 may be a device having a storage function. For example, it may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types of storage devices that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being stored by a computer any other medium taken, but not limited to this.
  • the memory 302 may exist independently and be connected to the processor 301 through a communication line.
  • the memory 302 may also be integrated with the processor 301.
  • the memory 302 is used for storing computer-executed instructions for executing the solutions of the present application, and the execution is controlled by the processor 301 .
  • the processor 301 is configured to execute the computer-executed instructions stored in the memory 302, thereby implementing the information sending and receiving methods described in the embodiments of the present application.
  • the processor 301 may also perform processing-related functions in the methods provided in the following embodiments of the present application, and the transceiver 303 is responsible for communicating with other devices or communication networks, which is implemented in this application. This example is not specifically limited.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application program code or computer program code, which is not specifically limited in the embodiment of the present application.
  • Transceiver 303 may use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access networks (RAN), or wireless local area networks (WLAN) Wait.
  • the transceiver 303 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 304 communicates with the processor 301 and can display information in a variety of ways.
  • the output device 304 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) or the like.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • Input device 305 communicates with processor 301 and can accept user input in a variety of ways.
  • the input device 305 may be a mouse, a keyboard, a touch screen device or a sensing device, or the like.
  • the network device 20 includes at least one processor (in FIG. 6 , it is exemplified by including one processor 201 ), and at least one transceiver (in FIG. 6 , it is exemplified by including one transceiver 203 ) .
  • the network device 20 may further include at least one memory (in FIG. 6 , it is exemplified by including one memory 202 ) and at least one network interface (in FIG. 6 , it is exemplified by including one network interface 204 ). Be explained).
  • the processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected through a communication line.
  • the network interface 204 is used to connect with the core network device through a link (such as the S1 interface), or connect with the network interface of other network devices through a wired or wireless link (such as the X2 interface) (not shown in FIG. 6 ).
  • a link such as the S1 interface
  • a wired or wireless link such as the X2 interface
  • the structure shown in FIG. 6 does not constitute a specific limitation on the terminal device 30 or the network device 20 .
  • the terminal device 30 or the network device 20 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the terminal device and/or the network device may perform some or all of the steps in the embodiments of the present application, these steps or operations are only examples, and the embodiments of the present application may also perform other operations or various Variation of operations.
  • various steps may be performed in different orders presented in the embodiments of the present application, and may not be required to perform all the operations in the embodiments of the present application.
  • the interaction between the network device and the terminal device may also be applicable to the interaction between the CU and the terminal device, or the interaction between the DU and the terminal device. It can be understood that the interaction mechanism between the network device and the terminal device in the various embodiments of the present application can be appropriately modified to apply to the interaction between the CU or DU and the terminal device.
  • the terminal device refers to a narrowband terminal, which is uniformly described here, and will not be repeated in the following embodiments.
  • the working bandwidth of the broadband terminal in the following embodiments of the present application is greater than the working bandwidth of the narrowband terminal.
  • the broadband terminal may be a smart phone in an existing 4G or 5G communication system.
  • the form is not specifically limited.
  • bandwidth refers to the bandwidth in the frequency domain
  • occupied bandwidth refers to the bandwidth occupied in the frequency domain
  • a method for sending and receiving information is provided for this application.
  • the method for sending and receiving information is applied to the aforementioned first communication system, and the method includes the following steps:
  • a network device determines a synchronization signal, first information, and second information.
  • the synchronization signal includes PSS and SSS.
  • the synchronization signal is shared by the broadband terminal and the narrowband terminal.
  • the first information is carried by the first PBCH.
  • the first PBCH is the PBCH of the NR SSB. Therefore, the synchronization signal and the first PBCH carrying the first information constitute the NR SSB.
  • the first information includes MIB and first payload.
  • the first information may also include other information, which is not specifically limited in this application.
  • this application does not limit the information block composed of the synchronization signal and the first PBCH carrying the first information to be called NR SSB or SSB, which may also have other names, and this application does not specifically limit the name.
  • the second information is carried by the second PBCH.
  • the second PBCH is a PBCH for narrowband terminals.
  • the second PBCH and the first PBCH are different PBCHs in the same communication system (the first communication system), and the bandwidth occupied by the second PBCH is less than or equal to the bandwidth occupied by the first PBCH.
  • the second information is different from the first information.
  • the second information includes part or all of the parameters of the first information.
  • the second information may also include parameters that do not exist in the first information. It should be noted that when the second information and the first information include the same parameter, the value of the same parameter may be different.
  • the network device can determine the NR SSB and the second information carried by the second PBCH.
  • the NR SSB can be used for a broadband terminal in the first communication system, and the synchronization signal of the NR SSB and the second information carried by the second PBCH are used for a narrowband terminal in the first communication system.
  • part or all of the first information carried by the first PBCH is also used for narrowband terminals, which will be described in subsequent embodiments, and will not be repeated here.
  • the second PBCH in this application can also be an additional (Additional) PBCH, and the two can be replaced with each other, which is not specifically limited in this application.
  • the synchronization signal, the first PBCH, and the second PBCH in this application may form an information block, or the synchronization signal and the second PBCH may form an information block, and the information block can be understood as being different from the NR SSB.
  • the new SSB, or, may also have other names, which are not specifically limited in this application.
  • the network device sends a synchronization signal, first information, and second information.
  • the terminal device receives the synchronization signal, the first information, and the second information from the network device; or, the terminal device receives the synchronization signal and the second information from the network device.
  • the synchronization signal, the first information, and the second information are public information at the cell level.
  • the network device broadcasts the synchronization signal, the first information, and the second information, and the network device broadcasts the synchronization signal, the first information, and the second information.
  • Terminal devices under coverage can receive information broadcast by network devices.
  • the terminal equipment is a narrowband terminal
  • the information broadcast by the network equipment includes: the terminal equipment receives a synchronization signal from the network equipment, and obtains a cell identifier according to the synchronization signal, and then receives the first cell identifier according to the cell identifier. information and the second information, or the second information is received according to the cell identity.
  • This application does not specifically limit the method for the terminal equipment to obtain the cell ID according to the synchronization signal, and then receive the information carried by the PBCH according to the cell ID. In one implementation, it can be similar to the method for the broadband terminal to receive the NR SSB, which will not be repeated here. .
  • the terminal device when the working bandwidth of the terminal device is greater than or equal to the bandwidth occupied by the first PBCH, the terminal device receives the first information and the second information according to the cell identifier, that is, the terminal device receives the synchronization signal, the first information, and the second information.
  • Second information when the working bandwidth of the terminal device is smaller than the bandwidth occupied by the first PBCH, the terminal device receives the second information according to the cell identifier, that is, the terminal device receives the synchronization signal and the second information.
  • the terminal device may perform subsequent processing according to the received information, for example, receive SIB1 according to the first information or the second information, and obtain the required random access information. information, etc., which are not specifically limited in this application.
  • the broadband terminal in the first communication system may receive the synchronization signal and the first information carried by the first PBCH, or may receive the NR SSB, so as to realize downlink synchronization and network access in the broadband.
  • the network device sends a synchronization signal, first information and second information, and the first information is carried by the first PBCH, and the second information is carried by the second PBCH.
  • the occupied bandwidth is relatively small, and the working bandwidth of the narrowband terminal may include the bandwidth occupied by the synchronization signal. Therefore, the narrowband terminal may receive the synchronization signal.
  • the narrowband terminal may receive the first PBCH and the second PBCH, or the second PBCH, according to its working bandwidth, so as to receive the first information and the second information, or receive the second information.
  • the present application can provide the synchronization signal and the information carried by the PBCH; on the other hand, the working bandwidth of the broadband terminal in the first communication system can also include the bandwidth occupied by the synchronization signal. Therefore, the broadband terminal also The synchronization signal can be received, that is, the synchronization signal can be shared by the narrowband terminal and the wideband terminal, so that it is not necessary to provide the narrowband terminal and the wideband terminal with respective synchronization signals, thereby reducing resource overhead.
  • the following first describes the second information and the second PBCH when the working bandwidth of the terminal device is greater than or equal to the bandwidth occupied by the first PBCH (for example, the working bandwidth of the terminal device is 5MHz).
  • the terminal device can completely receive the first PBCH and obtain the MIB in the first information carried by the first PBCH.
  • the PDCCH configuration, cell prohibition indication, or intra-frequency reselection indication of the MIB in the first information is reused for scheduling SIB1, it will affect the configuration flexibility of the network equipment and the scheduling SIB1
  • the demodulation performance of the PDCCH is higher, or the narrowband terminal cannot be provided with a cell barring indication or an intra-frequency reselection indication.
  • the second information may include at least one of the first sub-information, the second sub-information, the third sub-information, or the fourth sub-information.
  • the first sub-information is used to schedule the first SIB1.
  • the first sub-information exemplarily includes time-frequency resource location information, repetition times, modulation and coding scheme (MCS, MCS) of the first SIB1. ), redundant version (redundancy version, RV), etc.
  • MCS modulation and coding scheme
  • RV redundant version
  • the first sub-information is used to configure the first PDCCH, and the first PDCCH is used to schedule the first SIB1.
  • the first SIB1 may be understood as the SIB1 used for the narrowband terminal.
  • the first sub-information schedules the first SIB1 it may also be called scheduling information; when the first sub-information is used to configure the first PDCCH, it may also be called the PDCCH configuration information for scheduling the SIB1, and can be replaced with each other, This application does not specifically limit this.
  • the second sub-information is used to indicate whether the cell corresponding to the second PBCH is a prohibited cell, or, in other words, used to indicate whether the narrowband terminal is allowed to access the cell corresponding to the second PBCH.
  • the second sub-information and the cell prohibition indication in the MIB of the first information are not the same information, and the cell prohibition indication in the MIB of the first information is used to indicate whether the broadband terminal (or NR terminal) is allowed.
  • the cell corresponding to the second PBCH and the cell corresponding to the first PBCH are the same cell, the cell has two SIB1s, the first SIB1 and the second SIB1, the first SIB1 is used for narrowband terminals, and the second SIB1 is used for broadband terminals.
  • the second sub-information may also be called cell barring indication information, and the two may be replaced with each other, which is not specifically limited in this application.
  • the third sub-information is used to indicate whether to allow selection of an intra-frequency cell of a prohibited cell. Specifically, it can be used to indicate whether the terminal device allows to select a cell with the same frequency as the prohibited cell when the highest-level cell is prohibited or deemed prohibited by the terminal device during cell selection or reselection.
  • the third sub-information is not the same information as the co-frequency reselection indication in the MIB of the first information, and the co-frequency reselection indication in the MIB of the first information is used to indicate whether to allow broadband terminal selection to be prohibited.
  • the same frequency cell of the cell is not the same information as the co-frequency reselection indication in the MIB of the first information, and the co-frequency reselection indication in the MIB of the first information is used to indicate whether to allow broadband terminal selection to be prohibited.
  • the third sub-information may also be called intra-frequency reselection indication information, and the two may be replaced with each other, which is not specifically limited in this application.
  • the fourth sub-information is used to indicate whether the system information is updated.
  • the fourth sub-information may include a value tag.
  • the system information will correspond to a value label, and after receiving the system information, the terminal device will store the system information and the value label corresponding to the system information.
  • the system information changes, the value of the value label will change, so when the value of the value label included in the fourth sub-information changes, the fourth sub-information can be used to indicate that the system information is updated.
  • the fourth sub-information can be used to indicate that the system information has not been updated.
  • the terminal device After receiving the fourth sub-information, the terminal device re-receives the updated system information when the value of the value tag changes compared with its previously stored value, and the value of the value tag does not change compared with its previously stored value. When changed, no system information is received.
  • the terminal device when the fourth sub-information is used to indicate that the system information is updated, the terminal device receives the updated system information, and when the fourth sub-information is used to indicate that the system information is not updated, the terminal device does not need to receive the system information, thereby reducing the need for Unnecessary reception of system information saves power consumption of terminal equipment.
  • the fourth sub-information may also be referred to as system information change indication information, and the two may be replaced with each other, which is not specifically limited in this application.
  • first sub-information, second sub-information, or third sub-information may be understood as differentiated information from the first information, and the fourth sub-information may be understood as narrowband terminal-specific indication information.
  • the second information does not include the system frame number of the frame where the synchronization signal is located, or the second information does not include N high-order bits of the system frame number, where N is a positive integer, such as 6.
  • the system frame number of the frame where the synchronization signal is located may also be referred to as the system frame number of the frame where the first information or the second information is located.
  • the terminal device can receive the first information, the first information includes the MIB, and when the MIB includes the system frame number, the second information may not include the system frame number, and the MIB includes the system frame number.
  • the second information may not include the N high-order bits of the system frame number, and the terminal device may multiplex the system frame number included in the MIB of the first information or the N high-order bits of the system frame number.
  • the terminal device may also multiplex the subcarrier spacing, subcarrier offset, DMRS location indication, etc. included in the MIB of the first information.
  • the second information may include differentiated information compared with the first information.
  • the terminal device may reuse the indifference in the first information. information, which can reduce signaling overhead.
  • the configuration flexibility of the network device and the demodulation performance of the second PDCCH are not affected, and an independent cell barring indication or an intra-frequency reselection indication can be provided for the narrowband terminal.
  • the time-frequency location of the second PBCH is described as follows:
  • the time-frequency position of the second PBCH will be described with reference to the SSB (ie, the NR SSB) composed of the synchronization signal and the first PBCH.
  • the frequency domain position of the second PBCH is adjacent to the frequency domain position of the SSB, and the time domain position of the second PBCH is the same as the time domain position of the SSB, or is included in the time domain position of the SSB in location.
  • the OFDM symbols occupied by the second PBCH are part or all of the OFDM symbols occupied by the SSB.
  • the frequency domain position of the second PBCH is adjacent to the frequency domain position of the SSB may be: the frequency domain position of the second PBCH is located at a high frequency position and/or a low frequency position of the frequency domain position of the SSB.
  • the schematic diagrams of the frequency domain position of the second PBCH being located at the low frequency position, the high frequency position, the low frequency position and the high frequency position of the SSB are as follows. As shown in FIG. 8a, FIG. 8b, and FIG. 8c, the box filled with diagonal lines represents the second PBCH.
  • the relationship between the frequency domain location of the second PBCH and the frequency domain location of the SSB may be predefined by the protocol. In this case, the network device does not need to indicate the frequency domain location of the second PBCH to the terminal device, saving signaling overhead. .
  • the relationship between the frequency domain location of the second PBCH and the frequency domain location of the SSB may be determined by the network device. In this case, the network device may send indication information to the terminal device to indicate the frequency domain location of the second PBCH.
  • the network device may include fifth sub-information in the first information or the second information, and the fifth sub-information is used to indicate that the frequency domain position of the second PBCH is located at the high frequency position and/or the frequency domain position of the SSB. or low frequency locations.
  • the terminal device receiving the second information according to the cell identifier may include: the terminal device determining the frequency domain position of the second PBCH according to the fifth sub-information, and receiving the second information at the frequency domain position of the second PBCH according to the cell identifier .
  • the fifth sub-information may be represented by an idle bit in the MIB included in the first information.
  • the value of this bit is "1"
  • the value of this bit is "0”
  • this bit when the value of this bit is "0", it indicates that the fifth sub-information indicates that the frequency domain position of the second PBCH is located at a high frequency position of the frequency domain position of the SSB; when the value of this bit is "1", it indicates that The fifth sub-information indicates that the frequency domain position of the second PBCH is located at a low frequency position of the frequency domain position of the SSB.
  • the fifth sub-information may be represented by two idle bits in the first payload included in the first information, and the values of the two idle bits and the content indicated by the fifth sub-information may be shown in Table 1 below.
  • the frequency domain position of the second PBCH is located at a low frequency position of the frequency domain position of the SSB 10
  • the frequency domain position of the second PBCH is located at a high frequency position of the frequency domain position of the SSB
  • the frequency domain position of the second PBCH is located at the low frequency position and the high frequency position of the frequency domain position of the SSB
  • the network device and the terminal device may agree to assume that the frequency domain position of the second PBCH is adjacent to the side of the frequency domain position of the SSB when the terminal device initially accesses ( That is, it is located at the high frequency position or the low frequency position of the SSB), and the fifth sub-information included in the second information is carried by the part located on the adjacent side in the second PBCH, and the terminal device obtains the first information on the adjacent side according to the assumption.
