WO2024067315A1 - 通信方法和相关产品 - Google Patents

通信方法和相关产品 Download PDF

Info

Publication number
WO2024067315A1
WO2024067315A1 PCT/CN2023/120188 CN2023120188W WO2024067315A1 WO 2024067315 A1 WO2024067315 A1 WO 2024067315A1 CN 2023120188 W CN2023120188 W CN 2023120188W WO 2024067315 A1 WO2024067315 A1 WO 2024067315A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
dci
space set
format
cells
Prior art date
Application number
PCT/CN2023/120188
Other languages
English (en)
French (fr)
Inventor
高飞
黄秀璇
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067315A1 publication Critical patent/WO2024067315A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications, and in particular to a communication method and related products.
  • wireless communication technology needs to evolve further to improve the network capacity and transmission rate of wireless networks.
  • evolution of wireless communication technology further exploring the frequency resources and space resources of wireless communication are two extremely important dimensions.
  • CA Carrier aggregation
  • CC component carriers
  • the terminal device has multiple service cells.
  • the multiple service cells of the terminal device include a primary cell (PCell) and one or more secondary cells (SCell).
  • NR new radio
  • a base station wants to schedule user equipment (UE) on multiple carriers to simultaneously perform physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) transmission, it needs to send multiple downlink control information (DCI) for scheduling, and each carrier needs one DCI for scheduling.
  • DCI downlink control information
  • the carrier that sends DCI it is divided into two modes: self-carrier scheduling and cross-carrier scheduling.
  • self-carrier scheduling mode the DCI that schedules the transmission of PDSCH or PUSCH on one carrier is also sent on the carrier.
  • the DCI that schedules the transmission of PDSCH or PUSCH on one carrier can be sent on another carrier, so that the effect of DCI being sent on only one carrier is achieved. It can be noted that whether it is self-carrier scheduling or cross-carrier scheduling, the number of DCIs required is proportional to the number of carriers used simultaneously. Compared with continuous broadband carriers, which use the same bandwidth to transmit data, discrete multi-carriers based on existing CA mechanisms require more control channel resources to carry multiple DCIs. This multi-DCI scheduling method increases the control channel overhead.
  • the UE needs to blindly decode multiple DCIs, and the UE's blind decoding budget will increase as the number of carriers increases. Compared with continuous broadband carriers with the same transmission bandwidth, this will increase the complexity of UE blind decoding.
  • the work item (WI) of the 3rd generation partnership project (3GPP) Rel-18 has established the use of a single DCI to schedule PDSCH or PUSCH on multiple frequency bands/carriers, reducing the control channel overhead caused by using multiple DCIs to schedule multiple carriers, and avoiding placing a physical downlink control channel (PDCCH) on each carrier.
  • This single DCI is usually called "Single DCI”.
  • Single DCI hereinafter referred to as single DCI
  • single DCI can significantly reduce the control channel overhead, release more downlink resources for PDSCH transmission, improve downlink capacity, and approach the performance of continuous broadband carriers.
  • one single DCI can schedule uplink data transmission or downlink data reception of multiple cells.
  • the single DCI is configured to be monitored on the PCell
  • the three cells of PCell, SCell#1 and SCell#2 can be scheduled simultaneously through high-level signaling configuration.
  • the number of blind detection (BD) or control channel element (CCE) corresponding to the search space set configured to monitor the single DCI exceeds the UE's PDCCH blind detection capability, the UE will not perform blind detection on the candidate PDCCH in the search space set, resulting in the UE not monitoring the single DCI, thereby affecting the data scheduling of other cells and causing a decrease in spectrum utilization. Therefore, it is currently necessary to study how to reduce the situation where access network equipment (such as base stations) cannot schedule multiple cells through single DCI.
  • access network equipment such as base stations
  • the embodiments of the present application disclose a communication method and related products, which can reduce the occurrence of situations where access network equipment (such as base stations) cannot schedule multiple cells through a single DCI.
  • an embodiment of the present application provides a communication method, which is applied to a terminal device, and the method comprises: receiving a communication signal from an access network; The first configuration information of the device, the first configuration information is used to configure a first search space set and a second search space set, the first search space set includes a first candidate PDCCH, the second search space set includes a second candidate PDCCH, the first candidate PDCCH is used to carry a first downlink control information DCI, and the second candidate PDCCH is used to carry a second DCI; when the number of cells associated with the first search space set is greater than the number of cells associated with the second search space set, after determining whether to allocate the candidate PDCCH in the first search space set to the search space set for monitoring (the first search space set), determine whether to allocate the candidate PDCCH in the second search space set to the search space set for monitoring (the second search space set).
  • the first DCI is used to schedule data channels of multiple cells.
  • the first DCI is a single DCI.
  • determining (or judging) whether to allocate the candidate PDCCH in a certain search space set to the search space set for monitoring can be referred to as: performing PDCCH mapping on the search space set.
  • determining (or judging) whether to allocate the candidate PDCCH in the first search space set to the search space set for monitoring may be referred to as: performing PDCCH mapping on the first search space set.
  • the candidate PDCCH in the first search space set to the search space set for monitoring after determining whether to allocate the candidate PDCCH in the first search space set to the search space set for monitoring, it is determined whether to allocate the candidate PDCCH in the second search space set to the search space set for monitoring, so that the probability that the candidate PDCCH in the first search space set is allocated to the search space set for monitoring is greater than the probability that the candidate PDCCH in the second search space set is allocated to the search space set for monitoring; it is possible to reduce the occurrence of the situation where the candidate PDCCH in the search space set with a large number of associated cells cannot be monitored, thereby reducing the occurrence of the situation where the access network device (such as a base station) cannot schedule multiple cells through a single DCI.
  • the access network device such as a base station
  • the candidate PDCCH in the search space set with a large number of associated cells is preferentially allocated to the search space set for monitoring, and the candidate PDCCH in the search space set with a small number of associated cells (for example, carrying the DCI for scheduling a cell) is later allocated to the search space set for monitoring.
  • the cells associated with the first search space set include K cells used for scheduling by the first DCI
  • the cells associated with the second search space set include F cells used for scheduling by the second DCI
  • the index of the first search space set is greater than or less than the index of the second search space
  • the K and the F are both integers greater than 0, and the K is greater than the F.
  • the index of the search space set is understood as the search space set index (search space set index) in the search space set configuration parameter.
  • the cells associated with the first search space set include K cells scheduled by the first DCI, and the cells associated with the second search space set include F cells scheduled by the second DCI; this can reduce the occurrence of situations where candidate PDCCHs in a search space set with a large number of associated cells cannot be monitored, thereby reducing the occurrence of situations where access network equipment (such as base stations) cannot schedule multiple cells through a single DCI.
  • access network equipment such as base stations
  • the first DCI is used to schedule data channels of one or more cells
  • the second DCI is used to schedule data channels of one or more cells
  • both the first DCI and the second DCI are used for uplink scheduling
  • the format of the first DCI and the format of the second DCI are both the first format, such as DCI format 0_X, or DCI format 0_5, and the DCI in the first format is used to schedule uplink data channels of one or more cells
  • both the first DCI and the second DCI are used for downlink scheduling, such as DCI format 1_X, or DCI format 1_5, and the format of the first DCI and the format of the second DCI are both the second format, and the DCI in the second format is used to schedule downlink data channels of one or more cells.
  • the occurrence of situations where candidate PDCCHs in a search space set with a large number of associated cells cannot be monitored can be reduced, thereby reducing the occurrence of situations where access network equipment (such as base stations) cannot schedule multiple cells through a single DCI.
  • the first DCI is used to schedule data channels of one or more cells
  • the second DCI is used to schedule data channels of one cell
  • both the first DCI and the second DCI are used for uplink scheduling
  • the format of the first DCI is the first format
  • the DCI in the first format is used to schedule uplink data channels of one or more cells
  • the format of the second DCI is the third format
  • the DCI in the third format is used to schedule uplink data channels of one cell
  • both the first DCI and the second DCI are used for downlink scheduling, the format of the first DCI is the second format, and the DCI in the second format is used to schedule downlink data channels of one or more cells
  • the format of the second DCI is the fourth format
  • the DCI in the fourth format is used to schedule downlink data channels of one cell.
  • the occurrence of situations where candidate PDCCHs in a search space set with a large number of associated cells cannot be monitored can be reduced, thereby reducing the occurrence of situations where access network equipment (such as base stations) cannot schedule multiple cells through a single DCI.
  • the method also includes: receiving second configuration information from the access network device, the second configuration information is used to configure a third search space set and a fourth search space set, the third search space set includes a third candidate PDCCH, the fourth search space set includes a fourth candidate PDCCH, the third candidate PDCCH is used to carry a third DCI, the fourth candidate PDCCH is used to carry a fourth DCI, one of the third DCI and the fourth DCI is used to schedule data channels of one or more cells, and the other is used to schedule a data channel of a cell, the format of the third DCI is different from the format of the fourth DCI, it can be understood that when the third DCI and the fourth DCI are both uplink scheduling DCI, the third DCI format is different from the fourth DCI format, for example, the format of the third DCI is DCI format 0_1, and the format of the fourth DCI is DCI format 0_X or DCI format 0_5; or when the third DCI and the fourth DCI are both downlink
  • the third DCI format is different from the fourth DCI format, for example, the format of the third DCI is DCI format 1_1, and the format of the fourth DCI is DCI format 1_X or DCI format 1_5; when the third search space set and the fourth search space set are both associated with one cell, after determining whether to allocate the candidate PDCCH in the third search space set to the search space set for monitoring, determine whether to allocate the candidate PDCCH in the fourth search space set to the search space set for monitoring, and the index of the third search space set is less than the index of the fourth search space set.
  • the method further includes: receiving third configuration information from the access network device, the third configuration information being used to configure a cell set associated with the first search space set and a cell set associated with the second search space set.
  • the third configuration information being used to configure a cell set associated with the first search space set and a cell set associated with the second search space set.
  • the method also includes: sending first capability information to the access network device, wherein the first capability information is used to indicate that the terminal device supports determining whether to allocate the candidate PDCCHs in each search space set to the search space set for monitoring according to the number of cells associated with each search space set.
  • first capability information is sent to the access network device so that the access network device knows that the terminal device supports determining whether to allocate candidate PDCCHs in each search space set to the search space set for monitoring based on the number of cells associated with each search space set.
  • an embodiment of the present application provides another communication method, which is applied to an access network device, and the method includes: sending first configuration information to a terminal device, the first configuration information being used to configure a first search space set and a second search space set, the first search space set comprising a first candidate PDCCH, the second search space set comprising a second candidate PDCCH, the first candidate PDCCH being used to carry first downlink control information DCI, the second candidate PDCCH being used to carry second DCI, and the loads of the first DCI and the second DCI being different; when the number of cells associated with the first search space set is greater than the number of cells associated with the second search space set, after determining whether to allocate the candidate PDCCHs in the first search space set to the search space set for monitoring, determine whether to allocate the candidate PDCCHs in the second search space set to the search space set for monitoring.
  • the access network device (such as a base station) cannot schedule multiple cells through a single DCI.
  • the candidate PDCCH in the search space set with a large number of associated cells is preferentially allocated to the search space set for monitoring, and the candidate PDCCH in the search space set with a small number of associated cells (for example, carrying the DCI for scheduling a cell) is allocated to the search space set for monitoring later.
  • the cells associated with the first search space set include K cells scheduled by the first DCI, and the cells associated with the second search space set include F cells scheduled by the second DCI.
  • the index of the first search space set is greater than or less than the index of the second search space, and both K and F are integers greater than 0, and K is greater than F.
  • the cells associated with the first search space set include K cells scheduled by the first DCI, and the cells associated with the second search space set include F cells scheduled by the second DCI; this can reduce the occurrence of situations where candidate PDCCHs in a search space set with a large number of associated cells cannot be monitored, thereby reducing the occurrence of situations where access network equipment (such as base stations) cannot schedule multiple cells through a single DCI.
  • access network equipment such as base stations
  • the first DCI is used to schedule data channels of one or more cells
  • the second DCI is used to schedule data channels of one or more cells
  • both the first DCI and the second DCI are used for uplink scheduling, the format of the first DCI and the format of the second DCI are both in the first format, and the DCI in the first format is used to schedule data channels of one or more cells; or, both the first DCI and the second DCI are used for downlink scheduling, the format of the first DCI and the format of the second DCI are both in the second format, and the DCI in the second format is used to schedule data channels of one or more cells.
  • the occurrence of situations where candidate PDCCHs in a search space set with a large number of associated cells cannot be monitored can be reduced, thereby reducing the occurrence of situations where access network equipment (such as base stations) cannot schedule multiple cells through a single DCI.
  • the first DCI is used to schedule data channels of one or more cells, and the second DCI is used to schedule a data channel of one cell; or, both the first DCI and the second DCI are used for uplink scheduling, and the format of the first DCI is The first format of the DCI is used to schedule data channels of one or more cells, the second format of the DCI is used to schedule data channels of one cell, and the third format of the DCI is used to schedule data channels of one cell; or, both the first DCI and the second DCI are used for downlink scheduling, the first DCI is used to schedule data channels of one or more cells, the second DCI is used to schedule data channels of one cell, and the fourth format of the DCI is used to schedule data channels of one cell.
  • the occurrence of situations where candidate PDCCHs in a search space set with a large number of associated cells cannot be monitored can be reduced, thereby reducing the occurrence of situations where access network equipment (such as base stations) cannot schedule multiple cells through a single DCI.
  • the method further includes: sending second configuration information to the terminal device, the second configuration information is used to configure a third search space set and a fourth search space set, the third search space set includes a third candidate PDCCH, the fourth search space set includes a fourth candidate PDCCH, the third candidate PDCCH is used to carry a third DCI, the fourth candidate PDCCH is used to carry a fourth DCI, one of the third DCI and the fourth DCI is used to schedule a data channel of one or more cells, and the other is used to schedule a data channel of a cell, the format of the third DCI is different from the format of the fourth DCI, it can be understood that when the third DCI and the fourth DCI are both uplink scheduling DCI, the third DCI format is different from the fourth DCI format, for example, the format of the third DCI is DCI format 0_1, the format of the fourth DCI is DCI format 0_X or DCI format 0_5; or when the third DCI and the fourth DCI are both downlink
  • the method further includes: sending third configuration information to the terminal device, where the third configuration information is used to configure a cell set associated with the first search space set and a cell set associated with the second search space set.
  • a cell set associated with the first search space set is configured, and a cell set associated with the second search space set is configured, so that the terminal device first performs PDCCH mapping on the search space set with a larger number of associated cells in the first search space set and the second search space set.
  • the method also includes: receiving first capability information from the terminal device, the first capability information being used to indicate that the terminal device supports determining whether to allocate candidate PDCCHs in each search space set to the search space set for monitoring in order based on the number of cells associated with each search space set.
  • the access network device can learn that the terminal device supports determining whether to allocate the candidate PDCCHs in each search space set to the search space set for monitoring according to the number of cells associated with each search space set.
  • an embodiment of the present application provides another communication method, which is applied to a terminal device, and the method includes: receiving first configuration information from an access network device, the first configuration information being used to configure a first search space set and a second search space set, the first search space set comprising a first candidate PDCCH, the second search space set comprising a second candidate PDCCH, the first candidate PDCCH being used to carry first downlink control information DCI, the second candidate PDCCH being used to carry second DCI, the first DCI being used to schedule data channels of one or more cells, and the second DCI being used to schedule data channels of a cell; allocating the first candidate PDCCH to a search space set for monitoring; and determining whether to allocate the second candidate PDCCH to a search space set for monitoring.
  • the first candidate PDCCH is allocated to the search space set for monitoring, which can prevent the candidate PDCCH for carrying DCI for scheduling multiple cells from being unable to be monitored.
  • the method includes: sending first capability information to the access network device, the first capability information being used to indicate that the terminal device supports allocating a candidate PDCCH for carrying a DCI for scheduling a data channel for one or more cells to a search space set for monitoring, and determining whether to allocate a candidate PDCCH for carrying a DCI for scheduling a data channel for a cell to a search space set for monitoring.
  • first capability information is sent to the access network device so that the access network device learns that the terminal device supports allocating candidate PDCCHs for carrying DCI for scheduling data channels of one or more cells to a search space set for monitoring.
  • an embodiment of the present application provides another communication method, which is applied to an access network device, and the method includes: sending first configuration information to a terminal device, the first configuration information is used to configure a first search space set and a second search space set, the first search space set includes a first candidate PDCCH, the second search space set includes a second candidate PDCCH, the first candidate PDCCH is used to carry a first downlink control information DCI, the second candidate PDCCH is used to carry a second DCI, and the first DCI is used to schedule one or more The second DCI is used to schedule a data channel of a cell; the first candidate PDCCH is allocated to a search space set for monitoring; and it is determined whether to allocate the second candidate PDCCH to the search space set for monitoring.
  • the first candidate PDCCH is allocated to the search space set for monitoring, which can prevent the candidate PDCCH for carrying DCI for scheduling multiple cells from being unable to be monitored.
  • the method also includes: receiving first capability information from the terminal device, the first capability information being used to indicate that the terminal device supports allocating a candidate PDCCH for carrying a DCI for scheduling a data channel for one or more cells to a search space set for monitoring, and determining whether to allocate a candidate PDCCH for carrying a DCI for scheduling a data channel for a cell to a search space set for monitoring.
  • the terminal device by receiving the first capability information from the terminal device, it can be learned that the terminal device supports allocating candidate PDCCHs for carrying DCI for scheduling data channels of one or more cells to a search space set for monitoring.
  • an embodiment of the present application provides another communication method, which is applied to a terminal device, and the method includes: receiving first configuration information from an access network device, the first configuration information is used to configure a first search space set, the first search space set includes a first candidate PDCCH, the first candidate PDCCH is used to carry a first DCI, and the first DCI is used to schedule a primary cell and a first secondary cell of the terminal device; determining the number of first monitored candidate PDCCHs and the first non-overlapping number of CCEs corresponding to the candidate PDCCHs included in the first search space set; when the first BD number exceeds the maximum number of candidate PDCCHs monitored on the primary cell, and/or the first non-overlapping number of CCEs exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell, each candidate PDCCH in the first search space set is monitored.
  • the method also includes: counting the first BD number and the first non-overlapping number of CCEs to the primary cell, and counting the first BD
  • each candidate PDCCH in the first search space set is monitored; this can avoid the situation where the access network device (such as a base station) is unable to schedule multiple cells through a single DCI.
  • the method further includes: parsing domain information related to scheduling of the first secondary cell and domain information related to scheduling of the primary cell in the first DCI.
  • domain information related to scheduling of the first secondary cell and domain information related to scheduling of the primary cell in the first DCI are parsed to schedule the first secondary cell and the primary cell.
  • the method further includes: parsing domain information related to the scheduling of the first secondary cell in the first DCI; ignoring domain information related to the scheduling of the primary cell in the first DCI, or skipping the parsing of domain information related to the scheduling of the primary cell in the first DCI.
  • the domain information related to the primary cell scheduling in the first DCI is ignored, or the parsing of the domain information related to the primary cell scheduling in the first DCI is skipped; thus, data processing operations can be reduced.
  • the method also includes: sending first capability information to the access network device, wherein the first capability information is used to indicate that the terminal device supports monitoring the candidate PDCCH in any search space set when the number of BDs corresponding to the candidate PDCCH included in any search space set exceeds the maximum number of candidate PDCCHs monitored by the main cell, and/or when the number of non-overlapping CCEs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of non-overlapping CCEs corresponding to the main cell.
  • the first capability information is sent to the access network device so that the access network device can learn the capabilities supported by the terminal device.
  • the method also includes: sending second capability information to the access network device, the second capability information being used to indicate that the terminal device supports scheduling the primary cell and secondary cell of the terminal device using the DCI monitored through any search space set when the number of BDs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of candidate PDCCHs monitored by the primary cell, and/or the number of non-overlapping CCEs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell.
  • the second capability information is sent to the access network device so that the access network device acquires the capabilities supported by the terminal device.
  • the method also includes: sending third capability information to the access network device, the third capability information being used to indicate that the terminal device supports scheduling the secondary cell of the terminal device using the DCI monitored through any search space set when the number of BDs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of candidate PDCCHs monitored by the primary cell, and/or the number of non-overlapping CCEs corresponding to the candidate PDCCHs included in the search space set exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell.
  • the third capability information is sent to the access network device so that the access network device can learn the capabilities supported by the terminal device.
  • an embodiment of the present application provides a communication device, which has the behavior of implementing the method embodiment of the first aspect above.
  • the communication device may be a communication device, or a component of a communication device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can realize all or part of the functions of the communication device.
  • the functions of the communication device may be realized by hardware, or by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, wherein: the transceiver module is used to receive first configuration information from an access network device, the first configuration information is used to configure a first search space set and a second search space set, the first search space set includes a first candidate physical downlink control channel PDCCH, the second search space set includes a second candidate PDCCH, the first candidate PDCCH is used to carry first downlink control information DCI, and the second candidate PDCCH is used to carry second DCI; the processing module is used to determine whether to allocate the candidate PDCCH in the second search space set to the search space set for monitoring after determining whether to allocate the candidate PDCCH in the first search space set to the search space set for monitoring when the number of cells associated with the first search space set is greater than the number of cells associated with the second search space set.
  • the transceiver module is used to receive first configuration information from an access network device, the first configuration information is used to configure a first search space set and a second search space set, the first search space set
