WO2021239113A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2021239113A1
WO2021239113A1 PCT/CN2021/096766 CN2021096766W WO2021239113A1 WO 2021239113 A1 WO2021239113 A1 WO 2021239113A1 CN 2021096766 W CN2021096766 W CN 2021096766W WO 2021239113 A1 WO2021239113 A1 WO 2021239113A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
data
time
sent
access preamble
Prior art date
Application number
PCT/CN2021/096766
Other languages
English (en)
French (fr)
Inventor
张云昊
徐修强
柴晓萌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021239113A1 publication Critical patent/WO2021239113A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method and device.
  • FIG 1 shows a schematic diagram of a large connection scenario for massive machine-type communications (mMTC).
  • IoT Internet of Things
  • terminals have gradually shown characteristics such as large numbers, densification, and multiple forms.
  • IoT Internet of Things
  • terminal If all or most of the terminals are in the connected state for a long time, and the access network equipment schedules transmission, the access network equipment has a large signaling overhead, and the possibility of signaling congestion is greater.
  • the terminal can be in the radio resource control (radio resource control, RRC) inactive status (inactive status) or idle status (idle status), and can transmit on the configured resources Data or no data is transmitted, and the access network equipment always detects on the configured resources.
  • RRC radio resource control
  • the detection complexity of the access network equipment is correspondingly high.
  • a security detection terminal such as a smoke alarm, a temperature and humidity alarm, etc.
  • an alarm detection terminal or an alarm terminal in this application.
  • a security detection terminal such as a smoke alarm, a temperature and humidity alarm, etc.
  • an alarm detection terminal or an alarm terminal in this application.
  • the alarm detection terminal is required to send the data packet to the network side with a shorter delay and higher reliability.
  • the access network equipment needs to perform detection at a higher frequency, which will result in higher overhead.
  • the present application provides a data transmission method and device to improve the reliability of data transmission while reducing the detection overhead of access network equipment.
  • a data transmission method includes: sending a first signal sequence, the first signal sequence being used to indicate that a terminal has data to be sent; On the first transmission resource, the data to be sent is sent, and the first transmission resource includes one or more of the following resources: configured grant (CG) resources and random access resources.
  • the access network device After receiving the first signal sequence indicating that the terminal has data to be sent, the access network device detects the first transmission resource associated with the first signal sequence, and receives the first transmission resource sent by the terminal on the first transmission resource. Data, without always detecting the first transmission resource, can improve the reliability of data transmission while reducing the detection overhead of the access network equipment.
  • the first transmission resource associated with the first signal sequence may be a first transmission resource that is adjacent to the transmission time of the first signal sequence, or may be a first transmission resource that has a mapping relationship with the first signal sequence.
  • the random access resources include physical random access channel (PRACH) time-frequency resources and physical uplink shared channel (PUSCH) time-frequency resources.
  • PRACH physical random access channel
  • PUSCH physical uplink shared channel
  • the method further includes: receiving a broadcast message, the broadcast message including configuration information of a first time-frequency resource, and the first time-frequency resource is used to send the first signal sequence.
  • the access network device pre-configures the terminal with the first time-frequency resource for sending the first signal sequence, so that when there is data to be sent, the terminal does not need to enter the connected state and inform the access network device in time. There is data to be sent; the number of the first signal sequence is small, and the detection complexity of the access network device is low.
  • the sending the first signal sequence includes: sending the first signal sequence on one or more of the first time-frequency resources.
  • multiple terminals can also send the first signal sequence on one or more first time-frequency resources, which enhances the power of the first signal sequence so that the access network equipment can The first signal sequence is accurately detected.
  • multiple terminals send first signal sequences on different first time-frequency resources to distinguish them.
  • the first signal sequence is a demodulation reference signal
  • the first time-frequency resource is a time-frequency resource used for sending the demodulation reference signal in the first CG resource.
  • the first CG resource used to send the DMRS may be pre-configured.
  • the first signal sequence is an uplink control information (UCI) sequence
  • the cyclic shift value of the UCI sequence is used to indicate that the terminal has data to be sent.
  • the terminal and the access network device can accurately indicate and learn that the terminal has data to be sent according to the cyclic shift value of the UCI sequence.
  • the sending the to-be-sent data on the first transmission resource associated with the first signal sequence includes: PUSCH is sent on multiple second CG resources, or random access message A is sent on one or more random access time-frequency resources associated with the first time-frequency resource, the PUSCH or the random access message A carries the data to be sent.
  • the access network device After receiving the DMRS or UCI sequence indicating that the terminal has data to be sent, the access network device detects the CG resource or Msg A resource associated with the first signal sequence, and the CG resource or Msg A resource is on the CG resource or Msg A resource. Receiving the data sent by the terminal does not need to always detect the CG resource or Msg A resource, which can improve the reliability of data transmission while reducing the detection overhead of the access network equipment.
  • the first signal sequence is specifically a first random access preamble
  • the sending the first signal sequence includes: sending the first random access preamble at a first random access opportunity , Wherein the first random access preamble is used to indicate that the terminal has data to be sent, and the first random access preamble belongs to a first random access preamble set corresponding to the first random access occasion;
  • the sending the data to be sent on the first transmission resource associated with the first signal sequence includes: sending a second random access preamble at a second random access opportunity, wherein the second random access time
  • the access preamble belongs to the second random access preamble set corresponding to the second random access occasion; and the PUSCH is sent at the second uplink data transmission occasion associated with the second random access preamble, where the PUSCH is used for demodulation.
  • the demodulation reference signal (demodulation reference signal, DMRS) of the PUSCH belongs to the demodulation reference signal set corresponding to the second uplink data transmission opportunity, and the PUSCH carries the data to be sent; wherein, the second random connection
  • the entry timing is associated with the first random access preamble, or the second random access preamble set is associated with the first random access preamble.
  • the access network device After the access network device receives the first random access preamble indicating that the terminal has data to be sent at the first random access opportunity, it detects at the second random access opportunity according to the configuration of the random access resource
  • the second random access preamble, and detecting the data carried in the DMRS and demodulating the PUSCH at the second uplink data transmission timing associated with the second random access preamble can improve the reliability of data transmission while reducing the access network equipment The detection overhead.
  • the configuration information further includes indication information, the indication information is used to indicate whether to allow communication with the first synchronization signal/physical broadcast channel block (synchronous signal/physical broadcast channel, SS/PBCH)
  • the data to be sent is sent on random access resources associated with different SS/PBCHs, and the first SS/PBCH is an SS/PBCH associated with the first time-frequency resource.
  • the terminal when the terminal has data to be sent, and the access network device sends the above indication information to the terminal, the terminal can preempt the random access resource associated with the SS/PBCH different from the first SS/PBCH to send The data to be sent to reliably send the data to be sent.
  • a data transmission method includes: receiving a first signal sequence, the first signal sequence being used to indicate that a terminal has data to be sent; On the first transmission resource, the data is received, and the first transmission resource includes one or more of the following resources: CG resources and random access resources.
  • the random access resources include PRACH time-frequency resources and PUSCH time-frequency resources.
  • the method further includes: sending a broadcast message, the broadcast message including configuration information of a first time-frequency resource, and the first time-frequency resource is used by the terminal to send the first time-frequency resource. Signal sequence.
  • the receiving the first signal sequence includes: receiving the first signal sequence on one or more of the first time-frequency resources.
  • the first signal sequence is a demodulation reference signal
  • the first time-frequency resource is a time-frequency resource used for sending the demodulation reference signal in the first CG resource.
  • the first signal sequence is a UCI sequence
  • a cyclic shift value of the UCI sequence is used to indicate that the terminal has data to be sent.
  • receiving the data on the first transmission resource associated with the first signal sequence includes: receiving the data on one or more second CGs associated with the first time-frequency resource A PUSCH is received on a resource, or a random access message A is received on one or more random access time-frequency resources associated with the first time-frequency resource, where the PUSCH or the random access message A carries the data .
  • the first signal sequence is specifically a first random access preamble
  • the receiving the first signal sequence includes: receiving the first random access preamble at a first random access opportunity , Wherein the first random access preamble is used to indicate that the terminal has data to be sent, and the first random access preamble belongs to a first random access preamble set corresponding to the first random access occasion;
  • the receiving the data on the first transmission resource associated with the first signal sequence includes: receiving a second random access preamble at a second random access opportunity, wherein the second random access preamble Belongs to the second random access preamble set corresponding to the second random access occasion; and the PUSCH is received at the second uplink data transmission occasion associated with the second random access preamble, where the PUSCH is used to demodulate the PUSCH
  • the demodulation reference signal belongs to the demodulation reference signal set corresponding to the second uplink data transmission opportunity, and the PUSCH carries the data to be transmitted; wherein, the second random access opportunity is the same as the first random access
  • the configuration information further includes indication information, the indication information is used to indicate whether to allow sending the pending SS/PBCH on a random access resource associated with an SS/PBCH that is different from the first SS/PBCH.
  • the first SS/PBCH is an SS/PBCH associated with the first time-frequency resource.
  • a data transmission device for executing the foregoing first aspect or any possible implementation method of the first aspect.
  • the data transmission apparatus may be a terminal in the foregoing first aspect or any possible implementation of the first aspect, or a module applied to the terminal, such as a chip or a chip system.
  • the data transmission device includes modules, units, or means corresponding to the foregoing methods, and the modules, units, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • the data transmission device includes: a transceiving unit; the transceiving unit is configured to send a first signal sequence, and the first signal sequence is used to indicate that the device is to be transmitted. And the transceiver unit is further configured to send the data to be sent on a first transmission resource associated with the first signal sequence, and the first transmission resource includes one or more of the following resources : CG resources, random access resources.
  • the random access resources include PRACH time-frequency resources and PUSCH time-frequency resources.
  • the transceiver unit is further configured to receive a broadcast message, the broadcast message including configuration information of a first time-frequency resource, and the first time-frequency resource is used to send the first signal sequence.
  • the transceiver unit is further configured to send the first signal sequence on one or more of the first time-frequency resources.
  • the first signal sequence is a demodulation reference signal
  • the first time-frequency resource is a time-frequency resource used for sending the demodulation reference signal in the first CG resource.
  • the first signal sequence is a UCI sequence
  • a cyclic shift value of the UCI sequence is used to indicate that the terminal has data to be sent.
  • the transceiver unit is further configured to send PUSCH on one or more second CG resources associated with the first time-frequency resource, or send PUSCH on one or more second CG resources associated with the first time-frequency resource.
  • a random access message A is sent on a random access time-frequency resource, and the PUSCH or the random access message A carries the data to be sent.
  • the first signal sequence is specifically a first random access preamble; the transceiver unit is configured to send the first random access preamble at a first random access occasion, wherein the first random access preamble The access preamble is used to indicate that the terminal has data to be sent, and the first random access preamble belongs to a first random access preamble set corresponding to the first random access occasion; the transceiver unit is further configured to Sending a second random access preamble at a second random access occasion, where the second random access preamble belongs to a second random access preamble set corresponding to the second random access occasion; and the transceiver unit, It is also used to send the PUSCH at the second uplink data transmission opportunity associated with the second random access preamble, where the demodulation reference signal used to demodulate the PUSCH belongs to the demodulation corresponding to the second uplink data transmission opportunity Reference signal set, the PUSCH carries the data to be transmitted; wherein, the second random access timing is associated with the first random access preamble
  • the configuration information further includes indication information used to indicate whether to allow the data to be sent to be sent on a random access resource associated with an SS/PBCH different from the first SS/PBCH, so
  • the first SS/PBCH is an SS/PBCH associated with the first time-frequency resource.
  • the data transmission device includes: an input interface, an output interface, and a processing circuit; the output interface is used for outputting a first signal sequence, and the first signal sequence is used for Indicating that the device has data to be output; and the output interface is further configured to output the data to be output on a first transmission resource associated with the first signal sequence, and the first transmission resource includes One or more of the following resources: CG resources, random access resources.
  • the random access resources include PRACH time-frequency resources and PUSCH time-frequency resources.
  • the input interface is also used to input a broadcast message, the broadcast message including configuration information of a first time-frequency resource, and the first time-frequency resource is used to output the first signal sequence.
  • the output interface is further configured to output the first signal sequence on one or more of the first time-frequency resources.
  • the first signal sequence is a demodulation reference signal
  • the first time-frequency resource is a time-frequency resource used for outputting the demodulation reference signal in the first CG resource.
  • the first signal sequence is a UCI sequence
  • a cyclic shift value of the UCI sequence is used to indicate that the terminal has data to be output.
  • the output interface is also used to output PUSCH on one or more second CG resources associated with the first time-frequency resource, or to output PUSCH on one or more second CG resources associated with the first time-frequency resource.
  • a random access message A is output on a random access time-frequency resource, and the PUSCH or the random access message A carries the data to be output.
  • the first signal sequence is specifically a first random access preamble; the output interface is configured to output the first random access preamble at a first random access opportunity, wherein the first random access preamble
  • the access preamble is used to indicate that the terminal has data to be output, and the first random access preamble belongs to the first random access preamble set corresponding to the first random access occasion;
  • the output interface is also used for Output a second random access preamble at a second random access occasion, where the second random access preamble belongs to a second random access preamble set corresponding to the second random access occasion;
  • the output interface It is also used to output the PUSCH at the second uplink data transmission occasion associated with the second random access preamble, where the demodulation reference signal used to demodulate the PUSCH belongs to the demodulation corresponding to the second uplink data transmission occasion Reference signal set, the PUSCH carries the data to be transmitted; wherein, the second random access timing is associated with the first random access preamble, or the second random access pre
  • the configuration information further includes indication information used to indicate whether to allow the output of the data to be output on a random access resource associated with an SS/PBCH different from the first SS/PBCH, so
  • the first SS/PBCH is an SS/PBCH associated with the first time-frequency resource.
  • the data transmission device further includes a memory coupled to the at least one processor, and the at least one processor is configured to execute program instructions stored in the memory, so that the data transmission device executes the first aspect or the first aspect described above. Any possible implementation method in one aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the at least one processor, and the at least one processor can call and execute the program instructions stored in the memory, so that the data transmission apparatus executes the first aspect or any possible implementation of the first aspect.
  • the data transmission device further includes a communication interface, and the communication interface is used for the data transmission device to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the data transmission device includes: at least one processor and a communication interface, configured to execute the foregoing first aspect or any possible implementation method of the first aspect, specifically including: the at least one The processor uses the communication interface to communicate with the outside; the at least one processor is used to run a computer program, so that the data transmission device executes the foregoing first aspect or any possible implementation method of the first aspect.
  • the exterior may be an object other than the processor, or an object other than the data transmission device.
  • the data transmission device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a data transmission device for executing the foregoing second aspect or any possible implementation method of the second aspect.
  • the data transmission apparatus may be an access network device in the foregoing second aspect or any possible implementation of the second aspect, or a module applied to the access network device, such as a chip or a chip system.
  • the data transmission device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • the data transmission device includes: a transceiving unit; the transceiving unit is configured to receive a first signal sequence, and the first signal sequence is used to indicate that the terminal has data to be sent And the transceiving unit is further configured to receive the data on a first transmission resource associated with the first signal sequence, where the first transmission resource includes one or more of the following resources: CG resources, random Access resources.
  • the random access resources include PRACH time-frequency resources and PUSCH time-frequency resources.
  • the transceiver unit is further configured to send a broadcast message, the broadcast message including configuration information of a first time-frequency resource, and the first time-frequency resource is used by the terminal to send the first signal sequence.
  • the transceiver unit is further configured to receive the first signal sequence on one or more of the first time-frequency resources.
  • the first signal sequence is a demodulation reference signal
  • the first time-frequency resource is a time-frequency resource used for sending the demodulation reference signal in the first CG resource.
  • the first signal sequence is a UCI sequence
  • a cyclic shift value of the UCI sequence is used to indicate that the terminal has data to be sent.
  • the transceiver unit is further configured to receive PUSCH on one or more second CG resources associated with the first time-frequency resource, or to receive PUSCH on one or more second CG resources associated with the first time-frequency resource.
  • a random access message A is received on a random access time-frequency resource, and the PUSCH or the random access message A carries the data.
  • the first signal sequence is specifically a first random access preamble; the transceiver unit is further configured to receive the first random access preamble at a first random access opportunity, wherein the first random access preamble The random access preamble is used to indicate that the terminal has data to be sent, and the first random access preamble belongs to the first random access preamble set corresponding to the first random access occasion; the transceiver unit also uses Receiving a second random access preamble at a second random access opportunity, where the second random access preamble belongs to a second random access preamble set corresponding to the second random access opportunity; and the transceiver unit , And also used to receive PUSCH at a second uplink data transmission opportunity associated with the second random access preamble, where the demodulation reference signal used to demodulate the PUSCH belongs to the solution corresponding to the second uplink data transmission opportunity Tuning reference signal set; wherein the second random access timing is associated with the first random access preamble, or the second random access preamble set is associated with
  • the configuration information further includes indication information used to indicate whether to allow the data to be sent to be sent on a random access resource associated with an SS/PBCH different from the first SS/PBCH, so
  • the first SS/PBCH is an SS/PBCH associated with the first time-frequency resource.