  • the terminal device After the five sub-information, if the fifth sub-information indicates that the frequency domain position of the second PBCH is adjacent to both sides of the frequency domain position of the SSB (that is, at the high frequency position and the low frequency position of the SSB), the terminal device will receive the first In the case of two messages, the reception can be performed in a frequency hopping manner to obtain the frequency diversity gain.
  • the time-frequency position of the second PBCH in this implementation manner can also be described as: the frequency-domain position of the second PBCH is adjacent to the frequency-domain position of the first PBCH, and the time-frequency position of the second PBCH is adjacent to the frequency domain position of the first PBCH.
  • the domain location is the same as or included in the first time domain location, wherein the first time domain location includes the time domain location of the synchronization signal and the time domain location of the first PBCH.
  • the time domain position of the second PBCH is included in the time domain position of the SSB composed of the synchronization signal and the first PBCH, and the frequency domain position is adjacent to the frequency domain position of the SSB.
  • the energy saving mechanism of the network device means that when the system has no service, the network device can turn off other OFDM symbols except the OFDM symbols occupied by the public signals that must be sent such as SSB, that is, when the system has no service, the network device can turn off other OFDM symbols.
  • the time domain location of the second PBCH is included in the time domain location of the NR SSB, which does not affect the network device performing OFDM symbol-level shutdown at the time domain location outside the SSB, that is, does not affect the energy saving mechanism of the network device.
  • the time domain position of the second PBCH is adjacent to the time domain position of the SSB (that is, the NR SSB) composed of the synchronization signal and the first PBCH
  • the frequency domain position of the second PBCH is adjacent to the time domain position of the SSB.
  • the frequency domain position is the same, or is included in the frequency domain position of the SSB.
  • the bandwidth occupied by the second PBCH is less than or equal to the bandwidth occupied by the SSB, or the bandwidth occupied by the second PBCH is a part or all of the bandwidth occupied by the SSB.
  • the number of OFDM symbols occupied by the second PBCH is less than the number of OFDM symbols occupied by the SSB.
  • the time domain position of the second PBCH is adjacent to the time domain position of the SSB may be: the time domain position of the second PBCH is located before and/or after the time domain position of the SSB.
  • the time domain position of the second PBCH is located before, after, and after the time domain position of the SSB.
  • the schematic diagrams of before and after are shown in Fig. 9a, Fig. 9b, and Fig. 9c, respectively, wherein the diagonally filled box represents the second PBCH.
  • the relationship between the time domain position of the second PBCH and the time domain position of the SSB may be determined in the following three cases:
  • the relationship between the time domain location of the second PBCH and the time domain location of the SSB may be predefined by the protocol.
  • the network device does not need to indicate the time domain location of the second PBCH to the terminal device, saving signaling overhead.
  • Case 2 The relationship between the time domain location of the second PBCH and the time domain location of the SSB may be determined by the network device.
  • the network device may send indication information to the terminal device to indicate the time domain location of the second PBCH.
  • the network device may include fifth sub-information in the first information, where the fifth sub-information is used to indicate that the time domain position of the second PBCH is located before and/or after the time domain position of the SSB.
  • the terminal device receiving the second information according to the cell identifier may include: the terminal device determining the time domain position of the second PBCH according to the fifth sub-information, and receiving the second information at the time domain position of the second PBCH according to the cell identifier .
  • the fifth sub-information may be represented by 1 spare bit in the MIB included in the first information, or may be represented by 2 spare bits in the first payload included in the first information, and reference may be made to the fifth sub-information.
  • the relevant description for indicating the frequency domain position of the second PBCH will not be repeated here.
  • Case 3 The relationship between the time domain position of the second PBCH and the time domain position of the SSB is related to the time domain position of the SSB.
  • the time domain position of the second PBCH is located before the time domain position of the SSB, and is adjacent to the time domain position of the SSB.
  • the time domain position is adjacent; if there is an idle time domain resource adjacent to the time domain position of the SSB after the time domain position of the SSB, the time domain position of the second PBCH is located after the time domain position of the SSB, and is adjacent to the time domain position of the SSB.
  • the time domain position of the SSB is adjacent; if there are idle time domain resources adjacent to the time domain position of the SSB before and after the time domain position of the SSB, the time domain position of the second PBCH is located at the time domain position of the SSB Before and after, and adjacent to the time domain position of this SSB.
  • the time-frequency position of the second PBCH in this implementation can also be described as: the time-domain position of the second PBCH is adjacent to the second time-domain position, and the second time-domain position includes The time domain position of the synchronization signal and/or the time domain position of the first PBCH and the frequency domain position of the second PBCH are the same as or included in the frequency domain position of the first PBCH.
  • the above-mentioned related features of the time-frequency position of the second PBCH described with reference to the SSB composed of the synchronization signal and the first PBCH can also be appropriately modified and applied to the description, and will not be repeated here.
  • the time domain position of the second PBCH is different from the time domain position of the SSB composed of the synchronization signal and the first PBCH, and the occupation of spectrum resources can be reduced by means of time division multiplexing.
  • the terminal equipment may be explicitly notified through signaling that the second PBCH exists in the first communication system.
  • the first information may include sixth sub-information, and the sixth sub-information may be used to indicate any of the following:
  • a second PBCH exists in the first communication system
  • the cell corresponding to the second PBCH is a non-prohibited cell
  • a second PBCH exists in the first communication system, and a cell corresponding to the second PBCH is a non-prohibited cell.
  • the existence of the second PBCH is also equivalent to the existence of the second information. Therefore, when the sixth sub-information is used to indicate that the second PBCH exists in the first communication system, it is also equivalent to the sixth sub-information It is used to indicate that the second information exists in the first communication system, or in other words, the sixth sub-information is used to indicate that the network device has sent the second information carried by the second PBCH.
  • the sixth sub-information is used to indicate that when the cell corresponding to the second PBCH is a non-prohibited cell, the narrowband terminal is allowed to access the cell corresponding to the second PBCH.
  • the second information may not include the above-mentioned second sub-information, so that signaling overhead occupied by the second sub-information can be saved.
  • the terminal device receiving the first information and the second information according to the cell identifier may include: the terminal device receiving the first information according to the cell identifier, and then receiving the second information according to the sixth sub-information included in the first information.
  • information that is, the terminal device can first receive the first information, and receive the second PBCH when the sixth sub-information included in the first information indicates that the second PBCH exists in the first communication system and/or the cell corresponding to the second PBCH is a non-prohibited cell. information.
  • the sixth sub-information is only used to indicate that the cell corresponding to the second PBCH is a non-prohibited cell
  • the terminal device after confirming that the terminal device is allowed to access the cell corresponding to the second PBCH according to the sixth sub-information, if the terminal To access the cell, the device needs to receive the second information first, and at this time, it can also be considered that the terminal device receives the second information according to the sixth sub-information.
  • a second PBCH may be defined in the protocol, but the second PBCH does not exist in the first communication system, or the network device does not send the second information.
  • the sixth sub-information can be used to indicate any of the following:
  • the second PBCH does not exist in the first communication system
  • the cell corresponding to the second PBCH is a forbidden cell
  • the second PBCH does not exist in the first communication system, and the cell corresponding to the second PBCH is a prohibited cell.
  • the absence of the second PBCH is equivalent to the absence of the second information. Therefore, when the sixth sub-information is used to indicate that the second PBCH does not exist in the first communication system, it is also equivalent to the absence of the second PBCH.
  • the six sub-information is used to indicate that the second information does not exist in the first communication system, or in other words, the sixth sub-information is used to indicate that the network device does not send the second information carried by the second PBCH.
  • the sixth sub-information is used to indicate that when the cell corresponding to the second PBCH is a prohibited cell, the narrowband terminal is prohibited from accessing the cell corresponding to the second PBCH.
  • the network device may not send the second information, and correspondingly, the terminal device does not receive the second information. , thereby saving signaling overhead.
  • the reason why the second PBCH does not exist in the first system or the network device does not send the second information may be one or more of the following: For the narrowband terminal, the cell corresponding to the second PBCH is in the maintenance period, and the narrowband terminal is prohibited. Access; network equipment load is relatively high, priority is to ensure broadband terminal access, and narrowband terminal access is prohibited. Of course, there may also be other reasons, which are not specifically limited in this application.
  • the terminal device after the terminal device receives the first information according to the identity of the cell, when the sixth sub-information indicates that the second PBCH does not exist in the first communication system and/or the cell corresponding to the second PBCH is a forbidden cell , the second information may not be received, so as to avoid waste of power consumption of the terminal device.
  • the sixth sub-information may be represented by an idle bit in the MIB included in the first information.
  • the value of this bit is "1”
  • the second PBCH and/or the cell corresponding to the second PBCH is a non-prohibited cell.
  • the value of this bit is "0”
  • the sixth sub-information may be represented by two idle bits in the first payload included in the first information, and the values of the two idle bits and the content indicated by the sixth sub-information may be shown in Table 2 below.
  • the second PBCH does not exist in the first communication system, and the cell corresponding to the second PBCH is a prohibited cell 01
  • the second PBCH does not exist in the first communication system 10
  • a second PBCH exists in the first communication system 11
  • a second PBCH exists in the first communication system, and the cell corresponding to the second PBCH is a non-prohibited cell
  • the terminal device receives the second information when the sixth sub-information indicates that the second PBCH exists in the first communication system and/or the cell corresponding to the second PBCH is a non-prohibited cell, and the sixth sub-information indicates that the first communication
  • the sixth sub-information indicates that the first communication
  • the terminal device can receive or not receive the second information according to the sixth sub-information , it can avoid blindly receiving the second information when the network device does not send the second information, thereby reducing the power consumption of the terminal device.
  • the terminal device may be implicitly notified that the second PBCH exists in the first communication system.
  • the first information may include seventh sub-information, where the seventh sub-information indicates the number of RBs occupied by the CORESET corresponding to the second PDCCH, and when the number of RBs is greater than the first threshold, it indicates that the second PDCCH exists in the first communication system.
  • PBCH PBCH.
  • the bandwidth of the first threshold number of RBs is smaller than but close to the working bandwidth of the terminal device, for example, the first threshold value may be 24; or, the bandwidth of the first threshold number of RBs is greater than the working bandwidth of the terminal device.
  • the seventh sub-information may be the configuration information of the PDCCH of the scheduling SIB1 carried by the pdcch-ConfigSIB1 field in the MIB included in the first information.
  • the terminal device receiving the first information and the second information according to the cell identifier may include: the terminal device receiving the first information according to the cell identifier, and then determining the second information according to the seventh sub-information included in the first information.
  • the second PBCH may not exist in the first communication system, or the network device may not have the second information.
  • the narrowband terminal and the wideband terminal share the synchronization signal and the first PBCH.
  • whether there is a second PBCH in the system is implicitly indicated by the number of RBs occupied by the CORSET corresponding to the second PDCCH, which can reduce signaling overhead.
  • the terminal device can first determine whether there is a second PBCH or not. When the second information is not received, the waste of power consumption of the terminal is reduced.
  • the transmission mechanism of the second information is described as follows:
  • the first information and the second information are encoded.
  • the network device may encode the first information according to the first cyclic redundancy check (CRC) to obtain the encoded first information, and may encode the second information according to the second CRC. , to obtain the encoded second information.
  • CRC cyclic redundancy check
  • the number of bits of the first CRC is different from the number of bits of the second CRC.
  • the number of bits of the first CRC is greater than the number of bits of the second CRC.
  • the number of bits of the first CRC is 24, and the number of bits of the second CRC is 16.
  • the second CRC with fewer bits is used to code and modulate the second information, more bits may be used for the second information, that is, the second information may include more contents or parameters.
  • the network device encodes the first information according to the first CRC, which may include: the network device generates the first CRC, and appends the first CRC after the transport block (transport block, TB) corresponding to the first information, and this The TB corresponding to the first information and the first CRC are encoded to obtain the encoded first information.
  • encoding the second information by the network device according to the second CRC may include: the network device generates a second CRC, and appends the second CRC after the TB corresponding to the second information, and the TB corresponding to the second information and the first CRC The second CRC is encoded to obtain the encoded second information.
  • the TB corresponding to the first information is the TB including the first information
  • the TB corresponding to the second information is the TB including the second information
  • the network device may generate the first CRC according to the first CRC generator polynomial, and generate the second CRC according to the second CRC generator polynomial.
  • the present application does not specifically limit the manner in which the network device generates the CRC.
  • sending the first information and the second information by the network device may include: sending the encoded first information and the encoded second information by the network device.
  • the terminal device receiving the first information and the second information according to the cell identifier may include: the terminal device receiving the encoded first information and the encoded second information according to the cell identifier, and then receiving the encoded first information and the encoded second information according to the cell identifier.
  • the first CRC performs CRC check on the encoded first information to obtain the first information
  • the terminal device performs a CRC check on the encoded first information according to the first CRC to obtain the first information, which may include: the terminal device decodes the encoded first information to obtain the encoded first information including the first CRC.
  • the first decoding information is used, and the first CRC is used to perform a CRC check on the first decoding information. After the verification is successful, the first information is obtained according to the first decoding information.
  • performing a CRC check on the encoded second information by the terminal device according to the second CRC to obtain the second information may include: decoding the encoded second information by the terminal device to obtain the first information including the second CRC. Second decode information, and use the second CRC to perform CRC check on the second decoded information, and after the verification is successful, obtain the second information according to the second decoded information.
  • the first CRC and the second CRC used by the terminal device may be generated by the terminal device, wherein the first CRC generated by the terminal device is the same as the first CRC generated by the network device, and the second CRC generated by the terminal device and The second CRC generated by the network device is the same.
  • the second information is coded and modulated by using the CRC check method, and the performance of the second PBCH is guaranteed through the strong error detection capability of the CRC.
  • the system message of CRC is small and easy to use, which can reduce the implementation complexity of the scheme.
  • the second information may be represented by a sequence.
  • the sequence representing the second information may be a long sequence occupying one or more OFDM symbols, or multiple short sequences, each of which occupies one OFDM symbol.
  • the sequence representing the second information may be a product of sequences of different types.
  • the number of OFDM symbols occupied by the sequence representing the second information is less than or equal to the total number of OFDM symbols occupied by the first PBCH and the synchronization signal. Different sequences represent different second information.
  • the long sequence or the short sequence may be a Zadoff-Chu sequence, an m sequence, a gold sequence, etc., and the type of the sequence is not specifically limited in this application.
  • the second information carried by the second PBCH is represented by a sequence, and the terminal device does not need to perform a complex decoding operation when receiving the second information, and only needs to perform a simple correlation operation, so the processing of the terminal device can be reduced. complexity, thereby reducing the hardware requirements of the terminal equipment, thereby reducing the cost of the terminal equipment.
  • the above is the relevant introduction when the working bandwidth of the terminal device is greater than the bandwidth occupied by the first PBCH.
  • the second information and the second PBCH when the working bandwidth of the terminal device is smaller than the bandwidth occupied by the first PBCH are introduced.
  • the second information includes parameters necessary for the terminal device to access the network device, that is, The system frame number of the frame where the aforementioned synchronization signal is located or the N high-order bits of the system frame number.
  • the second information may further include one or more of the foregoing subcarrier spacing, subcarrier offset, DMRS location indication, first subinformation, second subinformation, third subinformation, and fourth subinformation.
  • the second information when the narrowband terminal cannot receive the first information carried on the first PBCH, the second information includes the system frame number of the frame where the synchronization signal is located or the N high-order bits of the system frame number, so that the narrowband terminal can know The system frame number or its N high-order bits, so that subsequent processing is performed according to the system frame number or its N high-order bits, for example, subsequent system information and paging messages are received, and random access is initiated.
  • the time-frequency location of the second PBCH is described as follows:
  • the time-frequency position of the second PBCH will be described with reference to the SSB (ie, the NR SSB) composed of the synchronization signal and the first PBCH.