  • the transceiver module is further used to receive second configuration information from the access network device, the second configuration information is used to configure a third search space set and a fourth search space set, the third search space set includes a third candidate PDCCH, the fourth search space set includes a fourth candidate PDCCH, the third candidate PDCCH is used to carry a third DCI, the fourth candidate PDCCH is used to carry a fourth DCI, one of the third DCI and the fourth DCI is used to schedule a data channel of one or more cells, and the other is used to schedule a data channel of a cell, the format of the third DCI is different from the format of the fourth DCI, it can be understood that when the third DCI and the fourth DCI are both uplink scheduling DCI, the third DCI format is different from the fourth DCI format, for example, the format of the third DCI is DCI form at 0_1, the format of the fourth DCI is DCI format 0_X or DCI format 0_5; or when the third DCI and the
  • the transceiver module is further used to receive third configuration information from the access network device, and the third configuration information is used to configure the cell set associated with the first search space set and the cell set associated with the second search space set.
  • the transceiver module is also used to send first capability information to the access network device, and the first capability information is used to indicate that the terminal device supports determining whether to allocate the candidate PDCCH in each search space set to the search space set for monitoring according to the number of cells associated with each search space set.
  • Possible implementations of the communication device of the sixth aspect may refer to various possible implementations of the first aspect.
  • an embodiment of the present application provides a communication device, which has the function of implementing the behavior in the method embodiment of the second aspect above.
  • the communication device access network device
  • the communication device can be a communication device, or a component of a communication device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can implement all or part of the functions of the communication device.
  • the functions of the communication device can be implemented by hardware, or by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, wherein: the transceiver module is used to send first configuration information to a terminal device, the first configuration information is used to configure a first search space set and a second search space set, the first search space set includes a first candidate physical downlink control channel PDCCH, the second search space set includes a second candidate PDCCH, the first candidate PDCCH is used to carry first downlink control information DCI, the second candidate PDCCH is used to carry second DCI, and the loads of the first DCI and the second DCI are different; the processing module is used to determine whether to allocate the candidate PDCCH in the second search space set to the search space set for monitoring after determining whether to allocate the candidate PDCCH in the first search space set to the search space set for monitoring when the number of cells associated with the first search space set is more than the number of cells associated with the second search space set.
  • the transceiver module is also used to send second configuration information to the terminal device, the second configuration information is used to configure a third search space set and a fourth search space set, the third search space set includes a third candidate PDCCH, the fourth search space set includes a fourth candidate PDCCH, the third candidate PDCCH is used to carry a third DCI, the fourth candidate PDCCH is used to carry a fourth DCI, one of the third DCI and the fourth DCI is used to schedule data channels of one or more cells, and the other is used to schedule a data channel of a cell, the format of the third DCI is different from the format of the fourth DCI, it can be understood that when the third DCI and the fourth DCI are both uplink scheduling DCI, the third DCI format is different from the fourth DCI format, for example, the format of the third DCI is DCI format 0_1, the format of the fourth DCI is DCI format 0_X or DCI format 0_5; or when the third DCI and the fourth DCI are both
  • the transceiver module is further used to send third configuration information to the terminal device, and the third configuration information is used to configure the cell set associated with the first search space set and the cell set associated with the second search space set.
  • the transceiver module is also used to receive first capability information from the terminal device, and the first capability information is used to indicate that the terminal device supports determining whether to allocate the candidate PDCCHs in each search space set to the search space set for monitoring according to the number of cells associated with each search space set.
  • Possible implementations of the communication device of the seventh aspect may refer to various possible implementations of the second aspect.
  • an embodiment of the present application provides another communication device, which has the function of implementing the behavior in the method embodiment of the third aspect above.
  • the communication device can be a communication device, or a component of a communication device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can implement all or part of the functions of the communication device.
  • the functions of the communication device can be implemented by hardware, or by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, wherein: the transceiver module is used to receive first configuration information from an access network device, the first configuration information is used to configure a first search space set and a second search space set, the first search space set includes a first candidate PDCCH, the second search space set includes a second candidate PDCCH, the first candidate PDCCH is used to carry first downlink control information DCI, the second candidate PDCCH is used to carry second DCI, the first DCI is used to schedule data channels of one or more cells, and the second DCI is used to schedule data channels of a cell; the transceiver module is used to allocate the first candidate PDCCH to the search space set for monitoring; and determine whether to allocate the second candidate PDCCH to the search space set for monitoring.
  • the transceiver module is also used to send first capability information to the access network device, wherein the first capability information is used to indicate that the terminal device supports allocating candidate PDCCHs for carrying DCI for scheduling data channels of one or more cells to a search space set for monitoring, and determining whether to allocate candidate PDCCHs for carrying DCI for scheduling data channels of a cell to a search space set for monitoring.
  • an embodiment of the present application provides a communication device, which has the function of implementing the behavior in the method embodiment of the fourth aspect above.
  • the communication device access network device
  • the communication device can be a communication device, or a component of a communication device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can implement all or part of the functions of the communication device.
  • the functions of the communication device can be implemented by hardware, or by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, wherein: the transceiver module is used to send first configuration information to the terminal device, the first configuration information is used to configure a first search space set and a second search space set, the first search space set contains a first candidate PDCCH, the second search space set contains a second candidate PDCCH, the first candidate PDCCH is used to carry first downlink control information DCI, the second candidate PDCCH is used to carry second DCI, the first DCI is used to schedule data channels of one or more cells, and the second DCI is used to schedule data channels of a cell; the processing module is also used to allocate the first candidate PDCCH to the search space set for monitoring; determine whether to allocate the second candidate PDCCH to the search space set for monitoring.
  • the transceiver module is used to send first configuration information to the terminal device
  • the first configuration information is used to configure a first search space set and a second search space set
  • the first search space set contains a first candidate PDCCH
  • the transceiver module is also used to receive first capability information from the terminal device, and the first capability information is used to indicate that the terminal device supports allocating candidate PDCCHs for carrying DCI for scheduling data channels of one or more cells to a search space set for monitoring, and determining whether to allocate candidate PDCCHs for carrying DCI for scheduling data channels of a cell to a search space set for monitoring.
  • an embodiment of the present application provides a communication device, which has the behavior of implementing the method embodiment of the fifth aspect above.
  • the communication device may be a communication device, or a component of a communication device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can realize all or part of the functions of the communication device.
  • the functions of the communication device may be realized by hardware, or by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, wherein: the transceiver module is used to receive first configuration information from an access network device, the first configuration information is used to configure a first search space set, the first search space set includes a first candidate PDCCH, the first candidate PDCCH is used to carry a first DCI, and the first DCI is used to schedule a primary cell and a first secondary cell of the terminal device; the processing module is used to determine the number of first monitored candidate PDCCHs and the first non-overlapping number of CCEs corresponding to the candidate PDCCHs included in the first search space set; when the first BD number exceeds the maximum number of candidate PDCCHs monitored on the primary cell, and/or the first non-overlapping number of CCEs exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell, each candidate PDCCH in the first search space set is monitored.
  • the processing module is also used to count the first BD number and the first non-overlapping number of CCEs
  • the processing module is further used to parse the domain information related to the first secondary cell scheduling and the domain information related to the primary cell scheduling in the first DCI.
  • the processing module is also used to parse the domain information related to the scheduling of the first secondary cell in the first DCI; ignore the domain information related to the scheduling of the primary cell in the first DCI, or skip the parsing of the domain information related to the scheduling of the primary cell in the first DCI.
  • the transceiver module is also used to send first capability information to the access network device, and the first capability information is used to indicate that the terminal device supports monitoring the candidate PDCCH in any search space set when the number of BDs corresponding to the candidate PDCCH included in any search space set exceeds the maximum number of candidate PDCCHs monitored by the main cell, and/or the number of non-overlapping CCEs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of non-overlapping CCEs corresponding to the main cell.
  • the transceiver module is also used to send second capability information to the access network device, and the second capability information is used to indicate that the terminal device supports scheduling the main cell and secondary cell of the terminal device using the DCI monitored through any search space set when the number of BDs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of candidate PDCCHs monitored by the main cell, and/or the number of non-overlapping CCEs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of non-overlapping CCEs corresponding to the main cell.
  • the transceiver module is also used to send third capability information to the access network device, and the third capability information is used to indicate that the terminal device supports scheduling the secondary cell of the terminal device using the DCI monitored through any search space set when the number of BDs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of candidate PDCCHs monitored by the primary cell, and/or the number of non-overlapping CCEs corresponding to the candidate PDCCHs included in the search space set exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell.
  • an embodiment of the present application provides another communication device, which includes a processor, the processor is coupled to a memory, the memory is used to store programs or instructions, when the program or instructions are executed by the processor, the communication device executes the method shown in any possible implementation of the first to fifth aspects above.
  • the process of sending information (or signal) in the above method can be understood as the process of outputting information based on the instructions of the processor.
  • the processor When outputting information, the processor outputs the information to the transceiver so that it can be transmitted by the transceiver. After the information is output by the processor, it may also need to be processed in other ways before it reaches the transceiver.
  • the processor receives input information
  • the transceiver receives the information and inputs it into the processor.
  • the information may need to be processed in other ways before it is input into the processor.
  • the processor may be a processor specifically used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the processor may also be used to execute a program stored in the memory, and when the program is executed, the communication device executes the method as shown in the first aspect or any possible implementation of the first aspect.
  • the memory is located outside the communication device. In a possible implementation, the memory is located inside the communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, and the transceiver is used to receive a signal or send a signal.
  • the present application provides another communication device, which includes a processing circuit and an interface circuit, wherein the interface circuit is used to acquire or output data; the processing circuit is used to execute the method shown in any possible implementation of the first to fifth aspects above.
  • the present application provides a computer-readable storage medium, in which a computer program is stored.
  • the computer program includes program instructions, which, when executed, enable the computer to execute the method shown in any possible implementation of the first to fifth aspects above.
  • the present application provides a computer program product, which includes a computer program, and the computer program includes program instructions, which, when executed, enable a computer to execute a method as shown in any possible implementation of the first to fifth aspects above.
  • the present application provides a communication system, comprising the communication device described in the sixth aspect or any possible implementation of the sixth aspect, and the communication device described in the seventh aspect or any possible implementation of the seventh aspect.
  • the present application provides a communication system, comprising the communication device described in the eighth aspect or any possible implementation of the eighth aspect, and the communication device described in the ninth aspect or any possible implementation of the ninth aspect.
  • the present application provides a chip, including a processor and a communication interface, wherein the processor reads instructions stored in a memory through the communication interface and executes a method as shown in any one of the first to fifth aspects above.
  • FIG1 is a schematic diagram of the architecture of a communication system 1000 used in an embodiment of the present application.
  • FIG2 is an interactive flow chart of a communication method provided in an embodiment of the present application.
  • FIG3 shows cells that may be scheduled by a single DCI in the first search space set and the second search space set
  • FIG4 is an interactive flow chart of another communication method provided in an embodiment of the present application.
  • FIG5 is an interactive flow chart of another communication method provided in an embodiment of the present application.
  • FIG6 is an interactive flow chart of another communication method provided in an embodiment of the present application.
  • FIG7 is an interactive flow chart of another communication method provided in an embodiment of the present application.
  • FIG8 is an interactive flow chart of another communication method provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a communication device 900 provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a possible communication device provided in an embodiment of the present application.
  • the uplink data transmission and downlink data reception of the terminal device require scheduling by the access network device (such as gNB), and the scheduling information is sent through the DCI carried by the PDCCH. Since the terminal device does not know the exact location of the PDCCH carrying the scheduling information of the terminal device, the terminal device performs blind detection (BD) in the search space set (SS set) within the control resource set (CORESET).
  • BD blind detection
  • SS set search space set
  • CORESET control resource set
  • the access network device can configure the number of candidate PDCCHs. For example, the access network device can configure multiple candidate PDCCHs for the terminal device, but not all of the multiple candidate PDCCHs carry the DCI that the terminal device expects to receive, that is, not all candidate PDCCHs carry the DCI sent to the terminal device.
  • the terminal device needs to attempt to decode each candidate PDCCH in the search space set to determine whether these candidate PDCCHs carry the DCI that it expects to receive.
  • the behavior of the terminal device attempting to decode each candidate PDCCH in one or more search space sets can be called blind detection (can be referred to as blind detection).
  • Monitoring DCI on a candidate PDCCH can be understood as performing blind detection on the candidate PDCCH.
  • the cyclic redundancy check (CRC) of the DCI that the terminal device expects to receive is masked by the cell-radio network temporary identifier (C-RNTI).
  • C-RNTI cell-radio network temporary identifier
  • the terminal device can perform CRC check on each candidate PDCCH in the search space set according to the C-RNTI. If the CRC check succeeds, the terminal device determines that the DCI that it expects to receive is decoded on the candidate PDCCH. Otherwise, the terminal device determines that the DCI that it expects to receive is not decoded on the candidate PDCCH.
  • the upper limit of the number of blind detections may refer to the maximum number of blind detections supported by the terminal device within a time slot or a time span.
  • the maximum number of blind detections may be understood as the maximum number of candidate PDCCHs monitored. For example, the terminal device will not monitor (or will not blindly detect) candidate PDCCHs exceeding the maximum number of candidate PDCCHs monitored.
  • the upper limit of the number of blind detections may be predefined by the protocol.
  • the upper limit of the number of blind detections may be related to information such as the subcarrier spacing and the terminal device capabilities. For example, for a cell with a subcarrier spacing of 15kHz, the upper limit of the number of blind detections corresponding to 1 time slot is 44.
  • the counting rule of the number of blind detections is: two or more configured candidate PDCCHs are counted as one blind detection number, and the two or more configured candidate PDCCHs need to meet four conditions at the same time.
  • two different candidate PDCCHs in the same search space set where the candidate PDCCH with a larger index is counted as one candidate PDCCH to be monitored (or the number of candidate PDCCHs to be monitored), and the other candidate PDCCH with a smaller index is not counted as one candidate PDCCH to be monitored.
  • two candidate PDCCHs belonging to different search space sets where the candidate PDCCH in the search space set with a larger index is counted as one candidate PDCCH to be monitored, and the candidate PDCCH in the search space set with a smaller index is not counted as one candidate PDCCH to be monitored.
  • the above four conditions are: the aggregation levels of the two or more configured candidate PDCCHs are the same, and the CCE sets of the two or more configured candidate PDCCHs are the same (which can be understood as the time-frequency resources of the two or more configured candidate PDCCHs are the same); the scrambling code sequences of the two or more configured candidate PDCCHs are the same; the CORESETs where the configured candidate PDCCHs are located are the same; and the sizes of the DCIs that need to be monitored on the two or more configured candidate PDCCHs are the same, for example, the number of bits of the DCI or the load size are the same.
  • the number of blind detection times of a search space set can be understood as the number of candidate PDCCHs to be monitored or the number of candidate PDCCHs used for monitoring obtained after a search space set passes a counting rule for the number of blind detection times.
  • CCE is the smallest unit of resource allocation for control information, that is, resource allocation for control information is based on CCE as the smallest unit.
  • One CCE is equal to six resource element groups (REGs), and one REG is defined as one physical resource block (PRB) on one OFDM symbol.
  • REGs resource element groups
  • PRB physical resource block
  • the terminal device needs to perform channel estimation on the pilot inserted in the PDCCH to offset the impact of the wireless channel on the transmission signal, so as to restore the transmission signal of the transmitter as accurately as possible at the receiving end.
  • the pattern of the pilot sequence located on 1 RB can be on the #1, #5, and #9 REs, and the PDCCH is allocated with CCE as the minimum unit, so the number of times the terminal device performs PDCCH channel estimation is counted in units of CCE. For multiple overlapping CCEs, the terminal device only needs to perform one PDCCH channel estimation, while for multiple non-overlapping CCEs, the terminal device needs to perform multiple PDCCH channel estimations.
  • the counting rule of non-overlapping CCEs is: the CCE corresponding to one configured candidate PDCCH is counted as one non-overlapping CCE; or, the CCE corresponding to multiple configured candidate PDCCHs that overlap in time-frequency resource positions are counted as non-overlapping CCEs, and the multiple configured candidate PDCCHs that overlap in time-frequency resource positions need to meet at least one of the two conditions.
  • the two conditions are: the CCEs corresponding to multiple configured candidate PDCCHs that overlap in time-frequency resource positions belong to different CORESETs, for example, whether they belong to different CORESETs can be determined based on the index of the CORESET; the receiving start symbol of each candidate PDCCH in multiple configured candidate PDCCHs that overlap in time-frequency resource positions is different.
  • PDCCH#1 belongs to CORESET#1
  • the AL of PDCCH#1 is 2, that is, PDCCH#1 Occupies 2 CCEs
  • candidate PDCCH#2 belongs to CORESET#2
  • the AL of PDCCH#2 is also 2, that is, PDCCH#2 also occupies 2 CCEs. Since PDCCH#1 and PDCCH#2 belong to different CORESETs, even if the time-frequency resource positions of PDCCH#1 and PDCCH#2 are the same, the 4 CCEs corresponding to PDCCH#1 and PDCCH#2 are non-overlapping CCEs, that is, a total of 4 non-overlapping CCEs.
  • the number of non-overlapping CCEs in a search space set can be understood as the number of non-overlapping CCEs corresponding to candidate PDCCHs for monitoring obtained by a search space set according to a non-overlapping CCE counting rule.
  • the non-overlapping CCE upper limit may refer to the maximum number of non-overlapping CCEs supported by a terminal device in a time slot or a time span. For example, a terminal device will not monitor (or will not blindly detect) candidate PDCCHs exceeding the maximum number of non-overlapping CCEs.
  • the non-overlapping CCE upper limit may be predefined by the protocol.
  • the non-overlapping CCE upper limit may be related to information such as the subcarrier spacing and the terminal device capabilities. For example, for a cell with a subcarrier spacing of 15kHz, the non-overlapping CCE upper limit corresponding to 1 time slot is 56.
  • the number of candidate PDCCHs corresponding to the CSS and USS configured by the base station is variable, not fixed. Therefore, overbooking may occur.
  • Overbooking situations include: the number of candidate PDCCHs to be monitored calculated based on the configuration of the candidate PDCCH and the counting rule of the BD number exceeds the upper limit of the BD number (BD limit) that the terminal device can support, or the number of non-overlapping CCEs calculated based on the configuration of the candidate PDCCH and the counting rule of non-overlapping CCE exceeds the upper limit of the non-overlapping CCE (CCE limit) that the terminal device can support.
  • the BD number can be understood as the number of candidate PDCCHs for monitoring or the number of candidate PDCCHs to be monitored.
  • NR introduces a mechanism to ensure that the terminal device will only monitor candidate PDCCHs or SS sets that do not exceed its own PDCCH monitoring capability.
  • the terminal device uses three modules, namely, BD counting (ie, the number of blind detections), non-overlapping CCE counting, and PDCCH mapping, to ensure that the candidate PDCCHs configured by the base station for the terminal device to monitor do not exceed the monitoring capability of the terminal device.
  • the terminal device can use the PDCCH mapping rule defined in the 3GPP standard protocol 38.213 to judge the candidate PDCCH (which can be called PDCCH candidate) configured by the base station, that is, to filter the candidate PDCCHs that need to be blindly detected into a range, so as to ensure that the candidate PDCCHs to be monitored do not exceed the blind detection capability of the terminal device.
  • PDCCH candidate which can be called PDCCH candidate
  • blind detection upper limit here is equivalent to the "maximum number of candidate PDCCHs monitored” or the “maximum number of non-overlapping CCEs", where: “the maximum number of candidate PDCCHs monitored” is equivalent to the “upper limit of BD times that the terminal device can support (BD limit)", and “the maximum number of non-overlapping CCEs” is equivalent to the “upper limit of non-overlapping CCEs that the terminal device can support (CCE limit)”.
  • the PDCCH mapping rules can be as follows:
  • the base station ensures that the number of blind detections and the number of non-overlapping CCEs obtained after the candidate PDCCHs of the CSS configured in one slot/span pass the BD/CCE counting rule do not exceed the blind detection upper limit and the non-overlapping CCE upper limit.
  • the number of blind detections and the number of non-overlapping CCEs corresponding to the CSS are subtracted from the BD/CCE limit to measure the BD/CCE limit configured for the USS.
  • the number of candidate PDCCHs and non-overlapping CCEs corresponding to a USS for monitoring are calculated one by one in ascending order of USS index, and it is determined whether the USS exceeds the updated BD/CCE limit:
  • this USS is the USS to be monitored. Then, the terminal device subtracts the number of candidate PDCCHs and non-overlapping CCEs corresponding to this USS from the updated BD/CCE limit, and updates the BD/CCE limit again. Then select a USS with a larger USS index than this USS index and perform the same operation;
  • the terminal device will not monitor this USS or USS with a larger index than this USS, and the PDCCH mapping operation of this slot/span will be terminated.
  • the execution granularity of PDCCH mapping can be either a time slot or a time span.
  • Both the terminal device and the base station will execute the PDCCH mapping rules to ensure that the terminal device and the base station have the same understanding of the candidate PDCCH or search space set to be monitored.
  • the base station may execute it at the slot or span granularity after configuring the PDCCH to determine the candidate PDCCH set to send DCI.
  • the terminal device After receiving the PDCCH configuration information sent by the base station, the terminal device executes it at the slot or span granularity to determine the candidate PDCCH to be monitored or the search space set to be monitored.
  • the communication solution provided by the present application can reduce the occurrence of situations where candidate PDCCHs in a search space set with a large number of associated cells cannot be monitored, thereby reducing the occurrence of access network equipment (such as base stations) that cannot schedule multiple cells through a single DCI.
  • the following is a communication system to which the communication solution provided by the present application is applicable.
  • FIG1 is a schematic diagram of the architecture of a communication system 1000 used in an embodiment of the present application.
  • the communication system includes a wireless access network 100 and a core network 200.
  • the communication system 1000 may also include the Internet 300.
