WO2020224512A1 - 下行控制信道的检测方法和装置 - Google Patents

下行控制信道的检测方法和装置 Download PDF

Info

Publication number
WO2020224512A1
WO2020224512A1 PCT/CN2020/087960 CN2020087960W WO2020224512A1 WO 2020224512 A1 WO2020224512 A1 WO 2020224512A1 CN 2020087960 W CN2020087960 W CN 2020087960W WO 2020224512 A1 WO2020224512 A1 WO 2020224512A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
time window
detection time
reference value
capability
Prior art date
Application number
PCT/CN2020/087960
Other languages
English (en)
French (fr)
Inventor
马蕊香
官磊
李胜钰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20802058.6A priority Critical patent/EP3905563B1/en
Publication of WO2020224512A1 publication Critical patent/WO2020224512A1/zh
Priority to US17/499,368 priority patent/US20220030569A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a method and device for detecting a downlink control channel.
  • the PDCCH carries downlink control information (DCI), which is used to indicate information such as time-frequency resources of a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PUSCH).
  • DCI downlink control information
  • the terminal device does not know the specific time-frequency resource of the PDCCH sent by the network device, and needs to perform blind detection on the PDCCH at the possible time-frequency resource location.
  • the present application provides a detection method and device for a downlink control channel, which can make full use of the detection capability of the terminal device on the premise that the maximum detection capability of the terminal device is not exceeded, and reduce the delay of data transmission.
  • this application provides a downlink control channel detection method.
  • the execution subject of this method can be a terminal device, and can also be applied to a module (such as a chip) of a terminal device.
  • the terminal device sends first indication information to the network device, where the first indication information indicates N sets of detection capability parameters of the terminal device, where each set of detection capability parameters in the N sets of detection capability parameters includes at least one of the following parameters: The reference value of the interval of the detection time window, the reference value of the duration of the detection time window and the reference value of the detection ability in the detection time window, N is a positive integer, and the detection ability includes the maximum number of candidate downlink control channels and/or not The maximum number of overlapping control channel elements.
  • the terminal device determines K detection time windows in the first time unit according to the reference value of the interval of the detection time window and/or the reference value of the duration of the detection time window in the N groups of detection capability parameters, and K is a positive integer.
  • the terminal device determines the detection capability in the K detection time windows according to the reference value of the detection capability in the detection time window in the N sets of detection capability parameters.
  • the terminal device performs blind detection on the downlink control channel in the K detection time windows according to the detection capabilities in the K detection time windows.
  • this application provides a method for sending a downlink control channel.
  • the execution subject of this method can be a network device, and can also be applied to a module (such as a chip) of a network device.
  • the network device receives the first indication information from the terminal device, the first indication information indicates N sets of detection capability parameters of the terminal device, wherein each set of detection capability parameters in the N sets of detection capability parameters includes at least one of the following parameters Species: the reference value of the interval of the detection time window, the reference value of the duration of the detection time window and the reference value of the detection ability in the detection time window, N is a positive integer, and the detection ability includes the maximum number of candidate downlink control channels and/ Or the maximum number of non-overlapping control channel elements.
  • the network device determines K detection time windows in the first time unit according to the reference value of the interval of the detection time window and/or the reference value of the duration of the detection time window in the N sets of detection capability parameters, where K is a positive integer.
  • the network device determines the detection capability in the K detection time windows according to the reference value of the detection capability in the detection time window in the N sets of detection capability parameters.
  • the network device sends the downlink control channel on the time-frequency resources of the candidate downlink control channels in the K detection time windows.
  • the detection capability in the K detection time windows is determined according to the reference value of the detection capability in the detection time window in the N sets of detection capability parameters, which specifically includes :
  • the detection ability in each detection time window of the K detection time windows is the minimum value of the reference value of the detection ability in the detection time window in the N sets of detection ability parameters; or, in the K detection time windows
  • the detection capability in each detection time window is the maximum value of the reference value of the detection capability in the detection time window in the N sets of detection capability parameters; or, the detection capability in each of the K detection time windows
  • the detection capability is the reference value of the detection capability within the detection time window in the first detection capability parameter group, where the first detection capability parameter group is the reference value of the duration of the detection time window in the N sets of detection capability parameters with the smallest value
  • the detection ability in each of the K detection time windows is the reference value of the detection ability in the detection time window in the second detection ability parameter group, where the second detection ability parameter The group is the group with the largest reference value of
  • the first detection capability parameter group is the group with the smallest reference value of the duration of the detection time window among the N groups of detection capability parameters, and is characterized by ,
  • the reference value of the duration of the detection time window of the N1 group of detection ability parameters in the N groups of detection ability parameters is equal and minimum
  • the reference value of the interval of the detection time window in the first detection ability parameter group A reference value greater than the interval of the detection time window in other N1-1 groups of detection capability parameters, where N1 is an integer greater than 1.
  • the second detection capability parameter group is a group with the largest reference value of the interval of the detection time window among the N groups of detection capability parameters, and is characterized in When the N groups of detection capability parameters have the reference value of the interval of the detection time window in the N2 groups of detection capability parameters equal and the maximum value, the reference value of the duration of the detection time window in the second detection capability parameter group The value is smaller than the reference value of the duration of the detection time window in the other N2-1 groups of detection capability parameters, where N2 is an integer greater than 1.
  • the detection capability in the K detection time windows is determined according to the reference value of the detection capability in the detection time window in the N sets of detection capability parameters, which specifically includes : Determine the total detection ability C total in the first time unit according to the reference value of the detection ability in the detection time window in the N groups of detection ability parameters; the detection ability in the first detection time window is C total -(K- 1) *floor(C total /K), the detection capability in each of the K-1 detection time windows except the first detection time window is floor(C total /K), where , Floor means rounding down, and the first detection time window is the earliest detection time window in time among the K detection time windows.
  • the total detection capability C total in the first time unit is determined according to the reference value of the detection capability in the detection time window in the N sets of detection capability parameters, specifically Including: calculating the detection ability in the first time unit corresponding to each of the N groups of detection ability parameters according to the N sets of detection ability parameters; and assigning each group of detection ability parameters to the first time unit The maximum value of the detection capabilities within is taken as the total detection capability C total in the first time unit.
  • the start symbol of the first detection time window is the start symbol of the first time unit
  • the first detection time window is among K detection time windows The earliest detection time window in time.
  • the interval X between the start symbol of the i-th detection time window and the start symbol of the i-1th detection time window in the K detection time windows target symbols, where the i-th detection time window and the i-1th detection time window are adjacent in time.
  • X target is the minimum value of the reference value of the interval of the detection time window in the N sets of detection capability parameters; or, X target is the minimum value of the N sets of detection capability parameters The maximum value of the reference value of the interval of the detection time window.
  • the duration of each of the K detection time windows is X target .
  • the method further includes: receiving second indication information from the network device; according to the second indication information, determining T detection opportunities of the downlink control channel in the first time unit, Among them, T is a positive integer; the start symbol of the first detection time window is the start symbol of the first detection opportunity, where the first detection time window is the earliest detection time window in time among the K detection time windows, The first detection timing is the earliest detection timing in the T detection timings.
  • the method further includes: determining T detection occasions of the downlink control channel in the first time unit according to information related to the search space, where T is a positive integer;
  • the start symbol of each detection time window is the start symbol of the first detection time window, where the first detection time window is the earliest detection time window in time among the K detection time windows, and the first detection time window is the T The earliest detection opportunity in time among the detection opportunities;
  • the second indication information is sent to the terminal device, and the second indication information includes information related to the search space.
  • the start symbol of the i-th detection time window among the K detection time windows is the start symbol of the second detection opportunity, where the second detection opportunity is Among the T detection occasions, the start symbol is located after the i-1th detection time window in the K detection time windows, and is the earliest detection time in time, i is an integer greater than 1 and less than or equal to K, the i A detection time window is adjacent in time to the i-1th detection time window, and the time domain position of the i-th detection time window is after the i-1th detection time window.
  • the first time is determined according to the reference value of the interval of the detection time window and/or the reference value of the duration of the detection time window in the N sets of detection capability parameters
  • the K detection time windows in the unit specifically include: the duration of each detection time window in the K detection time windows is the larger value of Y min and N max,sym , where Y min is The minimum value of the reference value of the duration of the detection time window in the N groups of detection capability parameters, and N max, sym is the maximum value of the number of symbols in the control resource set supported by the terminal device.
  • a communication device which includes functional modules for implementing the foregoing first aspect or any possible implementation of the first aspect.
  • a communication device including a functional module for implementing the foregoing second aspect or any possible implementation of the second aspect.
  • a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor is used to implement the foregoing first aspect or the method in any possible implementation manner of the first aspect through a logic circuit or executing code instructions.
  • a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or transfer signals from the processor
  • the processor is sent to another communication device other than the communication device, and the processor is used to implement the foregoing second aspect or the method in any possible implementation manner of the second aspect through a logic circuit or an execution code instruction.
  • a computer-readable storage medium stores a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the first aspect or any possibility of the first aspect is realized.
  • a computer-readable storage medium stores a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the second aspect or any possibility of the second aspect is realized.
  • a computer program product containing instructions is provided, and when the instructions are executed, the first aspect or the method in any possible implementation manner of the first aspect is implemented.
  • a computer program product containing instructions is provided, when the instructions are executed, the second aspect or the method in any possible implementation manner of the second aspect is implemented.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applied in an embodiment of the application
  • FIG. 2 is a schematic diagram of a time domain position of a terminal device for detecting a PDCCH according to an embodiment of the application;
  • 3 is a schematic diagram of the relationship between CORESET, SS, and PDCCH detection time window provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of a method for determining a PDCCH detection time window provided by an embodiment of the application
  • FIG. 5 is a schematic diagram of the relationship between CORESET, SS, and PDCCH detection time window provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of the relationship between CORESET, SS and PDCCH detection time window provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of the relationship between CORESET, SS, and PDCCH detection time window provided by an embodiment of the application;
  • FIG. 8 is a schematic diagram of another method for determining a PDCCH detection time window provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the relationship between CORESET, SS, and PDCCH detection time window provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a method for determining the detection capability within a PDCCH detection time window provided by an embodiment of the application;
  • FIG. 11 is a schematic diagram of another method for determining the detection capability within a PDCCH detection time window provided by an embodiment of this application;
  • FIG. 12 is a schematic diagram of a method for sending and detecting a downlink control channel according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applied in an embodiment of the present application.
  • the mobile communication system includes a core network device 110, a wireless access network device 120, and at least one terminal device (the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or they can integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or it can be a physical device It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
  • the terminal device can be a fixed location or movable.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
  • the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • Radio access network equipment is the access equipment that terminal equipment accesses to the mobile communication system in a wireless manner. It can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), and a transmission reception point. TRP), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes part of the base station functions, such as It can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the radio access network device.
  • wireless access network equipment is referred to as network equipment. Unless otherwise specified, network equipment refers to wireless access network equipment.