  • the frequency domain position of the second PBCH is adjacent to the frequency domain position of the SSB, and the time domain position of the second PBCH is the same as the time domain position of the SSB, or is included in the time domain position of the SSB in location.
  • the time domain position of the second PBCH is adjacent to the time domain position of the SSB composed of the synchronization signal and the first PBCH, and the frequency domain position of the second PBCH is the same as the frequency domain position of the SSB, or included in the frequency domain location of the SSB.
  • the time-frequency position description of the second PBCH can be appropriately deformed to be suitable for this.
  • the relationship between the time domain position or frequency domain position of the second PBCH and the time domain position or frequency domain position of the SSB composed of the synchronization signal and the first PBCH may be predefined by the protocol, or may be indicated by the network device to the terminal device.
  • the indication may be carried in other broadcast information sent before the second information is sent, which is not specifically limited in this application.
  • the terminal equipment may be explicitly notified through signaling that the second PBCH exists in the first communication system. Different from when the working bandwidth of the terminal device is greater than the first PBCH, the terminal device cannot receive the first information. Therefore, the signaling can be sent before other broadcast information sent before the second information is sent, which is not specified in this application. limited.
  • the terminal device may be implicitly notified that the second PBCH exists in the first communication system. Reference may be made to the relevant description when the working bandwidth of the above-mentioned terminal device is greater than the first PBCH, and details are not repeated here.
  • the transmission mechanism of the second information is described as follows:
  • the transmission mechanism of the second information is similar to the transmission mechanism of the second information when the working bandwidth of the terminal device is greater than the first PBCH, and reference may be made to the above related description, which will not be repeated here.
  • the energy per resource element (EPRE) of the second PBCH and the EPRE of the SSS included in the synchronization signal The ratio between them is X decibels (dB), where X is greater than or equal to 0.
  • the SSS and the first PBCH have the same EPRE, that is, the ratio between the EPRE of the first PBCH and the EPRE of the SSS is 0 dB, so when X is greater than 0, the EPRE of the second PBCH is 0 dB.
  • the EPRE is larger than that of the first PBCH, that is, the transmission power of the second PBCH is higher, so that better coverage performance can be achieved than that of the first PBCH.
  • the network device sends the synchronization signal, the first information, and the second information, and the first information is carried by the first PBCH, and the second information is carried by the second PBCH.
  • the narrowband terminal can receive the first PBCH and the second PBCH, or receive the second PBCH to receive the first information and the second information, or receive the second information for subsequent processing, such as downlink synchronization and initiation of random access. Enter and so on.
  • the broadband terminal in the first communication system can receive the synchronization signal and the first information carried by the first PBCH, so as to realize the synchronization and network access of the broadband terminal and ensure the integrity of the system.
  • the action of the network device can be executed by the processor 201 in the network device 20 shown in FIG. 6 calling the application code stored in the memory 202 to instruct the network device to execute; in the above method embodiment, the terminal The action of the device may be instructed by the processor 301 in the terminal device 30 shown in FIG. 6 to call the application code stored in the memory 302 to instruct the terminal device to execute, which is not limited in this embodiment.
  • the methods and/or steps implemented by terminal equipment may also be implemented by components (such as chips or circuits) that can be used in terminal equipment, and the methods and/or steps implemented by network equipment, It can also be implemented by components that can be used in network equipment.
  • an embodiment of the present application further provides a communication device, where the communication device is used to implement the above-mentioned various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component usable for the terminal device; or, the communication device may be the network device in the foregoing method embodiment, or including the foregoing A device of a network device, or a component that can be used in a network device.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the communication device may be divided into functional modules according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 10 shows a schematic structural diagram of a network device 100 .
  • the network device 100 includes a processing module 1001 and a transceiver module 1002 .
  • the transceiver module 1002 which may also be called a transceiver unit, is used to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the network device 100 may further include a storage module (not shown in FIG. 10 ) for storing program instructions and data.
  • a storage module (not shown in FIG. 10 ) for storing program instructions and data.
  • the transceiver module 1002 may include a receiving module and a sending module, which are respectively used to perform the steps of receiving and sending performed by the network device in the above method embodiments; the processing module 1001 may be used to perform the above method embodiments. Steps of a class of processing (eg, determine, obtain, etc.) performed by a network device.
  • the processing module 1001 is configured to determine a synchronization signal, first information, and second information, the first information is carried by the first PBCH, the second information is carried by the second PBCH, and the first information and the second information are different; Module 1002, configured to send the synchronization signal, the first information, and the second information.
  • the processing module 1001 is further configured to encode the first information according to the first CRC to obtain the encoded first information, and to encode the second information according to the second CRC to obtain the encoded second information,
  • the number of bits of the first CRC is different from the number of bits of the second CRC;
  • the transceiver module 1002 is specifically configured to send the encoded first information and the encoded second information.
  • the network device 100 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific ASIC, circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other device that may provide the functions described above.
  • the network device 100 may take the form of the network device 20 shown in FIG. 6 .
  • the processor 201 in the network device 20 shown in FIG. 6 may execute the instructions by invoking the computer stored in the memory 202, so that the network device 20 executes the methods in the foregoing method embodiments.
  • the function/implementation process of the processing module 1001 and the transceiver module 1002 in FIG. 10 can be implemented by the processor 201 in the network device 20 shown in FIG. 6 calling the computer execution instructions stored in the memory 202 .
  • the function/implementation process of the processing module 1001 in FIG. 10 can be implemented by the processor 201 in the network device 20 shown in FIG. 6 calling the computer execution instructions stored in the memory 202, and the function of the transceiver module 1002 in FIG.
  • the implementation process can be implemented by the transceiver 203 in the network device 20 shown in FIG. 6 .
  • the network device 100 provided in this embodiment can execute the methods in the foregoing method embodiments, the technical effects that can be obtained by the network device 100 may refer to the foregoing method embodiments, which will not be repeated here.
  • FIG. 11 shows a schematic structural diagram of a terminal device 110 .
  • the terminal device 110 includes a processing module 1101 and a transceiver module 1102 .
  • the transceiver module 1102 which may also be called a transceiver unit, is used to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the terminal device 110 may further include a storage module (not shown in FIG. 11 ) for storing program instructions and data.
  • a storage module (not shown in FIG. 11 ) for storing program instructions and data.