  • the wireless access network 100 may include up to
  • the system may include at least one wireless access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device by wireless means, and the wireless access network device is connected to the core network by wireless or wired means.
  • the core network device and the wireless access network device may be independent and different physical devices, or the functions of the core network device and the logical functions of the wireless access network device may be integrated on the same physical device, or the functions of some core network devices and some wireless access network devices may be integrated on one physical device. Terminals and wireless access network devices may be connected to each other by wire or wireless means.
  • FIG. 1 is only a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • Radio access network equipment is an access device for terminals to access the communication system through wireless means.
  • Radio access network equipment can be a base station, an evolved NodeB (eNodeB), a transmission reception point (TRP), a next generation base station (next generation NodeB, gNB) in the fifth generation (5th generation, 5G) mobile communication system, a next generation base station in the sixth generation (6th generation, 6G) mobile communication system, a base station in a future mobile communication system, or an access node in a WiFi system; it can also be a module or unit that completes part of the functions of a base station, for example, a centralized unit (CU) or a distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • the CU completes the functions of the radio resource control protocol and the packet data convergence layer protocol (PDCP) of the base station, and can also complete the function of the service data adaptation protocol (SDAP);
  • the DU completes the functions of the radio link control layer and the medium access control (MAC) layer of the base station, and can also complete the functions of part of the physical layer or all of the physical layer.
  • 3GPP 3rd Generation Partnership Project
  • the wireless access network device can be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • the following description takes the base station as an example of the wireless access network device.
  • a terminal is a device with wireless transceiver function, which can send signals to a base station or receive signals from a base station.
  • a terminal can also be called a terminal device, user equipment (UE), mobile station, mobile terminal, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things (IOT), virtual reality, augmented reality, industrial control, automatic driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • MTC machine-type communication
  • IOT Internet of Things
  • virtual reality augmented reality
  • industrial control automatic driving
  • telemedicine smart grid
  • smart furniture smart office
  • smart wear smart transportation
  • smart city etc.
  • a terminal can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a wearable device, a vehicle, an airplane, a ship, a robot, a mechanical arm, a smart home device, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or movable. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water surface; they can also be deployed on airplanes, balloons, and artificial satellites. The embodiments of this application do not limit the application scenarios of base stations and terminals.
  • the helicopter or drone 120i in FIG. 1 can be configured as a mobile base station.
  • the terminal 120j that accesses the wireless access network 100 through 120i
  • the terminal 120i is a base station; but for the base station 110a, 120i is a terminal, that is, 110a and 120i communicate through the wireless air interface protocol.
  • 110a and 120i can also communicate through the interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, base stations and terminals can be collectively referred to as communication devices.
  • 110a and 110b in FIG. 1 can be referred to as communication devices with base station functions
  • 120a-120j in FIG. 1 can be referred to as communication devices with terminal functions.
  • Base stations and terminals, base stations and base stations, and terminals and terminals can communicate through authorized spectrum, unauthorized spectrum, or both; they can communicate through spectrum below 6 gigahertz (GHz), spectrum above 6 GHz, or spectrum below 6 GHz and spectrum above 6 GHz.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by a module (such as a chip) in the base station, or by a control subsystem including the base station function.
  • the control subsystem including the base station function here may be a control center in the above-mentioned application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or by a device including the terminal function.
  • the base station sends a downlink signal or downlink information to the terminal, and the downlink information is carried on the downlink channel; the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • the terminal In order to communicate with the base station, the terminal needs to establish a wireless connection with the cell controlled by the base station.
  • the cell with which the terminal has established a wireless connection is called the service cell of the terminal.
  • the service cell When the terminal communicates with the service cell, it will also be interfered by signals from neighboring cells.
  • FIG2 is an interactive flow chart of a communication method provided in an embodiment of the present application. As shown in FIG2 , the method includes:
  • An access network device sends first configuration information to a terminal device.
  • the terminal device receives the first configuration information from the access network device.
  • the access network device is the wireless access network device in Figure 1.
  • the above-mentioned first configuration information is used to configure the first search space set and the second search space set.
  • the above-mentioned first search space set includes the first candidate PDCCH.
  • the above-mentioned first candidate PDCCH is used to carry the first DCI.
  • the first search space set includes one or more candidate PDCCHs. In other words, the first search space set may include only the first candidate PDCCH, or may include the first candidate PDCCH and other candidate PDCCHs, or may be understood as the first candidate PDCCH being any one of the multiple candidate PDCCHs in the first search space set.
  • the above-mentioned second search space set includes the second candidate PDCCH.
  • the above-mentioned second candidate PDCCH is used to carry the second DCI.
  • the second search space set includes one or more candidate PDCCHs.
  • the second search space set may include only the second candidate PDCCH, or may include the second candidate PDCCH and other candidate PDCCHs, or may be understood as the second candidate PDCCH being any one of the multiple candidate PDCCHs in the second search space set.
  • the terminal device may also perform the following operations: sending the first capability information to the above-mentioned access network device, the above-mentioned first capability information is used to indicate that the above-mentioned terminal device supports the order of determining whether to allocate the candidate PDCCH in each search space set to the search space set for monitoring according to the number of cells associated with each search space set. Accordingly, the access network device receives the first capability information from the terminal device. In this implementation, the first capability information is sent to the access network device so that the access network device knows that the terminal device supports the order of determining whether to allocate the candidate PDCCH in each search space set to the search space set for monitoring according to the number of cells associated with each search space set. After obtaining the first capability information, the access network device can configure the terminal device and the access network device to execute the process in Figure 2.
  • the terminal device determines whether to allocate the candidate PDCCH in the first search space set to the search space set for monitoring after determining whether to allocate the candidate PDCCH in the second search space set to the search space set for monitoring.
  • the first search space set Before the terminal device determines to monitor the candidate PDCCH in the first search space set, the first search space set can be regarded as a configured search space set; after determining to monitor the candidate PDCCH in the first search space set, the first search space set can be regarded as a search space set for monitoring.
  • the search space set configured by the first configuration information is not necessarily the search space set for monitoring.
  • the search space set is the search space set for monitoring. If a search space set is determined as a search space set to be monitored after passing the PDCCH mapping rule, it can be understood as determining to allocate the candidate PDCCH in this search space set to the search space set for monitoring. For example, if the candidate PDCCHs contained in USS#1 do not exceed the BD/CCE limit or the updated BD/CCE limit after being operated by the PDCCH mapping rule one by one, it can be understood as determining to allocate all candidate PDCCHs in USS#1 to USS#1 for monitoring.
  • a search space set is not determined as a search space set to be monitored after passing the PDCCH mapping rule, it can be understood as determining not to allocate the candidate PDCCH in this search space set to the search space set for monitoring, and the UE will not monitor all candidate PDCCHs in this search space set, and it can also be understood as the UE discarding all candidate PDCCHs in this search space set.
  • USS#1 is a configured search space set for monitoring DCI related to its configuration, but whether the terminal device actually monitors the candidate PDCCHs in USS#1 needs to be determined by the PDCCH mapping rules.
  • USS#1 changes from the configured search space set to the USS#1 to be monitored, that is, the UE needs to monitor all candidate PDCCHs in USS#1.
  • USS#1 changes from the configured search space set to the non-monitored USS#1, that is, the UE does not need to monitor all the candidate PDCCHs in USS#1.
  • Determining whether to allocate the candidate PDCCHs in the second search space set to the search space set for monitoring can be: determining whether to allocate the candidate PDCCHs in the second search space set to the second search space set for monitoring. Executing the determination of whether to allocate the candidate PDCCHs in each search space set to the search space set for monitoring can be understood as the PDCCH mapping process/rules for the search space set described in the background technology.
  • step 202 shows an example of the order in which the terminal device performs PDCCH mapping on multiple search space sets (including the first search space set and the second search space set) of the first configuration information.
  • the terminal device may perform the following operations: determine the order in which the multiple search space sets configured by the first configuration information are mapped to the PDCCH. In other words, determine the mapping priority of each search space set configured by the first configuration information, and the higher the mapping priority of the search space set, the earlier it participates in the PDCCH mapping.
  • the order of PDCCH mapping for multiple search space sets can be determined in the following way: sort the order of PDCCH mapping for each search space set according to the number of cells associated with each search space set, and if the number of cells associated with the two search space sets is the same, sort the order of PDCCH mapping for the two search space sets according to the indexes of the two search space sets.
  • the terminal device determines the order of PDCCH mapping for each search space set according to the number of cells associated with each search space set and/or the index of each search space set.
  • the terminal device After the terminal device determines the order of PDCCH mapping for each search space set, it can perform PDCCH mapping on the search space sets in sequence according to the order; when the monitored candidate PDCCH corresponding to a certain search space set exceeds the BD number upper limit or the number of non-overlapping CCEs exceeds the non-overlapping CCE upper limit, the terminal device will not monitor this search space set and the search space set participating in the PDCCH mapping after the search space set, and the PDCCH mapping operation of this slot/span is terminated.
  • the embodiment of the present application mainly provides a method for determining the order of PDCCH mapping for each search space set, and does not limit the specific method of PDCCH mapping for the search space set.
  • the first configuration information is used to configure USS set #1 (i.e., the first search space set), USS set #2 (i.e., the second search space set), and USS set #3.
  • USS set #1 is associated with 2 cells
  • USS set #2 is associated with 3 cells
  • USS set #3 is associated with 4 cells.
  • the order of PDCCH mapping for USS set #1, USS set #2, and USS set #3 by the terminal device is as follows: USS set #3 performs the PDCCH mapping operation first, USS set #2 performs the PDCCH mapping operation after USS set #3, and USS set #1 enters the PDCCH mapping operation after USS set #3 and USS set #2.
  • the priorities of USS set #1, USS set #2, and USS set #3 are arranged as follows: USS set #3>USS set #2>USS set #1, that is, the USS set with a smaller number of scheduling cells has a lower priority.
  • the first configuration information is used to configure USS set #1 (i.e., the first search space set), USS set #2 (i.e., the second search space set) and USS set #3.
  • the index of USS set #1 is smaller than the index of USS set #2.
  • USS set #1 is associated with 2 cells
  • USS set #2 is associated with 2 cells
  • USS set #3 is associated with 4 cells.
  • the order in which the terminal device performs PDCCH mapping on USS set #1, USS set #2, and USS set #3 is as follows: USS set #3 performs PDCCH mapping operation first, USS set #1 performs PDCCH mapping operation after USS set #3, and USS set #2 performs PDCCH mapping operation after USS set #3 and USS set #1.
  • the cells associated with the first search space set include the K cells used for scheduling by the first DCI
  • the cells associated with the second search space set include the F cells used for scheduling by the second DCI
  • the index of the first search space set is greater than or less than the index of the second search space
  • the K and F are both integers greater than 0, and the K is greater than the F.
  • the number of cells associated with the first search space set may be the total number of cells used for scheduling by at most P DCIs carried by P candidate PDCCHs (including the first candidate PDCCH) in the first search space set, each candidate PDCCH carries at most one DCI, and P is an integer greater than 0.
  • the first search space set includes only the first candidate PDCCH, the first DCI carried by the first candidate PDCCH is used to schedule K cells, and the number of cells associated with the first search space set is K.
  • the first search space set includes the first candidate PDCCH and candidate PDCCH 1, the first DCI carried by the first candidate PDCCH is used to schedule 2 cells, the DCI 1 carried by candidate PDCCH 1 is used to schedule 3 cells, and the number of cells associated with the first search space set is 5 (2+3).
  • the number of cells associated with the above-mentioned second search space set can be the total number of cells scheduled by the Q DCIs carried by the Q candidate PDCCHs (including the second candidate PDCCH) in the second search space set, each candidate PDCCH carries at most one DCI, and Q is an integer greater than 0.
  • the second search space set only includes the second candidate PDCCH, the second DCI carried by the second candidate PDCCH is used to schedule F cells, and the number of cells associated with the second search space set is F.
  • the second search space set includes the second candidate PDCCH and candidate PDCCH 2, the first DCI carried by the second candidate PDCCH is used to schedule 2 cells, the DCI 2 carried by candidate PDCCH 2 is used to schedule 4 cells, and the number of cells associated with the second search space set is 6 (2+4).
  • the cell used for scheduling by the above-mentioned first DCI may be at least one of the cells associated with the first search space set.
  • the first search space set is associated with the cell set CC#1, CC#2 and CC#3. At a certain moment, the UE detects a first DCI in the first search space set, and this first DCI schedules cells CC#1 and CC#3.
  • the UE detects a first DCI in the first search space set, and this first DCI schedules cells CC#1, CC#2 and CC#3 at the same time.
  • the description of the second search space set and the first search space set will not be repeated here.
  • the first DCI is used to schedule data channels of one or more cells
  • the second DCI is used to schedule data channels of one or more cells
  • both the first DCI and the second DCI are used for uplink scheduling
  • the format of the first DCI and the format of the second DCI are both the first format, and the DCI of the first format is used to schedule the uplink data channel of one or more cells; or, the first DCI and the second DCI are both used for downlink scheduling, the format of the first DCI and the format of the second DCI are both the second format, and the DCI of the second format is used to schedule the downlink data channel of one or more cells.
  • the present application mainly involves two types of DCI, one DCI (which may be called legacy DCI, traditional DCI) can only schedule the data channel of one cell, and the other DCI (which may be called single DCI) is used to schedule the data signal of one or more cells.
  • Legacy DCI is a DCI format (DCI format) that has been introduced in the current standard, such as the fallback DCI format used to schedule uplink DCI format 0_0 and the DCI format 1_0 for scheduling downlink, the non-fall back DCI format used to schedule uplink DCI format 0_1 and the DCI format 1_1 for scheduling downlink, the compressed DCI format used to schedule uplink DCI format 0_2 and the DCI format 1_2 for scheduling downlink, etc.
  • DCI format DCI format
  • the first DCI and the second DCI are both single DCI.
  • the DCI in the first format is a single DCI for scheduling an uplink data channel of one or more cells, such as DCI format 0_X or DCI format 0_5 for scheduling an uplink data channel.
  • the DCI in the second format is a single DCI for scheduling a downlink data channel of one or more cells, such as DCI format 1_X or DCI format 1_5 for scheduling a downlink data channel.
  • the first DCI is used to schedule data channels of one or more cells
  • the second DCI is used to schedule data channels of one cell
  • the format of the first DCI is the first format
  • the DCI of the first format is used to schedule uplink data channels of one or more cells
  • the format of the second DCI is the third format
  • the DCI of the third format is used to schedule uplink data channels of one cell
  • both the first DCI and the second DCI are used for downlink scheduling
  • the format of the first DCI is the second format
  • the DCI of the second format is used to schedule downlink data channels of one or more cells
  • the format of the second DCI is the fourth format
  • the DCI of the fourth format is used to schedule downlink data channels of one cell.
  • the first DCI is a single DCI
  • the second DCI is a legacy DCI.
  • the DCI of the first format is a single DCI used to schedule uplink data channels of one or more cells.
  • the DCI of the third format is a single DCI used to schedule uplink data channels of one cell.
  • the second format of DCI is a single DCI used to schedule the downlink data channel of one or more cells.
  • the fourth format of DCI is a legacy DCI used to schedule the downlink data channel of one cell.
  • the terminal device may perform the following operations: receiving third configuration information from the access network device, the third configuration information being used to configure the cell set associated with the first search space set, and the cell set associated with the second search space set.
  • the third configuration information may be high-level signaling, such as an RRC message.
  • Different SS sets are associated with different sets of cells that can be scheduled, or with different co-scheduled cells.
  • the search space set is associated with the scheduled cell set, and the DCI monitored by the terminal device in this search space set can schedule a subset of the cell set, or the monitored DCI can schedule at least one cell in the cell set.
  • the access network device associates the first search space set with SCell#3 and SCell#1 through the third configuration information (including RRC parameter configuration), that is, the terminal device monitors a single DCI in the first search space set, and this single DCI can schedule SCell#3, or schedule SCell#1, or schedule SCell#1 and SCell#3 at the same time.
  • the cells associated with the first search space set are related to the value of the first parameter.
  • the first parameter may be a carrier indicator field (CIF), and the value of the CIF corresponding to the first search space set is 1.
  • the access network device associates the second search space set with PCell and SCell#2 through the third configuration information (including RRC parameter configuration), that is, the terminal device monitors a single DCI in the second search space set, and this single DCI can schedule PCell, or schedule SCell#2, or schedule PCell and SCell#2 at the same time.
  • the cells associated with the second search space set are related to the value of the second parameter (such as CIF).
  • the value of the CIF corresponding to the second search space set is 2.
  • Figure 3 shows the cells that may be scheduled by the single DCI in the first search space set and the second search space set.
  • single DCI1 in the first search space set may schedule SCell#1 and SCell#3, and single DCI 2 in the second search space set may schedule PCell and SCell#2.
  • ⁇ SCell#1, SCell#3 ⁇ and ⁇ PCell, SCell#2 ⁇ can be understood as different combinations of co-scheduled cells ⁇ PCell, SCell#1, SCell#2, SCell#3 ⁇ , or as the SS set used to monitor single DCI being related to the co-scheduled cells.
  • the cell set associated with the first search space set and the cell set associated with the second search space set can be configured, so that according to the number of cells associated with the first search space set and the number of cells associated with the second search space set, it is determined to first perform PDCCH mapping on the first search space set with more associated cells.
  • the access network device determines whether to allocate the candidate PDCCH in the first search space set to the search space set for monitoring after determining whether to allocate the candidate PDCCH in the second search space set to the search space set for monitoring.
  • the search space set with a larger number of associated cells performs PDCCH mapping first, and the search space set with a smaller number of associated cells performs PDCCH mapping later.
  • the search space set with a smaller number of associated cells performs PDCCH mapping first, and the search space set with a larger number of associated cells performs PDCCH mapping later.
  • the order of performing PDCCH mapping on each search space set can be determined according to the number of cells associated with each search space set based on actual needs.
  • the present application mainly describes a scheme in which the search space set with a larger number of associated cells performs PDCCH mapping first.
  • Step 203 may refer to step 202.
  • step 202 is executed by the terminal device, and step 203 is executed by the access network device.
  • the order of step 202 and step 203 is not limited.
  • the terminal device executes step 202 and the access network device executes step 203, which can ensure that the terminal device and the access network device have consistent understanding of the monitored candidate PDCCH or search space set.
  • the first search space set is mapped to PDCCH earlier, that is, the first search space set participates in PDCCH mapping earlier;
  • the second search space set is mapped to PDCCH later, that is, the second search space set participates in PDCCH mapping later.
  • the first search space set that participates in PDCCH mapping earlier is more likely to be retained for the terminal device to monitor, while the second search space set that participates in the PDCCH mapping operation later is more likely to be discarded or cannot be allocated to the terminal device for monitoring.
  • FIG4 is an interactive flow chart of another communication method provided in an embodiment of the present application.
  • the interactive flow in FIG4 is a possible implementation of the method described in FIG2.
  • the search space set can be orderly mapped to the PDCCH.
  • the method includes:
  • An access network device sends first configuration information to a terminal device.
  • the terminal device receives the first configuration information from the access network device.
  • Step 401 may refer to step 201 .
  • the terminal device determines whether to allocate the candidate PDCCH in the first search space set to the search space set for monitoring after determining whether to allocate the candidate PDCCH in the second search space set to the search space set for monitoring.
  • Step 402 may refer to step 202 .
  • the access network device determines whether to allocate the candidate PDCCH in the first search space set to the search space set for monitoring after determining whether to allocate the candidate PDCCH in the second search space set to the search space set for monitoring.
  • Step 403 may refer to step 203.
  • the terminal device executes step 402, and the access network device executes step 403, which can ensure that the terminal device and the access network device have consistent understandings of the monitored candidate PDCCH or search space set.
  • the terminal device may perform the following operations: determine the order of PDCCH mapping for multiple search space sets configured by the first configuration information.
  • the order of PDCCH mapping for multiple search space sets can be determined in the following manner: sort the order of PDCCH mapping for each search space set according to the number of cells associated with each search space set, and if the number of cells associated with two search space sets is the same, sort the order of PDCCH mapping for the two search space sets according to the indexes of the two search space sets.
  • the access network device sends second configuration information to the terminal device.
  • the terminal device receives the second configuration information from the access network device.
  • the above-mentioned second configuration information is used to configure the third search space set and the fourth search space set.
  • the above-mentioned third search space set includes a third candidate PDCCH, and the above-mentioned third candidate PDCCH is used to carry the third DCI.
  • the third search space set may include only the third candidate PDCCH, or may include the third candidate PDCCH and other candidate PDCCHs.
  • the above-mentioned fourth search space set includes a fourth candidate PDCCH, and the above-mentioned fourth candidate PDCCH is used to carry the fourth DCI.
  • the fourth search space set may include only the fourth candidate PDCCH, or may include the fourth candidate PDCCH and other candidate PDCCHs.
  • One of the third DCI and the fourth DCI is used to schedule data channels of one or more cells, and the other is used to schedule data channels of one cell.
  • one of the third DCI and the fourth DCI is a single DCI, and the other is a legacy DCI.
  • the terminal device determines whether to allocate the candidate PDCCH in the third search space set to the search space set for monitoring after determining whether to allocate the candidate PDCCH in the fourth search space set to the search space set for monitoring.
  • the index of the third search space set is less than the index of the fourth search space set.
  • the network device configures the UE to listen to the third candidate PDCCH of the third search space set, the third candidate PDCCH is used to carry the third DCI, and the third DCI is legacy DCI.
  • the network device configures the UE to listen to the fourth candidate PDCCH of the fourth search space set, the fourth candidate PDCCH is used to carry the fourth DCI, and the fourth DCI is single DCI.
  • the network configures a cell (for example, CC#3) associated with the fourth search space set through high-level parameters (for example, RRC parameters), that is, the fourth DCI can only be used to schedule this cell (CC#3).
  • the third search space set is a search space set in the prior art, it can only schedule one cell.
  • the fourth search space set is associated with one cell due to high-level parameter configuration, or the fourth search space set is associated with a small cell.
  • the zone set contains only one cell, and the third search space set and the fourth search space set are associated with the same number of cells, and both are associated with one cell. If the index of the third search space set is smaller than that of the fourth search space set, the third search space set first performs the PDCCH mapping operation, and then performs the PDCCH mapping operation on the fourth search space set. Conversely, when the index of the third search space set is larger than that of the fourth search space set, the fourth search space set first performs the PDCCH mapping operation, and then performs the PDCCH mapping operation on the third search space set.
