WO2019047944A1 - 搜索空间确定方法和装置 - Google Patents

搜索空间确定方法和装置 Download PDF

Info

Publication number
WO2019047944A1
WO2019047944A1 PCT/CN2018/104790 CN2018104790W WO2019047944A1 WO 2019047944 A1 WO2019047944 A1 WO 2019047944A1 CN 2018104790 W CN2018104790 W CN 2018104790W WO 2019047944 A1 WO2019047944 A1 WO 2019047944A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
aggregation level
cces
cce
maximum
Prior art date
Application number
PCT/CN2018/104790
Other languages
English (en)
French (fr)
Inventor
张旭
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18853842.5A priority Critical patent/EP3675406B1/en
Publication of WO2019047944A1 publication Critical patent/WO2019047944A1/zh
Priority to US16/813,501 priority patent/US11191070B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a search space determining method and apparatus.
  • a base station In a Long Term Evolution (LTE) system, a base station carries a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (enhanced PDCCH) carrying various downlink control information (DCI).
  • PDCCH physical downlink control channel
  • enhanced PDCCH enhanced physical downlink control channel
  • DCI downlink control information
  • EPDCCH is sent to user equipment (UE). The UE needs to detect the PDCCH in the search space, and then acquire the DCI carried in the PDCCH.
  • a PDCCH is formed by L consecutive control channel elements (CCEs), where L is called the aggregation level of the PDCCH.
  • the aggregation level can be a positive integer greater than or equal to one.
  • the search space is a set of PDCCHs (also referred to as candidate PDCCHs (PDCCH candidates)) to be detected by the UE or a set of EPDCCHs (also referred to as candidate EPDCCHs) to be detected by the UE.
  • One search space includes a plurality of candidate PDCCHs or a plurality of candidate EPDCCHs.
  • the candidate PDCCH and the candidate EPDCCH are collectively referred to as a candidate control channel.
  • the candidate control channels included in one search space have the same aggregation level.
  • the search space includes two types: a common search space (CSS) and a UE specific search space (UESS).
  • the CSS is a search space that multiple UEs in the cell listen to
  • the USS is a search space that a specific UE needs to monitor.
  • the UE determines the CCE occupied by each candidate PDCCH in the search space based on the formula (1):
  • k denotes a subframe number
  • N CCE,k denotes the total number of CCEs in the control region in the subframe k.
  • m may represent the number of the candidate PDCCH.
  • L is an aggregation level corresponding to the search space
  • M (L) is the number of candidate PDCCHs in the search space of the aggregation level L.
  • Y k is zero.
  • Y k is a coefficient related to the radio network temporary identifier (RNTI) of the UE, and
  • n RNTI is the slot number within a radio frame.
  • n RNTIs are different types of RNTIs.
  • the UE determines the CCE occupied by each candidate control channel in the search space based on the formula (3):
  • m represents the m+1th candidate EPDCCH in the search space corresponding to the aggregation level L in the EPDCCH physical resource block set p, The number of candidate EPDCCHs whose aggregation level is L to be detected in the EPDCCH physical resource block set p.
  • b is equal to 0 or a configured value.
  • N ECCE,p,k represents the number of CCEs in the EPDCCH physical resource block set p of the subframe k.
  • the other parameters are the same as those in equation (1).
  • Embodiments of the present invention provide a search space determining method and apparatus.
  • a method of determining a search space is provided.
  • the number N CCE of control channel elements CCE included in the control resource set of the terminal device is determined, where the N CCE is a positive integer, and the control resource set corresponds to at least two aggregation levels, the at least two The aggregation level includes a maximum aggregation level and a first aggregation level, the first aggregation level is less than the maximum aggregation level, and the maximum aggregation level is a maximum aggregation level of the at least two aggregation levels.
  • a wireless device comprising a processor and a memory coupled to the processor.
  • the processor is configured to determine the number N CCE of the control channel unit CCEs included in the control resource set of the terminal device, where the N CCE is a positive integer, and the control resource set corresponds to at least two aggregation levels, the at least two The aggregation level includes a maximum aggregation level and a first aggregation level, the first aggregation level is less than the maximum aggregation level, and the maximum aggregation level is a maximum aggregation level of the at least two aggregation levels.
  • the processor is further configured to determine, according to the number of CCEs of the CCEs , and the maximum aggregation level, a first search space corresponding to the first aggregation level; or
  • the processor is further configured to determine, according to the number of CCEs of the CCEs , and the number of CCEs included in the search space corresponding to the maximum aggregation level, the first search space corresponding to the first aggregation level.
  • the first search space corresponding to the first aggregation level is determined by using a maximum aggregation level; or the first aggregation is determined based on the number of CCEs included in the search space corresponding to the maximum aggregation level.
  • the CCEs included in the different search spaces are largely overlapped, in multiple blind detections, channel estimation and or demodulation of the received signals can be reused, reducing the need for repetition.
  • a search space determination method is provided.
  • the number N CCE of control channel elements CCE included in the control resource set of the terminal device is determined, where the N CCE is a positive integer, and the control resource set corresponds to at least two aggregation levels, the at least two The aggregation level includes a maximum aggregation level and a first aggregation level, the first aggregation level is less than the maximum aggregation level, and the maximum aggregation level is a maximum aggregation level of the at least two aggregation levels.
  • the second search space is determined based on the parameter ⁇ , wherein the second search space is a search space corresponding to the maximum aggregation level, and the ⁇ satisfies the ⁇ and The greatest common divisor is 1, and L MAX is the maximum aggregation level.
  • a wireless device comprising a processor and a memory coupled to the processor.
  • the processor is configured to determine the number N CCE of the control channel unit CCEs included in the control resource set of the terminal device, where the N CCE is a positive integer, and the control resource set corresponds to at least two aggregation levels, the at least two The aggregation level includes a maximum aggregation level and a first aggregation level, the first aggregation level is less than the maximum aggregation level, and the maximum aggregation level is a maximum aggregation level of the at least two aggregation levels.
  • the processor is further configured to determine a second search space based on the parameter ⁇ , wherein the second search space is a search space corresponding to the maximum aggregation level, and the ⁇ satisfies the ⁇ and The greatest common divisor is 1, and L MAX is the maximum aggregation level.
  • the processor is further configured to determine, according to the number of CCEs of the CCEs , and the maximum aggregation level, a first search space corresponding to the first aggregation level; or, the processor further And determining, according to the number of CCEs of the CCEs , and the number of CCEs included in the search space corresponding to the maximum aggregation level, determining a first search space corresponding to the first aggregation level.
  • the second search space is determined based on the parameter ⁇ , wherein the second search space is a search space corresponding to the maximum aggregation level, and the ⁇ satisfies the ⁇ and
  • the greatest common divisor is 1, such that the candidate control channels included in the second search space may be discrete and non-uniformly distributed, that is, the candidate control channels in the second search space are randomly distributed, compared to the continuous or evenly distributed search space. For example, the probability that the CCE included in the search space corresponding to the maximum aggregation level of the terminal device overlaps with the CCE included in the search space of the maximum aggregation level of other terminal devices is reduced to a certain extent, thereby reducing the blocking probability.
  • the device that can be used to perform the method may be an access network device or a terminal device.
  • the wireless device may be a chip or an integrated circuit or the like for implementing the above functions in the access network device or the terminal device or the access network or the terminal device.
  • the ⁇ is a positive integer greater than 1.
  • the second search space includes Candidate control channels, Is a positive integer, the The number of CCEs included in the candidate control channels satisfies the formula (1):
  • Y is a parameter related to the identifier of the terminal device or is a preset value.
  • the determining the first search space corresponding to the first aggregation level in the control resource set includes:
  • the ⁇ satisfies the ⁇ and
  • the greatest common divisor is 1, wherein L is the first aggregation level, and L MAX is the maximum aggregation level.
  • the first search space includes M (L) candidate control channels, where
  • the number of CCEs included in the M (L) candidate control channels is satisfied (2):
  • the N CCE is the number of control channel units CCE included in the control resource set, and K is a parameter related to the identifier of the terminal device or a preset value.
  • the M (L) satisfies the following relationship:
  • the M (L) determining, in the case where the first search space corresponding to the first aggregation level in the control resource set is determined, based on the configuration information and the number of CCEs included in the search space corresponding to the maximum aggregation level, the M (L) ) to satisfy the following relationship:
  • the candidate control channels included in the first search space may be non-uniformly distributed on the CCEs included in the second search space.
  • is a positive integer greater than one.
  • ⁇ and ⁇ can be different.
  • the first search space and the second search space can be distributed to different degrees, so that the blocking probability can be reduced as much as possible.
  • 1 and ⁇ > ⁇ .
  • the candidate control channels included in the second search space are continuously distributed in the control resource set, and the candidate control channels included in the first search space are discretely and non-uniformly distributed on the CCEs included in the second search space.
  • the implementation is simple and can reduce the complexity of the channel estimation and the blocking probability.
  • the candidate control channels included in the first search space and the second search space are discrete and non-uniformly distributed in the set of control resources.
  • the second search space includes a candidate control channel that is more sparsely distributed than the candidate control channel included in the first search space.
  • the candidate control channels included in the first search space and the second search space are discrete and non-uniformly distributed in the set of control resources.
  • the candidate search channel included in the first search space is more discrete and non-uniformly distributed on the CCE included in the second search space.
  • the present embodiment may further reduce the blocking probability.
  • the first search space includes M (L) candidate control channels, where
  • the M (L) The number of CCEs included in the candidate control channels satisfies the formula (4):
  • L MAX is the maximum aggregation level
  • N CCE is the number of control channel elements CCE included in the control resource set
  • L is the first aggregation level
  • L is a positive integer smaller than the L MAX
  • K a parameter related to the identification of the terminal device or a preset value
  • the first search space includes M (L) candidate control channels, where
  • the number of CCEs included in the M (L) candidate control channels is satisfied (6):
  • L MAX is the maximum aggregation level and L is the first aggregation level.
  • the K 1 is a parameter related to the identifier of the terminal device or a preset value.
  • the candidate control channels in the first search space included on each of the highest aggregation level candidate control channels may also be configured. number, and there are different initialization nested on each level of the highest value of K 1 candidate control channel blocking probability can be further reduced.
  • the value is the number of the starting CCE of the initial candidate control channel in the search space corresponding to the maximum aggregation level L MAX .
  • the l m′ is a number of a starting CCE of the m′+1 candidate control channels in the search space corresponding to the maximum aggregation level L MAX .
  • the method further includes: transmitting control information on a control channel unit corresponding to one or more candidate control channels in the first search space.
  • the foregoing method may further include: transmitting control information on a control channel unit corresponding to one or more candidate control channels in the first search space; and/or one in the second search space or The control information is transmitted on the control channel unit corresponding to the plurality of candidate control channels.
  • the foregoing method may further include: detecting at least one candidate control channel in the first search space to obtain control information.
  • the foregoing method may further include: detecting at least one candidate control channel in the first search space to obtain control information; and/or detecting at least one candidate control channel in the second search space to obtain control information.
  • the access network device may send control information to the terminal device on one or more candidate channels in the first search space, where an aggregation level of each of the one or more candidate control channels is the An aggregation level.
  • the access network device may send control information to the terminal device on one or more candidate channels in the second search space, where an aggregation level of each of the one or more candidate control channels is the first aggregation level.
  • the wireless device may further include a transceiver.
  • the transceiver is configured to detect at least one candidate control channel in the first search space to obtain control information; and/or the transceiver is configured to detect at least one candidate control channel in the second search space to obtain control information .
  • the wireless device may further include a transceiver.
  • the transceiver is configured to send control information on a control channel unit corresponding to a first candidate control channel in the first search space.
  • the wireless device may further include a transceiver.
  • the transceiver is configured to send control information on a control channel unit corresponding to a first candidate control channel in the first search space; and/or the transceiver is configured to be a first candidate in the first search space Control information is transmitted on the control channel unit corresponding to the control channel.
  • the wireless device may further include a transceiver.
  • the transceiver is configured to detect at least one candidate control channel in the first search space to obtain control information.
  • the at least two aggregation levels are at least two of 1, 2, 4, 8, 16, 32, and 64.
  • the determining step may be determining configuration information of the terminal device, and the configuration information may include the number N CCE of the CCEs .
  • the configuration information may further include a configuration parameter of the search space.
  • the configuration parameter of the search space may include at least two aggregation levels corresponding to the control resource set of the terminal device, and/or the number of candidate control channels corresponding to each of the at least two aggregation levels.
  • the number of the CCEs N CCE is sent by signaling. Receiving signaling carrying the number of CCEs of the above CCEs.
  • the above configuration information is transmitted by signaling. Receiving signaling carrying the above configuration information.
  • the signaling may be high layer signaling.
  • the high layer signaling may be one or more of the following messages: a master information block (MIB) message, system information, and a radio resource control (RRC) message.
  • the system information may be a system information broadcast (SIB) message or a system information block message for configuring a random access channel (RACH) resource.
  • the RRC message may be a public RRC message, that is, an RRC message sent to a terminal device in a cell, or may be a terminal device-specific RRC message, that is, an RRC message sent to a specific terminal device.
  • the signaling for transmitting the configuration parameter of the search space may further include at least one of the foregoing ⁇ and ⁇ .
  • the first search space can be flexibly set by transmitting at least one of the above ⁇ and ⁇ to the terminal device by signaling.
  • it may further include determining ⁇ according to a correspondence between a maximum aggregation level and an alpha and a maximum aggregation level.
  • the method further includes determining the ⁇ according to the first aggregation level and the correspondence between the ⁇ and the first aggregation level. In this way, the degree or location of the non-uniform distribution of the search spaces corresponding to different aggregation levels may be different, and the blocking probability between candidate control channels of different aggregation levels may be further reduced.
  • the signaling space can be saved while the search space can be flexibly configured.
  • a communication device for performing the above method. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a computing storage medium containing instructions is provided that, when run on a computer, cause the computer to perform the above method.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic diagram of a wireless communication system applied to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a possible structure of an access network device in the above wireless communication system.
  • FIG. 3 is a schematic diagram showing a possible structure of a terminal device in the above wireless communication system.
  • FIG. 4 is a schematic diagram showing a distribution of candidate PDCCHs included in a search space corresponding to different aggregation levels.
  • FIG. 5 is a schematic diagram showing a distribution of candidate PDCCHs included in a search space corresponding to different aggregation levels when the starting positions are aligned;
  • FIG. 6 is a schematic diagram showing a distribution of candidate EPDCCHs included in a search space corresponding to different aggregation levels according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the distribution of candidate control channels included in a second search space corresponding to different values of ⁇ in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a possible candidate control channel distribution of a first search space with an aggregation level of 4/2/1 and a second search space with an aggregation level of 8 according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a possible candidate control channel distribution of a first search space with an aggregation level of 1 and a second search space with an aggregation level of 2 according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing still another possible candidate control channel distribution in a first search space with an aggregation level of 4/2/1 and a second search space with an aggregation level of 8 according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing a possible distribution of CCEs in a second search space and a first search space according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing still another possible distribution of CCEs in the second search space and the first search space according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing still another possible distribution of CCEs in the second search space and the first search space according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing still another possible distribution of CCEs in the second search space and the first search space in the embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing still another possible distribution of CCEs in the second search space and the first search space in the embodiment of the present invention. as well as
  • FIG. 16 is a schematic diagram of signaling of a method according to an embodiment of the present invention.
  • One in the embodiments of the present invention means a single individual, and does not mean that it can only be one individual, and cannot be applied to other individuals.
  • a terminal device in the embodiment of the present invention refers to a certain terminal device, and does not mean that it can be applied to only one specific terminal device.
  • system can be used interchangeably with "network”.
  • references to "one embodiment” (or “an implementation") or “an embodiment” (or “an implementation”) in this application are meant to include the particular features, structures, features, etc. described in connection with the embodiments, in at least one embodiment. . Thus, “in one embodiment” or “in an embodiment” or “an”
  • the terms "and/or” and “at least one” in the case of “A and/or B” and “at least one of A and B” in the embodiment of the present invention include any one of three schemes, That is, a scheme including A but not including B, a scheme including B not including A, and a scheme including both options A and B.
  • such a phrase includes any of the six schemes, ie, includes A, but does not include the B and C schemes, including B without A and C, including C but not A and B, including A and B but not C, including B and C but not A
  • the scheme includes the schemes of A and C but not B, and the schemes of all three options A, B and C.
  • FIG. 1 shows a schematic diagram of communication between a wireless device and a wireless communication system.
  • the wireless communication system may be a system that applies various radio access technologies (RATs), such as code division multiple access (CDMA), time division multiple access (TDMA), Frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), or single carrier frequency division multiple access (SC-FDMA) and other systems .
  • RATs radio access technologies
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA Frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the wireless communication system may be a long term evolution (LTE) system, a CDMA system, a wideband code division multiple access (wideband CDMA (WCDMA) system, a global system for mobile communications (GSM) system, a wireless local area network ( Wireless local area network (WLAN) system, New Radio (NR) system, various evolved or fused systems, and systems for future-oriented communication technologies.
  • LTE long term evolution
  • CDMA compact code division multiple access
  • WCDMA wideband CDMA
  • GSM global system for mobile communications
  • WLAN Wireless local area network
  • NR New Radio
  • a wireless communication system can include any number of network devices as well as terminal devices.
  • the wireless communication system may also include one or more core network devices or devices for carrying virtualized network functions, and the like.
  • the access network device 102 can provide services to the wireless device over one or more carriers.
  • the access network device and the terminal device are collectively referred to as a wireless device.
  • the access network device 102 is a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • the access network device may include various forms of a macro base station (BS), a micro base station (also referred to as a small station), a relay station, or an access point.
  • BS macro base station
  • a micro base station also referred to as a small station
  • a relay station or an access point.
  • the name of a device with radio access capability may be different, for example, in an LTE system, called an evolved Node B (eNB or eNodeB),
  • eNB evolved Node B
  • 3G third generation
  • it Node B
  • it is simply referred to as an access network device, sometimes also referred to as a base station.
  • the wireless device involved in the embodiments of the present invention may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem.
  • the wireless device may be referred to as a terminal device, and may also be referred to as a mobile station (MS), a terminal, a user equipment (UE), or the like.
  • the wireless device may be a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a modem ( Modem) or modem processor, handheld, laptop computer, netbook, cordless phone or wireless local loop (WLL) station, Bluetooth device , machine type communication (MTC) terminal, etc.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Bluetooth device machine type communication
  • the wireless device can support one or more wireless technologies for wireless communication, such as 5G, LTE, WCDMA, CDMA, 1X, Time Division-Synchronous Code Division Multiple Access (TS-SCDMA), GSM, 802.11 and more.
  • Wireless devices can also support carrier aggregation techniques.
  • Multiple wireless devices can perform the same or different services. For example, mobile broadband services, Enhanced Mobile Broadband (eMBB) services, and Ultra-Reliable and Low-Latency Communication (URLLC) services.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low-Latency Communication
  • the access network device 102 is capable of performing the method provided by the embodiments of the present invention.
  • the access network device 102 may include a controller or a processor 201 (hereinafter, the processor 201 is taken as an example) and a transceiver 202.
  • Controller/processor 201 is sometimes also referred to as a modem processor.
  • Modem processor 201 can include a baseband processor (BBP) (not shown) that processes the digitized received signal to extract information or data bits conveyed in the signal.
  • BBP baseband processor
  • DSPs digital signal processors
  • ICs integrated circuits
  • the transceiver 202 can be used to support the transmission and reception of information between the access network device 102 and the terminal device, and to support radio communication between the terminal devices.
  • the processor 201 can also be used to perform functions of communication between various terminal devices and other network devices.
  • the uplink signal from the terminal device is received via the antenna, coordinated by the transceiver 202, and further processed by the processor 201 to recover the traffic data and/or signaling information transmitted by the terminal device.
  • the traffic data and/or signaling messages are processed by the terminal device and modulated by the transceiver 202 to generate a downlink signal and transmitted to the UE via the antenna.
  • the access network device 102 can also include a memory 203 that can be used to store program code and/or data for the access network device 102.
  • the transceiver 202 can include separate receiver and transmitter circuits, or the same circuit can implement transceiving functions.
  • the access network device 102 can also include a communication unit 204 for supporting the access network device 102 to communicate with other network entities. For example, it is used to support the access network device 102 to communicate with a network device or the like of the core network.
  • the access network device may further include a bus.
  • the transceiver 202, the memory 203, and the communication unit 204 can be connected to the processor 201 through a bus.
  • the bus can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus may include an address bus, a data bus, a control bus, and the like.
  • FIG. 3 is a schematic diagram of a possible structure of a terminal device in the above wireless communication system.
  • the terminal device is capable of performing the method provided by the embodiment of the present invention.
  • the terminal device can be any of the two terminal devices 104.
  • the terminal device includes a transceiver 301, an application processor 302, a memory 303, and a modem processor 304.
  • the transceiver 301 can condition (e.g., analog convert, filter, amplify, upconvert, etc.) the output samples and generate an uplink signal that is transmitted via an antenna to the base station described in the above embodiments. On the downlink, the antenna receives the downlink signal transmitted by the access network device. Transceiver 301 can condition (eg, filter, amplify, downconvert, digitize, etc.) the signals received from the antenna and provide input samples.
  • Modem processor 304 also sometimes referred to as a controller or processor, may include a baseband processor (BBP) (not shown) that processes the digitized received signal to extract information conveyed in the signal Or data bits.
  • BBP baseband processor