  • the data transmission device includes: an input interface, an output interface, and a processing circuit; the input interface is used for inputting a first signal sequence, and the first signal sequence is used for Indicating that the terminal has data to be output; and the input interface is also used to input the data on a first transmission resource associated with the first signal sequence, and the first transmission resource includes one or more of the following Two kinds of resources: CG resources, random access resources.
  • the random access resources include PRACH time-frequency resources and PUSCH time-frequency resources.
  • the output interface is further configured to output a broadcast message, the broadcast message including configuration information of a first time-frequency resource, and the first time-frequency resource is used by the terminal to output the first signal sequence.
  • the input interface is further configured to input the first signal sequence on one or more of the first time-frequency resources.
  • the first signal sequence is a demodulation reference signal
  • the first time-frequency resource is a time-frequency resource used for outputting the demodulation reference signal in the first CG resource.
  • the first signal sequence is a UCI sequence
  • a cyclic shift value of the UCI sequence is used to indicate that the terminal has data to be output.
  • the input interface is further configured to input PUSCH on one or more second CG resources associated with the first time-frequency resource, or input PUSCH on one or more second CG resources associated with the first time-frequency resource.
  • a random access message A is input to a random access time-frequency resource, and the PUSCH or the random access message A carries the data.
  • the first signal sequence is specifically a first random access preamble; the input interface is further configured to input the first random access preamble at a first random access opportunity, wherein the first random access preamble
  • the random access preamble is used to indicate that the terminal has data to be output, and the first random access preamble belongs to the first random access preamble set corresponding to the first random access occasion;
  • the input interface is also used Inputting a second random access preamble at a second random access occasion, where the second random access preamble belongs to a second random access preamble set corresponding to the second random access occasion; and the input interface , Is also used to input PUSCH at the second uplink data transmission timing associated with the second random access preamble, where the demodulation reference signal used to demodulate the PUSCH belongs to the solution corresponding to the second uplink data transmission timing The reference signal set is adjusted, and the PUSCH carries the data to be sent; wherein, the second random access timing is associated with the first random access preamble, or the second
  • the configuration information further includes indication information used to indicate whether to allow the output of the data to be output on a random access resource associated with an SS/PBCH different from the first SS/PBCH, so
  • the first SS/PBCH is an SS/PBCH associated with the first time-frequency resource.
  • the data transmission device further includes a memory coupled to the at least one processor, and the at least one processor is configured to run program instructions stored in the memory, so that the data transmission device executes the second aspect or the first aspect described above. Any possible implementation method of the two aspects.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the at least one processor, and the at least one processor can call and execute the program instructions stored in the memory, so that the data transmission device executes the above-mentioned second aspect or any possible implementation of the second aspect Methods.
  • the data transmission device further includes a communication interface, and the communication interface is used for the data transmission device to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the data transmission device includes: at least one processor and a communication interface, configured to execute the foregoing second aspect or any possible implementation method of the second aspect, specifically including: the at least one The processor uses the communication interface to communicate with the outside; the at least one processor is used to run a computer program, so that the data transmission device executes the foregoing second aspect or any possible implementation method of the second aspect.
  • the exterior may be an object other than the processor, or an object other than the data transmission device.
  • the data transmission device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a data transmission system including the data transmission device in any one of the foregoing third aspect or the third aspect, and the data transmission device in any one of the fourth aspect or the fourth aspect. .
  • a computer-readable storage medium which stores a computer program, and when it runs on a computer, the above-mentioned aspects or any one of the above-mentioned aspects is executed.
  • a computer program product which, when running on a computer, enables the foregoing aspects or any one of the foregoing aspects to be executed.
  • a computer program which, when run on a computer, enables the foregoing aspects or any one of the foregoing aspects to be executed.
  • Figure 1 is a schematic diagram of a mMTC large connection scenario
  • Figure 2 is a schematic diagram of a flow of data transmission using configured grant (CG) resources in an RRC inactive state scenario
  • FIG. 3 is a schematic diagram of the flow of data transmission using the 2-step physical random access channel (2-step RACH) scheme in the RRC inactive state scenario;
  • FIG. 4 is a schematic diagram of a data transmission system involved in this application.
  • FIG. 5 is a schematic structural diagram of a data transmission device provided by an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a data transmission method provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another flow of the data transmission method provided by an embodiment of the application.
  • Figure 8a is a schematic diagram of resource configuration
  • Figure 8b is another schematic diagram of resource configuration
  • FIG. 9 is a schematic diagram of an application scenario of the data transmission method shown in FIG. 7;
  • FIG. 10 is a schematic flowchart of another data transmission method provided by an embodiment of this application.
  • Figure 11 is another schematic diagram of resource configuration
  • FIG. 12 is a schematic diagram of another structure of a data transmission device provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of another structure of the data transmission device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a simplified terminal provided by an embodiment of this application.
  • FIG. 15 is a schematic structural diagram of a simplified access network device provided by an embodiment of this application.
  • the terminal transmits data with a lower delay, which can be understood as the terminal can send data to the access network device without entering the connected state.
  • a non-connected state it means that the terminal is in an RRC inactive state, an idle state, a power saving mode (PSM), or a discontinous receiving (DRX) inactive state, etc.
  • PSM power saving mode
  • DRX discontinous receiving
  • FIG. 2 it is a schematic diagram of the process of using CG resources to transmit data in the RRC inactive state.
  • the terminal uses the uplink CG transmission resources pre-configured by the access network equipment through the uplink data channel, such as the physical uplink shared channel. channel, PUSCH) to send uplink small packets (uplink small data).
  • the terminal also sends the identification of the terminal through the uplink data channel.
  • the access network device can pre-configure CG resources for each terminal within its service range through radio resource control (Radio Resource Control, RRC) signaling.
  • the pre-configured CG resources mainly include resources for sending PUSCH and resources for sending DMRS.
  • the CG resource used by the aforementioned terminal may be shared by multiple terminals, or may be dedicated to one terminal.
  • the random access resource mainly refers to the resource used to send the random access message A (Msg A) in the 2-step RACH.
  • the 2-step RACH includes two steps: the terminal sends Msg A to the access network device, and the access network device sends a random access message B (Msg B) to the terminal. in:
  • the terminal sending Msg A specifically refers to the terminal sending a random access preamble (preamble) on the physical random access channel occasion (physical random access channel occasion, RO), and sharing the channel opportunity (physical uplink shared channel occasion, PO) on the physical random access channel occasion (RO). ) Send uplink data to the access network device on the corresponding PUSCH.
  • the terminal may also send the identification of the terminal to the access network device at the PO.
  • the random access preamble also known as the preamble, is a sequence that can be used by the access network equipment to determine the time advance (TA) of the terminal.
  • the Msg B sent by the access network device specifically refers to the random access response (RAR) sent by the access network device.
  • the RAR may include the feedback information of Msg A to inform the terminal whether the above-mentioned uplink data has been successfully received.
  • PRACH resources, preamble resources, PUSCH resources (including DMRS resources in PUSCH), and resources for receiving RAR are all configured by the access network device when the terminal is in the RRC connection state, and/or the access network device is broadcasting Configured for the terminal in the system message.
  • the different TA values of the terminal are caused by the different distances from the terminal to the access network equipment.
  • the TA value of the terminal is usually determined by the access network equipment through preamble detection. For example, when the access network device receives the preamble sent by the terminal, the access network device uses the detection and demodulation of the preamble to determine the TA value when the terminal sends the preamble, and demodulate the PUSCH in the MsgA according to the TA, or in the subsequent random In the access step, the TA value is notified to the terminal, so that the terminal can adjust the uplink synchronization before sending data.
  • the above CG method is applicable when the terminal TA is valid; when the TA is invalid, if the terminal only sends the PUSCH, the access network equipment may not be able to demodulate the PUSCH correctly, so the 2-step RACH method can be used to send uplink data.
  • PUCCH Physical uplink control channel
  • UCI Physical uplink control channel
  • the new radio supports 5 formats of PUCCH. According to the length of the time domain symbol occupied by the PUCCH channel, they are divided into:
  • PUCCH channel occupies 1-2 symbols, including PUCCH format 0, PUCCH format 2;
  • PUCCH channel occupies 4-14 symbols, including PUCCH format 1, PUCCH format 3, PUCCH format 4.
  • the five PUCCH formats occupy the number of symbols and the number of information bits carried, as shown in Table 1 below:
  • one or two PUCCHs can be sent.
  • two PUCCHs are sent, at least one of them is PUCCH format 0 or PUCCH format 2.
  • the terminal has no data upload for a long time, so it is reasonable to keep it in a disconnected state for a long time.
  • alarm data when alarm data is detected, it is often urgent information, requiring the terminal to send the data packet to the network side with a shorter delay and higher reliability.
  • the alarm data includes location information, alarm information, etc. of the terminal, and is usually small packet data.
  • the reserved CG resources need to be densely arranged in the time domain, and the access network equipment needs to detect each pre-configured time/frequency/code resource, resulting in the access network
  • the detection overhead of the device is relatively large.
  • CBRA contention-based random access
  • CFRA contention-free random access
  • This application provides a data transmission solution. After receiving a first signal sequence indicating that a terminal has data to be sent, an access network device detects a first transmission resource associated with the first signal sequence, and the first transmission resource is on the first transmission resource. The data sent by the terminal is received without always detecting the first transmission resource, which can improve the reliability of data transmission while reducing the detection overhead of the access network equipment.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • eLTE enhanced long term evolution
  • 5G fifth generation
  • NR NR
  • the 5G mobile communication system involved in this application includes a non-standalone (NSA) 5G mobile communication system or a standalone (SA) ) 5G mobile communication system.
  • SA standalone
  • the technical solution provided in this application can also be applied to future communication systems, such as the sixth-generation mobile communication system.
  • the communication system can also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, and a device-to-device (D2D) communication system.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • D2D device-to-device
  • IoT Internet of things
  • car networking communication system or other communication systems.
  • Figure 4 shows a schematic diagram of a data transmission system involved in this application.
  • the data transmission system may include at least one access network device 100 (only one is shown in the figure) and one or more terminals 200 connected to the access network device 100.
  • the terminal in the embodiment of the present application may refer to an access terminal, a user unit, a user station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal, and a user equipment ( user equipment, UE), terminal (terminal), wireless communication equipment, user agent, user device, cell phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (wireless local loop, WLL) Stations, personal digital assistants (PDAs), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in the future 5G network or future evolution
  • the terminal in the PLMN or the terminal in the future Internet of Vehicles, etc. are not limited in the embodiment of the present application.
  • the terminal may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality terminal, an augmented reality terminal, a wireless terminal in industrial control, and a wireless terminal in unmanned driving.
  • Wireless terminal in remote surgery wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, etc.
  • wearable devices can also be referred to as wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal can also be a terminal in an IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology to realize human-machine interconnection. , An intelligent network of interconnected things.
  • the IoT technology can achieve massive connections, deep coverage, and power saving of the terminal through, for example, narrowband (NB) technology.
  • NB narrowband
  • the terminal may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminals), receiving control information and downlink data from access network equipment, and sending electromagnetic waves. , To transmit uplink data to the access network equipment.
  • the access network device in the embodiment of the present application may be any communication device with a wireless transceiving function that is used to communicate with a terminal.
  • the access network equipment includes, but is not limited to: evolved node B (evolved node B, eNB), baseband unit (BBU), and access point in a wireless fidelity (wireless fidelity, WIFI) system.
  • AP evolved node B
  • BBU baseband unit
  • AP wireless relay node
  • wireless backhaul node transmission point (transmission point, TP), or transmission reception point (transmission reception point, TRP), etc.
  • the access network device may also be a gNB, TRP, or TP in the 5G system, or one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system.
  • the access network device may also be a network node constituting a gNB or TP, such as a BBU, or a distributed unit (DU).
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU realizes part of the functions of gNB
  • DU realizes part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical layer (PHY).
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • the access network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the access network device and the terminal in the embodiment of the present application may communicate through licensed spectrum, communicate through unlicensed spectrum, or communicate through licensed spectrum and unlicensed spectrum at the same time.
  • the access network device and the terminal can communicate through a frequency spectrum below 6 gigahertz (gigahertz, GHz), or communicate through a frequency spectrum above 6 GHz, or communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • the embodiments of the present application do not limit the spectrum resources used between the access network device and the terminal.
  • the terminal or access network device in the embodiment of the present application can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water; it can also be deployed on airborne aircraft, balloons, and satellites. superior.
  • the embodiments of the present application do not limit the application scenarios of the terminal or the access network device.
  • the terminal or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of this application do not specifically limit the specific structure of the execution body of the methods provided in the embodiments of this application, as long as it can be provided according to the embodiments of this application by running a program that records the codes of the methods provided in the embodiments of this application.
  • the execution subject of the method provided in this embodiment of the present application may be a terminal or an access network device, or a functional module that can call and execute the program in the terminal or the access network device.
  • the related functions of the terminal or the access network device in the embodiments of this application can be implemented by one device, or can be implemented by multiple devices together, or can be implemented by one or more functional modules in one device.
  • the embodiment does not specifically limit this. It is understandable that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) Virtualization function.
  • FIG. 5 is a schematic structural diagram of a data transmission device 500 provided by an embodiment of the application.
  • the data transmission device 500 includes one or more processors 501 and 507, a communication line 502, and at least one communication interface (in FIG. 5, it is only an example and the communication interface 504 is included as an example for illustration).
  • a memory 503 may also be included.
  • the processor 501 may be a CPU, a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • ASIC application-specific integrated circuit
  • the communication line 502 may include a path for connecting different components.
  • the communication interface 504 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 504 may also be a transceiver circuit located in the processor 501 to implement signal input and signal output of the processor.
  • the memory 503 may be a device having a storage function.
  • it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory may exist independently, and is connected to the processor through the communication line 502. The memory can also be integrated with the processor.
  • the memory 503 is used to store computer-executable instructions for executing the solution of the present application, and the processors 501 and 507 control the execution.
  • the processors 501 and 507 are configured to execute computer-executable instructions stored in the memory 503, so as to implement the data transmission method provided in the embodiment of the present application.
  • the processors 501 and 507 may also perform processing-related functions in the data transmission method provided in the following embodiments of the present application.
  • the communication interface 504 is responsible for communicating with other devices or communication networks. The example does not make specific restrictions on this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processors 501 and 507 may respectively include one or more CPUs.
  • the processor 501 includes CPU0 and CPU1
  • the processor 507 includes CPU0 and CPU1.
  • the data transmission apparatus 500 may include multiple processors, such as the processor 501 and the processor 507 in FIG. 5. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the data transmission apparatus 500 may further include an output device 505 and an input device 506.
  • the output device 505 communicates with the processor 501 and can display information in a variety of ways.
  • the aforementioned data transmission device 500 may be a general-purpose device or a dedicated device.
  • the data transmission device 500 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal, an embedded device, or a device with a similar structure in FIG. 5.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the data transmission device 500.
  • FIG. 6 it is a schematic flowchart of a data transmission method provided by an embodiment of this application.
  • the method may include the following steps:
  • the terminal sends a first signal sequence.
  • the first signal sequence is used to indicate that the terminal has data to be sent.
  • the access network device detects the first signal sequence.
  • the terminal is in a non-connected state to save power consumption.
  • the terminal being in the non-connected state means that the terminal is in the RRC inactive state, idle state, PSM, or DRX inactive state, etc.
  • the terminal When the terminal has data to be sent, for example, the terminal detects an alarm, the terminal sends the first signal sequence on the time-frequency resource pre-configured by the access network device.
  • the first signal sequence is used to indicate that the terminal has data to be sent.
  • the data to be sent may be alarm data, such as smoke alarm, temperature and humidity alarm data, and so on.
  • the terminal may be a security detection type terminal. Further, a plurality of first signal sequences can be set according to different types of alarm data.
  • the access network device is configured with multiple first signal sequences, the access network device needs to detect the multiple first signal sequences accordingly.
  • the access network device detects the first signal sequence on the time-frequency resource of the first signal sequence, and detects in a timely manner whether the terminal has data to be sent.
  • the number of the first signal sequence is small, and the detection complexity of the access network device is low.
  • the terminal sends data to be sent on the first transmission resource associated with the first signal sequence.
  • the access network device receives the data.
  • the terminal After sending the first signal sequence, the terminal sends the data to be sent on the first transmission resource associated with the first signal sequence.