  • Step 405 shows an example of the order in which the terminal device performs PDCCH mapping on multiple search space sets (including the third search space set and the fourth search space set) of the second configuration information.
  • the order in which the two search space sets are mapped to PDCCH is sorted according to the indexes of the two search space sets.
  • step 405 is as follows: the third search space set and the fourth search space are both associated with 1 cell, and the index of the fourth search space set is before the index of the third search space set, that is, the index of the fourth search space set is less than the index of the third search space set, and the terminal device first performs PDCCH mapping on the fourth search space set, and then performs PDCCH mapping on the third search space set.
  • the terminal device may perform the following operations: determine the order in which the multiple search space sets configured by the second configuration information are mapped to PDCCH.
  • the second configuration information is also used to configure one or more search space sets with a number of associated cells greater than 1, the order in which the PDCCH mapping is performed on each search space set is determined according to the number of cells associated with each search space set and the index of each search space set.
  • the access network device determines whether to allocate the candidate PDCCH in the third search space set to the search space set for monitoring after determining whether to allocate the candidate PDCCH in the fourth search space set to the search space set for monitoring.
  • Step 406 may refer to step 405.
  • the difference between step 406 and step 405 is that step 405 is executed by the terminal device, and step 406 is executed by the access network device.
  • the order of step 405 and step 406 is not limited.
  • the order of steps 401 to 403 and steps 404 to 406 is not limited.
  • the terminal device and the access network device may first execute steps 401 to 403, and then execute steps 404 to 406; or may first execute steps 404 to 406, and then execute steps 401 to 403.
  • the terminal device executes step 405 and the access network device executes step 406, which can ensure that the terminal device and the access network device have consistent understanding of the monitored candidate PDCCH or search space set.
  • the order of PDCCH mapping for each search space set is determined according to the number of cells associated with each search space set and/or the index of each search space set; the search space set can be orderly mapped with PDCCH. Since the search space set that participates in the PDCCH mapping earlier is more likely to be retained for the terminal device to monitor, and the search space set that participates in the PDCCH mapping operation later is more likely to be discarded or cannot be allocated to the terminal device for monitoring, it is possible to reduce the occurrence of the situation where the candidate PDCCH in the search space set with a large number of associated cells cannot be monitored, thereby reducing the situation where the access network device (such as a base station) cannot schedule multiple cells through a single DCI.
  • the access network device such as a base station
  • FIG5 is an interactive flow chart of another communication method provided in an embodiment of the present application. Compared with the methods in FIG2 and FIG4, the method in FIG5 solves the same technical problems and achieves basically the same technical effects, but uses different technical means.
  • the main principle of the method in FIG5 is that the SS set (hereinafter referred to as MC-USS set) used to monitor single DCI will not enter the PDCCH mapping operation, and the SS set used to monitor legacy DCI will enter the PDCCH mapping operation; after the PDCCH mapping operation, the terminal device will monitor all MC-USS sets configured by the access network device, and will monitor all legacy DCI or part of the legacy DCI or will not monitor the legacy DCI.
  • the candidate PDCCH in the SS set used to monitor single DCI carries single DCI
  • the candidate PDCCH in the SS set used to monitor legacy DCI carries legacy DCI.
  • the method includes:
  • the access network device sends first configuration information to the terminal device.
  • the terminal device receives the first configuration information from the access network device.
  • the above-mentioned first configuration information is used to configure the first search space set and the second search space set.
  • the above-mentioned first search space set includes a first candidate PDCCH, and the above-mentioned first candidate PDCCH is used to carry the first DCI, and the above-mentioned first DCI is used to schedule the data channel of one or more cells.
  • the first search space set may include only the first candidate PDCCH, and may also include the first candidate PDCCH and other candidate PDCCHs.
  • the above-mentioned second search space set includes a second candidate PDCCH, and the above-mentioned second candidate PDCCH is used to carry the second DCI, and the above-mentioned second DCI is used to schedule the data channel of a cell.
  • the first DCI is a single DCI
  • the second DCI is a legacy DCI.
  • the terminal device also performs the following operation: sending first capability information to the access network device.
  • the access network device receives the first capability information from the terminal device.
  • the first capability information is used to indicate that the above-mentioned terminal device supports allocating candidate PDCCHs for carrying DCI for scheduling data channels of one or more cells to a search space set for monitoring, and determining whether to allocate candidate PDCCHs for carrying DCI for scheduling data channels of a cell to a search space set for monitoring.
  • the first capability information is used to indicate that the terminal device supports using the search space set for monitoring single DCI as the search space set to be monitored, and performing PDCCH mapping on the search space set for monitoring legacy DCI.
  • the access network device can be configured The terminal device and the access network device execute the process in Figure 5.
  • the terminal device allocates a first candidate PDCCH to a search space set for monitoring.
  • Step 502 may be replaced by: the terminal device allocates the candidate PDCCHs in the first search space set to the first search space set for monitoring, that is, uses the first search space set as the search space set to be monitored.
  • step 502 is replaced by: the terminal device allocates the candidate PDCCH in each search space set configured by the first configuration information for monitoring single DCI to the search space set for monitoring.
  • the first configuration information is used to configure search space set 1 (i.e., the first search space set), search space set (i.e., the second search space set), and search space set 3.
  • Search space set 1 and search space set 3 are both used to monitor single DCI
  • search space set 2 is used to monitor legacy DCI.
  • the terminal device allocates the candidate PDCCH in search space set 1 to search space set 1 for monitoring, and allocates the candidate PDCCH in search space set 2 to search space set 2 for monitoring.
  • the terminal device allocates the candidate PDCCH in each search space set configured by the first configuration information for monitoring single DCI to the search space set for monitoring, which can ensure that each single DCI will be monitored.
  • the terminal device determines whether to allocate the second candidate PDCCH to a search space set for monitoring.
  • Step 503 may be replaced by: the terminal device determines whether to allocate the candidate PDCCH in the second search space set to the second search space set for monitoring, that is, performs PDCCH mapping on the second search space set.
  • the order in which the terminal device performs steps 502 and 503 is not limited.
  • step 503 is replaced by: the terminal device performs PDCCH mapping on the search space set configured by the first configuration information for monitoring legacy DCI.
  • the terminal device performs PDCCH mapping on each search space set in turn according to the index of each search space set for monitoring legacy DCI.
  • the specific manner in which the terminal device performs PDCCH mapping on the search space set configured by the first configuration information for monitoring legacy DCI can refer to the relevant content of the PDCCH mapping process above, which will not be repeated here.
  • the access network device allocates the first candidate PDCCH to a search space set for monitoring.
  • Step 504 may refer to step 502. The difference between step 504 and step 502 is that step 502 is executed by the terminal device, and step 504 is executed by the access network device.
  • the access network device determines whether to allocate the second candidate PDCCH to a search space set for monitoring.
  • Step 505 may refer to step 503. The difference between step 505 and step 503 is that step 503 is executed by the terminal device, and step 505 is executed by the access network device.
  • both the terminal device and the access network device will execute the PDCCH mapping rule to ensure that the terminal device and the access network device have a consistent understanding of the monitored candidate PDCCH or search space set.
  • the terminal device executes steps 502 and 503, and the access network device executes steps 504 and 505, which can ensure that the terminal device and the access network device have a consistent understanding of the monitored candidate PDCCH or search space set.
  • the first candidate PDCCH is allocated to the search space set for monitoring, which can prevent the candidate PDCCH for carrying DCI for scheduling multiple cells from being unable to be monitored.
  • Figure 6 is an interactive flow chart of another communication method provided in an embodiment of the present application. Compared with the methods in Figures 2, 4, and 5, the method in Figure 6 solves the same technical problems, achieves basically the same technical effects, and adopts different technical means.
  • the main principle of the method in Figure 6 is to count the number of monitored candidate PDCCHs and the number of non-overlapping CCEs corresponding to the search space set to the primary cell and one or more secondary cells of the terminal device; when the number of monitored candidate PDCCHs corresponding to any search space set exceeds the maximum number of monitored candidate PDCCHs on the primary cell, or the number of non-overlapping CCEs corresponding to any search space set exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell, the terminal device still monitors the arbitrary search space set.
  • the method includes:
  • the access network device sends first configuration information to the terminal device.
  • the terminal device receives first configuration information from the access network device.
  • the above-mentioned first configuration information is used to configure a first search space set, the above-mentioned first search space set includes a first candidate PDCCH, the above-mentioned first candidate PDCCH is used to carry a first DCI, and the above-mentioned first DCI is used to schedule the primary cell and the first secondary cell of the above-mentioned terminal device.
  • the first DCI can be used to schedule one or more secondary cells, and the first secondary cell is only used as an example.
  • the first DCI is a single DCI.
  • the terminal device also performs the following operations: sending the first capability information to the access network device, the first capability information is used to indicate that the terminal device supports monitoring the candidate PDCCH in any search space set when the number of BDs corresponding to the candidate PDCCH contained in any search space set exceeds the maximum number of candidate PDCCHs monitored by the main cell, and/or the number of non-overlapping CCEs corresponding to the candidate PDCCH contained in any search space set exceeds the maximum number of non-overlapping CCEs corresponding to the main cell.
  • the access network device can configure the terminal device and the access network device to execute the process in Figure 6.
  • the first capability information is sent to the access network device so that the access network device can know the capabilities supported by the terminal device.
  • the terminal device determines the number of first monitored candidate PDCCHs and the number of first non-overlapping CCEs corresponding to the candidate PDCCHs included in the first search space set.
  • the terminal device counts the first BD number and the first non-overlapping CCE number to the primary cell, and counts the first BD number and the first non-overlapping CCE number to the first secondary cell.
  • the first BD number and the first non-overlapping CCE number are counted to the first secondary cell, which can be: the first BD number and the first non-overlapping CCE number are counted to each secondary cell.
  • the first DCI is used to schedule the primary cell, secondary cell 1, and secondary cell 2, the first BD number and the first non-overlapping CCE number are counted to the primary cell, the first BD number and the first non-overlapping CCE number are counted to the secondary cell 1, and the first BD number and the first non-overlapping CCE number are counted to the secondary cell 2.
  • Step 603 is optional and not necessary.
  • the first BD number exceeds the maximum number of candidate PDCCHs monitored on the primary cell and/or the first non-overlapping CCE number exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell, monitor each candidate PDCCH in the first search space set.
  • the fact that the first BD number exceeds the maximum number of candidate PDCCHs monitored on the primary cell indicates that monitoring the first search space set will exceed the PDCCH monitoring capability of the terminal device on the primary cell.
  • the fact that the first non-overlapping CCE number exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell indicates that monitoring the first search space set will exceed the PDCCH monitoring capability of the terminal device on the primary cell.
  • the first DCI is used to schedule the primary cell and the first secondary cell of the terminal device; when the first BD number exceeds the maximum number of candidate PDCCHs monitored on the primary cell, and/or the first non-overlapping CCE number exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell, monitoring each candidate PDCCH in the first search space set uses the PDCCH monitoring capability of the terminal device on the first secondary cell, and therefore will not exceed the PDCCH monitoring capability of the terminal device.
  • Step 604 may be replaced by: when the first BD number does not exceed the maximum number of candidate PDCCHs monitored on the primary cell, and the first non-overlapping CCE number does not exceed the maximum number of non-overlapping CCEs corresponding to the primary cell, each candidate PDCCH in the first search space set is monitored. It can be understood that each candidate PDCCH of any search space set used to monitor single DCI will be monitored. Steps 602 to 604 may be understood as examples of operations performed by a terminal device on a search space set used to monitor single DCI. The terminal device may perform operations similar to steps 602 to 604 on any search space set used to monitor single DCI, so as to avoid failure to monitor single DCI.
  • the terminal device performs operations similar to steps 602 to 604 for each search space set configured by the first configuration information for monitoring single DCI, and for each search space set configured by the first configuration information for monitoring legacy DCI, the terminal device screens the candidate PDCCHs that need to be blindly detected into a range according to the PDCCH mapping rule described above. For example, according to the index of the search space set for monitoring legacy DCI, the search space set for monitoring legacy DCI is sequentially mapped to PDCCH.
  • each candidate PDCCH in the first search space set is monitored; this can avoid the situation where the access network device (such as a base station) is unable to schedule multiple cells through a single DCI.
  • FIG7 is an interactive flow chart of another communication method provided in an embodiment of the present application.
  • the interactive flow in FIG7 is a possible implementation of the method described in FIG6. As shown in FIG7, the method includes:
  • An access network device sends first configuration information to a terminal device.
  • Step 701 may refer to step 601 .
  • the terminal device performs the following operations: sending second capability information to the access network device, the second capability information is used to indicate that the terminal device supports scheduling the primary cell and the secondary cell of the terminal device using the DCI monitored through the arbitrary search space set when the number of BDs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of candidate PDCCHs monitored by the primary cell, and/or the number of non-overlapping CCEs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell.
  • the arbitrary search space set here refers to the search space set used to monitor single DCI.
  • the access network device can configure the terminal device and the access network device to execute the process in Figure 7.
  • the second capability information is sent to the access network device so that the access network device can learn the capabilities supported by the terminal device.
  • the terminal device determines the number of first monitored candidate PDCCHs and the number of first non-overlapping CCEs corresponding to the candidate PDCCHs included in the first search space set.
  • Step 702 may refer to step 602 .
  • the terminal device counts the first BD number and the first non-overlapping CCE number to the primary cell, and counts the first BD number and the first non-overlapping CCE number to the first secondary cell.
  • Step 703 may refer to step 603 .
  • the first BD number exceeds the maximum number of candidate PDCCHs monitored on the primary cell, and/or the first non-overlapping number of CCEs. When the maximum number of non-overlapping CCEs corresponding to the primary cell is exceeded, each candidate PDCCH in the first search space set is monitored.
  • Step 704 may refer to step 604 .
  • the terminal device parses the domain information related to the scheduling of the first secondary cell and the domain information related to the scheduling of the primary cell in the first DCI.
  • the first DCI when the first BD number exceeds the maximum number of candidate PDCCHs monitored on the primary cell, and/or the first non-overlapping CCE number exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell, the first DCI cannot schedule the primary cell, and the domain information related to the primary cell in the first DCI is set as reserved bits, or the terminal device understands that the domain information related to the primary cell in the first DCI is a reserved bit.
  • the reserved bit can be 0 or 1, and does not represent any specific meaning or indicate any scheduling information.
  • the access network device can schedule the primary cell and the first secondary cell of the terminal device through the first DCI.
  • each candidate PDCCH in the first search space set is monitored, and the domain information related to the scheduling of the first secondary cell and the domain information related to the scheduling of the primary cell in the first DCI are parsed; this can avoid the situation where the access network device (such as a base station) cannot schedule multiple cells through a single DCI.
  • FIG8 is an interactive flow chart of another communication method provided in an embodiment of the present application.
  • the interactive flow in FIG8 is a possible implementation of the method described in FIG6. As shown in FIG8, the method includes:
  • An access network device sends first configuration information to a terminal device.
  • Step 801 may refer to step 601 .
  • the terminal device performs the following operations: sending third capability information to the access network device, the third capability information is used to indicate that the terminal device supports scheduling the secondary cell of the terminal device using the DCI monitored through any search space set when the number of BDs corresponding to the candidate PDCCHs included in any search space set exceeds the maximum number of candidate PDCCHs monitored by the primary cell, and/or the number of non-overlapping CCEs corresponding to the candidate PDCCHs included in the search space set exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell.
  • the access network device can configure the terminal device and the access network device to execute the process in Figure 8.
  • the third capability information is sent to the access network device so that the access network device can learn the capabilities supported by the terminal device.
  • the terminal device determines the number of first monitored candidate PDCCHs and the number of first non-overlapping CCEs corresponding to the candidate PDCCHs included in the first search space set.
  • Step 802 may refer to step 602 .
  • the terminal device counts the first BD number and the first non-overlapping CCE number to the primary cell, and counts the first BD number and the first non-overlapping CCE number to the first secondary cell.
  • Step 803 may refer to step 603. Step 803 is optional.
  • the first BD number exceeds the maximum number of candidate PDCCHs monitored on the primary cell and/or the first non-overlapping CCE number exceeds the maximum number of non-overlapping CCEs corresponding to the primary cell, monitor each candidate PDCCH in the first search space set.
  • Step 804 may refer to step 604 .
  • the terminal device parses the domain information related to the scheduling of the first secondary cell in the first DCI, and ignores the domain information related to the scheduling of the primary cell in the first DCI.
  • Ignoring the domain information related to the primary cell scheduling in the first DCI can be replaced by: skipping the parsing of the domain information related to the primary cell scheduling in the first DCI. Ignoring the domain information related to the primary cell scheduling in the first DCI can be replaced by: setting the domain information related to the primary cell scheduling in the first DCI to a special pattern, such as all "0". It should be understood that the access network device can schedule the first secondary cell of the terminal device through the first DCI, but cannot schedule the primary cell of the terminal device.
  • each candidate PDCCH in the first search space set is monitored, and the domain information related to the scheduling of the first secondary cell in the first DCI is parsed; this can avoid the situation where the access network device cannot schedule the secondary cell through a single DCI.
  • FIG. 9 is a schematic diagram of the structure of a communication device 900 provided in an embodiment of the present application.
  • the communication device 900 can implement the functions or steps implemented by the terminal device in the above-mentioned various method embodiments, and can also implement the functions or steps implemented by the access network device in the above-mentioned various method embodiments.
  • the communication device may include a processing module 910 and a transceiver module 920.
  • it may also include a storage unit, which can be used to store instructions (codes or programs) and/or data.
  • the processing module 910 and the transceiver module 920 can be coupled to the storage unit.
  • the processing module 910 can read the instructions (codes or programs) and/or data in the storage unit to implement the corresponding method.
  • the transceiver module 920 may include a sending module and a receiving module.
  • the sending module may
  • the entity corresponding to the transceiver module 920 may be a transceiver or a communication interface.
  • the communication device 900 can implement the behaviors and functions of the terminal device in the above method embodiments.
  • the communication device 900 can be a terminal device, or a component (such as a chip or circuit) used in the terminal device.
  • the transceiver module 920 can be used to perform all receiving or sending operations performed by the terminal device in the embodiments of Figures 2, 4 to 8.
  • the processing module 910 is used to perform all operations except the transceiver operation performed by the terminal device in the embodiments of Figures 2, 4 to 8.
  • the communication device 900 can implement the behaviors and functions of the access network device in the above method embodiments.
  • the communication device 900 can be an access network device, or a component (such as a chip or circuit) used in the access network device.
  • the transceiver module 920 can be used to perform all receiving or sending operations performed by the access network device in the embodiments of Figures 2, 4 to 8.
  • the processing module 910 is used to perform all operations except the transceiver operation performed by the access network device in the embodiments of Figures 2, 4 to 8.
  • the access network device and the terminal device include hardware structures and/or software modules corresponding to the execution of each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG10 is a schematic diagram of the structure of a possible communication device provided by an embodiment of the present application. These communication devices can be used to implement the functions of the terminal device or access network device in the above method embodiment, and thus can also achieve the beneficial effects possessed by the above method embodiment.
  • the communication device 1000 includes a processor 1010 and an interface circuit 1020.
  • the processor 1010 and the interface circuit 1020 are coupled to each other. It can be understood that the interface circuit 1020 can be a transceiver or an input-output interface.
  • the communication device 1000 may also include a memory 1030 for storing instructions executed by the processor 1010 or storing input data required for the processor 1010 to run the instructions or storing data generated after the processor 1010 runs the instructions.
  • the processor 1010 can be used to implement the functions of the above processing module 910, and the interface circuit 1020 is used to implement the functions of the above transceiver module 920.
  • the processor 1010 and the interface circuit 1020 may be used to execute functions or operations performed by the terminal device.
  • the interface circuit 1020 for example, executes all receiving or sending operations performed by the terminal device in the embodiments of FIG. 2 and FIG. 4 to FIG. 8.
  • the interface circuit 1020 for example, is used to execute all operations except the receiving and sending operations performed by the terminal device in the embodiments of FIG. 2 and FIG. 4 to FIG. 8.
  • the processor 1010 and the interface circuit 1020 may be used to execute functions or operations performed by the access network device.
  • the interface circuit 1020 for example, executes all receiving or sending operations performed by the access network device in the embodiments of FIG. 2 and FIG. 4 to FIG. 8.
  • the interface circuit 1020 for example, is used to execute all operations except the receiving and sending operations performed by the access network in the embodiments of FIG. 2 and FIG. 4 to FIG. 8.
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the chip of the terminal device receives information from other modules in the terminal device (such as a radio frequency module or an antenna), and the information is sent to the terminal device by the access network device; or the chip of the terminal device sends information to other modules in the terminal device (such as a radio frequency module or an antenna), and the information is sent to the access network device by the terminal device.
  • the access network device module implements the functions of the access network device in the above-mentioned method embodiment.
  • the access network device module receives information from other modules in the access network device (such as a radio frequency module or an antenna), and the information is sent by the terminal device to the access network device; or, the access network device module sends information to other modules in the access network device (such as a radio frequency module or an antenna), and the information is sent by the access network device to the terminal device.
  • the access network device module here can be a baseband chip of the access network device, or it can be a DU or other module.
  • the DU here can be a DU under the open radio access network (O-RAN) architecture.
  • the processor in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in an access network device or a terminal device.
  • the processor and the storage medium can also be present in an access network device or a terminal device as discrete components.
  • all or part of the embodiments may be implemented by software, hardware, firmware, or any combination thereof.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device or other programmable device.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disc; it may also be a semiconductor medium, such as a solid-state hard disk.
  • the computer-readable storage medium may be a volatile or non-volatile storage medium, or may include both volatile and non-volatile types of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法和相关产品,该方法包括:接收来自接入网设备的第一配置信息,第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,第一搜索空间集合包含第一候选PDCCH,第二搜索空间集合包含第二候选PDCCH;在第一搜索空间集合关联的小区的个数多于第二搜索空间集合关联的小区的个数的情况下,在确定是否将第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合;能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生。