  • a terminal device may also be called a terminal, a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and so on.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (Augmented Reality, AR) terminal devices, industrial control (industrial control) ), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid, and wireless terminals in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • VR virtual reality
  • AR Augmented Reality
  • industrial control industrial control
  • wireless terminals in self-driving self-driving
  • wireless terminals in remote medical surgery wireless terminals in smart grid
  • wireless terminals in transportation safety (transportation safety) Terminal wireless terminal in smart city, wireless terminal in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • the network device and the terminal device can communicate through a licensed spectrum (licensed spectrum), can also communicate through an unlicensed spectrum (unlicensed spectrum), or communicate through a licensed spectrum and an unlicensed spectrum at the same time.
  • Network equipment and terminal equipment can communicate through a frequency spectrum below 6 GHz (gigahertz, GHz), communicate through a frequency spectrum above 6 GHz, and communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • the time-domain symbols may be orthogonal frequency division multiplexing (OFDM) symbols, or single carrier-frequency division multiplexing (SC-FDM) symbols. symbol. Unless otherwise specified, the symbols in the embodiments of the present application refer to time-domain symbols.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single carrier-frequency division multiplexing
  • PDSCH, PDCCH, and PUSCH are just examples of downlink data channels, downlink control channels, and uplink data channels.
  • data channels and control channels may be There are different names, which are not limited in the embodiments of this application.
  • the network device can configure the terminal device with the following information through signaling: one or more control resource sets (control resource set, CORESET); one or more search spaces (SS).
  • control resource set control resource set
  • SS search spaces
  • the search space is also called a search space set (set), and this application does not make a strict distinction between these two terms.
  • CORESET includes the frequency domain position that the PDCCH may use and the number of time domain symbols that the PDCCH may occupy. The number of time domain symbols can be 1, 2, or 3.
  • Each search space is associated with a CORESET.
  • Each search space configured by signaling may include the following information: search space identification; the identification of the CORESET associated with the search space; the type of the search space, such as a common search space (CSS) or a UE-specific search space (UE-specific search space, USS); the period and offset of the search space.
  • the period is in units of time slots. For example, it can be 2 time slots.
  • the offset refers to which time slot in the period the search space is on;
  • the specific symbol position of the space in a time slot can be indicated by a 14-bit bitmap.
  • the bitmap is 10101010101010, which means that the terminal equipment needs to be in the first, third, fifth, and The 7, 9, 11, and 13 symbol positions are blindly detected on the PDCCH; the aggregation level and the number of candidate PDCCHs for each aggregation level.
  • the basic unit of the time-frequency resource of the PDCCH is a control channel element (CCE).
  • CCE control channel element
  • the number of CCEs occupied by a PDCCH is called an aggregation level (aggregation level, AL), and the aggregation levels can be 1, 2, 4, 8, and 16.
  • the number of candidate PDCCHs configured with aggregation level 2 is 4, which means that there are 4 PDCCH candidate positions that may send PDCCH, and each candidate PDCCH occupies 2 CCEs.
  • the terminal device needs to check these 4 Blind detection is performed on two candidate PDCCHs to determine whether the network device has transmitted the PDCCH on the four candidate positions. It is understandable that in this application, if there is no special description, the terms detection and blind detection can be interchanged.
  • the terminal device can determine the PDCCH detection timing according to the above information configured by the network device. For example, if the number of time-domain symbols of CORESET is 3, the period of the search space is 2 slots, the offset is 1, and the 14-bit bitmap is 10001000100000, then the terminal device detects the PDCCH in the time domain position as shown in the figure 2 shown. That is, the terminal device performs blind detection on the PDCCH in time slot 1 and time slot 3. Each time slot has 3 PDCCH detection opportunities, and each PDCCH detection opportunity corresponds to 3 time domain symbols.
  • the terminal device can determine the index of the CCE corresponding to each candidate PDCCH in each aggregation level according to the foregoing CORESET and the configuration of the search space. For example, the CCE indexes of the four candidate PDCCHs with aggregation level 2 are determined as follows: the CCE indexes corresponding to candidate PDCCH 0 are 0 and 1, the CCE indexes corresponding to candidate PDCCH 1 are 2 and 3, and the CCE indexes corresponding to candidate PDCCH 2 are The CCE indexes are 4 and 5, and the CCE indexes corresponding to the candidate PDCCH 3 are 6 and 7.
  • the terminal device After determining the time-frequency resources of the candidate PDCCH, the terminal device needs to detect the PDCCH on these time-frequency resources. When the terminal device successfully decodes the DCI carried on the PDCCH, it means that the terminal device successfully detects the PDCCH. In order to be able to demodulate and decode the DCI, the terminal device first needs to perform channel estimation on the CCE corresponding to the candidate PDCCH.
  • the channel estimation here refers to estimating the wireless channel on the time-frequency resource corresponding to the CCE. If there are multiple candidate PDCCHs corresponding to the same CCE, the channel estimation result of the CCE can be reused.
  • the 5G mobile communication system can support enhanced mobile broadband (eMBB) services, ultra-reliable and low-latency communications (URLLC) services, and massive machine type communications (mMTC) )business.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine type communications
  • one method is to configure more detection occasions in a time slot, so that the network equipment can schedule the URLLC service data in time, and the terminal equipment can receive the URLLC service data in time.
  • the terminal device has more PDCCH detection opportunities, the more times the terminal device performs channel estimation and channel decoding, and further, the power consumption of the terminal device will increase. Since different terminal devices have different processing capabilities, the network device needs to consider the processing capabilities of the terminal when configuring PDCCH detection timing related parameters for the terminal device.
  • the processing capabilities of terminal equipment defined in the 3GPP protocol include: the maximum number of candidate PDCCHs that can be blindly detected by the terminal equipment in a time slot and the maximum number of non-overlapping CCEs in a time slot.
  • Table 1 defines the maximum number of candidate PDCCHs that can be blindly detected by a terminal device in each time slot of each serving cell.
  • Table 2 defines the maximum number of non-overlapping CCEs that the terminal device can support in each time slot of each serving cell.
  • the maximum number of non-overlapping CCEs refers to the maximum number of CCEs that can be supported by a terminal device for channel estimation of CCEs.
  • ⁇ in Table 1 and Table 2 represents a subcarrier spacing of 2 ⁇ ⁇ 15 kilohertz (kilohertz, kHz).
  • the terminal equipment When the terminal equipment performs blind detection on the PDCCH, it needs to ensure that the number of candidate PDCCH blind detections in a time slot does not exceed the detection capability of the terminal equipment defined in Table 1 above, and does not exceed the detection capability defined in Table 2 above.
  • the ability of terminal equipment to estimate non-overlapping CCE channels As long as one of the number of candidate PDCCHs for blind detection or the number of non-overlapping CCEs for channel estimation reaches the upper limit, the terminal device will stop blind detection of PDCCHs.
  • each PDCCH can only use aggregation level 4. In many cases, aggregation level 4 may not meet the reliability requirements of PDCCH transmission. For this reason, it is necessary to increase the maximum number of non-overlapping CCEs in the PDCCH detection timing.
  • the remaining 32 times are used for blind detection of PDCCH of USS. If there are 2 USSs, each USS has 4 PDCCH detection opportunities, and each PDCCH detection opportunity needs to complete the detection of 6 candidate PDCCHs, one USS needs to complete 24 PDCCH blind detections. If 32 blind detection times are preferentially allocated to the first USS, then only 8 blind detection times remain for the second USS. When the number of blind detections of the terminal device reaches the upper limit, the terminal device no longer performs blind detection on the PDCCH of the second USS, thereby limiting the scheduling opportunity for URLLC service data and increasing the data transmission delay. Therefore, it is necessary to increase the number of PDCCH candidates for blind detection in the PDCCH detection timing.
  • a PDCCH detection time window (monitoring span) is introduced, and the detection capability within each PDCCH detection time window is defined.
  • the terminal device may send the first indication information to the network device , Indicates the N groups of detection capability parameters of the terminal device, and N is a positive integer.
  • each group of parameters in the N groups of detection capability parameters includes at least one of the following parameters: the reference value X of the interval of the detection time window, the reference value Y of the duration of the detection time window, and the detection within the detection time window The reference value of capacity M.
  • each group of parameters may include only one of the reference value X of the interval of the detection time window, the reference value Y of the duration of the detection time window, and the reference value M of the detection capability in the detection time window, or may include the above Two or all of the three parameters.
  • each row represents a set of detection capability parameters
  • M represents the maximum detection capability within a detection time window with an interval of X symbols and a duration of Y symbols.
  • the detection capability may include: the maximum number of non-overlapping CCEs, and/or the maximum number of candidate PDCCHs.
  • CORESETs for the terminal equipment, which are 1 symbol of CORESET 1, 2 symbols of CORESET 2 and 3 symbols of CORESET 3, where CORESET 1 is associated with the search space SS 1 With SS 2, CORESET 2 is associated with SS 3, and CORESET 3 is associated with SS 4.
  • a method for determining the PDCCH detection time window is shown in Figure 4. The method includes:
  • the network device sends second indication information to the terminal device.
  • the second indication information may include parameters related to the search space.
  • the terminal device receives the second indication information from the network device.
  • the network device determines T detection opportunities of the PDCCH in the first time unit according to the parameters related to the search space. The network device only sends the PDCCH to the terminal device within the T detection occasions.
  • the terminal device determines T detection occasions of the PDCCH in the first time unit according to the second indication information, and T is a positive integer.
  • the first time unit may be a time slot, a subframe, or a radio frame. For the convenience of description, the following description takes the first time unit equal to one time slot as an example.
  • the network device determines K detection time windows in the first time unit according to the reference value of the interval of the detection time window and/or the reference value of the duration of the detection time window in the N sets of detection capability parameters, where K is a positive integer.
  • the terminal device determines K detection time windows in the first time unit according to the reference value of the interval of the detection time window and/or the reference value of the duration of the detection time window in the N sets of detection capability parameters.
  • the start symbol of the first detection time window is the start symbol of the first detection opportunity, where the first detection time window is the earliest detection time window in time among the K detection time windows, and the first Each detection opportunity is the earliest detection opportunity in time among the T detection opportunities.
  • the PDCCH detection time window is calculated only when there is a PDCCH detection opportunity, and the detection capability is allocated to the symbol corresponding to the PDCCH detection time, which can make the terminal equipment The detection capability can be used to the maximum. It is understandable that in this application, the start symbol is also the first symbol.
  • the start symbol of the i-th detection time window in the K detection time windows is the start symbol of the second detection opportunity, where the second detection opportunity is in the T detection opportunities and the start symbol is located in the
  • the time windows are adjacent in time.
  • the so-called i-th detection time window and the i-1th detection time window are adjacent in time, which means that there is no other detection time window between the i-th detection time window and the i-1th detection time window.
  • the time domain position of the i-th detection time window is after the i-1th detection time window.
  • the interval of the detection time window refers to the interval between the start symbols of two adjacent detection time windows in time, for example, the start symbol of the i-th detection time window and the i-1th.
  • the interval between the start symbols of the detection time window can be simply referred to as the interval between the i-th detection time window and the i-1th detection time window.
  • the duration of each detection time window in the K detection time windows is the larger value of Y min and N max,sym , where Y min is the detection time in the N groups of detection capability parameters
  • the minimum value of the reference value of the duration of the window, N max, sym is the maximum value of the number of CORESET symbols configured by the network device through signaling.
  • adding the determined duration of the PDCCH detection time window causes the detection time window to cross the boundary of the first time unit, then the detection The time window ends from the start symbol to the end symbol of the first time unit.
  • the terminal device receives the configuration of CORESET and the configuration of the search space as shown in Figure 3, and reports the three sets of detection capability parameters with indexes 3, 6 and 9 to the network device through the first indication information as shown in Table 3.
  • N is equal to 3
  • the corresponding three sets of detection capability parameters (X, Y, M) are (2, 2, M3), (4, 3, M6) and (7, 3, M9) respectively.
  • Y min is equal to 2
  • sym is equal to 3 symbols
  • the duration of the PDCCH detection time window is 3 symbols, and finally the three shown in Figure 3 are determined.
  • PDCCH detection time window symbols 1 to 3; symbols 4 to 6; symbols 11 to 13.
  • the network device configures two CORESETs for the terminal device through signaling, which are one-symbol CORESET 1 and two-symbol CORESET 2, where CORESET 1 is associated with the search spaces SS 1 and SS 2 , CORESET 2 is associated with SS 3.
  • the terminal device reports to the network device three sets of detection capability parameters with indexes 3, 6, and 9 as shown in Table 3 through the first indication information, that is, N is equal to 3, and the corresponding three sets of detection capability parameters (X, Y, M ) Are (2, 2, M3), (4, 3, M6) and (7, 3, M9) respectively.
  • PDCCH detection time window symbols 1 to 2; symbols 5 to 6; symbols 9 to 10 and symbols 11 to 12.
  • CORESET 1 is associated with the search Space SS 1
  • CORESET 2 is associated with SS 2
  • CORESET 3 is associated with SS 3.
  • the terminal device reports to the network device three sets of detection capability parameters with indexes 3, 6, and 9 as shown in Table 3 through the first indication information, that is, N is equal to 3, and the corresponding three sets of detection capability parameters (X, Y, M ) Are (2, 2, M3), (4, 3, M6) and (7, 3, M9) respectively.
  • PDCCH detection time window symbols 1 to 3; symbols 4 to 6, and symbols 10 to 12.
  • the network equipment configures two CORESETs for the terminal equipment through signaling, which are one-symbol CORESET 1 and two-symbol CORESET 2, where CORESET 1 is associated with the search space SS 1, CORESET 2.
  • SS 2 is associated.