  • the transceiver module 1102 may include a receiving module and a sending module, which are respectively used to perform the receiving and sending steps performed by the terminal device in the above method embodiments; the processing module 1101 may be used to perform the above method embodiments. Steps of a class of processing (eg, determine, obtain, etc.) performed by an end device.
  • a class of processing eg, determine, obtain, etc.
  • the transceiver module 1102 is used to receive the synchronization signal from the network device; the processing module 1101 is used to obtain the cell identifier according to the synchronization signal; the transceiver module 1102 is also used to receive the first information and the second information according to the cell identifier, or, It is used to receive second information according to the cell identity, where the first information is carried by the first PBCH, the second information is carried by the second PBCH, and the first information and the second information are different.
  • the transceiver module 1102 is specifically configured to receive the encoded first information and the encoded second information according to the cell identifier; the processing module 1101 is further configured to perform a CRC check on the encoded first information according to the first CRC. Check to obtain the first information, and perform CRC check on the encoded second information according to the second CRC to obtain the second information, and the number of bits of the first CRC is different from the number of bits of the second CRC.
  • the terminal device 110 is presented in the form of dividing each functional module in an integrated manner.
  • Module herein may refer to a specific ASIC, circuit, processor and memory executing one or more software or firmware programs, integrated logic circuit, and/or other device that may provide the functions described above.
  • the terminal device 110 may take the form of the terminal device 30 shown in FIG. 6 .
  • the processor 301 in the terminal device 30 shown in FIG. 6 may invoke the computer execution instructions stored in the memory 302 to cause the terminal device 30 to execute the methods in the foregoing method embodiments.
  • the functions/implementation process of the processing module 1101 and the transceiver module 1102 in FIG. 11 can be implemented by the processor 301 in the terminal device 30 shown in FIG. 6 calling the computer execution instructions stored in the memory 302 .
  • the function/implementation process of the processing module 1101 in FIG. 11 can be implemented by the processor 301 in the terminal device 30 shown in FIG. 6 calling the computer execution instructions stored in the memory 302, and the function of the transceiver module 1102 in FIG. 11 can be implemented.
  • the implementation process can be implemented by the transceiver 303 in the terminal device 30 shown in FIG. 6 .
  • terminal device 110 provided in this embodiment can execute the methods in the foregoing method embodiments, reference may be made to the foregoing method embodiments for technical effects that can be obtained, and details are not described herein again.
  • an embodiment of the present application further provides a communication apparatus (for example, the communication apparatus may be a chip or a chip system), where the communication apparatus includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication apparatus to execute the method in any of the above method embodiments.
  • the memory may also not be in the communication device.
  • the communication device further includes an interface circuit, which is a code/data read/write interface circuit, and the interface circuit is used to receive computer-executed instructions (the computer-executed instructions are stored in the memory, and may be directly from memory read, or possibly through other devices) and transferred to the processor.
  • the communication device is a chip system, it may be constituted by a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the computer may include the aforementioned apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息发送和接收方法、装置及系统,能够为窄带终端提供同步信号以及PBCH,同时降低资源开销。该方法中,网络设备确定并发送同步信号、第一信息、以及第二信息,第一信息由第一PBCH承载,第二信息由第二PBCH承载,第一信息与第二信息不同。终端设备接收来自该网络设备的同步信号后,根据该同步信号确定小区标识,并根据该小区标识接收第一信息和第二信息,或者,根据该小区标识接收第二信息。

Description

信息发送和接收方法、装置及系统 技术领域
本申请涉及通信领域,尤其涉及信息发送和接收方法、装置及系统。
背景技术
目前,第五代(the fifth generation,5G)移动通信系统的新空口(new radio,NR)中定义了同步信号/物理广播信道块(SS/PBCH block,SSB)。其中,SSB包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、和物理广播信道(physical broadcast channel,PBCH)。
如图1所示,在时域上,一个SSB占用连续的4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。在频域上,占用连续的240个子载波,该240个子载波按照频率递增顺序依次编号为0到239。
然而,上述方案主要用于宽带终端,在系统中引入窄带终端时,若沿用该方案,可能会存在一些问题。
发明内容
本申请提供适用于窄带终端的信息发送和接收方法、装置及系统。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种信息发送方法。该方法应用于第一通信系统,该方法中,网络设备确定并发送同步信号、第一信息、以及第二信息。其中,第一信息通过第一物理广播信道PBCH承载,第二信息通过第二PBCH承载,第一信息与所述第二信息不同。
基于该方案,在第一通信系统中,网络设备发送同步信号、第一信息和第二信息,且第一信息通过第一PBCH承载,第二信息通过第二PBCH承载,一方面,由于同步信号占用的带宽较小,窄带终端的工作带宽可以包括该同步信号占用的带宽,因此,窄带终端可以接收该同步信号。此外,窄带终端根据其工作带宽可以接收第一PBCH和第二PBCH,或者接收第二PBCH,从而接收第一信息和第二信息,或者接收第二信息。从而,对于窄带终端,本申请可以为其提供同步信号以及PBCH承载的信息。另一方面,第一通信系统中的宽带终端的工作带宽也可以包括该同步信号占用的带宽,因此,宽带终端也可以接收该同步信号,也就是说,该同步信号可以为窄带终端和宽带终端所共用,从而无需分别为窄带终端和宽带终端提供各自的同步信号,进而降低资源开销。
在一些可能的设计中,第二信息包括以下至少一项:第一子信息,该第一子信息用于调度第一系统信息块SIB1,或者用于配置第一物理下行控制信道PDCCH,该第一PDCCH用于调度第一SIB1;第二子信息,该第二子信息用于指示第二PBCH对应的小区是否为禁止小区;第三子信息,该第三子信息用于指示是否允许选择被禁止小区的同频小区;第四子信息,该第四子信息用于指示系统信息是否更新。
基于该方案,在第二信息中包括第一子信息时,可以为窄带终端配置调度第一SIB1的第一PDCCH,从而在第一信息中为宽带终端配置调度第二SIB1的第二PDCCH时,可以不限制该第二PDCCH对应的控制资源集合所占用的资源块的数目,进而不会影响第二PDCCH的配置灵活性以及该第二PDCCH的解调性能;在第二信息中包括第二子信息或第三子信息时可以为窄带终端提供独立的小区禁止指示或同频重选指示,提高配置灵活性;在第二信息 中包括第四子信息时,第四子信息用于指示系统信息更新时,终端设备接收更新后的系统信息,在第四子信息用于指示系统信息未更新时,终端设备无需接收系统信息,从而可以减少系统信息的不必要接收,节省终端设备的功耗。
在一些可能的设计中,第一信息包括前述同步信号所在帧的系统帧号,以及第二信息不包括该系统帧号;或者,第一信息包括该系统帧号的N个高比特位,以及第二信息不包括该系统帧号的N个高比特位,N为正整数。
基于该方案,在终端设备可以接收第一信息,第一信息包括系统帧号时,第二信息中可以不包括系统帧号,在该第一信息中包括系统帧号的N个高位比特时,第二信息中可以不包括该系统帧号的N个高位比特,此时,终端设备可以复用第一信息包括的系统帧号或该系统帧号的N个高位比特,降低信令开销。
在一些可能的设计中,第二信息包括前述同步信号所在帧的系统帧号或者该系统帧号的N个高位比特。例如,在终端设备的工作带宽小于第一PBCH占用的带宽时,第二信息包括前述同步信号所在帧的系统帧号或者该系统帧号的N个高位比特。
在一些可能的设计中,第二PBCH占用的带宽小于第一PBCH占用的带宽。
基于上述两种可能的设计,在第二PBCH占用的带宽小于第一PBCH占用的带宽时,窄带终端可能无法在第一PBCH上接收第一信息,从而无法获取同步信号所在帧的系统帧号,此时,在第二信息中包括同步信号所在帧的系统帧号或者该系统帧号的N个高位比特,能够使得窄带终端获知该系统帧号或其N个高位比特,从而根据该系统帧号或其N个高位比特进行后续处理,例如,接收后续的系统信息以及寻呼消息,发起随机接入等。
在一些可能的设计中,前述同步信号和第一PBCH组成SSB,第二PBCH的频域位置与SSB的频域位置相邻,第二PBCH的时域位置与SSB的时域位置相同,或包含于SSB的时域位置中;或者,第二PBCH的时域位置与SSB的时域位置相邻,第二PBCH的频域位置与SSB的频域位置相同,或包含于SSB的频域位置中。
基于该可能设计,第二PBCH的时域位置包含于同步信号和第一PBCH组成的SSB的时域位置中,频域位置与该SSB的频域位置相邻,通过频分复用的方式降低第二PBCH对网络设备节能机制的影响。或者,第二PBCH的时域位置与同步信号和第一PBCH组成的SSB的时域位置不同,可以通过时分复用的方式,减少频谱资源的占用。
在一些可能的设计中,第一信息包括第五子信息,第二PBCH的频域位置与前述SSB的频域位置相邻时,该第五子信息用于指示第二PBCH的频域位置位于该SSB的频域位置的高频位置和/或低频位置;第二PBCH的时域位置与该SSB的时域位置相邻时,该第五子信息用于指示第二PBCH的时域位置位于该SSB的时域位置之前和/或之后。
在一些可能的设计中,第一信息包括第六子信息,该第六子信息用于指示:第一通信系统中存在第二PBCH和/或第二PBCH对应的小区为非禁止小区。或者,该第六子信息用于指示:第一通信系统中不存在第二PBCH和/或第二PBCH对应的小区为禁止小区。
基于该可能的设计,终端设备在第六子信息指示第一通信系统中存在第二PBCH和/或第二PBCH对应的小区为非禁止小区时,接收第二信息,在第六子信息指示第一通信系统中不存在第二PBCH和/或第二PBCH对应的小区为禁止小区时,不接收第二信息,网络设备侧的实现更加灵活,终端设备可以根据第六子信息接收或不接收第二信息,可以避免在网络设备未发送第二信息时盲目接收,从而降低终端设备的功耗。
在一些可能的设计中,第一信息包括第七子信息,该第七子信息指示第二PDCCH对应的控制资源集合CORESET占用的资源块的数目,该数目大于第一阈值时,第一通信系统中 存在第二PBCH,该第二PDCCH用于调度第二SIB1。
基于该可能的设计,通过第二PDCCH对应的CORSET占用的RB数目隐式指示系统中是否存在第二PBCH,可以减少信令开销,同时终端设备在可以先确定是否存在第二PBCH,不存在时不接收第二信息,从而减少终端功耗的浪费。
在一些可能的设计中,网络设备发送第一信息和第二信息,包括:网络设备根据第一循环冗余校验码CRC对第一信息进行编码,得到编码后的第一信息,以及根据第二CRC对第二信息进行编码,得到编码后的第二信息,该第一CRC的比特位数与第二CRC的比特位数不同;网络设备发送编码后的第一信息和编码后的第二信息。
基于该可能的设计,使用CRC校验的方式对第二信息进行编码调制,通过CRC较强的侦错能力,保证第二PBCH的性能。此外,CRC的系统消息较小,使用简单,能够降低方案的实现复杂度。
在一些可能的设计中,第二信息通过序列表示。基于该可能的设计,第二PBCH承载的第二信息通过序列表示,终端设备在接收第二信息时无需进行复杂的译码操作,通过简单的相关运算即可,因此可以降低终端设备的处理复杂度,从而降低对终端设备硬件的要求,进而降低终端设备的成本。
在一些可能的设计中,同步信号包括辅同步信号SSS,第二PBCH和SSS之间的每资源元素能量EPRE比值为X分贝,X大于或者等于0。基于该可能的设计,由于在NR系统中,SSS和第一PBCH有相同的EPRE,即第一PBCH的EPRE与SSS的EPRE之间的比值为0dB,从而,在X大于0时,第二PBCH的EPRE大于第一PBCH的EPRE,即第二PBCH的发射功率较高,从而相比第一PBCH,可以达到更好的覆盖性能。
在一些可能的设计中,第二PBCH占用的带宽小于第一PBCH占用的带宽。
第二方面,提供了一种信息接收方法。该方法应用于第一通信系统,该方法中,终端设备接收来自网络设备的同步信号,根据该同步信号获取小区标识,并根据该小区标识接收第一信息和第二信息,或者,根据该小区标识接收第二信息,该第一信息通过第一PBCH承载,第二信息通过第二PBCH承载,第一信息与第二信息不同。其中,第二方面所带来的技术效果可参见上述第一方面所带来的技术效果,此处不再赘述。
在一些可能的设计中,第二信息包括以下至少一项:第一子信息,该第一子信息用于调度第一系统信息块SIB1,或者用于配置第一物理下行控制信道PDCCH,该第一PDCCH用于调度第一SIB1;第二子信息,该第二子信息用于指示第二PBCH对应的小区是否为禁止小区;第三子信息,该第三子信息用于指示是否允许选择被禁止小区的同频小区;第四子信息,该第四子信息用于指示系统信息是否更新。
在一些可能的设计中,第一信息包括前述同步信号所在帧的系统帧号,以及第二信息不包括该系统帧号;或者,第一信息包括该系统帧号的N个高比特位,以及第二信息不包括该系统帧号的N个高比特位,N为正整数。
在一些可能的设计中,第二信息包括前述同步信号所在帧的系统帧号或者该系统帧号的N个高位比特。例如,在终端设备的工作带宽小于第一PBCH占用的带宽时,第二信息包括前述同步信号所在帧的系统帧号或者该系统帧号的N个高位比特。
在一些可能的设计中,前述同步信号和第一PBCH组成SSB,第二PBCH的频域位置与SSB的频域位置相邻,第二PBCH的时域位置与SSB的时域位置相同,或包含于SSB的时域位置中;或者,第二PBCH的时域位置与SSB的时域位置相邻,第二PBCH的频域位置与SSB的频域位置相同,或包含于SSB的频域位置中。
在一些可能的设计中,第一信息包括第五子信息,第二PBCH的频域位置与前述SSB的频域位置相邻时,该第五子信息用于指示第二PBCH的频域位置位于该SSB的频域位置的高频位置和/或低频位置;第二PBCH的时域位置与该SSB的时域位置相邻时,该第五子信息用于指示第二PBCH的时域位置位于该SSB的时域位置之前和/或之后。
可选的,终端设备根据小区标识接收第二信息,可以包括:终端设备根据该第五子信息确定第二PBCH的频域位置,并根据小区标识在该第二PBCH的频域位置上接收第二信息;或者,终端设备根据该第五子信息确定第二PBCH的时域位置,并根据小区标识在该第二PBCH的时域位置上接收第二信息。
在一些可能的设计中,第一信息包括第六子信息,该第六子信息用于指示:第一通信系统中存在第二PBCH和/或第二PBCH对应的小区为非禁止小区。或者,该第六子信息用于指示:第一通信系统中不存在第二PBCH和/或第二PBCH对应的小区为禁止小区。