Description

通信方法和相关产品
本申请要求于2022年9月30日提交中国专利局、申请号为202211217543.X、申请名称为“通信方法和相关产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法和相关产品。
背景技术
为了满足日益增长的无线传输需求,无线通信技术需要进一步演进,从而提高无线网络的网络容量和传输速率。在无线通信技术的演进方向中,进一步挖掘无线通信的频率资源和空间资源是极为重要的两个维度。
从挖掘频率资源的维度来讲,为了支持未来网络容量和传输速率需求,需要更大的传输带宽。但是,当前sub-6GHz频谱资源中,大带宽的连续频谱资源十分稀缺。也就是说,单一载波所具有的带宽有限。载波聚合(carrier aggregation,CA)是解决单一载波带宽有限问题的关键技术,其通过将两个或更多的载波单元(component carrier,CC)聚合在一起以支持更大的传输带宽。在CA场景中,为终端设备提供服务的小区可以有多个。也就是说,终端设备具有多个服务小区。其中,终端设备的多个服务小区包括一个主小区(primary cell,PCell)和一个或多个辅小区(secondary cell,SCell)。
截止到新空口(new radio,NR)Rel-17为止,基于现有CA机制,基站如果想在多个载波上调度用户设备(user equipment,UE)同时进行物理下行共享信道(physical downlink share channel,PDSCH)或物理上行共享信道(physical uplink share channel,PUSCH)传输,其需要发送多个下行控制信息(downlink control information,DCI)进行调度,每个载波需要一个DCI进行调度。根据发送DCI的载波,分为自载波调度与跨载波调度两种方式。使用自载波调度方式时,调度一个载波上PDSCH或PUSCH传输的DCI也在该载波上发送。而使用跨载波调度方式时,调度一个载波上PDSCH或PUSCH传输的DCI可以在另外一个载波上发送,从而达到DCI只在一个载波上发送的效果。可以注意到,不管是自载波调度还是跨载波调度,需要的DCI数目是与同时使用的载波数目成正比的。相比连续宽带载波,使用相同的带宽传输数据,离散多载波基于现有CA机制需要更多的控制信道资源用于承载多个DCI。这种多DCI调度的方式增加了控制信道的开销。
基于现有CA机制,使用多个DCI调度的多载波传输,UE需要盲解多个DCI,UE的盲解预算会随着载波数目的增加而增加。相比相同传输带宽的连续宽带载波,这会增加UE盲解的复杂度。
第三代合作伙伴计划(3rd generation partnership project,3GPP)Rel-18的工作组(work item,WI)已经确立了使用单个DCI来调度多个频段/载波上的PDSCH或PUSCH,减少使用多个DCI调度多个载波导致的控制信道的开销,避免在每个载波上都放置物理下行控制信道(physical downlink control channel,PDCCH)。通常称这种单个DCI为“Single DCI”。在离散多载波中使用Single DCI(下文可写为single DCI)相比现有CA机制下的多个DCI调度,可以显著减小控制信道的开销,释放更多下行资源用于PDSCH传输,提升下行容量,逼近连续宽带载波的性能。
在R18CA场景下,1个single DCI可以调度多个小区的上行数据传输或下行数据接收。假设single DCI配置在PCell上监听,通过高层信令配置可以同时调度PCell、SCell#1和SCell#2这3个小区。若配置监听single DCI的搜索空间集合对应的盲检(blind detection,BD)或控制信道单元(control channel element,CCE)个数超过UE的PDCCH盲检能力,则UE不会对该搜索空间集合中的候选PDCCH进行盲检,导致UE不会监听这个single DCI,从而影响其他小区的数据调度,造成频谱利用率下降。因此,目前需要研究如何减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
发明内容
本申请实施例公开了一种通信方法和相关产品,能够减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
第一方面,本申请实施例提供一种通信方法,该方法应用于终端设备,该方法包括:接收来自接入网 设备的第一配置信息,所述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,所述第一搜索空间集合包含第一候选PDCCH,所述第二搜索空间集合包含第二候选PDCCH,所述第一候选PDCCH用于承载第一下行控制信息DCI,所述第二候选PDCCH用于承载第二DCI;在所述第一搜索空间集合关联的小区的个数多于所述第二搜索空间集合关联的小区的个数的情况下,在确定是否将所述第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合(第一搜索空间集合)之后,确定是否将所述第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合(第二搜索空间集合)。可选的,所述第一DCI用于调度多个小区的数据信道。例如,第一DCI为single DCI。本申请中,确定(或者称判断)是否将某个搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合可称为:对该搜索空间集合进行PDCCH映射。例如,确定(或者称判断)是否将第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合可称为:对第一搜索空间集合进行PDCCH映射。
本申请实施例中,在确定是否将第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合,使得第一搜索空间集合中的候选PDCCH被分配到用于监听的搜索空间集合的概率大于第二搜索空间集合中的候选PDCCH被分配到用于监听的搜索空间集合的概率;能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。也就是说,关联的小区的个数较多的搜索空间集合中的候选PDCCH优先被分配到用于监听的搜索空间集合,关联的小区的个数较少的搜索空间集合中的候选PDCCH(例如承载用于调度一个小区的DCI)较后被分配到用于监听的搜索空间集合。
在一种可能的实现方式中,所述第一搜索空间集合关联的小区包括所述第一DCI用于调度的K个小区,所述第二搜索空间集合关联的小区包括所述第二DCI用于调度的F个小区,所述第一搜索空间集合的索引大于或小于所述第二搜索空间的索引,所述K和所述F均为大于0的整数,所述K大于所述F。本申请中搜索空间集合的索引理解为搜索空间集合配置参数中的搜索空间集合索引(search space set index)。
在该实现方式中,第一搜索空间集合关联的小区包括第一DCI用于调度的K个小区,第二搜索空间集合关联的小区包括所述第二DCI用于调度的F个小区;能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
在一种可能的实现方式中,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个或多个小区的数据信道;或者,所述第一DCI和所述第二DCI均用于上行调度,所述第一DCI的格式和所述第二DCI的格式均为第一格式,例如DCI format 0_X,或者DCI format 0_5,所述第一格式的DCI用于调度一个或多个小区的上行数据信道;或者,所述第一DCI和所述第二DCI均用于下行调度,例如DCI format 1_X,或者DCI format 1_5,所述第一DCI的格式和所述第二DCI的格式均为第二格式,所述第二格式的DCI用于调度一个或多个小区的下行数据信道。
在该实现方式中,能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
在一种可能的实现方式中,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个小区的数据信道;或者,所述第一DCI和所述第二DCI均用于上行调度,所述第一DCI的格式为第一格式,所述第一格式的DCI用于调度一个或多个小区的上行数据信道,所述第二DCI的格式为第三格式,所述第三格式的DCI用于调度一个小区的上行数据信道;或者,所述第一DCI和所述第二DCI均用于下行调度,所述第一DCI的格式为第二格式,所述第二格式的DCI用于调度一个或多个小区的下行数据信道,所述第二DCI的格式为第四格式,所述第四格式的DCI用于调度一个小区的下行数据信道。
在该实现方式中,能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
在一种可能的实现方式中,所述方法还包括:接收来自所述接入网设备的第二配置信息,所述第二配置信息用于配置第三搜索空间集合和第四搜索空间集合,所述第三搜索空间集合包含第三候选PDCCH,所述第四搜索空间集合包含第四候选PDCCH,所述第三候选PDCCH用于承载第三DCI,所述第四候选PDCCH用于承载第四DCI,所述第三DCI和所述第四DCI中的一个用于调度一个或多个小区的数据信道,另一个用于调度一个小区的数据信道,所述第三DCI的格式与第四DCI的格式不同,可以理解为当第三DCI与第四DCI均为上行调度DCI时,第三DCI格式与第四DCI格式不同,例如第三DCI的格式为DCI format 0_1,第四DCI的格式为DCI format 0_X或DCI format 0_5;或者当第三DCI与第四DCI均为下行 调度DCI时,第三DCI格式与第四DCI格式不同,例如第三DCI的格式为DCI format 1_1,第四DCI的格式为DCI format 1_X或DCI format 1_5;在所述第三搜索空间集合和所述第四搜索空间集合均关联一个小区的情况下,在确定是否将所述第三搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第四搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合,所述第三搜索空间集合的索引小于所述第四搜索空间集合的索引。
在该实现方式中,可以有序的确定是否将搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
在一种可能的实现方式中,所述方法还包括:接收来自所述接入网设备的第三配置信息,所述第三配置信息用于配置所述第一搜索空间集合关联的小区集合,以及配置所述第二搜索空间集合关联的小区集合。可选的,根据所述第三配置信息,获取所述第一搜索空间集合关联的小区集合,以及所述第二搜索空间集合关联的小区集合。
在该实现方式中,能够配置第一搜索空间集合关联的小区集合,以及配置第二搜索空间集合关联的小区集合。
在一种可能的实现方式中,所述方法还包括:向所述接入网设备发送第一能力信息,所述第一能力信息用于指示所述终端设备支持根据各搜索空间集合关联的小区的个数执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合的先后顺序。
在该实现方式中,向接入网设备发送第一能力信息,以便该接入网设备获知终端设备支持根据各搜索空间集合关联的小区的个数执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合的先后顺序。
第二方面,本申请实施例提供另一种通信方法,该方法应用于接入网设备,该方法包括:向终端设备发送第一配置信息,所述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,所述第一搜索空间集合包含第一候选PDCCH,所述第二搜索空间集合包含第二候选PDCCH,所述第一候选PDCCH用于承载第一下行控制信息DCI,所述第二候选PDCCH用于承载第二DCI,所述第一DCI和所述第二DCI的负载不同;在所述第一搜索空间集合关联的小区的个数多于所述第二搜索空间集合关联的小区的个数的情况下,在确定是否将所述第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
本申请实施例中,在确定是否将第一候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将第二候选PDCCH分配到用于监听的搜索空间集合,使得该第一候选PDCCH被分配到用于监听的搜索空间集合的概率大于该第二候选PDCCH被分配到用于监听的搜索空间集合的概率;能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。也就是说,关联的小区的个数较多的搜索空间集合中的候选PDCCH优先被分配到用于监听的搜索空间集合,关联的小区的个数较少的搜索空间集合中的候选PDCCH(例如承载用于调度一个小区的DCI)较后被分配到用于监听的搜索空间集合。
在一种可能的实现方式中,所述第一搜索空间集合关联的小区包括所述第一DCI用于调度的K个小区,所述第二搜索空间集合关联的小区包括所述第二DCI用于调度的F个小区,所述第一搜索空间集合的索引大于或小于所述第二搜索空间的索引,所述K和所述F均为大于0的整数,所述K大于所述F。
在该实现方式中,第一搜索空间集合关联的小区包括第一DCI用于调度的K个小区,第二搜索空间集合关联的小区包括所述第二DCI用于调度的F个小区;能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
在一种可能的实现方式中,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个或多个小区的数据信道;或者,所述第一DCI和所述第二DCI均用于上行调度,所述第一DCI的格式和所述第二DCI的格式均为第一格式,所述第一格式的DCI用于调度一个或多个小区的数据信道;或者,所述第一DCI和所述第二DCI均用于下行调度,所述第一DCI的格式和所述第二DCI的格式均为第二格式,所述第二格式的DCI用于调度一个或多个小区的数据信道。
在该实现方式中,能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
在一种可能的实现方式中,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个小区的数据信道;或者,所述第一DCI和所述第二DCI均用于上行调度,所述第一DCI的格式 为第一格式,所述第一格式的DCI用于调度一个或多个小区的数据信道,所述第二DCI的格式为第三格式,所述第三格式的DCI用于调度一个小区的数据信道;或者,所述第一DCI和所述第二DCI均用于下行调度,所述第一DCI的格式为第二格式,所述第二格式的DCI用于调度一个或多个小区的数据信道,所述第二DCI的格式为第四格式,所述第四格式的DCI用于调度一个小区的数据信道。
在该实现方式中,能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
在一种可能的实现方式中,所述方法还包括:向所述终端设备发送第二配置信息,所述第二配置信息用于配置第三搜索空间集合和第四搜索空间集合,所述第三搜索空间集合包含第三候选PDCCH,所述第四搜索空间集合包含第四候选PDCCH,所述第三候选PDCCH用于承载第三DCI,所述第四候选PDCCH用于承载第四DCI,所述第三DCI和所述第四DCI中的一个用于调度一个或多个小区的数据信道,另一个用于调度一个小区的数据信道,所述第三DCI的格式与第四DCI的格式不同,可以理解为当第三DCI与第四DCI均为上行调度DCI时,第三DCI格式与第四DCI格式不同,例如第三DCI的格式为DCI format0_1,第四DCI的格式为DCI format 0_X或DCI format 0_5;或者当第三DCI与第四DCI均为下行调度DCI时,第三DCI格式与第四DCI格式不同,例如第三DCI的格式为DCI format 1_1,第四DCI的格式为DCI format 1_X或DCI format 1_5;在所述第三搜索空间集合和所述第四搜索空间集合均关联一个小区的情况下,在确定是否将所述第三搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第四搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合,所述第三搜索空间集合的索引小于所述第四搜索空间集合的索引。
在该实现方式中,可以有序的确定是否将搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
在一种可能的实现方式中,所述方法还包括:向所述终端设备发送第三配置信息,所述第三配置信息用于配置所述第一搜索空间集合关联的小区集合,以及配置所述第二搜索空间集合关联的小区集合。
在该实现方式中,配置第一搜索空间集合关联的小区集合,以及配置第二搜索空间集合关联的小区集合,以便终端设备先对第一搜索空间集合和第二搜索空间集合中关联的小区的个数较多的搜索空间集合进行PDCCH映射。
在一种可能的实现方式中,所述方法还包括:接收来自所述终端设备的第一能力信息,所述第一能力信息用于指示所述终端设备支持根据各搜索空间集合关联的小区的个数执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合的先后顺序。
在该实现方式中,接收来自终端设备的第一能力信息,接入网设备能够获知终端设备支持根据各搜索空间集合关联的小区的个数执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合的先后顺序。
第三方面,本申请实施例提供另一种通信方法,该方法应用于终端设备,该方法包括:接收来自接入网设备的第一配置信息,所述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,所述第一搜索空间集合包含第一候选PDCCH,所述第二搜索空间集合包含第二候选PDCCH,所述第一候选PDCCH用于承载第一下行控制信息DCI,所述第二候选PDCCH用于承载第二DCI,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个小区的数据信道;将所述第一候选PDCCH分配到用于监听的搜索空间集合;确定是否将所述第二候选PDCCH分配到用于监听的搜索空间集合。
本申请实施例中,将第一候选PDCCH分配到用于监听的搜索空间集合,可以避免用于承载用于调度多个小区的DCI的候选PDCCH无法被监听。
在一种可能的实现方式中,所述方法包括:向所述接入网设备发送第一能力信息,所述第一能力信息用于指示所述终端设备支持将用于承载用于调度一个或多个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合,以及确定是否将用于承载用于调度一个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合。
在该实现方式中,向接入网设备发送第一能力信息,以便接入网设备获知终端设备支持将用于承载用于调度一个或多个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合。
第四方面,本申请实施例提供另一种通信方法,该方法应用于接入网设备,该方法包括:向终端设备发送第一配置信息,所述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,所述第一搜索空间集合包含第一候选PDCCH,所述第二搜索空间集合包含第二候选PDCCH,所述第一候选PDCCH用于承载第一下行控制信息DCI,所述第二候选PDCCH用于承载第二DCI,所述第一DCI用于调度一个或多 个小区的数据信道,所述第二DCI用于调度一个小区的数据信道;将所述第一候选PDCCH分配到用于监听的搜索空间集合;确定是否将所述第二候选PDCCH分配到用于监听的搜索空间集合。
本申请实施例中,将第一候选PDCCH分配到用于监听的搜索空间集合,可以避免用于承载用于调度多个小区的DCI的候选PDCCH无法被监听。
在一种可能的实现方式中,所述方法还包括:接收来自所述终端设备的第一能力信息,所述第一能力信息用于指示所述终端设备支持将用于承载用于调度一个或多个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合,以及确定是否将用于承载用于调度一个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合。
在该实现方式中,接收来自终端设备的第一能力信息,能够获知终端设备支持将用于承载用于调度一个或多个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合。
第五方面,本申请实施例提供另一种通信方法,该方法应用于终端设备,该方法包括:接收来自接入网设备的第一配置信息,所述第一配置信息用于配置第一搜索空间集合,所述第一搜索空间集合包含第一候选PDCCH,所述第一候选PDCCH用于承载第一DCI,所述第一DCI用于调度所述终端设备的主小区和第一辅小区;确定所述第一搜索空间集合包含的候选PDCCH对应的第一监听的候选PDCCH的次数和第一不重叠的CCE个数;在所述第一BD次数超过所述主小区上监听的候选PDCCH的最大个数,和/或,所述第一不重叠的CCE个数超过所述主小区对应的非重叠CCE的最大个数的情况下,对所述第一搜索空间集合中的每个候选PDCCH进行监听。可选的,所述方法还包括:所述第一BD次数和所述第一不重叠的CCE个数计数到所述主小区,以及所述第一BD次数和所述第一不重叠的CCE个数计数到所述第一辅小区上。
本申请实施例中,在第一BD次数超过主小区上监听的候选PDCCH的最大个数,和/或,第一不重叠的CCE个数超过主小区对应的非重叠CCE的最大个数的情况下,对第一搜索空间集合中的每个候选PDCCH进行监听;能够避免接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
在一种可能的实现方式中,所述方法还包括:解析所述第一DCI中与所述第一辅小区调度相关的域信息,以及与所述主小区调度相关的域信息。
在该实现方式中,解析第一DCI中与第一辅小区调度相关的域信息,以及与主小区调度相关的域信息,以便调度该第一辅小区和主小区。
在一种可能的实现方式中,所述方法还包括:解析所述第一DCI中与所述第一辅小区调度相关的域信息;忽略所述第一DCI中与所述主小区调度相关的域信息,或者,跳过所述第一DCI中与所述主小区调度相关的域信息的解析。
在该实现方式中,忽略第一DCI中与主小区调度相关的域信息,或者,跳过第一DCI中与主小区调度相关的域信息的解析;可以减少数据处理操作。
在一种可能的实现方式中,所述方法还包括:向所述接入网设备发送第一能力信息,所述第一能力信息用于指示所述终端设备支持在任意搜索空间集合包含的候选PDCCH对应的BD次数超过所述主小区监听的候选PDCCH的最大个数,和/或,任意搜索空间集合包含的候选PDCCH对应的不重叠的CCE个数超过所述主小区对应的非重叠CCE的最大个数的情况下,监听所述任意搜索空间集合中的候选PDCCH。
在该实现方式中,向接入网设备发送第一能力信息,以便接入网设备获知终端设备支持的能力。
在一种可能的实现方式中,所述方法还包括:向所述接入网设备发送第二能力信息,所述第二能力信息用于指示所述终端设备支持在任意搜索空间集合包含的候选PDCCH对应的BD次数超过所述主小区监听的候选PDCCH的最大个数,和/或,任意搜索空间集合包含的候选PDCCH对应的不重叠的CCE个数超过所述主小区对应的非重叠CCE的最大个数的情况下,利用通过所述任意搜索空间集合监听到的DCI调度所述终端设备的主小区和辅小区。
在该实现方式中,向接入网设备发送第二能力信息,以便接入网设备获知终端设备支持的能力。
在一种可能的实现方式中,所述方法还包括:向所述接入网设备发送第三能力信息,所述第三能力信息用于指示所述终端设备支持在任意搜索空间集合包含的候选PDCCH对应的BD次数超过所述主小区监听的候选PDCCH的最大个数,和/或搜索空间集合包含的候选PDCCH对应的不重叠的CCE个数超过所述主小区对应的非重叠CCE的最大个数的情况下,利用通过所述任意搜索空间集合监听到的DCI调度所述终端设备的辅小区。
在该实现方式中,向接入网设备发送第三能力信息,以便接入网设备获知终端设备支持的能力。
第六方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为 的功能。该通信装置(终端设备)可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该通信设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括处理模块和收发模块,其中:所述收发模块,用于接收来自接入网设备的第一配置信息,所述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,所述第一搜索空间集合包含第一候选物理下行控制信道PDCCH,所述第二搜索空间集合包含第二候选PDCCH,所述第一候选PDCCH用于承载第一下行控制信息DCI,所述第二候选PDCCH用于承载第二DCI;所述处理模块,用于在所述第一搜索空间集合关联的小区的个数多于所述第二搜索空间集合关联的小区的个数的情况下,在确定是否将所述第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
在一种可能的实现方式中,所述收发模块,还用于接收来自所述接入网设备的第二配置信息,所述第二配置信息用于配置第三搜索空间集合和第四搜索空间集合,所述第三搜索空间集合包含第三候选PDCCH,所述第四搜索空间集合包含第四候选PDCCH,所述第三候选PDCCH用于承载第三DCI,所述第四候选PDCCH用于承载第四DCI,所述第三DCI和所述第四DCI中的一个用于调度一个或多个小区的数据信道,另一个用于调度一个小区的数据信道,所述第三DCI的格式与第四DCI的格式不同,可以理解为当第三DCI与第四DCI均为上行调度DCI时,第三DCI格式与第四DCI格式不同,例如第三DCI的格式为DCI format 0_1,第四DCI的格式为DCI format 0_X或DCI format 0_5;或者当第三DCI与第四DCI均为下行调度DCI时,第三DCI格式与第四DCI格式不同,例如第三DCI的格式为DCI format 1_1,第四DCI的格式为DCI format 1_X或DCI format 1_5;在所述第三搜索空间集合和所述第四搜索空间集合均关联一个小区的情况下,在确定是否将所述第三搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第四搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合,所述第三搜索空间集合的索引小于所述第四搜索空间集合的索引。
在一种可能的实现方式中,所述收发模块,还用于接收来自所述接入网设备的第三配置信息,所述第三配置信息用于配置所述第一搜索空间集合关联的小区集合,以及配置所述第二搜索空间集合关联的小区集合。
在一种可能的实现方式中,所述收发模块,还用于向所述接入网设备发送第一能力信息,所述第一能力信息用于指示所述终端设备支持根据各搜索空间集合关联的小区的个数执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合的先后顺序。
第六方面的通信装置可能的实现方式可参见第一方面的各种可能的实现方式。
关于第六方面的各种可能的实现方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实现方式的技术效果的介绍。
第七方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第二方面方法实施例中的行为的功能。该通信装置(接入网设备)可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该通信设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括处理模块和收发模块,其中:所述收发模块,用于向终端设备发送第一配置信息,所述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,所述第一搜索空间集合包含第一候选物理下行控制信道PDCCH,所述第二搜索空间集合包含第二候选PDCCH,所述第一候选PDCCH用于承载第一下行控制信息DCI,所述第二候选PDCCH用于承载第二DCI,所述第一DCI和所述第二DCI的负载不同;所述处理模块,用于在所述第一搜索空间集合关联的小区的个数多于所述第二搜索空间集合关联的小区的个数的情况下,在确定是否将所述第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
在一种可能的实现方式中,所述收发模块,还用于向所述终端设备发送第二配置信息,所述第二配置信息用于配置第三搜索空间集合和第四搜索空间集合,所述第三搜索空间集合包含第三候选PDCCH,所述第四搜索空间集合包含第四候选PDCCH,所述第三候选PDCCH用于承载第三DCI,所述第四候选PDCCH用于承载第四DCI,所述第三DCI和所述第四DCI中的一个用于调度一个或多个小区的数据信道,另一个用于调度一个小区的数据信道,所述第三DCI的格式与第四DCI的格式不同,可以理解为当第三DCI与第四DCI均为上行调度DCI时,第三DCI格式与第四DCI格式不同,例如第三DCI的格式为DCI  format 0_1,第四DCI的格式为DCI format 0_X或DCI format 0_5;或者当第三DCI与第四DCI均为下行调度DCI时,第三DCI格式与第四DCI格式不同,例如第三DCI的格式为DCI format 1_1,第四DCI的格式为DCI format 1_X或DCI format 1_5;所述处理模块,还用于在所述第三搜索空间集合和所述第四搜索空间集合均关联一个小区的情况下,在确定是否将所述第三搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第四搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合,所述第三搜索空间集合的索引小于所述第四搜索空间集合的索引。
在一种可能的实现方式中,所述收发模块,还用于向所述终端设备发送第三配置信息,所述第三配置信息用于配置所述第一搜索空间集合关联的小区集合,以及配置所述第二搜索空间集合关联的小区集合。
在一种可能的实现方式中,所述收发模块,还用于接收来自所述终端设备的第一能力信息,所述第一能力信息用于指示所述终端设备支持根据各搜索空间集合关联的小区的个数执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合的先后顺序。
第七方面的通信装置可能的实现方式可参见第二方面的各种可能的实现方式。
关于第七方面的各种可能的实现方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实现方式的技术效果的介绍。
第八方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第三方面方法实施例中的行为的功能。该通信装置(终端设备)可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该通信设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括处理模块和收发模块,其中:所述收发模块,用于接收来自接入网设备的第一配置信息,所述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,所述第一搜索空间集合包含第一候选PDCCH,所述第二搜索空间集合包含第二候选PDCCH,所述第一候选PDCCH用于承载第一下行控制信息DCI,所述第二候选PDCCH用于承载第二DCI,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个小区的数据信道;所述收发模块,用于将所述第一候选PDCCH分配到用于监听的搜索空间集合;确定是否将所述第二候选PDCCH分配到用于监听的搜索空间集合。