  • the BBP is typically implemented in one or more numbers within the modem processor 304 or as a separate integrated circuit (IC), as needed or desired.
  • a modem processor 304 may include an encoder 3041, a modulator 3042, a decoder 3043, and a demodulator 3044.
  • the encoder 3041 is for encoding the signal to be transmitted.
  • encoder 3041 can be used to receive traffic data and/or signaling messages to be transmitted on the uplink and to process (eg, format, encode, or interleave, etc.) the traffic data and signaling messages.
  • Modulator 3042 is used to modulate the output signal of encoder 3041.
  • the modulator can perform symbol mapping and/or modulation processing on the encoder's output signals (data and/or signaling) and provide output samples.
  • a demodulator 3044 is used to demodulate the input signal.
  • demodulator 3044 processes the input samples and provides symbol estimates.
  • the decoder 3043 is configured to decode the demodulated input signal.
  • the decoder 3043 deinterleaves, and/or decodes the demodulated input signal and outputs the decoded signal (data and/or signaling).
  • Encoder 3041, modulator 3042, demodulator 3044, and decoder 3043 may be implemented by a composite modem processor 304. These units are processed according to the radio access technology employed by the radio access network.
  • Modem processor 304 receives digitized data representative of voice, data or control information from application processor 302 and processes the digitized data for transmission.
  • the associated modem processor can support one or more of a variety of wireless communication protocols of various communication systems, such as LTE, new air interface, Universal Mobile Telecommunications System (UMTS), high speed packet access (High Speed) Packet Access, HSPA) and more.
  • UMTS Universal Mobile Telecommunications System
  • High Speed Packet Access High Speed Packet Access
  • one or more memories may also be included in the modem processor 304.
  • modem processor 304 and the application processor 302 may be integrated in one processor chip.
  • the memory 303 is used to store program code (sometimes referred to as programs, instructions, software, etc.) and/or data for supporting communication of the terminal device.
  • program code sometimes referred to as programs, instructions, software, etc.
  • the memory 203 or the memory 303 may include one or more storage units, for example, may be a processor 201 for storing program code or a storage unit inside the modem processor 304 or the application processor 302, or may Is an external storage unit separate from the processor 201 or the modem processor 304 or the application processor 302, or may also be a storage unit including the processor 201 or the modem processor 304 or the application processor 302 and with the processor 201 or modem
  • the processor 304 or the application processor 302 is a separate component of an external storage unit.
  • the processor 201 and the modem processor 301 may be the same type of processor or different types of processors. For example, it can be implemented in a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and a field programmable gate array ( Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, other integrated circuit, or any combination thereof.
  • the processor 201 and the modem processor 301 can implement or perform various exemplary logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing function devices, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, or a system-on-a-chip (SOC) or the like.
  • one candidate control channel is composed of L initial control channel elements (CCEs), and L is called an aggregation level of the candidate control channel.
  • the number of L CCEs included in one candidate control channel is continuous, wherein the starting CCE represents the CCE with the smallest index among the L CCEs.
  • the candidate PDCCH (PDCCH candidate) in the above description will be described as an example.
  • the two adjacent candidate PDCCHs may be represented as PDCCH candidates numbered m and numbered m+1 in the search space.
  • the search space corresponding to AL8 includes two candidate PDCCHs
  • the search space corresponding to AL4 includes two candidate PDCCHs
  • the search space corresponding to AL2 includes six candidate PDCCHs
  • the search space corresponding to AL1 includes six candidate PDCCHs that are consecutive.
  • the CCEs included in the search space of the low aggregation level are included in the maximum aggregation level.
  • a subset of CCE Since the CCEs included in different search spaces overlap in a large number of times, in a plurality of blind detections, channel estimation can be performed on the same CCE included in the search space of different aggregation levels, and channel estimation can be multiplexed, thereby reducing channel estimation. The number of times reduces the complexity of the process.
  • the CCE where one candidate control channel in the search space is located is used to transmit the control channel of other terminal devices, so that all candidate control channels including the CCE in the search space will not be used for sending.
  • the control channel which is not blocked by other terminal devices, is also called blocking.
  • the candidate PDCCHs including the CCE#3 aggregation levels of 1, 2, 4, and 8 can no longer be used to send control for the terminal device.
  • the channel causes the resources of the available search space of the terminal device to be rapidly reduced, cannot meet the requirement of the terminal device for scheduling data, and increases the delay of data transmission; in addition, the control channel becomes a system capacity bottleneck, resulting in data transmission.
  • the spectrum utilization is reduced.
  • Equation (3) has the same problem. Equation (3) is different from Equation (1) in that CCE numbers of adjacent candidate control channels satisfying Equation (3) are discrete, but a plurality of candidate control channels included in one search space are approximately equally spaced. Within the entire control resource set. The distribution of such laws is likely to be that the search space of different terminal devices still overlaps completely. Therefore, even if the search space is obtained by using the method of the equation (2), there is still a problem that the probability of blocking the control channel is large.
  • the CCE included in the search space of the low aggregation level is still not necessarily a subset of the CCEs included in the maximum aggregation level, that is, there is a possibility that the CCEs included in different search spaces do not overlap, There is still an increase in the number of channel estimations, which increases the burden on the processor.
  • the NR system uses the equations (1) and (3), there is a possibility that the terminal device cannot multiplex the channel estimation in the blind detection or the demodulation of the received signal when the terminal device blindly detects the control channel, and there is blind detection.
  • a problem with high complexity since the candidate search channels are continuously or regularly distributed in the CCE set, the number of identical CCEs included in the search space of different terminal devices increases, and thus the search spaces of different terminal devices are mutually blocked. The problem of high probability.
  • the embodiment of the present invention redesigns the search space, so that the search space corresponding to the low aggregation level can be nested in the search space corresponding to the maximum aggregation level, that is, the CCE included in the search space corresponding to the low aggregation level is the maximum aggregation.
  • the search space corresponding to the level includes a subset of CCEs, thereby reducing the complexity of channel estimation.
  • the candidate control channels of the search space corresponding to the low aggregation level may be discrete and non-uniformly distributed in the CCE included in the search space corresponding to the maximum aggregation level, and the discrete and non-uniform distribution further reduces the search of different terminal devices.
  • the space includes the number of identical CCEs, thereby reducing the blocking probability.
  • a search space is provided in the embodiment of the present invention.
  • the search space is included in the collection of control resources.
  • the set of control resources may be a collection of resources carrying control channels.
  • the control resource set corresponds to at least two aggregation levels.
  • the at least two aggregation levels include a first aggregation level and a maximum aggregation level, wherein the maximum aggregation level is a maximum level of at least two aggregation levels, and obviously, the first aggregation level is less than the maximum aggregation level.
  • the at least two aggregation levels may be at least two of 1, 2, 4, and 8, or may be at least two of 1, 2, 4, 8, and 16, or may be At least two of 1, 2, 4, 8, 16, and 32 take values, or may be other integers, such as 64 or other values.
  • each control resource set corresponds to at least two aggregation levels, wherein at least two aggregations corresponding to at least two control resource sets of the multiple control resource sets Some or all of the levels may be different, and of course, they may be identical. For example, if the aggregation level corresponding to the control resource set 1 is 1, 2, and 4, the maximum aggregation level corresponding to the control resource set 1 is 4. The aggregation level corresponding to the control resource set 2 is 1, 2, 4, and 8, and the maximum aggregation level corresponding to the control resource set 2 is 8. Also, each aggregation level corresponds to one search space. In other words, the aggregation levels of the candidate control channels included in each search space are the same.
  • the search space corresponding to the first aggregation level is referred to as a first search space
  • the search space corresponding to the maximum aggregation level is referred to as a second search space.
  • first and second portions herein are only used to distinguish different search spaces when describing the description, and do not represent any order or the like.
  • control channel resource in the embodiment of the present invention refers to a control channel resource configured for one terminal device, and therefore is called a control channel resource of the terminal device.
  • Different terminal devices may be configured with the same control channel resource or different control channel resources.
  • the aggregation level sets corresponding to the same control channel resources of different terminal devices may be the same or different, wherein each aggregation level set includes at least two aggregation levels, different
  • the number of the aggregation levels included in the aggregation level set may be the same or different, and is not limited in the embodiment of the present invention.
  • the CCE included in the first search space is a subset of CCEs included in the second search space. Further, when the plurality of candidate control channels are included in the first search space, the plurality of candidate control channels included in the first search space are discretely distributed within the CCEs included in the second search space, and the plurality of candidate control channels are It may be non-uniformly distributed within the CCE included in the second search space.
  • L MAX represents the maximum aggregation level, which is a positive integer, that is, the aggregation level corresponding to the second search space.
  • the number of CCEs included in the search space corresponding to the maximum aggregation level L MAX that is, the number of CCEs included in the second search space.
  • N CCE represents the number of CCEs included in the control resource set.
  • is a parameter, and the ⁇ satisfies the ⁇ and The greatest common divisor is 1, and is a positive integer.
  • can be a positive integer greater than one.
  • Y indicates a parameter related to the terminal device identification or a preset value.
  • is a parameter, and the ⁇ satisfies the ⁇ and The greatest common divisor is 1. It should be noted that the values of ⁇ and ⁇ may be the same or different.
  • L represents the first aggregation level
  • M (L) represents the number of candidate control channels included in the first search space.
  • K represents a parameter related to the identification of the terminal device or a preset value
  • l is an integer.
  • the parameter related to L MAX is a number of a starting CCE that may be the first candidate control channel of the second search space. Of course, it can also be the number of the CCE at another location.
  • l m' is an integer.
  • the parameter related to L MAX is a number of a starting CCE in the m′+1 candidate control channels in the second search space.
  • l m′ is a number of a starting CCE in the m′+1 candidate control channels in the second search space.
  • it may be the number of the CCE at other positions of the m'th candidate control channel.
  • K 1 is a parameter related to the identification of the terminal device or a preset value.
  • Y, K, and K 1 are preset values
  • the three values may be the same, or partially the same, or completely different.
  • these three values can be pre-set values.
  • the manners of obtaining the three values may be the same or partially the same, or the manners of acquiring the three values may be completely different.
  • the specific acquisition method will be further introduced later. For example, a terminal-specific search space.
  • the first search space and the second search space provided in the embodiment of the present invention may be independent, that is, only the design of the first search space provided by the embodiment of the present invention may be adopted, and how to design the second search space may be adopted.
  • There are methods in the art, or other ways than in the prior art can be employed.
  • only the design of the second search space provided by the embodiment of the present invention may be adopted.
  • how to design the first search space the method in the prior art may be adopted, or other different manners from the prior art may be adopted.
  • the first search space and the second search space provided in the embodiment of the present invention may also be adopted.
  • the second search space is determined based on the parameter ⁇ , and the ⁇ satisfies the ⁇ and The greatest common divisor is 1. Further, the ⁇ may be a positive integer greater than one.
  • the plurality of candidate control channels can be discretely distributed in the CCE included in the search space corresponding to the maximum aggregation level, and may also be non-uniform. It is distributed in the CCE included in the search space corresponding to the maximum aggregation level. This discrete and non-uniform distribution further reduces the number of identical CCEs in the search space of different terminal devices, thereby reducing the blocking probability.
  • the second search space includes The number of CCEs included in the candidate control channels satisfies the formula (4):
  • Equation (4) can be understood as the number of the CCEi of the candidate control channel m', that is, the number of the i+1th CCE of the m'+1th candidate control channel.
  • the candidate control channels may be discretely and non-uniformly distributed within the set of control resources.
  • FIG. 7 is a schematic diagram showing the distribution of candidate control channels included in the second search space corresponding to different values of ⁇ . when When it is 2, for different values of ⁇ , the schematic diagram of the search space can be as shown in FIG. 7.
  • the difference of the starting CCEs of the two adjacent candidate control channels is L MAX , that is, the numbers of the CCEs of the adjacent candidate control channels are consecutive.
  • the difference between the starting CCEs of the two adjacent candidate control channels is 3L MAX , that is, the number of CCEs of adjacent candidate control channels is discontinuous, and 2L MAX between two candidate control channels CCE.
  • the difference between the starting CCEs of the two adjacent candidate control channels is 5L MAX , that is, the number of CCEs of adjacent candidate control channels is discontinuous, and 4L MAX between two candidate control channels CCE.
  • 7
  • the difference of the starting CCEs of the two adjacent candidate control channels is 7L MAX , that is, the number of CCEs of adjacent candidate control channels is discontinuous, and 6L MAX between two candidate control channels CCE.
  • Y is a parameter related to the identifier of the terminal device or is a preset value.
  • Y is a preset value, it can be a constant, such as a positive integer.
  • the search space can be a common search space.
  • the search space may be a search space dedicated to the terminal device.
  • the value of Y can satisfy the recursive function C(j), and can also be calculated, for example, by the recursive function.
  • the recursive function C(j) can be expressed as equation (5),
  • C(-1) n RNTI ⁇ 0
  • a Y is a characteristic parameter
  • j can be a slot index or orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM)
  • J is the number of possible values of j, for example, the slot of a radio frame
  • n RNTI is a different type of RNTI, that is, the identity of the terminal device.
  • a Y is an integer, and the value can be a fixed value, or it can be a variable value. If the value is a variable value, the value of the feature parameter A Y may be a value corresponding to the maximum aggregation level. Of course, the value of A Y can be determined according to the aggregation level and the correspondence between the maximum aggregation level and A. Alternatively, the value of A Y may be determined according to a set of control resources, for example, the value of A Y is related to the index of the configured control resource set.
  • control resource set 0 and control resource set 1 are respectively configured, respectively corresponding to control resource set indexes 0 and 1; then for control resource set index 0, A Y is 39820; then, for control resource set index 1, A Y is taken The value is 39810; the index of the different control resource collections is different. In this way, the locations of the search spaces of the same terminal device in different control resource sets are different, and the probability that the search spaces of other terminal devices overlap each other within two different control resource sets is reduced.
  • the value of the A Y may be configured, and the value of the A Y corresponding to the different control resource set index may be configured by using the high layer signaling; when the values of the A Y corresponding to the different control resource sets are the same, the different control resources are configured.
  • the search space included in the collection has the same CCE location. In this way, the terminal device does not need to recalculate the location of the search space in different control resource sets, which is beneficial for the terminal device to jointly detect candidate control channels on two control resource sets, or candidate control channels in different control resource sets. The detection signals are combined.
  • the second search space conforming to the formula (4) may be discrete and non-uniformly distributed, that is, the candidate control channels in the second search space are randomly distributed, compared to the continuous or uniformly distributed search space.
  • the probability that the CCE included in the search space corresponding to the maximum aggregation level of the terminal device overlaps with the CCE included in the search space of the maximum aggregation level of other terminal devices is reduced to a certain extent, thereby reducing the blocking probability.
  • the first search space is related to the maximum aggregation level.
  • the first search space designed by the embodiment of the present invention may be related to the maximum aggregation level, but may be related to the number of candidate control channels included in the second search space.
  • the CCE included in the first search space may be a subset of CCEs included in the second search space, that is, the first search space is nested in the second search space, and the candidate control channel included in the first search space may be It is discrete and non-uniformly distributed within the CCE included in the second search space.
  • the channel estimation complexity can be reduced, and this non-uniform and discrete design can reduce the blocking probability.
  • the CCE included in the second search space may be serially numbered or discrete. The blocking probability of the search space of different terminal devices can be further reduced.
  • the number of CCEs included in the search space corresponding to the maximum aggregation level in the first search space that is, the number of CCEs included in the second search space. That is, the first search space is related not only to the maximum aggregation level but also to the number of candidate control channels included in the second search space. In this way, the candidate control channels in the first search space can be discretely and non-uniformly distributed in the second search space. Further, the CCEs included in the second search space may be consecutive numbers, and the method may reduce the blocking probability and is simple to implement.
  • the resources included in the first search space are a subset of the resources included in the second search space, that is, the search space corresponding to the low aggregation level can be nested in the search space corresponding to the maximum aggregation level, that is, the low aggregation level.
  • the corresponding search space includes a CCE that is a subset of CCEs included in the search space corresponding to the maximum aggregation level, thereby reducing the complexity of channel estimation.
  • the candidate control channels of the search space corresponding to the low aggregation level may be discrete and non-uniformly distributed in the CCE included in the search space corresponding to the maximum aggregation level, and the discrete and non-uniform distribution further reduces the search of different terminal devices.
  • the space includes the number of identical CCEs, thereby reducing the blocking probability.
  • the candidate control channels are discrete and non-uniformly distributed, that is, the numbers of the CCEs of the adjacent candidate control channels are not consecutive.
  • Discrete and non-uniform distribution means that the number of CCEs of adjacent candidate control channels is not continuous, and the difference between the number of the starting CCE of the candidate control channel numbered x and the number of the starting CCE of the candidate control channel of x+1 The value is different from the difference between the number of the starting CCE of the candidate control channel numbered y and the number of the starting CCE of the candidate control channel of y+1, or the candidate control channel numbered x in the adjacent candidate control channel.
  • the difference between the number of the last CCE and the number of the starting CCE of the candidate control channel of x+1 is the same as the number of the last CCE of the candidate control channel numbered y and the starting CCE of the candidate control channel of y+1
  • the difference in the number is different. Both discrete and non-uniform distributions have the same meaning.
  • the first search space may also be related to the parameter ⁇ .
  • ⁇ and ⁇ can be different.
  • the first search space and the second search space can be distributed to different degrees, so that the blocking probability can be reduced as much as possible.
  • FIG. 8 A schematic diagram of a possible candidate control channel distribution of a first search space with an aggregation level of 4/2/1 and a second search space with an aggregation level of 8 is shown in the embodiment of the present invention.
  • the method is simple to implement and can reduce the complexity of channel estimation and the probability of blocking.
  • FIG. 9 is a schematic diagram of a possible candidate control channel distribution of the first search space with the aggregation level of 1 and the second search space with the aggregation level of 2 in the embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing still another possible candidate control channel distribution in a first search space with an aggregation level of 4/2/1 and a second search space with an aggregation level of 8 according to an embodiment of the present invention.
  • the M (L) candidate control channels included in the first search space include CCEs.
  • the number can satisfy the formula (6):
  • the candidate control channel of the first maximum aggregation level includes a CCE number of ⁇ 8, 9, 10, 11, 12, 13, 14, 15 ⁇ ;
  • the second maximum aggregation level candidate control channel includes CCE numbers ⁇ 16, 17, 18, 19, 20, 21, 22, 23 ⁇ . Therefore, the number of the m'+1th maximum aggregation level candidate control channel and the number of the m'+1th maximum aggregation level candidate control channel start CCE may be as shown in Table 1.
  • the relationship between the starting CCE of the m+1th candidate control channel and the number m' of the candidate control channel of the corresponding maximum aggregation level included in the first search space may be relative to the starting CCE of the m+1th candidate control channel.
  • the maximum or minimum CCE number included in each candidate control channel in the second search space is determined.
  • the size relationship between the starting CCE number of the m+1th candidate control channel and the maximum or minimum CCE number included in the m′+1 candidate control channel may be determined.
  • the value of l m ' is the initial CCE number included in the m′+1 candidate control channel corresponding to the m+1th candidate control channel.
  • the candidate control channel included in the maximum aggregation level search space is discretely distributed in the control resource set.
  • the first candidate control channel of the maximum aggregation level includes a CCE number of ⁇ 0, 1, 2 , 3, 4, 5, 6, 7 ⁇ ;
  • the second candidate control channel of the maximum aggregation level includes CCE numbers ⁇ 24, 25, 26, 27, 28, 29, 30, 31 ⁇ , which are similar.
  • formula (7) or other optional manner the number correspondence relationship between the candidate control channel m and the CCE in the first search space is obtained as shown in Table 4 below.
  • FIG. 1 a schematic diagram of the CCE distribution of the first search space is shown in FIG. 1
  • the M (L) can also satisfy the following relationship:
  • the first search space can be made to obtain better non-uniform characteristics and reduce the blocking probability.
  • the first search space includes M ( The number of CCEs included in the L) candidate control channels may satisfy the formula (8):
  • the l m′ is a CCE starting number of the m′+1 candidate control channels included in the second search space.
  • the candidate control channel of the first maximum aggregation level includes a CCE number of ⁇ 8, 9, 10,11,12,13,14,15 ⁇ ; the candidate control channel of the second largest aggregation level includes the CCE number ⁇ 16, 17, 18, 19, 20, 21, 22, 23 ⁇ , then the m'
  • the number of the +1 maximum aggregation level candidate control channel and the number of the m'+1th maximum aggregation level candidate control channel start CCE may be as shown in Table 5.
  • the relationship between the starting CCE of the m+1th candidate control channel and the number m' of the candidate control channel of the corresponding maximum aggregation level included in the first search space may be relative to the starting CCE of the m+1th candidate control channel.
  • the maximum or minimum CCE number included in each candidate control channel in the second search space is determined.
  • the size relationship between the starting CCE number of the m+1th candidate control channel and the maximum or minimum CCE number included in the m′+1 candidate control channel may be determined.
  • the value of lm ' is the initial CCE number included in the m'+1th candidate control channel corresponding to the m+1th candidate control channel.
  • FIG. 1 a schematic diagram of the CCE distribution of the first search space is shown in FIG. 1
  • the first search space includes M (M) candidate control channels may satisfy the formula (10):
  • equation (10) can also be expressed as equation (11):
  • the l is a number of a starting CCE in a CCE included in the second search space.
  • the search space corresponding to the maximum aggregation level includes two candidate control channels, wherein the candidate control channel of the first maximum aggregation level includes a CCE number of ⁇ 8, 9, 10, 11, 12, 13, 14 , 15 ⁇ ; the second largest aggregation level candidate control channel includes a CCE number of ⁇ 16, 17, 18, 19, 20, 21, 22, 23 ⁇ , then the start of the search space corresponding to the maximum aggregation level
  • the CCE distribution diagram of the first search space is as shown in FIG. 14.
  • the implementation is simple, and the complexity of the channel estimation can be reduced and the blocking probability can be reduced.
  • the M (L) candidate control channels included in the first search space include CCEs.
  • the number can satisfy formula (12):
  • the candidate control channel of the first maximum aggregation level includes a CCE number of ⁇ 8, 9, 10,11,12,13,14,15 ⁇ ; the second largest aggregation level candidate control channel includes CCE numbers ⁇ 16, 17, 18, 19, 20, 21, 22, 23 ⁇ ; then m'