  • the first transmission resource may be a resource pre-configured by the access network device.
  • the first transmission resource associated with the first signal sequence may refer to a transmission resource adjacent to the transmission time of the first signal sequence, or a time-frequency resource adjacent to the time-frequency resource used to transmit the first signal sequence; and
  • the first transmission resource associated with a signal sequence may also refer to a time-frequency resource that has a mapping relationship with the first signal sequence.
  • the first transmission resource may be a PUSCH resource in a CG resource, and the PUSCH carries the aforementioned data to be sent.
  • the first transmission resource may also be a random access resource.
  • the random access resources include PRACH time-frequency resources and PUSCH time-frequency resources.
  • Msg A includes preamble and PUSCH.
  • the PRACH time-frequency resource is used to send the preamble in Msg A
  • the PUSCH time-frequency resource is used to send the PUSCH.
  • the PUSCH carries the above-mentioned data to be sent.
  • the terminal uses the pre-configured first transmission resource to send the data to be sent without entering the connected state and can continue to maintain the low power consumption state.
  • the access network device does not need to detect the first transmission resource before detecting the first signal sequence, so as to save the detection overhead of the access network device. After the access network device detects and receives the first signal sequence, it receives the data sent by the terminal on the first transmission resource according to the configuration information. Therefore, the data sent by the terminal can be received reliably and timely.
  • the access network device after receiving a first signal sequence indicating that the terminal has data to be sent, the access network device detects a first transmission resource associated with the first signal sequence, and The data sent by the terminal is received on one transmission resource without always detecting the first transmission resource, which can improve the reliability of data transmission while reducing the detection overhead of the access network equipment.
  • the first signal sequence is DMRS.
  • the method may include the following steps:
  • the access network device sends a broadcast message.
  • the broadcast message includes configuration information of the first time-frequency resource, and the first time-frequency resource is used to send the first signal sequence.
  • the terminal receives the broadcast message.
  • the access network device may pre-configure the first time-frequency resource for sending the first signal sequence to the terminal through RRC signaling.
  • the first time-frequency resource used to send the first signal sequence may include one or more.
  • the first time-frequency resource may be a time-frequency resource used for sending DMRS in the CG resource.
  • the access network device sends the configuration information of the first time-frequency resource to the terminal through RRC dedicated signaling, and the first time-frequency resource is dedicated to the terminal.
  • the access network device may also carry the configuration information of the first time-frequency resource through a broadcast message, that is, which time-frequency resources are configured for the terminal to send the first signal sequence, and the first time-frequency resource Resources can be shared by multiple terminals. At this time, the terminal can be in a connected state or a non-connected state.
  • the access network device may send the configuration information of the first time-frequency resource to the terminal through public signaling, and the public signaling is, for example, system information.
  • the access network device configures first CG resources for UE1 to UE3, and the first CG resources are used to send the first signal sequence.
  • the first signal sequence is DMRS.
  • the first time-frequency resource is a time-frequency resource used for sending a demodulation reference signal in the first CG resource.
  • the first CG resource may be a CG resource based on competition or non-competition.
  • the above-mentioned broadcast message may also include configuration information of the first signal sequence.
  • the configuration information of the first signal sequence includes a DMRS sequence pattern, a DMRS sequence length, a symbol position in a time slot, a resource element (RE) position, an orthogonal cover code (OCC), and the like.
  • the DMRS sequence pattern represents the combination of the value of each element in the DMRS sequence
  • the OCC refers to a codeword that is multiplied by the DMRS sequence element by element before the DMRS sequence is mapped to the corresponding time-frequency position.
  • multiple DMRS can be set according to different data/service types.
  • the access network equipment configures the same DMRS for each terminal, that is, the above-mentioned DMRS sequence pattern, DMRS sequence length, symbol position in the time slot, RE position, OCC and other parameters are the same.
  • the access network equipment configures the same DMRS for each terminal, that is, the above-mentioned DMRS sequence pattern, DMRS sequence length, symbol position in the time slot, RE position, OCC and other parameters can be different.
  • the access network device is configured with multiple DMRSs, the access network device needs to detect the multiple DMRSs accordingly.
  • the access network device may also pre-configure a second CG resource for the terminal, and the second CG resource is used to send the data to be sent.
  • the access network device can also pre-configure Msg A resources for the terminal.
  • the Msg A resources include preamble resources and PUSCH resources.
  • the Msg A resource is used to send the data to be sent.
  • the second CG resource or Msg A resource configured by the access network device for each terminal may be different.
  • the terminal after receiving the configuration information of the first time-frequency resource, the terminal enters a disconnected state if there is no data to be sent. Unless the terminal has data to be sent, the terminal is always in a disconnected state to save power consumption of the terminal.
  • S202 The terminal sends a first signal sequence on one or more first time-frequency resources.
  • the first signal sequence is used to indicate that the terminal has data to be sent.
  • the terminal When the terminal has data to be sent, the terminal sends the first signal sequence on the configured one or more first time-frequency resources according to the above-mentioned configuration of the first time-frequency resource to indicate that the terminal has data to be sent. Since the above-mentioned resources have been pre-configured for the terminal, the terminal does not need to enter the RRC connected state. When the terminal is in the non-connected state, it can send the first signal sequence to the access network device on the above-mentioned first time-frequency resource.
  • UE1 sends DMRS in slot 1 to slot 3; UE2 sends DMRS in slot 2 to slot 3; UE3 sends DMRS in slot 3.
  • the DMRS is used to indicate that the terminal has data to be sent. Multiple UEs use the same DMRS to send the first signal sequence together, which has a power enhancement effect for the access network equipment to detect the DMRS (the color of the DMRS on slot 1 ⁇ slot 3 gradually darkens, indicating that the power of the DMRS gradually increases), and the DMRS triggers the access network The accuracy of the successful detection of the device is higher.
  • the access network device detects the DMRS on slot3.
  • the DMRS may be the above-mentioned pre-configured first CG resource.
  • the terminal can also preempt the DMRS in the scheduled uplink time slot.
  • S203 Send the PUSCH on one or more second CG resources associated with the first time-frequency resource.
  • the PUSCH carries data to be sent.
  • the terminal After sending the first signal sequence, the terminal sends the PUSCH on one or more second CG resources associated with the first time-frequency resource.
  • the second CG resource associated with the first time-frequency resource may be a second CG resource adjacent to the transmission time of the first signal sequence.
  • the terminal uses the pre-configured second CG resource to transmit the DMRS and the PUSCH on adjacent slots 4 to 6.
  • the second CG resource includes time-frequency resources for transmitting DMRS and PUSCH.
  • the PUSCH carries the data to be sent.
  • the access network device After detecting the first signal sequence, the access network device also detects the DMRS in the second CG resource and receives the PUSCH in the neighboring slots4 ⁇ slot6 according to the second CG resource pre-configured to the terminal, and uses the detected DMRS Demodulate the PUSCH to obtain the data carried by the PUSCH.
  • the access network device does not detect the first signal sequence on the first CG resource, the access network device does not need to detect the second CG resource, so only the first signal sequence needs to be detected.
  • the number is small and the detection complexity is low, which can improve the reliability of terminal data reception while saving the detection overhead of the access network equipment.
  • the access network device may send downlink control information (DCI) to the terminal in slot 7, and the DCI is used to indicate whether the access network device successfully receives and demodulates the data sent by the terminal. After receiving the DCI, the terminal stops sending data on the second CG resource.
  • DCI downlink control information
  • the terminal may also send Msg A on one or more random access time-frequency resources associated with the first time-frequency resource.
  • the Msg A carries the data to be sent.
  • the access network device also configures Msg A resources for the terminal.
  • the terminal finishes sending the first signal sequence it can send Msg A to the access network device in the adjacent slot 4 to slot 6, and the Msg A includes the preamble and the PUSCH.
  • the PUSCH carries the data to be sent.
  • the access network device receives Msg A on slot 4 to slot 6, and obtains the data carried by the PUSCH.
  • the access network device can also pre-configure Msg B resources for the terminal. As shown in Figure 8b, the access network device can send Msg B to the terminal in slot 7, and the Msg B is used to indicate whether the access network device successfully receives the data sent by the terminal. After receiving Msg B, the terminal stops sending data.
  • the configuration information may also include indication information.
  • the indication information is used to indicate whether to allow sending Msg A on the random access resource associated with an SS/PBCH different from the first SS/PBCH.
  • the Msg A includes the data to be sent.
  • the first SS/PBCH is the first SS/PBCH associated with frequency resources.
  • the schematic diagram of the application scenario of this embodiment includes a large number of terminals in a factory and other places.
  • FIG. 9 illustrates UE1 to UE3.
  • the access network equipment uses beamforming technology for signal transmission, and different SS/PBCHs can be sent using different beams.
  • UE1 to UE3 are within the beam coverage of SS/PBCH1 (that is, the first SS/PBCH in this embodiment).
  • the access network equipment configures the Msg A resource associated with SS/PBCH1 on slot 4, and the Msg A resource associated with SS/PBCH x on slot 5, and the association is configured on slot 6.
  • Msg A resources of SS/PBCH y, Msg B resources associated with SS/PBCH 1 are configured on slot 7.
  • UE1 ⁇ UE3 can use the Msg A resource associated with SS/PBCH x on slot 5 to send Msg A, and use the Msg associated with SS/PBCH y on slot 6 A resource sends Msg A. That is, UE1 to UE3 preempt the Msg A resources on slot 5 and slot 6 for sending data.
  • the access network device may also detect Msg A on slot 5 and slot 6 according to the above configuration information, and receive the above data. Thus, the reliability of terminal data transmission is improved.
  • the access network device After receiving a DMRS indicating that the terminal has data to be sent, the access network device detects the CG resource or Msg A resource associated with the first signal sequence, and the CG resource Or the data sent by the terminal is received on the Msg A resource without always detecting the CG resource or the Msg A resource, which can improve the reliability of data transmission and reduce the detection overhead of the access network equipment.
  • the embodiment shown in FIG. 7 is described with an example in which the first signal sequence is a DMRS.
  • the first signal sequence may be a UCI sequence.
  • the process is the same as that of the embodiment shown in FIG. 7. The following describes only the differences from the embodiment shown in FIG. 7:
  • the access network device may pre-configure the terminal with the first time-frequency resource for sending the first signal sequence.
  • the first time-frequency resource used to send the first signal sequence may include one or more.
  • the first time-frequency resource may be a time-frequency resource used to send PUCCH.
  • Access network equipment can configure PUCCH resources through RRC signaling, which is usually configured in UE-specific RRC signaling. In this embodiment, it can also be configured in public signaling, such as system information. After the PUCCH resource is configured for the terminal, the access network device performs detection on the configured PUCCH resource.
  • the first signal sequence is UCI.
  • the symbol length should be short, and the first signal sequence itself does not need to carry too much information. Therefore, the format of the above PUCCH format 0 can be selected. Of course, this application does not limit the selected PUCCH format.
  • the PUCCH format 0 sends 1 to 2 information bits, which can occupy one resource block (RB) in the frequency domain and 1 to 2 symbols in the time domain.
  • RB resource block
  • the access network device can also configure the parameters of PUCCH format 0 as shown in Table 2 below through RRC signaling:
  • the access network equipment can also configure the terminal with a cyclic shift offset value m c that is different from the existing one through high-level signaling; or the terminal can pre-store a cyclic shift offset when leaving the factory. Shift value m c .
  • the cyclic shift value of the UCI sequence is the sum of the initial cyclic shift m 0 and the cyclic shift offset value m c .
  • the cyclic shift value of the UCI sequence is used to indicate that the terminal has data to be sent.
  • the access network device may also pre-configure the second CG resource, or Msg A resource, for the terminal.
  • the second CG resource or Msg A resource is used to send data to be sent.
  • the second CG resource or Msg A resource configured by the access network device for each terminal may be different.
  • the terminal When the terminal has data to be sent, it sends the aforementioned UCI sequence to the access network device.
  • the cyclic shift value of the UCI sequence is the sum of the initial cyclic shift m 0 configured by the access network device and the predefined cyclic shift offset value m c . Therefore, after the access network device receives the aforementioned UCI sequence, it can know that the terminal has data to be sent. Then, the terminal sends the data to be sent on the above-mentioned pre-configured second CG resource or Msg A resource.
  • the access network device detects the above-mentioned second CG resource or Msg A resource, and receives the data to be sent.
  • the first signal sequence is the first random access preamble.
  • the method may include the following steps:
  • the access network device sends a broadcast message.
  • the broadcast message includes configuration information of the first time-frequency resource, and the first time-frequency resource is used to send the first signal sequence.
  • the terminal receives the broadcast message.
  • the terminal sends a first random access preamble at the first random access occasion.
  • the access network device detects the first random access preamble at the first random access opportunity.
  • the access network device may perform resource configuration on the terminal.
  • FIG. 11 it is a schematic diagram of random access resource configuration.
  • the resource configuration includes two levels of RO: a first level RO and a second level RO.
  • the first-level RO includes RO1, which corresponds to the first random access preamble set used to indicate the presence of data to be sent in this embodiment.
  • this RO1 can also correspond to the preamble set used by conventional 2-step RACH . It is understandable that one RO corresponds to one preamble set, and it can also be considered that one RO is associated with one preamble set.
  • the preamble in the preamble set is sent on the RO.
  • the preamble set used in conventional 2-step RACH includes 5 preambles 1-1 to 1-5
  • the first random access preamble set includes preamble 2-1 to preamble 2-2. There are two preambles (herein referred to as the first random access preamble).
  • the preamble used in the conventional 2-step RACH is associated with the DMRS corresponding to PO1.
  • one preamble can correspond to one or more DMRS, and multiple preambles can also correspond to one DMRS.
  • PO1 corresponds to DMRS1-1 to DMRS1-4.
  • one PO corresponds to one or more DMRS, and it can also be considered that one PO is associated with one or more DMRS.
  • the one or more DMRS are sent on the PO.
  • preamble 1-1 to preamble 1-3 can be associated with DMRS1-1
  • preamble 1-4 to preamble 1-5 can be associated with DMRS1-2.
  • the access network device associates each first random access preamble in the first random access preamble set with a preamble corresponding to the second-level RO.
  • the second-stage RO includes RO2 and RO3.
  • RO2 corresponds to one or more preambles, for example, RO2 corresponds to preamble 3-1 to preamble 3-4, that is, preamble 3-1 to preamble 3-4 are sent on RO2;
  • RO3 corresponds to one or more preambles, for example, RO3 corresponds to preamble 4-1 to preamble 4-4, that is, preamble 4-1 to preamble 4-4 are sent on RO3.
  • the second level RO (including RO2 and RO3) may be referred to as the second random access opportunity, and the preamble corresponding to RO2 may be referred to as the second random access preamble set.
  • the association relationship between each preamble in the first random access preamble set and the preamble corresponding to the second-level RO is: preamble 2-1 can be associated with one or more preambles corresponding to RO2; preamble 2-2 can be associated One or more preambles corresponding to RO3. That is, the second random access occasion is associated with the first random access preamble, or the second random access preamble set is associated with the first random access preamble.
  • one preamble in RO2 may be associated with one or more DMRS corresponding to PO2, or multiple preambles corresponding to RO2 may be associated with one DMRS corresponding to PO2.
  • PO2 corresponds to a total of eight DMRSs from DMRS2-1 to DMRS2-8.
  • the leading 3-1 in RO2 can be associated with DMRS2-1 corresponding to PO2
  • the leading 3-2 corresponding to RO2 can be associated with DMRS2-2 and DMRS2-3 corresponding to PO2
  • the leading 3-3 and leading 3 corresponding to RO2 -4 can be linked to DMRS2-4 corresponding to PO2, and so on.
  • One preamble corresponding to RO3 may be associated with one or more DMRS corresponding to PO3, or multiple preambles corresponding to RO3 may be associated with one DMRS corresponding to PO3.
  • PO3 corresponds to a total of eight DMRSs from DMRS3-1 to DMRS3-8.
  • preamble 4-1 corresponding to RO3 can be associated with DMRS4-1 corresponding to PO3
  • preamble 4-2 corresponding to RO3 can be associated with DMRS4-2 and DMRS4-3 corresponding to PO3
  • preamble 4-3 and preamble 4 corresponding to RO3 -4 can be linked to DMRS4-4 corresponding to PO3, and so on.
  • the foregoing PO2 and PO3 are collectively referred to as the second uplink data transmission opportunity.
  • the second uplink data transmission opportunity is associated with one second random access preamble in the second random access preamble set.
  • step S302 before the terminal has data to be sent and sends the data to the access network device, the terminal is always in a disconnected state, which can save the power consumption of the terminal.