在一种可能的实现方式中,所述收发模块,还用于向所述接入网设备发送第一能力信息,所述第一能力信息用于指示所述终端设备支持将用于承载用于调度一个或多个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合,以及确定是否将用于承载用于调度一个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合。
关于第八方面的各种可能的实现方式所带来的技术效果,可参考对于第三方面或第三方面的各种可能的实现方式的技术效果的介绍。
第九方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第四方面方法实施例中的行为的功能。该通信装置(接入网设备)可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该通信设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括处理模块和收发模块,其中:所述收发模块,用于向终端设备发送第一配置信息,所述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,所述第一搜索空间集合包含第一候选PDCCH,所述第二搜索空间集合包含第二候选PDCCH,所述第一候选PDCCH用于承载第一下行控制信息DCI,所述第二候选PDCCH用于承载第二DCI,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个小区的数据信道;所述处理模块,还用于将所述第一候选PDCCH分配到用于监听的搜索空间集合;确定是否将所述第二候选PDCCH分配到用于监听的搜索空间集合。
在一种可能的实现方式中,所述收发模块,还用于接收来自所述终端设备的第一能力信息,所述第一能力信息用于指示所述终端设备支持将用于承载用于调度一个或多个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合,以及确定是否将用于承载用于调度一个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合。
关于第九方面的各种可能的实现方式所带来的技术效果,可参考对于第四方面或第四方面的各种可能的实现方式的技术效果的介绍。
第十方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第五方面方法实施例中的行为 的功能。该通信装置(终端设备)可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该通信设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括处理模块和收发模块,其中:所述收发模块,用于接收来自接入网设备的第一配置信息,所述第一配置信息用于配置第一搜索空间集合,所述第一搜索空间集合包含第一候选PDCCH,所述第一候选PDCCH用于承载第一DCI,所述第一DCI用于调度所述终端设备的主小区和第一辅小区;所述处理模块,用于确定所述第一搜索空间集合包含的候选PDCCH对应的第一监听的候选PDCCH的次数和第一不重叠的CCE个数;在所述第一BD次数超过所述主小区上监听的候选PDCCH的最大个数,和/或,所述第一不重叠的CCE个数超过所述主小区对应的非重叠CCE的最大个数的情况下,对所述第一搜索空间集合中的每个候选PDCCH进行监听。可选的,所述处理模块,还用于(将)所述第一BD次数和所述第一不重叠的CCE个数计数到所述主小区,以及(将)所述第一BD次数和所述第一不重叠的CCE个数计数到所述第一辅小区上。
在一种可能的实现方式中,所述处理模块,还用于解析所述第一DCI中与所述第一辅小区调度相关的域信息,以及与所述主小区调度相关的域信息。
在一种可能的实现方式中,所述处理模块,还用于解析所述第一DCI中与所述第一辅小区调度相关的域信息;忽略所述第一DCI中与所述主小区调度相关的域信息,或者,跳过所述第一DCI中与所述主小区调度相关的域信息的解析。
在一种可能的实现方式中,所述收发模块,还用于向所述接入网设备发送第一能力信息,所述第一能力信息用于指示所述终端设备支持在任意搜索空间集合包含的候选PDCCH对应的BD次数超过所述主小区监听的候选PDCCH的最大个数,和/或,任意搜索空间集合包含的候选PDCCH对应的不重叠的CCE个数超过所述主小区对应的非重叠CCE的最大个数的情况下,监听所述任意搜索空间集合中的候选PDCCH。
在一种可能的实现方式中,所述收发模块,还用于向所述接入网设备发送第二能力信息,所述第二能力信息用于指示所述终端设备支持在任意搜索空间集合包含的候选PDCCH对应的BD次数超过所述主小区监听的候选PDCCH的最大个数,和/或,任意搜索空间集合包含的候选PDCCH对应的不重叠的CCE个数超过所述主小区对应的非重叠CCE的最大个数的情况下,利用通过所述任意搜索空间集合监听到的DCI调度所述终端设备的主小区和辅小区。
在一种可能的实现方式中,所述收发模块,还用于向所述接入网设备发送第三能力信息,所述第三能力信息用于指示所述终端设备支持在任意搜索空间集合包含的候选PDCCH对应的BD次数超过所述主小区监听的候选PDCCH的最大个数,和/或搜索空间集合包含的候选PDCCH对应的不重叠的CCE个数超过所述主小区对应的非重叠CCE的最大个数的情况下,利用通过所述任意搜索空间集合监听到的DCI调度所述终端设备的辅小区。
关于第十方面的各种可能的实现方式所带来的技术效果,可参考对于第五方面或第五方面的各种可能的实现方式的技术效果的介绍。
第十一方面,本申请实施例提供另一种通信装置,该通信装置包括处理器,该处理器与存储器耦合,该存储器用于存储程序或指令,当该程序或指令被该处理器执行时,使得该通信装置执行上述第一方面至第五方面的任意可能的实现方式所示的方法。
本申请实施例中,在执行上述方法的过程中,上述方法中有关发送信息(或信号)的过程,可以理解为基于处理器的指令进行输出信息的过程。在输出信息时,处理器将信息输出给收发器,以便由收发器进行发射。该信息在由处理器输出之后,还可能需要进行其他的处理,然后到达收发器。类似的,处理器接收输入的信息时,收发器接收该信息,并将其输入处理器。更进一步的,在收发器收到该信息之后,该信息可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发送和/或接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以一般性的理解为基于处理器的指令输出。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器等。例如,处理器还可以用于执行存储器中存储的程序,当该程序被执行时,使得该通信装置执行如上述第一方面或第一方面的任意可能的实现方式所示的方法。
在一种可能的实现方式中,存储器位于上述通信装置之外。在一种可能的实现方式中,存储器位于上述通信装置之内。
在一种可能的实现方式中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可能被集成于一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号等。
第十二方面,本申请提供另一种通信装置,该通信装置包括处理电路和接口电路,该接口电路用于获取数据或输出数据;处理电路用于执行如上述第一方面至第五方面的任意可能的实现方式所示的方法。
第十三方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,该计算机程序包括程序指令,该程序指令被执行时使得计算机执行如上述第一方面至第五方面的任意可能的实现方式所示的方法。
第十四方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序包括程序指令,该程序指令被执行时使得计算机执行如上述第一方面至第五方面的任意可能的实现方式所示的方法。
第十五方面,本申请提供一种通信系统,包括上述第六方面或第六方面的任意可能的实现方式所述的通信装置、上述第七方面或第七方面的任意可能的实现方式所述的通信装置。
第十六方面,本申请提供一种通信系统,包括上述第八方面或第八方面的任意可能的实现方式所述的通信装置、上述第九方面或第九方面的任意可能的实现方式所述的通信装置。
第十七方面,本申请提供一种芯片,包括处理器与通信接口,所述处理器通过所述通信接口读取存储器上存储的指令,执行如上述第一方面至上述第五方面中的任一方面所示的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请的实施例应用的通信系统1000的架构示意图;
图2为本申请实施例提供的一种通信方法交互流程图;
图3示出了第一搜索空间集合和第二搜索空间集合中的single DCI可能调度的小区;
图4为本申请实施例提供的另一种通信方法交互流程图;
图5为本申请实施例提供的另一种通信方法交互流程图;
图6为本申请实施例提供的另一种通信方法交互流程图;
图7为本申请实施例提供的另一种通信方法交互流程图;
图8为本申请实施例提供的另一种通信方法交互流程图;
图9为本申请实施例提供的一种通信装置900的结构示意图;
图10为本申请的实施例提供的可能的通信装置的结构示意图。
具体实施方式
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。本申请中使用的术语“多个”是指两个或两个以上。
下面首先介绍本申请实施例中所涉及的术语和技术方案。
盲检测(blind detection,BD)以及盲检次数上限
终端设备的上行数据发送和下行数据接收都需要接入网设备(例如gNB)的调度,调度的信息是通过PDCCH承载的DCI下发的。由于终端设备不知道承载终端设备的调度信息的PDCCH的确切位置,因此终端设备在控制资源集合(CORESET)内的搜索空间集合(search space set,SS set)中执行盲检(Blind Detection,BD)。
接入网设备可以配置候选PDCCH的个数。例如,接入网设备可以为终端设备配置多个候选PDCCH,但该多个候选PDCCH中并不是所有的候选PDCCH都承载终端设备期待接收的DCI,即并不是所有的候选PDCCH都承载发送给终端设备的DCI。终端设备需要对搜索空间集合中的每个候选PDCCH进行尝试解码,来确定这些候选PDCCH上是否承载了自己期待接收的DCI。其中,终端设备在对1个或多个搜索空间集合中的每个候选PDCCH进行尝试解码的这一行为可称为盲检测(可简称为盲检)。在某一个候选PDCCH上监听DCI可以理解为在该候选PDCCH上进行盲检测。例如,终端设备期待接收的DCI的循环冗余校验码(cyclic redundancy check,CRC)由小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)加掩。终端设备可以根据C-RNTI对搜索空间集合中的每个候选PDCCH进行CRC校验。若CRC校验成功,则终端设备确定在候选PDCCH上解码到自己期待接收的DCI,反之,则终端设备确定在该候选PDCCH上未解码到自己期待接收的DCI。
盲检次数上限,可以指终端设备在一个时隙内或一个时间跨度(span)内支持的最大盲检次数。最大盲检次数可以理解为监听的候选PDCCH的最大个数。例如,终端设备不会监听(或不会盲检测)超过监听的候选PDCCH的最大个数以外的候选PDCCH。其中,盲检次数上限可以是协议预定义的。该盲检次数上限可以与子载波间隔、终端设备能力等信息有关,例如子载波间隔15kHz的小区,1个时隙对应的盲检次数上限为44。
示例性的,盲检次数的计数规则为:两个或两个以上配置的候选PDCCH计数为一次盲检次数,该两个或两个以上配置的候选PDCCH需要同时满足四个条件。或者,同一个搜索空间集合内的两个不同的候选PDCCH,其中索引较大的一个候选PDCCH算作1个待监听的候选PDCCH(或用于监听的候选PDCCH个数),而另一个索引较小的一个候选PDCCH不算作1个待监听的候选PDCCH。或者,属于不同搜索空间集合的两个候选PDCCH,其中索引较大的搜索空间集合内的候选PDCCH算作1个待监听的候选PDCCH,而另一个索引较小的搜索空间集合内的候选PDCCH不算作1个待监听的候选PDCCH。上述四个条件分别为:该两个或两个以上配置的候选PDCCH的聚集级别相同,且该两个或两个以上配置的候选PDCCH的CCE集合相同(可以理解为该两个或两个以上配置的候选PDCCH的时频资源相同);该两个或两个以上配置的候选PDCCH的扰码序列相同;所述配置的候选PDCCH所在的CORESET相同;以及,该两个或两个以上配置的候选PDCCH上需要监听的DCI的大小相同,例如DCI的比特数或负载大小相同。
值得注意的是,一个搜索空间集合的盲检次数可以理解为一个搜索空间集合通过盲检次数的计数规则后得到的待监听的候选PDCCH个数或用于监听的候选PDCCH个数。
CCE、不重叠CCE以及不重叠CCE上限(non-overlapping CCE limit)
CCE是控制信息的资源分配的最小单位,即控制信息的资源分配是以CCE为最小单位进行分配的。1个CCE等于6个资源单元组(resource element group,REG),1个REG定义为在1个OFDM符号上的1个物理资源块(physical resource block,PRB)。
DCI在传输过程中会受到无线信道环境的影响,极大影响传输性能。因此,在做盲检之前,终端设备需要通过对PDCCH中插入的导频进行信道估计,来抵消无线信道对传输信号的影响,以便尽量在接收端准确地恢复发送端的发射信号。导频序列位于1个RB上的图案可以为第#1,#5,#9个RE上,而PDCCH是以CCE为最小单位来分配的,因此终端设备做PDCCH信道估计的次数是按照CCE为单位来进行计数。对于多个重叠的CCE,终端设备进行一次PDCCH信道估计即可,而对于不重叠的多个CCE,终端设备需要进行多次PDCCH信道估计。
示例性的,不重叠CCE的计数规则为:一个配置的候选PDCCH对应的CCE计数为一个不重叠CCE;或者,多个配置的在时频资源位置上重叠的候选PDCCH对应的CCE计数为不重叠CCE,该多个配置的在时频资源位置上重叠的候选PDCCH需要满足两个条件中至少一个条件。该两个条件分别为:多个配置的在时频资源位置上重叠的候选PDCCH对应的CCE属于不同的CORESET,例如可以根据CORESET的索引确定是否属于不同的CORESET;多个配置的在时频资源位置上重叠的候选PDCCH中每个候选PDCCH的接收起始符号不同。例如,PDCCH#1属于CORESET#1,PDCCH#1的AL为2,即PDCCH#1 占用2个CCEs,候选PDCCH#2属于CORESET#2,PDCCH#2的AL也为2,即PDCCH#2也占用2个CCEs。由于PDCCH#1与PDCCH#2属于不同的CORESET,所以即使PDCCH#1与PDCCH#2的时频资源位置相同,PDCCH#1与PDCCH#2对应的4个CCE也是不重叠CCE,即一共计为4个不重叠CCE。
值得注意的是,一个搜索空间集合的不重叠CCE个数可以理解为一个搜索空间集合通过不重叠CCE的计数规则后得到的用于监听的候选PDCCH对应的不重叠CCE个数。
不重叠CCE上限,可以指终端设备在一个时隙内或一个时间跨度(span)内支持的不重叠CCE的最大个数。例如,终端设备不会监听(或不会盲检测)超过不重叠CCE的最大个数以外的候选PDCCH。其中,不重叠CCE上限可以是协议预定义的。该不重叠CCE上限可以与子载波间隔、终端设备能力等信息有关,例如子载波间隔15kHz的小区,1个时隙对应的不重叠CCE上限为56。
PDCCH映射流程
在NR中,基站配置CSS和USS对应的候选PDCCH的个数是可变的,不是固定的。因此这样就可能出现超配置(overbooking)的情况。超配置的情况包括:根据候选PDCCH的配置以及BD次数的计数规则计算出的监听的候选PDCCH的个数超过了终端设备可以支持的BD次数上限(BD limit),或者,根据候选PDCCH的配置以及不重叠CCE的计数规则计算出的不重叠的CCE个数超过了终端设备可以支持的不重叠CCE上限(CCE limit)。其中,BD次数可以理解为用于监听的候选PDCCH的个数或者待监听的候选PDCCH的个数。当发生PDCCH超配置时,如果按照PDCCH配置盲检完所有的候选PDCCH,终端设备实现的复杂度很高。因此,NR引入了一个机制来保证终端设备只会监听不超过自己PDCCH监听能力的候选PDCCH或SS set。例如,终端设备通过BD计数(即盲检次数)、不重叠的CCE计数以及PDCCH映射这三个模块,来保证基站配置给终端设备用于监听的候选PDCCH不超过终端设备的监听能力。
终端设备可利用3GPP标准协议38.213中定义的PDCCH映射规则(PDCCH mapping rule)对基站配置的候选PDCCH(可称为PDCCH candidate)进行判断,即把需要盲检的候选PDCCH筛选到一个范围内,从而保证待监听的候选PDCCH不超过终端设备的盲检能力。注意这里“盲检上限”等同于“监听的候选PDCCH的最大个数”或“不重叠CCE的最大个数”,其中:“监听的候选PDCCH的最大个数”等同于“终端设备可以支持的BD次数上限(BD limit)”,“不重叠CCE的最大个数”等同于“终端设备可以支持的不重叠CCE上限(CCE limit)”。PDCCH映射规则可以如下:
基站保证在1个slot/span内配置的CSS的候选PDCCH通过BD/CCE计数规则后得到的盲检个数和不重叠的CCE个数不超过盲检上限和不重叠CCE上限。
在1个slot/span内,将CSS对应的盲检次数和非重叠的CCE个数从BD/CCE limit中减掉,作为衡量USS配置的BD/CCE limit。
在1个slot/span内,按照USS索引(index)从小到大的顺序,逐个计算一个USS对应的用于监听的候选PDCCH的个数和不重叠的CCE个数,以及判断这个USS是否超过更新后的BD/CCE limit:
如果不超过,那么这个USS就是待监听的USS。然后,终端设备将这个USS对应的监听的候选PDCCH的个数和不重叠的CCE个数从更新后的BD/CCE limit中减去,再次更新BD/CCE limit。再选取USS index比这个USS index大的USS进行相同的操作;
如果超过更新后的BD/CCE limit,那么终端设备不会监听这个USS以及比该USS index较大的USS,这个slot/span的PDCCH映射操作终止。
注意1:PDCCH映射的执行粒度可以是时隙slot,或者是时间跨度span。
注意2:只有在PCell上才会存在PDCCH超配置场景;SCell上不会出现PDCCH超配置,需要由基站实现来保证。
注意3:终端设备和基站都会执行PDCCH映射规则,以保证终端设备和基站对于监听的候选PDCCH或搜索空间集合的理解保持一致。基站可能在配置完PDCCH后按照slot或span为粒度执行,确定可以发送DCI的候选PDCCH集合。终端设备收到基站发送的PDCCH配置信息后按照slot或span为粒度执行,确定监听的候选PDCCH或监听的搜索空间集合。
如背景技术所述,目前需要研究如何减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。本申请提供的通信方案,能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。下面先本申请提供的通信方案适用的一种通信系统。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至 少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备(下文可简称接入网设备)是终端通过无线方式接入到通信系统中的接入设备。无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端是具有无线收发功能的设备,可以向基站发送信号,或接收来自基站的信号。终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
下面结合附图介绍本申请提供的通信方法。
图2为本申请实施例提供的一种通信方法交互流程图。如图2所示,该方法包括:
201、接入网设备向终端设备发送第一配置信息。
相应的,终端设备接收来自接入网设备的第一配置信息。接入网设备为图1中的无线接入网设备。上述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合。上述第一搜索空间集合包含第一候选PDCCH。上述第一候选PDCCH用于承载第一DCI。第一搜索空间集合包含一个或多个候选PDCCH。也就是说,第一搜索空间集合可仅包含第一候选PDCCH,也可包括第一候选PDCCH和其他候选PDCCH,也可以理解为第一候选PDCCH为第一搜索空间集合中多个候选PDCCH的任意一个候选PDCCH。上述第二搜索空间集合包含第二候选PDCCH。上述第二候选PDCCH用于承载第二DCI。第二搜索空间集合包含一个或多个候选PDCCH。也就是说,第二搜索空间集合可仅包含第二候选PDCCH,也可包括第二候选PDCCH和其他候选PDCCH,也可以理解为第二候选PDCCH为第二搜索空间集合中多个候选PDCCH的任意一个候选PDCCH。
在一种可能的实现方式中,终端设备还可执行如下操作:向上述接入网设备发送第一能力信息,上述第一能力信息用于指示上述终端设备支持根据各搜索空间集合关联的小区的个数执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合的先后顺序。相应的,接入网设备接收来自终端设备的第一能力信息。在该实现方式中,向接入网设备发送第一能力信息,以便该接入网设备获知终端设备支持根据各搜索空间集合关联的小区的个数执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合的先后顺序。接入网设备在获得第一能力信息之后,可配置终端设备与接入网设备执行图2中的流程。
202、在第一搜索空间集合关联的小区的个数多于第二搜索空间集合关联的小区的个数的情况下,终端设备在确定是否将第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
确定是否将第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合可理解为:确定(判断)是否监听第一搜索空间集合中的候选PDCCH,即对第一搜索空间集合进行PDCCH映射操作,也可以理解为对第一搜索空间集合中的候选PDCCH执行3GPP标准协议38.213中定义的PDCCH映射规则(协议中描述的伪代码)。确定是否将第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合可以是:确定是否将第一搜索空间集合中的候选PDCCH分配到用于监听的第一搜索空间集合。终端设备在确定监听第一搜索空间集合中的候选PDCCH之前,第一搜索空间集合可视为配置的搜索空间集合;在确定监听第一搜索空间集合中的候选PDCCH之后,第一搜索空间集合可视为用于监听的搜索空间集合。
可理解,第一配置信息用于配置的搜索空间集合并不一定是用于监听的搜索空间集合,在终端设备确定监听第一配置信息配置的某个搜索空间集合之后,该搜索空间集合才是用于监听的搜索空间集合。如果一个搜索空间集合通过PDCCH映射规则后被确定为待监听的搜索空间集合,则可以理解为确定将这个搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合中。例如,USS#1包含的候选PDCCH逐一通过PDCCH映射规则操作后没有超过BD/CCE limit或者没有超过更新的BD/CCE limit,那么可以理解为确定将USS#1中的所有候选PDCCH分配到用于监听的USS#1中。如果一个搜索空间集合通过PDCCH映射规则后未被确定为待监听的搜索空间集合,则可以理解为确定不将这个搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合中,UE不会监听这个搜索空间集合中的所有候选PDCCH,也可以理解为UE丢弃这个搜索空间集合中的所有候选PDCCH。例如,USS#1包含的候选PDCCH逐一通过PDCCH映射规则操作后超过了BD/CCE limit或者超过了更新的BD/CCE limit,那么可以理解为确定不将USS#1中的所有候选PDCCH分配到用于监听的USS#1中,UE不会监听USS#1中的所有候选PDCCH。在执行PDCCH映射规则前,USS#1为配置的搜索空间集合,用于监听与其配置相关的DCI,但终端设备是否真实监听USS#1中的候选PDCCH,需要通过PDCCH映射规则来判断。当USS#1中的所有候选PDCCH对应的盲检次数不超过BD/CCE limit或者没有超过更新的BD/CCE limit,则USS#1从配置的搜索空间集合变为待监听的USS#1,即UE要监听USS#1中所有的候选PDCCH。当USS#1中的一个候选PDCCH或者部分候选PDCCH或者所有候选PDCCH对应的盲检次数超过BD/CCE limit或者超过更新的BD/CCE limit,则USS#1从配置的搜索空间集合变为不监听的USS#1,即UE不需要监听USS#1中所有的候选PDCCH。确定是否将第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合可以是:确定是否将第二搜索空间集合中的候选PDCCH分配到用于监听的第二搜索空间集合。执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合可以理解为背景技术中描述的对搜索空间集合执行PDCCH映射流程/规则。
可理解,步骤202示出了终端设备对第一配置信息的多个搜索空间集合(包括第一搜索空间集合和第二搜索空间集合)进行PDCCH映射的先后顺序的一个示例。终端设备在执行步骤202之前,可执行如下操作:确定对第一配置信息配置的多个搜索空间集合进行PDCCH映射的先后顺序。或者说,确定第一配置信息配置的各搜索空间集合的映射优先级,搜索空间集合的映射优先级越高越先参与PDCCH映射。
在实际应用中,对任意配置信息(例如第一配置信息)配置的多个搜索空间集合(包括第一搜索空间集合和第二搜索空间集合)进行PDCCH映射的先后顺序可通过如下方式确定:按照各搜索空间集合关联的小区的个数对各搜索空间集合进行PDCCH映射的顺序进行排序,若两个搜索空间集合关联的小区的个数相同,则按照这两个搜索空间集合的索引对这两个搜索空间集合进行PDCCH映射的顺序进行排序。具体地,若两个搜索空间集合关联的小区的个数相同,则两个搜索空间集合中索引较小的搜索空间集合先进行PDCCH映射操作,两个搜索空间集合中索引较大的搜索空间集合后进行PDCCH映射操作。可理解,终端设备根据各搜索空间集合关联的小区的个数和/或各搜索空间集合的索引,确定对各搜索空间集合进行PDCCH映射的先后顺序。在实际应用中,终端设备确定对各搜索空间集合进行PDCCH映射的先后顺序之后,可按照该顺序依次对搜索空间集合进行PDCCH映射;在某个搜索空间集合对应的监听的候选PDCCH超过BD次数上限或者不重叠的CCE个数超过不重叠CCE上限时,终端设备不会监听这个搜索空间集合以及在该搜索空间集合之后参与PDCCH映射的搜索空间集合,这个slot/span的PDCCH映射操作终止。
本申请实施例主要提供了确定对各搜索空间集合进行PDCCH映射的先后顺序的方式,不限定对搜索空间集合进行PDCCH映射的具体方式。举例来说,第一配置信息用于配置USS set#1(即第一搜索空间集合)、USS set#2(即第二搜索空间集合)以及USS set#3,USS set#1关联2个小区(cell),USS set#2关联3个cell,USS set#3关联4个cell,终端设备对USS set#1、USS set#2、USS set#3进行PDCCH映射的先后顺序如下:USS set#3最先进行PDCCH映射操作,USS set#2在USS set#3之后进行PDCCH映射操作,USS set#1在USS set#3和USS set#2之后进入PDCCH映射操作。或者说,USS set#1、USS set#2、USS set#3的优先级排列如下:USS set#3>USS set#2>USS set#1,即调度小区个数少的USS set的优先级低。又举例来说,第一配置信息用于配置USS set#1(即第一搜索空间集合)、USS set#2(即第二搜索空间集合)以及USS set#3,USS set#1的索引比USS set#2的索引小,USS set#1关联2个小区(cell),USS set#2关联2个cell,USS set#3关联4个cell,终端设备对USS set#1、USS set#2、USS set#3进行PDCCH映射的先后顺序如下:USS set#3最先进行PDCCH映射操作,USS set#1在USS set#3之后进行PDCCH映射操作,USS set#2在USS set#3和USS set#1之后进行PDCCH映射操作。
在一种可能的实现方式中,上述第一搜索空间集合关联的小区包括上述第一DCI用于调度的K个小区,上述第二搜索空间集合关联的小区包括上述第二DCI用于调度的F个小区,上述第一搜索空间集合的索引大于或小于上述第二搜索空间的索引,上述K和上述F均为大于0的整数,上述K大于上述F。上述第一搜索空间集合关联的小区的个数可以是第一搜索空间集合中的P个候选PDCCH(包括第一候选PDCCH)承载的至多P个DCI用于调度的小区的总数,每个候选PDCCH承载至多一个DCI,P为大于0的整数。例如,第一搜索空间集合仅包括第一候选PDCCH,第一候选PDCCH承载的第一DCI用于调度K个小区,第一搜索空间集合关联的小区的个数为K。又例如,第一搜索空间集合包括第一候选PDCCH和候选PDCCH 1,第一候选PDCCH承载的第一DCI用于调度2个小区,候选PDCCH 1承载的DCI 1用于调度3个小区,第一搜索空间集合关联的小区的个数为5(2+3)。上述第二搜索空间集合关联的小区的个数可以是第二搜索空间集合中的Q个候选PDCCH(包括第二候选PDCCH)承载的Q个DCI用于调度的小区的总数,每个候选PDCCH承载至多一个DCI,Q为大于0的整数。例如,第二搜索空间集合仅包括第二候选PDCCH,第二候选PDCCH承载的第二DCI用于调度F个小区,第二搜索空间集合关联的小区的个数为F。又例如,第二搜索空间集合包括第二候选PDCCH和候选PDCCH 2,第二候选PDCCH承载的第一DCI用于调度2个小区,候选PDCCH 2承载的DCI 2用于调度4个小区,第二搜索空间集合关联的小区的个数为6(2+4)。另一种可能实现方式中,上述第一DCI用于调度的小区可以是第一搜索空间集合关联的小区中至少一个小区。例如,第一搜索空间集合关联小区集合CC#1,CC#2和CC#3。在某一个时刻,UE在第一搜索空间集合中检测到一个第一DCI,这个第一DCI调度了小区CC#1和CC#3。在另一个时刻,UE在第一搜索空间集合中检测到一个第一DCI,这个第一DCI同时调度了小区CC#1、CC#2和CC#3。第二搜索空间集合同第一搜索空间集合的描述,这里不再赘述。
在一种可能的实现方式中,上述第一DCI用于调度一个或多个小区的数据信道,上述第二DCI用于调度一个或多个小区的数据信道;或者,上述第一DCI和上述第二DCI均用于上行调度,上述第一DCI 的格式和上述第二DCI的格式均为第一格式,上述第一格式的DCI用于调度一个或多个小区的上行数据信道;或者,上述第一DCI和上述第二DCI均用于下行调度,上述第一DCI的格式和上述第二DCI的格式均为第二格式,上述第二格式的DCI用于调度一个或多个小区的下行数据信道。本申请主要涉及两种DCI,一种DCI(可称为legacy DCI,传统DCI)仅能调度一个小区的数据信道,另一种DCI(可称为single DCI)用于调度一个或多个小区的数据信号。legacy DCI为目前标准中已经引入的DCI格式(DCI format),例如回退fallback DCI格式用于调度上行的DCI format 0_0和用于调度下行的DCI format 1_0,非回退non-fall back DCI格式用于调度上行的DCI format 0_1和用于调度下行的DCI format 1_1,压缩DCI格式用于调度上行的DCI format 0_2和用于调度下行的DCI format 1_2等。在该实现方式中,第一DCI和第二DCI均为single DCI。第一格式的DCI为用于调度一个或多个小区的上行数据信道的single DCI,例如用于调度上行数据信道的DCI格式0_X,或DCI format 0_5。第二格式的DCI为用于调度一个或多个小区的下行数据信道的single DCI,例如用于调度下行数据信道的DCI格式1_X,或DCI format 1_5。
