WO2020147694A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020147694A1
WO2020147694A1 PCT/CN2020/071843 CN2020071843W WO2020147694A1 WO 2020147694 A1 WO2020147694 A1 WO 2020147694A1 CN 2020071843 W CN2020071843 W CN 2020071843W WO 2020147694 A1 WO2020147694 A1 WO 2020147694A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch
signal
time domain
time
continuous
Prior art date
Application number
PCT/CN2020/071843
Other languages
English (en)
French (fr)
Inventor
谢信乾
郭志恒
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020147694A1 publication Critical patent/WO2020147694A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase

Definitions

  • This application relates to the field of communication technology, and in particular, to a communication method and device.
  • the New Radio (NR) technology of the fifth generation (5G) communication defines the synchronization signal/broadcast channel block (SS/PBCH block, SSB), one SSB includes the primary synchronization signal (Primary Synchronization Signal, PSS) , The secondary synchronization signal (Secondary Synchronization Signal, SSS) and the physical broadcast channel (Physical Broadcast CHannel, PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast CHannel
  • PBCH Physical Broadcast CHannel
  • the main problem that currently exists is that it is difficult to guarantee the transmission performance of the PBCH for terminal equipment with a particularly low signal-to-noise ratio at the cell edge, thus making the terminal equipment at the cell edge unable to synchronize with network equipment.
  • This application provides a communication method and device, which are used to achieve synchronization between terminal equipment and network equipment at the edge of a cell by enhancing the PBCH.
  • the present application provides a communication method, including: a terminal device receives a first signal from a network device in a first time unit, the first signal carries a first PBCH, and the first PBCH includes different time domain resources The first part and the second part, the first part of the first PBCH and the second part of the first PBCH carry the same broadcast information; the terminal device obtains the first PBCH from the first signal.
  • the "first part and the second part with different time domain resources" mentioned here are to explain that the time domain resources of the first part and the second part are different.
  • the first signal sent by the network device to the terminal device carries the first PBCH, and the first part and the second part carried by the first PBCH carry the same broadcast information, thus increasing the coverage of the PBCH and making the
  • the terminal equipment at the cell edge synchronizes with the network equipment, the number of times that it can obtain the PBCH carrying the same broadcast information increases, which achieves the effect of coverage enhancement, thereby increasing the probability of successful synchronization between the terminal equipment at the cell edge and the network equipment.
  • the present application provides a communication method, including: a network device generates a first signal, the first signal carries a first PBCH, the first PBCH includes a first part and a second part with different time domain resources, the first PBCH The first part of the PBCH and the second part of the first PBCH carry the same broadcast information.
  • the network device sends the first signal to the terminal device in the first time unit.
  • the first signal sent by the network device to the terminal device carries the first PBCH, and the first part and the second part carried by the first PBCH carry the same broadcast information, so the coverage of the PBCH is improved, so that the terminal equipment at the cell edge synchronizes with the network equipment, the number of times that it can obtain the PBCH carrying the same broadcast information increases, which achieves the effect of coverage enhancement, thereby increasing the probability of successful synchronization between the terminal equipment at the cell edge and the network equipment.
  • the first part of the first PBCH occupies consecutive M symbols in the time domain
  • the second part of the first PBCH occupies the time domain N consecutive symbols, where M and N are integers greater than 1.
  • the first PBCH satisfies one of the following situations: the first part of the first PBCH and the second part of the first PBCH
  • the occupied resources are continuous in the time domain, and the resources occupied by the first signal are continuous in the time domain; or, the resources occupied by the first part of the first PBCH and the second part of the first PBCH are in time Discontinuous in the domain, and the resources occupied by the first signal are continuous in the time domain; or, the resources occupied by the first part of the first PBCH and the second part of the first PBCH are not continuous in the time domain , And the resources occupied by the first signal are not continuous in the time domain.
  • the subcarrier spacing of the first part of the first PBCH and the second part of the first PBCH are the same, and the first part of the first PBCH One part and the second part of the first PBCH occupy the same number of time-frequency resource units, or the first part of the first PBCH occupies more time-frequency resource units than the second part of the first PBCH. section.
  • the subcarrier spacing of the first part of the first PBCH is smaller than the subcarrier spacing of the second part of the first PBCH, and the first The number of time-frequency resource units occupied by the first part of the PBCH is less than the number of time-frequency resource units occupied by the second part of the first PBCH; or, the subcarrier spacing of the first part of the first PBCH is greater than the first part of the PBCH.
  • the number of time-frequency resource units occupied by the first part of the first PBCH is more than the number of time-frequency resource units occupied by the second part of the first PBCH.
  • the terminal device further receives a second signal from the network device, and the second signal carries a second PBCH; wherein, the first The two PBCHs include a first part and a second part with different time domain resources, and the first part of the second PBCH and the second part of the second PBCH carry the same broadcast information.
  • the first part of the first PBCH occupies consecutive M symbols in the time domain, and the second part of the first PBCH occupies the time domain N consecutive symbols, where M and N are integers greater than 1;
  • the first PBCH satisfies one of the following situations: resources occupied by the first part of the first PBCH and the second part of the first PBCH Continuous in the time domain, and the resources occupied by the first signal are continuous in the time domain; or, the resources occupied by the first part of the first PBCH and the second part of the first PBCH are not in the time domain Continuous, and the resources occupied by the first signal are continuous in the time domain; or, the resources occupied by the first part of the first PBCH and the second part of the first PBCH are not continuous in the time domain, and all The resources occupied by the first signal are not continuous in the time domain.
  • the broadcast information carried by the first PBCH and the second PBCH are the same; and the second signal is in the first time unit Or the second signal is received in a second time unit, and the second time unit and the first time unit are consecutive time units.