  • the terminal device reports to the network device three sets of detection capability parameters with indexes 3, 6, and 9 as shown in Table 3 through the first indication information, that is, N is equal to 3, and the corresponding three sets of detection capability parameters (X, Y, M ) Are (2, 2, M3), (4, 3, M6) and (7, 3, M9) respectively.
  • PDCCH detection time window symbols 1 to 2; symbols 3 to 4; symbols 7 to 8; symbols 9 to 10 and symbol 13.
  • FIG. 8 provides another method for determining the PDCCH detection time window, the method includes:
  • the start symbol of the first detection time window is the start symbol of the first time unit, where the first detection time window is the earliest detection time window in time among the K detection time windows.
  • the start symbol of the i-th detection time window in the K detection time windows and the start symbol of the i-1th detection time window are separated by X target symbols, where the i-th detection time window is i-1 detection time windows are adjacent in time.
  • the value of X target may be predefined by the protocol.
  • the value of X target may also be configured by the network device to the terminal device through the third indication information.
  • the value of X target may be the minimum value of the reference value X of the interval of the detection time window in the N sets of detection capability parameters. Determine the interval of the detection time window according to the minimum value of the reference value X of the interval of the detection time window, so that the interval of the detection time window can be made as small as possible, thereby reducing the transmission interval of the PDCCH and reducing the transmission delay of the service data.
  • the value of X target may be the maximum value of the reference value X of the interval of the detection time window in the N groups of detection capability parameters. Determining the interval of the detection time window according to the maximum value of the reference value X of the interval of the detection time window can reduce the requirement on the detection capability of the terminal device, thereby reducing the power consumption of the terminal device.
  • S830 The duration of each detection time window in the K detection time windows is X target .
  • adding the determined duration of the PDCCH detection time window causes the detection time window to cross the boundary of the first time unit, then the detection The time window ends from the start symbol to the end symbol of the first time unit.
  • the network device configures two CORESETs for the terminal device through signaling, which are one-symbol CORESET 1 and two-symbol CORESET 2, where CORESET 1 is associated with the search spaces SS 1 and SS 2 , CORESET 2 is associated with SS 3.
  • the terminal device reports to the network device three sets of detection capability parameters with indexes 3, 6, and 9 as shown in Table 3 through the first indication information, that is, N is equal to 3, and the corresponding three sets of detection capability parameters (X, Y, M ) Are (2, 2, M3), (4, 3, M6) and (7, 3, M9) respectively.
  • the interval and duration of the PDCCH detection time window are 2 symbols.
  • the 7 PDCCH detection time windows as shown in Figure 9 are finally determined: symbols 0 to 1; symbols 2 to 3; symbols 4 to 5; symbols 6 to 7; symbols 8 to 9, symbols 10 to 11, and symbols 12 to 13.
  • an embodiment of the present application provides a method for determining the detection capability within a PDCCH detection time window.
  • S1010 Select a reference value of the detection ability in a detection time window of a certain set of detection ability parameters in the N groups of detection ability parameters as the detection ability in each detection time window.
  • the detection capability in each of the K detection time windows is the minimum value of the reference value of the detection capability in the detection time window in the N sets of detection capability parameters. Using the minimum value of the reference value of the detection capability to determine the detection capability within the PDCCH detection time window can reduce the requirement for the detection capability of the terminal device, thereby reducing the power consumption of the terminal device.
  • the detection capability in each of the K detection time windows is the maximum value of the reference value of the detection capability in the detection time window in the N sets of detection capability parameters. Using the maximum value of the reference value of the detection ability to determine the detection ability in the PDCCH detection time window can maximize the use of the blind detection ability of the terminal device and reduce the data transmission delay.
  • the detection capability in each of the K detection time windows is a reference value of the detection capability in the detection time window in the first detection capability parameter group, wherein the first detection capability parameter group It is a group with the smallest reference value of the duration of the detection time window among the N groups of detection capability parameters.
  • the interval of the detection time window in the first detection ability parameter group is equal to The reference value is greater than the reference value of the interval of the detection time window in the other N1-1 group detection capability parameters.
  • N1 is an integer greater than 1 and less than or equal to N.
  • the detection ability in each of the K detection time windows is a reference value of the detection ability in the detection time window in the second detection ability parameter group, wherein the second detection ability parameter group It is the group with the largest reference value of the interval of the detection time window among the N groups of detection capability parameters.
  • the duration of the detection time window in the second detection ability parameter group is equal to The reference value is smaller than the reference value of the duration of the detection time window in the other N2-1 groups of detection capability parameters, where N2 is an integer greater than 1 and less than or equal to N.
  • the embodiment of the present application provides another method for determining the detection capability within the PDCCH detection time window.
  • S1110 Determine the total detection capability C total in the first time unit according to the reference value of the detection capability within the detection time window in the N sets of detection capability parameters. Specifically, the process of determining C total can refer to S1111 and S1112.
  • S1111 Calculate the detection capability in the first time unit corresponding to each group of detection capability parameters according to the N groups of detection capability parameters.
  • the detection capability C(j) in the first time unit corresponding to the j-th group of detection capability parameters can be determined according to formula (1) or formula (2) or formula (3), where j is a positive value less than or equal to N Integer, X(j) is the reference value of the detection time window interval in the j-th group of detection capability parameters, M(j) is the reference value of the detection capacity within the detection time window in the j-th group of detection capability parameters, floor means Round down, ceil means round up.
  • the total detection capability C total in the first time unit may be determined according to formula (4), where max represents the maximum value.
  • S1120 Allocate the total detection capability C total in the first time unit to the K detection time windows.
  • Method 1 The detection capability C total is equally divided into K detection time windows, that is, the detection capability in each detection time window is floor (C total /K), where floor means rounding down.
  • Method 2 The detection capability in each of the K-1 detection time windows except the first detection time window in the K detection time windows is floor(C total /K), the first detection time window The detection capability in the time window is C total -(K-1)*floor(C total /K). The first detection time window is the earliest detection time window in time among the K detection time windows.
  • Method 3 The detection capability in each of the K-1 detection time windows except the K-th detection time window in the K detection time windows is floor(C total /K), the K-th detection time window The detection capability in the detection time window is C total -(K-1)*floor(C total /K). The K-th detection time window is the latest detection time window in time among the K detection time windows.
  • FIG. 12 shows the processing procedure of a method for sending and detecting a downlink control channel provided by an embodiment of the present application.
  • the function executed by the network device in this method can also be executed by a functional module (such as a chip) applied to the network device; the function executed by the terminal device in this method can also be executed by a functional module (such as a chip) applied to the terminal device. ) To execute.
  • a functional module such as a chip
  • the method specifically includes:
  • the terminal device sends first indication information to the network device, where the first indication information indicates N groups of detection capability parameters of the terminal device, where each group of detection capability parameters in the N groups of detection capability parameters includes the following parameters At least one of: the reference value of the interval of the detection time window, the reference value of the duration of the detection time window, and the reference value of the detection capability in the detection time window, N is a positive integer.
  • the detection capability may include the maximum number of candidate downlink control channels and/or the maximum number of non-overlapping control channel elements.
  • the maximum number of candidate downlink control channels is the maximum number of candidate PDCCHs that can be blindly detected by the terminal equipment in the first time unit. Further, the maximum number of candidate PDCCHs may be in one serving cell.
  • the network device determines K detection time windows in the first time unit, where K is a positive integer.
  • S1222 The terminal device determines K detection time windows in the first time unit.
  • the method for the network device and the terminal device to determine the K detection time windows in the first time unit may refer to the methods described in FIG. 4 and FIG. 8.
  • the network device determines the detection capability in the K detection time windows according to the reference value of the detection capability in the detection time window in the N sets of detection capability parameters.
  • the terminal device determines the detection capability in the K detection time windows according to the reference value of the detection capability in the detection time window in the N sets of detection capability parameters.
  • the method for the network device and the terminal device to determine the detection capability within the K detection time windows can refer to the methods described in FIG. 10 and FIG. 11.
  • the network device sends the downlink control channel on the time-frequency resource of a certain candidate downlink control channel in the K detection time windows.
  • the terminal device performs blind detection on the downlink control channel in the K detection time windows according to the detection capabilities in the K detection time windows.
  • the detection time window and the detection ability within the detection time window can be determined, and the downlink control channel can be blindly detected based on the detection ability.
  • it can make full use of the blind detection ability of the terminal equipment and increase the frequency of service data scheduling.
  • it can make the number of blind detections of the terminal equipment not exceed the maximum capacity of the terminal equipment.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • FIG. 13 and FIG. 14 are schematic structural diagrams of possible communication devices provided by embodiments of the application. These communication devices can be used to implement the functions of the terminal device or the network device in the foregoing method embodiment, and therefore can also achieve the beneficial effects of the foregoing method embodiment.
  • the communication device may be the terminal device 130 or the terminal device 140 as shown in FIG. 1, or the wireless access network device 120 as shown in FIG. 1, or it may be applied to terminal equipment. Or a module of a network device (such as a chip).
  • the communication device 1300 includes a processing unit 1310 and a transceiving unit 1320.
  • the communication device 1300 is configured to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 4, FIG. 8, FIG. 10, FIG. 11, or FIG.
  • the transceiver unit 1320 is used to send the first indication information to the network device, the first indication information indicates the N sets of detection capability parameters of the terminal device, wherein, each of the N sets of detection ability parameters includes at least one of the following parameters: a reference value for the interval of the detection time window, a reference value for the duration of the detection time window, and detection within the detection time window
  • the reference value of the capability, N is a positive integer
  • the detection capability includes the maximum number of candidate downlink control channels and/or the maximum number of non-overlapping control channel elements
  • the processing unit 1310 is used to determine the detection time according to the N sets of detection capability parameters
  • the reference value of the window interval and/or the reference value of the duration of the detection time window determines the K detection time windows in the first time unit, where K is a positive integer; the processing unit 1310 is also used for determining the N groups of detection capability parameters
  • the reference value of the detection ability in the detection time window determines
  • the transceiver unit 1320 is used to receive the first indication information from the terminal device, the first indication information indicates the N groups of detection capabilities of the terminal device Parameters, wherein each of the N groups of detection ability parameters includes at least one of the following parameters: a reference value for the interval of a detection time window, a reference value for the duration of the detection time window, and a detection time window N is a positive integer, and the detection capability includes the maximum number of candidate downlink control channels and/or the maximum number of non-overlapping control channel elements; the processing unit 1310 is used to determine the maximum number of The reference value of the interval of the detection time window and/or the reference value of the duration of the detection time window determines the K detection time windows in the first time unit, and K is a positive integer; the processing unit 1310 is also used to determine the N groups of detection capabilities The reference value of the detection capability in the detection time window in the parameter determines the detection capability in the K detection time windows
  • the communication device 1400 includes a processor 1410 and an interface circuit 1420.
  • the processor 1410 and the interface circuit 1420 are coupled with each other.
  • the interface circuit 1420 may be a transceiver or an input/output interface.
  • the communication device 1400 may further include a memory 1430 configured to store instructions executed by the processor 1410 or input data required by the processor 1410 to run the instructions or store data generated after the processor 1410 runs the instructions.
  • the processor 1410 is used to perform the functions of the foregoing processing unit 1310
  • the interface circuit 1420 is used to perform the functions of the foregoing transceiver unit 1320.
  • the terminal device chip When the foregoing communication device is a chip applied to a terminal device, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or antenna), and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules in the terminal device (such as a radio frequency module or antenna).
  • the antenna sends information, which is sent from the terminal device to the network device.
  • the network device chip implements the function of the network device in the foregoing method embodiment.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antennas).
  • the antenna sends information, which is sent by the network device to the terminal device.
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (Read-Only Memory, ROM), and programmable read-only memory (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the network device or the terminal device.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted through the computer-readable storage medium.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the associated objects before and after are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种下行控制信道的检测方法和装置。方法包括:终端设备向网络设备发送N组检测能力参数,检测能力参数包括:检测时间窗的间隔的参考值、检测时间窗的持续时间的参考值和检测时间窗内的检测能力的参考值;终端设备根据N组检测能力参数确定一个时隙内的K个检测时间窗,并根据N组检测能力参数将终端设备的检测能力分配到K个检测时间窗内;终端设备根据K个检测时间窗内的检测能力,在K个检测时间窗内对下行控制信道进行盲检测。通过该方法,终端设备可以在不超过终端设备的最大检测能力的前提下,充分利用终端设备的检测能力,降低数据传输的时延。