  • the number of the +1 maximum aggregation level candidate control channel and the number of the m'+1th maximum aggregation level candidate control channel start CCE may be as shown in Table 8.
  • FIG. 1 a schematic diagram of the CCE distribution of the first search space is shown in FIG. 1
  • the first search space includes M ( The number of CCEs included in the L) candidate control channels may satisfy the formula (13):
  • equation (13) can also be expressed as equation (14):
  • the l is a CCE starting number included in the second search space.
  • the search space corresponding to the maximum aggregation level includes two candidate control channels, wherein the candidate control channel of the first maximum aggregation level includes a CCE number of ⁇ 8, 9, 10, 11, 12, 13, 14, 15 ⁇ ; the second largest aggregation level candidate control channel includes a CCE number of ⁇ 16, 17, 18, 19, 20, 21, 22, 23 ⁇ , then the maximum aggregation level corresponds to the search space
  • the implementation is simple, and the complexity of the channel estimation can be reduced and the blocking probability can be reduced.
  • the first search space included in each of the highest aggregation level candidate control channels may be configured. number of candidate control channels, and there are different initialization nested on each level of the highest value of K 1 candidate control channel blocking probability can be further reduced.
  • K 1 may be a preset value, or may be determined by the above recursive function, expressed herein as
  • A is an integer, and the value can be a fixed value, or it can be a variable value.
  • a in the equation (12) is used to determine K, A can be expressed as A K .
  • the value of the A may be determined according to the control resource set.
  • the value of A is related to the index of the configured control resource set. If the control resource set 0 and the control resource set 1 are respectively configured, respectively, corresponding to the control resource set indexes 0 and 1; for the control resource set index 0, the value of A is 39820; for the control resource set index 1, the value of A is 39810; different control resource sets have different indexes. In this way, the locations of the search spaces of the same terminal device in different control resource sets are different, and the probability that the search spaces of other terminal devices overlap each other within two different control resource sets is reduced.
  • the value of the A is configurable, and the value of the A corresponding to the different control resource set index can be configured by using the high-layer signaling; when the values of the A corresponding to the different control resource sets are the same, the different control resource sets are included.
  • the CCE location of the search space is the same. In this way, the terminal device does not need to recalculate the location of the search space in different control resource sets, which is beneficial for the terminal device to jointly detect candidate control channels on two control resource sets, or candidate control channels in different control resource sets. The detection signals are combined.
  • the value of the A may be related to an aggregation level corresponding to the search space.
  • the value of A can be determined according to the aggregation level and the correspondence between the aggregation level and A. For example, there are multiple predefined feature parameters, and the value set is as shown in Table 12.
  • the search space randomization parameters corresponding to different aggregation levels are different, so that the search spaces corresponding to different aggregation levels do not completely overlap, thereby reducing the blocking probability.
  • the value of B can be the same as the value of A in the above. That is, in this case, A in the formula (15) is equal to the above fixed or variable value, that is, A plus or minus m' in the above.
  • the first search space randomization parameters in the CCEs included in the candidate control channels distributed in different second search spaces are different, so that the first search space is distributed in the CCEs included in the candidate control channels in different second search spaces.
  • the locations are different, so that the blocking probability in the CCEs included in each of the second search space candidate control channels can be reduced.
  • the values of K and K 1 may be different from the values of Y, that is, the randomization parameter of the low aggregation level is different from the randomization parameter of the highest aggregation level, so that different terminal devices can search the space even at the highest aggregation level.
  • the upper CCEs overlap completely, and the search spaces corresponding to the low aggregation levels do not completely overlap, thereby reducing the blocking probability.
  • N CCE, MAX the number of CCEs included in the second search space corresponding to the maximum aggregation level.
  • the search space designed in the foregoing embodiment enables the search space of the low aggregation level to be completely nested within the search space of the highest aggregation level, that is, the CCE of the first search space is a subset of the CCE of the second search space, such that Since the CCEs included in different search spaces overlap a lot, in multiple blind detections, channel estimation and or demodulation of received signals can be multiplexed, which reduces the complexity of repeating channel estimation and demodulating signals.
  • the first search space and/or the second search space described above will be further provided by the embodiment of the present invention in conjunction with the above embodiments.
  • FIG. 16 is a schematic signaling diagram of a method according to an embodiment of the present invention. It should be noted that some of the steps in FIG. 16 and the following may be optional, and the embodiments of the present invention are not limited to all steps. In addition, the serial numbers of the steps are merely for convenience of description and do not represent the order.
  • the search space in the embodiment of the present invention may be the first search space in the above, or may be the second search space in the above, or may be the first search space and the above, unless otherwise specified. The second search space.
  • Step 1610 The access network device determines the number N CCE of control channel elements (CCEs) included in the control resource set of the terminal device.
  • CCEs control channel elements
  • the step 1610 may be that the access network device determines the configuration information of the terminal device, and the configuration information may include the number of the CCEs N CCE .
  • the set of control channel resources may refer to a set including control channel resources, and resources within the set can be used to transmit control information. Further, the control channel resource set includes one or more search spaces, and the control information is sent in the one or more search spaces.
  • the terminal device performs blind detection in the one or more search spaces to obtain control information.
  • the blind detection may refer to that the terminal device does not know which control channel is specifically used for transmitting the control information. Therefore, it is required to perform detection in the candidate control channel included in the search space until the control channel carrying the control information is detected.
  • the access network device may be one or more control resource sets configured for the terminal.
  • the embodiment of the present invention describes a certain control resource set, but does not limit the access network device to configure only one control resource set for one terminal device.
  • the terminal device and the access network device may determine the search space in the control channel resource set according to the method provided by the embodiment of the present invention.
  • the determining configuration information in this step may be that the access network device determines the configuration information, or configures the configuration information.
  • the access network device may determine the configuration information according to factors such as a channel environment, or configure the configuration information. For example, the configuration is not limited according to the channel quality information and the like reported by the terminal device.
  • the set of control resources can be predefined.
  • the access network device and the terminal device may respectively determine the control resource set according to a preset configuration.
  • control resource set corresponds to at least two aggregation levels, and a maximum of the at least two aggregation levels is a maximum aggregation level.
  • control resource set corresponds to a first aggregation level and a second aggregation level, wherein the second aggregation level is a maximum aggregation level.
  • the configuration information may further include a configuration parameter of the search space.
  • the configuration parameter of the search space may include at least two aggregation levels corresponding to the control resource set of the terminal device, and/or the number of candidate control channels corresponding to each of the at least two aggregation levels.
  • the configuration parameter of the search space may be related to the control resource set.
  • the configuration parameter of the search space is separately configured for the control resource set, that is, the configuration parameter of the specific search space of the control resource set, and may also be The control resource set is irrelevant.
  • multiple control resource sets of one terminal device use the same search space configuration parameter, that is, the configuration parameters of the search space are not configured for a specific control resource set, and multiple control resource sets share the same The configuration parameters of the search space.
  • the configuration parameter of the search space may be partially related to the control resource set, and the part is not related to the control resource set.
  • the configuration parameter of the common search space may be unrelated to the control resource set, and the terminal device specific search space may be It is related to the collection of control resources.
  • the configuration parameters of the common search space and the terminal-specific search space may be unrelated to the control resource set, but the configuration parameters of the common search space and the terminal-specific search space may be different.
  • the search space corresponding to the control channel resource of the terminal device in the embodiment of the present invention may refer to a search space within the control channel resource of the terminal device.
  • the search space corresponding to the control channel resource has no relationship with the association of the foregoing control resource set and the configuration of the search space.
  • the same control resource set may be configured to different terminal devices, and the control resource set configured for different terminal devices may be corresponding to different at least two aggregation levels, for example, the same control resource set is configured to the terminal.
  • the device 1 and the terminal device 2 the aggregation level corresponding to the control resource set configured to the terminal device 1 is 1, 2, and 4; and the aggregation level corresponding to the control resource set configured to the terminal device 2 is 2, 4, and 8 . Therefore, for an access network device, this is a control resource set, and this control resource set can correspond to an aggregation level of 1, 2, 4, 8.
  • determining the configuration information of the terminal device for example, determining the aggregation level corresponding to the control resource set of the terminal device 1 is 1, 2, and 4, and determining the control resource set of the terminal device 2
  • the corresponding aggregation levels are 2, 4, and 8. It can be seen that the control resource set is different according to different terminal devices. Therefore, the control resource set of the terminal device in the embodiment of the present invention may refer to the control resource set for the terminal device, The corresponding configuration parameters may be different, and does not mean that the control resource set is dedicated to the terminal device.
  • the operation of this step may be implemented by the processor 201 in the access network device 102 described above.
  • Step 1620 The access network device sends the number of the CCEs N CCE by using the signaling, and the terminal device receives the signaling that carries the number of CCEs of the CCE .
  • the access network device sends the foregoing configuration information by signaling, and the terminal device receives the signaling carrying the configuration information.
  • the signaling here can be one or more signaling messages. Therefore, when the configuration information includes multiple types of information, the multiple types of information may be sent to the terminal device through different signaling messages. For example, a portion of the configuration information is sent by one or more signaling, and another portion of the configuration information is sent by another or more signaling.
  • the signaling in this embodiment may be high layer signaling.
  • the high layer signaling may be one or more of the following messages: a master information block (MIB) message, system information, and a radio resource control (RRC) message.
  • the system information may be a system information broadcast (SIB) message or a system information block message for configuring a random access channel (RACH) resource.
  • the RRC message may be a public RRC message, that is, an RRC message sent to a terminal device in a cell, or may be a terminal device-specific RRC message, that is, an RRC message sent to a specific terminal device.
  • the access network device may be sent in different manners.
  • the number of CCEs included in the control resource set of the terminal device in the above may be sent through an MIB message or an SIB message.
  • the search space is a terminal device-specific search space
  • the number of CCEs included in the control resource set of the terminal device may be sent by using an RRC message.
  • the RRC message may be a terminal device-specific RRC message.
  • the configuration information sent by the MIB message is mainly used to configure a control resource set in which the control information of the remaining minimum system information (RMSI) is located, which helps the terminal device to obtain basic basic system information, for example, RACH resources. Wait.
  • RMSI remaining minimum system information
  • the configuration information sent by the SIB message of the RACH resource does not need to consider the limitation of the signaling overhead, so that the configuration is more flexible.
  • the configuration information sent by the RRC signaling does not need to consider the limitation of the signaling overhead, and can be configured for a specific terminal device, and configure different control resource sets for the terminal devices with different requirements, which is beneficial to the improvement of resource utilization.
  • the search space is a common search space
  • at least two aggregation levels in the foregoing configuration information, and/or the number of candidate control channels corresponding to each of the at least two aggregation levels may be sent by the foregoing system information.
  • it may be sent by the above-mentioned system information block message for configuring RACH resources.
  • the search space is a terminal-specific search space
  • at least two aggregation levels in the foregoing configuration information, and/or the number of candidate control channels corresponding to each of the at least two aggregation levels may be sent by an RRC message.
  • the configuration parameter of the control resource set and the configuration parameter of the search space may be sent by using the same message.
  • the configuration parameter of the search space is related to the control resource set, and the configuration parameter of the control resource set and the configuration parameter of the search space are sent by different messages, the message for sending the configuration parameter of the search space is used. It is also possible to indicate which control resource set the configuration parameter of the search space corresponds to.
  • this step is an optional step.
  • the configuration parameter of the control resource set and the configuration parameter of the search space may be preset in the terminal device and the access network device, and the access network device is not required to be configured to the terminal device. .
  • the access network device may first send the configuration information to the terminal device.
  • the access network device needs to send the control information for the terminal device, first determine the configuration information, and then perform the steps of determining the search space.
  • the signaling for transmitting the configuration parameter of the search space may further include at least one of the foregoing parameter ⁇ and the parameter ⁇ , wherein which one is transmitted is determined by the corresponding search space. For example, if the first search space is applied, the signaling for transmitting the configuration parameters of the search space includes the above parameter ⁇ . If the second search space is applied, the signaling for transmitting the configuration parameters of the search space includes the above-mentioned parameter ⁇ . If the first search space and the second search space are applied, the signaling for transmitting the configuration parameters of the search space includes the parameter ⁇ and the parameter ⁇ .
  • the parameter ⁇ and/or the parameter ⁇ can also be transmitted by using configuration parameter signaling for transmitting a control resource set, or with signaling and bearer for transmitting the configuration parameters of the search space for transmitting the control resource set.
  • Configuration parameter signaling for transmitting a control resource set
  • signaling and bearer for transmitting the configuration parameters of the search space for transmitting the control resource set.
  • Parameter signaling independent signaling.
  • the action sent in this step may be implemented by the transceiver 202 of the access network device 102.
  • the processor 201 of the access network device 102 may also be used to control the transceiver 202.
  • the action received in this step can be implemented by the transceiver 301 of the terminal device 104 described above.
  • the modem processor 304 of the terminal device 104 can also be used to control the implementation of the transceiver 301.
  • step 1630 the access network device determines the search space.
  • the access network device determines that the search space may be that the access network device determines the first aggregation according to the number of the CCEs N CCE and the maximum aggregation level of the at least two aggregation levels.
  • the first search space corresponding to the level.
  • the number of CCEs included in the M (L) candidate control channels included in the determined first search space may satisfy the formula (6) or the formula (12).
  • determining, according to the number of the CCEs and the maximum aggregation level of the at least two aggregation levels, that the first search space corresponding to the first aggregation level may include: based on the CCE Number N CCE , and a maximum aggregation level of the at least two aggregation levels, and Equation (6) or Equation (12), calculating a number of at least one CCE included in the first search space to obtain the The first search space.
  • the calculation here may be based on the parameters and the formula, calculating the number of the first search space starting CCE, and then obtaining all CCEs of the first candidate control channel in the first search space based on the first aggregation level, for example , consecutive L CCEs. Further, the number of candidate control channels included in the first search space and the interval between two adjacent candidate control channels are sequentially obtained. Therefore, the calculations described in the embodiments of the present invention do not mean that each CCE needs to be determined by calculation. Of course, the embodiment of the present invention does not exclude that the number of each CCE is calculated by the above formula.
  • the access network device determines that the search space may be that the access network device is based on the number of CCEs of the CCEs and the search space corresponding to the largest aggregation level of the at least two aggregation levels.
  • the number of CCEs included determines a first search space corresponding to the first aggregation level.
  • the M (L) candidate control channels included in the determined first search space include the number of CCEs that may satisfy the formula (8), formula (10) or formula (11).
  • the access network device determines that the search space may be that the access network device determines the second search space based on the parameter ⁇ .
  • the number of CCEs included in the M (L) candidate control channels included in the determined second search space may satisfy the formula (4).
  • the access network device determines that the search space may be that the access network device determines the second search space based on the parameter ⁇ , and the access network device is based on the number of the CCEs N CCE and the Determining a first search space corresponding to the first aggregation level, a maximum aggregation level of the at least two aggregation levels.
  • the access network device determines that the search space may be that the access network device determines the second search space based on the parameter ⁇ , and the access network device determines that the search space may be that the access network device is based on the The number of CCEs , and the number of CCEs included in the search space corresponding to the maximum aggregation level of the at least two aggregation levels, determines a first search space corresponding to the first aggregation level.
  • the first search space and the second search space provided in the embodiment of the present invention are simultaneously used.
  • the parameters ⁇ and/or the parameters ⁇ used in the formula may have multiple acquisition modes.
  • the parameter ⁇ and/or the parameter ⁇ may be preset in the terminal device and in the access network device.
  • the parameter a and/or the parameter ⁇ may be configured by the access network device and transmitted by the access network device to the terminal device as described above.
  • the correspondence between the parameter ⁇ and/or the parameter ⁇ and the aggregation level is set in advance in the terminal device and the access network device.
  • the terminal device and the access network device may determine the parameter ⁇ and/or the parameter ⁇ based on the aggregation level and the correspondence.
  • the access network device may configure the correspondence between the parameter ⁇ and/or the parameter ⁇ and the aggregation level to the terminal device.
  • the terminal device and the access network device may determine the parameter ⁇ and/or the parameter ⁇ based on the aggregation level and the correspondence.
  • the parameter a and/or the parameter ⁇ may be determined according to a maximum aggregation level included in the control resource set or a number of control channel units included in the second search space.
  • the action in this step can be implemented by the processor 201 of the access network device 102 described above.
  • the terminal device determines the search space.
  • the manner in which the terminal device determines the search space is the same as the manner in which the access network device determines the search space, and details are not described herein again.
  • step 1640 and the step 1630 are not related to each other, and may be performed at the same time, and may be preceded by the step 1604, which is not limited by the embodiment of the present invention.
  • the actions in this step can be implemented by the modem processor 304 of the terminal device 104 described above.
  • Step 1650 The access network device sends control information on a control channel unit corresponding to the first candidate control channel in the determined search space, where the number of control channel units corresponding to the first candidate control channel is equal to the number An aggregation level.
  • the access network device may send the control information on multiple candidate control channels in the search space, which is not limited in this embodiment of the present invention.
  • the action sent in this step may be implemented by the transceiver 202 of the access network device 102.
  • the processor 201 of the access network device 102 may also be used to control the transceiver 202.
  • Step 1660 The terminal device detects at least one candidate control channel in the determined search space to obtain control information.
  • the terminal device detects the candidate control channel in the search space by means of blind detection.
  • how to detect may refer to the prior art.
  • the determined search space may be the search space determined in the above steps 1640 and 1630.
  • the search space in step 1650 and step 1660 is the first search space.
  • the search space in step 1650 and step 1660 is the second search space.
  • the search spaces determined in steps 1640 and 1630 are the first search space and the second search space
  • the search spaces in steps 1650 and 1660 are the first search space and the second search space.
  • the action in this step can be implemented by the transceiver 301 of the terminal device 104 described above.
  • the modem processor 304 of the terminal device 104 and the transceiver 301 can also be implemented together.
  • the search space corresponding to the low aggregation level can be nested in the search space corresponding to the maximum aggregation level, that is, the search space corresponding to the low aggregation level includes the CCE that is the search space corresponding to the maximum aggregation level.
  • the candidate control channels of the search space corresponding to the low aggregation level may be discrete and non-uniformly distributed in the CCE included in the search space corresponding to the maximum aggregation level, and the discrete and non-uniform distribution further reduces the search of different terminal devices.
  • the space includes the number of identical CCEs, thereby reducing the blocking probability.
  • the present invention also provides an apparatus (e.g., an integrated circuit, a wireless device, a circuit module, etc.) for implementing the above method.
  • an apparatus e.g., an integrated circuit, a wireless device, a circuit module, etc.
  • the means for implementing the power tracker and/or power generator described herein may be a stand-alone device or may be part of a larger device.
  • the device may be (i) a self-contained IC; (ii) a set having one or more 1Cs, which may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter (iv) an ASIC, such as a mobile station modem; (v) a module that can be embedded in other devices; (vi) a receiver, a cellular phone, a wireless device, a handset, or a mobile unit; (vii) other, etc. Wait.
  • a self-contained IC may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter (iv) an ASIC, such as a mobile station modem; (v) a module that can be embedded in other devices; (vi) a receiver, a cellular phone, a wireless device, a handset, or a mobile unit; (vii) other, etc. Wait.
  • the method and apparatus provided by the embodiments of the present invention may be applied to a terminal device or an access network device (which may be collectively referred to as a wireless device).
  • the terminal device or access network device or wireless device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the embodiment of the present invention does not limit the specific structure of the execution body of the method, as long as the transmission signal according to the embodiment of the present invention can be executed by running a program recording the code of the method of the embodiment of the present invention.
  • the method can be communicated.
  • the execution body of the method for wireless communication in the embodiment of the present invention may be a terminal device or an access network device, or a function capable of calling a program and executing a program in the terminal device or the access network device. Module.
  • a computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (DVD). Etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • CD compact disc
  • DVD digital versatile disc
  • Etc. smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, a magnetic tape, an optical medium such as a DVD, or a semiconductor medium such as a Solid State Disk (SSD).
  • SSD Solid State Disk
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and the present invention should not be The implementation of the embodiments constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or an access network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了确定搜索空间的方法和装置。在该方法和装置中,终端设备的控制资源集合对应至少两个聚合等级。所述至少两个聚合等级包括最大聚合等级和第一聚合等级,所述第一聚合等级小于所述最大聚合等级,以及所述最大聚合等级为所述至少两个聚合等级中的最大聚合等级。本方法和装置基于终端设备的控制资源集合包括的控制信道单元CCE的个数以及所述最大聚合等级,确定第一聚合等级对应的第一搜索空间;或者,基于终端设备的控制资源集合包括的控制信道单元CCE的个数,以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定第一聚合等级对应的第一搜索空间,从而降低了需要重复进行信道估计的次数。