  • the first PBCH includes indication information, and the indication information is used to indicate the number of repetitions of the PDCCH; wherein, the indication information passes through One carries: the reserved bits in the first PBCH; or, the reserved bits in the main information block carried by the first PBCH; or, the reserved bits of the first PBCH and the first PBCH bearer The reserved bits in the main information block.
  • the present application provides a communication device that has the function of realizing terminal equipment or network equipment in the foregoing method embodiments.
  • This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the communication device includes: a processor, a memory, a bus, and a communication interface; the memory stores computer execution instructions, and the processor and the memory are connected through the bus.
  • the The processor executes the computer-executable instructions stored in the memory, so that the communication device executes the communication method in any implementation manner of the first aspect or the first aspect, or executes any of the second aspect or the second aspect.
  • the communication device may be a terminal device or a network device.
  • the communication device may also be a chip, such as a terminal chip, which includes a processing unit, and optionally, a storage unit, and the chip can be used to perform the first aspect or the first aspect described above.
  • a chip such as a terminal chip, which includes a processing unit, and optionally, a storage unit, and the chip can be used to perform the first aspect or the first aspect described above.
  • the communication method in any implementation manner of the aspect, or the communication method in the foregoing second aspect or any implementation manner of the second aspect.
  • the present application provides a computer storage medium that stores computer software instructions for the above-mentioned terminal, which contains a program designed to execute any of the above-mentioned aspects.
  • the present application provides a computer program product, the computer program product includes computer software instructions, and the computer software instructions can be loaded by a processor to implement the processes in the communication method of any of the foregoing aspects.
  • the present application provides a communication system, which includes a terminal device for executing the communication method in the first aspect or any implementation of the first aspect, and for executing the second aspect or The network device of the communication method in any implementation manner of the second aspect.
  • Figure 1 is a schematic diagram of a possible network architecture applicable to this application
  • FIG. 2 is a schematic diagram of a communication method provided by this application.
  • Fig. 3 is a schematic diagram of a structure of an SSB in the prior art
  • Figure 3a is a schematic structural diagram of an SSB provided by this application.
  • Figure 3b is a schematic structural diagram of another SSB provided by this application.
  • Figure 3c is a schematic structural diagram of another SSB provided by this application.
  • Figure 3d is a schematic structural diagram of another SSB provided by this application.
  • Figure 4a is a schematic structural diagram of an SSB provided by this application.
  • Figure 4b is a schematic structural diagram of another SSB provided by this application.
  • Figure 4c is a schematic structural diagram of another SSB provided by this application.
  • Figure 4d is a schematic structural diagram of another SSB provided by this application.
  • FIG. 5 is a schematic structural diagram of another SSB provided by this application.
  • FIG. 6 is a schematic structural diagram of another SSB provided by this application.
  • Fig. 7 is a schematic diagram of an SSB time-domain pattern in the prior art
  • FIG. 8a is a schematic diagram of an SSB time-domain pattern provided by this application.
  • Figure 8b is a schematic diagram of yet another SSB time-domain pattern provided by this application.
  • FIG. 9 is a schematic diagram of another SSB time-domain pattern in the prior art.
  • FIG. 10 is a schematic diagram of another SSB time-domain pattern provided by this application.
  • FIG. 11 is a schematic diagram of another SSB time-domain pattern in the prior art.
  • FIG. 12 is a schematic diagram of another SSB time-domain pattern provided by this application.
  • FIG. 13 is a schematic diagram of another SSB time-domain pattern provided by this application.
  • Figure 14 is a schematic diagram of a device provided by this application.
  • FIG. 15 is a schematic diagram of another device provided by this application.
  • a schematic diagram of a possible network architecture to which this application is applicable includes a network device and at least one terminal device.
  • the network equipment and terminal equipment can work on the 5G NR communication system, and the terminal equipment can communicate with the network equipment through the 5G NR communication system.
  • a terminal device is a device with a wireless transceiver function.
  • the terminal device can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as aircraft, Balloons and satellites are classy).
  • the terminal may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, and an industrial control (industrial control) Wireless terminal in self-driving, wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety,
  • the network device is used to receive uplink signals from terminal devices or send downlink signals to terminal devices.
  • the network equipment can be, for example, a network equipment in Long Term Evolution (LTE) and/or NR, such as a base station (NodeB), an evolved base station (eNodeB), a base station in a 5G mobile communication system, and next-generation mobile communications A base station (next generation Node B, gNB), a base station in a future mobile communication system or an access node in a wireless fidelity (Wireless Fidelity, Wi-Fi) system, etc.
  • LTE Long Term Evolution
  • NR such as a base station (NodeB), an evolved base station (eNodeB), a base station in a 5G mobile communication system, and next-generation mobile communications
  • a base station next generation Node B, gNB
  • Sub-carrier Orthogonal Frequency Division Multiplexing (OFDM) system divides frequency domain resources into several sub-resources, and each sub-resource in frequency domain can be called a sub-carrier. Subcarriers can also be understood as the smallest granularity of frequency domain resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Subcarrier interval In the OFDM system, the interval value between the center positions or peak positions of two adjacent subcarriers in the frequency domain.
  • the sub-carrier spacing in the LTE system is 15 kilohertz (kHz)
  • the sub-carrier spacing in the 5GNR system may be 15 kHz, or 30 kHz, or 60 kHz, or 120 kHz.
  • Resource block N consecutive subcarriers in the frequency domain can be called a resource block.
  • one resource block in the LTE system includes 12 subcarriers
  • one resource block in the NR system in 5G also includes 12 subcarriers.