Description

下行控制信道的检测方法和装置
本申请要求于2019年5月3日提交中国国家知识产权局、申请号为201910366502.9、发明名称为“下行控制信道的检测方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及下行控制信道的检测方法和装置。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project)定义的第五代(5th generation,5G)移动通信系统的新空口(new radio,NR)中,网络设备会给终端设备发送物理下行控制信道(physical downlink channel,PDCCH)。该PDCCH承载下行控制信息(downlink control information,DCI),用于指示物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)的时频资源等信息。但是终端设备并不知道网络设备发送PDCCH的具体时频资源,需要在可能的时频资源位置上对PDCCH进行盲检测。
发明内容
本申请提供了一种下行控制信道的检测方法和装置,可以在不超过终端设备的最大检测能力的前提下,充分利用终端设备的检测能力,降低数据传输的时延。
第一方面,本申请提供了一种下行控制信道检测方法。该方法的执行主体可以是终端设备,也可以应用于终端设备的模块(如芯片)。终端设备向网络设备发送第一指示信息,第一指示信息指示终端设备的N组检测能力参数,其中,该N组检测能力参数中的每一组检测能力参数包括以下参数中的至少一种:检测时间窗的间隔的参考值,检测时间窗的持续时间的参考值和检测时间窗内的检测能力的参考值,N为正整数,检测能力包括候选下行控制信道的最大个数和/或不重叠控制信道元素的最大个数。终端设备根据该N组检测能力参数中的检测时间窗的间隔的参考值和/或检测时间窗的持续时间的参考值确定第一时间单元内的K个检测时间窗,K为正整数。终端设备根据该N组检测能力参数中的检测时间窗内的检测能力的参考值确定该K个检测时间窗内的检测能力。终端设备根据该K个检测时间窗内的检测能力,在该K个检测时间窗内对下行控制信道进行盲检测。
第二方面,本申请提供了一种下行控制信道的发送方法。该方法的执行主体可以是网络设备,也可以应用于网络设备的模块(如芯片)。网络设备接收来自终端设备的第一指示信息,第一指示信息指示该终端设备的N组检测能力参数,其中,该N组检测能力参数中的每一组检测能力参数包括以下参数中的至少一种:检测时间窗的间隔的参考值,检测时间窗的持续时间的参考值和检测时间窗内的检测能力的参考值,N为正整数,检测能力包括候选下行控制信道的最大个数和/或不重叠控制信道元素的最大个数。网络设备根据该N组检测能力参数中的检测时间窗的间隔的参考值和/或检测时间窗的持续时间的参考值确定第一时间单元内的K个检测时间窗,K为正整数。网络设备根据该N组检测能力参数中的检测时间窗内的检测能力的参考值确定该K个检测时间窗内的检 测能力。网络设备在该K个检测时间窗内的候选下行控制信道的时频资源上发送下行控制信道。
在第一方面或第二方面的一种可能的实现方式中,根据该N组检测能力参数中的检测时间窗内的检测能力的参考值确定该K个检测时间窗内的检测能力,具体包括:该K个检测时间窗中的每一个检测时间窗内的检测能力为该N组检测能力参数中的检测时间窗内的检测能力的参考值的最小值;或,该K个检测时间窗中的每一个检测时间窗内的检测能力为该N组检测能力参数中的检测时间窗内的检测能力的参考值的最大值;或,该K个检测时间窗中的每一个检测时间窗内的检测能力为第一检测能力参数组中的检测时间窗内的检测能力的参考值,其中,第一检测能力参数组为该N组检测能力参数中检测时间窗的持续时间的参考值取值最小的一组;或,该K个检测时间窗中的每一个检测时间窗内的检测能力为第二检测能力参数组中的检测时间窗内的检测能力的参考值,其中,第二检测能力参数组为该N组检测能力参数中检测时间窗的间隔的参考值取值最大的一组。
在第一方面或第二方面的一种可能的实现方式中,第一检测能力参数组为该N组检测能力参数中检测时间窗的持续时间的参考值取值最小的一组,其特征在于,当该N组检测能力参数中有N1组检测能力参数的检测时间窗的持续时间的参考值的取值相等且为最小时,第一检测能力参数组中的检测时间窗的间隔的参考值大于其它N1-1组检测能力参数中的检测时间窗的间隔的参考值,其中,N1为大于1的整数。
在第一方面或第二方面的一种可能的实现方式中,该第二检测能力参数组为该N组检测能力参数中检测时间窗的间隔的参考值取值最大的一组,其特征在于,当该N组检测能力参数中有N2组检测能力参数中的检测时间窗的间隔的参考值的取值相等且为最大时,第二检测能力参数组中的检测时间窗的持续时间的参考值小于其它N2-1组检测能力参数中的检测时间窗的持续时间的参考值,其中,N2为大于1的整数。
在第一方面或第二方面的一种可能的实现方式中,根据该N组检测能力参数中的检测时间窗内的检测能力的参考值确定该K个检测时间窗内的检测能力,具体包括:根据该N组检测能力参数中的检测时间窗内的检测能力的参考值确定第一时间单元内总的检测能力C total;第一个检测时间窗内的检测能力为C total-(K-1)*floor(C total/K),除第一个检测时间窗之外的其它K-1个检测时间窗中的每一个检测时间窗内的检测能力为floor(C total/K),其中,floor表示向下取整,第一个检测时间窗为该K个检测时间窗中在时间上最早的检测时间窗。
在第一方面或第二方面的一种可能的实现方式中,根据该N组检测能力参数中的检测时间窗内的检测能力的参考值确定第一时间单元内总的检测能力C total,具体包括:根据该N组检测能力参数,计算出该N组检测能力参数中的每一组检测能力参数对应的第一时间单元内的检测能力;将每一组检测能力参数对应的第一时间单元内的检测能力中的最大值作为第一时间单元内总的检测能力C total
在第一方面或第二方面的一种可能的实现方式中,第一个检测时间窗的开始符号为第一时间单元的开始符号,其中,第一个检测时间窗为K个检测时间窗中在时间上最早的检测时间窗。
在第一方面或第二方面的一种可能的实现方式中,该K个检测时间窗中的第i个检测时间窗的开始符号与第i-1个检测时间窗的开始符号之间间隔X target个符号,其中,第i个检测时间窗与第i-1个检测时间窗在时间上相邻。
在第一方面或第二方面的一种可能的实现方式中,X target为N组检测能力参数中的检测时间窗的间隔的参考值的最小值;或,X target为N组检测能力参数中的检测时间窗的间隔的参考值的最大值。
在第一方面或第二方面的一种可能的实现方式中,K个检测时间窗中的每一个检测时间窗的持续时间为X target
在第一方面的一种可能的实现方式中,该方法还包括:接收来自网络设备的第二指示信息;根据第二指示信息,确定第一时间单元内的下行控制信道的T个检测时机,其中,T为正整数;第一个检测时间窗的开始符号为第一个检测时机的开始符号,其中,第一个检测时间窗为K个检测时间窗中在时间上最早的检测时间窗,第一个检测时机为该T个检测时机中在时间上最早的检测时机。
在第二方面的一种可能的实现方式中,该方法还包括:根据搜索空间相关的信息,确定第一时间单元内的下行控制信道的T个检测时机,其中,T为正整数;第一个检测时间窗的开始符号为第一个检测时机的开始符号,其中,第一个检测时间窗为该K个检测时间窗中在时间上最早的检测时间窗,第一个检测时机为该T个检测时机中在时间上最早的检测时机;向终端设备发送第二指示信息,第二指示信息包括搜索空间相关的信息。
在第一方面或第二方面的一种可能的实现方式中,该K个检测时间窗中的第i个检测时间窗的开始符号为第二检测时机的开始符号,其中,第二检测时机为该T个检测时机中、开始符号位于该K个检测时间窗中的第i-1个检测时间窗之后、且在时间上最早的检测时机,i为大于1且小于等于K的整数,第i个检测时间窗与第i-1个检测时间窗在时间上相邻,且第i个检测时间窗的时域位置在第i-1个检测时间窗之后。
在第一方面或第二方面的一种可能的实现方式中,根据该N组检测能力参数中的检测时间窗的间隔的参考值和/或检测时间窗的持续时间的参考值确定第一时间单元内的K个检测时间窗,具体包括:该K个检测时间窗中的每一个检测时间窗的持续时间为Y min和N max,sym中取值较大的那一个,其中,Y min为该N组检测能力参数中的检测时间窗的持续时间的参考值的最小值,N max,sym为该终端设备支持的控制资源集合的符号个数的最大值。
第三方面,提供了一种通信装置,包括用于实现前述第一方面或或第一方面的任意 可能的实现方式中的方法的功能模块。
第四方面,提供了一种通信装置,包括用于实现前述第二方面或或第二方面的任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种通信装置,包括处理器和接口电路,该接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面或或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1为本申请的实施例应用的移动通信系统的架构示意图;
图2为本申请的实施例提供的终端设备对PDCCH进行检测的时域位置的示意图;
图3为本申请的实施例提供的CORESET、SS与PDCCH检测时间窗的关系示意图;
图4为本申请的实施例提供的确定PDCCH检测时间窗的方法示意图;
图5为本申请的实施例提供的CORESET、SS与PDCCH检测时间窗的关系示意图;
图6为本申请的实施例提供的CORESET、SS与PDCCH检测时间窗的关系示意图;
图7为本申请的实施例提供的CORESET、SS与PDCCH检测时间窗的关系示意图;
图8为本申请的实施例提供的另一种确定PDCCH检测时间窗的方法示意图;
图9为本申请的实施例提供的CORESET、SS与PDCCH检测时间窗的关系示意图;
图10为本申请实施例提供的一种确定PDCCH检测时间窗内的检测能力的方法示意图;
图11为本申请实施例提供的另一种确定PDCCH检测时间窗内的检测能力的方法示意图;
图12为本申请实施例提供的一种下行控制信道发送和检测方法的示意图;
图13为本申请的实施例提供的一种通信装置的结构示意图;
图14为本申请的实施例提供的另一种通信装置的结构示意图;
具体实施方式
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,网络设备均指无线接入网设备。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
在本申请的实施例中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分复用(single  carrier-frequency division multiplexing,SC-FDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
可以理解的是,本申请的实施例中,PDSCH、PDCCH和PUSCH只是作为下行数据信道、下行控制信道和上行数据信道一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
在介绍本申请的具体实施例之前,先简要介绍一下终端设备对PDCCH进行盲检测的过程。
为了终端设备能够确定PDCCH检测时机(monitoring occasion),也就是终端设备在哪些时域位置对PDCCH进行盲检测,网络设备可以通过信令为终端设备配置如下信息:一个或多个控制资源集(control resource set,CORESET);一个或多个搜索空间(search space,SS)。有时,搜索空间也称为搜索空间集(set),本申请对这两个术语不做严格区分。CORESET中包括PDCCH可能使用的频域位置以及PDCCH可能占用的时域符号个数,时域符号个数可以为1,2或3。每个搜索空间都会与一个CORESET关联。
信令配置的每个搜索空间可以包括以下信息:搜索空间标识;该搜索空间关联的CORESET的标识;该搜索空间的类型,例如是公共搜索空间(common search space,CSS)还是UE特定搜索空间(UE-specific search space,USS);搜索空间的周期和偏置,周期是以时隙为单位,例如可以是2个时隙,偏置是指搜索空间在周期中的哪一个时隙上;搜索空间在一个时隙中的具体符号位置,可以通过14比特的比特位图来指示,例如比特位图为10101010101010,表示终端设备需要在一个时隙的第1、第3个、第5个、第7个、第9个、第11个和第13个符号位置对PDCCH进行盲检测;聚合等级以及每个聚合等级的候选PDCCH个数。PDCCH的时频资源的基本单位为一个控制信道元素(control channel element,CCE)。一个PDCCH所占用的CCE的个数称为聚合等级(aggregation level,AL),聚合等级可以为1,2,4,8和16。例如,配置聚合等级为2的候选PDCCH个数为4个,也就是说有4个PDCCH候选位置可能会发送PDCCH,且每个候选PDCCH都占用2个CCE,对应的,终端设备需要对这4个候选PDCCH进行盲检测,以确定网络设备是否在这四个候选位置上发送了PDCCH。可以理解的是,在本申请中,如果没有特殊说明,检测和盲检测两个术语可以互换。