Description

搜索空间确定方法和装置
本申请要求于2017年09月10日提交中国专利局、申请号为201710811890.8、申请名称为“搜索空间确定方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种搜索空间确定方法和装置。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,基站将承载各种下行控制信息(downlink control information,DCI)的物理下行控制信道(physical downlink control channel,PDCCH)或增强物理下行控制信道(enhanced PDCCH,EPDCCH)发送给用户设备(user equipment,UE)。UE需要在搜索空间(search space)检测PDCCH,进而获取PDCCH中承载的DCI。一个PDCCH是由L个连续的控制信道单元(control channel element,CCE)聚合而成,其中,L称为该PDCCH的聚合等级。聚合等级可以是大于或等于1的正整数。
搜索空间为UE待检测的PDCCH(又称为候选PDCCH(PDCCH candidate))的集合或UE待检测的EPDCCH(又称为候选EPDCCH(EPDCCH candidate))的集合。一个搜索空间包括多个候选PDCCH或多个候选EPDCCH。后文中,将候选PDCCH和候选EPDCCH统称为候选控制信道。一个搜索空间包括的候选控制信道的聚合等级相同。搜索空间包括公共搜索空间(common search space,CSS)和用户设备特定搜索空间(UE Specific Search Space,UESS)两种类型。其中,CSS是小区内多个UE都要监听的搜索空间,USS是特定UE需要监听的搜索空间。
对于LTE系统的PDCCH,UE基于式(1)确定搜索空间中每个候选PDCCH占用的CCE:
Figure PCTCN2018104790-appb-000001
其中,i=0,…,L-1,并且m=0,…,M (L)-1。其中,k表示子帧号,N CCE,k表示子帧k中控制区域中CCE的总数。m可以表示候选PDCCH的编号(index)。L为该搜索空间对应的聚合等级(aggregation level),M (L)为聚合等级L的搜索空间中的候选PDCCH的个数。对于聚合等级为4和8的公共搜索空间,Y k为0。对于用户设备特定搜索空间,Y k为一个与UE的无线网络临时标识(radio network temporary identifier,RNTI)有关的系数,并且
Y k=(A·Y k-1)mod D      (2)
其中,Y -1=n RNTI≠0,A=39827,D=65537,以及
Figure PCTCN2018104790-appb-000002
n s为一个无线帧内的时隙号。n RNTI为不同类型的RNTI。
对于LTE系统的EPDCCH,UE基于式(3)确定搜索空间内每个候选控制信道占用的CCE:
Figure PCTCN2018104790-appb-000003
其中,p=0或1。Y p,k为一个与UE的RNTI和EPDCCH-物理资源块-集合p有关的系数,该Y p,k的确定方式与式(2)基本相同,不同之处在于,当p=0,A 0=39827,当p=1,A 1=39829。m表示EPDCCH物理资源块集合p中聚合等级为L对应的搜索空间中的第m+1个候选EPDCCH,
Figure PCTCN2018104790-appb-000004
为EPDCCH物理资源块集合p中待检测的聚合等级为L的候选EPDCCH的个数。b等于0或者一个配置的值。N ECCE,p,k表示子帧k的EPDCCH物理资源块集合p中CCE的个数。其他参数同式(1)中的参数相同。
发明内容
本发明实施例提供一种搜索空间确定方法和装置。
第一方面,提供了一种确定搜索空间的方法。该方法中,确定终端设备的控制资源集合包括的控制信道单元CCE的个数N CCE,其中,所述N CCE为正整数,所述控制资源集合对应至少两个聚合等级,所述至少两个聚合等级包括最大聚合等级和第一聚合等级,所述第一聚合等级小于所述最大聚合等级,以及所述最大聚合等级为所述至少两个聚合等级中的最大聚合等级。进一步的,基于所述CCE的个数N CCE,以及所述最大聚合等级,确定所述第一聚合等级对应的第一搜索空间;或者,基于所述CCE的个数N CCE,以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间。
第二方面,提供一种无线装置,包括处理器和与所述处理器耦合的存储器。
所述处理器用于确定终端设备的控制资源集合包括的控制信道单元CCE的个数N CCE,其中,所述N CCE为正整数,所述控制资源集合对应至少两个聚合等级,所述至少两个聚合等级包括最大聚合等级和第一聚合等级,所述第一聚合等级小于所述最大聚合等级,以及所述最大聚合等级为所述至少两个聚合等级中的最大聚合等级。
所述处理器还用于基于所述CCE的个数N CCE,以及所述最大聚合等级,确定所述第一聚合等级对应的第一搜索空间;或者,
所述处理器还用于基于所述CCE的个数N CCE,以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间。
上述实施例中,通过基于最大聚合等级确定所述第一聚合等级对应的第一搜索空间;或者,基于所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间,其中,第一聚合等级小于上述最大聚合等级,从而能够使低聚合等级的搜索空间完全嵌套在最高聚合等级的搜索空间之内,即使得第一搜索空间的CCE为第二搜索空间的CCE的子集,这样,由于不同搜索空间包括的CCE大量重叠,在多次的盲检测中,信道估计和或对接收信号的解调可以复用,降低了需要重复进行信道估计和对信号解调的复杂度。
第三方面,提供了一种搜索空间确定方法。该方法中,确定终端设备的控制资源集合包括的控制信道单元CCE的个数N CCE,其中,所述N CCE为正整数,所述控制资源集合对应至少两个聚合等级,所述至少两个聚合等级包括最大聚合等级和第一聚合等级,所述第一聚合等级小于所述最大聚合等级,以及所述最大聚合等级为所述至少两个聚合等级中的最大聚合等级。进一步的,基于参数α确定第二搜索空间,其中,所述第二搜索空间是所述最大聚合等级对应的搜索空间,所述α满足所述α与
Figure PCTCN2018104790-appb-000005
最大公约数为1,L MAX为所述最大聚合等级。
可选的,基于所述CCE的个数N CCE,以及所述最大聚合等级,确定所述第一聚合等 级对应的第一搜索空间;或者,基于所述CCE的个数N CCE,以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间。
第四方面,提供一种无线装置,包括处理器和与所述处理器耦合的存储器。
所述处理器用于确定终端设备的控制资源集合包括的控制信道单元CCE的个数N CCE,其中,所述N CCE为正整数,所述控制资源集合对应至少两个聚合等级,所述至少两个聚合等级包括最大聚合等级和第一聚合等级,所述第一聚合等级小于所述最大聚合等级,以及所述最大聚合等级为所述至少两个聚合等级中的最大聚合等级。
所述处理器还用于基于参数α确定第二搜索空间,其中,所述第二搜索空间是所述最大聚合等级对应的搜索空间,所述α满足所述α与
Figure PCTCN2018104790-appb-000006
最大公约数为1,L MAX为所述最大聚合等级。
可选的,所述处理器还用于,基于所述CCE的个数N CCE,以及所述最大聚合等级,确定所述第一聚合等级对应的第一搜索空间;或者,所述处理器还用于,基于所述CCE的个数N CCE,以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间。
上述实施例中,基于参数α确定第二搜索空间,其中,所述第二搜索空间是所述最大聚合等级对应的搜索空间,所述α满足所述α与
Figure PCTCN2018104790-appb-000007
最大公约数为1,使得第二搜索空间中包括的候选控制信道可能是离散且非均匀分布的,即将第二搜索空间内的候选控制信道随机化分布,相比于连续或均匀分布的搜索空间而言,在一定程度上减小本终端设备的最大聚合等级对应的搜索空间包括的CCE与其他终端设备的最大聚合等级的搜索空间包括的CCE重叠的概率,从而减小了阻塞概率。
上述第一方面和第三方面中,可用于执行该方法设备可以是接入网设备或终端设备。
上述第二方面和第四方面中,无线装置可以是接入网设备或终端设备或接入网或终端设备中用于实现上述功能的芯片或集成电路等。
可选的,所述α为大于1的正整数。
可选的,所述第二搜索空间包括
Figure PCTCN2018104790-appb-000008
个候选控制信道,
Figure PCTCN2018104790-appb-000009
为正整数,所述
Figure PCTCN2018104790-appb-000010
个候选控制信道包括的CCE的编号满足式(1):
Figure PCTCN2018104790-appb-000011
其中,i=0,…,L MAX-1,并且
Figure PCTCN2018104790-appb-000012
为所述至少两个候选控制信道的个数,Y为与所述终端设备的标识相关的参数或者为预先设定的值。
可选的,所述确定所述控制资源集合中第一聚合等级对应的第一搜索空间,包括:
基于所述配置信息、参数β以及所述最大聚合等级,或者,基于所述配置信息、参数β以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一搜索空间,其中,所述β满足所述β与
Figure PCTCN2018104790-appb-000013
最大公约数为1,其中,L为所述第一聚合等级,L MAX为所述最大聚合等级,
Figure PCTCN2018104790-appb-000014
为所述最大聚合等级L MAX对应的搜索空间中包括的CCE的个数。
可选的,所述第一搜索空间包括M (L)个候选控制信道,其中,
在基于所述配置信息和所述最大聚合等级确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)个候选控制信道包括的CCE的编号满足式(2):
Figure PCTCN2018104790-appb-000015
或者
在基于所述配置信息和所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)个候选控制信道包括的CCE的编号满足式(3):
Figure PCTCN2018104790-appb-000016
其中,N CCE为所述控制资源集合包括的控制信道单元CCE的个数,K为与所述终端设备的标识相关的参数或者为预先设定的值,
Figure PCTCN2018104790-appb-000017
为所述最大聚合等级L MAX对应的搜索空间包括的候选控制信道的个数,i=0,…,L-1,m=0,…,M (L)-1,M (L)为所述第一搜索空间包括的候选控制信道的个数,以及l或l m′为整数。
可选的,在基于所述配置信息和所述最大聚合等级确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)满足如下关系:
Figure PCTCN2018104790-appb-000018
或者
在基于所述配置信息和所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)满足如下关系:
Figure PCTCN2018104790-appb-000019
这样,可以使得第一搜索空间包括的候选控制信道非均匀的分布在第二搜索空间包括的CCE上。
可选的,β为大于1的正整数。这样,可以使得第一搜索空间包括的候选控制信道离散且非均匀的分布在第二搜索空间包括的CCE上。
可选的,α和β可以是不同的。这样,可以使得第一搜索空间和第二搜索空间不同程度的离散分布,这样能够尽可能的降低阻塞概率。可选的,α=1且β>α。在这种情况下,第二搜索空间包括的候选控制信道在控制资源集合中连续分布,第一搜索空间包括的候选控制信道离散且非均匀的分布在第二搜索空间包括的CCE上,该方法实现简单,并且可以降低信道估计的复杂度和阻塞概率。
可选的,1<β<α。在这种情况下,第一搜索空间和第二搜索空间包括的候选控制信道在控制资源集合均离散且非均匀的分布。在这种情况下第二搜索空间包括的候选控制信道较第一搜索空间包括的候选控制信道更加稀疏的分布。当候选控制信道集中式的映射到资源单元组时,第二搜索空间中不同候选控制信道所在的物理资源更加稀疏的分散在整个控制资源集合内获得频率分集增益。
可选的,1<α<β。在这种情况下,第一搜索空间和第二搜索空间包括的候选控制信道在控制资源集合均离散且非均匀的分布。第一搜索空间包括的候选控制信道更加离散且非均匀的分布在第二搜索空间包括的CCE上,与第二搜索空间连续的方式比,本实施方式可进一步降低阻塞概率。
可选的,所述第一搜索空间包括M (L)个候选控制信道,其中,
在基于所述配置信息和所述最大聚合等级对应的搜索空间中包括的CCE的个数确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)个候选控制信道包括的CCE的编号满足式(4):
Figure PCTCN2018104790-appb-000020
在基于所述配置信息和所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)个候选控制信道包括的CCE的编号满足式(5):
Figure PCTCN2018104790-appb-000021
其中,L MAX为所述最大聚合等级,N CCE为所述控制资源集合包括的控制信道单元CCE的个数,L为所述第一聚合等级,L为小于所述L MAX的正整数,K为与所述终端设备的标识相关的参数或者为预先设定的值,
Figure PCTCN2018104790-appb-000022
为所述最大聚合等级L MAX对应的搜索空间包括的候选控制信道的个数,
Figure PCTCN2018104790-appb-000023
为所述最大聚合等级L MAX对应的搜索空间中包括的CCE的个数,i=0,…,L-1,m=0,…,M (L)-1,M (L)为所述第一搜索空间包括的候选控制信道的个数,以及l或l m′为整数。
可选的,所述第一搜索空间包括M (L)个候选控制信道,其中,
在基于所述配置信息和所述最大聚合等级确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)个候选控制信道包括的CCE的编号满足式(6):
Figure PCTCN2018104790-appb-000024
其中,L MAX为所述最大聚合等级,L为所述第一聚合等级,
Figure PCTCN2018104790-appb-000025
所述K 1为与所述终端设备的标识相关的参数或者为预先设定的值,
Figure PCTCN2018104790-appb-000026
为所述最大聚合等级L MAX对应的搜索空间包括的候选控制信道的个数,i=0,…,L-1,m=0,…,M m′ (L)-1,M m′ (L)为所述第m′+1个候选控制信道内包括聚合级别为L的候选控制信道的个数,以及l m′为整数。
可选的,至少两个取值不同的m′对应的至少两个K 1不同。除了可以实现第一搜索空间和第二搜索空间包括的CCE离散分布且非均匀之外,还可以通过配置在每个最高聚合等级候选控制信道上的包括的第一搜索空间中的候选控制信道的数量,并且在每个被嵌套的最高等级候选控制信道上存在不同的初始化的取值K 1可以进一步降低阻塞概率。
可选的,所述l为所述最大聚合等级L MAX对应的搜索空间中的起始候选控制信道的起始CCE的编号。
可选的,所述l m′为所述最大聚合等级L MAX对应的搜索空间中第m′+1个候选控制信道的起始CCE的编号。
可选的,上述方法还包括:在所述第一搜索空间中的一个或多个候选控制信道对应的控制信道单元上发送控制信息。
可选的,上述方法还可以包括:在所述第一搜索空间中的一个或多个候选控制信道对应的控制信道单元上发送控制信息;和/或在所述第二搜索空间中的一个或多个候选控制信道对应的控制信道单元上发送控制信息。
可选的,上述方法还可以包括:在所述第一搜索空间中检测至少一个候选控制信道以获取控制信息。
可选的,上述方法还可以包括:在所述第一搜索空间中检测至少一个候选控制信道以获取控制信息;和/或在所述第二搜索空间中检测至少一个候选控制信道以获取控制信息。
例如,可以是接入网设备在第一搜索空间中的一个或多个候选信道上向终端设备发 送控制信息,其中,该一个或多个候选控制信道中的每一个的聚合级别为所述第一聚合级别。可以是接入网设备在第二搜索空间中的一个或多个候选信道上向终端设备发送控制信息,其中,该一个或多个候选控制信道中的每一个的聚合级别为所述第一聚合级别。
可选的,上述无线装置还可以包括收发器。所述收发器用于在所述第一搜索空间中检测至少一个候选控制信道以获取控制信息;和/或所述收发器用于在所述第二搜索空间中检测至少一个候选控制信道以获取控制信息。
可选的,上述无线装置还可以包括收发器。所述收发器用于在所述第一搜索空间中的第一候选控制信道对应的控制信道单元上发送控制信息。
可选的,上述无线装置还可以包括收发器。所述收发器用于在所述第一搜索空间中的第一候选控制信道对应的控制信道单元上发送控制信息;和/或所述收发器用于,在所述第一搜索空间中的第一候选控制信道对应的控制信道单元上发送控制信息。
可选的,上述无线装置还可以包括收发器。所述收发器用于在所述第一搜索空间中检测至少一个候选控制信道以获取控制信息。
可选的,所述至少两个聚合等级为1,2,4,8,16,32和64中的至少两个。
可替代的,确定的步骤可以是确定终端设备的配置信息,该配置信息可以包括该CCE的个数N CCE
可选的,该配置信息还可以包括搜索空间的配置参数。该搜索空间的配置参数可以包括该终端设备的控制资源集合对应的至少两个聚合等级,和/或所述至少两个聚合等级中每个聚合等级对应的候选控制信道的数量。
可选的,通过信令发送上述CCE的个数N CCE。接收承载有上述CCE的个数N CCE的信令。可替代的,通过信令发送上述配置信息。接收承载有上述配置信息的信令。
可选的,所述信令可以是高层信令。
所述高层信令可以是如下消息中的一种或多种:主信息块(master information block,MIB)消息,系统信息,以及无线资源控制(radio resource control,RRC)消息。进一步的,系统信息可以是系统信息块(system information broadcast,SIB)消息,或者是用于配置随机接入信道(random access channel,RACH)资源的系统信息块消息。RRC消息可以是公共RRC消息,即发送给一个小区内的终端设备的RRC消息,或者可以是终端设备特定的RRC消息,即发送给特定终端设备的RRC消息。
进一步的,用于发送搜索空间的配置参数的信令中还可以包括上述α和β中的至少一个。通过信令将上述α和β中的至少一个发送给终端设备,能够灵活设置第一搜索空间。
可选的,还可以包括根据最大聚合等级和α和最大聚合等级的对应关系确定α。
可选的,还可以包括根据第一聚合等级和β和第一聚合等级的对应关系确定β。这样,可以使得不同聚合级别对应的搜索空间的非均匀分布的程度或位置不同,进一步降低不同聚合级的候选控制信道间的阻塞概率。
通过将α和/或β与聚合等级绑定,并通过隐式的方式确定这些参数,能够在节约信令的同时还可以灵活配置搜索空间。
第五方面,提供了一种通信装置,所述通信装置用于执行上述方法。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第六方面,提供了一种包含指令的计算存储介质,当其在计算机上运行时,使得计算机执行上述方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1所示为应用于本发明实施例无线通信系统的示意图。
图2所示为上述无线通信系统中,接入网设备的一种可能的结构示意图。
图3所示为上述无线通信系统中,终端设备的一种可能的结构示意图。
图4所示为不同聚合等级对应的搜索空间包括的候选PDCCH的分布示意图。
图5所示为当起始位置对齐时,不同聚合等级对应的搜索空间包括的候选PDCCH的分布示意图;
图6所示为为本发明实施例中不同聚合等级对应的搜索空间包括的候选EPDCCH的分布示意图。
图7所示为为本发明实施例中不同α取值对应的第二搜索空间包括的候选控制信道的分布示意图。
图8所示为本发明实施例中聚合等级为4/2/1的第一搜索空间和聚合等级为8的第二搜索空间的一种可能的候选控制信道分布示意图。
图9所示为本发明实施例中聚合等级为1的第一搜索空间和聚合等级为2的第二搜索空间的一种可能的候选控制信道分布示意图。
图10所示为本发明实施例中聚合等级为4/2/1的第一搜索空间和聚合等级为8的第二搜索空间的又一种可能的候选控制信道分布示意图。
图11所示为本发明实施例中第二搜索空间和第一搜索空间的CCE的一种可能的分布示意图。
图12所示为本发明实施例中第二搜索空间和第一搜索空间的CCE的又一种可能的分布示意图。
图13所示为本发明实施例中第二搜索空间和第一搜索空间的CCE的又一种可能的分布示意图。
图14所示为本发明实施例中第二搜索空间和第一搜索空间的CCE的又一种可能的分布示意图。
图15所示为本发明实施例中第二搜索空间和第一搜索空间的CCE的又一种可能的分布示意图。以及
图16所示为本发明实施例提供的方法的信令示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。需要说明的是,在不冲突的情况下,本发明各个实施例中的技术方案或特征可以相互组合。
本发明实施例中的“一个”意味着单个个体,并不代表只能是一个个体,不能应用于其他个体中。例如,本发明实施例中的“一个终端设备”指的是针对某一个终端设备,并不意味着只能应用于一个特定的终端设备。本申请中,术语“系统”可以和“网络”相互替换使用。
本申请中的“一个实施例”(或“一个实现”)或“实施例”(或“实现”)的引用意味着连同实施例描述的特定特征、结构、特点等包括在至少一个实施例中。因此,说明书的各个位置中出现的“在一个实施例中”或“在实施例中”,并不表示都指代相同实施例。
进一步地,本发明实施例中的“A和/或B”和“A和B中至少一个”的情况下使用术语“和/或”和“至少一个”包括三种方案中的任一种,即,包括A但不包括B的方案、包括B不包括A的方案、以及两个选项A和B都包括的方案。作为另一示例,在“A、B、和/或C”和“A、B、和/或C中至少一个”的情况下,这样的短语包括六种方案中的任一种,即,包括A但不包括B和C的方案、包括B不包括A和C的方案、包括C但不包 括A和B的方案,包括A和B但不包括C的方案,包括B和C但不包括A的方案,包括A和C但不包括B的方案,以及三个选项A、B和C都包括的方案。如本领域和相关领域普通技术人员所容易理解的,对于其他类似的描述,本发明实施例均可以按照上述方式理解。
图1示出了无线设备与无线通信系统的通信示意图。所述无线通信系统可以是应用各种无线接入技术(radio access technology,RAT)的系统,例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、或单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。例如无线通信系统可以是长期演进(long term evolution,LTE)系统,CDMA系统,宽带码分多址(wideband CDMA,WCDMA)系统,全球移动通信(global system for mobile communications,GSM)系统,无线局域网(wireless local area network,WLAN)系统,新空口(New Radio,NR)系统,各种演进或者融合的系统,以及面向未来的通信技术的系统。本发明实施例描述的系统架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
为简明起见,图1中示出了一个网络设备102(例如接入网设备),以及两个无线设备104(例如终端设备)的通信。一般而言,无线通信系统可以包括任意数目的网络设备以及终端设备。无线通信系统还可以包括一个或多个核心网设备或用于承载虚拟化网络功能的设备等。所述接入网设备102可以通过一个或者多个载波为无线设备提供服务。本申请中又将接入网设备和终端设备统称为无线装置。
本申请中,所述接入网设备102是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述接入网设备可以包括各种形式的宏基站(base station,BS),微基站(也称为小站),中继站,或接入点等。在采用不同的无线接入技术的系统中,具备无线接入功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。为方便描述,为方便描述,本申请中,简称为接入网设备,有时也称为基站。
本发明实施例中所涉及到的无线设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述无线设备可以称为终端设备,也可以称为移动台(mobile station,简称MS),终端(terminal),用户设备(user equipment,UE)等。所述无线设备可以是包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、调制解调器(modem)或调制解调器处理器(modem processor)、手持设备(handheld)、膝上型电脑(laptop computer)、上网本、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、蓝牙设备、机器类型通信(machine type communication,MTC)终端等。为方便描述,本申请中,简称为终端设备或UE。
无线设备可以支持用于无线通信的一种或多种无线技术,例如5G,LTE,WCDMA,CDMA,1X,时分-同步码分多址(Time Division-Synchronous Code Division Multiple Access,TS-SCDMA),GSM,802.11等等。无线设备也可以支持载波聚合技术。
多个无线设备可以执行相同或者不同的业务。例如,移动宽带业务,增强移动宽带(Enhanced Mobile Broadband,eMBB)业务,终端设极高可靠极低时延通信(Ultra-Reliable  and Low-Latency Communication,URLLC)业务等等。
进一步地,上述接入网设备102的一种可能的结构示意图可以如图2所示。该接入网设备102能够执行本发明实施例提供的方法。其中,该接入网设备102可以包括:控制器或处理器201(下文以处理器201为例进行说明)以及收发器202。控制器/处理器201有时也称为调制解调器处理器(modem processor)。调制解调器处理器201可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。如此,BBP通常按需或按期望实现在调制解调器处理器201内的一个或多个数字信号处理器(digital signal processor,DSP)中或实现为分开的集成电路(integrated circuit,IC)。