  • the number of subcarriers included in a resource block may also be other values, which is not limited in this application.
  • Time slot A time slot in the 5G NR system includes 14 OFDM symbols.
  • the length of the time slot corresponding to the 15kHz subcarrier interval is 1ms, and the length of the time slot corresponding to the 30kHz subcarrier interval is 0.5ms.
  • the number of OFDM symbols included in a slot can also be other values, which is not limited in this application.
  • Subframe The time length of a subframe in the 5G NR system is 1ms. Of course, with the evolution of communication technology, the time length of a time slot may also be other values, which is not limited in this application.
  • OFDM symbol the smallest time unit in the time domain in the OFDM system.
  • Time-frequency resource unit The smallest resource granularity in the OFDM system, with one OFDM symbol in the time domain and one subcarrier in the frequency domain.
  • the resource A and the resource B are continuous in the time domain, which generally means that there is no interval between the resource A and the resource B in the time domain.
  • the resource A is continuous in the time domain.
  • the symbols contained in the resource A in the time domain are continuous, and there is no interval. The meanings of the two are different, please refer to the description of the embodiments for details.
  • this application provides a communication method based on the network architecture shown in FIG. 1. As shown in Figure 2, the method includes the following steps:
  • Step 201 The network device generates a first signal.
  • the first signal carries a first PBCH.
  • the first PBCH includes a first part and a second part with different time domain resources.
  • the first part of the first PBCH and the second part of the first PBCH carry the same broadcast information.
  • the time domain resources occupied by the first part of the first PBCH and the second part of the first PBCH respectively do not overlap, or the time domain resources occupied by the first part of the first PBCH and the second part of the first PBCH respectively exist Partially overlapped.
  • the first signal also carries PSS and SSS.
  • the first signal may also be referred to as SSB.
  • the first time unit here may be a time slot (slot), or a subframe, etc.
  • Step 202 The network device sends a first signal to the terminal device within the first time unit.
  • the terminal device can receive the first signal.
  • Step 203 The terminal device obtains the first PBCH from the first signal.
  • the terminal device may also perform synchronization with the network device according to the first signal.
  • the first signal sent by the network device to the terminal device carries the first PBCH, and the first part and the second part carried by the first PBCH carry the same broadcast information, or carry part of the same broadcast information, Therefore, the coverage of the PBCH is improved, so that when the terminal equipment at the cell edge synchronizes with the network equipment, the number of times that it can obtain the PBCH carrying the same broadcast information is increased, which achieves the effect of coverage enhancement, thereby increasing the terminal equipment at the cell edge Probability of successful synchronization with network equipment.
  • FIG. 3 it is a schematic diagram of the structure of an SSB in the prior art.
  • one SSB occupies 4 consecutive OFDM symbols (hereinafter referred to as symbols).
  • the frequency domain or called the frequency domain
  • one SSB occupies consecutive 240 subcarriers, and the 240 subcarriers are numbered from 0 to 239.
  • a frequency domain resource block (hereinafter referred to as a resource block) includes 12 consecutive subcarriers. The 12 subcarriers are numbered from 0 to 11, so 240 subcarriers occupied by one SSB It can also be called 20 resource blocks, and the 20 resource blocks are numbered from 0 to 19.
  • the first symbol from the left carries the PSS
  • the subcarriers numbered 0, 1,...,55,183,184,...,239 are set to 0, and the subcarriers numbered 56,57,...,182 are subcarriers occupied by the PSS Carrier
  • the second and fourth symbols from the left carry PBCH, and every 4 consecutive subcarriers has a demodulation reference signal (Demodulation Reference Signal, DMRS) corresponding to the PBCH
  • the third symbol from the left carries SSS and PBCH
  • the subcarriers numbered 56,57,...182 carry SSS
  • the subcarriers numbered 0,1,...47,192,193,...239 carry PBCH
  • the remaining subcarriers are set to 0.
  • the PBCH in the SSB occupies a total of 48 resource blocks. Due to the limitation of the number of resource blocks occupied by the PBCH, it will be difficult to guarantee for terminal equipment with a particularly low SNR at the cell edge.
  • the transmission performance of the PBCH that is, terminal equipment with a particularly low signal-to-noise ratio at the edge of the cell will be difficult to synchronize with the network equipment through the PBCH, thereby affecting the performance of these terminal equipment.
  • the present application can enhance the coverage of the PBCH on the basis of the SSB in FIG. 3.
  • the first part of the first PBCH in this application occupies consecutive M symbols in the time domain
  • the second part of the first PBCH occupies N consecutive symbols in the time domain, where M and N are greater than An integer of 1.
  • the SSB is an SSB obtained by enhancing the PBCH of the SSB shown in FIG. 3.
  • the SSB carries a first PBCH.
  • the first PBCH includes a first part (referred to as PBCH1 in this application) and a second part (referred to as PBCH2 in this application) with different time domain resources.
  • PBCH1 and PBCH2 carry the same broadcast information. It should be noted that the SSB carries one PBCH, not two PBCHs.
  • the first part of the first PBCH is referred to as PBCH1
  • the second part of the first PBCH is referred to as PBCH2.
  • This PBCH2 can also be referred to as an enhanced part of the PBCH.
  • PBCH1 occupies 3 consecutive symbols in the time domain
  • PBCH2 occupies 2 consecutive symbols in the time domain.
  • the resources occupied by PBCH1 and PBCH2 are continuous in the time domain (that is, the continuous symbols carrying PBCH1 and the continuous symbols carrying PBCH2 are also continuous), and the resources occupied by the first signal Continuous in time domain.
  • the second to fourth symbols carry PBCH1
  • the fifth to sixth symbols carry PBCH2
  • the first signal occupies the first to sixth symbols, so they are continuous.