  • the terminal sends the first random access preamble at the first random access opportunity according to the foregoing resource configuration. That is, the foregoing first signal sequence is specifically the first random access preamble.
  • the first random access preamble is used to indicate that the terminal has data to be sent.
  • the first random access preamble belongs to the first random access preamble set corresponding to the first random access occasion. For example, the terminal sends the preamble 2-1 or the preamble 2-2 in RO1, and the preamble 2-1 or the preamble 2-2 is used to indicate that the terminal has data to be sent.
  • the access network device detects the preamble in the conventional preamble pool at the first random access opportunity, and detects the preamble in the first random access preamble set. Since the number of preambles in the first random access preamble set is small, the detection complexity is low.
  • the terminal sends a second random access preamble at a second random access occasion, where the second random access preamble belongs to a second random access preamble set corresponding to the second random access occasion.
  • the access network device detects the second random access preamble at the second random access occasion.
  • the terminal After the terminal sends the first random access preamble at the first random access opportunity and indicates that there is data to be sent, the terminal then sends the second random access preamble at the second random access opportunity. Specifically, the terminal may determine a second random access preamble in the second random access preamble set according to the configured association relationship between the first random access preamble and RO2. For example, in Figure 11, the terminal sends the preamble 2-1 in RO1, determines the preamble 3-1 to the preamble 3-4 corresponding to the RO2 associated with the preamble 2-1, and sends the preamble 3-1 to the preamble 3-4 in RO2 Any of the predecessors.
  • the terminal sends preamble 2-2 in RO1, it determines preamble 4-1 to preamble 4-4 corresponding to RO3 associated with preamble 2-2, and sends any of preamble 4-1 to preamble 4-4 in RO3.
  • the terminal sends preamble 2-2 in RO1
  • it determines preamble 4-1 to preamble 4-4 corresponding to RO3 associated with preamble 2-2, and sends any of preamble 4-1 to preamble 4-4 in RO3.
  • the access network device After the access network device detects the preamble in the first random access preamble set at the first random access opportunity, it further detects the first random access preamble at the second random access opportunity according to the configured association relationship between the first random access preamble and RO2 2. Random access preamble. However, if the preamble in the first random access preamble set is not detected at the first random access timing, the preamble in the second random access preamble set is not detected. For example, assuming that in step S302, the access network device detects the preamble 2-1 in RO1, according to the above association relationship, the preamble is detected in the RO2 associated with the preamble 2-1, and the preamble 3-1 to the preamble 3-4 are detected. Any of the predecessors.
  • the access network device detects the preamble 2-2 in RO1 in step S302, then according to the above association relationship, the preamble is detected in the RO3 associated with the preamble 2-2, and the preamble 4-1 to the preamble 4- are detected. Any of the 4 predecessors.
  • the terminal sends the PUSCH at the second uplink data transmission opportunity associated with the second random access preamble, where the demodulation reference signal used to demodulate the PUSCH belongs to the demodulation reference signal set corresponding to the second uplink data transmission opportunity.
  • the PUSCH carries the data to be sent.
  • the access network device detects the DMRS used to demodulate the PUSCH, and receives and demodulates the PUSCH.
  • This embodiment adopts the 2-step RACH method. Therefore, when the terminal sends the second random access preamble at the second random access opportunity, it does not need to wait for the feedback of the access network equipment to be associated with the second random access preamble.
  • the PUSCH is sent at the second uplink data transmission opportunity. Specifically, the terminal determines the second uplink data transmission opportunity associated with the second random access preamble according to the sent second random access preamble.
  • the terminal sends a preamble 3-1 in RO2, and the preamble 3-1 is associated with the DMRS2-1 corresponding to PO2, the terminal sends DMRS2-1 and PUSCH in the PO2 associated with the preamble 3-1, where DMRS2- 1 is used to demodulate the PUSCH, and DMRS2-1 belongs to the DMRS set corresponding to PO2.
  • DMRS3-1 belongs to the DMRS set corresponding to PO3.
  • the above PUSCH carries data to be sent.
  • the access network device detects the DMRS at the second uplink data transmission opportunity according to the configured second random access preamble and the second uplink data transmission timing, and according to the detected second random access preamble, and demodulates the received PUSCH. For example, assuming that the access network device detects the preamble 3-1 in RO2, it will associate the preamble 3-1 with the DMRS2-1 corresponding to PO2, and the access network device will detect DMRS2-1 and receive the PUSCH on the PO2 associated with the preamble 3-1. , And use DMRS2-1 to demodulate the PUSCH to obtain the data carried by the PUSCH.
  • the access network device detects the preamble 4-1 in RO3, it is associated with the DMRS3-1 corresponding to PO3 according to the preamble 4-1, and the access network device detects the DMRS3-1 and receives the DMRS3-1 in the PO3 associated with the preamble 4-1.
  • PUSCH and use DMRS3-1 to demodulate the PUSCH to obtain the data carried by the PUSCH.
  • the access network device may send MsgB to the terminal to indicate whether the data carried by the PUSCH is successfully received and demodulated. After receiving the MsgB, the terminal stops sending the above-mentioned data.
  • This embodiment can be applied to scenarios where TA is valid or invalid.
  • the 2-step RACH method on the basis of the conventional preamble detection overhead, the number of preambles that need to be multi-detected is small, and the detection overhead and complexity of the access network equipment is small.
  • Detecting the second random access preamble at the second random access timing, and detecting the DMRS and demodulating the data carried in the PUSCH at the second uplink data transmission timing associated with the second random access preamble can improve the reliability of data transmission.
  • the detection overhead of the access network equipment is reduced.
  • the methods and/or steps implemented by the terminal can also be implemented by components (such as chips or circuits) that can be used in the terminal; the methods and/or steps implemented by the access network device, It can also be implemented by components (such as chips or circuits) that can be used for access network equipment.
  • an embodiment of the present application also provides a data transmission device, which is used to implement the above-mentioned various methods.
  • the data transmission device may be the terminal in the foregoing method embodiment, or a device including the foregoing terminal device, or a component that can be used in the terminal device; or, the data transmission device may be the access network device in the foregoing method embodiment, Either a device containing the above-mentioned access network equipment, or a component that can be used for the access network equipment.
  • the data transmission device includes hardware structures and/or software modules corresponding to various functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of this application.
  • the embodiments of the present application may divide the data transmission device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the data transmission device 600 may be the terminal in the foregoing embodiment.
  • the data transmission device 600 includes: a transceiver unit 61; wherein:
  • the transceiver unit 61 is configured to send a first signal sequence, where the first signal sequence is used to indicate that the device has data to be sent;
  • the transceiving unit 61 is further configured to send the data to be sent on a first transmission resource associated with the first signal sequence, and the first transmission resource includes one or more of the following resources: configured Authorize CG resources and random access resources.
  • the random access resource includes the PRACH time-frequency resource and the physical uplink shared channel PUSCH time-frequency resource.
  • the transceiving unit 61 is further configured to receive a broadcast message.
  • the broadcast message includes configuration information of a first time-frequency resource, and the first time-frequency resource is used to send the first time-frequency resource. Signal sequence.
  • the transceiver unit 61 is further configured to send the first signal sequence on one or more of the first time-frequency resources.
  • the first signal sequence is a demodulation reference signal
  • the first time-frequency resource is a time-frequency resource used for sending the demodulation reference signal in the first CG resource.
  • the first signal sequence is an uplink control information UCI sequence
  • a cyclic shift value of the UCI sequence is used to indicate that the terminal has data to be sent.
  • the transceiver unit 61 is further configured to send a physical uplink shared channel PUSCH on one or more second CG resources associated with the first time-frequency resource, or to communicate with the A random access message A is sent on one or more random access time-frequency resources associated with the first time-frequency resource, and the PUSCH or the random access message A carries the data to be sent.
  • the first signal sequence is specifically a first random access preamble
  • the transceiving unit 61 is configured to send the first random access preamble at a first random access occasion, where the first random access preamble is used to indicate that the terminal has data to be sent, and the first random access preamble is used to indicate that the terminal has data to be sent.
  • a random access preamble belongs to the first random access preamble set corresponding to the first random access occasion;
  • the transceiver unit 61 is further configured to send a second random access preamble at a second random access occasion, where the second random access preamble belongs to the second random access corresponding to the second random access occasion Leading set
  • the transceiver unit 61 is further configured to send a PUSCH at a second uplink data transmission opportunity associated with the second random access preamble, where the demodulation reference signal used to demodulate the PUSCH belongs to the second uplink data A set of demodulation reference signals corresponding to the transmission timing, where the PUSCH carries the data to be sent;
  • the second random access occasion is associated with the first random access preamble, or the second random access preamble set is associated with the first random access preamble.
  • the configuration information further includes indication information for indicating whether to allow random access in an SS/PBCH different from the first synchronization signal/physical broadcast channel block SS/PBCH.
  • the data to be sent is sent on the incoming resource, and the first SS/PBCH is the SS/PBCH associated with the first time-frequency resource.
  • transceiver unit 61 For the specific implementation of the transceiver unit 61, reference may be made to the relevant description of the terminal in the embodiments shown in FIG. 6, FIG. 7, and FIG. 10.
  • the data transmission device when there is data to be sent, the data transmission device first sends a first signal sequence, indicating that the data transmission device has data to be sent, and then communicates with the first signal. On the first transmission resource associated with the sequence, the data to be sent is sent to the access network device, so that the access network device does not need to always detect the first transmission resource, which can improve the reliability of data transmission of the data transmission device. Reduce the detection overhead of access network equipment.
  • FIG. 13 another schematic structural diagram of a data transmission device 700 provided by an embodiment of this application.
  • the data transmission apparatus 700 may be the access network device in the foregoing embodiment.
  • the data transmission device 700 includes: a transceiver unit 71; wherein:
  • the transceiver unit 71 is configured to receive a first signal sequence, where the first signal sequence is used to indicate that the terminal has data to be sent;
  • the transceiving unit 71 is further configured to receive the data on a first transmission resource associated with the first signal sequence, where the first transmission resource includes one or more of the following resources: configured authorized CG resources , Random access resources.
  • the random access resource includes the PRACH time-frequency resource and the physical uplink shared channel PUSCH time-frequency resource.
  • the transceiving unit 71 is further configured to send a broadcast message, the broadcast message including the configuration information of a first time-frequency resource, and the first time-frequency resource is used by the terminal to send all the information.
  • the first signal sequence is further configured to send a broadcast message, the broadcast message including the configuration information of a first time-frequency resource, and the first time-frequency resource is used by the terminal to send all the information.
  • the transceiver unit 71 is further configured to receive the first signal sequence on one or more of the first time-frequency resources.
  • the first signal sequence is a demodulation reference signal
  • the first time-frequency resource is a time-frequency resource used for sending the demodulation reference signal in the first CG resource.
  • the first signal sequence is an uplink control information UCI sequence
  • a cyclic shift value of the UCI sequence is used to indicate that the terminal has data to be sent.
  • the transceiver unit 71 is further configured to receive the physical uplink shared channel PUSCH on one or more second CG resources associated with the first time-frequency resource, or to communicate with the A random access message A is received on one or more random access time-frequency resources associated with the first time-frequency resource, and the PUSCH or the random access message A carries the data.
  • the first signal sequence is specifically a first random access preamble
  • the transceiving unit 71 is further configured to receive the first random access preamble at a first random access opportunity, where the first random access preamble is used to indicate that the terminal has data to be sent, and The first random access preamble belongs to the first random access preamble set corresponding to the first random access occasion;
  • the transceiving unit 71 is further configured to receive a second random access preamble at a second random access occasion, where the second random access preamble belongs to the second random access corresponding to the second random access occasion Leading set
  • the transceiving unit 71 is further configured to receive the PUSCH at a second uplink data transmission opportunity associated with the second random access preamble, where the demodulation reference signal used to demodulate the PUSCH belongs to the second uplink data A set of demodulation reference signals corresponding to the transmission timing, where the PUSCH carries the data to be sent;
  • the second random access occasion is associated with the first random access preamble, or the second random access preamble set is associated with the first random access preamble.
  • the configuration information further includes indication information for indicating whether to allow random access in an SS/PBCH different from the first synchronization signal/physical broadcast channel block SS/PBCH.
  • the data to be sent is sent on the incoming resource, and the first SS/PBCH is the SS/PBCH associated with the first time-frequency resource.
  • transceiver unit 71 For the specific implementation of the transceiver unit 71, reference may be made to related descriptions of the access network equipment in the embodiments shown in FIG. 6, FIG. 7, and FIG. 10.
  • the data transmission device detects a first transmission resource associated with the first signal sequence after receiving a first signal sequence indicating that the terminal has data to be sent.
  • the data sent by the terminal is received on the transmission resource without always detecting the first transmission resource, which can improve the reliability of data transmission of the terminal while reducing the detection overhead of the data transmission device.
  • Figure 14 shows a simplified structural diagram of a terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 14. In actual end products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the receiving unit and the transmitting unit (also collectively referred to as the transceiver unit) of the terminal, and the processor with the processing function can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 81 and a processing unit 82.
  • the transceiving unit 81 may also be called a receiving/transmitting (transmitter) device, a receiving/transmitting machine, a receiving/transmitting circuit, and the like.
  • the processing unit 82 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the transceiver unit 81 is used to implement the function of the transceiver unit 61 in the embodiment shown in FIG. 12.
  • the transceiver unit 81 is configured to perform the functions performed by the terminal in steps S101 and S102 of the embodiment shown in FIG. 6.
  • the transceiver unit 81 is configured to perform the functions performed by the terminal in steps S201 to S203 of the embodiment shown in FIG. 7.
  • the transceiver unit 81 is configured to perform the functions performed by the terminal in steps S301 to S304 of the embodiment shown in FIG. 10.
  • FIG 15 shows a simplified schematic diagram of the structure of an access network device.
  • the access network equipment includes a radio frequency signal transceiving and conversion part and a 92 part, and the radio frequency signal transceiving and conversion part includes a transceiving unit 91 part.
  • the radio frequency signal transceiver and conversion part is mainly used for the transceiver and the conversion of radio frequency signals and baseband signals; the 92 part is mainly used for baseband processing and control of access network equipment.
  • the transceiving unit 91 may also be called a receiving/transmitting (transmitter) device, a receiving/transmitting machine, a receiving/transmitting circuit, and the like.
  • Part 92 is usually the control center of the access network equipment, and can usually be referred to as a processing unit, which is used to control the source access network equipment to execute the steps performed by the access network equipment in FIG. 3 or FIG. 4 above.
  • the transceiving unit 91 can be used to implement the functions of the transceiving unit 71 in the embodiment shown in FIG. 13.
  • Part 92 can include one or more single boards.
  • Each single board can include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and Control of network equipment. If there are multiple boards, each board can be interconnected to increase processing capacity.
  • multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiver unit 91 is configured to perform the functions performed by the access network device in steps S101 and S102 of the embodiment shown in FIG. 6.
  • the transceiver unit 91 is configured to perform the functions performed by the access network device in steps S201 to S203 of the embodiment shown in FIG. 7.
  • the transceiver unit 91 is configured to perform the functions performed by the access network device in steps S301 to S304 of the embodiment shown in FIG. 10.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program or instruction, and when the computer program or instruction is executed, the method in the above-mentioned embodiment is implemented.
  • the embodiments of the present application also provide a computer program product containing instructions, which when the instructions run on a computer, cause the computer to execute the method in the above-mentioned embodiments.
  • An embodiment of the present application also provides a data transmission system, including the above-mentioned data transmission device.
  • one or more of the above units or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built in a system on chip (system on chip, SoC) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • the processor's internal processing is used to execute software instructions for calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate arrays (FPGA) and programmable logic devices (programmable logic devices). device, PLD), or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate arrays
  • programmable logic devices programmable logic devices
  • device, PLD programmable logic circuit that implements dedicated logic operations.
  • the hardware can be a CPU, a microprocessor, a digital signal processing (digital signal processing, DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to execute the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to execute the above method flow.
  • an embodiment of the present application further provides a chip system, including: at least one processor and an interface, the at least one processor is coupled with the memory through the interface, and when the at least one processor runs a computer program or instruction in the memory At this time, the chip system is caused to execute the method in any of the foregoing method embodiments.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which are not specifically limited in the embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect.