在一种可能的实现方式中,上述第一DCI用于调度一个或多个小区的数据信道,上述第二DCI用于调度一个小区的数据信道;或者,上述第一DCI和上述第二DCI均用于上行调度,上述第一DCI的格式为第一格式,上述第一格式的DCI用于调度一个或多个小区的上行数据信道,上述第二DCI的格式为第三格式,上述第三格式的DCI用于调度一个小区的上行数据信道;或者,上述第一DCI和上述第二DCI均用于下行调度,上述第一DCI的格式为第二格式,上述第二格式的DCI用于调度一个或多个小区的下行数据信道,上述第二DCI的格式为第四格式,上述第四格式的DCI用于调度一个小区的下行数据信道。在该实现方式中,第一DCI为single DCI,第二DCI为传统DCI,即legacy DCI。第一格式的DCI为用于调度一个或多个小区的上行数据信道的single DCI。第三格式的DCI为用于调度一个小区的上行数据信道的single DCI。第二格式的DCI为用于调度一个或多个小区的下行数据信道的single DCI。第四格式的DCI为用于调度一个小区的下行数据信道的legacy DCI。
在一种可能的实现方式中,终端设备在执行步骤202之前,可执行如下操作:接收来自上述接入网设备的第三配置信息,上述第三配置信息用于配置上述第一搜索空间集合关联的小区集合,以及配置上述第二搜索空间集合关联的小区集合。第三配置信息可以是高层信令,例如RRC消息。不同SS set与不同的可以调度的小区集合有关,或与不同的共调度小区有关。可选的,搜索空间集合与调度的小区集合有关联关系,终端设备在这个搜索空间集合中监听的DCI可以调度这个小区集合中的子集,或者监听到的DCI可以调度这个小区集合中至少一个小区。举例来说,接入网设备通过第三配置信息(包括RRC参数配置)第一搜索空间集合与SCell#3和SCell#1相关联,即终端设备在第一搜索空间集合中监听到一个single DCI,这个single DCI可以调度SCell#3,或调度SCell#1,或同时调度SCell#1和SCell#3。第一搜索空间集合关联的小区与第一参数的取值有关,例如第一参数可以是载波指示域(carrier indicator field,CIF),第一搜索空间集合对应的CIF的取值为1。举例来说,接入网设备通过第三配置信息(包括RRC参数配置)第二搜索空间集合与PCell和SCell#2相关联,即终端设备在第二搜索空间集合中监听到一个single DCI,这个single DCI可以调度PCell,或调度SCell#2,或同时调度PCell和SCell#2。第二搜索空间集合关联的小区与第二参数(例如CIF)的取值有关,例如第二搜索空间集合对应的CIF的取值为2。图3示出了第一搜索空间集合和第二搜索空间集合中的single DCI可能调度的小区。图3中,第一搜索空间集合中的single DCI1可能调度SCell#1和SCell#3,第二搜索空间集合中的single DCI 2可能调度PCell和SCell#2,{SCell#1,SCell#3}和{PCell,SCell#2}可以理解为共调度小区{PCell,SCell#1,SCell#2,SCell#3}的不同组合(combination),或者理解为用于监听single DCI的SS set与共调度小区有关。在该实现方式中,能够配置第一搜索空间集合关联的小区集合,以及配置第二搜索空间集合关联的小区集合,以便根据第一搜索空间集合关联的小区的个数和第二搜索空间集合关联的小区的个数,确定先对关联的小区较多的第一搜索空间集合进行PDCCH映射。
203、在第一搜索空间集合关联的小区的个数多于第二搜索空间集合关联的小区的个数的情况下,接入网设备在确定是否将第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
在一些实施例中,关联的小区的个数较多的搜索空间集合先进行PDCCH映射,关联的小区的个数较少的搜索空间集合后进行PDCCH映射。在另一些实施例中,关联的小区的个数较少的搜索空间集合先进行PDCCH映射,关联的小区的个数较多的搜索空间集合后进行PDCCH映射。在实际应用中,可根据实际需求根据各搜索空间集合关联的小区的个数来确定对各搜索空间集合进行PDCCH映射的先后顺序。本申请主要描述了关联的小区的个数较多的搜索空间集合先进行PDCCH映射的方案。应理解,关联的小区 的个数较少的搜索空间集合先进行PDCCH映射的方案与关联的小区的个数较多的搜索空间集合先进行PDCCH映射的方案类似,下文不再赘述。
步骤203可参阅步骤202。步骤202和步骤203的区别在于,步骤202是由终端设备执行的,步骤203是由接入网设备执行的。步骤202和步骤203的先后顺序不作限定。终端设备执行步骤202,接入网设备执行步骤203,可以保证终端设备和接入网设备对于监听的候选PDCCH或搜索空间集合的理解保持一致。
本申请实施例中,在确定是否将第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。也就是说,较早对第一搜索空间集合进行PDCCH映射,即第一搜索空间集合较早参与PDCCH映射;较晚对第二搜索空间集合进行PDCCH映射,即第二搜索空间集合较晚参与PDCCH映射。较早参与PDCCH映射的第一搜索空间集合更大概率被保留下,让终端设备去监听,而较晚参与PDCCH映射操作的第二搜索空间集合更容易被丢弃或无法分配给终端设备进行监听。这样能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
图4为本申请实施例提供的另一种通信方法交互流程图。图4中的交互流程是图2描述的方法的一种可能的实现方式。在该实现方式中,可以有序地对搜索空间集合进行PDCCH映射。如图4所示,该方法包括:
401、接入网设备向终端设备发送第一配置信息。
相应的,终端设备接收来自接入网设备的第一配置信息。步骤401可参阅步骤201。
402、在第一搜索空间集合关联的小区的个数多于第二搜索空间集合关联的小区的个数的情况下,终端设备在确定是否将第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
步骤402可参阅步骤202。
403、在第一搜索空间集合关联的小区的个数多于第二搜索空间集合关联的小区的个数的情况下,接入网设备在确定是否将第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
步骤403可参阅步骤203。终端设备执行步骤402,接入网设备执行步骤403,可以保证终端设备和接入网设备对于监听的候选PDCCH或搜索空间集合的理解保持一致。终端设备在执行步骤403之前,可执行如下操作:确定对第一配置信息配置的多个搜索空间集合进行PDCCH映射的先后顺序。在实际应用中,对任意配置信息(例如第一配置信息)配置的多个搜索空间集合(包括第一搜索空间集合和第二搜索空间集合)进行PDCCH映射的先后顺序可通过如下方式确定:按照各搜索空间集合关联的小区的个数对各搜索空间集合进行PDCCH映射的顺序进行排序,若两个搜索空间集合关联的小区的个数相同,则按照这两个搜索空间集合的索引对这两个搜索空间集合进行PDCCH映射的顺序进行排序。
404、接入网设备向终端设备发送第二配置信息。
相应的,终端设备接收来自接入网设备的第二配置信息。上述第二配置信息用于配置第三搜索空间集合和第四搜索空间集合。上述第三搜索空间集合包含第三候选PDCCH,上述第三候选PDCCH用于承载第三DCI。第三搜索空间集合可仅包含第三候选PDCCH,也可包括第三候选PDCCH和其他候选PDCCH。上述第四搜索空间集合包含第四候选PDCCH,上述第四候选PDCCH用于承载第四DCI。第四搜索空间集合可仅包含第四候选PDCCH,也可包括第四候选PDCCH和其他候选PDCCH。第三DCI和第四DCI中的一个用于调度一个或多个小区的数据信道,另一个用于调度一个小区的数据信道。或者说,第三DCI和第四DCI中的一个为single DCI,另一个为legacy DCI。
405、在第三搜索空间集合和第四搜索空间集合均关联一个小区的情况下,终端设备在确定是否将第三搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将第四搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
所述第三搜索空间集合的索引小于所述第四搜索空间集合的索引。例如,网络设备配置UE监听第三搜索空间集合的第三候选PDCCH,第三候选PDCCH用于承载第三DCI,第三DCI为legacy DCI。网络设备配置UE监听第四搜索空间集合的第四候选PDCCH,第四候选PDCCH用于承载第四DCI,第四DCI为single DCI。网络通过高层参数(例如RRC参数)配置第四搜索空间集合关联的一个小区(例如CC#3),即第四DCI只能用于调度这个小区(CC#3)。由于第三搜索空间集合为现有技术中的搜索空间集合,只能调度一个小区。而第四搜索空间集合由于高层参数配置与一个小区关联,或者第四搜索空间集合关联的小 区集合仅包含1个小区,第三搜索空间集合和第四搜索空间集合关联的小区个数相同,且均关联一个小区。如果第三搜索空间集合的索引小于第四搜索空间集合时,则第三搜索空间集合先执行PDCCH映射操作,之后再对第四搜索空间集合执行PDCCH映射操作。反之,当第三搜索空间集合的索引大于第四搜索空间集合时,则第四搜索空间集合先执行PDCCH映射操作,之后再对第三搜索空间集合执行PDCCH映射操作。
步骤405示出了终端设备对第二配置信息的多个搜索空间集合(包括第三搜索空间集合和第四搜索空间集合)进行PDCCH映射的先后顺序的一个示例。本申请实施例中,若两个搜索空间集合关联的小区的个数相同,则按照这两个搜索空间集合的索引对这两个搜索空间集合进行PDCCH映射的顺序进行排序。步骤405的一个举例如下:第三搜索空间集合和第四搜索空间均关联1个小区,第四搜索空间集合的索引在第三搜索空间集合的索引之前,即第四搜索空间集合的索引小于第三搜索空间集合的索引,终端设备先对第四搜索空间集合进行PDCCH映射,再对第三搜索空间集合进行PDCCH映射。终端设备在执行步骤405之前,可执行如下操作:确定对第二配置信息配置的多个搜索空间集合进行PDCCH映射的先后顺序。若第二配置信息还用于配置关联的小区的个数大于1的一个或多个搜索空间集合,则根据各搜索空间集合关联的小区的个数和各搜索空间集合的索引,确定对各搜索空间集合进行PDCCH映射的先后顺序。
406、在第三搜索空间集合和第四搜索空间集合均关联一个小区的情况下,接入网设备在确定是否将第三搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将第四搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
步骤406可参阅步骤405。步骤406和步骤405的区别在于,步骤405是由终端设备执行的,步骤406是由接入网设备执行的。步骤405和步骤406的先后顺序不作限定。步骤401至步骤403与步骤404至步骤406的先后顺序不作限定。也就是说,终端设备和接入网设备可先执行步骤401至步骤403,再执行步骤404至步骤406;也可先步骤404至步骤406,再执行步骤401至步骤403。终端设备执行步骤405,接入网设备执行步骤406,可以保证终端设备和接入网设备对于监听的候选PDCCH或搜索空间集合的理解保持一致。
本申请实施例中,根据各搜索空间集合关联的小区的个数和/或各搜索空间集合的索引,确定对各搜索空间集合进行PDCCH映射的先后顺序;可以有序地对搜索空间集合进行PDCCH映射。由于较早参与PDCCH映射的搜索空间集合更大概率被保留下,让终端设备去监听,而较晚参与PDCCH映射操作的搜索空间集合更容易被丢弃或无法分配给终端设备进行监听,因此能够减少不能监听关联的小区的个数较多的搜索空间集合中的候选PDCCH的情况的发生,从而减少接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
图5为本申请实施例提供的另一种通信方法交互流程图。图5中的方法与图2和图4中的方法相比,解决的技术问题相同、达到的技术效果基本相同,采用的技术手段不同。图5中的方法的主要原理是用于监听single DCI的SS set(下文可称为MC-USS set)都不会进入PDCCH映射操作,用于监听legacy DCI的SS set会进入PDCCH映射操作;在PDCCH映射操作后,终端设备会监听接入网设备配置的所有MC-USS set,而会监听所有legacy DCI或部分legacy DCI或不会监听legacy DCI。用于监听single DCI的SS set中的候选PDCCH承载single DCI,用于监听legacy DCI的SS set中的候选PDCCH承载legacy DCI。如图5所示,该方法包括:
501、接入网设备向终端设备发送第一配置信息。
相应的,终端设备接收来自接入网设备的第一配置信息。上述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合。上述第一搜索空间集合包含第一候选PDCCH,上述第一候选PDCCH用于承载第一DCI,上述第一DCI用于调度一个或多个小区的数据信道。第一搜索空间集合可仅包含第一候选PDCCH,也可包括第一候选PDCCH和其他候选PDCCH。上述第二搜索空间集合包含第二候选PDCCH,上述第二候选PDCCH用于承载第二DCI,上述第二DCI用于调度一个小区的数据信道。第一DCI为single DCI,第二DCI为legacy DCI。
在一种可能的实现方式中,终端设备还执行如下操作:向接入网设备发送第一能力信息。相应的,接入网设备接收来自终端设备的第一能力信息。第一能力信息用于指示上述终端设备支持将用于承载用于调度一个或多个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合,以及确定是否将用于承载用于调度一个小区的数据信道的DCI的候选PDCCH分配到用于监听的搜索空间集合。或者说,第一能力信息用于指示终端设备支持将用于监听single DCI的搜索空间集合作为待监听的搜索空间集合,以及对用于监听legacy DCI的搜索空间集合进行PDCCH映射。接入网设备在获得第一能力信息之后,可配 置终端设备与接入网设备执行图5中的流程。
502、终端设备将第一候选PDCCH分配到用于监听的搜索空间集合。
步骤502可替换为:终端设备将第一搜索空间集合中的候选PDCCH分配到用于监听的第一搜索空间集合,即将第一搜索空间集合作为待监听的搜索空间集合。
在一种可能的实现方式中,步骤502替换为:终端设备将第一配置信息配置的每个用于监听single DCI的搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。举例来说,第一配置信息用于配置搜索空间集合1(即第一搜索空间集合)、搜索空间集合(即第二搜索空间集合)以及搜索空间集合3,搜索空间集合1和搜索空间集合3均用于监听single DCI,搜索空间集合2用于监听legacy DCI,终端设备将搜索空间集合1中的候选PDCCH分配到用于监听的搜索空间集合1,以及将搜索空间集合2中的候选PDCCH分配到用于监听的搜索空间集合2。在该实现方式中,终端设备将第一配置信息配置的每个用于监听single DCI的搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合,可以保证每个single DCI都会被监听。
503、终端设备确定是否将第二候选PDCCH分配到用于监听的搜索空间集合。
步骤503可替换为:终端设备确定是否将第二搜索空间集合中的候选PDCCH分配到用于监听的第二搜索空间集合,即对第二搜索空间集合进行PDCCH映射。终端设备执行步骤502和步骤503的先后顺序不作限定。
在一种可能的实现方式中,步骤503替换为:终端设备对第一配置信息配置的用于监听legacy DCI的搜索空间集合进行PDCCH映射。例如,终端设备按照用于监听legacy DCI的各搜索空间集合的索引依次对各搜索空间集合进行PDCCH映射。终端设备对第一配置信息配置的用于监听legacy DCI的搜索空间集合进行PDCCH映射的具体方式可参阅上文PDCCH映射流程的相关内容,这里不再赘述。
504、接入网设备将第一候选PDCCH分配到用于监听的搜索空间集合。
步骤504可参阅步骤502。步骤504和步骤502的区别在于,步骤502由终端设备执行,步骤504由接入网设备执行。
505、接入网设备确定是否将第二候选PDCCH分配到用于监听的搜索空间集合。
步骤505可参阅步骤503。步骤505和步骤503的区别在于,步骤503由终端设备执行,步骤505由接入网设备执行。
可理解,终端设备和接入网设备都会执行PDCCH映射规则,以保证终端设备和接入网设备对于监听的候选PDCCH或搜索空间集合的理解保持一致。终端设备执行步骤502和步骤503,接入网设备执行步骤504和步骤505,可以保证终端设备和接入网设备对于监听的候选PDCCH或搜索空间集合的理解保持一致。
本申请实施例中,将第一候选PDCCH分配到用于监听的搜索空间集合,可以避免用于承载用于调度多个小区的DCI的候选PDCCH无法被监听。
图6为本申请实施例提供的另一种通信方法交互流程图。图6中的方法与图2、图4、图5中的方法相比,解决的技术问题相同、达到的技术效果基本相同,采用的技术手段不同。图6中的方法的主要原理将搜索空间集合对应的监听的候选PDCCH的次数和不重叠的CCE个数计数到终端设备的主小区和一个或多个辅小区;在任意搜索空间集合对应的监听的候选PDCCH的次数超过主小区上监听的候选PDCCH的最大个数,或者,任意搜索空间集合对应的不重叠的CCE个数超过主小区对应的非重叠CCE的最大个数的情况下,终端设备仍监听该任意搜索空间集合。如图6所示,该方法包括:
601、接入网设备向终端设备发送第一配置信息。
相应的,终端设备接收来自接入网设备的第一配置信息。上述第一配置信息用于配置第一搜索空间集合,上述第一搜索空间集合包含第一候选PDCCH,上述第一候选PDCCH用于承载第一DCI,上述第一DCI用于调度上述终端设备的主小区和第一辅小区。第一DCI可用于调度一个或多个辅小区,第一辅小区仅作为一个示例。第一DCI为single DCI。
在一种可能的实现方式中,终端设备还执行如下操作:向上述接入网设备发送第一能力信息,上述第一能力信息用于指示上述终端设备支持在任意搜索空间集合包含的候选PDCCH对应的BD次数超过上述主小区监听的候选PDCCH的最大个数,和/或,任意搜索空间集合包含的候选PDCCH对应的不重叠的CCE个数超过上述主小区对应的非重叠CCE的最大个数的情况下,监听上述任意搜索空间集合中的候选PDCCH。接入网设备在获得第一能力信息之后,可配置终端设备与接入网设备执行图6中的流程。在该实现方式中,向接入网设备发送第一能力信息,以便接入网设备获知终端设备支持的能力。
602、终端设备确定第一搜索空间集合包含的候选PDCCH对应的第一监听的候选PDCCH的次数和第一不重叠的CCE个数。
603、终端设备将第一BD次数和第一不重叠的CCE个数计数到主小区,以及第一BD次数和第一不重叠的CCE个数计数到第一辅小区上。
若第一DCI用于调度两个或两个以上辅小区,则第一BD次数和第一不重叠的CCE个数计数到第一辅小区上可以是:第一BD次数和第一不重叠的CCE个数计数到每个辅小区上。例如,第一DCI用于调度主小区、辅小区1以及辅小区2,将第一BD次数和第一不重叠的CCE个数计数到主小区,将第一BD次数和第一不重叠的CCE个数计数到辅小区1,以及将第一BD次数和第一不重叠的CCE个数计数到辅小区2。步骤603是可选的,而非必要的。
604、在第一BD次数超过主小区上监听的候选PDCCH的最大个数,和/或,第一不重叠的CCE个数超过主小区对应的非重叠CCE的最大个数的情况下,对第一搜索空间集合中的每个候选PDCCH进行监听。
第一BD次数超过主小区上监听的候选PDCCH的最大个数表明,若监听第一搜索空间集合会超过终端设备在主小区上的PDCCH监听能力。第一不重叠的CCE个数超过主小区对应的非重叠CCE的最大个数表明,若监听第一搜索空间集合会超过终端设备在主小区上的PDCCH监听能力。本申请实施例中,第一DCI用于调度终端设备的主小区和第一辅小区;在第一BD次数超过主小区上监听的候选PDCCH的最大个数,和/或,第一不重叠的CCE个数超过主小区对应的非重叠CCE的最大个数的情况下,对第一搜索空间集合中的每个候选PDCCH进行监听使用的是终端设备在第一辅小区上的PDCCH监听能力,因此不会超过终端设备的PDCCH监听能力。
步骤604可替换为:在第一BD次数未超过主小区上监听的候选PDCCH的最大个数,以及,第一不重叠的CCE个数未超过主小区对应的非重叠CCE的最大个数的情况下,对第一搜索空间集合中的每个候选PDCCH进行监听。可理解,用于监听single DCI的任意搜索空间集合的每个候选PDCCH会被监听。步骤602至步骤604可理解为终端设备针对一个用于监听single DCI的搜索空间集合执行的操作的示例。终端设备可针对任意用于监听single DCI的搜索空间集合执行类似于步骤602至步骤604的操作,这样可以避免无法监听single DCI。
在一种可能的实现方式中,终端设备针对第一配置信息配置的每个用于监听single DCI的搜索空间集合执行类似于步骤602至步骤604的操作,针对第一配置信息配置的每个用于监听legacy DCI的搜索空间集合按照上文描述的PDCCH映射规则,把需要盲检的候选PDCCH筛选到一个范围内。例如,按照用于监听legacy DCI的搜索空间集合的索引,先后对监听legacy DCI的搜索空间集合进行PDCCH映射。
本申请实施例中,在第一BD次数超过主小区上监听的候选PDCCH的最大个数,和/或,第一不重叠的CCE个数超过主小区对应的非重叠CCE的最大个数的情况下,对第一搜索空间集合中的每个候选PDCCH进行监听;能够避免接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
图7为本申请实施例提供的另一种通信方法交互流程图。图7中的交互流程是图6描述的方法的一种可能的实现方式。如图7所示,该方法包括:
701、接入网设备向终端设备发送第一配置信息。
步骤701可参阅步骤601。
在一种可能的实现方式中,终端设备执行如下操作:向接入网设备发送第二能力信息,上述第二能力信息用于指示上述终端设备支持在任意搜索空间集合包含的候选PDCCH对应的BD次数超过上述主小区监听的候选PDCCH的最大个数,和/或,任意搜索空间集合包含的候选PDCCH对应的不重叠的CCE个数超过上述主小区对应的非重叠CCE的最大个数的情况下,利用通过上述任意搜索空间集合监听到的DCI调度上述终端设备的主小区和辅小区。需要注意,这里的任意搜索空间集合是指用于监听single DCI的搜索空间集合。接入网设备在获得第二能力信息之后,可配置终端设备与接入网设备执行图7中的流程。在该实现方式中,向接入网设备发送第二能力信息,以便接入网设备获知终端设备支持的能力。
702、终端设备确定第一搜索空间集合包含的候选PDCCH对应的第一监听的候选PDCCH的次数和第一不重叠的CCE个数。
步骤702可参阅步骤602。
703、终端设备将第一BD次数和第一不重叠的CCE个数计数到主小区,以及第一BD次数和第一不重叠的CCE个数计数到第一辅小区上。
步骤703可参阅步骤603。
704、在第一BD次数超过主小区上监听的候选PDCCH的最大个数,和/或,第一不重叠的CCE个数 超过主小区对应的非重叠CCE的最大个数的情况下,对第一搜索空间集合中的每个候选PDCCH进行监听。
步骤704可参阅步骤604。
705、终端设备解析第一DCI中与第一辅小区调度相关的域信息,以及与主小区调度相关的域信息。
一种可能的实现方式中,当第一BD次数超过主小区上监听的候选PDCCH的最大个数,和/或,第一不重叠的CCE个数超过主小区对应的非重叠CCE的最大个数时,第一DCI不能调度主小区,第一DCI中与主小区相关的域信息设置为保留比特(reserved bits),或者终端设备理解第一DCI中与主小区相关的域信息为保留比特。保留比特可以是0也可以是1,不代表任何具体含义或不指示任何调度信息。
应理解,接入网设备可通过第一DCI调度终端设备的主小区和第一辅小区。
本申请实施例中,在第一BD次数超过主小区上监听的候选PDCCH的最大个数,和/或,第一不重叠的CCE个数超过主小区对应的非重叠CCE的最大个数的情况下,对第一搜索空间集合中的每个候选PDCCH进行监听,以及解析第一DCI中与第一辅小区调度相关的域信息,以及与主小区调度相关的域信息;能够避免接入网设备(例如基站)无法通过single DCI调度多个小区的情况发生。
图8为本申请实施例提供的另一种通信方法交互流程图。图8中的交互流程是图6描述的方法的一种可能的实现方式。如图8所示,该方法包括:
801、接入网设备向终端设备发送第一配置信息。
步骤801可参阅步骤601。
在一种可能的实现方式中,终端设备执行如下操作:向上述接入网设备发送第三能力信息,上述第三能力信息用于指示上述终端设备支持在任意搜索空间集合包含的候选PDCCH对应的BD次数超过上述主小区监听的候选PDCCH的最大个数,和/或搜索空间集合包含的候选PDCCH对应的不重叠的CCE个数超过上述主小区对应的非重叠CCE的最大个数的情况下,利用通过上述任意搜索空间集合监听到的DCI调度上述终端设备的辅小区。接入网设备在获得第二能力信息之后,可配置终端设备与接入网设备执行图8中的流程。在该实现方式中,向接入网设备发送第三能力信息,以便接入网设备获知终端设备支持的能力。
802、终端设备确定第一搜索空间集合包含的候选PDCCH对应的第一监听的候选PDCCH的次数和第一不重叠的CCE个数。
步骤802可参阅步骤602。
803、终端设备将第一BD次数和第一不重叠的CCE个数计数到主小区,以及第一BD次数和第一不重叠的CCE个数计数到第一辅小区上。
步骤803可参阅步骤603。步骤803是可选的。
804、在第一BD次数超过主小区上监听的候选PDCCH的最大个数,和/或,第一不重叠的CCE个数超过主小区对应的非重叠CCE的最大个数的情况下,对第一搜索空间集合中的每个候选PDCCH进行监听。
步骤804可参阅步骤604。
805、终端设备解析第一DCI中与第一辅小区调度相关的域信息,以及忽略第一DCI中与主小区调度相关的域信息。
忽略第一DCI中与主小区调度相关的域信息可替换为:跳过第一DCI中与主小区调度相关的域信息的解析。忽略第一DCI中与主小区调度相关的域信息可替换为:将第一DCI中与主小区调度相关的域信息置为特殊图案,例如全”0”。应理解,接入网设备可通过第一DCI调度终端设备的第一辅小区,无法调度终端设备的主小区。
本申请实施例中,在第一BD次数超过主小区上监听的候选PDCCH的最大个数,和/或,第一不重叠的CCE个数超过主小区对应的非重叠CCE的最大个数的情况下,对第一搜索空间集合中的每个候选PDCCH进行监听,以及解析第一DCI中与第一辅小区调度相关的域信息;能够避免接入网设备无法通过single DCI调度辅小区的情况发生。
前面介绍了本申请实施例提供的通信方法。下面结合附图介绍可实施本申请实施例提供的通信方法的通信装置的结构。
图9为本申请实施例提供的一种通信装置900的结构示意图。该通信装置900可以实现上述各个方法实施例中终端设备实现的功能或者步骤,也可以实现上述各个方法实施例中接入网设备实现的功能或者步骤。该通信装置可以包括处理模块910和收发模块920。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块910和收发模块920可以与该存储单元耦合,例如,处理模块910可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。例如,收发模块920可包括发送模块和接收模块。发送模块可 以是发射机,接收模块可以是接收机。收发模块920对应的实体可以是收发器,也可以是通信接口。
在一些可能的实施方式中,通信装置900能够对应实现上述方法实施例中终端设备的行为和功能。例如通信装置900可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路)。收发模块920例如可以用于执行图2、图4至图8的实施例中由终端设备所执行的全部接收或发送操作。处理模块910用于执行图2、图4至图8的实施例中由终端设备所执行的除了收发操作之外的全部操作。
在一些可能的实施方式中,通信装置900能够对应实现上述方法实施例中接入网设备的行为和功能。例如通信装置900可以为接入网设备,也可以为应用于接入网设备中的部件(例如芯片或者电路)。收发模块920例如可以用于执行图2、图4至图8的实施例中由接入网设备所执行的全部接收或发送操作。处理模块910用于执行图2、图4至图8的实施例中由接入网设备所执行的除了收发操作之外的全部操作。
可以理解的是,为了实现上述实施例中功能,接入网设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图10为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或接入网设备的功能,因此也能实现上述方法实施例所具备的有益效果。如图10所示,通信装置1000包括处理器1010和接口电路1020。处理器1010和接口电路1020之间相互耦合。可以理解的是,接口电路1020可以为收发器或输入输出接口。可选的,通信装置1000还可以包括存储器1030,用于存储处理器1010执行的指令或存储处理器1010运行指令所需要的输入数据或存储处理器1010运行指令后产生的数据。处理器1010可用于实现上述处理模块910的功能,接口电路1020用于实现上述收发模块920的功能。
在本申请的一些实施例中,处理器1010和接口电路1020可以用于执行终端设备执行的功能或操作等。接口电路1020例如执行图2、图4至图8的实施例中由终端设备所执行的全部接收或发送操作。接口电路1020例如用于执行图2、图4至图8的实施例中终端设备所执行的除了收发操作之外的全部操作。
在本申请的一些实施例中,处理器1010和接口电路1020可以用于执行接入网设备执行的功能或操作等。接口电路1020例如执行图2、图4至图8的实施例中由接入网设备所执行的全部接收或发送操作。接口电路1020例如用于执行图2、图4至图8的实施例中接入网所执行的除了收发操作之外的全部操作。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备的芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是接入网设备发送给终端设备的;或者,该终端设备的芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给接入网设备的。
当上述通信装置为应用于接入网设备的模块时,该接入网设备模块实现上述方法实施例中接入网设备的功能。该接入网设备模块从接入网设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给接入网设备的;或者,该接入网设备模块向接入网设备中的其它模块(如射频模块或天线)发送信息,该信息是接入网设备发送给终端设备的。这里的接入网设备模块可以是接入网设备的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备或终端设备中。处理器和存储介质也可以作为分立组件存在于接入网设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现 时,可以全部或部分地以计算机程序产品的形式实现。上述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行上述计算机程序或指令时,全部或部分地执行本申请实施例上述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。上述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,上述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。上述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。上述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。