  • FIG. 3b it is a schematic structural diagram of another SSB provided in this application.
  • the SSB is an SSB obtained by enhancing the PBCH of the SSB shown in FIG. 3.
  • the main difference between this SSB and the SSB shown in FIG. 3a is that the resources occupied by PBCH1 and PBCH2 are not continuous in the time domain, and the resources occupied by the first signal are continuous in the time domain.
  • the fourth to sixth symbols carry PBCH1, the first to second symbols carry PBCH2, and the first signal occupies the first to sixth symbols, so they are continuous.
  • FIG. 3c it is a schematic structural diagram of another SSB provided in this application.
  • the SSB is an SSB obtained by enhancing the PBCH of the SSB shown in FIG. 3.
  • the main difference between this SSB and the SSB shown in FIG. 3a is that the resources occupied by PBCH1 and PBCH2 are not continuous in the time domain, and the resources occupied by the first signal are not continuous in the time domain.
  • the second to fourth symbols carry PBCH1
  • the K+5th to K+6th symbols carry PBCH2
  • PBCH1 and PBCH2 are separated by K symbols
  • K is a positive integer.
  • the first signal occupies the 1st to 4th symbols and occupies the K+5th to K+6th symbols, and therefore is not continuous.
  • FIG. 3d it is a schematic structural diagram of another SSB provided in this application.
  • the SSB is an SSB obtained by enhancing the PBCH of the SSB shown in FIG. 3.
  • the main difference between this SSB and the SSB shown in FIG. 3a is that the resources occupied by PBCH1 and PBCH2 are not continuous in the time domain, and the resources occupied by the first signal are not continuous in the time domain.
  • the first to second symbols carry PBCH2
  • the K+3 to K+6th symbols carry PBCH1, PBCH1 and PBCH2 are separated by K symbols
  • K is a positive integer.
  • the first signal occupies the 1st to 2nd symbols and occupies the K+3 to K+6 symbols, so it is not continuous.
  • a possible implementation of the first signal is: the first signal occupies L consecutive OFDM symbols, and the first p consecutive OFDM symbols in the L OFDM symbols carry the first signal of the PSS, SSS, and PBCH of the first signal.
  • the last Lp OFDM symbols of the L OFDM symbols carry the second part of the PBCH of the first signal, the first part of the PBCH and the second part of the PBCH carry the same information, L Is an integer greater than 1, and p is a positive integer.
  • the first signal occupies L consecutive OFDM symbols, the last p consecutive OFDM symbols of the L OFDM symbols carry the first part of the PSS, SSS, and PBCH, and the L
  • the first Lp OFDM symbols in the OFDM symbols carry the second part of the PBCH, the first part of the PBCH and the second part of the PBCH carry the same information, L is an integer greater than 1, and p is a positive integer.
  • L is an integer greater than 1
  • p is a positive integer.
  • the first signal occupies L OFDM symbols, and the L OFDM symbols include p consecutive OFDM symbols in the front of time and Lp consecutive OFDM symbols in the back of the time, The p consecutive OFDM symbols are not continuous with the Lp consecutive OFDM symbols, and the p consecutive OFDM symbols carry the first part of the PSS, SSS, and PBCH of the first signal, and the Lp
  • the first signal occupies L OFDM symbols, and the k OFDM symbols include p consecutive OFDM symbols after time and Lp consecutive OFDM symbols before time, The p consecutive OFDM symbols are not continuous with the Lp consecutive OFDM symbols, and the p consecutive OFDM symbols carry the first part of the PSS, SSS, and PBCH of the first signal, and the Lp
  • the subcarrier spacing of the above-mentioned PBCH1 and PBCH2 is the same, and the number of time-frequency resource units occupied by PBCH1 and PBCH2 is the same.
  • PBCH1 and PBCH2 have the same subcarrier spacing, and PBCH1 occupies a total of 48 resource blocks in 3 symbols, that is, 576 subcarriers. Therefore, PBCH1 occupies a total of 576 time-frequency resource units (one time-frequency resource).
  • the unit occupies one symbol in the time domain and one subcarrier in the frequency domain), and PBCH2 occupies a total of 48 resource blocks in 2 symbols, that is, 576 subcarriers, so PBCH2 also occupies a total of 576 time-frequency resource units.
  • PBCH1 occupies a total of 48 resource blocks in 2 symbols, that is, 576 subcarriers, so PBCH2 also occupies a total of 576 time-frequency resource units.
  • one subcarrier in every 4 consecutive subcarriers carries the DMRS.
  • the subcarriers occupied by PBCH2 one subcarrier in every 4 consecutive subcarriers carries DMRS. Therefore, the number of DMRS corresponding to PBCH1 is the same as the number of DMRS corresponding to PBCH2.
  • the subcarrier spacing of the aforementioned PBCH1 and PBCH2 are the same, and the number of time-frequency resource units occupied by PBCH1 is greater than the number of time-frequency resource units occupied by PBCH2.
  • FIG. 3a the number of time-frequency resource units in the symbols occupied by PBCH2 can be reduced, so that the bandwidth occupied by PBCH2 and PBCH1 is the same.
  • FIG. 4a it is a schematic structural diagram of another SSB corresponding to FIG. 3a.
  • the SSB shown in Figure 3a occupies 20 resource blocks on one symbol, so the PBCH2 carried by the SSB shown in Figure 4a occupies 40 time-frequency resource units, which is less than the 48 time-frequency resource units occupied by PBCH1 .