  • the words “first”, “second” and the like do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or include one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法及装置。终端发送第一信号序列,该第一信号序列用于指示终端存在待发送的数据;并且在与该第一信号序列关联的第一传输资源上,发送待发送的数据。接入网设备接收该第一信号序列,并接收终端发送的数据。该第一传输资源包括以下一种或多种资源:配置的授权资源、随机接入资源。采用本申请的方案,接入网设备在接收到指示终端存在待发送的数据的第一信号序列后,检测与第一信号序列关联的第一传输资源,在该第一传输资源上接收终端发送的数据,而无需一直检测该第一传输资源,可以在提高数据传输的可靠性的同时,降低接入网设备的检测开销。

Description

数据传输方法及装置
本申请要求于2020年05月28日提交中国国家知识产权局、申请号为202010470056.9、发明名称为“数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
如图1所示的海量机器类通信(massive machine-type communications,mMTC)大连接场景示意图,随着物联网(internet of things,IoT)技术的发展,在家庭、工业生产、公共场所等各应用场景中,终端逐渐呈现出大数量、密集化、多形态等特征。例如,一种工业自动化场景中,一个厂房中有监控设备(monitoring device)、生产机器(producing machine)和数量非常多的传感器(sensor),也可能同时存在工作人员使用的手机和穿戴式设备等终端。若所有或大部分终端都长期处于连接态,由接入网设备调度传输,则接入网设备信令开销较大,并且造成信令拥塞的可能性较大。若接入网设备给终端配置半静态的资源,则终端可处于无线资源控制(radio resource control,RRC)非激活态(inactive status)或空闲态(idle status),可以在该配置的资源上传输数据或不传输数据,而接入网设备始终在该配置的资源上进行检测。当终端数量较多时,接入网设备检测复杂度也相应地较高。
物联网场景中,有一种业务形态较为特殊的终端,即安全探测类终端,例如烟感报警、温湿度报警等,本申请中称其为警报检测终端或报警终端。此类终端数量较多,通常由电池供电且充电/换电池成本较高,而且长期无数据传输。因此,合理的方式是使其长时间处于非连接态。然而,当探测到安全问题、有数据需要传输时,往往是紧急信息,需要警报检测终端以较短的时延和较高的可靠性将数据包发送至网络侧。接入网设备为了及时可靠地接收到终端发送的上述数据,需要以较高的频率进行检测,这会导致较高的开销。
因此,如何传输终端的数据,使得在提高终端数据传输的可靠性的同时,尽可能地降低接入网设备的检测开销,是本申请需要解决的问题。
发明内容
本申请提供一种数据传输方法及装置,以在提高数据传输的可靠性的同时,降低接入网设备的检测开销。
第一方面,提供了一种数据传输方法,所述方法包括:发送第一信号序列,所述第一信号序列用于指示终端存在待发送的数据;以及在与所述第一信号序列关联的第一传输资源上,发送所述待发送的数据,所述第一传输资源包括以下一种或多种资源:配置的授权(configured grant,CG)资源、随机接入资源。在该方面中,接入网设备在接收到指示终端存在待发送的数据的第一信号序列后,检测与第一信号序列关联的第一传输资源,在该第一传输资源上接收终端发送的数据,而无需一直检测该第一传输资源,可以在提高数据 传输的可靠性的同时,降低接入网设备的检测开销。
其中,与第一信号序列关联的第一传输资源可以是与第一信号序列传输时间上邻近的第一传输资源,也可以是与第一信号序列具有映射关系的第一传输资源。
在一种可能的实现中,所述随机接入资源包括物理随机接入信道(physical random access channel,PRACH)时频资源和物理上行共享信道(physical uplink shared channel,PUSCH)时频资源。
在又一种可能的实现中,所述方法还包括:接收广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于发送所述第一信号序列。在该实现中,接入网设备预先给终端配置用于发送第一信号序列的第一时频资源,可以使终端在存在待发送的数据时,无须进入连接态而及时地告知接入网设备其存在待发送的数据;该第一信号序列的数量较少,接入网设备的检测复杂度较低。
在又一种可能的实现中,所述发送第一信号序列,包括:在一个或多个所述第一时频资源上发送所述第一信号序列。
可以理解的是,针对相同的数据/业务类型,多个终端也可以在一个或多个第一时频资源上发送第一信号序列,增强了第一信号序列的功率,使接入网设备可以准确地检测到第一信号序列。针对不同的数据/业务类型,多个终端在不同的第一时频资源上发送第一信号序列,以作区分。
在又一种可能的实现中,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于发送所述解调参考信号的时频资源。在该实现中,该用于发送DMRS的第一CG资源可以是预配置的。
在又一种可能的实现中,所述第一信号序列为上行控制信息(uplink control information,UCI)序列,所述UCI序列的循环移位值用于指示所述终端存在待发送的数据。在该实现中,终端和接入网设备根据UCI序列的循环移位值,可以准确地指示和获知终端存在待发送的数据。
在又一种可能的实现中,所述在与所述第一信号序列关联的第一传输资源上,发送所述待发送的数据,包括:在与所述第一时频资源关联的一个或多个第二CG资源上发送PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上发送随机接入消息A,所述PUSCH或所述随机接入消息A携带所述待发送的数据。在该实现中,接入网设备在接收到指示终端存在待发送的数据的DMRS或UCI序列后,检测与第一信号序列关联的CG资源或Msg A资源,在该CG资源或Msg A资源上接收终端发送的数据,而无需一直检测该CG资源或Msg A资源,可以在提高数据传输的可靠性的同时,降低接入网设备的检测开销。
在又一种可能的实现中,所述第一信号序列具体为第一随机接入前导,所述发送第一信号序列,包括:在第一随机接入时机发送所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待发送的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;所述在与所述第一信号序列关联的第一传输资源上,发送所述待发送的数据,包括:在第二随机接入时机发送第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;以及在 所述第二随机接入前导关联的第二上行数据传输时机发送PUSCH,其中,用于解调所述PUSCH的解调参考信号(demodulation reference signal,DMRS)属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。在该实现中,接入网设备在第一随机接入时机接收到指示终端存在待发送的数据的第一随机接入前导后,根据随机接入资源的配置,在第二随机接入时机检测第二随机接入前导,并在第二随机接入前导关联的第二上行数据传输时机检测DMRS和解调PUSCH中携带的数据,可以在提高数据传输的可靠性的同时,降低接入网设备的检测开销。
在又一种可能的实现中,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一同步信号/物理广播信道块(synchronous signal/physical broadcast channel,SS/PBCH)不同的SS/PBCH关联的随机接入资源上发送所述待发送的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。在该实现中,当终端存在待发送的数据,且接入网设备向终端发送了上述指示信息,则终端可以抢占与第一SS/PBCH不同的SS/PBCH所关联的随机接入资源来发送待发送的数据,以可靠地发送待发送的数据。
第二方面,提供了一种数据传输方法,所述方法包括:接收第一信号序列,所述第一信号序列用于指示终端存在待发送的数据;以及在与所述第一信号序列关联的第一传输资源上,接收所述数据,所述第一传输资源包括以下一种或多种资源:CG资源、随机接入资源。
在一种可能的实现中,所述随机接入资源包括PRACH时频资源和PUSCH时频资源。
在又一种可能的实现中,所述方法还包括:发送广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于所述终端发送所述第一信号序列。
在又一种可能的实现中,所述接收第一信号序列,包括:在一个或多个所述第一时频资源上接收所述第一信号序列。
在又一种可能的实现中,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于发送所述解调参考信号的时频资源。
在又一种可能的实现中,所述第一信号序列为UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待发送的数据。
在又一种可能的实现中,在与所述第一信号序列关联的第一传输资源上,接收所述数据,包括:在与所述第一时频资源关联的一个或多个第二CG资源上接收PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上接收随机接入消息A,所述PUSCH或所述随机接入消息A携带所述数据。
在又一种可能的实现中,所述第一信号序列具体为第一随机接入前导,所述接收第一信号序列,包括:在第一随机接入时机接收所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待发送的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;所述在与所述第一信号序列关联的第一传输资源上,接收所述数据,包括:在第二随机接入时机接收第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;以及在所述第二 随机接入前导关联的第二上行数据传输时机接收PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。
在又一种可能的实现中,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一SS/PBCH不同的SS/PBCH关联的随机接入资源上发送所述待发送的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
第三方面,提供了一种数据传输装置用于执行上述第一方面或第一方面的任一可能的实现中的方法。该数据传输装置可以为上述第一方面或第一方面的任一可能的实现中的终端,或者应用于终端中的模块,例如芯片或芯片系统。其中,该数据传输装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第三方面,在一种可能的实现中,数据传输装置包括:收发单元;所述收发单元,用于发送第一信号序列,所述第一信号序列用于指示所述装置存在待发送的数据;以及所述收发单元,还用于在与所述第一信号序列关联的第一传输资源上,发送所述待发送的数据,所述第一传输资源包括以下一种或多种资源:CG资源、随机接入资源。
可选地,所述随机接入资源包括PRACH时频资源和PUSCH时频资源。
可选地,所述收发单元,还用于接收广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于发送所述第一信号序列。
可选地,所述收发单元,还用于在一个或多个所述第一时频资源上发送所述第一信号序列。
可选地,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于发送所述解调参考信号的时频资源。
可选地,所述第一信号序列为UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待发送的数据。
可选地,所述收发单元,还用于在与所述第一时频资源关联的一个或多个第二CG资源上发送PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上发送随机接入消息A,所述PUSCH或所述随机接入消息A携带所述待发送的数据。
可选地,所述第一信号序列具体为第一随机接入前导;所述收发单元,用于在第一随机接入时机发送所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待发送的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;所述收发单元,还用于在第二随机接入时机发送第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;以及所述收发单元,还用于在所述第二随机接入前导关联的第二上行数据传输时机发送PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关 联。
可选地,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一SS/PBCH不同的SS/PBCH关联的随机接入资源上发送所述待发送的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
结合上述第三方面,在又一种可能的实现中,数据传输装置包括:输入接口、输出接口和处理电路;所述输出接口,用于输出第一信号序列,所述第一信号序列用于指示所述装置存在待输出的数据;以及所述输出接口,还用于在与所述第一信号序列关联的第一传输资源上,输出所述待输出的数据,所述第一传输资源包括以下一种或多种资源:CG资源、随机接入资源。
可选地,所述随机接入资源包括PRACH时频资源和PUSCH时频资源。
可选地,所述输入接口,还用于输入广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于输出所述第一信号序列。
可选地,所述输出接口,还用于在一个或多个所述第一时频资源上输出所述第一信号序列。
可选地,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于输出所述解调参考信号的时频资源。
可选地,所述第一信号序列为UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待输出的数据。
可选地,所述输出接口,还用于在与所述第一时频资源关联的一个或多个第二CG资源上输出PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上输出随机接入消息A,所述PUSCH或所述随机接入消息A携带所述待输出的数据。
可选地,所述第一信号序列具体为第一随机接入前导;所述输出接口,用于在第一随机接入时机输出所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待输出的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;所述输出接口,还用于在第二随机接入时机输出第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;以及所述输出接口,还用于在所述第二随机接入前导关联的第二上行数据传输时机输出PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。
可选地,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一SS/PBCH不同的SS/PBCH关联的随机接入资源上输出所述待输出的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
示例性地,该数据传输装置还包括存储器,该存储器与该至少一个处理器耦合,该至少一个处理器用于运行存储器中存储的程序指令,以使得所述数据传输装置执行上述第一方面或第一方面的任一可能的实现中的方法。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该至少一个处 理器耦合,该至少一个处理器可以调用并执行该存储器中存储的程序指令,以使得所述数据传输装置执行上述第一方面或第一方面的任一可能的实现中的方法。
示例性地,该数据传输装置还包括通信接口,该通信接口用于该数据传输装置与其它设备进行通信。当该数据传输装置为终端时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该数据传输装置包括:至少一个处理器和通信接口,用于执行上述第一方面或第一方面的任一可能的实现中的方法,具体地包括:该至少一个处理器利用该通信接口与外部通信;该至少一个处理器用于运行计算机程序,使得该数据传输装置执行上述第一方面或第一方面的任一可能的实现中的方法。可以理解,该外部可以是处理器以外的对象,或者是该数据传输装置以外的对象。
在另一种可能的设计中,该数据传输装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
其中,第三方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第四方面,提供了一种数据传输装置用于执行上述第二方面或第二方面的任一可能的实现中的方法。该数据传输装置可以为上述第二方面或第二方面的任一可能的实现中的接入网设备,或者应用于接入网设备中的模块,例如芯片或芯片系统。其中,该数据传输装置包括实现上述方法相应的模块、单元、或means,该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第四方面,在一种可能的实现中,数据传输装置包括:收发单元;所述收发单元,用于接收第一信号序列,所述第一信号序列用于指示终端存在待发送的数据;以及所述收发单元,还用于在与所述第一信号序列关联的第一传输资源上,接收所述数据,所述第一传输资源包括以下一种或多种资源:CG资源、随机接入资源。
可选地,所述随机接入资源包括PRACH时频资源和PUSCH时频资源。
可选地,所述收发单元,还用于发送广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于所述终端发送所述第一信号序列。
可选地,所述收发单元,还用于在一个或多个所述第一时频资源上接收所述第一信号序列。
可选地,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于发送所述解调参考信号的时频资源。
可选地,所述第一信号序列为UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待发送的数据。
可选地,所述收发单元,还用于在与所述第一时频资源关联的一个或多个第二CG资源上接收PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上接收随机接入消息A,所述PUSCH或所述随机接入消息A携带所述数据。
可选地,所述第一信号序列具体为第一随机接入前导;所述收发单元,还用于在第一 随机接入时机接收所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待发送的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;所述收发单元,还用于在第二随机接入时机接收第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;以及所述收发单元,还用于在所述第二随机接入前导关联的第二上行数据传输时机接收PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合;其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。
可选地,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一SS/PBCH不同的SS/PBCH关联的随机接入资源上发送所述待发送的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
结合上述第四方面,在又一种可能的实现中,数据传输装置包括:输入接口、输出接口和处理电路;所述输入接口,用于输入第一信号序列,所述第一信号序列用于指示终端存在待输出的数据;以及所述输入接口,还用于在与所述第一信号序列关联的第一传输资源上,输入所述数据,所述第一传输资源包括以下一种或多种资源:CG资源、随机接入资源。
可选地,所述随机接入资源包括PRACH时频资源和PUSCH时频资源。
可选地,所述输出接口,还用于输出广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于所述终端输出所述第一信号序列。
可选地,所述输入接口,还用于在一个或多个所述第一时频资源上输入所述第一信号序列。
可选地,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于输出所述解调参考信号的时频资源。
可选地,所述第一信号序列为UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待输出的数据。
可选地,所述输入接口,还用于在与所述第一时频资源关联的一个或多个第二CG资源上输入PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上输入随机接入消息A,所述PUSCH或所述随机接入消息A携带所述数据。
可选地,所述第一信号序列具体为第一随机接入前导;所述输入接口,还用于在第一随机接入时机输入所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待输出的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;所述输入接口,还用于在第二随机接入时机输入第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;以及所述输入接口,还用于在所述第二随机接入前导关联的第二上行数据传输时机输入PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。