可选的,在第六子信息用于指示第一通信系统中存在第二PBCH和/或第二PBCH对应的小区为非禁止小区时,终端设备根据小区标识接收第一信息和第二信息,可以包括:终端设备根据小区标识接收第一信息,以及根据第一信息包括的第六子信息接收所述第二信息。
在一些可能的设计中,第一信息包括第七子信息,该第七子信息指示第二PDCCH对应的控制资源集合CORESET占用的资源块的数目,该信息接收方法还包括:在该数目大于第一阈值时,终端设备确定第一通信系统中存在第二PBCH,该第二PDCCH用于调度第二SIB1。
在一些可能的设计中,终端设备根据小区标识接收第一信息和第二信息,包括:终端设备根据小区标识接收编码后的第一信息和编码后的第二信息,根据第一CRC对编码后的第一信息进行CRC校验以得到第一信息,以及根据第二CRC对编码后的第二信息进行CRC校验以得到第二信息,该第一CRC的比特位数与第二CRC的比特位数不同。
在一些可能的设计中,第二信息通过序列表示。
在一些可能的设计中,同步信号包括辅同步信号SSS,第二PBCH和SSS之间的每资源元素能量EPRE比值为X分贝,X大于或者等于0。
其中,第二方面的任一种可能的设计所带来的技术效果可参见上述第一方面相应的设计所带来的技术效果,此处不再赘述。
第三方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,例如芯片;或者,该通信装置可以为上述第二方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,例如芯片。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,例如芯片;或者,该通信装置可以为上述第二方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,例如芯片。
第五方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,例如芯片;或者,该通信装置可以为上述第二方面中的终端设备,或者包含上述终端设 备的装置,或者上述终端设备中包含的装置,例如芯片。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第八方面,提供了一种通信装置,包括:接口电路和至少一个处理器,该接口电路可以为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器;该处理器用于运行所述计算机执行指令以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的网络设备,或者包含上述网络设备的装置,或者上述网络设备中包含的装置,例如芯片;或者,该通信装置可以为上述第二方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,例如芯片。
第九方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第三方面至第九方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十方面,提供一种通信系统,该通信系统包括上述方面所述的终端设备和上述方面所述的网络设备。
附图说明
图1为现有的一种SSB的结构示意图;
图2为现有的一种时频资源网格的结构示意图;
图3为一种窄带终端的工作带宽与SSB占用带宽的对比示意图;
图4为一种窄带终端的工作带宽与SSB占用带宽的对比示意图;
图5为本申请实施例提供的一种第一通信系统的结构示意图;
图6为本申请实施例提供的终端设备和网络设备的结构示意图;
图7为本申请实施例提供的一种信息发送和接收方法的流程示意图;
图8a为本申请实施例提供的一种第二PBCH的频域位置示意图;
图8b为本申请实施例提供的另一种第二PBCH的频域位置示意图;
图8c为本申请实施例提供的又一种第二PBCH的频域位置示意图;
图9a为本申请实施例提供的一种第二PBCH的时域位置示意图;
图9b为本申请实施例提供的另一种第二PBCH的时域位置示意图;
图9c为本申请实施例提供的又一种第二PBCH的时域位置示意图;
图10为本申请实施例提供的另一种网络设备的结构示意图;
图11为本申请实施例提供的另一种终端设备的结构示意图。
具体实施方式
为了方便理解本申请实施例中的方案,首先给出相关技术的简要介绍或定义如下:
1、物联网(internet of things,IoT):
IoT是“物物相连的互联网”。它将互联网的用户端扩展到了任何物品与物品之间,使得在任何物品与物品之间可以进行信息交换和通信。这样的通信方式也称为机器间通信 (machine type communications,MTC)。其中,通信的节点称为IoT终端或IoT设备。典型的IoT应用包括车联网、智能社区、工业检测监控、智能抄表、智能电网、智能农业、智能交通、智能家居以及环境检测等各个方面。
由于物联网需要应用在多种场景中,比如从室外到室内,从地上到地下,因而对物联网的设计提出了很多特殊的要求。比如,由于某些场景下的IoT终端应用在覆盖较差的环境下,如电表水表等通常安装在室内甚至地下室等无线网络信号很差的地方,因此需要覆盖增强的技术来解决。或者,由于某些场景下的IoT终端的数量要远远大于人与人通信的设备数量,也就是说需要大规模部署,因此要求能够以非常低的成本获得并使用IoT终端。或者,由于某些场景下的IoT终端传输的数据包很小,并且对延时并不敏感,因此要求支持低速率的IoT终端。或者,由于在大多数情况下,IoT终端是通过电池来供电的,但是同时在很多场景下,IoT终端又要求能够使用十年以上而不需要更换电池,这就要求IoT终端能够以极低的电力消耗来工作。
2、NR:
在NR中,频域上的基本单位为一个子载波,子载波间隔(subcarrier spacing,SCS)可以为15kHz、30kHz等。在NR物理层中,上行或下行频域资源的单位是物理资源块(physical resource block,PRB),每个PRB由频域上12个连续子载波组成。
示例性的,NR下行时频资源网格如图2所示。其中,
Figure PCTCN2020119542-appb-000001
表示下行RB数。资源网格上的每个元素称为一个资源元素(resource element,RE),RE是最小的物理资源,其包括一个OFDM符号内的一个子载波。上行时频资源网格与下行时频资源网络类似,在此不再赘述。
NR下行资源调度的基本时间单位是一个时隙(slot),一般而言,一个时隙在时间上由14个OFDM符号组成。在时域上,NR传输被组织为10毫秒(ms)的帧(frame),每个帧由系统帧号(system frame number,SFN)标识,SFN的周期等于1024。每个帧包括长度为1ms的10个子帧(subframe),每个子帧包括一个或多个时隙。每个子帧包括的时隙个数由子载波间隔决定,当子载波间隔为15kHz时,每个子帧包含一个时隙。
3、NR SSB:
其中,NR SSB如背景技术中的图1所示,包括PSS、SSS、和PBCH,编号为0的第一个OFDM符号承载PSS,编号为0至55、183至239的子载波置为0,编号为56至182的子载波为PSS占用的子载波;编号为1和3的OFDM符号承载PBCH,并且每4个连续的子载波中都有一个与PBCH对应的调制解调参考信号(demodulation reference signal,DMRS);编号为2的OFDM符号承载了SSS和PBCH,编号为56至182的子载波为SSS占用的子载波,编号为0至47、192至239的子载波为PBCH占用的子载波,其余子载波置为0。
其中,PBCH中承载有主信息块(master information block,MIB),MIB包括系统帧号,其通过systemFrameNumber字段承载,用于终端设备和网络侧的同步。需要说明的是,MIB中包括10比特(bit)系统帧号中的6个最高有效位(most significant bit,MSB)。
可选的,MIB还可以包括以下一项或多项信息:
子载波间隔:通过subCarrierSpacingCommon字段承载,用于指示系统信息块(system information block,SIB)1(即SIB1)、初始接入过程中消息2或消息4、寻呼(paging)消息、及广播系统信息(system information,SI)消息所使用的子载波间隔。
子载波偏移:通过ssb-SubcarrierOffset字段承载,用于计算公共资源块(common resource block,CRB)的子载波0到SSB的子载波0的子载波偏移。
DMRS位置指示:通过dmrs-TypeA-Position字段承载,用于指示上行或下行第一个DMRS 的位置。
调度SIB1的PDCCH配置,通过pdcch-ConfigSIB1字段承载,指示用于接收SIB1的控制资源集合(control-resource set,CORESET)0和搜索空间配置信息。
小区禁止指示:通过cellBarred字段承载,用于指示小区是否为禁止小区(barred cell)。
同频重选指示:通过intraFreqReselection字段承载,指示最高级别的小区被禁止,或被终端设备视为禁止时,终端设备是否允许在小区选择/重选时,选择与该禁止小区相同频率的其它小区。
空闲字段:spare,该空闲字段占用1比特。
此外,PBCH还承载除MIB外的另一部分载荷(payload),该部分载荷作为信道编码的一部分在PBCH传输块中传输,即该部分载荷在MIB编码之外,该部分载荷是MIB编码之前在物理层添加的,该部分载荷占用8比特,用于承载系统帧号的4个最低有效位、SSB index等。目前,该8比特中有2个空闲比特。
需要说明的是,为了描述方便,下述实施例中将NR SSB包括的PBCH称为第一PBCH;将第一PBCH承载的MIB中pdcch-ConfigSIB1字段配置的PDCCH称为第二PDCCH;将第一PBCH中承载的除MIB外的另一部分载荷称为第一载荷;将第二PDCCH调度的SIB称为第二SIB1,其中,第一PDCCH和第一SIB1将在后续实施例中说明,第二SIB1可以理解为用于宽带终端的SIB1。在此统一说明,以下不再赘述。
由于大带宽对模数转换器(analog to digital converter,ADC)、数模转换器(digital to analog converter,DAC)、快速傅里叶变换(fast flourier transform,FFT)、缓存(buffer)、以及上下行处理模块等基带处理硬件的要求较高,而小带宽可以放松这些硬件要求,从而降低成本,因此,为了支持成本相对较低的物联网应用,最直接的手段即降低终端的工作带宽,即使用窄带终端来完成物联网应用。其中,完成物联网应用的窄带终端也可以称为IoT终端或IoT设备。
然而,在系统中引入窄带终端时,若为窄带终端引入区别于前述NR SSB的包括PSS、SSS和PBCH的全新窄带SSB,网络资源开销较大。
可以理解的是,在系统中引入窄带终端后,该窄带终端不是必须用于完成物联网应用,还可以有其他用途,即不限定本申请的应用场景为IoT场景。
基于此,本申请考虑在引入窄带终端时,复用NR SSB的PSS和SSS,为窄带终端重新设计PBCH。
在一种可能的实现方式中,对于工作带宽为5MHz左右的窄带终端,在子载波间隔为15kHz时,由图1可得PSS和SSS占用的频域带宽为2MHz左右,第一PBCH占用的频域带宽为3.6MHz左右,因此,该类窄带终端可以完整接收NR SSB,如图3所示。此时,对于面向窄带终端的PBCH设计,较为简单的方案是复用第一PBCH。然而,通过分析,该方案可能存在以下问题:
1)影响网络设备的配置灵活性,以及影响调度SIB1的PDCCH的解调性能。
第一PBCH承载的MIB中,通过pdcch-ConfigSIB1字段承载调度SIB1的PDCCH的配置信息。通过该参数配置的调度SIB1的PDCCH对应的CORESET占用的资源块(resource block,RB)数目为24或48或96。在其占用最小24个RB时,对应的频域带宽为4.32MHz。若工作带宽为5MHz左右的窄带终端支持读取第一PBCH承载的MIB以及第二SIB1,需要限制网络设备的配置,例如限制网络设备将调度第二SIB1的PDCCH(即第二PDCCH)对应的CORESET占用的RB数目配置为24。该限制会影响网络设备的配置灵活性,此外,将 RB数目配置为24会影响第二PDCCH的解调性能。
2)无法为窄带终端提供小区禁止指示或同频重选指示。
第一PBCH承载的MIB中,通过cellBarred或intraFreqReselection字段分别承载小区禁止指示或同频重选指示,此功能用于在维护期间临时阻止终端访问小区。该指示的通知时机越早,终端可以越早获知其是否被允许接入该小区,避免较多不必要的接收。例如,现有技术在MIB中指示禁止终端接入小区,则终端会停止接收该小区的SIB1,若在SIB1中指示禁止接入该小区,则终端在接收完MIB和SIB1后才可获知,会增加终端接收SIB1的功耗。
由前述介绍可知,第一PBCH承载的MIB中空闲比特较少,仅有1比特,无法使用该1比特为窄带终端提供小区禁止指示或同频重选指示。若窄带终端复用该MIB中的小区禁止指示或同频重选指示,则会影响网络设备的配置灵活性,例如,在网络设备指示小区禁止时,既阻止了宽带终端访问该小区,也阻止了窄带终端访问该小区,无法对宽带终端和窄带终端配置相同小区的不同小区禁止指示或同频重选指示。
在另一种可能的实现方式中,对于工作带宽为2MHz左右的窄带终端,在子载波间隔为15kHz时,由图1可得,该类窄带终端可以完整接收NR SSB的PSS和SSS,不能接收完整的第一PBCH,如图4所示。
此时,对于面向窄带终端的PBCH设计,较为简单的方案是复用PSS和SSS频域带宽范围内的第一PBCH。然而,经过数值分析,PSS和SSS频域带宽范围内的第一PBCH在完整的第一PBCH中占比50%左右,若只接收PSS和SSS频域带宽范围内的第一PBCH,第一PBCH的解调性能会下降,覆盖性能也会下降。此外,该实现方式同样存在图3所示场景下的问题。
通过上述分析可得,窄带终端可能无法直接使用现有的NR SSB,因此,本申请下述实施例提供一种信息发送和接收方法,以设计一种合理的适用于窄带终端的PBCH。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,a和b和c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
如图5所示,为本申请实施例提供的一种第一通信系统10。该第一通信系统10包括至少一个网络设备20,以及与该网络设备20连接的一个或多个终端设备30。可选的,不同的终端设备30之间可以相互通信。
可选的,该第一通信系统10可以为NR系统,也可以为面向未来的新的网络系统等,示 例性的,本申请实施例可以适用于NR系统的物联网应用中,本申请实施例对此不作具体限定。实际应用中,第一通信系统不限于此,在此统一说明,以下不再赘述。此外,术语“系统”可以和“网络”相互替换。
以图5所示的网络设备20与任一终端设备30进行交互为例,本申请实施例中,网络设备确定并发送同步信号、第一信息、以及第二信息,其中,该第一信息通过第一PBCH承载,第二信息通过第二PBCH承载,第一信息与第二信息不同。相应的,终端设备接收来自网络设备的同步信号,并根据该同步信号获取小区标识,之后,根据该小区标识接收第一信息和第二信息,或者,根据该小区标识接收第二信息。
基于该方案,在第一通信系统中,网络设备发送同步信号、第一信息和第二信息,且第一信息通过第一PBCH承载,第二信息通过第二PBCH承载,一方面,由于同步信号占用的带宽较小,窄带终端的工作带宽可以包括该同步信号占用的带宽,因此,窄带终端可以接收该同步信号。此外,窄带终端根据其工作带宽可以接收第一PBCH和第二PBCH,或者接收第二PBCH,从而接收第一信息和第二信息,或者接收第二信息。从而,对于窄带终端,本申请可以为其提供同步信号以及PBCH承载的信息;另一方面,第一通信系统中的宽带终端的工作带宽也可以包括该同步信号占用的带宽,因此,宽带终端也可以接收该同步信号,也就是说,该同步信号可以为窄带终端和宽带终端所共用,从而无需分别为窄带终端和宽带终端提供各自的同步信号,进而降低资源开销。
可选的,本申请实施例中的网络设备20,是一种将终端设备30接入到无线网络的设备。所述网络设备20可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。例如,网络设备可以包括5G系统中的下一代节点B(next generation node B,gNB),或者还可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池BBU pool,或WiFi接入点(access point,AP)等;再或者还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU);又或者可以包括非陆地网络(non-terrestrial network,NTN)中实现基站功能的设备,即可以部署于高空平台或者卫星,在NTN中,网络设备可以作为层1(L1)中继(relay),或者可以作为基站,或者可以作为分布式单元(distributed unit,DU),或者可以作为接入回传一体化(integrated access and backhual,IAB)节点;又或者,可以包括IoT中实现基站功能的设备,例如车联网(vehicle-to-everything,V2X)、设备到设备(device to device,D2D)、或者机器到机器(machine to machine,M2M)中实现基站功能的设备,本申请实施例并不限定。
可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的网络设备20也可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU),或者,网络设备也可以是CU和DU组成的。多个DU可以共用一个CU。一个DU也可以连接多个CU。CU和DU可以理解为是对基站从逻辑功能角度的划分。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如,RRC协议层、业务数据适配协议栈(service data adaptation protocol,SDAP)协议层以及分组数据汇聚层协议(packet data convergence protocol,PDCP)协议层的功能设置在CU中,而无线链路控制(radio link control,RLC)协议层,媒体接入 控制(media access control,MAC)协议层,物理(physical,PHY)协议层等的功能设置在DU中。
可以理解,对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。
可选的,本申请实施例中的终端设备30,可以是工作带宽较小的,用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是NR网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。或者,终端可以是IoT中具有通信功能的终端,例如V2X中的终端(例如车联网设备)、D2D通信中的终端、或者M2M通信中的终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的网络设备20与终端设备30也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图6所示,为本申请实施例提供的网络设备20和终端设备30的结构示意图。
其中,终端设备30包括至少一个处理器(图6中示例性的以包括一个处理器301为例进行说明)和至少一个收发器(图6中示例性的以包括一个收发器303为例进行说明)。可选的,终端设备30还可以包括至少一个存储器(图6中示例性的以包括一个存储器302为例进行说明)、至少一个输出设备(图6中示例性的以包括一个输出设备304为例进行说明)和至少一个输入设备(图6中示例性的以包括一个输入设备305为例进行说明)。
处理器301、存储器302和收发器303通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器301可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器301也可以包括多个CPU,并且处理器301可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。该处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过通信线路与处理器301相连接。存储 器302也可以和处理器301集成在一起。