  • the number of DMRS corresponding to PBCH2 can be reduced, that is, the number of DMRS corresponding to PBCH1 is more than the number of DMRS corresponding to PBCH2, and/or the number of DMRS corresponding to PBCH2 is reduced.
  • the number of redundant information bits that is, the number of time-frequency resource units used to carry redundant information in the time-frequency resource unit occupied by PBCH1 is greater than the time-frequency resource units used to carry redundant information in the time-frequency resource unit occupied by PBCH2
  • the number of units is such that the number of time-frequency resource units used to carry valid information (ie broadcast information) in the time-frequency resource unit occupied by PBCH1 is equal to or substantially equal to the time-frequency resource unit occupied by PBCH2 used to carry valid information (ie Broadcast information) the number of time-frequency resource units.
  • the method shown in FIG. 4a can also be used to obtain the structure of the SSB as shown in FIG. 4b to FIG. 4d respectively, which will not be repeated.
  • the subcarrier spacing of PBCH1 may also be smaller than that of PBCH2.
  • the subcarrier spacing of PBCH1 is 15kHz
  • the subcarrier spacing of PBCH2 is 30kHz, 60kHz, 120kHz, etc.
  • the subcarrier spacing of PBCH1 The subcarrier spacing is 30kHz
  • the subcarrier spacing of PBCH2 is 60kHz, 120kHz, etc.
  • the structure of the SSB as shown in FIG. 5 can be obtained.
  • the main difference between this SSB and the SSB shown in Figure 3a is that the number of symbols occupied by the PBCH2 carried by the SSB in Figure 5 (4) is greater than the number of symbols occupied by the PBCH2 carried by the SSB in Figure 3a (2), And the number of time-frequency resource units occupied by PBCH1 in FIG. 5 is less than the number of time-frequency resource units occupied by PBCH2.
  • the subcarrier spacing of PBCH2 in FIG. 5 is the same as the subcarrier spacing of the common resource.
  • the subcarrier spacing of PBCH1 may be greater than that of PBCH2.
  • the subcarrier spacing of PBCH1 is 30kHz
  • the subcarrier spacing of PBCH2 is 15kHz; for example, the subcarrier spacing of PBCH1 is 60kHz.
  • the sub-carrier spacing of PBCH2 is 15kHz, 30kHz, etc.
  • the structure of the SSB as shown in FIG. 6 can be obtained.
  • the main difference between this SSB and the SSB shown in Figure 3a is that the number of symbols occupied by the PBCH2 carried by the SSB in Figure 6 (1) is less than the number of symbols occupied by the PBCH2 carried by the SSB in Figure 3a (2), And the number of time-frequency resource units occupied by PBCH1 in FIG. 6 is more than the number of time-frequency resource units occupied by PBCH2.
  • the subcarrier spacing of PBCH2 in FIG. 6 is the same as the subcarrier spacing of the common resource.
  • the network device may also send a second signal (also referred to as SSB) to the terminal device, the second signal carries a second PBCH, and the second PBCH includes the first part and the second part with different time domain resources.
  • PBCH1 the first part of the second PBCH
  • PBCH2 the second part of the second PBCH
  • the second signal and the foregoing first signal may both be sent to the terminal device in step 201, or sent to the terminal device in different steps.
  • the second signal may also be any of the 24 newly designed SSB structures.
  • the broadcast information carried by the first PBCH and the second PBCH are the same.
  • the terminal devices both receive the first signal and the second signal in the first time unit, that is, the first signal and the second signal are located in the same time unit in the time domain.
  • the terminal device receives the first signal and the second signal in the same time slot, and the broadcast carried by the first PBCH carried by the first signal and the second PBCH carried by the second signal.
  • the information is the same.
  • the terminal device receives the first signal in the first time unit and the second signal in the second time unit, and the first time unit and the second time unit are different time units.
  • the terminal device receives the first signal and the second signal in different time slots, and the broadcast carried by the first PBCH carried by the first signal and the second PBCH carried by the second signal
  • the first time unit and the second time unit are continuous in time, that is, the first time unit and the second time unit are two adjacent time units.
  • one time unit is one time slot, and one time slot carries two SSBs as an example for description.
  • 1 slot includes 14 OFDM symbols, which are numbered 0-13.
  • FIG. 7 it is a schematic diagram of an SSB time-domain pattern in the prior art.
  • the first SSB occupies OFDM symbols numbered 2, 3, 4, and 5
  • the second SSB occupies OFDM symbols numbered 8, 9, 10, and 11.
  • the SSB time-domain pattern shown in FIG. 8a can be obtained. It can be seen that the first signal in a time slot occupies OFDM symbols numbered 2, 3, 4, 5, 6, and 7, and the second signal occupies OFDM symbols numbered 8, 9, 10, 11, 12, and 13 .
  • FIG. 9 it is a schematic diagram of another SSB time-domain pattern in the prior art.
  • the first SSB occupies the OFDM symbols numbered 4, 5, 6, and 7, and the second SSB occupies the OFDM symbols numbered 8, 9, 10, and 11.
  • the SSB time-domain pattern shown in Figure 10 It can be seen that the first signal in a time slot occupies OFDM symbols numbered 2, 3, 4, 5, 6, and 7, and the second signal occupies OFDM symbols numbered 8, 9, 10, 11, 12, and 13 .
  • FIG. 11 it is a schematic diagram of another SSB time-domain pattern in the prior art.
  • the first SSB occupies OFDM symbols numbered 2, 3, 4, and 5
  • the second SSB occupies OFDM symbols numbered 6, 7, 8, and 9.
  • the SSB time domain pattern shown in FIG. 12 can be obtained. It can be seen that the first signal in a time slot occupies OFDM symbols numbered 2, 3, 4, 5, 10, and 11, and the second signal occupies OFDM symbols numbered 6, 7, 8, 9, 12, and 13. .