收发器202可以用于支持接入网设备102与终端设备之间收发信息,以及支持终端设备之间进行无线电通信。所述处理器201还可以用于执行各种终端设备与其他网络设备通信的功能。在上行链路,来自终端设备的上行链路信号经由天线接收,由收发器202进行调解,并进一步处理器201进行处理来恢复终端设备所发送的业务数据和/或信令信息。在下行链路上,业务数据和/或信令消息由终端设备进行处理,并由收发器202进行调制来产生下行链路信号,并经由天线发射给UE。所述接入网设备102还可以包括存储器203,可以用于存储该接入网设备102的程序代码和/或数据。收发器202可以包括独立的接收器和发送器电路,也可以是同一个电路实现收发功能。所述接入网设备102还可以包括通信单元204,用于支持所述接入网设备102与其他网络实体进行通信。例如,用于支持所述接入网设备102与核心网的网络设备等进行通信。
可选的,接入网设备还可以包括总线。其中,收发器202、存储器203以及通信单元204可以通过总线与处理器201连接。例如,总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以包括地址总线、数据总线、以及控制总线等。
图3为上述无线通信系统中,终端设备的一种可能的结构示意图。该终端设备能够执行本发明实施例提供的方法。该终端设备可以是两个终端设备104中的任一个。所述终端设备包括收发器301,应用处理器(application processor)302,存储器303和调制解调器处理器(modem processor)304。
收发器301可以调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收接入网设备发射的下行链路信号。收发器301可以调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。
调制解调器处理器304有时也称为控制器或处理器,可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。BBP通常按需或按期望实现在调制解调器处理器304内的一个或多个数字中或实现为分开的集成电路(IC)。
在一个设计中,调制解调器处理器(modem processor)304可包括编码器3041,调制器3042,解码器3043,解调器3044。编码器3041用于对待发送信号进行编码。例如,编码器3041可用于接收要在上行链路上发送的业务数据和/或信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码、或交织等)。调制器3042用于对编码器3041的输出信号进行调制。例如,调制器可对编码器的输出信号(数据和/或信令)进行符号映射和/或调制等处理,并提供输出采样。解调器3044用于对输入信号进行解调处理。例如,解调器3044处理输入采样并提供符号估计。解码器3043用于对解调后的输入信号进行解码。例如,解码器3043对解调后的输入信号解交织、和/或解码等处理,并输出解码后的信号(数据和/或信令)。编码器3041、调制器3042、解调器3044和解码器3043可以由合成的调制解调处理器304来实现。这些单元根据无线接入网采用的无线接入技术来 进行处理。
调制解调器处理器304从应用处理器302接收可表示语音、数据或控制信息的数字化数据,并对这些数字化数据处理后以供传输。所属调制解调器处理器可以支持多种通信系统的多种无线通信协议中的一种或多种,例如LTE,新空口,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),高速分组接入(High Speed Packet Access,HSPA)等等。可选的,调制解调器处理器304中也可以包括一个或多个存储器。
可选的,该调制解调器处理器304和应用处理器302可以是集成在一个处理器芯片中。
存储器303用于存储用于支持所述终端设备通信的程序代码(有时也称为程序,指令,软件等)和/或数据。
需要说明的是,该存储器203或存储器303可以包括一个或多个存储单元,例如,可以是用于存储程序代码的处理器201或调制解调器处理器304或应用处理器302内部的存储单元,或者可以是与处理器201或调制解调器处理器304或应用处理器302独立的外部存储单元,或者还可以是包括处理器201或调制解调器处理器304或应用处理器302内部的存储单元以及与处理器201或调制解调器处理器304或应用处理器302独立的外部存储单元的部件。
处理器201和调制解调器处理器301可以是相同类型的处理器,也可以是不同类型的处理器。例如可以实现在中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、其他集成电路、或者其任意组合。处理器201和调制解调器处理器301可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能器件的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合或者片上系统(system-on-a-chip,SOC)等等。
本领域技术人员能够理解,结合本申请所公开的诸方面描述的各种解说性逻辑块、模块、电路和算法可被实现为电子硬件、存储在存储器中或另一计算机可读介质中并由处理器或其它处理设备执行的指令、或这两者的组合。作为示例,本文中描述的设备可用在任何电路、硬件组件、IC、或IC芯片中。本申请所公开的存储器可以是任何类型和大小的存储器,且可被配置成存储所需的任何类型的信息。为清楚地解说这种可互换性,以上已经以其功能性的形式一般地描述了各种解说性组件、框、模块、电路和步骤。此类功能性如何被实现取决于具体应用、设计选择和/或加诸于整体系统上的设计约束。本领域技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本发明的范围。
本发明实施例中,一个候选控制信道由L个起始控制信道单元(control channel element,CCE)聚合构成,L称为该候选控制信道的聚合等级。一个候选控制信道包括的L个CCE的编号是连续的,其中,起始CCE表示L个CCE中编号(index)最小的CCE。
以上文中的候选PDCCH(PDCCH candidate)为例进行说明。相邻的两个候选PDCCH可以表示为搜索空间中编号为m与编号为m+1的PDCCH candidates。
根据上文中的式(1)和(2)可以得到,一个聚合等级为L的搜索空间中编号相邻的两个候选PDCCH,起始CCE的编号(index)的差等于固定值L,即等于聚合等级的大小。即,M (L)个候选PDCCH包括的CCE的编号是连续的。其中,聚合等级为{1,2,4,8}的PDCCH的搜索空间包括的候选控制数量分别为{6,6,2,2}。图4所示为不同聚合等级(aggregation level,AL)对应的搜索空间包括的候选PDCCH的分布示意图,可以看到,每个聚合级别对应的搜索空间是独立的。AL8对应的搜索空间包括两个候选PDCCH,AL4 对应的搜索空间包括两个候选PDCCH,AL2对应的搜索空间包括六个候选PDCCH,以及AL1对应的搜索空间包括六个候选PDCCH均为连续的。其中,由于每个聚合等级对应的搜索空间的起始位置在整个控制资源集合内不同,因此,不同搜索空间包括的CCE的重叠数量是随机的,而且,有可能导致不同搜索空间包括的CCE完全没有重叠,如图4所示聚合等级2、4、和8的资源完全没有重叠。对于没有资源重叠的搜索空间,每次盲检测都需要进行一次新的信道估计,因此,信道估计的次数增多,对处理器的处理增加了负担。
另一方面,式(1)中,如果随机配置的每个聚合等级对应的搜索空间的起始位置恰好对齐,如图5所示,低聚合等级的搜索空间包括的CCE为最大聚合等级包括的CCE的子集。由于不同搜索空间包括的CCE大量重叠,在多次的盲检测中,不同聚合等级的搜索空间中包括的相同的CCE上做一次信道估计即可,信道估计可以复用,从而减少了进行信道估计的次数,降低了处理的复杂度。然而,这种情况下,搜索空间中的一个候选控制信道所在的CCE,被用于发送其他终端设备的控制信道,则导致在搜索空间内包括此CCE的所有候选控制信道都将无法用于发送控制信道,这种被其他终端设备无法发送控制信道又称为阻塞。例如,当AL1对应的CCE#3用于给其他终端设备发送控制信息,则包括该CCE#3的聚合等级为1、2、4和8的候选PDCCH均不能再用于为本终端设备发送控制信道,导致本终端设备的可用的搜索空间的资源快速减少,无法满足本终端设备用于调度数据的需求,增大了数据传输的延时;另外,使得控制信道成为系统容量瓶颈,导致数据传输的频谱利用率降低。
类似的,式(3)存在相同的问题。式(3)与式(1)的不同点在于,满足式(3)的相邻的候选控制信道的CCE编号离散,但一个搜索空间内包括的多个候选控制信道近似于等间隔的分布在整个控制资源集合内。这种规律的分布很大可能会存在不同终端设备的搜索空间依然完全重叠。因此,即使考虑使用式(2)的方法获取搜索空间,依然会存在控制信道阻塞概率大的问题。而且,根据式(3)确定的搜索空间,低聚合等级的搜索空间包括的CCE依然不一定是最大聚合等级包括的CCE的子集,即,存在不同搜索空间包括的CCE不重叠的可能,因此,依然存在信道估计的次数增多,增加了处理器负担的问题。
因此,如果NR系统中沿用式(1)和(3),会存在终端设备在盲检测控制信道时,无法复用多次盲检测中的信道估计和或对接收信号的解调,存在盲检测复杂度高的问题。而且,所述不同搜索空间由于候选控制信道在CCE集合内连续或规律分布,存在不同终端设备的搜索空间包括的相同CCE的个数增加的问题,从而引入了不同终端设备搜索空间存在互相阻塞的概率大的问题。
为了解决上述问题,本发明实施例重新设计了搜索空间,使得低聚合等级对应的搜索空间能够嵌套在最大聚合等级对应的搜索空间中,即低聚合等级对应的搜索空间包括的CCE为最大聚合等级对应的搜索空间包括的CCE的子集,从而降低信道估计的复杂度。同时,低聚合等级对应的搜索空间的候选控制信道可能是离散且非均匀的分布在最大聚合等级对应的搜索空间包括的CCE内,这种离散且非均匀的分布进一步降低了不同终端设备的搜索空间包括相同CCE的个数,从而降低了阻塞概率。
本发明实施例中提供了一种搜索空间。搜索空间包括在控制资源集合。控制资源集合可以是承载控制信道的资源的集合。控制资源集合对应至少两个聚合等级。该至少两个聚合等级包括第一聚合等级和最大聚合等级,其中,最大聚合等级为至少两个聚合等级中的最大等级,显然,第一聚合等级小于该最大聚合等级。其中,所述至少两个聚合等级可以为1、2、4、和8中的至少两个取值,或者可以为1、2、4、8和16中的至少两个取值,或者可以为1、2、4、8、16和32中的至少两个取值,或者也可以为其他整数,如64或 其他数值。
此外,本发明实施例中,存在多个控制资源集合时,每个控制资源集合都对应至少两个聚合等级,其中,该多个控制资源集合中至少两个控制资源集合对应的至少两个聚合等级中的部分或全部可以是不同的,当然,也可以是完全相同的。例如,控制资源集合1对应的聚合等级为1、2、和4,则该控制资源集合1对应的最大聚合等级为4。控制资源集合2对应的聚合等级为1、2、4和8,则该控制资源集合2对应的最大聚合等级为8。并且,每个聚合等级都对应一个搜索空间。换句话说,每个搜索空间内包括的候选控制信道的聚合级别是相同的。
为了方便描述,本发明实施例将所述第一聚合等级对应的搜索空间称为第一搜索空间,将最大聚合等级对应的搜索空间称为第二搜索空间。需要说明的是,这里的第一和第二仅用于方便描述时区分不同的搜索空间,并不代表任何顺序等限定。
另外需要说明的是,本发明实施例中的控制信道资源指为一个终端设备配置的控制信道资源,因此,称为终端设备的控制信道资源。其中,不同的终端设备可以配置相同的控制信道资源或者不同的控制信道资源。不同的终端设备配置相同的控制资源集合时,不同终端设备的相同的控制信道资源对应的聚合等级集合可以是相同的或不同的,其中,每个聚合等级集合中包括至少两个聚合等级,不同的聚合等级集合中包括的聚合等级的数量可相同,也可以不同,本发明实施例并不限定。
通过本发明实施例的设计,该第一搜索空间包括的CCE为第二搜索空间包括的CCE的子集。进一步地,当第一搜索空间内包括多个候选控制信道时,第一搜索空间内包括的多个候选控制信道在所述第二搜索空间包括的CCE内离散分布,并且该多个候选控制信道可能是非均匀地分布在所述第二搜索空间包括的CCE内。
为了方便后文的描述,这里先介绍一下本发明实施例所用的符号。需要说明的是,这些符号仅仅是一种示例,表示相同物理意义的参数还可以用其他符号表示,本发明实施例的这些参数当然还可以用其他符号表示。
L MAX表示最大聚合等级,为正整数,即第二搜索空间对应的聚合等级。
Figure PCTCN2018104790-appb-000027
表示第二搜索空间中包括的候选控制信道的个数,即,最大聚合等级L MAX对应的搜索空间中包括的候选控制信道的个数,并且为正整数。
Figure PCTCN2018104790-appb-000028
表示所述最大聚合等级L MAX对应的搜索空间中包括的CCE的个数,即第二搜索空间包括的CCE的个数。
N CCE表示所述控制资源集合包括的CCE的个数。
α为一参数,所述α满足所述α与
Figure PCTCN2018104790-appb-000029
最大公约数为1,并且为正整数。可选的,α可以为大于1的正整数。
Y表示与终端设备标识相关的参数或者为预先设定的值。
β为一参数,所述β满足所述β与
Figure PCTCN2018104790-appb-000030
最大公约数为1。需要说明的是,α与β的值可以相同,也可以不同。
L表示所述第一聚合等级。
M (L)表示所述第一搜索空间包括的候选控制信道的个数。
K表示与终端设备标识相关的参数或者为预先设定的值,
l为整数。该l与L MAX相关的参数。可选的,l为可以为第二搜索空间第一个候选控制信道的起始CCE的编号。当然,也可以是其他位置的CCE的编号。
l m′为整数。该l与L MAX相关的参数。可选的,l m′为第二搜索空间中第m′+1个候选控 制信道中的起始CCE的编号。当然,也可以是第m′+1个候选控制信道的其他位置的CCE的编号。
Figure PCTCN2018104790-appb-000031
K 1为与终端设备标识相关的参数或者为预先设定的值。
需要说明的是,如果上述Y,K,和K 1为预先设定的值,这三个值可以是相同的,或者部分相同,或者完全不同。例如,对于CSS,这三个值可以是预先设定的值。
如果上述Y,K,和K 1为与终端设备标识相关的参数,这三个值的获取方式可以是相同的,也可以是部分相同,或者,三个值的获取方式可以完全不同。具体获取方式后文中将进一步介绍。例如,终端设备特定的搜索空间。
本发明实施例中提供的第一搜索空间和第二搜索空间可以是独立的,即,可以仅采用本发明实施例提供的第一搜索空间的设计,至于第二搜索空间如何设计,可以采用现有技术中的方法,或者可以采用其他与现有技术中的不同方式。同理,可以仅采用本发明实施例提供的第二搜索空间的设计,至于第一搜索空间如何设计,可以采用现有技术中的方法,或者可以采用其他与现有技术中的不同方式。当然,还可以采用本发明实施例中提供的第一搜索空间和第二搜索空间。
本发明实施例的一种可能的设计中,第二搜索空间是基于参数α确定的,所述α满足所述α与
Figure PCTCN2018104790-appb-000032
最大公约数为1。进一步的,该α可以为大于1的正整数。通过这种方式,当第二搜索空间中包括多个候选控制信道的时候,该多个候选控制信道能够离散地分布在在最大聚合等级对应的搜索空间包括的CCE内,且还可以是非均匀的分布在最大聚合等级对应的搜索空间包括的CCE内。这种离散且非均匀的分布进一步降低了不同终端设备的搜索空间包括相同CCE的个数,从而降低了阻塞概率。可选的,该第二搜索空间包括的
Figure PCTCN2018104790-appb-000033
个候选控制信道包括的CCE的编号满足式(4):
Figure PCTCN2018104790-appb-000034
其中,i=0,…,L MAX-1,并且
Figure PCTCN2018104790-appb-000035
该式(4)可以理解为候选控制信道m′的CCEi的编号,即第m′+1个候选控制信道的第i+1个CCE的编号。
当α为大于1的正整数时,符合式(4)的第二搜索空间中,候选控制信道在该控制资源集合内可能是离散且非均匀的分布的。
下面用一个示例说明本发明实施例中的可能的第二搜索空间的资源分布情况。本示例中以Y=0为例(Y也可以是其他取值,这里进行不限定),L MAX=8,以及N CCE=64为例进行说明。这种情况下,
Figure PCTCN2018104790-appb-000036
则α的可能的取值可以是集合{1,3,5,7}中的值,当然,并不限于此,还可以是其他值,本发明实施例不进行限定。图7所示为不同α取值对应的第二搜索空间包括的候选控制信道的分布示意图。当
Figure PCTCN2018104790-appb-000037
为2时,对于不同的α的取值,其搜索空间的示意图可以如图7所示。可以看到,α为1时,两个编号相邻的候选控制信道的起始CCE的差为L MAX,即相邻的候选控制信道的CCE的编号是连续的。α为3时,两个编号相邻的候选控制信道的起始CCE的差为3L MAX,即相邻的候选控制信道的CCE的编号是不连续的,且两个候选控制信道之间2L MAX个CCE。α为5时,两个编号相邻的候选控制信道的起始CCE的差为5L MAX,即相邻的候选控制信道的CCE的编号是不连续的,且两个候选控制信道之间4L MAX个CCE。α为7时,两个编号相邻的候选控制信道的起始CCE的差为7L MAX,即相邻的候选控制信道的CCE的编号是不连续的,且两个候选控制信道之间6L MAX个CCE。
可选的,式(4)中Y为与终端设备标识相关的参数或者为预先设定的值。当Y为预先设定的值的时候,可以是一个常数,如正整数。这种情况下,该搜索空间可以是公共搜索空间。当Y为与终端设备标识相关的参数的时候,该搜索空间可以是专用于该终端设备的搜索空间。此时,Y的取值可以满足递归函数C(j),例如还可以通过该递归函数计算。递归函数C(j)可表示为式(5),
C(j)=(A Y·C(j-1))mod D      (5)
其中,C(-1)=n RNTI≠0,A Y为一特征参数,D为一常数,例如,D=65537,以及j可以为与时隙号(slot index)或正交频分复用(orthogonal frequency division multiplexing,OFDM)符号编号有关的取值,j∈{0,1...,J-1},其中J为j的可能取值的个数,例如,一个无线帧中slot的个数或OFDM符号的个数等。n RNTI为不同类型的RNTI,即终端设备的标识。若在给定时隙或OFDM符号上对应的取值为j 0,且j 0∈{0,1,...,J-1},则在所述时隙或OFDM符号上的搜索空间的取值为Y=C(j 0)。
该公式中,A Y为一个整数,该值可以是一个固定的取值,当然也可以是一个可变的取值。如果该值为可变取值时,所述特征参数A Y的取值可以为与所述最大聚合等级对应的取值。当然,A Y的取值可以根据聚合等级和最大聚合等级与A的对应关系确定。或者,A Y的取值可以根据控制资源集合确定,例如:A Y的取值与配置的控制资源集合的索引有关。若配置了控制资源集合0和控制资源集合1,分别对应控制资源集合索引0和1;则对于控制资源集合索引0,A Y的取值为39820;则对于控制资源集合索引1,A Y取值为39810;不同的控制资源集合的索引不同。这样,不同控制资源集合内同一个终端设备的搜索空间的位置不同,降低了与其他终端设备的搜索空间在两个不同控制资源集合内相互重叠的概率。
或者,所述A Y的取值可配置,不同控制资源集合索引对应的A Y的取值可通过高层信令配置;配置不同控制资源集合对应的A Y取值相同时,所述不同控制资源集合中包括的搜索空间的CCE位置相同。这样,终端设备无需在不同的控制资源集合内,重新计算搜索空间的位置,有利于终端设备同时在两个控制资源集合上进行联合检测候选控制信道,或对不同控制资源集合中的候选控制信道的检测信号进行合并。
本实施例中,符合式(4)的第二搜索空间可能是离散且非均匀分布的,即将第二搜索空间内的候选控制信道随机化分布,相比于连续或均匀分布的搜索空间而言,在一定程度上减小本终端设备的最大聚合等级对应的搜索空间包括的CCE与其他终端设备的最大聚合等级的搜索空间包括的CCE重叠的概率,从而减小了阻塞概率。
本发明实施例又一种可能的设计中,第一搜索空间与所述最大聚合等级相关。其中,本发明实施例设计的第一搜索空间与所述最大聚合等级相关可以指与最大聚合等级相关,但是与第二搜索空间中包括的候选控制信道的个数无关。这种方式中,第一搜索空间包括的CCE可以为第二搜索空间包括的CCE的子集,即第一搜索空间嵌套在第二搜索空间中,且第一搜索空间包括的候选控制信道可以是离散且非均匀分布在第二搜索空间包括的CCE内。这种嵌套的设计中,能够降低信道估计复杂度,并且,这种非均匀且离散的设计能够减小阻塞概率。进一步的,第二搜索空间包括的CCE可以是编号连续的,也可以是离散的。可进一步降低不同终端设备的搜索空间的阻塞概率。
本发明实施例的又一种可能的设计中,第一搜索空间与所述最大聚合等级对应的搜索空间中包括的CCE的个数,即第二搜索空间包括的CCE的个数相关。即,第一搜索空间不仅与最大聚合等级相关,还与第二搜索空间中包括的候选控制信道的个数相关。通过这种方式,能够将第一搜索空间中的候选控制信道,离散且非均匀的分布在第二搜索空间中。进一步的,第二搜索空间包括的CCE可以是编号连续的,该方法可以降低阻塞概率,而 且实现简单。
通过上述设计,能够保证第一搜索空间包括的资源是第二搜索空间包括的资源的子集,即低聚合等级对应的搜索空间能够嵌套在最大聚合等级对应的搜索空间中,即低聚合等级对应的搜索空间包括的CCE为最大聚合等级对应的搜索空间包括的CCE的子集,从而降低信道估计的复杂度。同时,低聚合等级对应的搜索空间的候选控制信道可能是离散且非均匀的分布在最大聚合等级对应的搜索空间包括的CCE内,这种离散且非均匀的分布进一步降低了不同终端设备的搜索空间包括相同CCE的个数,从而降低了阻塞概率。
需要说明的是,本发明实施例中候选控制信道离散且非均匀分布是指编号相邻的候选控制信道的CCE的编号不是连续的。离散且非均匀分布是指相邻候选控制信道的CCE的编号不是连续的,而且编号为x的候选控制信道的起始CCE的编号和x+1的候选控制信道的起始CCE的编号的差值与编号为y的候选控制信道的起始CCE的编号和y+1的候选控制信道的起始CCE的编号的差值不同,或者,相邻候选控制信道中,编号为x的候选控制信道的最后一个CCE的编号和x+1的候选控制信道的起始CCE的编号的差值与编号为y的候选控制信道的最后一个CCE的编号和y+1的候选控制信道的起始CCE的编号的差值不同。后文中离散分布和非均匀分布均是相同的含义。
进一步的,本发明实施例中,该第一搜索空间还可以与上述参数β相关。
可选的,α和β可以是不同的。这样,可以使得第一搜索空间和第二搜索空间不同程度的离散分布,这样能够尽可能的降低阻塞概率。
例如,α=1且β>α。在这种情况下,第二搜索空间包括的候选控制信道在控制资源集合中连续分布,第一搜索空间包括的候选控制信道离散且非均匀的分布在第二搜索空间包括的CCE上,图8所示为本发明实施例中聚合等级为4/2/1的第一搜索空间和聚合等级为8的第二搜索空间的一种可能的候选控制信道分布示意图。该方法实现简单,并且可以降低信道估计的复杂度和阻塞概率。
又如,1<β<α。在这种情况下,第一搜索空间和第二搜索空间包括的候选控制信道在控制资源集合均离散且非均匀的分布。在这种情况下第二搜索空间包括的候选控制信道较第一搜索空间包括的候选控制信道更加稀疏的分布。当候选控制信道集中式的映射到资源单元组时,第二搜索空间中不同候选控制信道所在的物理资源更加稀疏的分散在整个控制资源集合内获得频率分集增益。这种情形下,图9所示为本发明实施例中聚合等级为1的第一搜索空间和聚合等级为2的第二搜索空间的一种可能的候选控制信道分布示意图。
例如,1<α<β。在这种情况下,第一搜索空间和第二搜索空间包括的候选控制信道在控制资源集合均离散且非均匀的分布。第二搜索空间包括的候选控制信道更加离散且非均匀的分布在第一搜索空间包括的资源内,与第二搜索空间连续的方式比,本实施方式可进一步降低阻塞概率。图10所示为本发明实施例中聚合等级为4/2/1的第一搜索空间和聚合等级为8的第二搜索空间的又一种可能的候选控制信道分布示意图。
对于上述第一种方式,即第一搜索空间与所述最大聚合等级相关时,又一种可选的实施方式中,该第一搜索空间包括的M (L)个候选控制信道包括的CCE的编号可以满足式(6):
Figure PCTCN2018104790-appb-000038
其中,K为与终端设备的标识相关的参数或者为预先设定的值,i=0,…,L-1,m=0,…,M (L)-1,M (L)为所述第一搜索空间包括的候选控制信道的个数,以及l m′为整数。
例如,最大聚合等级L MAX=8时,若所述最大聚合等级对应的搜索空间包括2个候选控制信道,其中,第一个最大聚合等级的候选控制信道包括的CCE编号为 {8,9,10,11,12,13,14,15};第二个最大聚合等级的候选控制信道包括的CCE编号为{16,17,18,19,20,21,22,23}。因此,第m′+1个最大聚合等级候选控制信道的编号与第m′+1个最大聚合等级候选控制信道起始CCE的编号可以如表1所示。
表1
Figure PCTCN2018104790-appb-000039
第一搜索空间包括的第m+1个候选控制信道的起始CCE与其对应的最大聚合等级的候选控制信道的编号m′的关系,可根据第m+1个候选控制信道的起始CCE相对于第二搜索空间中每个候选控制信道包括的最大或最小的CCE编号确定。
可选的,可以根据所述第m+1个候选控制信道的起始CCE编号,与所述第m′+1个候选控制信道包括的最大或最小的CCE编号的大小关系确定。
或者,可以如式(7)所示。l m′的取值为所述第m+1个候选控制信道对应的第m′+1个候选控制信道包括的起始CCE编号。
Figure PCTCN2018104790-appb-000040
m’与l m′的关系如下:
若第一搜索空间的聚合等级L=1,M (L)=6,且K=0,则可知
Figure PCTCN2018104790-appb-000041
当β=5时,由式(7)可得所述m'与所述第一搜索空间中的第m+1个候选控制信道的对应关系,其结果如下表2所示:
表2
Figure PCTCN2018104790-appb-000042
候选控制信道m与CCE的编号对应关系如下表3所示:
表3
第m+1个候选控制信道 候选控制信道m包括的CCE的编号 l m′
m=0 {0+l m′} 8
m=1 {5+l m′} 8
m=2 {2+l m′} 16
m=3 {7+l m′} 16
m=4 {4+l m′} 8
m=5 {1+l m′} 16
这种情况下,所述第一搜索空间的CCE分布示意图如图11所示。又一种实施方式中,所述最大聚合等级搜索空间包括的候选控制信道在控制资源集合中离散分布,例如, 最大聚合等级的第一个候选控制信道包括的CCE编号为{0,1,2,3,4,5,6,7};最大聚合等级的第二个候选控制信道包括的CCE编号为{24,25,26,27,28,29,30,31},则类似的,可通过式(7)或其他可选的方式,获得第一搜索空间中的候选控制信道m与CCE的编号对应关系如下表4所示。
表4
第m+1个候选控制信道 候选控制信道m包括的CCE的编号 l m′
m=0 {0+l m′} 0
m=1 {5+l m′} 0
m=2 {2+l m′} 24
m=3 {7+l m′} 24
m=4 {4+l m′} 0
m=5 {1+l m′} 24
这种情况下,所述第一搜索空间的CCE分布示意图如图12所示。
满足式(6)的第一搜索空间中,不区分第二搜索空间包括的CCE的编号是否连续,可以实现第二搜索空间和第一搜空间均离散且非均匀的分布,最大程度上降低阻塞概率。
进一步的,式(6)中,所述M (L)还可以满足如下关系:
Figure PCTCN2018104790-appb-000043
使得第一搜索空间可以获得更好的非均匀特性,降低阻塞概率。