终端设备根据网络设备配置的上述信息,可以确定PDCCH检测时机。例如,CORESET的时域符号个数为3,搜索空间的周期为2个时隙,偏置为1,且14比特的比特位图为10001000100000,则终端设备对PDCCH进行检测的时域位置如图2所示。即终端设备在时隙1和时隙3对PDCCH进行盲检测,每个时隙有3个PDCCH检测时机,每个PDCCH检测时机对应有3个时域符号。
终端设备根据上述CORESET以及搜索空间的配置,可以确定每个聚合等级中每个候选PDCCH对应的CCE的索引。例如,确定聚合等级为2的4个候选PDCCH的CCE的索引分别为:候选PDCCH 0对应的CCE的索引为0和1,候选PDCCH 1对应的CCE的索引为2和3,候选PDCCH 2对应的CCE的索引为4和5,候选PDCCH 3对应的CCE的索引为6和7。
终端设备在确定了候选PDCCH的时频资源后,需要在这些时频资源上对PDCCH进行检测。当终端设备对PDCCH上承载的DCI进行译码成功后,才意味着终端设备对该PDCCH 检测成功。为了能够对DCI进行解调和译码,终端设备首先需要对候选PDCCH对应的CCE进行信道估计。这里的信道估计是指对该CCE所对应的时频资源上的无线信道进行估计。如果有多个候选PDCCH对应使用相同的CCE,则该CCE的信道估计结果可以被重用。
5G移动通信系统可以支持增强型移动宽带(enhanced mobile broadband,eMBB)业务、高可靠低时延通信(ultra-reliable and low-latency communications,URLLC)业务以及海量机器类通信(massive machine type communications,mMTC)业务。为了能够降低URLLC业务的数据传输时延,一种方法是在一个时隙中多配置一些检测时机,从而使得网络设备能够及时调度URLLC业务的数据,终端设备能够及时接收URLLC业务的数据。但是,如果终端设备对PDCCH的检测时机越多,那么终端设备进行信道估计以及信道译码的次数也就越多,进一步的,终端设备的耗电量也会增加。由于不同的终端设备所具备的处理能力有所不同,因此网络设备在给终端设备配置PDCCH检测时机相关参数的时候,需要考虑该终端所具备的处理能力。
目前3GPP协议定义的终端设备的处理能力中包括:一个时隙中终端设备所能盲检测的候选PDCCH的最大个数以及一个时隙中不重叠CCE的最大个数。表1定义了在每个服务小区的每个时隙内,终端设备所能盲检测的候选PDCCH的最大个数。表2定义了在每个服务小区的每个时隙内,终端设备所能支持的不重叠CCE的最大个数。不重叠CCE的最大个数是指终端设备所能支持的对CCE进行信道估计的CCE的最大个数。表1和表2中的μ代表子载波间隔为2 μ·15千赫兹(kilohertz,kHz)。
表1
Figure PCTCN2020087960-appb-000001
表2
Figure PCTCN2020087960-appb-000002
终端设备在对PDCCH进行盲检测时,需要保证在一个时隙中对候选PDCCH进行盲检的个数不超过上述表1中定义的终端设备的检测能力,同时也不超过上述表2中定义的终端设备对不重叠CCE的信道估计的能力。只要进行盲检测的候选PDCCH个数或进行信道估计的不重叠CCE的个数中的一个达到上限,终端设备就会停止对PDCCH的盲检测。
为了降低URLLC业务的数据传输时延,假设终端设备每2个符号对PDCCH进行盲检 测一次,则一个时隙中有7个PDCCH检测时机。如表2所示,终端设备所能进行信道估计的CCE的最大个数为56,则一个PDCCH检测时机最多有8个CCE。为了能够对终端设备及时进行上行调度和下行调度,需要在一个PDCCH检测时机中检测一个承载下行调度信息的PDCCH和承载上行调度信息的PDCCH,那么每个PDCCH就只能使用聚合等级4。在很多情况下,聚合等级4可能无法满足PDCCH传输的可靠性需求。为此,需要增大PDCCH检测时机中不重叠CCE的最大个数。
假设一个时隙中分配给CSS的PDCCH盲检测次数为12次,剩余32次用于USS的PDCCH盲检测。如果有2个USS,每个USS有4个PDCCH检测时机,且每个PDCCH检测时机中需要完成对6个候选PDCCH的检测,则一个USS需要完成24次PDCCH盲检测。如果将32次盲检测次数优先分配给第一个USS,那么第二个USS则只剩下8个盲检测次数。当终端设备的盲检测次数达到上限的时候,则终端设备不再对第二个USS的PDCCH进行盲检测,从而限制了对URLLC业务数据的调度机会,会增加数据传输时延。因此,需要增加PDCCH检测时机中盲检测候选PDCCH的个数。
为了解决上述问题,引入了PDCCH检测时间窗(monitoring span),并定义了在每个PDCCH检测时间窗内的检测能力。
终端设备为了避免网络设备配置的PDCCH检测时机相关参数(如,CORESET和/或搜索空间)导致终端需要进行的PDCCH盲检测次数超过终端设备的实际能力,终端设备可以向网络设备发送第一指示信息,指示终端设备的N组检测能力参数,N为正整数。其中,该N组检测能力参数中的每一组参数包括以下参数中的至少一种:检测时间窗的间隔的参考值X,检测时间窗的持续时间的参考值Y和检测时间窗内的检测能力的参考值M。即,每一组参数可以只包括检测时间窗的间隔的参考值X、检测时间窗的持续时间的参考值Y和检测时间窗内的检测能力的参考值M中的一种,也可以包括上述三种参数中的两种或全部。如表3所示,每一行代表一组检测能力参数,M表示在间隔为X个符号、持续时间为Y个符号的检测时间窗内的最大检测能力。检测能力可以包括:不重叠CCE的最大个数,和/或,候选PDCCH的最大个数。
表3
索引 X Y M
1 1 1 M1
2 2 1 M2
3 2 2 M3
4 4 1 M4
5 4 2 M5
6 4 3 M6
7 7 1 M7
8 7 2 M8
9 7 3 M9
如图3所示,假设网络设备为终端设备配置了3个CORESET,分别为1个符号的CORESET 1,2个符号的CORESET 2和3个符号的CORESET3,其中,CORESET 1关联了搜 索空间SS 1和SS 2,CORESET 2关联了SS 3,CORESET 3关联了SS 4。
一种确定PDCCH检测时间窗的方法如图4所示。该方法包括:
S410,网络设备向终端设备发送第二指示信息。第二指示信息中可以包括搜索空间相关的参数。对应的,终端设备接收来自网络设备的第二指示信息。
S421,网络设备根据搜索空间相关的参数确定第一时间单元内的PDCCH的T个检测时机。网络设备只在该T个检测时机内给该终端设备发送PDCCH。
S422,终端设备根据第二指示信息确定第一时间单元内的PDCCH的T个检测时机,T为正整数。第一时间单元可以为一个时隙、一个子帧或一个无线帧。为了描述方便,下面以第一时间单元等于一个时隙为例进行描述。
S431,网络设备根据N组检测能力参数中的检测时间窗的间隔的参考值和/或检测时间窗的持续时间的参考值确定第一时间单元内的K个检测时间窗,K为正整数。
S432,终端设备根据N组检测能力参数中的检测时间窗的间隔的参考值和/或检测时间窗的持续时间的参考值确定第一时间单元内的K个检测时间窗。
具体的,第一个检测时间窗的开始符号为第一个检测时机的开始符号,其中,第一个检测时间窗为所述K个检测时间窗中在时间上最早的检测时间窗,第一个检测时机为所述T个检测时机中在时间上最早的检测时机。采用这种方法定义第一个检测时间窗的开始符号,从有PDCCH检测时机的时候才开始计算PDCCH检测时间窗,并将检测能力分配在有PDCCH检测时机对应的符号上,可以使得终端设备的检测能力能够最大限度的被使用。可以理解的是,在本申请中,开始符号也就是第一个符号。
具体的,所述K个检测时间窗中的第i个检测时间窗的开始符号为第二检测时机的开始符号,其中,第二检测时机为所述T个检测时机中、开始符号位于所述K个检测时间窗中的第i-1个检测时间窗之后、且在时间上最早的检测时机,i为大于1且小于等于K的整数,第i个检测时间窗与第i-1个检测时间窗在时间上相邻。所谓的第i个检测时间窗与第i-1个检测时间窗在时间上相邻,是指第i个检测时间窗与第i-1个检测时间窗之间没有其它检测时间窗。可选的,第i个检测时间窗的时域位置在第i-1个检测时间窗之后。在本申请中,检测时间窗的间隔是指在时间上相邻的两个检测时间窗的开始符号之间的间隔,例如,这里的第i个检测时间窗的开始符号与第i-1个检测时间窗的开始符号之间的间隔,可以简称为第i个检测时间窗与第i-1个检测时间窗之间的间隔。
所述K个检测时间窗中的每一个检测时间窗的持续时间为Y min和N max,sym中取值较大的那一个,其中,Y min为所述N组检测能力参数中的检测时间窗的持续时间的参考值的最小值,N max,sym为网络设备通过信令配置的CORESET的符号个数的最大值。采用这种方法,使得一个PDCCH检测时间窗可以包括一个完整的CORESET,使得终端设备的检测能力最大限度地被使用。
如果在确定了第一时间单元内的最后一个PDCCH检测时间窗的开始符号之后,加上确定的PDCCH检测时间窗的持续时间长度,导致该检测时间窗跨第一时间单元的边界,则该检测时间窗从开始符号到第一时间单元的结束符号结束。
假设终端设备收到了如图3所示的CORESET的配置以及搜索空间的配置,并通过第一指示信息向网络设备上报了如表3所示的索引为3,6和9的三组检测能力参数,即N等于3,对应的三组检测能力参数(X,Y,M)分别为(2,2,M3)、(4,3,M6)和(7,3,M9)。应用图4所述的确定PDCCH检测时间窗的方法,那么Y min等于2,N max,sym等于3,PDCCH检测时间窗的持续时间为3个符号,最后确定了如图3所示的三个PDCCH检测时间窗:符号1至3;符号4至6;符号11至13。
如图5所示,假设网络设备通过信令为终端设备配置了2个CORESET,分别为1个符号的CORESET 1和2个符号的CORESET 2,其中,CORESET 1关联了搜索空间SS 1和SS 2,CORESET 2关联了SS 3。终端设备通过第一指示信息向网络设备上报了如表3所示的索引为3,6和9的三组检测能力参数,即N等于3,对应的三组检测能力参数(X,Y,M)分别为(2,2,M3)、(4,3,M6)和(7,3,M9)。应用图4所述的确定PDCCH检测时间窗的方法,那么Y min等于2,N max,sym等于2,PDCCH检测时间窗的持续时间为2个符号,最后确定了如图5所示的四个PDCCH检测时间窗:符号1至2;符号5至6;符号9至10以及符号11至12。
如图6所示,假设网络设备通过信令为终端设备配置了3个CORESET,分别为1个符号的CORESET 1,2个符号的CORESET 2和3个符号的CORESET3,其中,CORESET 1关联了搜索空间SS 1,CORESET 2关联了SS 2,CORESET 3关联了SS 3。终端设备通过第一指示信息向网络设备上报了如表3所示的索引为3,6和9的三组检测能力参数,即N等于3,对应的三组检测能力参数(X,Y,M)分别为(2,2,M3)、(4,3,M6)和(7,3,M9)。应用图4所述的确定PDCCH检测时间窗的方法,那么Y min等于2,N max,sym等于3,PDCCH检测时间窗的持续时间为3个符号,最后确定了如图6所示的三个PDCCH检测时间窗:符号1至3;符号4至6以及符号10至12。
如图7所示,假设网络设备通过信令为终端设备配置了2个CORESET,分别为1个符号的CORESET 1和2个符号的CORESET 2,其中,CORESET 1关联了搜索空间SS 1,CORESET 2关联了SS 2。终端设备通过第一指示信息向网络设备上报了如表3所示的索引为3,6和9的三组检测能力参数,即N等于3,对应的三组检测能力参数(X,Y,M)分别为(2,2,M3)、(4,3,M6)和(7,3,M9)。应用图4所述的确定PDCCH检测时间窗的方法,那么Y min等于2,N max,sym等于2,PDCCH检测时间窗的持续时间为2个符号,最后确定了如图7所示的五个PDCCH检测时间窗:符号1至2;符号3至4;符号7至8;符号9至10以及符号13。