  • a network device sends a PBCH carrying the same broadcast information to a terminal device in multiple time slots
  • the network device can follow the same SSB in each time slot
  • the time domain pattern (as shown in Figure 8a, Figure 8b, Figure 10, or Figure 12 or other SSB time domain patterns) sends the PBCH to the terminal device, and each SSB carries the first part and the second part of the PBCH, and the first part is the second part Carry the same broadcast information.
  • the PBCH carried between each SSB may also be the same.
  • the network device sends the PBCH to the terminal device according to different SSB time domain patterns in different time slots, each SSB carries the first part and the second part of the PBCH, and the first part and the second part carry the same broadcast information.
  • the first part and the second part bear the same broadcast information part.
  • Fig. 13 shows a schematic diagram of another SSB time-domain pattern, in which an example of the positional relationship of 4 SSBs in the time domain is given.
  • the time domain patterns of the first SSB and the second SSB are shown in Fig. 10
  • the time domain patterns of the third SSB and the fourth SSB are shown in Fig. 12.
  • the specific implementation of the time domain pattern of other types of SSBs when multiple SSBs are included will not be illustrated one by one.
  • the PBCH carried by one or more SSBs sent by the network device to the terminal device includes indication information, and the indication information is used to indicate the repetition of the Physical Downlink Control Channel (PDCCH) frequency.
  • PDCCH Physical Downlink Control Channel
  • the first PBCH carried by the first signal includes indication information, and the indication information is used to indicate the number of repetitions of the PDCCH.
  • the first part of the first PBCH includes indication information
  • the second part of the first PBCH includes indication information
  • instruction information is carried in any of the following implementation modes:
  • Implementation mode 1 The reserved bits in the first PBCH carry indication information
  • the reserved bits As an example, they are marked as b0 and b1. Then, these 2 bits can be used to define the repetition times of 4 kinds of PDCCHs.
  • Table 1 shows an example in which the reserved bits in the first PBCH carry indication information, that is, the indication information is the information indicated by b0b1.
  • the terminal device can determine that the number of repetitions of the PDCCH is 2. For another example, if the indication information received by the terminal device is 11, the terminal device can determine that the number of repetitions of the PDCCH is 8, and so on.
  • Table 1 shows an example in which the reserved bits in the primary information block carried by the first PBCH carry indication information, that is, the indication information is the information indicated by b2.
  • the terminal device can determine that the number of repetitions of the PDCCH is 1. For another example, if the indication information received by the terminal device is 1, the terminal device may determine that the number of repetitions of the PDCCH is 2.
  • Implementation mode 3 The reserved bits of the first PBCH and the reserved bits in the main information block carried by the first PBCH carry indication information
  • Table 3 shows an example in which the reserved bits of the first PBCH and the reserved bits in the main information block carried by the first PBCH carry indication information, that is, the indication information is the information indicated by b0b1b2.
  • the terminal device can determine that the number of repetitions of the PDCCH is 4. For another example, if the indication information received by the terminal device is 100, the terminal device can determine that the number of repetitions of the PDCCH is 16, and so on.
  • the number of repetitions of the above-mentioned PDCCH also has a corresponding relationship with the subcarrier spacing, and the corresponding relationship may be defined by a table, or configured or defined in advance.
  • the repetition number of the PDCCH indicated by the indication information is related to the common resource block subcarrier interval indicated in the first PBCH.
  • Table 4 shows an example in which the reserved bits in the first PBCH carry indication information, that is, the indication information is the information indicated by b0b1.
  • PDCCH subcarrier spacing 15kHz
  • PDCCH subcarrier spacing 30kHz 0 0 1 1 0 1 4 8 1 0 8 16 1 1 16 32
  • the terminal device can determine that the PDCCH repetition number is 4 . For another example, if the indication information received by the terminal device is 11, and the common resource block subcarrier interval (ie PDCCH subcarrier interval) indicated in the first PBCH is 30kHz, the terminal device can determine that the number of repetitions of the PDCCH is 32, etc. .
  • the above-mentioned implementing network elements include hardware structures and/or software modules corresponding to performing each function.
  • Those skilled in the art should be easily aware that, in conjunction with the exemplary units and algorithm steps described in the embodiments disclosed herein, the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the communication device 1400 may exist in the form of software or hardware.
  • the communication device 1400 may include a processing unit 1402 and a communication unit 1403.
  • the communication unit 1403 may include a receiving unit and a sending unit.
  • the processing unit 1402 is used to control and manage the actions of the communication device 1400.
  • the communication unit 1403 is used to support communication between the communication device 1400 and other network entities.
  • the communication device 1400 may further include a storage unit 1401 for storing program codes and data of the communication device 1400.
  • the processing unit 1402 may be a processor or a controller, for example, a general-purpose central processing unit (central processing unit, CPU), a general-purpose processor, a digital signal processing (digital signal processing, DSP), and an application specific integrated circuit (application specific integrated circuit). circuits, ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of DSP and microprocessor, and so on.
  • the communication unit 1403 may be a communication interface, a transceiver, or a transceiving circuit, etc., where the communication interface is a general term. In a specific implementation, the communication interface may include multiple interfaces.
  • the storage unit 1401 may be a memory.
  • the communication device 1400 may be a terminal device or a network device in any of the foregoing embodiments, and may also be a chip for terminal devices or a chip for network devices.
  • the processing unit 1402 may be a processor, for example, and the communication unit 1403 may be a transceiver, for example.
  • the transceiver may include a radio frequency circuit
  • the storage unit may be, for example, a memory.