对于上述第二种方式,即第一搜索空间与所述最大聚合等级对应的搜索空间中包括的CCE的个数时,又一种可选的实施方式中,该第一搜索空间包括的M (L)个候选控制信道包括的CCE的编号可以满足式(8):
Figure PCTCN2018104790-appb-000044
其中,i=0,…,L-1,m=0,…,M (L)-1。
所述l m’为所述第二搜索空间包括的第m’+1个候选控制信道的CCE起始编号
例如,最大聚合等级L MAX=8时,若所述最大聚合等级对应的搜索空间包括2个候选控制信道,其中,第一个最大聚合等级的候选控制信道包括的CCE编号为{8,9,10,11,12,13,14,15};第二个最大聚合等级的候选控制信道包括的CCE编号为{16,17,18,19,20,21,22,23},则第m′+1个最大聚合等级候选控制信道的编号与第m′+1个最大聚合等级候选控制信道起始CCE的编号可以如表5所示。
表5
Figure PCTCN2018104790-appb-000045
第一搜索空间包括的第m+1个候选控制信道的起始CCE与其对应的最大聚合等级的候选控制信道的编号m′的关系可根据第m+1个候选控制信道的起始CCE相对于第二搜索空间中每个候选控制信道包括的最大或最小的CCE编号确定。
可选的,可以根据所述第m+1个候选控制信道的起始CCE编号,与所述第m′+1个候选控制信道包括的最大或最小的CCE编号的大小关系确定。
或者,可以如式(9)所示。l m′的取值为所述第m+1个候选控制信道对应的第m′+1 个候选控制信道包括的起始CCE编号。
Figure PCTCN2018104790-appb-000046
这种情况下,若第一搜索空间的聚合等级L=1,M (L)=6,且K=0,则可知
Figure PCTCN2018104790-appb-000047
候选控制信道m与CCE的编号对应关系如下表6所示。
表6
第m+1个候选控制信道 候选控制信道m包括的CCE的编号 l m′
m=0 {0+l m′} 8
m=1 {2+l m′} 8
m=2 {5+l m′} 8
m=3 {0+l m′} 16
m=4 {2+l m′} 16
m=5 {5+l m′} 16
这种情况下,所述第一搜索空间的CCE分布示意图如图13所示。
满足式(8)的第一搜索空间中,不区分第二搜索空间包括的CCE的编号是否连续,可以实现第二搜索空间和第一搜空间均离散且非均匀的分布,最大程度上降低阻塞概率。
对于上述第二种方式,即第一搜索空间与所述最大聚合等级对应的搜索空间中包括的CCE的个数时,又一种可选的实施方式中,该第一搜索空间包括的M (L)个候选控制信道包括的CCE的编号可以满足式(10):
Figure PCTCN2018104790-appb-000048
其中,i=0,…,L-1,m=0,…,M (L)-1。
可替代的,式(10)还可以表示为式(11):
Figure PCTCN2018104790-appb-000049
所述l为所述第二搜索空间包括的CCE中的起始CCE的编号。
例如,最大聚合等级L MAX=8,
Figure PCTCN2018104790-appb-000050
时,若所述最大聚合等级对应的搜索空间包括2个候选控制信道,其中,第一个最大聚合等级的候选控制信道包括的CCE编号为{8,9,10,11,12,13,14,15};第二个最大聚合等级的候选控制信道包括的CCE编号为{16,17,18,19,20,21,22,23},则所述最大聚合等级对应的搜索空间的起始CCE编号为8,即,l=8。
若第一搜索空间的聚合等级L=1,M (L)=6,且K=0,则可知
Figure PCTCN2018104790-appb-000051
第一搜索空间中候选控制信道m与CCE的编号对应关系如下表7给出:
表7
第m+1个候选控制信道 候选控制信道m包括的CCE的编号
m=0 8
m=1 10
m=2 13
m=3 16
m=4 18
m=5 21
这种情况下,所述第一搜索空间的CCE分布示意图如图14所示。
上述方式应用在第二搜索空间包括的CCE的编号连续的情况时,实现简单,且可以降低信道估计的复杂度以及降低阻塞概率。
对于上述第一种方式,即第一搜索空间与所述最大聚合等级相关时,又一种可选的实施方式中,该第一搜索空间包括的M (L)个候选控制信道包括的CCE的编号可以满足式(12):
Figure PCTCN2018104790-appb-000052
其中,i=0,…,L-1,m=0,…,M (L)-1。
例如,最大聚合等级L MAX=8时,若所述最大聚合等级对应的搜索空间包括2个候选控制信道,其中,第一个最大聚合等级的候选控制信道包括的CCE编号为{8,9,10,11,12,13,14,15};第二个最大聚合等级的候选控制信道包括的CCE编号为{16,17,18,19,20,21,22,23};则第m′+1个最大聚合等级候选控制信道的编号与第m′+1个最大聚合等级候选控制信道起始CCE的编号可以如表8所示。
表8
Figure PCTCN2018104790-appb-000053
若m′=0时,M m’ (L)=3(表示第二搜索空间中的第m′个候选控制信道内,第一聚合级别对应的候选控制信道的个数),l m’=8,K 1=0;m与CCE的编号对应关系如下表9所示。
表9
第m+1个候选控制信道 候选控制信道m包括的CCE的编号 l m′
m=0 {0+l m′} 8
m=1 {2+l m′} 8
m=2 {5+l m′} 8
若m′=0时,M m’ (L)=4,l m’=16,K 1=0;m与CCE的编号对应关系如下表10所示。
表10
第m+1个候选控制信道 候选控制信道m包括的CCE的编号 l m′
m=0 {0+l m′} 16
m=1 {2+l m′} 16
m=2 {4+l m′} 16
m=3 {6+l m′} 16
这种情况下,所述第一搜索空间的CCE分布示意图如图15所示。
对于上述第二种方式,即第一搜索空间与所述最大聚合等级对应的搜索空间中包括的CCE的个数时,又一种可选的实施方式中,该第一搜索空间包括的M (L)个候选控制信道包括的CCE的编号可以满足式(13):
Figure PCTCN2018104790-appb-000054
其中,i=0,…,L-1,m=0,…,M (L)-1。
可替代的,式(13)还可以表示为式(14):
Figure PCTCN2018104790-appb-000055
所述l为所述第二搜索空间包括的CCE起始编号
例如,最大聚合等级L MAX=8,
Figure PCTCN2018104790-appb-000056
时,若所述.最大聚合等级对应的搜索空间包括2个候选控制信道,其中,第一个最大聚合等级的候选控制信道包括的CCE编号为{8,9,10,11,12,13,14,15};第二个最大聚合等级的候选控制信道包括的CCE编号为{16,17,18,19,20,21,22,23},则所述最大聚合等级对应的搜索空间的起始CCE编号为8,即,l=8。
若第一搜索空间的聚合等级L=1,M (L)=6,且K=0,β=3,则可知
Figure PCTCN2018104790-appb-000057
第一搜索空间中候选控制信道m与CCE的编号对应关系如下表11所示:
表11
第m+1个候选控制信道 候选控制信道m包括的CCE的编号
m=0 8
m=1 10
m=2 11
m=3 14
m=4 17
m=5 20
m=6 23
上述方式应用在第二搜索空间包括的CCE的编号连续的情况时,实现简单,且可以降低信道估计的复杂度以及降低阻塞概率。
本实施方式中,除了可以实现第一搜索空间和第二搜索空间包括的CCE离散分布且非均匀之外,还可以通过配置在每个最高聚合等级候选控制信道上的包括的第一搜索空间中的候选控制信道的数量,并且在每个被嵌套的最高等级候选控制信道上存在不同的初始化的取值K 1可以进一步降低阻塞概率。
其中,K,K 1可以是预先设置的值,也可以是通过上述递归函数确定的,此处表示为式
C(j)=(A·C(j-1))mod D      (15)
该公式中,A为一个整数,该值可以是一个固定的取值,当然也可以是一个可变的取值。
当该式(12)中的A用于确定K时,A可以表示为A K
如果该值为可变取值时,所述A的取值可以根据控制资源集合确定,例如:A的取值与配置的控制资源集合的索引有关。若配置了控制资源集合0和控制资源集合1,分别对应控制资源集合索引0和1;则对于控制资源集合索引0,A的取值为39820;则对于控制资源集合索引1,A取值为39810;不同的控制资源集合的索引不同。这样,不同控制资源集合内同一个终端设备的搜索空间的位置不同,降低了与其他终端设备的搜索空间在两个不同控制资源集合内相互重叠的概率。
或者,所述A的取值可配置,不同控制资源集合索引对应的A的取值可通过高层信令配置;配置不同控制资源集合对应的A取值相同时,所述不同控制资源集合中包括的搜索空间的CCE位置相同。这样,终端设备无需在不同的控制资源集合内,重新计算搜索空间的位置,有利于终端设备同时在两个控制资源集合上进行联合检测候选控制信道,或对不同控制资源集合中的候选控制信道的检测信号进行合并。
或者,所述A的取值可以为与所述搜索空间对应的聚合等级有关。A的取值可以根据聚合等级和聚合等级与A的对应关系确定。例如,存在多个预定义的特征参数的取值,取值集合如表12所示。
表12
聚合等级 A
L=8 39827
L=4 39825
L=2 39823
L=1 39821
其中,表12中给出了聚合等级和预定取值之间的关系,若第一搜索空间的聚合等级为2,A的取值为A=39823。
这样,不同聚合级别对应的搜索空间随机化参数不同,使得不同聚合级别对应的搜索空间不完全重叠,从而能够降低阻塞概率。
此外,K 1还可以与第m′+1个候选控制信道有关,例如,A=B+m′或A=B-m′。其中B的取值可以与上文中A的取值的获取方式相同。即,这种情况下,式(15)中的A等于上述固定或可变取值即上文中的A加或减m′。这样,分布于不同第二搜索空间中的候选控制信道包括的CCE内的第一搜索空间随机化参数不同,使得第一搜索空间在不同的第二搜索空间中的候选控制信道包括的CCE内分布的位置不同,从而能够降低在每个第二搜索空间候选控制信道包括的CCE内的阻塞概率。
其中,K和K 1的取值可以与Y的取值不同,即低聚合等级的随机化参数与最高聚合等级的随机化参数不同,这样能够使得不同的终端设备即使在最高聚合等级的搜索空间上的CCE完全重叠,在低聚合等级对应的搜索空间并不完全重叠,从而能够降低阻塞概率。
需要说明的是,本发明实施例中上述公式中的
Figure PCTCN2018104790-appb-000058
可以表述为N CCE,MAX,即,最大聚合等级对应的第二搜索空间中包括的CCE的个数。
上述实施例中设计的搜索空间,能够使低聚合等级的搜索空间完全嵌套在最高聚合等级的搜索空间之内,即使得第一搜索空间的CCE为第二搜索空间的CCE的子集,这样,由于不同搜索空间包括的CCE大量重叠,在多次的盲检测中,信道估计和或对接收信号的解调可以复用,降低了需要重复进行信道估计和对信号解调的复杂度。
下面将结合上文中的实施例进一步提供本发明实施例如何应用上述第一搜索空间和/或第二搜索空间。
本实施例提供了一种确定搜索空间的方法。图16为本发明实施例提供的方法的信令示意图。需要说明的是,图16以及下文中的部分步骤可以可选的,本发明实施例并不限定必须包含所有步骤。此外,步骤的序号也仅仅是便于描述,并不代表先后顺序。另外,在没有特别说明的情况下,本发明实施例中的搜索空间可以是上文中的第一搜索空间,或者可以是上文中的第二搜索空间,或者可以是上文中的第一搜索空间和第二搜索空间。
步骤1610,接入网设备确定终端设备的控制资源集合包括的控制信道单元(control channel element,CCE)的个数N CCE
可替代的,本步骤1610可以是接入网设备确定终端设备的配置信息,该配置信息可以包括该CCE的个数N CCE
控制信道资源集合可以是指包括控制信道资源的集合,该集合内的资源能够用于发送控制信息。进一步的,控制信道资源集合内包括有一个或多个搜索空间,控制信息是在该一个或多个搜索空间内进行发送的。终端设备在该一个或多个搜索空间内进行盲检测,以获取控制信息。其中,盲检测可以指终端设备并不知道具体用于发送控制信息的控制信道是哪个,因此,需要在搜索空间内包括的候选控制信道内进行检测,直到检测到承载有控制信息的控制信道。
可选的,接入网设备可以为该终端配置的一个或多个控制资源集合。本发明实施例针对某一个控制资源集合进行描述,但并不限定接入网设备只能为一个终端设备配置一个控制资源集合。对于每个控制信道资源集合,终端设备和接入网设备均可以按照本发明实施例提供的方法确定该控制信道资源集合中的搜索空间。这种情况下,本步骤中的确定配置信息可以是接入网设备确定该配置信息,或配置该配置信息。进一步的,接入网设备可以根据信道环境等因素确定该配置信息,或配置该配置信息。例如,根据终端设备上报的信道质量信息等进行配置,本发明实施例对此并不限定。
可选的,控制资源集合可以是预定义的。接入网设备和终端设备可以分别根据预先设置的配置确定该控制资源集合。
进一步的,该控制资源集合对应至少两个聚合等级,所述至少两个聚合等级中的最大值为最大聚合等级。例如,该控制资源集合对应第一聚合等级和第二聚合等级,其中,第二聚合等级为最大聚合等级。
可选的,该配置信息还可以包括搜索空间的配置参数。该搜索空间的配置参数可以包括该终端设备的控制资源集合对应的至少两个聚合等级,和/或所述至少两个聚合等级中每个聚合等级对应的候选控制信道的数量。
需要说明的是,搜索空间的配置参数可以是和控制资源集合相关的,例如,搜索空间的配置参数单独为控制资源集合配置的,即控制资源集合特定的搜索空间的配置参数,还可以是与控制资源集合不相关的,例如,一个终端设备的多个控制资源集合使用相同的搜索空间的配置参数,即搜索空间的配置参数不是为特定控制资源集合配置的,多个控制资源集合共用相同的搜索空间的配置参数。或者,搜索空间的配置参数可以是部分和控制资源集合相关的,部分和控制资源集合不相关,例如,公共搜索空间的配置参数可以是与控制资源集合不相关的,终端设备特定的搜索空间可以是与控制资源集合相关的。
可选的,公共搜索空间的配置参数和终端设备特定的搜索空间可以均为与控制资源集合不相关,但是公共搜索空间的配置参数和终端设备特定的搜索空间可以不同。
此外,本发明实施例中所述的终端设备的控制信道资源对应的搜索空间可以是指在这个终端设备的控制信道资源内的搜索空间。所述控制信道资源对应的搜索空间与上述控制资源集合和搜索空间的配置的关联没有关系。
需要说明的是,同一个控制资源集合可以配置给不同终端设备,而且,配置给不同终端设备的这个控制资源集合可以是对应不同的至少两个聚合等级,例如,同一个控制资源集合配置给终端设备1和终端设备2,配置给终端设备1的这个控制资源集合对应的聚合等级为1,2,和4;配置给终端设备2的这个控制资源集合对应的聚合等级为2,4,和8。因此,对于接入网设备而言,这是一个控制资源集合,这个控制资源集合能够对应的聚合等级为1,2,4,8。因此,接入网设备配置信息的时候,确定的是终端设备的配置信息,例如,确定终端设备1的控制资源集合对应的聚合等级为1,2,和4,确定终端设备2的控制资源集合对应的聚合等级为2,4,和8。可以看到,对应于不同的终端设备,该控制资源集合是不同的,因此,本发明实施例中所述的终端设备的控制资源集合可以是指该控制资源集合对于该终端设备而言,其对应的配置参数可以是不同的,并不表示该控制资源集合是专用 于该终端设备的。
本步骤的操作可以是由上述接入网设备102中的处理器201实现。
步骤1620,接入网设备通过信令发送上述CCE的个数N CCE,终端设备接收承载有上述CCE的个数N CCE的信令。
可替代的,接入网设备通过信令发送上述配置信息,终端设备接收承载有上述配置信息的信令。
这里的信令可以是一个或多个信令消息。因此,配置信息中包括多种信息时,这多种信息可以分别通过不同的信令消息发送给终端设备。例如,一部分配置信息由一种或多种信令发送,另外一部分配置信息由另一种或多种信令发送。
本实施例中的信令可以是高层信令。
例如,该高层信令可以是如下消息中的一种或多种:主信息块(master information block,MIB)消息,系统信息,以及无线资源控制(radio resource control,RRC)消息。进一步的,系统信息可以是系统信息块(system information broadcast,SIB)消息,或者是用于配置随机接入信道(random access channel,RACH)资源的系统信息块消息。RRC消息可以是公共RRC消息,即发送给一个小区内的终端设备的RRC消息,或者可以是终端设备特定的RRC消息,即发送给特定终端设备的RRC消息。
可选的,对于不同的搜索空间类型对应的配置信息,接入网设备可以通过不同方式发送。
例如,如果搜索空间是公共搜索空间,上文中的终端设备的控制资源集合包括的CCE的个数可以是通过MIB消息或者是SIB消息发送。如果搜索空间是终端设备特定的搜索空间,上文中的终端设备的控制资源集合包括的CCE的个数可以是通过RRC消息发送,可选的,该RRC消息可以是终端设备特定的RRC消息。当然,这里仅仅是举例,并不限于这些消息。通过MIB消息发送的配置信息主要用于配置调度剩余最小系统信息RMSI(Remainning minimum system information)的控制信息所在的控制资源集合,有助于终端设备获取基本的最基本的系统信息,例如,RACH资源等。通过配置RACH资源的SIB消息发送的配置信息无需考虑信令开销的限制,使得配置的更加灵活。另外,通过RRC信令发送的配置信息也无需考虑信令开销的限制,而且可以为特定的终端设备配置,为不同需求的终端设备配置不同的控制资源集合,有利于资源利用率的提高。
又例如,如果搜索空间是公共搜索空间,上述配置信息中至少两个聚合等级,和/或所述至少两个聚合等级中每个聚合等级对应的候选控制信道的数量可以是由上述系统信息发送,例如,可以由上述用于配置RACH资源的系统信息块消息发送。如果搜索空间是终端设备特定的搜索空间,上述配置信息中至少两个聚合等级,和/或所述至少两个聚合等级中每个聚合等级对应的候选控制信道的数量可以是由RRC消息发送。
可选的,控制资源集合的配置参数与搜索空间的配置参数可以是通过同一条消息发送。
进一步的,如果搜索空间的配置参数是与控制资源集合是相关的,且控制资源集合的配置参数与搜索空间的配置参数是通过不同的消息发送的,用于发送搜索空间的配置参数的消息中还可以指示该搜索空间的配置参数对应于哪个控制资源集合。
需要说明的是,本步骤为可选步骤,例如,控制资源集合的配置参数和搜索空间的配置参数可以是预先设置在终端设备和接入网设备中,不需要接入网设备给终端设备配置。
此外,步骤1620和步骤1610的先后顺序并不限定,步骤1620可以步骤1610之前执行。例如,接入网设备可以先将配置信息发送给终端设备,当接入网设备需要为终端设备发送控制信息的时候,先确定这些配置信息,然后再执行确定搜索空间等步骤。
进一步的,用于发送搜索空间的配置参数的信令中还可以包括上述参数α和参数β 中的至少一个,其中发送哪个是由所对应的搜索空间决定的。例如,如果应用了上述第一搜索空间,则该用于发送搜索空间的配置参数的信令中包括上述参数α。如果应用了上述第二搜索空间,则该用于发送搜索空间的配置参数的信令中包括上述参数β。如果应用了上述第一搜索空间和第二搜索空间,则该用于发送搜索空间的配置参数的信令中包括上述参数α和参数β。当然,参数α和/或参数β也可以用承载用于发送控制资源集合的配置参数信令发送,或者,与用于发送搜索空间的配置参数的信令和承载用于发送控制资源集合的配置参数信令独立的信令发送。
本步骤中发送的动作可以由上述接入网设备102的收发器202来实现,当然,也可以是上述接入网设备102的处理器201来控制收发器202实现。
本步骤中接收的动作可以由上述终端设备104的收发器301来实现,当然,也可以是上述终端设备104的调制解调器处理器304来控制收发器301实现。
步骤1630,接入网设备确定搜索空间。
一种可选实施方式中,接入网设备确定搜索空间可以是接入网设备根据所述CCE的个数N CCE和所述至少两个聚合等级中的最大聚合等级,确定所述第一聚合等级对应的第一搜索空间。本可选实施方式如上文中所述,确定的第一搜索空间中包括的M (L)个候选控制信道包括的CCE的编号可以满足式(6)或式(12)。
进一步的,本实施方式中基于所述CCE的个数N CCE和所述至少两个聚合等级中的最大聚合等级,确定所述第一聚合等级对应的第一搜索空间可以包括:基于所述CCE的个数N CCE,和所述至少两个聚合等级中的最大聚合等级,以及式(6)或式(12),计算所述第一搜索空间中包括的至少一个CCE的编号以获取所述第一搜索空间。
此处的计算可以是基于这些参数以及公式,计算得到所述第一搜索空间起始CCE的编号,然后基于第一聚合级别得到该第一搜索空间中第一个候选控制信道的所有CCE,例如,连续的L个CCE。进一步的,基于该第一搜索空间包括的候选控制信道的个数以及相邻两个候选控制信道的间隔依次获得。因此,本发明实施例中所述的计算并非指每个CCE都需要用计算的方式确定。当然,本发明实施例并不排除每个CCE的编号都通过上述公式计算得到。
需要说明的是,本发明实施例中的确定搜索空间的步骤均可以按照上述方式实现。后文相同的描述不再赘述。
又一种可选实施方式中,接入网设备确定搜索空间可以是接入网设备基于所述CCE的个数N CCE,以及所述至少两个聚合等级中的最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间。本可选实施方式如上文中所述,确定的第一搜索空间中包括的M (L)个候选控制信道包括的CCE的编号可以满足式(8),式(10)或式(11)。
又一种可选实施方式中,接入网设备确定搜索空间可以是接入网设备基于参数α确定第二搜索空间。本可选实施方式如上文中所述,确定的第二搜索空间中包括的M (L)个候选控制信道包括的CCE的编号可以满足式(4)。
又一种可选实施方式中,接入网设备确定搜索空间可以是,接入网设备基于参数α确定第二搜索空间,并且,接入网设备基于所述CCE的个数N CCE和所述至少两个聚合等级中的最大聚合等级,确定所述第一聚合等级对应的第一搜索空间。
又一种可选实施方式中,接入网设备确定搜索空间可以是,接入网设备基于参数α确定第二搜索空间,并且,接入网设备确定搜索空间可以是接入网设备基于所述CCE的个数N CCE,以及所述至少两个聚合等级中的最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间。
后面这两种可选实施方式中,同时采用本发明实施例中提供的第一搜索空间和第二 搜索空间。
需要说明的是,在确定搜索空间时,公式中用到的参数α和/或参数β可以有多种获取方式。
例如,参数α和/或参数β可以是预先设置在终端设备中以及接入网设备中。
或者,参数α和/或参数β可以如上文所述,是由接入网设备配置的且由接入网设备发送给终端设备。
或者,参数α和/或参数β和聚合等级的对应关系是预先设置在终端设备和接入网设备中。这种情况下,本步骤中,终端设备和接入网设备可以基于聚合等级和该对应关系确定参数α和/或参数β。
或者,接入网设备可以将参数α和/或参数β和聚合等级的对应关系配置给终端设备。这种情况下,本步骤中,终端设备和接入网设备可以基于聚合等级和该对应关系确定参数α和/或参数β。
例如,对应关系可以是,L MAX=4时,α=3。可选的,L MAX=2时,α=7。
或者,参数α和/或参数β可根据控制资源集合包括的最大聚合等级或第二搜索空间包括的控制信道单元个数确定。例如,
Figure PCTCN2018104790-appb-000059
或者
Figure PCTCN2018104790-appb-000060
或者
Figure PCTCN2018104790-appb-000061
或者
Figure PCTCN2018104790-appb-000062
其中γ为一预定义的常数,例如,γ=2,或γ=2 n,n为整数。这样,无需格外的系统信息就获得参数α和/或参数β的取值,节省的额外的信令开销。
本步骤中动作可以由上述接入网设备102的处理器201来实现。
步骤1640,终端设备确定搜索空间。
需要说明的是,终端设备确定搜索空间的方式跟接入网设备确定搜索空间的方式是一样的,此处不再赘述。
此外,步骤1640和步骤1630并没有先后关系,可以同时执行,可以步骤1604在前等,本发明实施例对此并不限定。
本步骤中的动作可以由上述终端设备104的调制解调器处理器304来实现。
步骤1650,接入网设备在确定的搜索空间中的第一候选控制信道对应的控制信道单元上发送控制信息,其中,所述第一候选控制信道对应的控制信道单元的个数等于所述第一聚合等级。
当然本步骤中,接入网设备可以在搜索空间中的多个候选控制信道上发送控制信息,本发明实施例对此并不限定。
本步骤中发送的动作可以由上述接入网设备102的收发器202来实现,当然,也可以是上述接入网设备102的处理器201来控制收发器202实现。
步骤1660,终端设备在确定的搜索空间中检测至少一个候选控制信道以获取控制信息。
需要说明的是,终端设备是在搜索空间中检测候选控制信道是通过盲检测的方式实现,具体如何检测可以参照现有技术。
此外,步骤1650和步骤1660中,确定的搜索空间可以是上述步骤1640和步骤1630中确定的搜索空间。例如,当步骤1640和1630中确定的搜索空间是第一搜索空间的时候,步骤1650和步骤1660中的搜索空间即该第一搜索空间。当步骤1640和1630中确定的搜索空间是第二搜索空间的时候,步骤1650和步骤1660中的搜索空间即该第二搜索空间。当步骤1640和1630中确定的搜索空间是第一搜索空间和第二搜索空间的时候,步骤1650和步骤1660中的搜索空间即该第一搜索空间和第二搜索空间。
本步骤中动作可以由上述终端设备104的收发器301来实现,当然,也可以是上述终端设备104的调制解调器处理器304和收发器301一起实现。
通过上述方法确定的搜索空间中,低聚合等级对应的搜索空间能够嵌套在最大聚合等级对应的搜索空间中,即低聚合等级对应的搜索空间包括的CCE为最大聚合等级对应的搜索空间包括的CCE的子集,从而降低信道估计的复杂度。同时,低聚合等级对应的搜索空间的候选控制信道可能是离散且非均匀的分布在最大聚合等级对应的搜索空间包括的CCE内,这种离散且非均匀的分布进一步降低了不同终端设备的搜索空间包括相同CCE的个数,从而降低了阻塞概率。
本发明示例还提供一种装置(例如,集成电路、无线设备、电路模块等)用于实现上述方法。实现本文描述的功率跟踪器和/或供电发生器的装置可以是自立设备或者可以是较大设备的一部分。设备可以是(i)自立的IC;(ii)具有一个或多个1C的集合,其可包括用于存储数据和/或指令的存储器IC;(iii)RFIC,诸如RF接收机或RF发射机/接收机;(iv)ASIC,诸如移动站调制解调器;(v)可嵌入在其他设备内的模块;(vi)接收机、蜂窝电话、无线设备、手持机、或者移动单元;(vii)其他等等。
本发明实施例提供的方法和装置,可以应用于终端设备或接入网设备(可以统称为无线设备)。该终端设备或接入网设备或无线设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本发明实施例中,本发明实施例并不限定方法的执行主体的具体结构,只要能够通过运行记录有本发明实施例的方法的代码的程序,以根据本发明实施例的传输信号的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算 机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk (SSD))等。
应理解,在本发明实施例的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)执行本发明实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (24)