图8提供了另一种确定PDCCH检测时间窗的方法,该方法包括:
S810,第一个检测时间窗的开始符号为所述第一时间单元的开始符号,其中,所述第一个检测时间窗为所述K个检测时间窗中在时间上最早的检测时间窗。
S820,所述K个检测时间窗中的第i个检测时间窗的开始符号与第i-1个检测时间窗的开始符号之间间隔X target个符号,其中,第i个检测时间窗与第i-1个检测时间窗在时间上相邻。
具体的,X target的取值可以是协议预定义的。X target的取值也可以是网络设备通过第三指示信息配置给终端设备的。
X target的取值可以为所述N组检测能力参数中的检测时间窗的间隔的参考值X的最小值。根据检测时间窗的间隔的参考值X的最小值确定检测时间窗的间隔,可以使得检测时间窗的间隔尽可能地小,从而降低PDCCH的传输间隔,降低业务数据的传输时延。
X target的取值可以为所述N组检测能力参数中的检测时间窗的间隔的参考值X的最大值。根据检测时间窗的间隔的参考值X的最大值确定检测时间窗的间隔,可以降低对终端设备的检测能力的要求,进而降低终端设备的功耗。
S830,所述K个检测时间窗中的每一个检测时间窗的持续时间为X target
如果在确定了第一时间单元内的最后一个PDCCH检测时间窗的开始符号之后,加上确定的PDCCH检测时间窗的持续时间长度,导致该检测时间窗跨第一时间单元的边界,则该检测时间窗从开始符号到第一时间单元的结束符号结束。
如图9所示,假设网络设备通过信令为终端设备配置了2个CORESET,分别为1个符号的CORESET 1和2个符号的CORESET 2,其中,CORESET 1关联了搜索空间SS 1和SS 2,CORESET 2关联了SS 3。终端设备通过第一指示信息向网络设备上报了如表3所示的索引为3,6和9的三组检测能力参数,即N等于3,对应的三组检测能力参数(X,Y,M)分别为(2,2,M3)、(4,3,M6)和(7,3,M9)。应用图8所述的确定PDCCH检测时间窗的方法,如果确定X target的取值为2,即PDCCH检测时间窗的间隔和持续时间为2个符号。对应的,最后确定了如图9所示的7个PDCCH检测时间窗:符号0至1;符号2至3;符号4至5;符号6至7;符号8至9,符号10至11以及符号12至13。
在确定了PDCCH检测时间窗之后,如何进一步确定每一个PDCCH检测时间窗内的检测能力,即如何将终端设备的盲检测能力分配到每一个PDCCH检测时间窗,是本申请实施例所需要解决的一个技术问题。
如图10所示,本申请实施例提供了一种确定PDCCH检测时间窗内的检测能力的方法。
S1010,选择所述N组检测能力参数中的某一组检测能力参数的检测时间窗内的检测能力的参考值作为每一个检测时间窗内的检测能力。
具体的,所述K个检测时间窗中的每一个检测时间窗内的检测能力为所述N组检测能力参数中的检测时间窗内的检测能力的参考值的最小值。采用检测能力的参考值的最小值来确定PDCCH检测时间窗内的检测能力,可以降低对终端设备的检测能力的要求,进而降低终端设备的功耗。
或者,所述K个检测时间窗中的每一个检测时间窗内的检测能力为所述N组检测能力参数中的检测时间窗内的检测能力的参考值的最大值。采用检测能力的参考值的最大值来确定PDCCH检测时间窗内的检测能力,能最大限度地使用终端设备的盲检测能力,降低数据传输时延。
或者,所述K个检测时间窗中的每一个检测时间窗内的检测能力为第一检测能力参数组中的检测时间窗内的检测能力的参考值,其中,所述第一检测能力参数组为所述N组检测能力参数中检测时间窗的持续时间的参考值取值最小的一组。当所述N组检测能力参数中有N1组检测能力参数的检测时间窗的持续时间的参考值的取值相等且为最小时,所述第一检测能力参数组中的检测时间窗的间隔的参考值大于其它N1-1组检测能力参数中的检测时间窗的间隔的参考值,。其中,N1为大于1且小于等于N的整数。
或者,所述K个检测时间窗中的每一个检测时间窗内的检测能力为第二检测能力参数组中的检测时间窗内的检测能力的参考值,其中,所述第二检测能力参数组为所述N组检测能力参数中检测时间窗的间隔的参考值取值最大的一组。当所述N组检测能力参数中有N2组检测能力参数的检测时间窗的间隔的参考值的取值相等且为最大时,所述第二检测能力参数组中的检测时间窗的持续时间的参考值小于其它N2-1组检测能力参数中的检测时间窗的持续时间的参考值,其中,N2为大于1且小于等于N的整数。
选择持续时间参考值小的一组参数中的检测能力作为检测时间窗内的检测能力,或者,选择检测时间窗的间隔大的一组参数中的检测能力作为检测时间窗内的检测能力,能够降低对终端设备检测能力的要求,降低终端设备的功耗。
如图11所示,本申请实施例提供了另一种确定PDCCH检测时间窗内的检测能力的方法。
S1110,根据所述N组检测能力参数中的检测时间窗内的检测能力的参考值确定所述第一时间单元内总的检测能力C total。具体的,确定C total的过程可以参考S1111和S1112。
S1111,根据所述N组检测能力参数,计算出每一组检测能力参数对应的第一时间单元内的检测能力。具体的,第j组检测能力参数对应的第一时间单元内的检测能力C(j)可以根据公式(1)或公式(2)或公式(3)确定,其中,j为小于等于N的正整数,X(j)为第j组检测能力参数中的检测时间窗的间隔的参考值,M(j)为第j组检测能力参数中的检测时间窗内的检测能力的参考值,floor表示向下取整,ceil表示向上取整。
C(j)=floor(N s/X(j))*M(j)     (1)
C(j)=ceil(N s/X(j))*M(j)    (2)
C(j)=floor(((N s/X(j))*M(j))      (3)
S1112,第一时间单元内总的检测能力C total可以根据公式(4)确定,其中max表示取最大值。
C total=max{C(1),......C(j)}    (4)
S1120,将第一时间单元内总的检测能力C total分配到所述K个检测时间窗内。
具体的,可以有如下三种检测能力分配方法。
方法一:将检测能力C total均分到K个检测时间窗内,即每一个检测时间窗内的检测能力为floor(C total/K),其中,floor表示向下取整。
方法二:K个检测时间窗中除第一个检测时间窗之外的其它K-1个检测时间窗中每一个检测时间窗内的检测能力为floor(C total/K),第一个检测时间窗内的检测能力为C total-(K-1)*floor(C total/K)。所述第一个检测时间窗为所述K个检测时间窗中在时间上最早的检测时间窗。
方法三:K个检测时间窗中除第K个检测时间窗之外的其它K-1个检测时间窗中的每一个检测时间窗内的检测能力为floor(C total/K),第K个检测时间窗内的检测能力为C total-(K-1)*floor(C total/K)。所述第K个检测时间窗为所述K个检测时间窗中在时间上最晚的检测时间窗。
上述图8中所述的确定PDCCH检测时间窗的方法以及图10和图11中所述的确定PDCCH检测时间窗内的检测能力的方法的执行主体可以是网络设备,也可以是应用于网络设备内的一个功能模块(如芯片)。该方法的执行主体还可以是终端设备,也可以是应用于终端设备内的一个功能模块(如芯片)。
图12给出了本申请实施例提供的一种下行控制信道发送和检测方法的处理过程。该方法中由网络设备执行的功能也可以由应用于网络设备的一个功能模块(如芯片)来执行;该方法中由终端设备执行的功能也可以由应用于终端设备的一个功能模块(如芯片)来执行。为了描述方便,下面以网络设备和终端设备作为方法的执行主体进行描述。
该方法具体包括:
S1210,终端设备向网络设备发送第一指示信息,所述第一指示信息指示终端设备的N组检测能力参数,其中,所述N组检测能力参数中的每一组检测能力参数包括以下参数中的至少一种:检测时间窗的间隔的参考值,检测时间窗的持续时间的参考值和检测时间窗内的检测能力的参考值,N为正整数。
检测能力可以包括候选下行控制信道的最大个数和/或不重叠控制信道元素的最大 个数。候选下行控制信道的最大个数也就是终端设备在第一时间单元内所能盲检测的候选PDCCH的最大个数,进一步的,该候选PDCCH的最大个数可以是一个服务小区内的。
S1221,网络设备确定第一时间单元内的K个检测时间窗,K为正整数。
S1222,终端设备确定第一时间单元内的K个检测时间窗。
具体的,网络设备和终端设备确定第一时间单元内的K个检测时间窗的方法可以参考图4和图8所述的方法。
S1231,网络设备根据所述N组检测能力参数中的检测时间窗内的检测能力的参考值确定所述K个检测时间窗内的检测能力。
S1232,终端设备根据所述N组检测能力参数中的检测时间窗内的检测能力的参考值确定所述K个检测时间窗内的检测能力。
具体的,网络设备和终端设备确定K个检测时间窗内的检测能力的方法可以参考图10和图11所述的方法。
S1240,网络设备在K个检测时间窗内的某一个候选下行控制信道的时频资源上发送下行控制信道。对应的,终端设备根据所述K个检测时间窗内的检测能力,在所述K个检测时间窗内对下行控制信道进行盲检测。
通过上述方法可以确定检测时间窗以及检测时间窗内的检测能力,并进一步基于检测能力对下行控制信道进行盲检测,一方面能够充分利用终端设备的盲检测能力,提高业务数据被调度的频度,降低业务数据的传输时延;另一方面,能够使得终端设备的盲检测次数不超过终端设备的最大能力。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图13和图14为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备130或终端设备140,也可以是如图1所示的无线接入网设备120,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图13所示,通信装置1300包括处理单元1310和收发单元1320。通信装置1300用于实现上述图4、图8、图10、图11或图12中所示的方法实施例中终端设备或网络设备的功能。
当通信装置1300用于实现图12所示的方法实施例中终端设备的功能时:收发单元1320用于向网络设备发送第一指示信息,第一指示信息指示终端设备的N组检测能力参数,其中,该N组检测能力参数中的每一组检测能力参数包括以下参数中的至少一种:检测时间窗的间隔的参考值,检测时间窗的持续时间的参考值和检测时间窗内的检测能力的参考值,N为正整数,检测能力包括候选下行控制信道的最大个数和/或不重叠控制信道元素的最大个数;处理单元1310用于根据该N组检测能力参数中的检测时间窗的间隔的参考值和/或检测时间窗的持续时间的参考值确定第一时间单元内的K个检测时 间窗,K为正整数;处理单元1310还用于根据该N组检测能力参数中的检测时间窗内的检测能力的参考值确定该K个检测时间窗内的检测能力;处理单元1310还用于根据该K个检测时间窗内的检测能力,在该K个检测时间窗内对下行控制信道进行盲检测。
当通信装置1300用于实现图12所示的方法实施例中网络设备的功能时:收发单元1320用于接收来自终端设备的第一指示信息,第一指示信息指示该终端设备的N组检测能力参数,其中,该N组检测能力参数中的每一组检测能力参数包括以下参数中的至少一种:检测时间窗的间隔的参考值,检测时间窗的持续时间的参考值和检测时间窗内的检测能力的参考值,N为正整数,检测能力包括候选下行控制信道的最大个数和/或不重叠控制信道元素的最大个数;处理单元1310用于根据该N组检测能力参数中的检测时间窗的间隔的参考值和/或检测时间窗的持续时间的参考值确定第一时间单元内的K个检测时间窗,K为正整数;处理单元1310还用于根据该N组检测能力参数中的检测时间窗内的检测能力的参考值确定该K个检测时间窗内的检测能力;收发单元1320还用于在该K个检测时间窗内的候选下行控制信道的时频资源上发送下行控制信道。
有关上述处理单元1310和收发单元1320更详细的描述可以直接参考图12所示的方法实施例中相关描述直接得到,这里不加赘述。
如图14所示,通信装置1400包括处理器1410和接口电路1420。处理器1410和接口电路1420之间相互耦合。可以理解的是,接口电路1420可以为收发器或输入输出接口。可选的,通信装置1400还可以包括存储器1430,用于存储处理器1410执行的指令或存储处理器1410运行指令所需要的输入数据或存储处理器1410运行指令后产生的数据。
当通信装置1400用于实现图12所示的方法时,处理器1410用于执行上述处理单元1310的功能,接口电路1420用于执行上述收发单元1320的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory, ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (13)