  • the processing unit 1402 may be, for example, a processor, and the communication unit 1403 may be, for example, an input/output interface, a pin or a circuit, etc. .
  • the processing unit 1402 can execute computer-executable instructions stored in the storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a communication device located outside the chip. Storage units such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the communication device 1400 is a terminal device, and the communication unit 1403 is configured to receive a first signal from a network device in a first time unit, and the first signal carries a first physical broadcast channel (PBCH ); a processing unit 1402, configured to perform synchronization with the network device according to the first signal; wherein, the first PBCH includes a first part and a second part with different time domain resources, and the first part of the first PBCH One part is the same as the broadcast information carried by the second part of the first PBCH.
  • PBCH physical broadcast channel
  • the communication unit 1403 is configured to send a first signal to the terminal device in a first time unit, and the first signal carries the first physical broadcast channel (PBCH);
  • the processing unit 1402 is configured to perform synchronization with the terminal device according to the first signal; wherein, the first PBCH includes a first part and a second part with different time domain resources, and the first part of the first PBCH and The broadcast information carried by the second part of the first PBCH is the same.
  • the first part of the first PBCH occupies consecutive M symbols in the time domain
  • the second part of the first PBCH occupies N consecutive symbols in the time domain, where M, N Is an integer greater than 1.
  • the first PBCH satisfies one of the following situations: the resources occupied by the first part of the first PBCH and the second part of the first PBCH are continuous in the time domain, and The resources occupied by the first signal are continuous in the time domain; or, the resources occupied by the first part of the first PBCH and the second part of the first PBCH are not continuous in the time domain, and the first The resources occupied by the signal are continuous in the time domain; or, the resources occupied by the first part of the first PBCH and the second part of the first PBCH are not continuous in the time domain, and the resources occupied by the first signal Resources are not continuous in time domain.
  • the subcarrier spacing of the first part of the first PBCH and the second part of the first PBCH are the same, and the first part of the first PBCH and the second part of the first PBCH
  • the number of time-frequency resource units occupied by the parts is the same, or the number of time-frequency resource units occupied by the first part of the first PBCH is more than that of the second part of the first PBCH.
  • the subcarrier spacing of the first part of the first PBCH is smaller than the subcarrier spacing of the second part of the first PBCH, and the time-frequency resource unit occupied by the first part of the first PBCH The number of is less than the number of time-frequency resource units occupied by the second part of the first PBCH; or, the subcarrier spacing of the first part of the first PBCH is greater than the subcarrier spacing of the second part of the first PBCH The number of time-frequency resource units occupied by the first part of the first PBCH is greater than the number of time-frequency resource units occupied by the second part of the first PBCH.
  • the terminal device also receives a second signal from the network device, and the second signal carries a second PBCH; wherein, the second PBCH includes the first part with different time domain resources And the second part, the first part of the second PBCH and the second part of the second PBCH carry the same broadcast information.
  • the first part of the first PBCH occupies consecutive M symbols in the time domain, and the second part of the first PBCH occupies N consecutive symbols in the time domain, where M, N Is an integer greater than 1;
  • the first PBCH satisfies one of the following situations: the resources occupied by the first part of the first PBCH and the second part of the first PBCH are continuous in the time domain, and the first PBCH
  • the resources occupied by a signal are continuous in the time domain; or, the resources occupied by the first part of the first PBCH and the second part of the first PBCH are not continuous in the time domain, and the first signal is occupied
  • the resources occupied by the first part of the first PBCH and the second part of the first PBCH are not continuous in the time domain, and the resources occupied by the first signal are in time Discontinuous in the domain.
  • the broadcast information carried by the first PBCH and the second PBCH are the same; and the second signal is received within the first time unit, or the second signal To be received in a second time unit, the second time unit and the first time unit are consecutive time units.
  • the first PBCH includes indication information used to indicate the number of repetitions of the PDCCH; wherein, the indication information is carried by one of the following: Reserved bits; or, reserved bits in the main information block carried by the first PBCH; or, reserved bits in the first PBCH and reserved bits in the main information block carried by the first PBCH.
  • the communication device may be the aforementioned communication device.
  • the communication device 1500 includes a processor 1502, a communication interface 1503, and a memory 1501.
  • the communication device 1500 may further include a communication line 1504.
  • the communication interface 1503, the processor 1502, and the memory 1501 may be connected to each other through a communication line 1504;
  • the communication line 1504 may be a peripheral component interconnection standard (peripheral component interconnect, PCI for short) bus or an extended industry standard architecture (extended industry standard architecture) , Referred to as EISA) bus and so on.
  • the communication line 1504 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only a thick line is used in FIG. 15, but it does not mean that there is only one bus or one type of bus.
  • the processor 1502 may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the program of the present application.
  • Communication interface 1503 which uses any device such as a transceiver to communicate with other equipment or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Wired access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Wired access network etc.
  • the memory 1501 may be ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or may be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory).
  • read-only memory EEPROM
  • compact disc read-only memory, CD-ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • magnetic disks A storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory can exist independently and is connected to the processor through a communication line 1504. The memory can also be integrated with the processor.
  • the memory 1501 is used to store computer-executable instructions for executing the solution of the present application, and the processor 1502 controls the execution.
  • the processor 1502 is configured to execute computer-executable instructions stored in the memory 1501, so as to implement the communication method provided in the foregoing embodiment of the present application.
  • the computer execution instructions in the embodiments of the present application may also be called application program codes, which are not specifically limited in the embodiments of the present application.
  • At least one item (piece, species) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or Multiple.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)
  • the various illustrative logic units and circuits described in the embodiments of the present application may be implemented by a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices. Discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of both.