  1. 一种确定搜索空间的方法,其特征在于,包括:
    确定终端设备的控制资源集合包括的控制信道单元CCE的个数N CCE,其中,所述N CCE为正整数,所述控制资源集合对应至少两个聚合等级,所述至少两个聚合等级包括最大聚合等级和第一聚合等级,所述第一聚合等级小于所述最大聚合等级,以及所述最大聚合等级为所述至少两个聚合等级中的最大聚合等级;以及
    基于所述CCE的个数N CCE,以及所述最大聚合等级,确定所述第一聚合等级对应的第一搜索空间;或者,
    基于所述CCE的个数N CCE,以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间。
  2. 一种确定搜索空间的方法,其特征在于,包括:
    确定终端设备的控制资源集合包括的控制信道单元CCE的个数N CCE,其中,所述N CCE为正整数,所述控制资源集合对应至少两个聚合等级,所述至少两个聚合等级包括最大聚合等级和第一聚合等级,所述第一聚合等级小于所述最大聚合等级,以及所述最大聚合等级为所述至少两个聚合等级中的最大聚合等级;
    基于参数α确定第二搜索空间,其中,所述第二搜索空间是所述最大聚合等级对应的搜索空间,所述α满足所述α与
    Figure PCTCN2018104790-appb-100001
    最大公约数为1,L MAX为所述最大聚合等级;以及
    基于所述CCE的个数N CCE,以及所述最大聚合等级,确定所述第一聚合等级对应的第一搜索空间;或者,
    基于所述CCE的个数N CCE,以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间。
  3. 一种无线装置,包括处理器和与所述处理器耦合的存储器,其中,
    所述处理器用于,确定终端设备的控制资源集合包括的控制信道单元CCE的个数N CCE,其中,所述N CCE为正整数,所述控制资源集合对应至少两个聚合等级,所述至少两个聚合等级包括最大聚合等级和第一聚合等级,所述第一聚合等级小于所述最大聚合等级,以及所述最大聚合等级为所述至少两个聚合等级中的最大聚合等级;以及
    所述处理器还用于,基于所述CCE的个数N CCE,以及所述最大聚合等级,确定所述第一聚合等级对应的第一搜索空间;或者,
    所述处理器还用于,基于所述CCE的个数N CCE,以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间。
  4. 一种无线装置,包括处理器和与所述处理器耦合的存储器,其中,
    所述处理器用于,确定终端设备的控制资源集合包括的控制信道单元CCE的个数N CCE,其中,所述N CCE为正整数,所述控制资源集合对应至少两个聚合等级,所述至少两个聚合等级包括最大聚合等级和第一聚合等级,所述第一聚合等级小于所述最大聚合等级,以及所述最大聚合等级为所述至少两个聚合等级中的最大聚合等级;
    所述处理器还用于,基于参数α确定第二搜索空间,其中,所述第二搜索空间是所述最大聚合等级对应的搜索空间,所述α满足所述α与
    Figure PCTCN2018104790-appb-100002
    最大公约数为1,L MAX为 所述最大聚合等级;以及
    所述处理器还用于,基于所述CCE的个数N CCE,以及所述最大聚合等级,确定所述第一聚合等级对应的第一搜索空间;或者,
    所述处理器还用于,基于所述CCE的个数N CCE,以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一聚合等级对应的第一搜索空间。
  5. 如权利要求2所述的方法或权利要求4所述的装置,其特征在于,所述α为大于1的正整数。
  6. 如权利要求2或5所述的方法或权利要求4或5所述的无线装置,其特征在于,所述第二搜索空间包括 个候选控制信道,
    Figure PCTCN2018104790-appb-100004
    为正整数,所述
    Figure PCTCN2018104790-appb-100005
    个候选控制信道包括的CCE的编号满足式(1):
    Figure PCTCN2018104790-appb-100006
    其中,i=0,…,L MAX-1,并且
    Figure PCTCN2018104790-appb-100007
    为所述至少两个候选控制信道的个数,Y为与所述终端设备的标识相关的参数或者为预先设定的值。
  7. 如权利要求1至6中任一项所述的方法或无线装置,其特征在于,所述确定所述控制资源集合中第一聚合等级对应的第一搜索空间,包括:
    基于所述配置信息、参数β以及所述最大聚合等级,或者,基于所述配置信息、参数β以及所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述第一搜索空间,其中,所述β满足所述β与
    Figure PCTCN2018104790-appb-100008
    最大公约数为1且β为大于1的正整数,其中,L为所述第一聚合等级,L MAX为所述最大聚合等级,
    Figure PCTCN2018104790-appb-100009
    为所述最大聚合等级L MAX对应的搜索空间中包括的CCE的个数。
  8. 如权利要求7所述的方法或无线装置,其特征在于,所述第一搜索空间包括M (L)个候选控制信道,其中,
    在基于所述配置信息和所述最大聚合等级确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)个候选控制信道包括的CCE的编号满足式(2):
    Figure PCTCN2018104790-appb-100010
    或者
    在基于所述配置信息和所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)个候选控制信道包括的CCE的编号满足式(3):
    Figure PCTCN2018104790-appb-100011
    其中,N CCE为所述控制资源集合包括的控制信道单元CCE的个数,K为与所述终端设备的标识相关的参数或者为预先设定的值,
    Figure PCTCN2018104790-appb-100012
    为所述最大聚合等级L MAX对应的搜索空间包括的候选控制信道的个数,i=0,…,L-1,m=0,…,M (L)-1,M (L)为所述第一搜索空间包括的候选控制信道的个数,以及l或l m′为整数。
  9. 如权利要求7或8所述的方法或无线装置,其特征在于,
    在基于所述配置信息和所述最大聚合等级确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)满足如下关系:
    Figure PCTCN2018104790-appb-100013
    或者
    在基于所述配置信息和所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)满足如下关系:
    Figure PCTCN2018104790-appb-100014
  10. 如权利要求1至6中任一项所述的方法或无线装置,其特征在于,所述第一搜索空间包括M (L)个候选控制信道,其中,
    在基于所述配置信息和所述最大聚合等级对应的搜索空间中包括的CCE的个数确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)个候选控制信道包括的CCE的编号满足式(4):
    Figure PCTCN2018104790-appb-100015
    在基于所述配置信息和所述最大聚合等级对应的搜索空间中包括的CCE的个数,确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)个候选控制信道包括的CCE的编号满足式(5):
    Figure PCTCN2018104790-appb-100016
    其中,L MAX为所述最大聚合等级,N CCE为所述控制资源集合包括的控制信道单元CCE的个数,L为所述第一聚合等级,L为小于所述L MAX的正整数,K为与所述终端设备的标识相关的参数或者为预先设定的值,
    Figure PCTCN2018104790-appb-100017
    为所述最大聚合等级L MAX对应的搜索空间包括的候选控制信道的个数,
    Figure PCTCN2018104790-appb-100018
    为所述最大聚合等级L MAX对应的搜索空间中包括的CCE的个数,i=0,…,L-1,m=0,…,M (L)-1,M (L)为所述第一搜索空间包括的候选控制信道的个数,以及l或l m′为整数。
  11. 如权利要求1至6中任一项所述的方法或无线装置,其特征在于,所述第一搜索空间包括M (L)个候选控制信道,其中,
    在基于所述配置信息和所述最大聚合等级确定所述控制资源集合中第一聚合等级对应的第一搜索空间的情况下,所述M (L)个候选控制信道包括的CCE的编号满足式(6):
    Figure PCTCN2018104790-appb-100019
    其中,L MAX为所述最大聚合等级,L为所述第一聚合等级,
    Figure PCTCN2018104790-appb-100020
    所述K 1为与所述终端设备的标识相关的参数或者为预先设定的值,
    Figure PCTCN2018104790-appb-100021
    为所述最大聚合等级L MAX对应的搜索空间包括的候选控制信道的个数,i=0,…,L-1,m=0,…,M m′ (L)-1,M m′ (L)为所述第m′+1个候选控制信道内包括聚合级别为L的候选控制信道的个数,以及l m′为整数。
  12. 如权利要求11所述的方法或无线装置,其特征在于,至少两个取值不同的m′对应的至少两个K 1不同。
  13. 如权利要求8至10中任一项所述的方法或无线装置,其特征在于,
    所述l为所述最大聚合等级L MAX对应的搜索空间中的起始候选控制信道的起始CCE的编号。
  14. 如权利要求8至12中任一项所述的方法或无线装置,其特征在于,
    所述l m′为所述最大聚合等级L MAX对应的搜索空间中第m′+1个候选控制信道的起始CCE的编号。
  15. 如权利要求1或5至14中任一项所述的方法或无线装置,其特征在于,还包括:
    在所述第一搜索空间中的一个或多个候选控制信道对应的控制信道单元上发送控制信息。
  16. 如权利要求2或5至14中任一项所述的方法,其特征在于,还包括:
    在所述第一搜索空间中的一个或多个候选控制信道对应的控制信道单元上发送控制信息;和/或
    在所述第二搜索空间中的一个或多个候选控制信道对应的控制信道单元上发送控制信息。
  17. 如权利要求1或5至14中任一项所述的方法,其特征在于,还包括:
    在所述第一搜索空间中检测至少一个候选控制信道以获取控制信息。
  18. 如权利要求2或5至14中任一项所述的方法,其特征在于,还包括:
    在所述第一搜索空间中检测至少一个候选控制信道以获取控制信息;和/或
    在所述第二搜索空间中检测至少一个候选控制信道以获取控制信息。
  19. 如权利要求4至14中任一项所述的无线装置,其特征在于,还包括:收发器,其中,
    所述收发器用于,在所述第一搜索空间中检测至少一个候选控制信道以获取控制信息;和/或
    所述收发器用于,在所述第二搜索空间中检测至少一个候选控制信道以获取控制信息。
  20. 如权利要求3或5至14中任一项所述的无线装置,其特征在于,还包括:收发器,其中,
    所述收发器用于,在所述第一搜索空间中的第一候选控制信道对应的控制信道单元上发送控制信息。
  21. 如权利要求4至14中任一项所述的无线装置,其特征在于,还包括:收发器,其中,
    所述收发器用于,在所述第一搜索空间中的第一候选控制信道对应的控制信道单元上发送控制信息;和/或
    所述收发器用于,在所述第一搜索空间中的第一候选控制信道对应的控制信道单元上发送控制信息。
  22. 如权利要求4至14中任一项所述的无线装置,其特征在于,还包括:收发器,
    所述收发器用于,在所述第一搜索空间中检测至少一个候选控制信道以获取控制信息。
  23. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1或2或5至18中任一项所述的方法。
  24. 一种包含指令的计算存储介质,当其在计算机上运行时,使得计算机执行所述权利要求1或2或5至18中任一项所述的方法。
PCT/CN2018/104790 2017-09-10 2018-09-10 搜索空间确定方法和装置 WO2019047944A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18853842.5A EP3675406B1 (en) 2017-09-10 2018-09-10 Search space determination method and device
US16/813,501 US11191070B2 (en) 2017-09-10 2020-03-09 Method and apparatus for determining search space