  1. 一种下行控制信道检测方法,包括:
    向网络设备发送第一指示信息,所述第一指示信息指示终端设备的N组检测能力参数,其中,所述N组检测能力参数中的每一组检测能力参数包括:检测时间窗的间隔的参考值和检测时间窗的持续时间的参考值,N为正整数,所述检测能力包括候选下行控制信道的最大个数和/或不重叠控制信道元素的最大个数;
    根据所述N组检测能力参数中的检测时间窗的间隔的参考值和/或检测时间窗的持续时间的参考值确定第一时间单元内的K个检测时间窗,K为正整数;
    根据所述N组检测能力参数中的检测时间窗内的检测能力的参考值确定所述K个检测时间窗内的检测能力;
    根据所述K个检测时间窗内的检测能力,在所述K个检测时间窗内对下行控制信道进行盲检测。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述N组检测能力参数中的检测时间窗内的检测能力的参考值确定所述K个检测时间窗内的检测能力,具体包括:
    所述K个检测时间窗中的每一个检测时间窗内的检测能力为所述N组检测能力参数中的检测时间窗内的检测能力的参考值的最小值;或,
    所述K个检测时间窗中的每一个检测时间窗内的检测能力为所述N组检测能力参数中的检测时间窗内的检测能力的参考值的最大值;或,
    所述K个检测时间窗中的每一个检测时间窗内的检测能力为第一检测能力参数组中的检测时间窗内的检测能力的参考值,其中,所述第一检测能力参数组为所述N组检测能力参数中检测时间窗的持续时间的参考值取值最小的一组;或,
    所述K个检测时间窗中的每一个检测时间窗内的检测能力为第二检测能力参数组中的检测时间窗内的检测能力的参考值,其中,所述第二检测能力参数组为所述N组检测能力参数中检测时间窗的间隔的参考值取值最大的一组。
  3. 根据权利要求2所述的方法,所述第一检测能力参数组为所述N组检测能力参数中检测时间窗的持续时间的参考值取值最小的一组,其特征在于,
    当所述N组检测能力参数中有N1组检测能力参数的检测时间窗的持续时间的参考值的取值相等且为最小时,所述第一检测能力参数组中的检测时间窗的间隔的参考值大于其它N1-1组检测能力参数中的检测时间窗的间隔的参考值,其中,N1为大于1的整数。
  4. 根据权利要求2所述的方法,所述第二检测能力参数组为所述N组检测能力参数中检测时间窗的间隔的参考值取值最大的一组,其特征在于,
    当所述N组检测能力参数中有N2组检测能力参数中的检测时间窗的间隔的参考值的取值相等且为最大时,所述第二检测能力参数组中的检测时间窗的持续时间的参考值小于其它N2-1组检测能力参数中的检测时间窗的持续时间的参考值,其中,N2为大于1的整数。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述N组检测能力参数中的检测时间窗内的检测能力的参考值确定所述K个检测时间窗内的检测能力,具体包括:
    根据所述N组检测能力参数中的检测时间窗内的检测能力的参考值确定所述第一时 间单元内总的检测能力C total
    第一个检测时间窗内的检测能力为C total-(K-1)*floor(C total/K),除所述第一个检测时间窗之外的其它K-1个检测时间窗中的每一个检测时间窗内的检测能力为floor(C total/K),其中,floor表示向下取整,所述第一个检测时间窗为所述K个检测时间窗中在时间上最早的检测时间窗。
  6. 根据权利要求5所述的方法,其特征在于,根据所述N组检测能力参数中的检测时间窗内的检测能力的参考值确定所述第一时间单元内总的检测能力C total,具体包括:
    根据所述N组检测能力参数,计算出所述N组检测能力参数中的每一组检测能力参数对应的所述第一时间单元内的检测能力;
    将所述每一组检测能力参数对应的所述第一时间单元内的检测能力中的最大值作为所述第一时间单元内总的检测能力C total
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,第一个检测时间窗的开始符号为所述第一时间单元的开始符号,其中,所述第一个检测时间窗为所述K个检测时间窗中在时间上最早的检测时间窗。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述K个检测时间窗中的第i个检测时间窗的开始符号与第i-1个检测时间窗的开始符号之间间隔X target个符号,其中,所述第i个检测时间窗与所述第i-1个检测时间窗在时间上相邻。
  9. 根据权利要求8所述的方法,其特征在于,
    所述X target为所述N组检测能力参数中的检测时间窗的间隔的参考值的最小值;或,
    所述X target为所述N组检测能力参数中的检测时间窗的间隔的参考值的最大值。
  10. 根据权利要求8或9所述的方法,所述K个检测时间窗中的每一个检测时间窗的持续时间为X target
  11. 一种通信装置,包括用于执行如权利要求1至10中的任一项所述方法的模块。
  12. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至10中任一项所述的方法。
  13. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至10中任一项所述的方法。
PCT/CN2020/087960 2019-05-03 2020-04-30 下行控制信道的检测方法和装置 WO2020224512A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20802058.6A EP3905563B1 (en) 2019-05-03 2020-04-30 Method and apparatus for detecting a downlink control channel
US17/499,368 US20220030569A1 (en) 2019-05-03 2021-10-12 Downlink control channel monitoring method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910366502.9A CN111884755B (zh) 2019-05-03 2019-05-03 下行控制信道的检测方法和装置
CN201910366502.9 2019-05-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/499,368 Continuation US20220030569A1 (en) 2019-05-03 2021-10-12 Downlink control channel monitoring method and apparatus