可选地,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一SS/PBCH不同的SS/PBCH关联的随机接入资源上输出所述待输出的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
示例性地,该数据传输装置还包括存储器,该存储器与该至少一个处理器耦合,该至少一个处理器用于运行存储器中存储的程序指令,以使得所述数据传输装置执行上述第二方面或第二方面的任一可能的实现中的方法。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该至少一个处理器耦合,该至少一个处理器可以调用并执行该存储器中存储的程序指令,以使得所述数据传输装置执行上述第二方面或第二方面的任一可能的实现中的方法。
示例性地,该数据传输装置还包括通信接口,该通信接口用于该数据传输装置与其它设备进行通信。当该数据传输装置为接入网设备时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该数据传输装置包括:至少一个处理器和通信接口,用于执行上述第二方面或第二方面的任一可能的实现中的方法,具体地包括:该至少一个处理器利用该通信接口与外部通信;该至少一个处理器用于运行计算机程序,使得该数据传输装置执行上述第二方面或第二方面的任一可能的实现中的方法。可以理解,该外部可以是处理器以外的对象,或者是该数据传输装置以外的对象。
在另一种可能的设计中,该数据传输装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
其中,第四方面中任一种设计方式所带来的技术效果可参见上述第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第五方面,提供了一种数据传输系统,包括上述第三方面或第三方面的任一种实现中的数据传输装置、以及第四方面或第四方面的任一种实现中的数据传输装置。
第六方面,提供了一种计算机可读存储介质,存储有计算机程序,当其在计算机上运行时,上述各方面或各方面的任一种实现所述的方法被执行。
第七方面,提供了一种计算机程序产品,当其在计算机上运行时,使得上述各方面或各方面的任一种实现所述的方法被执行。
第八方面,提供了一种计算机程序,当其在计算机上运行时,使得上述各方面或各方面的任一种实现所述的方法被执行。
附图说明
图1为mMTC大连接场景示意图;
图2为RRC非激活态场景下利用配置的授权(configured grant,CG)资源传输数据的流程示意图;
图3为RRC非激活态场景下利用2步物理随机接入信道(2-step RACH)方案传输数据的流程示意图;
图4为本申请涉及的一种数据传输系统的示意图;
图5为本申请实施例提供的数据传输装置的结构示意图;
图6为本申请实施例提供的数据传输方法的流程示意图;
图7为本申请实施例提供的数据传输方法的又一流程示意图;
图8a为资源配置示意图;
图8b为又一资源配置示意图;
图9为图7所示数据传输方法的应用场景示意图;
图10为本申请实施例提供的数据传输方法的又一流程示意图;
图11为又一资源配置示意图;
图12为本申请实施例提供的数据传输装置的又一结构示意图;
图13为本申请实施例提供的数据传输装置的又一结构示意图;
图14为本申请实施例提供的简化的终端的结构示意图;
图15为本申请实施例提供的简化的接入网设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请中,终端以较低时延传输数据,可以理解为终端不进入连接态即可向接入网设备发送数据。终端处于非连接态,是指终端处于RRC非激活态、空闲态、节能模式(power saving mode,PSM)、或者非连续接收(discontinous receiving,DRX)的非激活态等。
首先简要描述一下本申请涉及的两种传输资源:
CG资源
如图2所示,为RRC非激活态场景下利用CG资源传输数据的流程示意图,终端使用接入网设备预配置的上行CG传输资源,通过上行数据信道,例如物理上行共享信道(physical uplink shared channel,PUSCH)发送上行小包(uplink small data)。可选地,终端还通过该上行数据信道发送终端的标识。接入网设备可以通过无线资源控制(radio resource control,RRC)信令预先给其服务范围内的每个终端配置CG资源。该预配置的CG资源主要包括用于发送PUSCH的资源和用于发送DMRS的资源。上述终端使用的CG资源可以是多终端共享的,也可以是一个终端专用的。
随机接入资源
本申请中,随机接入资源主要指2-step RACH中用于发送随机接入消息A(Msg A)的资源。
2-step RACH包括终端向接入网设备发送Msg A、以及接入网设备向终端发送随机接入消息B(Msg B)两步。其中:
终端发送Msg A,具体是指终端在物理随机接入信道时机(physical random access channel occasion,RO)上发送随机接入前导(preamble),并在物理上行共享信道时机(physical uplink shared channel occasion,PO)在对应的PUSCH上向接入网设备发送上行数据。可选地,终端还可以在PO向接入网设备发送终端的标识。随机接入前导,又称为前导码,是一个序列,可用于接入网设备确定终端的时间提前量(time advance,TA)。
接入网设备发送Msg B,具体是指接入网设备发送随机接入响应(random access  response,RAR)。RAR中可以包括Msg A的反馈信息,告知终端是否成功收到了上述上行数据。
其中,PRACH资源、preamble资源、PUSCH资源(包括PUSCH中的DMRS资源)、以及接收RAR的资源,均为接入网设备在终端处于RRC连接态时配置的,和/或接入网设备在广播的系统消息中给终端配置的。
其中,终端的不同TA值是由终端到接入网设备的距离不同而产生的。终端的TA值通常由接入网设备通过preamble的检测来确定。例如,接入网设备接收到终端发送的preamble,接入网设备借助preamble的检测、解调情况,确定终端发送preamble时的TA值,并根据TA解调MsgA中的PUSCH,或在后续的随机接入步骤中将此TA值告知终端,使终端调整上行同步再发送数据。
上述CG方式适用于终端TA有效时;当TA无效时,若终端仅发送PUSCH,接入网设备可能无法正确解调该PUSCH,因此可以采用2-step RACH方式发送上行数据。
物理上行控制信道(physical uplink control channel,PUCCH)/UCI格式
新无线(new radio,NR)中支持5种格式(format)的PUCCH,根据PUCCH信道占用时域符号长度,分为:
1)短PUCCH:PUCCH信道占用1-2个符号,包括PUCCH format 0,PUCCH format 2;
2)长PUCCH:PUCCH信道占用4-14个符号,包括PUCCH format 1,PUCCH format 3,PUCCH format 4。
5种PUCCH格式占用符号数,携带的信息比特数,如下表1所示:
表1 PUCCH格式
Figure PCTCN2021096766-appb-000001
在一个时隙内,可以发1个或2个PUCCH,发2个PUCCH时则至少有一个为PUCCH format 0或者PUCCH format 2。
终端长期无数据上传,因此合理的状态是使其长时间处于非连接态。然而,当探测到告警数据时,往往是紧急信息,需要终端以较短的时延和较高可靠性将数据包发送至网络侧。该告警数据包括终端的位置信息、警情等,通常为小包数据。但为了保证低时延需求,若使用CG资源传输数据,预留的CG资源需要在时域上密集排列,接入网设备需要检测每一个预配置的时/频/码资源,造成接入网设备的检测开销较大。若使用2-step RACH方案中的消息A传输上述数据,且使用基于竞争的随机接入(contention-based random access,CBRA)资源时,当较多的终端同时发送消息A时,则数据可靠性较低;若使用基于非竞争的随机接入(contention-free random access,CFRA)资源,接入网设备在每个为终端预留的时/频/码资源上都要检测序列/数据,接入网设备的检测开销也较大。
本申请提供一种数据传输方案,接入网设备在接收到指示终端存在待发送的数据的第一信号序列后,检测与第一信号序列关联的第一传输资源,在该第一传输资源上接收终端发送的数据,而无需一直检测该第一传输资源,可以在提高数据传输的可靠性的同时,降低接入网设备的检测开销。
本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、增强的LTE(enhanced long term evolution,eLTE)、第五代(5th generation,5G)系统或NR等,本申请中涉及的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of things,IoT)、车联网通信系统或者其他通信系统。
图4给出了本申请涉及的一种数据传输系统的示意图。该数据传输系统可以包括至少一个接入网设备100(图中仅示出1个)以及与接入网设备100连接的一个或多个终端200。
可选的,本申请实施例中的终端可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理、用户装置、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN中的终端或者未来车联网中的终端等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端、增强现实终端、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端还可以是IoT系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端)、接收接入网设备的控制信息与下行数据,并发送电磁波,向接入网设备传输上行数据。
可选的,本申请实施例中的接入网设备可以是用于与终端通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限于:演进型节点B(evolved node B,eNB),基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者传输接收点(transmission reception point,TRP)等。该接入网设备还可以为5G系统中的gNB或TRP或TP,或者5G系统中的基站的一个或一组(包括多个天线面板)天线面板。此外,该接入网设备还可以为构成gNB或TP的网络节点,如BBU,或分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。此外,gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层(physical layer,PHY)的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。
可选的,本申请实施例中的接入网设备和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。接入网设备和终端之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对接入网设备和终端之间所使用的频谱资源不做限定。
可选的,本申请实施例中的终端或者接入网设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对终端或者接入网设备的应用场景不做限定。
可选的,在本申请实施例中,终端或接入网设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方 法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或接入网设备,或者,是终端或接入网设备中能够调用程序并执行程序的功能模块。
换言之,本申请实施例中的终端或者接入网设备的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的终端或者接入网设备的相关功能可以通过图5中的数据传输装置500来实现。图5所示为本申请实施例提供的数据传输装置500的结构示意图。该数据传输装置500包括一个或多个处理器501、507,通信线路502,以及至少一个通信接口(图5中仅是示例性的以包括通信接口504为例进行说明)。可选地,还可以包括存储器503。
处理器501可以是一个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路502可包括一通路,用于连接不同组件之间。
通信接口504,可以是收发模块,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。例如,该收发模块可以是收发器、收发机一类的装置。可选地,该通信接口504也可以是位于处理器501内的收发电路,用以实现处理器的信号输入和信号输出。
存储器503可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路502与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器503用于存储执行本申请方案的计算机执行指令,并由处理器501、507来控制执行。处理器501、507用于执行存储器503中存储的计算机执行指令,从而实现本申请实施例中提供的数据传输方法。
或者,本申请实施例中,也可以是处理器501、507执行本申请下述实施例提供的数据传输方法中的处理相关的功能,通信接口504负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器501、507可以分别包括一个或多个CPU,例如图5中,处理器501包括CPU0和CPU1,处理器507包括CPU0和CPU1。
在具体实现中,作为一种实施例,数据传输装置500可以包括多个处理器,例如图5中的处理器501和处理器507。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,数据传输装置500还可以包括输出设备505和输入设备506。输出设备505和处理器501通信,可以以多种方式来显示信息。
上述的数据传输装置500可以是一个通用装置或者是一个专用装置。例如数据传输装置500可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端、嵌入式设备或具有图5中类似结构的设备。本申请实施例不限定数据传输装置500的类型。
下面将结合图1至图11对本申请实施例提供的数据传输方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不做具体限定。
如图6所示,为本申请实施例提供的数据传输方法的流程示意图,示例性地,该方法可以包括以下步骤:
S101、终端发送第一信号序列。其中,该第一信号序列用于指示终端存在待发送的数据。
相应地,接入网设备检测该第一信号序列。
在本实施例中,终端处于非连接态,以节省功耗。终端处于非连接态,是指终端处于RRC非激活态、空闲态、PSM、或者DRX的非激活态等。
当终端存在待发送的数据,例如,终端检测到警报,终端在接入网设备预先配置的时频资源上发送第一信号序列。该第一信号序列用于指示终端存在待发送的数据。该待发送的数据可以是警报数据,例如烟感报警、温湿度报警数据等。该终端可以是安全探测类终端。进一步地,可以根据警报数据的类型的不同而设置多个第一信号序列。当接入网设备配置了多个第一信号序列时,接入网设备相应地需要检测上述多个第一信号序列。
接入网设备在上述第一信号序列的时频资源上检测第一信号序列,以及时检测到终端是否存在待发送的数据。该第一信号序列的数量较少,接入网设备的检测复杂度较低。
S102、终端在与第一信号序列关联的第一传输资源上,发送待发送的数据。
相应地,接入网设备接收该数据。
终端发送完第一信号序列后,在与第一信号序列关联的第一传输资源上,发送待发送的数据。该第一传输资源可以是接入网设备预先配置的资源。其中,与第一信号序列关联的第一传输资源可以是指与第一信号序列传输时间邻近的传输资源,或者是与用于发送第一信号序列的时频资源邻近的时频资源;与第一信号序列关联的第一传输资源也可以是指与第一信号序列具有映射关系的时频资源。
该第一传输资源可以是CG资源中的PUSCH资源,该PUSCH携带上述待发送的数据。
该第一传输资源也可以是随机接入资源。该随机接入资源包括PRACH时频资源和PUSCH时频资源。本实施例可以采用2-step RACH方式,在Msg A中包括前导和PUSCH。该PRACH时频资源用于发送Msg A中的前导,该PUSCH时频资源用于发送PUSCH。该 PUSCH携带上述待发送的数据。
终端采用预配置的第一传输资源发送待发送的数据,无须进入连接态,可以继续保持低功耗状态。
接入网设备在未检测到第一信号序列之前,无须检测该第一传输资源,以节省接入网设备的检测开销。而在接入网设备检测并接收到第一信号序列后,根据配置信息,在第一传输资源上接收终端发送的数据。从而,可以可靠、及时地接收到终端发送的数据。
根据本申请实施例提供的一种数据传输方法,接入网设备在接收到指示终端存在待发送的数据的第一信号序列后,检测与第一信号序列关联的第一传输资源,在该第一传输资源上接收终端发送的数据,而无需一直检测该第一传输资源,可以在提高数据传输的可靠性的同时,降低接入网设备的检测开销。
如图7所示,为本申请实施例提供的数据传输方法的又一流程示意图。在本实施例中,第一信号序列为DMRS。示例性地,该方法可以包括以下步骤:
S201、接入网设备发送广播消息。该广播消息包括第一时频资源的配置信息,该第一时频资源用于发送第一信号序列。
相应地,终端接收该广播消息。
在一种可能的实现中,在终端处于RRC连接态时,接入网设备可以预先通过RRC信令给终端配置用于发送第一信号序列的第一时频资源。用于发送第一信号序列的第一时频资源可以包括一个或多个。该第一时频资源可以为CG资源中用于发送DMRS的时频资源。接入网设备通过RRC专用信令给终端发送上述第一时频资源的配置信息,该第一时频资源是该终端专用的。
在另一种可能的实现中,接入网设备也可以通过广播消息携带上述第一时频资源的配置信息,即给终端配置哪些时频资源用于发送第一信号序列,该第一时频资源可以是多个终端共享的。此时,终端可以处于连接态或非连接态。接入网设备可以通过公共信令给终端发送上述第一时频资源的配置信息,该公共信令例如是系统信息。
如图8a所示的资源配置示意图或如图8b所示的又一资源配置示意图,接入网设备给UE1~UE3配置第一CG资源,该第一CG资源用于发送第一信号序列。该第一信号序列为DMRS。该第一时频资源为第一CG资源中用于发送解调参考信号的时频资源。该第一CG资源可以是基于竞争或非竞争的CG资源。
进一步地,上述广播消息还可以包括第一信号序列的配置信息。该第一信号序列的配置信息包括DMRS序列图样、DMRS序列长度、在时隙中的符号位置、资源元素(resource element,RE)位置、正交覆盖码(orthogonal cover code,OCC)等。其中,DMRS序列图样表示DMRS序列中各元素值的组合,OCC是指DMRS序列在映射到相应时频位置前,与DMRS序列逐元素相乘的码字。进一步地,可以根据数据/业务类型的不同而设置多个DMRS。针对相同的数据/业务类型,接入网设备给各终端配置的DMRS相同,即上述DMRS序列图样、DMRS序列长度、在时隙中的符号位置、RE位置、OCC等参数均相同。针对不同的相同的数据/业务类型,接入网设备给各终端配置的DMRS相同,即上述DMRS序列图样、DMRS序列长度、在时隙中的符号位置、RE位置、OCC等参数可以不同。当接入网设备配置了多个DMRS时,接入网设备相应地需要检测上述多个DMRS。
进一步地,如图8a所示,接入网设备还可以给终端预先配置第二CG资源,第二CG资源用于发送待发送的数据。如图8b所示,接入网设备还可以给终端预先配置Msg A资源。该Msg A资源包括前导资源和PUSCH资源。该Msg A资源用于发送待发送的数据。接入网设备给各终端配置的第二CG资源或Msg A资源可以不同。
可选地,终端在接收到第一时频资源的配置信息后,如果终端不存在待发送的数据,则进入非连接态。除非终端存在待发送的数据,否则终端一直处于非连接态,以节省终端的功耗。
S202、终端在一个或多个第一时频资源上发送第一信号序列。其中,该第一信号序列用于指示终端存在待发送的数据。
当终端存在待发送的数据时,终端根据上述第一时频资源的配置,在配置的一个或多个第一时频资源上发送第一信号序列,以指示终端存在待发送的数据。由于已经给终端预配置了上述资源,因此,终端无须进入RRC连接态,终端在非连接态时,可以在上述第一时频资源上向接入网设备发送第一信号序列。
如图8a或如图8b所示,UE1在slot1~slot3均发送DMRS;UE2在slot2~slot3发送DMRS;UE3在slot3发送DMRS。该DMRS用于指示终端存在待发送的数据。多个UE使用同样的DMRS一起发送第一信号序列,对接入网设备检测该DMRS有功率增强作用(slot1~slot3上DMRS的颜色逐渐加深,表示DMRS的功率逐渐加强),DMRS触发接入网设备成功检测到的准确性更高。在图8a或图8b中,接入网设备在slot3上检测到该DMRS。
该DMRS可以是上述预先配置的第一CG资源。另外,终端也可以抢占调度的上行时隙中的DMRS。
S203、在与第一时频资源关联的一个或多个第二CG资源上发送PUSCH。其中,该PUSCH携带待发送的数据。
终端发送完第一信号序列后,在与第一时频资源关联的一个或多个第二CG资源上发送PUSCH。其中,与第一时频资源关联的第二CG资源可以是与第一信号序列传输时间上邻近的第二CG资源。具体地,如图8a所示,终端在邻近的slot4~slot6上使用预配置的第二CG资源发送DMRS和PUSCH。该第二CG资源包括用于发送DMRS和PUSCH的时频资源。该PUSCH携带待发送的数据。接入网设备在检测到第一信号序列后,根据预先配置给终端的第二CG资源,也在邻近的slot4~slot6上检测第二CG资源中的DMRS和接收PUSCH,并采用检测到的DMRS解调PUSCH,以获得PUSCH携带的数据。