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710811890.8 2017-09-10
CN201710811890.8A CN109495221B (zh) 2017-09-10 2017-09-10 搜索空间确定方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/813,501 Continuation US11191070B2 (en) 2017-09-10 2020-03-09 Method and apparatus for determining search space

Publications (1)

Publication Number Publication Date
WO2019047944A1 true WO2019047944A1 (zh) 2019-03-14

Family

ID=65633506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104790 WO2019047944A1 (zh) 2017-09-10 2018-09-10 搜索空间确定方法和装置

Country Status (4)

Country Link
US (1) US11191070B2 (zh)
EP (1) EP3675406B1 (zh)
CN (1) CN109495221B (zh)
WO (1) WO2019047944A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812195A (zh) * 2020-04-13 2021-12-17 北京小米移动软件有限公司 物理下行控制信道的配置方法、装置、设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054691A1 (en) * 2017-09-15 2019-03-21 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING CONTROL INFORMATION IN A WIRELESS COMMUNICATION SYSTEM
WO2019164366A1 (ko) * 2018-02-23 2019-08-29 엘지전자 주식회사 무선 통신 시스템에서 신호를 수신하는 방법 및 장치
US11265128B2 (en) * 2018-04-30 2022-03-01 Qualcomm Incorporated Search space set occasion level mapping for PDCCH overbooking
CN113677022A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种通信方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101897227A (zh) * 2007-12-20 2010-11-24 艾利森电话股份有限公司 电信系统中的方法和配置
CN105830384A (zh) * 2013-12-20 2016-08-03 高通股份有限公司 Lte中的信道依赖的覆盖增强技术
CN106233794A (zh) * 2014-01-29 2016-12-14 交互数字专利控股公司 用于覆盖增强无线传输的接入和链路自适应的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771462A (zh) * 2008-12-31 2010-07-07 华为技术有限公司 一种多载波系统中下行控制信道资源分配方法及设备
EP2437422A1 (en) * 2010-10-01 2012-04-04 Panasonic Corporation Search space for uplink and downlink grant in an OFDM-based mobile communication system
CN102255688B (zh) * 2011-07-06 2013-04-10 合肥东芯通信股份有限公司 Ltepdcch盲检控制方法和装置
CN102355340B (zh) * 2011-08-12 2017-02-08 中兴通讯股份有限公司 下行控制信息发送、接收方法及装置
CN103326841B (zh) * 2012-03-19 2019-08-09 北京三星通信技术研究有限公司 一种配置下行控制信道的搜索空间的方法及设备
CN107979456B (zh) * 2012-05-11 2021-01-22 中兴通讯股份有限公司 下行控制信息发送方法、检测方法、基站及用户设备
CN103716144B (zh) * 2012-09-28 2017-04-05 上海贝尔股份有限公司 一种进行ePDCCH相关配置和获取该配置的方法、装置和系统
CN106559173A (zh) * 2015-09-29 2017-04-05 中国电信股份有限公司 用于实现ePDCCH快速盲检测的方法、装置和系统
JP2019047466A (ja) * 2017-09-07 2019-03-22 シャープ株式会社 端末装置、基地局装置、および、通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101897227A (zh) * 2007-12-20 2010-11-24 艾利森电话股份有限公司 电信系统中的方法和配置
CN105830384A (zh) * 2013-12-20 2016-08-03 高通股份有限公司 Lte中的信道依赖的覆盖增强技术
CN106233794A (zh) * 2014-01-29 2016-12-14 交互数字专利控股公司 用于覆盖增强无线传输的接入和链路自适应的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Search Space Design", 3GPP TSG RAN WG1 NR AD HOC MEETING RI-1709952, 30 June 2017 (2017-06-30), XP051304692 *
See also references of EP3675406A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113812195A (zh) * 2020-04-13 2021-12-17 北京小米移动软件有限公司 物理下行控制信道的配置方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN109495221B (zh) 2021-11-19
EP3675406A4 (en) 2020-11-04
EP3675406B1 (en) 2021-11-10
US20200213983A1 (en) 2020-07-02
EP3675406A1 (en) 2020-07-01
US11191070B2 (en) 2021-11-30
CN109495221A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
WO2019091135A1 (zh) 一种通信方法、装置以及系统
US11083003B2 (en) PDCCH design for narrowband deployment
US11356219B2 (en) Resource allocation indication information communication method, apparatus and system
US11855919B2 (en) Configuration of resource block sets in a wireless communication system
WO2019047944A1 (zh) 搜索空间确定方法和装置
WO2018171667A1 (zh) 一种信道传输方法及网络设备
WO2018082636A1 (zh) 控制信息的检测方法与发送方法及设备
CN109661846B (zh) 通信方法、终端设备和网络设备
US11432273B2 (en) Control information sending method, control information receiving method, access network device, and terminal device
US9544892B2 (en) System and method for searching for a control channel
WO2019109632A1 (zh) 一种通信方法和装置
JP7117249B2 (ja) ユーザ端末及び無線通信方法
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
WO2019091479A1 (zh) 确定搜索空间的方法及无线装置
WO2020199989A1 (zh) 一种序列确定方法及装置
CN109474397B (zh) 通信方法和通信设备
WO2019100739A1 (zh) 一种序列确定方法和装置
WO2018137234A1 (zh) 下行控制信息的传输方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853842

Country of ref document: EP

Effective date: 20200323