Publications (1)

Publication Number Publication Date
WO2020224512A1 true WO2020224512A1 (zh) 2020-11-12

Family

ID=73051260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087960 WO2020224512A1 (zh) 2019-05-03 2020-04-30 下行控制信道的检测方法和装置

Country Status (4)

Country Link
US (1) US20220030569A1 (zh)
EP (1) EP3905563B1 (zh)
CN (1) CN111884755B (zh)
WO (1) WO2020224512A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116671055A (zh) * 2021-02-03 2023-08-29 华为技术有限公司 一种通信方法和装置
EP4304267A4 (en) * 2021-04-14 2024-05-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR DETERMINING DETECTION CAPACITY, DEVICE AND STORAGE MEDIUM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081851A (zh) * 2012-03-21 2014-10-01 联发科技股份有限公司 ePDCCH的搜索空间配置方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105897373B (zh) * 2015-01-26 2019-08-16 仲川 一种在下行控制信道传送传输块的方法和系统
CN108781133B (zh) * 2018-06-08 2022-06-03 北京小米移动软件有限公司 下行控制信令检测方法、装置及存储介质
US11251995B2 (en) * 2018-08-10 2022-02-15 Lg Electronics Inc. Method for performing channel estimation in wireless communication system and apparatus therefor
US10939427B2 (en) * 2019-04-11 2021-03-02 Qualcomm Incorporated PDCCH monitoring span determination
US11582738B2 (en) * 2020-03-03 2023-02-14 Mediatek Singapore Pte. Ltd. Method and apparatus for PDCCH monitoring enhancement for carrier aggregation in mobile communications
EP4133837A4 (en) * 2020-04-08 2023-06-07 Apple Inc. SYSTEM AND METHOD FOR DETERMINING PDCCH MONITORING CAPACITY BY COMPONENT CARRIERS IN CARRIER AGGREGATION FOR RANGE-BASED PDCCH MONITORING
US11758388B2 (en) * 2020-04-23 2023-09-12 Qualcomm Incorporated Configurations for complexities of carriers
CN114696950B (zh) * 2020-12-31 2024-06-25 维沃移动通信有限公司 Pdcch盲检的限制方法、终端及网络侧设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081851A (zh) * 2012-03-21 2014-10-01 联发科技股份有限公司 ePDCCH的搜索空间配置方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: ""PDCCH Enhancements for URLLC"", 3GPP TSG RAN WG1 MEETING #97 R1-1906057, 4 May 2019 (2019-05-04), XP051708099, DOI: 20200621135956PX *
HUAWEI: ""Summary of 7.2.6.1 PDCCH Enhancements"", 3GPP TSG RAN WG1 MEETING #96BIS R1-1905740, 15 April 2019 (2019-04-15), XP051707797, DOI: 20200621140400X *
HUAWEI: ""Summary of 7.2.6.1 PDCCH Enhancements"", 3GPP TSG RAN WG1 MEETING #96BIS R1-1905876, 15 April 2019 (2019-04-15), XP051707919, DOI: 20200621140106X *
See also references of EP3905563A4
VIVO: ""PDCCH Enhancements for URLLC"", 3GPP TSG RAN WG1 #97 R1-1906146, 1 May 2019 (2019-05-01), XP051708187, DOI: 20200621140551A *

Also Published As

Publication number Publication date
US20220030569A1 (en) 2022-01-27
CN111884755B (zh) 2021-12-14
CN111884755A (zh) 2020-11-03
EP3905563A4 (en) 2022-02-23
EP3905563B1 (en) 2024-05-22
EP3905563A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
WO2020220976A1 (zh) 一种通信方法及装置
WO2020200086A1 (zh) 下行控制信息传输的方法、装置及系统
US11109444B2 (en) Wireless communication method and apparatus for uplink transmission without scheduling
WO2018171635A1 (zh) 发送数据的方法和装置,以及接收数据的方法和装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2020048481A1 (zh) 通信方法及装置
WO2020224512A1 (zh) 下行控制信道的检测方法和装置
WO2018157714A1 (en) Network node, user device, and method for wireless communication system
WO2019047944A1 (zh) 搜索空间确定方法和装置
WO2021027947A1 (zh) 一种通信方法及装置
WO2016101137A1 (zh) 无线通信装置、无线通信节点和信道检测方法
US11252747B2 (en) Communication method and device
WO2020164508A1 (zh) 参考信号的传输方法和通信装置
CN109152045B (zh) 确定下行控制信道资源的方法、装置、用户设备及基站
WO2020221319A1 (zh) 一种通信方法及装置
WO2020147694A1 (zh) 一种通信方法及装置
WO2019192515A1 (zh) 一种反馈信息的传输方法和装置
WO2019114467A1 (zh) 一种信道资源集的指示方法及装置、计算机存储介质
CN110351051B (zh) 一种确定搜索空间的方法及装置
WO2022082709A1 (zh) 物理下行控制信道的盲检测方法和通信装置
US9313006B2 (en) Methods and apparatus for resource element mapping
CN107079319A (zh) 控制信道的传输方法、装置以及通信系统
EP3857775A1 (en) Burst detection in wireless communications
WO2022151435A1 (zh) 一种通信方法及装置
WO2023011324A1 (zh) 资源分配方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020802058

Country of ref document: EP

Effective date: 20210727

NENP Non-entry into the national phase

Ref country code: DE