可以理解的是,若接入网设备未在第一CG资源上检测到第一信号序列,则接入网设备无须检测第二CG资源,从而仅需检测第一信号序列,第一信号序列的数量较少,检测复杂较低,从而可以提高终端数据接收可靠性的同时,节省接入网设备的检测开销。
进一步地,如图8a所示,接入网设备可以在slot7向终端发送下行控制信息(downlink control information,DCI),该DCI用于指示接入网设备是否成功接收并解调终端发送的数据。终端在接收到DCI后,停止在第二CG资源发送数据。
作为S203的一种替换的方式,终端也可以在与第一时频资源关联的一个或多个随机接入时频资源上发送Msg A。其中,该Msg A携带待发送的数据。具体地,如图8b所示,接入网设备还给终端配置了Msg A资源。当终端发送完第一信号序列,可以在邻近的 slot4~slot6上向接入网设备发送Msg A,该Msg A包括前导和PUSCH。该PUSCH携带待发送的数据。接入网设备根据上述配置,在检测到第一信号序列后,在slot4~slot6上接收Msg A,获取PUSCH携带的数据。
进一步地,接入网设备还可以给终端预先配置Msg B资源。如图8b所示,接入网设备可以在slot7向终端发送Msg B,该Msg B用于指示接入网设备是否成功接收到终端发送的数据。终端在接收到Msg B后,停止发送数据。
进一步地,在步骤S201描述的配置信息中,该配置信息还可以包括指示信息。该指示信息用于指示是否允许在与第一SS/PBCH不同的SS/PBCH关联的随机接入资源上发送Msg A,该Msg A包括待发送的数据,该第一SS/PBCH为第一时频资源关联的SS/PBCH。具体地,如图9所示的本实施例的应用场景示意图,在一工厂等场所,包括大量的终端,图9中示例了UE1~UE3。在NR中,接入网设备采用波束赋形技术进行信号传输,不同的SS/PBCH可以使用不同的波束发送。其中,UE1~UE3处于SS/PBCH1(即本实施例的第一SS/PBCH)的波束覆盖范围内。如图8b中,接入网设备给终端在slot 4上配置了关联SS/PBCH1的Msg A资源,并在slot 5上配置了关联SS/PBCH x的Msg A资源,在slot 6上配置了关联SS/PBCH y的Msg A资源,在slot 7上配置了关联SS/PBCH 1的Msg B资源。若接入网设备在配置信息中包括上述指示信息,则UE1~UE3可以在slot 5上采用关联SS/PBCH x的Msg A资源发送Msg A,以及在slot 6上采用关联SS/PBCH y的Msg A资源发送Msg A。即UE1~UE3抢占了上述slot 5和slot 6上的Msg A资源用于发送数据。接入网设备在检测到第一信号序列后,根据上述配置信息,也可以在slot 5和slot 6上检测Msg A,并接收上述数据。从而,提高了终端数据传输的可靠性。
根据本申请实施例提供的一种数据传输方法,接入网设备在接收到指示终端存在待发送的数据的DMRS后,检测与第一信号序列关联的CG资源或Msg A资源,在该CG资源或Msg A资源上接收终端发送的数据,而无需一直检测该CG资源或Msg A资源,可以在提高数据传输的可靠性的同时,降低接入网设备的检测开销。
图7所示实施例是以第一信号序列为DMRS为例进行的描述,在另外的实施例中,第一信号序列可以为UCI序列。其流程与图7所示实施例的流程相同。下面仅对与图7所示实施例不同之处进行描述:
在终端处于RRC连接态时,接入网设备可以预先给终端配置用于发送第一信号序列的第一时频资源。用于发送第一信号序列的第一时频资源可以包括一个或多个。该第一时频资源可以为用于发送PUCCH的时频资源。接入网设备可以通过RRC信令配置PUCCH资源,通常是在UE专属的RRC信令中配置的。本实施例中也可以在公共信令中配置,如系统信息中。当给终端配置了PUCCH资源后,接入网设备即在配置的PUCCH资源上进行检测。
在本实施例中,该第一信号序列为UCI。
在使用UCI作为第一信号序列时,符号长度宜短,第一信号序列本身携带信息无需过多。因此,可以选择上述PUCCH format 0的格式。当然,本申请对选择的PUCCH的格式不作限制。以下以PUCCH format 0为例进行描述。
PUCCH format 0发送的信息比特为1~2个,在频域上可以占用一个资源块(resource  block,RB),在时域上占用1~2个符号。
进一步地,接入网设备还可以通过RRC信令配置如下表2所示的PUCCH format 0的参数:
表2 PUCCH format 0的RRC配置参数
Figure PCTCN2021096766-appb-000002
在终端处于RRC连接态时,接入网设备还可以通过高层信令等给终端配置一个与现有的不同的循环移位偏移值m c;或者终端出厂时可以预先存储一个循环移位偏移值m c。UCI序列的循环移位值为上述初始循环移位m 0与循环移位偏移值m c之和。该UCI序列的循环移位值用于指示出终端存在待发送的数据。
进一步地,接入网设备还可以给终端预先配置第二CG资源,或Msg A资源。该第二CG资源或Msg A资源用于发送待发送的数据。接入网设备给各终端配置的第二CG资源或Msg A资源可以不同。
当终端存在待发送的数据时,向接入网设备发送上述UCI序列。该UCI序列的循环移位值为接入网设备配置的初始循环移位m 0与预定义的循环移位偏移值m c之和。从而,接入网设备接收到上述UCI序列后,可以知晓终端存在待发送的数据。接着,终端在上述预配置的第二CG资源或Msg A资源上发送待发送的数据。接入网设备检测上述第二CG资源或Msg A资源,并接收待发送的数据。
如图10所示,为本申请实施例提供的数据传输方法的又一流程示意图。该第一信号序列为第一随机接入前导。示例性地,该方法可以包括以下步骤:
S301、接入网设备发送广播消息。该广播消息包括第一时频资源的配置信息,该第一时频资源用于发送第一信号序列。
相应地,终端接收该广播消息。
该步骤的具体实现可参考图7所示实施例的步骤S201。
S302、终端在第一随机接入时机发送第一随机接入前导。
相应地,接入网设备在第一随机接入时机检测该第一随机接入前导。
可选地,在步骤S302之前,接入网设备可以对终端进行资源配置。如图11所示,为随机接入资源配置示意图,该资源配置包括两级RO:第一级RO和第二级RO。
其中,第一级RO包括RO1,该RO1对应本实施例中用于指示存在待发送的数据所用的第一随机接入前导集合,此外,该RO1还可以对应常规2-step RACH所用的前导集合。可以理解的是,一个RO对应一个前导集合,也可以认为是一个RO关联一个前导集合。该前导集合中的前导在该RO上发送。示例性地,在图11中,常规2-step RACH所用的前导集合包括前导1-1~前导1-5共5个前导,第一随机接入前导集合包括前导2-1~前导2-2共2个前导(这里称为第一随机接入前导),可以看出,配置的第一随机接入前导集合中的 前导数量较少,这样可以降低接入网设备的检测复杂度。进一步地,常规2-step RACH所用的前导关联PO1对应的DMRS。其中,一个前导可以对应一个或多个DMRS,多个前导也可以对应一个DMRS。示例性地,在图11中,PO1对应DMRS1-1~DMRS1-4,可以理解的是,一个PO对应一个或多个DMRS,也可以认为是一个PO关联一个或多个DMRS。该一个或多个DMRS在该PO上发送。其中,前导1-1~前导1-3可以关联DMRS1-1,前导1-4~前导1-5可以关联DMRS1-2。
接入网设备给第一随机接入前导集合中的每个第一随机接入前导关联一个第二级RO对应的前导。示例性地,在图11中,第二级RO包括RO2和RO3。RO2对应一个或多个前导,例如,RO2对应前导3-1~前导3-4,即前导3-1~前导3-4在RO2上发送;RO3对应一个或多个前导,例如,RO3对应前导4-1~前导4-4,即前导4-1~前导4-4在RO3上发送。其中,第二级RO(包括RO2和RO3)可以称为第二随机接入时机,RO2对应的前导,可以称为第二随机接入前导集合。具体地,第一随机接入前导集合中的每个前导与第二级RO对应的前导的关联关系为,前导2-1可以关联到RO2对应的一个或多个前导;前导2-2可以关联到RO3对应的一个或多个前导。即第二随机接入时机与第一随机接入前导关联,或者,第二随机接入前导集合与第一随机接入前导关联。
进一步地,RO2中的一个前导可以关联到PO2对应的一个或多个DMRS,或者,RO2对应的多个前导可以关联到PO2对应的一个DMRS。示例性地,在图11中,PO2对应DMRS2-1~DMRS2-8共八个DMRS。例如,RO2中的前导3-1可以关联到PO2对应的DMRS2-1,RO2对应的前导3-2可以关联到PO2对应的DMRS2-2和DMRS2-3,RO2对应的前导3-3和前导3-4可以关联到PO2对应的DMRS2-4,等等。
RO3对应的一个前导可以关联到PO3对应的一个或多个DMRS,或者,RO3对应的多个前导可以关联到PO3对应的一个DMRS。示例性地,在图11中,PO3对应DMRS3-1~DMRS3-8共八个DMRS。例如,RO3对应的前导4-1可以关联到PO3对应的DMRS4-1,RO3对应的前导4-2可以关联到PO3对应的DMRS4-2和DMRS4-3,RO3对应的前导4-3和前导4-4可以关联到PO3对应的DMRS4-4,等等。
在本实施例中,上述PO2、PO3统称为第二上行数据传输时机。第二上行数据传输时机与第二随机接入前导集合中的一个第二随机接入前导关联。
在步骤S302中,在终端存在待发送的数据并向接入网设备发送该数据之前,终端一直处于非连接态,可以节省终端的功耗。当终端存在待发送的数据时,终端根据上述资源配置,在第一随机接入时机发送第一随机接入前导。即上述第一信号序列具体为第一随机接入前导。其中,该第一随机接入前导用于指示终端存在待发送的数据。第一随机接入前导属于第一随机接入时机对应的第一随机接入前导集合。例如,终端在RO1发送前导2-1,或者发送前导2-2,前导2-1或前导2-2用于指示终端存在待发送的数据。
接入网设备根据上述资源配置,在第一随机接入时机检测常规的前导池中的前导,并且检测该第一随机接入前导集合中的前导。由于第一随机接入前导集合中的前导数量较少,检测复杂度较低。
S303、终端在第二随机接入时机发送第二随机接入前导,其中,该第二随机接入前导属于第二随机接入时机对应的第二随机接入前导集合。
相应地,接入网设备在第二随机接入时机检测该第二随机接入前导。
终端在第一随机接入时机发送完第一随机接入前导,指示其存在待发送的数据后,随后,终端在第二随机接入时机发送第二随机接入前导。具体地,终端可以根据配置的第一随机接入前导与RO2的关联关系,在第二随机接入前导集合中确定一个第二随机接入前导。例如,图11中,终端在RO1发送前导2-1,则确定与前导2-1关联的RO2对应的前导3-1~前导3-4,并且在RO2发送前导3-1~前导3-4中的任一个前导。又例如,终端在RO1发送前导2-2,则确定与前导2-2关联的RO3对应的前导4-1~前导4-4,并且在RO3发送前导4-1~前导4-4中的任一个前导。
接入网设备在第一随机接入时机检测到第一随机接入前导集合中的前导后,进一步根据配置的第一随机接入前导与RO2的关联关系,在第二随机接入时机检测第二随机接入前导。而若在第一随机接入时机未检测到第一随机接入前导集合中的前导,则不对第二随机接入前导集合中的前导进行检测。例如,假设在步骤S302中接入网设备在RO1检测到前导2-1,则根据上述关联关系,在与前导2-1关联的RO2检测前导,并且检测到前导3-1~前导3-4中的任一个前导。又例如,假设在步骤S302中接入网设备在RO1检测到前导2-2,则根据上述关联关系,在与前导2-2关联的RO3检测前导,并且检测到前导4-1~前导4-4中的任一个前导。
S304、终端在第二随机接入前导关联的第二上行数据传输时机发送PUSCH,其中,用于解调PUSCH的解调参考信号属于第二上行数据传输时机对应的解调参考信号集合。该PUSCH携带待发送的数据。
相应地,接入网设备检测用于解调PUSCH的DMRS,并接收和解调该PUSCH。
本实施例为采用2-step RACH方式,因此,终端在第二随机接入时机发送第二随机接入前导的时,无需等待接入网设备反馈,即可在第二随机接入前导关联的第二上行数据传输时机发送PUSCH。具体地,终端根据发送的第二随机接入前导,确定与第二随机接入前导关联的第二上行数据传输时机。例如,图11中,假设终端在RO2发送前导3-1,前导3-1与PO2对应的DMRS2-1关联,则终端在前导3-1关联的PO2发送DMRS2-1和PUSCH,其中,DMRS2-1用于解调该PUSCH,DMRS2-1属于PO2对应的DMRS集合。又例如,假设终端在RO3发送前导4-1,前导4-1与PO3对应的DMRS3-1关联,则终端在前导4-1关联的PO3发送DMRS3-1和PUSCH,其中,DMRS3-1用于解调该PUSCH,DMRS3-1属于PO3对应的DMRS集合。上述PUSCH携带待发送的数据。
接入网设备根据配置的第二随机接入前导与第二上行数据传输时机的关联关系,根据检测到的第二随机接入前导,在第二上行数据传输时机检测DMRS,并解调接收到的PUSCH。例如,假设接入网设备在RO2检测到前导3-1,则根据前导3-1与PO2对应的DMRS2-1关联,接入网设备在前导3-1关联的PO2检测DMRS2-1和接收PUSCH,并用DMRS2-1解调PUSCH,获取PUSCH携带的数据。又例如,假设接入网设备在RO3检测到前导4-1,则根据前导4-1与PO3对应的DMRS3-1关联,接入网设备在前导4-1关联的PO3检测DMRS3-1和接收PUSCH,并用DMRS3-1解调PUSCH,获取PUSCH携带的数据。
进一步地,接入网设备接收到第二随机接入前导和PUSCH后,可以向终端发送MsgB, 用于指示是否成功接收并解调PUSCH携带的数据。终端在接收到MsgB后,停止发送上述数据。
该实施例可以应用于TA有效或无效的场景。通过2-step RACH的方式,在常规的前导检测开销基础上,需要多检测的前导数量较少,接入网设备的检测开销和复杂度较小。
根据本申请实施例提供的一种数据传输方法,接入网设备在第一随机接入时机接收到指示终端存在待发送的数据的第一随机接入前导后,根据随机接入资源的配置,在第二随机接入时机检测第二随机接入前导,并在第二随机接入前导关联的第二上行数据传输时机检测DMRS和解调PUSCH中携带的数据,可以在提高数据传输的可靠性的同时,降低接入网设备的检测开销。
可以理解的是,以上各个实施例中,由终端实现的方法和/或步骤,也可以由可用于终端的部件(例如芯片或者电路)实现;由接入网设备实现的方法和/或步骤,也可以由可用于接入网设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应地,本申请实施例还提供了数据传输装置,该数据传输装置用于实现上述各种方法。该数据传输装置可以为上述方法实施例中的终端,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该数据传输装置可以为上述方法实施例中的接入网设备,或者包含上述接入网设备的装置,或者为可用于接入网设备的部件。可以理解的是,该数据传输装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对数据传输装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图12所示,为本申请实施例提供的数据传输装置600的又一结构示意图。该数据传输装置600可以是上述实施例中的终端。该数据传输装置600包括:收发单元61;其中:
收发单元61,用于发送第一信号序列,所述第一信号序列用于指示所述装置存在待发送的数据;
所述收发单元61,还用于在与所述第一信号序列关联的第一传输资源上,发送所述待发送的数据,所述第一传输资源包括以下一种或多种资源:配置的授权CG资源、随机接入资源。
在一种可能的实现中,所述随机接入资源包括所述PRACH时频资源和物理上行共享信道PUSCH时频资源。
在又一种可能的实现中,所述收发单元61,还用于接收广播消息,所述广播消息包括 第一时频资源的配置信息,所述第一时频资源用于发送所述第一信号序列。
在又一种可能的实现中,所述收发单元61,还用于在一个或多个所述第一时频资源上发送所述第一信号序列。
在又一种可能的实现中,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于发送所述解调参考信号的时频资源。
在又一种可能的实现中,所述第一信号序列为上行控制信息UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待发送的数据。
在又一种可能的实现中,所述收发单元61,还用于在与所述第一时频资源关联的一个或多个第二CG资源上发送物理上行共享信道PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上发送随机接入消息A,所述PUSCH或所述随机接入消息A携带所述待发送的数据。
在又一种可能的实现中,所述第一信号序列具体为第一随机接入前导;
所述收发单元61,用于在第一随机接入时机发送所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待发送的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;
所述收发单元61,还用于在第二随机接入时机发送第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;
所述收发单元61,还用于在所述第二随机接入前导关联的第二上行数据传输时机发送PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;
其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。
在又一种可能的实现中,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一同步信号/物理广播信道块SS/PBCH不同的SS/PBCH关联的随机接入资源上发送所述待发送的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
有关收发单元61的具体实现可参考图6、图7、图10所示实施例中终端的相关描述。
根据本申请实施例提供的一种数据传输装置,数据传输装置在存在待发送的数据时,首先发送第一信号序列,指示该数据传输装置存在待发送的数据,然后再在与该第一信号序列关联的第一传输资源上,向接入网设备发送待发送的数据,可以使得接入网设备无需一直检测该第一传输资源,可以在提高数据传输装置的数据传输的可靠性的同时,降低接入网设备的检测开销。
如图13所示,为本申请实施例提供的数据传输装置700的又一结构示意图。该数据传输装置700可以是上述实施例中的接入网设备。该数据传输装置700包括:收发单元71;其中:
收发单元71,用于接收第一信号序列,所述第一信号序列用于指示终端存在待发送的数据;
所述收发单元71,还用于在与所述第一信号序列关联的第一传输资源上,接收所述数据,所述第一传输资源包括以下一种或多种资源:配置的授权CG资源、随机接入资源。
在一种可能的实现中,所述随机接入资源包括所述PRACH时频资源和物理上行共享信道PUSCH时频资源。
在又一种可能的实现中,所述收发单元71,还用于发送广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于所述终端发送所述第一信号序列。
在又一种可能的实现中,所述收发单元71,还用于在一个或多个所述第一时频资源上接收所述第一信号序列。
在又一种可能的实现中,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于发送所述解调参考信号的时频资源。
在又一种可能的实现中,所述第一信号序列为上行控制信息UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待发送的数据。
在又一种可能的实现中,所述收发单元71,还用于在与所述第一时频资源关联的一个或多个第二CG资源上接收物理上行共享信道PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上接收随机接入消息A,所述PUSCH或所述随机接入消息A携带所述数据。
在又一种可能的实现中,所述第一信号序列具体为第一随机接入前导;
所述收发单元71,还用于在第一随机接入时机接收所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待发送的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;
所述收发单元71,还用于在第二随机接入时机接收第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;
所述收发单元71,还用于在所述第二随机接入前导关联的第二上行数据传输时机接收PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;
其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。
在又一种可能的实现中,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一同步信号/物理广播信道块SS/PBCH不同的SS/PBCH关联的随机接入资源上发送所述待发送的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
有关收发单元71的具体实现可参考图6、图7、图10所示实施例中接入网设备的相关描述。
根据本申请实施例提供的一种数据传输装置,数据传输装置在接收到指示终端存在待发送的数据的第一信号序列后,检测与第一信号序列关联的第一传输资源,在该第一传输资源上接收终端发送的数据,而无需一直检测该第一传输资源,可以在提高终端的数据传输的可靠性的同时,降低该数据传输装置的检测开销。