可选的,存储器302用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。具体的,处理器301用于执行存储器302中存储的计算机执行指令,从而实现本申请实施例中所述的信息发送和接收方法。
或者,可选的,本申请实施例中,也可以是处理器301执行本申请下述实施例提供的方法中的处理相关的功能,收发器303负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器303包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备20包括至少一个处理器(图6中示例性的以包括一个处理器201为例进行说明)、和至少一个收发器(图6中示例性的以包括一个收发器203为例进行说明)。可选的,网络设备20还可以包括至少一个存储器(图6中示例性的以包括一个存储器202为例进行说明)和至少一个网络接口(图6中示例性的以包括一个网络接口204为例进行说明)。其中,处理器201、存储器202、收发器203和网络接口204通过通信线路相连接。网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图6中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备30中处理器301、存储器302和收发器303的描述,在此不再赘述。
可以理解的是,图6所示的结构并不构成对终端设备30或网络设备20的具体限定。比如,在本申请另一些实施例中,终端设备30或网络设备20可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图6,以图5所示的网络设备20与任一终端设备30进行交互为例,对本申请实施例提供的信息发送和接收方法进行展开说明。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
可以理解的,在本申请的各个实施例中,网络设备与终端设备之间的交互,也可以适用到CU与终端设备之间的交互,或者DU与终端设备之间的交互。可以理解的,本申请的各个实施例中网络设备与终端设备交互机制可以进行适当的变形,以适用CU或者DU与终端设备之间的交互。
需要说明的是,本申请下述实施例中各个设备或功能之间的消息名字或消息中各参数的 名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
需要说明的是,本申请下述实施例中,除特殊说明外,终端设备指窄带终端,在此统一说明,下述实施例不再赘述。
可以理解的是,本申请下述实施例中的宽带终端的工作带宽大于窄带终端的工作带宽,例如,宽带终端可以为现有4G或5G通信系统中的智能手机等,本申请对宽带终端的形式不做具体限定。
需要说明的是,本申请下述实施例中,“带宽”指频域带宽,“占用的带宽”指在频域上占用的带宽,在此统一说明,下述实施例不再赘述。
如图7所示,为本申请提供的一种信息发送和接收方法,该信息发送和接收方法应用于前述第一通信系统,该方法包括如下步骤:
S701、网络设备确定同步信号、第一信息、以及第二信息。
其中,同步信号包括PSS和SSS。可选的,该同步信号由宽带终端和窄带终端共用。
其中,第一信息通过第一PBCH承载。可以理解的是,由前述介绍,第一PBCH为NR SSB的PBCH,因此,同步信号和承载第一信息的第一PBCH组成NR SSB。此外,该第一信息包括MIB以及第一载荷。当然,第一信息还可以包括其他信息,本申请对此不做具体限定。
需要说明的是,本申请不限定同步信号和承载第一信息的第一PBCH组成的信息块称为NR SSB或SSB,其还可以有其他名称,本申请对该名称不做具体限定。
其中,第二信息通过第二PBCH承载。第二PBCH是用于窄带终端的PBCH。第二PBCH和第一PBCH为同一通信系统(第一通信系统)中的不同PBCH,第二PBCH占用的带宽小于或等于第一PBCH占用的带宽。
其中,第二信息与第一信息不同。可选的,该第二信息包括第一信息的部分或全部参数,当然,第二信息还可以包括第一信息中不存在的参数。需要说明的,第二信息和第一信息包括相同参数时,该相同参数的取值可以不同。
也就是说,网络设备可以确定NR SSB、以及第二PBCH承载的第二信息。该NR SSB可以用于第一通信系统中的宽带终端,该NR SSB的同步信号和第二PBCH承载的第二信息用于第一通信系统中的窄带终端。在一些实施例中,第一PBCH承载的第一信息的部分或全部信息也用于窄带终端,将在后续实施例中说明,在此不予赘述。
需要说明的是,本申请中的第二PBCH也可以成为附加(Additional)PBCH,二者可以相互替换,本申请对此不做具体限定。
可选的,本申请中的同步信号、第一PBCH、和第二PBCH可以组成一个信息块,或者,同步信号和第二PBCH可以组成一个信息块,该信息块可以理解为区别与NR SSB的新的SSB,或者,也可以有其他名称,本申请对此不做具体限定。
S702、网络设备发送同步信号、第一信息、以及第二信息。相应的,终端设备接收来自网络设备的同步信号、第一信息、以及第二信息;或者,终端设备接收来自网络设备的同步信号和第二信息。
可以理解的是,同步信号、第一信息、以及第二信息为小区级别的公共信息,在该步骤S702中,可以认为网络设备广播该同步信号、第一信息、以及第二信息,该网络设备覆盖范围下的终端设备可以接收网络设备广播的信息。
其中,该步骤S702中,终端设备为窄带终端,其接收网络设备广播的信息包括:终端设备接收来自网络设备的同步信号,并根据该同步信号获取小区标识,之后,根据该小区标识接收第一信息和第二信息,或者,根据该小区标识接收第二信息。本申请对终端设备根据同 步信号获取小区标识,再根据小区标识接收PBCH承载的信息的方法不做具体限定,一种实现方式中其可以与宽带终端接收NR SSB的方式类似,在此不予赘述。
可选的,在终端设备的工作带宽大于或者等于第一PBCH所占用的带宽时,终端设备根据该小区标识接收第一信息和第二信息,即终端设备接收同步信号、第一信息、以及第二信息;在终端设备的工作带宽小于第一PBCH所占用的带宽时,终端设备根据该小区标识接收第二信息,即终端设备接收同步信号以及第二信息。
可选的,终端设备接收第二信息,或者第一信息和第二信息后,可以根据根据接收到的信息进行后续处理,例如根据第一信息或第二信息接收SIB1,获取随机接入所需的信息等,本申请对此不做具体限定。
可选的,第一通信系统中的宽带终端可以接收该同步信号和第一PBCH承载的第一信息,或者说可以接收NR SSB,以实现宽带中的下行同步和网络接入。
基于该方案,在第一通信系统中,网络设备发送同步信号、第一信息和第二信息,且第一信息通过第一PBCH承载,第二信息通过第二PBCH承载,一方面,由于同步信号占用的带宽较小,窄带终端的工作带宽可以包括该同步信号占用的带宽,因此,窄带终端可以接收该同步信号。此外,窄带终端根据其工作带宽可以接收第一PBCH和第二PBCH,或者接收第二PBCH,从而接收第一信息和第二信息,或者接收第二信息。从而,对于窄带终端,本申请可以为其提供同步信号以及PBCH承载的信息;另一方面,第一通信系统中的宽带终端的工作带宽也可以包括该同步信号占用的带宽,因此,宽带终端也可以接收该同步信号,也就是说,该同步信号可以为窄带终端和宽带终端所共用,从而无需分别为窄带终端和宽带终端提供各自的同步信号,进而降低资源开销。
下面介绍终端设备的不同工作带宽下,第二信息和第二PBCH的相关特征,将分别从下述四个方面进行介绍:
1、第二信息包括的内容;
2、第二PBCH的时频位置;
3、是否存在第二PBCH的通知机制;
4、第二信息的传输机制。
下面首先介绍终端设备的工作带宽大于或等于第一PBCH所占用的带宽(例如,终端设备的工作带宽为5MHz)时的第二信息和第二PBCH。
第二信息中包括的内容说明如下:
由于终端设备的工作带宽大于NR SSB所占用的带宽,从而该终端设备可以完整接收第一PBCH,获取第一PBCH承载的第一信息中的MIB。如前述图3所示场景下的分析,若复用该第一信息中MIB的调度SIB1的PDCCH配置、小区禁止指示、或同频重选指示,会影响网络设备的配置灵活性,以及调度SIB1的PDCCH的解调性能,或者无法为窄带终端提供小区禁止指示或同频重选指示。基于此,第二信息可以包括第一子信息、第二子信息、第三子信息、或第四子信息中的至少一项。
对于第一子信息:
其中,该第一子信息用于调度第一SIB1,此时,示例性的,第一子信息可以包括第一SIB1的时频资源位置信息、重复次数、调制编码方式(modulation and coding scheme,MCS)、冗余版本(redundancy version,RV)等。或者,该第一子信息用于配置第一PDCCH,该第一PDCCH用于调度第一SIB1。其中,该第一SIB1可以理解为用于窄带终端的SIB1。
可选的,该第一子信息调度第一SIB1时,也可以称为调度信息;该第一子信息用于配置 第一PDCCH时,也可以称为调度SIB1的PDCCH配置信息,可以相互替换,本申请对此不做具体限定。
对于第二子信息:
其中,该第二子信息用于指示第二PBCH对应的小区是否为禁止小区,或者说,用于指示窄带终端是否被允许接入第二PBCH对应的小区。
需要说明的是,该第二子信息与第一信息的MIB中的小区禁止指示不是同一个信息,第一信息的MIB中的小区禁止指示用于指示宽带终端(或者说NR终端)是否被允许接入第一PBCH对应的小区。其中,第二PBCH对应的小区和第一PBCH对应的小区为同一个小区,该小区存在第一SIB1和第二SIB1两种SIB1,第一SIB1用于窄带终端,第二SIB1用于宽带终端。
可选的,该第二子信息也可以称为小区禁止指示信息,二者可以相互替换,本申请对此不做具体限定。
对于第三子信息:
其中,该第三子信息用于指示是否允许选择被禁止小区的同频小区。具体的,可以用于指示最高级别的小区被禁止,或被终端设备视为禁止时,终端设备是否允许在小区选择或重选时,选择与该禁止小区相同频率的小区。
需要说明的是,该第三子信息与第一信息的MIB中的同频重选指示不是同一个信息,第一信息的MIB中的同频重选指示用于指示是否允许宽带终端选择被禁止小区的同频小区。
可选的,该第三子信息也可以称为同频重选指示信息,二者可以相互替换,本申请不做具体限定。
对于第四子信息:
其中,该第四子信息用于指示系统信息是否更新。
可选的,该第四子信息可以包括一个值标签(value tag)。网络设备发送系统信息时,该系统信息会对应一个值标签,终端设备接收系统信息后会存储该系统信息以及该系统信息对应的值标签。在系统信息发生变化时,该值标签的值会发生变化,从而在该第四子信息包括的值标签的值发生变化时,该第四子信息可以用于指示系统信息有更新,在该值标签的值未发生变化时,该第四子信息可以用于指示系统信息未更新。从而,终端设备在接收该第四子信息后,在值标签的值与其之前存储的值相比发生变化时重新接收更新后的系统信息,在值标签的值与其之前存储的值相比未发生变化时,不接收系统信息。
基于该方案,在第四子信息用于指示系统信息更新时,终端设备接收更新后的系统信息,在第四子信息用于指示系统信息未更新时,终端设备无需接收系统信息,从而可以减少系统信息的不必要接收,节省终端设备的功耗。
可选的,该第四子信息也可以称为系统信息变更指示信息,二者可以相互替换,本申请对此不做具体限定。
可选的,上述第一子信息、第二子信息、或第三子信息可以理解为与第一信息的差异化信息,第四子信息可以理解为窄带终端专用指示信息。
可选的,该第二信息不包括上述同步信号所在帧的系统帧号,或者,第二信息不包括该系统帧号的N个高位比特,N为正整数,例如为6。
需要说明的是,同步信号、第一信息、以及第二信息位于同一个帧中,因此,同步信号所在帧的系统帧号,也可以称为第一信息或第二信息所在帧的系统帧号。
可以理解的,由于终端设备可以接收第一信息,该第一信息包括MIB,在该MIB中包括 系统帧号时,第二信息中可以不包括系统帧号,在该MIB中包括系统帧号的N个高位比特时,第二信息中可以不包括该系统帧号的N个高位比特,终端设备可以复用第一信息的MIB中包括的系统帧号或该系统帧号的N个高位比特。此外,终端设备还可以复用第一信息的MIB中包括的子载波间隔、子载波偏移、DMRS位置指示等。
综上,第二信息可以包括与第一信息相比的差异化信息,此外,无需在第二信息中包括与第一信息无差异的信息,终端设备可以复用第一信息中的该无差异化信息,可以降低信令开销。同时,不会影响网络设备的配置灵活性以及第二PDCCH的解调性能,并且可以为窄带终端提供独立的小区禁止指示或同频重选指示。
第二PBCH的时频位置说明如下:
下述实施例中,将以同步信号和第一PBCH组成的SSB(即NR SSB)为参考对第二PBCH的时频位置进行说明。
在一种可能的实现方式中,第二PBCH的频域位置与该SSB的频域位置相邻,第二PBCH的时域位置与该SSB的时域位置相同,或包含于该SSB的时域位置中。或者说,第二PBCH占用的OFDM符号为该SSB占用的OFDM符号中的部分或全部OFDM符号。
可选的,第二PBCH的频域位置与该SSB的频域位置相邻可以为:第二PBCH的频域位置位于该SSB的频域位置的高频位置和/或低频位置。
示例性的,以第二PBCH的时域位置与该SSB的时域位置相同为例,第二PBCH的频域位置位于该SSB的低频位置、高频位置、低频和高频位置的示意图分别如图8a、图8b、和图8c所示,其中,斜线填充的框表示第二PBCH。
可选的,该第二PBCH的频域位置与该SSB的频域位置的关系可以是协议预定义的,此时,网络设备无需向终端设备指示第二PBCH的频域位置,节省信令开销。或者,该第二PBCH的频域位置与该SSB的频域位置的关系可以是网络设备确定的,此时,网络设备可以向终端设备发送指示信息以指示第二PBCH的频域位置。
可选的,网络设备可以在第一信息或第二信息中包括第五子信息,该第五子信息用于指示第二PBCH的频域位置位于该SSB的频域位置的高频位置和/或低频位置。相应的,终端设备根据小区标识接收第二信息,可以包括:终端设备根据第五子信息确定第二PBCH的频域位置,并根据小区标识在该第二PBCH的频域位置上接收第二信息。
可选的,在第一信息中包括第五子信息时,该第五子信息可以由第一信息包括的MIB中的1个空闲比特表示,例如,该比特的取值为“1”时,表示第五子信息指示第二PBCH的频域位置位于该SSB的频域位置的高频位置;该比特的取值为“0”时,表示第五子信息指示第二PBCH的频域位置位于该SSB的频域位置的低频位置。或者,该比特的取值为“0”时,表示第五子信息指示第二PBCH的频域位置位于该SSB的频域位置的高频位置;该比特的取值为“1”时,表示第五子信息指示第二PBCH的频域位置位于该SSB的频域位置的低频位置。
或者,该第五子信息可以由第一信息包括的第一载荷中的2个空闲比特表示,该2个空闲比特的取值与第五子信息指示的内容可以如下表1所示。
表1
空闲比特取值 第五子信息指示的内容
00
01 第二PBCH的频域位置位于SSB的频域位置的低频位置
10 第二PBCH的频域位置位于SSB的频域位置的高频位置
11 第二PBCH的频域位置位于SSB的频域位置的低频位置和高频位置
可以理解的是,该2个空闲比特的取值与第五子信息指示的内容之间还可以有其他对应关系,不限定于表1,本申请对此不做具体限定。
可选的,在第二信息中包括第五子信息时,网络设备和终端设备可以约定在终端设备初始接入时假设第二PBCH的频域位置与该SSB的频域位置一侧相邻(即位于SSB的高频位置或低频位置),并且该第二信息中包括的第五子信息由第二PBCH中位于该相邻侧的部分承载,终端设备根据该假设在该相邻侧获取第五子信息后,若该第五子信息指示第二PBCH的频域位置与该SSB的频域位置两侧相邻(即位于该SSB的高频位置和低频位置),终端设备在后续接收第二信息时,可以按照跳频的方式进行接收,以获取频率分集增益。
可选的,在一些实施例中,该实现方式中的第二PBCH的时频位置也可以描述为:第二PBCH的频域位置与第一PBCH的频域位置相邻,第二PBCH的时域位置与第一时域位置相同或包含于第一时域位置中,其中,该第一时域位置包括同步信号的时域位置和第一PBCH的时域位置。此时,上述以同步信号和第一PBCH组成的SSB为参考描述的第二PBCH的时频位置的相关特征,也可以进行适当变形适用于该描述中,在此不再赘述。
基于该可能的实现方式,第二PBCH的时域位置包含于同步信号和第一PBCH组成的SSB的时域位置中,频域位置与该SSB的频域位置相邻,通过频分复用的方式降低第二PBCH对网络设备节能机制的影响。其中,网络设备的节能机制指在系统没有业务的情况下,除了SSB等必须发送的公共信号占用的OFDM符号之外,网络设备可以关断其它的OFDM符号,即在系统没有业务时,网络设备可以在这些OFDM符号上不发送任何内容,关闭射频模块,从而达到节省网络设备功耗的目的。本实现方式中,第二PBCH的时域位置包含于NR SSB的时域位置,不影响网络设备在SSB之外的时域位置执行OFDM符号级关断,即不影响网络设备的节能机制。
在另一种可能的实现方式中,第二PBCH的时域位置与同步信号和第一PBCH组成的SSB(即NR SSB)的时域位置相邻,第二PBCH的频域位置与该SSB的频域位置相同,或包含于该SSB的频域位置中。或者说,第二PBCH占用的带宽小于或等于该SSB占用的带宽,或者说,第二PBCH占用的带宽为该SSB占用的带宽中的部分或全部带宽。
可选的,第二PBCH占用的OFDM符号的数目小于该SSB占用的OFDM符号的数目。
可选的,第二PBCH的时域位置与该SSB的时域位置相邻可以为:第二PBCH的时域位置位于该SSB的时域位置之前和/或之后。
示例性的,以第二PBCH的频域位置与该SSB的频域位置相同,第二PBCH占用2个OFDM符号为例,第二PBCH的时域位置位于该SSB的时域位置之前、之后、之前和之后的示意图分别如图9a、图9b、和图9c所示,其中,斜线填充的框表示第二PBCH。
可选的,该第二PBCH的时域位置与该SSB的时域位置的关系的确定可能存在如下三种情况:
情况一、该第二PBCH的时域位置与该SSB的时域位置的关系可以是协议预定义的,此时,网络设备无需向终端设备指示第二PBCH的时域位置,节省信令开销。
情况二、该第二PBCH的时域位置与该SSB的时域位置的关系可以是网络设备确定的,此时,网络设备可以向终端设备发送指示信息以指示第二PBCH的时域位置。
可选的,网络设备可以在第一信息中包括第五子信息,该第五子信息用于指示第二PBCH的时域位置位于该SSB的时域位置之前和/或之后。相应的,终端设备根据小区标识接收第二信息,可以包括:终端设备根据第五子信息确定第二PBCH的时域位置,并根据小区标识在 该第二PBCH的时域位置上接收第二信息。
可选的,该第五子信息可以由第一信息包括的MIB中的1个空闲比特表示,或者可以由第一信息包括的第一载荷中的2个空闲比特表示,可参考第五子信息用于指示第二PBCH的频域位置的相关说明,在此不再赘述。
情况三、该第二PBCH的时域位置与该SSB的时域位置的关系与该SSB的时域位置有关。
可选的,若该SSB的时域位置之前存在与该SSB的时域位置相邻的空闲时域资源,则第二PBCH的时域位置位于该SSB的时域位置之前,且与该SSB的时域位置相邻;若该SSB的时域位置之后存在与该SSB的时域位置相邻的空闲时域资源,则第二PBCH的时域位置位于该SSB的时域位置之后,且与该SSB的时域位置相邻;若该SSB的时域位置之前和之后都存在与该SSB的时域位置相邻的空闲时域资源,则第二PBCH的时域位置位于该SSB的时域位置之前和之后,且与该SSB的时域位置相邻。
可选的,在一些实施例中,该实现方式中的第二PBCH的时频位置也可以描述为:第二PBCH的时域位置与第二时域位置相邻,该第二时域位置包括同步信号的时域位置和/或第一PBCH的时域位置,第二PBCH的频域位置与第一PBCH的频域位置相同或包含于该第一PBCH的频域位置中。此时,上述以同步信号和第一PBCH组成的SSB为参考描述的第二PBCH的时频位置的相关特征,也可以进行适当变形适用于该描述中,在此不再赘述。
基于该可能的实现方式,第二PBCH的时域位置与同步信号和第一PBCH组成的SSB的时域位置不同,可以通过时分复用的方式,减少频谱资源的占用。
是否存在第二PBCH的通知机制说明如下:
一种可能的实现方式中,可以通过信令显式地通知终端设备第一通信系统中存在第二PBCH。
可选的,第一信息中可以包括第六子信息,该第六子信息可以用于指示以下任意一项:
第一通信系统中存在第二PBCH;
第二PBCH对应的小区为非禁止小区;
第一通信系统中存在第二PBCH,且第二PBCH对应的小区为非禁止小区。
需要说明的是,本申请中,存在第二PBCH也相当于存在第二信息,因此,在第六子信息用于指示第一通信系统中存在第二PBCH时,也相当于该第六子信息用于指示第一通信系统中存在第二信息,或者说,该第六子信息用于指示网络设备发送了第二PBCH承载的第二信息。
可选的,该第六子信息用于指示第二PBCH对应的小区为非禁止小区时,窄带终端被允许接入第二PBCH对应的小区。此时,第二信息可以不包括上述第二子信息,从而可以节省第二子信息所占用的信令开销。