Claims (21)

  1. 一种通信方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    接收来自接入网设备的第一配置信息,所述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,所述第一搜索空间集合包含第一候选物理下行控制信道PDCCH,所述第二搜索空间集合包含第二候选PDCCH,所述第一候选PDCCH用于承载第一下行控制信息DCI,所述第二候选PDCCH用于承载第二DCI;
    在所述第一搜索空间集合关联的小区的个数多于所述第二搜索空间集合关联的小区的个数的情况下,在确定是否将所述第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
  2. 根据权利要求1所述的方法,其特征在于,所述第一搜索空间集合关联的小区包括所述第一DCI用于调度的K个小区,所述第二搜索空间集合关联的小区包括所述第二DCI用于调度的F个小区,所述第一搜索空间集合的索引大于或小于所述第二搜索空间的索引,所述K和所述F均为大于0的整数,所述K大于所述F。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个或多个小区的数据信道;
    或者,所述第一DCI和所述第二DCI均用于上行调度,所述第一DCI的格式和所述第二DCI的格式均为第一格式,所述第一格式的DCI用于调度一个或多个小区的上行数据信道;
    或者,所述第一DCI和所述第二DCI均用于下行调度,所述第一DCI的格式和所述第二DCI的格式均为第二格式,所述第二格式的DCI用于调度一个或多个小区的下行数据信道。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个小区的数据信道;
    或者,所述第一DCI和所述第二DCI均用于上行调度,所述第一DCI的格式为第一格式,所述第一格式的DCI用于调度一个或多个小区的上行数据信道,所述第二DCI的格式为第三格式,所述第三格式的DCI用于调度一个小区的上行数据信道;
    或者,所述第一DCI和所述第二DCI均用于下行调度,所述第一DCI的格式为第二格式,所述第二格式的DCI用于调度一个或多个小区的下行数据信道,所述第二DCI的格式为第四格式,所述第四格式的DCI用于调度一个小区的下行数据信道。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述接入网设备的第二配置信息,所述第二配置信息用于配置第三搜索空间集合和第四搜索空间集合,所述第三搜索空间集合包含第三候选PDCCH,所述第四搜索空间集合包含第四候选PDCCH,所述第三候选PDCCH用于承载第三DCI,所述第四候选PDCCH用于承载第四DCI,所述第三DCI和所述第四DCI中的一个用于调度一个或多个小区的数据信道,另一个用于调度一个小区的数据信道,所述第三DCI的格式与第四DCI的格式不同;
    在所述第三搜索空间集合和所述第四搜索空间集合均关联一个小区的情况下,在确定是否将所述第三搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第四搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合,所述第三搜索空间集合的索引小于所述第四搜索空间集合的索引。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述方法还包括:
    接收来自所述接入网设备的第三配置信息,所述第三配置信息用于配置所述第一搜索空间集合关联的小区集合,以及配置所述第二搜索空间集合关联的小区集合。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    向所述接入网设备发送第一能力信息,所述第一能力信息用于指示所述终端设备支持根据各搜索空间集合关联的小区的个数执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合 的先后顺序。
  8. 一种通信方法,其特征在于,所述方法应用于接入网设备,所述方法包括:
    向终端设备发送第一配置信息,所述第一配置信息用于配置第一搜索空间集合和第二搜索空间集合,所述第一搜索空间集合包含第一候选物理下行控制信道PDCCH,所述第二搜索空间集合包含第二候选PDCCH,所述第一候选PDCCH用于承载第一下行控制信息DCI,所述第二候选PDCCH用于承载第二DCI,所述第一DCI和所述第二DCI的负载不同;
    在所述第一搜索空间集合关联的小区的个数多于所述第二搜索空间集合关联的小区的个数的情况下,在确定是否将所述第一搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第二搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合。
  9. 根据权利要求8所述的方法,其特征在于,所述第一搜索空间集合关联的小区包括所述第一DCI用于调度的K个小区,所述第二搜索空间集合关联的小区包括所述第二DCI用于调度的F个小区,所述第一搜索空间集合的索引大于或小于所述第二搜索空间的索引,所述K和所述F均为大于0的整数,所述K大于所述F。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个或多个小区的数据信道;
    或者,所述第一DCI和所述第二DCI均用于上行调度,所述第一DCI的格式和所述第二DCI的格式均为第一格式,所述第一格式的DCI用于调度一个或多个小区的数据信道;
    或者,所述第一DCI和所述第二DCI均用于下行调度,所述第一DCI的格式和所述第二DCI的格式均为第二格式,所述第二格式的DCI用于调度一个或多个小区的数据信道。
  11. 根据权利要求8或9所述的方法,其特征在于,所述第一DCI用于调度一个或多个小区的数据信道,所述第二DCI用于调度一个小区的数据信道;
    或者,所述第一DCI和所述第二DCI均用于上行调度,所述第一DCI的格式为第一格式,所述第一格式的DCI用于调度一个或多个小区的数据信道,所述第二DCI的格式为第三格式,所述第三格式的DCI用于调度一个小区的数据信道;
    或者,所述第一DCI和所述第二DCI均用于下行调度,所述第一DCI的格式为第二格式,所述第二格式的DCI用于调度一个或多个小区的数据信道,所述第二DCI的格式为第四格式,所述第四格式的DCI用于调度一个小区的数据信道。
  12. 根据权利要求8至11任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二配置信息,所述第二配置信息用于配置第三搜索空间集合和第四搜索空间集合,所述第三搜索空间集合包含第三候选PDCCH,所述第四搜索空间集合包含第四候选PDCCH,所述第三候选PDCCH用于承载第三DCI,所述第四候选PDCCH用于承载第四DCI,所述第三DCI和所述第四DCI中的一个用于调度一个或多个小区的数据信道,另一个用于调度一个小区的数据信道,所述第三DCI的格式与第四DCI的格式不同;
    在所述第三搜索空间集合和所述第四搜索空间集合均关联一个小区的情况下,在确定是否将所述第三搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合之后,确定是否将所述第四搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合,所述第三搜索空间集合的索引小于所述第四搜索空间集合的索引。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第三配置信息,所述第三配置信息用于配置所述第一搜索空间集合关联的小区集合,以及配置所述第二搜索空间集合关联的小区集合。
  14. 根据权利要求8至13任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的第一能力信息,所述第一能力信息用于指示所述终端设备支持根据各搜索空 间集合关联的小区的个数执行确定是否将各搜索空间集合中的候选PDCCH分配到用于监听的搜索空间集合的先后顺序。
  15. 一种通信装置,其特征在于,包括用于实现权利要求1至7中任一项所述的方法的模块或单元。
  16. 一种通信装置,其特征在于,包括用于实现权利要求8至14中任一项所述的方法的模块或单元。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被执行时使得计算机执行如权利要求1至7中任一项所述的方法,或者,所述程序指令被执行时使得计算机执行如权利要求8至14任一项所述的方法。
  18. 一种通信装置,其特征在于,包括处理器,所述处理器,所述处理器用于在执行指令时,使得所述通信装置执行如权利要求1至7任一项所述的方法,或者,使得所述通信装置执行如权利要求8至14任一项所述的方法。
  19. 根据权利要求18所述的装置,其特征在于,所述装置还包括存储器,所述存储器用于存储所述指令。
  20. 一种芯片,其特征在于,所述芯片包括处理器与通信接口,所述处理器通过所述通信接口读取存储器上存储的指令,执行如权利要求1至7任一项所述的方法,或者,执行如权利要求8至14任一项所述的方法。
  21. 一种通信系统,其特征在于,包括如权利要求15所述的通信装置和如权利要求16所述的通信装置。
PCT/CN2023/120188 2022-09-30 2023-09-20 通信方法和相关产品 WO2024067315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211217543.XA CN117858252A (zh) 2022-09-30 2022-09-30 通信方法和相关产品
CN202211217543.X 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067315A1 true WO2024067315A1 (zh) 2024-04-04

Family

ID=90476109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120188 WO2024067315A1 (zh) 2022-09-30 2023-09-20 通信方法和相关产品

Country Status (2)

Country Link
CN (1) CN117858252A (zh)
WO (1) WO2024067315A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324127A (zh) * 2018-03-30 2019-10-11 维沃移动通信有限公司 Pdcch监听候选的分配方法和网络侧设备
US20210250917A1 (en) * 2018-03-14 2021-08-12 Ntt Docomo, Inc. Terminal, radio communication method, and base station
CN114760660A (zh) * 2022-04-19 2022-07-15 展讯通信(上海)有限公司 调度方法及装置、计算机可读存储介质
US20220304026A1 (en) * 2021-03-22 2022-09-22 Samsung Electronics Co., Ltd. Scheduling enhancements for wireless communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210250917A1 (en) * 2018-03-14 2021-08-12 Ntt Docomo, Inc. Terminal, radio communication method, and base station
CN110324127A (zh) * 2018-03-30 2019-10-11 维沃移动通信有限公司 Pdcch监听候选的分配方法和网络侧设备
US20220304026A1 (en) * 2021-03-22 2022-09-22 Samsung Electronics Co., Ltd. Scheduling enhancements for wireless communication systems
CN114760660A (zh) * 2022-04-19 2022-07-15 展讯通信(上海)有限公司 调度方法及装置、计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Corrections on Ultra Reliable Low Latency Communications Enhancements", 3GPP DRAFT; R1-2005140, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 13 June 2020 (2020-06-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051897623 *

Also Published As

Publication number Publication date
CN117858252A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
RU2750435C1 (ru) Способы определения кандидата физического канала управления нисходящей линии связи (pdcch)
US10757695B2 (en) Method and apparatus for sending and receiving downlink control information
US20170099664A1 (en) Method, apparatus and computer program for transmission scheduling
WO2020094019A1 (zh) 信息传输方法及装置
WO2019192345A1 (zh) 一种时域资源分配方法及装置
CN111614434B (zh) 搜索空间的盲检方法及通信装置
WO2021161861A1 (ja) 端末及び通信方法
US20220386359A1 (en) Method and device for carrier scheduling
WO2022127555A1 (zh) 多用户无线数据传输方法、系统、设备及存储介质
CN105874836B (zh) 一种控制信息处理的方法、装置和系统
WO2024067315A1 (zh) 通信方法和相关产品
WO2019213881A1 (zh) 一种上行传输资源分配方法及装置
US20230189323A1 (en) Prioritization method and device for plurality of collision resources
WO2022029983A1 (ja) 端末、基地局装置、及び受信方法
WO2021070508A1 (ja) 基地局、端末、送信方法及び受信方法
EP3897030B1 (en) Data scheduling method and device
JP2021129298A (ja) 物理的上りリンク制御チャネルの衝突を扱うための装置および方法
WO2024032735A1 (zh) 一种下行控制信息的检测方法及相关装置
WO2022151428A1 (zh) 一种通信方法、装置以及系统
WO2024094192A1 (zh) 一种下行控制信息的传输方法及通信装置
WO2023207837A1 (zh) 一种通信方法及装置
WO2024008096A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
US20240155639A1 (en) Method and device in nodes used for wireless communication
US11968683B2 (en) Apparatus, method and computer program
EP4304262A1 (en) Terminal, base station, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870547

Country of ref document: EP

Kind code of ref document: A1