图14示出了一种简化的终端的结构示意图。便于理解和图示方便,图14中,终端以手机作为例子。如图14所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于 基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图14中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端的处理单元。如图14所示,终端包括收发单元81和处理单元82。收发单元81也可以称为接收/发送(发射)器、接收/发送机、接收/发送电路等。处理单元82也可以称为处理器,处理单板,处理模块、处理装置等。该收发单元81用于实现图12所示实施例中收发单元61的功能。
例如,在一个实施例中,收发单元81用于执行图6所示实施例的步骤S101和S102中终端所执行的功能。
例如,在又一个实施例中,收发单元81用于执行图7所示实施例的步骤S201~S203中终端所执行的功能。
例如,在又一个实施例中,收发单元81用于执行图10所示实施例的步骤S301~S304中终端所执行的功能。
图15示出了一种简化的接入网设备的结构示意图。接入网设备包括射频信号收发及转换部分以及92部分,该射频信号收发及转换部分又包括收发单元91部分。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;92部分主要用于基带处理,对接入网设备进行控制等。收发单元91也可以称为接收/发送(发射)器、接收/发送机、接收/发送电路等。92部分通常是接入网设备的控制中心,通常可以称为处理单元,用于控制源接入网设备执行上述图3或图4中关于接入网设备所执行的步骤。具体可参见上述相关部分的描述。收发单元91可用于实现图13所示实施例中收发单元71的功能。
92部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对接入网设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,收发单元91用于执行图6所示实施例的步骤S101和S102中接入网设备所执行的功能。
例如,在又一个实施例中,收发单元91用于执行图7所示实施例的步骤S201~S203中接入网设备所执行的功能。
例如,在又一个实施例中,收发单元91用于执行图10所示实施例的步骤S301~S304 中接入网设备所执行的功能。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,实现上述实施例中的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行上述实施例中的方法。
本申请实施例还提供了一种数据传输系统,包括上述的数据传输装置。
需要说明的是,以上单元或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一单元或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于片上系统(system on chip,SoC)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、或者实现专用逻辑运算的逻辑电路。
当以上单元或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片系统,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器运行存储器中的计算机程序或指令时,使得该芯片系统执行上述任一方法实施例中的方法。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
应理解,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质 中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (40)

  1. 一种数据传输装置,其特征在于,所述装置包括:
    收发单元,用于发送第一信号序列,所述第一信号序列用于指示所述装置存在待发送的数据;
    所述收发单元,还用于在与所述第一信号序列关联的第一传输资源上,发送所述待发送的数据,所述第一传输资源包括以下一种或多种资源:配置的授权CG资源、随机接入资源。
  2. 根据权利要求1所述的装置,其特征在于,所述随机接入资源包括物理随机接入信道PRACH时频资源和物理上行共享信道PUSCH时频资源。
  3. 根据权利要求1或2所述的装置,其特征在于:
    所述收发单元,还用于接收广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于发送所述第一信号序列。
  4. 根据权利要求3所述的装置,其特征在于,所述收发单元,还用于在一个或多个所述第一时频资源上发送所述第一信号序列。
  5. 根据权利要求3或4所述的装置,其特征在于,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于发送所述解调参考信号的时频资源。
  6. 根据权利要求3或4所述的装置,其特征在于,所述第一信号序列为上行控制信息UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待发送的数据。
  7. 根据权利要求3或4所述的装置,其特征在于,所述收发单元,还用于在与所述第一时频资源关联的一个或多个第二CG资源上发送物理上行共享信道PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上发送随机接入消息A,所述PUSCH或所述随机接入消息A携带所述待发送的数据。
  8. 根据权利要求1~4中任一项所述的装置,其特征在于,所述第一信号序列具体为第一随机接入前导;
    所述收发单元,用于在第一随机接入时机发送所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待发送的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;
    所述收发单元,还用于在第二随机接入时机发送第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;
    所述收发单元,还用于在所述第二随机接入前导关联的第二上行数据传输时机发送PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;
    其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。
  9. 根据权利要求1~3中任一项所述的装置,其特征在于,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一同步信号/物理广播信道块SS/PBCH不同的SS/PBCH关联的随机接入资源上发送所述待发送的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
  10. 一种数据传输装置,其特征在于,所述装置包括:
    收发单元,用于接收第一信号序列,所述第一信号序列用于指示终端存在待发送的数据;
    所述收发单元,还用于在与所述第一信号序列关联的第一传输资源上,接收所述数据,所述第一传输资源包括以下一种或多种资源:配置的授权CG资源、随机接入资源。
  11. 根据权利要求10所述的装置,其特征在于,所述随机接入资源包括物理随机接入信道PRACH时频资源和物理上行共享信道PUSCH时频资源。
  12. 根据权利要求10或11所述的装置,其特征在于,所述收发单元,还用于发送广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于所述终端发送所述第一信号序列。
  13. 根据权利要求12所述的装置,其特征在于,所述收发单元,还用于在一个或多个所述第一时频资源上接收所述第一信号序列。
  14. 根据权利要求12或13所述的装置,其特征在于,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于发送所述解调参考信号的时频资源。
  15. 根据权利要求12或13所述的装置,其特征在于,所述第一信号序列为上行控制信息UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待发送的数据。
  16. 根据权利要求14或15所述的装置,其特征在于,所述收发单元,还用于在与所述第一时频资源关联的一个或多个第二CG资源上接收物理上行共享信道PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上接收随机接入消息A,所述PUSCH或所述随机接入消息A携带所述数据。
  17. 根据权利要求10~13中任一项所述的装置,所述第一信号序列具体为第一随机接入前导;
    所述收发单元,还用于在第一随机接入时机接收所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待发送的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;
    所述收发单元,还用于在第二随机接入时机接收第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;
    所述收发单元,还用于在所述第二随机接入前导关联的第二上行数据传输时机接收PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;
    其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。
  18. 根据权利要求10~17中任一项所述的装置,其特征在于,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一同步信号/物理广播信道块SS/PBCH不同的SS/PBCH关联的随机接入资源上发送所述待发送的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
  19. 一种数据传输方法,其特征在于,所述方法包括:
    发送第一信号序列,所述第一信号序列用于指示所述方法存在待发送的数据;
    在与所述第一信号序列关联的第一传输资源上,发送所述待发送的数据,所述第一传输资源包括以下一种或多种资源:配置的授权CG资源、随机接入资源。
  20. 根据权利要求19所述的方法,其特征在于,所述随机接入资源包括物理随机接入信道PRACH时频资源和物理上行共享信道PUSCH时频资源。
  21. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    接收广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于发送所述第一信号序列。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    在一个或多个所述第一时频资源上发送所述第一信号序列。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于发送所述解调参考信号的时频资源。
  24. 根据权利要求21或22所述的方法,其特征在于,所述第一信号序列为上行控制信息UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待发送的数据。
  25. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    在与所述第一时频资源关联的一个或多个第二CG资源上发送物理上行共享信道PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上发送随机接入消息A,所述PUSCH或所述随机接入消息A携带所述待发送的数据。
  26. 根据权利要求19~23中任一项所述的方法,其特征在于,所述第一信号序列具体为第一随机接入前导;所述方法还包括:
    在第一随机接入时机发送所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待发送的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;
    在第二随机接入时机发送第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;
    在所述第二随机接入前导关联的第二上行数据传输时机发送PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;
    其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。
  27. 根据权利要求19~23中任一项所述的方法,其特征在于,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一同步信号/物理广播信道块SS/PBCH不同的SS/PBCH关联的随机接入资源上发送所述待发送的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
  28. 一种数据传输方法,其特征在于,所述方法包括:
    接收第一信号序列,所述第一信号序列用于指示终端存在待发送的数据;
    在与所述第一信号序列关联的第一传输资源上,接收所述数据,所述第一传输资源包括以下一种或多种资源:配置的授权CG资源、随机接入资源。
  29. 根据权利要求28所述的方法,其特征在于,所述随机接入资源包括物理随机接入信道PRACH时频资源和物理上行共享信道PUSCH时频资源。
  30. 根据权利要求28或29所述的方法,其特征在于,所述方法还包括:
    发送广播消息,所述广播消息包括第一时频资源的配置信息,所述第一时频资源用于所述终端发送所述第一信号序列。
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    在一个或多个所述第一时频资源上接收所述第一信号序列。
  32. 根据权利要求30或31所述的方法,其特征在于,所述第一信号序列为解调参考信号,所述第一时频资源为第一CG资源中用于发送所述解调参考信号的时频资源。
  33. 根据权利要求30或31所述的方法,其特征在于,所述第一信号序列为上行控制信息UCI序列,所述UCI序列的循环移位值用于指示所述终端存在待发送的数据。
  34. 根据权利要求32或33所述的方法,其特征在于,所述方法还包括:
    在与所述第一时频资源关联的一个或多个第二CG资源上接收物理上行共享信道PUSCH,或在与所述第一时频资源关联的一个或多个随机接入时频资源上接收随机接入消息A,所述PUSCH或所述随机接入消息A携带所述数据。
  35. 根据权利要求28~31中任一项所述的方法,所述第一信号序列具体为第一随机接入前导;所述方法还包括:
    在第一随机接入时机接收所述第一随机接入前导,其中,所述第一随机接入前导用于指示所述终端存在待发送的数据,所述第一随机接入前导属于所述第一随机接入时机对应的第一随机接入前导集合;
    在第二随机接入时机接收第二随机接入前导,其中,所述第二随机接入前导属于所述第二随机接入时机对应的第二随机接入前导集合;
    在所述第二随机接入前导关联的第二上行数据传输时机接收PUSCH,其中,用于解调所述PUSCH的解调参考信号属于所述第二上行数据传输时机对应的解调参考信号集合,所述PUSCH携带所述待发送的数据;
    其中,所述第二随机接入时机与所述第一随机接入前导关联,或者,所述第二随机接入前导集合与所述第一随机接入前导关联。
  36. 根据权利要求28~35中任一项所述的方法,其特征在于,所述配置信息还包括指示信息,所述指示信息用于指示是否允许在与第一同步信号/物理广播信道块SS/PBCH不同的SS/PBCH关联的随机接入资源上发送所述待发送的数据,所述第一SS/PBCH为所述第一时频资源关联的SS/PBCH。
  37. 一种数据传输装置,其特征在于,包括处理器,所述处理器与存储器耦合,用于读取所述存储器中的指令,并根据所述指令实现如权利要求19~27中任一项所述的方法。
  38. 一种数据传输装置,其特征在于,包括处理器,所述处理器与存储器耦合,用于读取所述存储器中的指令,并根据所述指令实现如权利要求28~36中任一项所述的方法。
  39. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求19~36中任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上被执行时,实现权利要求19~36中任一项所述的方法。
PCT/CN2021/096766 2020-05-28 2021-05-28 数据传输方法及装置 WO2021239113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010470056.9A CN113747574A (zh) 2020-05-28 2020-05-28 数据传输方法及装置
CN202010470056.9 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021239113A1 true WO2021239113A1 (zh) 2021-12-02

Family

ID=78724294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096766 WO2021239113A1 (zh) 2020-05-28 2021-05-28 数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN113747574A (zh)
WO (1) WO2021239113A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206010A1 (zh) * 2022-04-25 2023-11-02 Oppo广东移动通信有限公司 通信方法、装置、设备、存储介质、芯片、产品及程序

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696937A (zh) * 2018-04-20 2018-10-23 北京邮电大学 一种适用于上行小数据包的无连接传输方法及基站
CN108834215A (zh) * 2018-04-20 2018-11-16 北京邮电大学 一种适用于上行小数据包的无连接传输方法及终端
CN110493876A (zh) * 2019-08-30 2019-11-22 展讯半导体(南京)有限公司 数据传输方法、装置、设备及存储介质
WO2020062068A1 (zh) * 2018-09-28 2020-04-02 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696937A (zh) * 2018-04-20 2018-10-23 北京邮电大学 一种适用于上行小数据包的无连接传输方法及基站
CN108834215A (zh) * 2018-04-20 2018-11-16 北京邮电大学 一种适用于上行小数据包的无连接传输方法及终端
WO2020062068A1 (zh) * 2018-09-28 2020-04-02 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN110493876A (zh) * 2019-08-30 2019-11-22 展讯半导体(南京)有限公司 数据传输方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113747574A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
JP6527965B2 (ja) チャネル効率の高い分散方式のピアステーション間のデータ伝送の方法及びシステム
WO2019154333A1 (zh) 资源选择的方法和终端设备
WO2021057473A1 (zh) 一种共生网络中载波的调度方法、装置及存储介质
JP7400092B2 (ja) ウェイクアップ信号検出方法および装置
US9888495B2 (en) Methods and apparatuses for facilitating communications
WO2021163896A1 (zh) 通信方法及装置
WO2021196099A1 (zh) 终端定位方法及装置
EP4084524A1 (en) Communication method and apparatus
WO2022022517A1 (zh) 确定传输功率的方法及装置
CN107534848B (zh) 一种以分散和省电方式进行数据通信的系统和方法
CN113518413A (zh) 一种通信方法、装置及系统
WO2022022491A1 (zh) 通信方法及装置
WO2022141184A1 (zh) 一种上行参考信号资源的配置方法及相关装置
WO2021239113A1 (zh) 数据传输方法及装置
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2015131493A1 (zh) 一种d2d通信的设备发现方法及装置
WO2019041261A1 (zh) 一种通信方法及设备
WO2019006882A1 (zh) 一种训练传输波束的方法、装置及系统
WO2022027594A1 (zh) 一种通信方法及通信装置
CN116034593A (zh) 一种应用于短距无线通信的数据传输方法及通信装置
WO2022178881A1 (zh) 通信方法及装置
WO2022067828A1 (zh) 寻呼信息发送、监听方法及通信装置、系统
WO2022110245A1 (zh) 一种资源指示方法及装置
WO2023151391A1 (zh) 波束训练方法及通信装置
WO2024012114A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813298

Country of ref document: EP

Kind code of ref document: A1