可选的,在该情况下,终端设备根据小区标识接收第一信息和第二信息,可以包括:终端设备根据小区标识接收第一信息,之后根据第一信息包括的第六子信息接收第二信息,即终端设备可以先接收第一信息,在第一信息包括的第六子信息指示第一通信系统中存在第二PBCH和/或第二PBCH对应的小区为非禁止小区时,接收第二信息。
可以理解的,在第六子信息仅用于指示第二PBCH对应的小区为非禁止小区时,终端设备在根据该第六子信息确认自身被允许接入第二PBCH对应的小区后,若终端设备要接入该小区,则需要先接收第二信息,此时,也可以认为终端设备根据该第六子信息接收第二信息。
可选的,在本申请的一些实施场景下,可能出现协议中定义了第二PBCH,但第一通信 系统中不存在该第二PBCH,或者说,网络设备不发送第二信息的情况,此时,该第六子信息可以用于指示以下任意一项:
第一通信系统中不存在第二PBCH;
第二PBCH对应的小区为禁止小区;
第一通信系统中不存在第二PBCH,且第二PBCH对应的小区为禁止小区。
需要说明的是,本申请中,不存在第二PBCH也相当于不存在第二信息,因此,在第六子信息用于指示第一通信系统中不存在第二PBCH时,也相当于该第六子信息用于指示第一通信系统中不存在第二信息,或者说,该第六子信息用于指示网络设备未发送第二PBCH承载的第二信息。
可选的,该第六子信息用于指示第二PBCH对应的小区为禁止小区时,窄带终端被禁止接入第二PBCH对应的小区。此时,即使网络设备发送了第二信息,对于终端设备来说,也无法接入该小区,因此,该情况下,网络设备可以不发送第二信息,相应的,终端设备不接收第二信息,从而节省信令开销。
可选的,第一系统中不存在第二PBCH或者说网络设备不发送第二信息的原因可能是以下一项或多项:对于窄带终端,第二PBCH对应的小区处于维护期间,禁止窄带终端接入;网络设备负载较高,优先保证宽带终端接入,禁止窄带终端接入等。当然,还可以有其他原因,本申请对此不做具体限定。
可选的,在该情况下,终端设备根据小区的标识接收第一信息后,在第六子信息指示第一通信系统中不存在第二PBCH和/或第二PBCH对应的小区为禁止小区时,可以不接收第二信息,避免终端设备功耗浪费。
可选的,该第六子信息可以由第一信息包括的MIB中的1个空闲比特表示,例如,该比特的取值为“1”时,表示第六子信息指示第一通信系统中存在第二PBCH和/或第二PBCH对应的小区为非禁止小区。该比特的取值为“0”时,表示第六子信息指示第一通信系统中不存在第二PBCH和/或第二PBCH对应的小区为禁止小区。
或者,该第六子信息可以由第一信息包括的第一载荷中的2个空闲比特表示,该2个空闲比特的取值与第六子信息指示的内容可以如下表2所示。
表2
空闲比特取值 第六子信息指示的内容
00 第一通信系统中不存在第二PBCH,且第二PBCH对应的小区为禁止小区
01 第一通信系统中不存在第二PBCH
10 第一通信系统中存在第二PBCH
11 第一通信系统中存在第二PBCH,且第二PBCH对应的小区为非禁止小区
可以理解的是,该2个空闲比特的取值与第六子信息指示的内容之间还可以有其他对应关系,不限定于表2,本申请对此不做具体限定。
基于该方案,终端设备在第六子信息指示第一通信系统中存在第二PBCH和/或第二PBCH对应的小区为非禁止小区时,接收第二信息,在第六子信息指示第一通信系统中不存在第二PBCH和/或第二PBCH对应的小区为禁止小区时,不接收第二信息,网络设备侧的实现更加灵活,终端设备可以根据第六子信息接收或不接收第二信息,可以避免在网络设备未发送第二信息时盲目接收,从而降低终端设备的功耗。
另一种可能的实现方式中,可以隐式地通知终端设备第一通信系统中存在第二PBCH。
可选的,第一信息可以包括第七子信息,该第七子信息指示第二PDCCH对应的CORESET 占用的RB数目,在该RB数目大于第一阈值时,表示第一通信系统中存在第二PBCH。
可选的,该第一阈值个RB的带宽小于但接近于终端设备的工作带宽,例如第一阈值可以为24;或者,该第一阈值个RB的带宽大于终端设备的工作带宽。
可选的,该第七子信息可以为第一信息包括的MIB中pdcch-ConfigSIB1字段承载的调度SIB1的PDCCH的配置信息。
可选的,在该情况下,终端设备根据小区标识接收第一信息和第二信息,可以包括:终端设备根据小区标识接收第一信息,之后根据第一信息包括的第七子信息确定第二PDCCH对应的CORESET占用的RB数目,在该RB数目大于第一阈值时,确定第一通信系统中存在第二PBCH,并接收第二信息。
可选的,在定第二PDCCH对应的CORESET占用的RB数目小于或者等于第一阈值时,第一通信系统中可以不存在第二PBCH,或者说网络设备可以不存在第二信息,此时,窄带终端和宽带终端共用同步信号和第一PBCH。
基于该可能的实现方式,通过第二PDCCH对应的CORSET占用的RB数目隐式指示系统中是否存在第二PBCH,可以减少信令开销,同时终端设备在可以先确定是否存在第二PBCH,不存在时不接收第二信息,从而减少终端功耗的浪费。
第二信息的传输机制说明如下:
在一种可能的实现方式中,在网络设备发送第一信息和第二信息之前,对第一信息和第二信息进行编码。
可选的,网络设备可以根据第一循环冗余校验码(cyclic redundancy check,CRC)对第一信息进行编码,得到编码后的第一信息,以及可以根据第二CRC对第二信息进行编码,得到编码后的第二信息。其中,该第一CRC的比特位数与第二CRC的比特位数不同。
可选的,第一CRC的比特位数大于第二CRC的比特位数,例如,第一CRC的比特位数为24,第二CRC的比特位于为16。采用较少比特位数的第二CRC对第二信息进行编码调制时,可以有更多的比特位用于第二信息,即可以使得第二信息包括更多的内容或参数。
可选的,网络设备根据第一CRC对第一信息进行编码,可以包括:网络设备生成第一CRC,并在第一信息对应的传输块(transport block,TB)之后附加第一CRC,对该第一信息对应的TB以及第一CRC进行编码,得到编码后的第一信息。类似地,网络设备根据第二CRC对第二信息进行编码,可以包括:网络设备生成第二CRC,并在第二信息对应的TB之后附加第二CRC,对该第二信息对应的TB以及第二CRC进行编码,得到编码后的第二信息。
需要说明的是,第一信息对应的TB为包括该第一信息的TB,第二信息对应的TB为包括该第二信息的TB。
可选的,网络设备可以根据第一CRC生成多项式生成第一CRC,根据第二CRC生成多项式生成第二CRC,本申请对网络设备生成CRC的方式不做具体限定。
相应的,在该实现方式中,网络设备发送第一信息和第二信息,可以包括:网络设备发送编码后的第一信息和编码后的第二信息。
可选的,在该实现方式中,终端设备根据小区标识接收第一信息和第二信息,可以包括:终端设备根据小区标识接收编码后的第一信息和编码后的第二信息,之后,根据第一CRC对该编码后的第一信息进行CRC校验以得到第一信息,以及根据第二CRC对该编码后的第二信息进行CRC校验以得到第二信息。
可选的,终端设备根据第一CRC对该编码后的第一信息进行CRC校验以得到第一信息,可以包括:终端设备对编码后的第一信息进行译码,得到包含第一CRC的第一译码信息,并 使用该第一CRC对第一译码信息进行CRC校验,校验成功后,根据第一译码信息得到第一信息。类似地,终端设备根据第二CRC对该编码后的第二信息进行CRC校验以得到第二信息,可以包括:终端设备对编码后的第二信息进行译码,得到包含第二CRC的第二译码信息,并使用该第二CRC对第二译码信息进行CRC校验,校验成功后,根据第二译码信息得到第二信息。
可选的,终端设备所使用的第一CRC和第二CRC可以是终端设备生成的,其中,终端设备生成的第一CRC与网络设备生成的第一CRC相同,终端设备生成的第二CRC和网络设备生成的第二CRC相同。基于该可能的实现方式,使用CRC校验的方式对第二信息进行编码调制,通过CRC较强的侦错能力,保证第二PBCH的性能。此外,CRC的系统消息较小,使用简单,能够降低方案的实现复杂度。
在另一种可能的实现方式中,该第二信息可以通过序列表示。
可选的,表示该第二信息的序列可以是占用一个或多个OFDM符号的长序列,或者是多个短序列,每个短序列占用一个OFDM符号。或者,表示该第二信息的序列可以是不同类型序列的乘积。
可以理解的是,表示该第二信息的序列占用的OFDM符号数目小于或等于第一PBCH和同步信号所占用的总的OFDM符号数目。不同的序列表示不同的第二信息。
可选的,该长序列或短序列可以是Zadoff-Chu序列,m序列,gold序列等,本申请对序列的类型不做具体限定。
基于该可能的实现方式,第二PBCH承载的第二信息通过序列表示,终端设备在接收第二信息时无需进行复杂的译码操作,通过简单的相关运算即可,因此可以降低终端设备的处理复杂度,从而降低对终端设备硬件的要求,进而降低终端设备的成本。
以上,为终端设备的工作带宽大于第一PBCH所占用的带宽时的相关介绍,下面,对终端设备的工作带宽小于第一PBCH所占用的带宽时的第二信息和第二PBCH进行介绍。
第二信息中包括的内容说明如下:
由于终端设备的工作带宽下小于第一PBCH所占用的带宽时,终端设备无法接收第一PBCH承载的第一信息,因此,第二信息中包括终端设备接入网络设备时所必须的参数,即前述同步信号所在帧的系统帧号或该系统帧号的N个高位比特。此外,第二信息还可以包括前述子载波间隔、子载波偏移、DMRS位置指示、第一子信息、第二子信息、第三子信息、第四子信息中的一项或多项。
基于该方案,在窄带终端无法接收第一PBCH上承载的第一信息时,在第二信息中包括同步信号所在帧的系统帧号或者该系统帧号的N个高位比特,能够使得窄带终端获知该系统帧号或其N个高位比特,从而根据该系统帧号或其N个高位比特进行后续处理,例如,接收后续系统信息以及寻呼消息,发起随机接入等。
第二PBCH的时频位置说明如下:
下述实施例中,将以同步信号和第一PBCH组成的SSB(即NR SSB)为参考对第二PBCH的时频位置进行说明。
在一种可能的实现方式中,第二PBCH的频域位置与该SSB的频域位置相邻,第二PBCH的时域位置与该SSB的时域位置相同,或包含于该SSB的时域位置中。
在另一种可能的实现方式中,第二PBCH的时域位置与同步信号和第一PBCH组成的SSB的时域位置相邻,第二PBCH的频域位置与该SSB的频域位置相同,或包含于该SSB的频域位置中。
其中,终端设备的工作带宽大于第一PBCH所占用的带宽的情况下,第二PBCH的时频位置说明可进行适当变形以适用于此。例如,第二PBCH的时域位置或频域位置与同步信号和第一PBCH组成的SSB的时域位置或频域位置的关系可以是协议预定义的,或者,可以是网络设备向终端设备指示的,此时,由于终端设备无法接收第一信息,该指示可以携带在其他在第二信息发送之前发送的广播信息中,本申请对此不做具体限定。
是否存在第二PBCH的通知机制说明如下:
一种可能的实现方式中,可以通过信令显式地通知终端设备第一通信系统中存在第二PBCH。与终端设备的工作带宽大于第一PBCH时不同的是,终端设备无法接收第一信息,因此,该信令可以在其他在第二信息发送之前发送的广播信息发送,本申请对此不做具体限定。
另一种可能的实现方式中,可以隐式地通知终端设备第一通信系统中存在第二PBCH。可参见上述终端设备的工作带宽大于第一PBCH时的相关描述,在此不再赘述。
第二信息的传输机制说明如下:
其中,第二信息的传输机制与终端设备的工作带宽大于第一PBCH时第二信息的传输机制类似,可参考上述相关说明,在此不再赘述。
此外,在本申请的一些实施场景下,无论终端设备的工作带宽是否大于第一PBCH的带宽,该第二PBCH的每资源元素能量(energy per resource element,EPRE)和同步信号包括的SSS的EPRE之间的比值为X分贝(dB),X大于或者等于0。基于该方案,由于在NR系统中,SSS和第一PBCH有相同的EPRE,即第一PBCH的EPRE与SSS的EPRE之间的比值为0dB,从而,在X大于0时,第二PBCH的EPRE大于第一PBCH的EPRE,即第二PBCH的发射功率较高,从而相比第一PBCH,可以达到更好的覆盖性能。
综上,在第一通信系统中,网络设备发送同步信号、第一信息、和第二信息,且第一信息通过第一PBCH承载,第二信息通过第二PBCH承载。窄带终端根据其工作带宽可以接收第一PBCH和第二PBCH,或者接收第二PBCH,从而接收第一信息和第二信息,或者接收第二信息,以进行后续处理,例如下行同步以及发起随机接入等。此外,第一通信系统中的宽带终端可以接收同步信号和第一PBCH承载的第一信息,以实现宽带终端的同步和网络接入,保证了系统的完整性。
其中,上述方法实施例中,网络设备的动作可以由图6所示的网络设备20中的处理器201调用存储器202中存储的应用程序代码以指令该网络设备执行;上述方法实施例中,终端设备的动作可以由图6所示的终端设备30中的处理器301调用存储器302中存储的应用程序代码以指令该终端设备执行,本实施例对此不作任何限制。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或 者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的网络设备为例。图10示出了一种网络设备100的结构示意图。该网络设备100包括处理模块1001和收发模块1002。所述收发模块1002,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
可选的,该网络设备100还可以包括存储模块(图10中未示出),用于存储程序指令和数据。
可选的,收发模块1002,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由网络设备执行的接收和发送类的步骤;处理模1001,可以用于执行上述方法实施例中由网络设备执行的处理类(例如确定、获取等)的步骤。
其中,处理模块1001,用于确定同步信号、第一信息、以及第二信息,该第一信息通过第一PBCH承载,第二信息通过第二PBCH承载,第一信息和第二信息不同;收发模块1002,用于发送该同步信号、第一信息、以及第二信息。
可选的,处理模块1001,还用于根据第一CRC对第一信息进行编码,得到编码后的第一信息,以及根据第二CRC对第二信息进行编码,得到编码后的第二信息,第一CRC的比特位数与第二CRC的比特位数不同;收发模块1002,具体用于发送编码后的第一信息和编码后的第二信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该网络设备100以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该网络设备100可以采用图6所示的网络设备20的形式。
比如,图6所示的网络设备20中的处理器201可以通过调用存储器202中存储的计算机执行指令,使得网络设备20执行上述方法实施例中的方法。
具体的,图10中的处理模块1001和收发模块1002的功能/实现过程可以通过图6所示的网络设备20中的处理器201调用存储器202中存储的计算机执行指令来实现。或者,图10中的处理模块1001的功能/实现过程可以通过图6所示的网络设备20中的处理器201调用存储器202中存储的计算机执行指令来实现,图10中的收发模块1002的功能/实现过程可以通过图6所示的网络设备20中的收发器203来实现。
由于本实施例提供的网络设备100可执行上述方法实施例中的方法,因此其所能获得的 技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的终端设备为例。图11示出了一种终端设备110的结构示意图。该终端设备110包括处理模块1101和收发模块1102。所述收发模块1102,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
可选的,该终端设备110还可以包括存储模块(图11中未示出),用于存储程序指令和数据。
可选的,收发模块1102,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由终端设备执行的接收和发送类的步骤;处理模1101,可以用于执行上述方法实施例中由终端设备执行的处理类(例如确定、获取等)的步骤。
其中,收发模块1102,用于接收来自网络设备的同步信号;处理模块1101,用于根据同步信号获取小区标识;收发模块1102,还用于根据小区标识接收第一信息和第二信息,或者,用于根据小区标识接收第二信息,该第一信息通过第一PBCH承载,第二信息通过第二PBCH承载,第一信息和第二信息不同。
可选的,收发模块1102,具体用于根据小区标识接收编码后的第一信息和编码后的第二信息;处理模块1101,还用于根据第一CRC对编码后的第一信息进行CRC校验以得到第一信息,以及根据第二CRC对编码后的第二信息进行CRC校验以得到第二信息,第一CRC的比特位数与第二CRC的比特位数不同。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该终端设备110以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端设备110可以采用图6所示的终端设备30的形式。
比如,图6所示的终端设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得终端设备30执行上述方法实施例中的方法。
具体的,图11中的处理模块1101和收发模块1102的功能/实现过程可以通过图6所示的终端设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图11中的处理模块1101的功能/实现过程可以通过图6所示的终端设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图11中的收发模块1102的功能/实现过程可以通过图6所示的终端设备30中的收发器303来实现。
由于本实施例提供的终端设备110可执行上述方法实施例中的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。在另一种可能的设计中,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作 具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (50)

  1. 一种信息发送方法,其特征在于,所述方法应用于第一通信系统,所述方法包括:
    网络设备确定同步信号、第一信息、以及第二信息,所述第一信息通过第一物理广播信道PBCH承载,所述第二信息通过第二PBCH承载,所述第一信息与所述第二信息不同;
    所述网络设备发送所述同步信号、所述第一信息、以及所述第二信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第二信息包括以下至少一项:
    第一子信息,所述第一子信息用于调度第一系统信息块SIB1,或者用于配置第一物理下行控制信道PDCCH,所述第一PDCCH用于调度所述第一SIB1;
    第二子信息,所述第二子信息用于指示所述第二PBCH对应的小区是否为禁止小区;
    第三子信息,所述第三子信息用于指示是否允许选择被禁止小区的同频小区;
    第四子信息,所述第四子信息用于指示系统信息是否更新。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括所述同步信号所在帧的系统帧号,以及所述第二信息不包括所述系统帧号;
    或者,
    所述第一信息包括所述系统帧号的N个高比特位,以及所述第二信息不包括所述系统帧号的N个高比特位,N为正整数。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第二信息包括所述同步信号所在帧的系统帧号或所述系统帧号的N个高比特位,N为正整数。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述同步信号和所述第一PBCH组成同步信号/物理广播信道块SSB;
    所述第二PBCH的频域位置与所述SSB的频域位置相邻,所述第二PBCH的时域位置与所述SSB的时域位置相同,或包含于所述SSB的时域位置中;
    或者,所述第二PBCH的时域位置与所述SSB的时域位置相邻,所述第二PBCH的频域位置与所述SSB的频域位置相同,或包含于所述SSB的频域位置中。
  6. 根据权利要求5所述的方法,其特征在于,所述第一信息包括第五子信息;
    所述第二PBCH的频域位置与所述SSB的频域位置相邻时,所述第五子信息用于指示所述第二PBCH的频域位置位于所述SSB的频域位置的高频位置和/或低频位置;
    所述第二PBCH的时域位置与所述SSB的时域位置相邻时,所述第五子信息用于指示所述第二PBCH的时域位置位于所述SSB的时域位置之前和/或之后。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一信息包括第六子信息,所述第六子信息用于指示:所述第一通信系统中存在所述第二PBCH和/或所述第二PBCH对应的小区为非禁止小区。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一信息包括第七子信息,所述第七子信息指示第二PDCCH对应的控制资源集合CORESET占用的资源块的数目,所述数目大于第一阈值时,所述第一通信系统中存在所述第二PBCH,所述第二PDCCH用于调度第二SIB1。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述网络设备发送所述第一信息和所述第二信息,包括:
    所述网络设备根据第一循环冗余校验码CRC对所述第一信息进行编码,得到编码后的第一信息,以及根据第二CRC对所述第二信息进行编码,得到编码后的第二信息,所述第一CRC的比特位数与所述第二CRC的比特位数不同;
    所述网络设备发送所述编码后的第一信息和所述编码后的第二信息。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,所述第二信息通过序列表示。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述同步信号包括辅同步信号SSS,所述第二PBCH的每资源元素能量EPRE和所述SSS的EPRE之间的比值为X分贝,X大于或者等于0。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第二PBCH占用的带宽小于所述第一PBCH占用的带宽。
  13. 一种信息接收方法,其特征在于,所述方法应用于第一通信系统,所述方法包括:
    终端设备接收来自网络设备的同步信号;
    所述终端设备根据所述同步信号获取小区标识;
    所述终端设备根据所述小区标识接收第一信息和第二信息,或者,根据所述小区标识接收第二信息,所述第一信息通过第一物理广播信道PBCH承载,所述第二信息通过第二PBCH承载,所述第一信息与所述第二信息不同。
  14. 根据权利要求13所述的方法,其特征在于,所述第二信息包括以下至少一项:
    第一子信息,所述第一子信息用于调度第一系统信息块SIB1,或者用于配置第一物理下行控制信道PDCCH,所述第一PDCCH用于调度所述第一SIB1;
    第二子信息,所述第二子信息用于指示所述第二PBCH对应的小区是否为禁止小区;
    第三子信息,所述第三子信息用于指示是否允许选择被禁止小区的同频小区;
    第四子信息,所述第四子信息用于指示系统信息是否更新。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一信息包括所述同步信号所在帧的系统帧号,以及所述第二信息不包括所述系统帧号;
    或者,
    所述第一信息包括所述系统帧号的N个高比特位,以及所述第二信息不包括所述系统帧号的N个高比特位,N为正整数。
  16. 根据权利要求13或14所述的方法,其特征在于,所述第二信息包括所述同步信号所在帧的系统帧号或所述系统帧号的N个高比特位,N为正整数。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述同步信号和所述第一PBCH组成同步信号/物理广播信道块SSB;
    所述第二PBCH的频域位置与所述SSB的频域位置相邻,所述第二PBCH的时域位置与所述SSB的时域位置相同,或包含于所述SSB的时域位置中;
    或者,所述第二PBCH的时域位置与所述SSB的时域位置相邻,所述第二PBCH的频域位置与所述SSB的频域位置相同,或包含于所述SSB的频域位置中。
  18. 根据权利要求17所述的方法,其特征在于,所述第一信息包括第五子信息;
    所述第二PBCH的频域位置与所述SSB的频域位置相邻时,所述第五子信息用于指示所述第二PBCH的频域位置位于所述SSB的频域位置的高频位置和/或低频位置;
    所述第二PBCH的时域位置与所述SSB的时域位置相邻时,所述第五子信息用于指示所述第二PBCH的时域位置位于所述SSB的时域位置之前和/或之后。
  19. 根据权利要求13-18任一项所述的方法,其特征在于,所述第一信息包括第六子信息,所述第六子信息用于指示:所述第一通信系统中存在所述第二PBCH和/或所述第二PBCH对应的小区为非禁止小区。
  20. 根据权利要求13-18任一项所述的方法,其特征在于,所述第一信息包括第七子信 息,所述第七子信息指示第二PDCCH对应的控制资源集合CORESET占用的资源块的数目,所述数目大于第一阈值时,所述第一通信系统中存在所述第二PBCH,所述第二PDCCH用于调度第二SIB1。
  21. 根据权利要求13-20任一项所述的方法,其特征在于,所述终端设备根据所述小区标识接收第一信息和第二信息,包括:
    所述终端设备根据所述小区标识接收编码后的第一信息和编码后的第二信息;
    所述终端设备根据第一循环冗余校验码CRC对所述编码后的第一信息进行CRC校验以得到所述第一信息,以及根据第二CRC对所述编码后的第二信息进行CRC校验以得到所述第二信息,所述第一CRC的比特位数与所述第二CRC的比特位数不同。
  22. 根据权利要求13-20任一项所述的方法,其特征在于,所述第二信息通过序列表示。
  23. 根据权利要求13-22任一项所述的方法,其特征在于,所述同步信号包括辅同步信号SSS,所述第二PBCH的每资源元素能量EPRE和所述SSS的EPRE之间的比值为X分贝,X大于或者等于0。
  24. 根据权利要求13-23任一项所述的方法,其特征在于,所述第二PBCH占用的带宽小于所述第一PBCH占用的带宽。
  25. 一种通信装置,其特征在于,所述通信装置用于第一通信系统,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于确定同步信号、第一信息、以及第二信息,所述第一信息通过第一物理广播信道PBCH承载,所述第二信息通过第二PBCH承载,所述第一信息与所述第二信息不同;
    所述收发模块,用于发送所述同步信号、所述第一信息、以及所述第二信息。
  26. 根据权利要求25所述的通信装置,其特征在于,所述第二信息包括以下至少一项:
    第一子信息,所述第一子信息用于调度第一系统信息块SIB1,或者用于配置第一物理下行控制信道PDCCH,所述第一PDCCH用于调度所述第一SIB1;
    第二子信息,所述第二子信息用于指示所述第二PBCH对应的小区是否为禁止小区;
    第三子信息,所述第三子信息用于指示是否允许选择被禁止小区的同频小区;
    第四子信息,所述第四子信息用于指示系统信息是否更新。
  27. 根据权利要求25或26所述的通信装置,其特征在于,所述第一信息包括所述同步信号所在帧的系统帧号,以及所述第二信息不包括所述系统帧号;
    或者,
    所述第一信息包括所述系统帧号的N个高比特位,以及所述第二信息不包括所述系统帧号的N个高比特位,N为正整数。
  28. 根据权利要求25或26所述的通信装置,其特征在于,所述第二信息包括所述同步信号所在帧的系统帧号或所述系统帧号的N个高比特位,N为正整数。
  29. 根据权利要求25-28任一项所述的通信装置,其特征在于,所述同步信号和所述第一PBCH组成同步信号/物理广播信道块SSB;
    所述第二PBCH的频域位置与所述SSB的频域位置相邻,所述第二PBCH的时域位置与所述SSB的时域位置相同,或包含于所述SSB的时域位置中;
    或者,所述第二PBCH的时域位置与所述SSB的时域位置相邻,所述第二PBCH的频域位置与所述SSB的频域位置相同,或包含于所述SSB的频域位置中。
  30. 根据权利要求29所述的通信装置,其特征在于,所述第一信息包括第五子信息;
    所述第二PBCH的频域位置与所述SSB的频域位置相邻时,所述第五子信息用于指示所述第二PBCH的频域位置位于所述SSB的频域位置的高频位置和/或低频位置;
    所述第二PBCH的时域位置与所述SSB的时域位置相邻时,所述第五子信息用于指示所述第二PBCH的时域位置位于所述SSB的时域位置之前和/或之后。
  31. 根据权利要求25-30任一项所述的通信装置,其特征在于,所述第一信息包括第六子信息,所述第六子信息用于指示:所述第一通信系统中存在所述第二PBCH和/或所述第二PBCH对应的小区为非禁止小区。
  32. 根据权利要求25-30任一项所述的通信装置,其特征在于,所述第一信息包括第七子信息,所述第七子信息指示第二PDCCH对应的控制资源集合CORESET占用的资源块的数目,所述数目大于第一阈值时,所述第一通信系统中存在所述第二PBCH,所述第二PDCCH用于调度第二SIB1。
  33. 根据权利要求25-32任一项所述的通信装置,其特征在于,
    所述处理模块,还用于根据第一循环冗余校验码CRC对所述第一信息进行编码,得到编码后的第一信息,以及根据第二CRC对所述第二信息进行编码,得到编码后的第二信息,所述第一CRC的比特位数与所述第二CRC的比特位数不同;
    所述收发模块,具体用于发送所述编码后的第一信息和所述编码后的第二信息。
  34. 根据权利要求25-32任一项所述的通信装置,其特征在于,所述第二信息通过序列表示。
  35. 根据权利要求25-34任一项所述的通信装置,其特征在于,所述同步信号包括辅同步信号SSS,所述第二PBCH的每资源元素能量EPRE和所述SSS的EPRE之间的比值为X分贝,X大于或者等于0。
  36. 根据权利要求25-35任一项所述的通信装置,其特征在于,所述第二PBCH占用的带宽小于所述第一PBCH占用的带宽。
  37. 一种通信装置,其特征在于,所述通信装置用于第一通信系统,所述通信装置包括:处理模块和收发模块;
    所述收发模块,用于接收来自网络设备的同步信号;
    所述处理模块,用于根据所述同步信号获取小区标识;
    所述收发模块,还用于根据所述小区标识接收第一信息和第二信息,或者,还用于根据所述小区标识接收第二信息,所述第一信息通过第一物理广播信道PBCH承载,所述第二信息通过第二PBCH承载,所述第一信息与所述第二信息不同。
  38. 根据权利要求37所述的通信装置,其特征在于,所述第二信息包括以下至少一项:
    第一子信息,所述第一子信息用于调度第一系统信息块SIB1,或者用于配置第一物理下行控制信道PDCCH,所述第一PDCCH用于调度所述第一SIB1;
    第二子信息,所述第二子信息用于指示所述第二PBCH对应的小区是否为禁止小区;
    第三子信息,所述第三子信息用于指示是否允许选择被禁止小区的同频小区;
    第四子信息,所述第四子信息用于指示系统信息是否更新。
  39. 根据权利要求37或38所述的通信装置,其特征在于,所述第一信息包括所述同步信号所在帧的系统帧号,以及所述第二信息不包括所述系统帧号;
    或者,
    所述第一信息包括所述系统帧号的N个高比特位,以及所述第二信息不包括所述系统帧号的N个高比特位,N为正整数。
  40. 根据权利要求37或38所述的通信装置,其特征在于,所述第二信息包括所述同步信号所在帧的系统帧号或所述系统帧号的N个高比特位,N为正整数。
  41. 根据权利要求37-40任一项所述的通信装置,其特征在于,所述同步信号和所述第一PBCH组成同步信号/物理广播信道块SSB;
    所述第二PBCH的频域位置与所述SSB的频域位置相邻,所述第二PBCH的时域位置与所述SSB的时域位置相同,或包含于所述SSB的时域位置中;
    或者,所述第二PBCH的时域位置与所述SSB的时域位置相邻,所述第二PBCH的频域位置与所述SSB的频域位置相同,或包含于所述SSB的频域位置中。
  42. 根据权利要求41所述的通信装置,其特征在于,所述第一信息包括第五子信息;
    所述第二PBCH的频域位置与所述SSB的频域位置相邻时,所述第五子信息用于指示所述第二PBCH的频域位置位于所述SSB的频域位置的高频位置和/或低频位置;
    所述第二PBCH的时域位置与所述SSB的时域位置相邻时,所述第五子信息用于指示所述第二PBCH的时域位置位于所述SSB的时域位置之前和/或之后。
  43. 根据权利要求37-42任一项所述的通信装置,其特征在于,所述第一信息包括第六子信息,所述第六子信息用于指示:所述第一通信系统中存在所述第二PBCH和/或所述第二PBCH对应的小区为非禁止小区。
  44. 根据权利要求37-42任一项所述的通信装置,其特征在于,所述第一信息包括第七子信息,所述第七子信息指示第二PDCCH对应的控制资源集合CORESET占用的资源块的数目,所述数目大于第一阈值时,所述第一通信系统中存在所述第二PBCH,所述第二PDCCH用于调度第二SIB1。
  45. 根据权利要求37-44任一项所述的通信装置,其特征在于,
    所述收发模块,具体用于根据所述小区标识接收编码后的第一信息和编码后的第二信息;
    所述处理模块,还用于根据第一循环冗余校验码CRC对所述编码后的第一信息进行CRC校验以得到所述第一信息,以及根据第二CRC对所述编码后的第二信息进行CRC校验以得到所述第二信息,所述第一CRC的比特位数与所述第二CRC的比特位数不同。
  46. 根据权利要求37-44任一项所述的通信装置,其特征在于,所述第二信息通过序列表示。
  47. 根据权利要求37-46任一项所述的通信装置,其特征在于,所述同步信号包括辅同步信号SSS,所述第二PBCH的每资源元素能量EPRE和所述SSS的EPRE之间的比值为X分贝,X大于或者等于0。
  48. 根据权利要求37-47任一项所述的通信装置,其特征在于,所述第二PBCH占用的带宽小于所述第一PBCH占用的带宽。
  49. 一种通信装置,其特征在于,所述通信装置包括:处理器和接口电路;
    所述接口电路,用于接收计算机程序或指令并传输至所述处理器;
    所述处理器用于执行所述计算机程序或指令,以使所述通信装置执行如权利要求1-12中任一项所述的方法,或者,以使所述通信装置执行如权利要求13-24中任意一项所述的方法。
  50. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当其在通信装置上运行时,使得所述通信装置执行如权利要求1-11中任意一项所述的方法,或者,使得所述通信装置执行如权利要求13-24中任意一项所述的方法。
PCT/CN2020/119542 2020-09-30 2020-09-30 信息发送和接收方法、装置及系统 WO2022067723A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/119542 WO2022067723A1 (zh) 2020-09-30 2020-09-30 信息发送和接收方法、装置及系统
CN202080104991.1A CN116097787A (zh) 2020-09-30 2020-09-30 信息发送和接收方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119542 WO2022067723A1 (zh) 2020-09-30 2020-09-30 信息发送和接收方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2022067723A1 true WO2022067723A1 (zh) 2022-04-07

Family

ID=80951053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119542 WO2022067723A1 (zh) 2020-09-30 2020-09-30 信息发送和接收方法、装置及系统

Country Status (2)

Country Link
CN (1) CN116097787A (zh)
WO (1) WO2022067723A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137231A1 (en) * 2017-01-26 2018-08-02 Qualcomm Incorporated Broadcast channel encoding and decoding
CN111557081A (zh) * 2017-11-17 2020-08-18 Lg电子株式会社 发送和接收参考信号的方法及其设备
CN111699739A (zh) * 2018-02-14 2020-09-22 联想(新加坡)私人有限公司 确定链接的带宽部分
CN111726821A (zh) * 2019-03-21 2020-09-29 华为技术有限公司 一种通信方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137231A1 (en) * 2017-01-26 2018-08-02 Qualcomm Incorporated Broadcast channel encoding and decoding
CN111557081A (zh) * 2017-11-17 2020-08-18 Lg电子株式会社 发送和接收参考信号的方法及其设备
CN111699739A (zh) * 2018-02-14 2020-09-22 联想(新加坡)私人有限公司 确定链接的带宽部分
CN111726821A (zh) * 2019-03-21 2020-09-29 华为技术有限公司 一种通信方法及设备

Also Published As

Publication number Publication date
CN116097787A (zh) 2023-05-09
CN116097787A8 (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
US20210250159A1 (en) Resource configuration method and apparatus
WO2017050184A1 (zh) 系统信息发送方法、接收方法、发送装置及接收装置
WO2019062840A1 (zh) 信息传输方法和装置
WO2020063130A1 (zh) 一种资源确定方法及装置
US11317425B2 (en) Data transmission method, related device, and system
US11251912B2 (en) Signal transmission method, related apparatus, and system
WO2017000248A1 (zh) 一种资源分配信息指示方法、基站及用户设备
US20110141981A1 (en) Transmission of system configuration information in mobile networks
WO2016180354A1 (zh) 多用户重叠编码传输的资源指示方法以及基站和用户设备
WO2019086012A1 (zh) 一种通信方法及装置
WO2018228579A1 (zh) 确定传输块大小的方法及装置
WO2019029706A1 (zh) 一种信息发送、信息接收方法及装置
WO2022151987A1 (zh) 信号发送、接收方法及装置
CN109275190B (zh) 一种通信方法及装置
WO2019192589A1 (zh) 通信方法、通信装置以及计算机可读存储介质
US11564220B2 (en) Resource assignment method, related device, and apparatus
US20210204312A1 (en) Downlink control information transmission method and apparatus
WO2022027694A1 (zh) 一种资源信息指示方法及装置
WO2022067723A1 (zh) 信息发送和接收方法、装置及系统
US9444602B2 (en) Control signaling transmission method, control signaling processing device, and terminal
CN112534911A (zh) 用于指示时隙格式信息的方法和装置
WO2022141276A1 (zh) 信息确定方法、信息传输方法、装置、设备及存储介质
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2022178881A1 (zh) 通信方法及装置
WO2022001970A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955748

Country of ref document: EP

Kind code of ref document: A1