  • the software unit may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be set in the ASIC, and the ASIC can be set in the terminal.
  • the processor and the storage medium may also be provided in different components in the terminal.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to generate computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置。该方法包括:网络设备向终端设备发送的第一信号承载有第一物理广播信道PBCH,且该第一PBCH承载的第一部分和第二部分承载了相同的广播信息,因此提升了PBCH的覆盖范围,使得处于小区边缘的终端设备在与网络设备进行同步时,能够获取承载相同广播信息的PBCH的次数增多,达到了覆盖增强的效果,进而可以增加小区边缘的终端设备与网络设备成功同步的概率。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年01月18日提交中国专利局、申请号为201910108920.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
第五代(5th generation,5G)通信的新无线(New radio,NR)技术定义了同步信号/广播信道块(SS/PBCH block,SSB),一个SSB包括主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS)和物理广播信道(Physical Broadcast CHannel,PBCH)。其中,PBCH可用于终端设备与网络设备之间的同步。
基于现有技术中定义的PBCH,目前存在的主要问题是:对于小区边缘信噪比特别低的终端设备,难以保证PBCH的传输性能,因而使得小区边缘的终端设备无法与网络设备同步。
发明内容
本申请提供一种通信方法及装置,用以通过对PBCH增强,实现小区边缘的终端设备与网络设备的同步。
第一方面,本申请提供一种通信方法,包括:终端设备在第一时间单元内接收来自网络设备的第一信号,所述第一信号承载第一PBCH,第一PBCH包含时域资源不同的第一部分以及第二部分,第一PBCH的第一部分和第一PBCH的第二部分承载的广播信息相同;终端设备从第一信号获取第一PBCH。这里所说的“时域资源不同的第一部分以及第二部分”,是为了阐述所述第一部分和第二部分的时域资源不同。
基于上述方案,网络设备向终端设备发送的第一信号承载有第一PBCH,且该第一PBCH承载的第一部分和第二部分承载了相同的广播信息,因此提升了PBCH的覆盖范围,使得处于小区边缘的终端设备在与网络设备进行同步时,能够获取承载相同广播信息的PBCH的次数增多,达到了覆盖增强的效果,进而可以增加小区边缘的终端设备与网络设备成功同步的概率。
第二方面,本申请提供一种通信方法,包括:网络设备生成第一信号,所述第一信号承载第一PBCH,第一PBCH包含时域资源不同的第一部分以及第二部分,第一PBCH的第一部分和第一PBCH的第二部分承载的广播信息相同。网络设备在第一时间单元内向终端设备发送第一信号。
基于上述方案,网络设备向终端设备发送的第一信号承载有第一PBCH,且该第一PBCH承载的第一部分和第二部分承载了相同的广播信息,因此提升了PBCH的覆盖范围, 使得处于小区边缘的终端设备在与网络设备进行同步时,能够获取承载相同广播信息的PBCH的次数增多,达到了覆盖增强的效果,进而可以增加小区边缘的终端设备与网络设备成功同步的概率。
基于上述第一方面或第二方面,在一种可能的实现方法中,所述第一PBCH的第一部分占用时域上连续的M个符号,所述第一PBCH的第二部分占用时域上连续的N个符号,其中M、N为大于1的整数。
基于上述第一方面或第二方面,在一种可能的实现方法中,所述第一PBCH满足以下情况中的一种:所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上连续,且所述第一信号所占用的资源在时域上连续;或者,所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上连续;或者,所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上不连续。
基于上述第一方面或第二方面,在一种可能的实现方法中,所述第一PBCH的第一部分和所述第一PBCH的第二部分的子载波间隔相同,所述第一PBCH的第一部分和所述第一PBCH的第二部分所占用的时频资源单元的数量相同,或者,所述第一PBCH的第一部分占用的时频资源单元的数量多于所述第一PBCH的第二部分。
基于上述第一方面或第二方面,在一种可能的实现方法中,所述第一PBCH的第一部分的子载波间隔小于所述第一PBCH的第二部分的子载波间隔,所述第一PBCH的第一部分占用的时频资源单元的数量少于所述第一PBCH的第二部分占用的时频资源单元的数量;或者,所述第一PBCH的第一部分的子载波间隔大于所述第一PBCH的第二部分的子载波间隔,所述第一PBCH的第一部分占用的时频资源单元的数量多于所述第一PBCH的第二部分占用的时频资源单元的数量。
基于上述第一方面或第二方面,在一种可能的实现方法中,所述终端设备还接收来自所述网络设备的第二信号,所述第二信号承载第二PBCH;其中,所述第二PBCH包含时域资源不同的第一部分以及第二部分,所述第二PBCH的第一部分和所述第二PBCH的第二部分承载的广播信息相同。
基于上述第一方面或第二方面,在一种可能的实现方法中,所述第一PBCH的第一部分占用时域上连续的M个符号,所述第一PBCH的第二部分占用时域上连续的N个符号,其中M、N为大于1的整数;所述第一PBCH满足以下情况中的一种:所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上连续,且所述第一信号所占用的资源在时域上连续;或者,所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上连续;或者,所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上不连续。
基于上述第一方面或第二方面,在一种可能的实现方法中,所述第一PBCH和所述第二PBCH承载的广播信息相同;以及所述第二信号为在所述第一时间单元内接收的,或者所述第二信号为在第二时间单元内接收的,所述第二时间单元与所述第一时间单元为连续的时间单元。
基于上述第一方面或第二方面,在一种可能的实现方法中,所述第一PBCH包括指示信息,所述指示信息用于指示PDCCH的重复次数;其中,所述指示信息通过以下中的一 个携带:所述第一PBCH中的预留比特;或者,所述第一PBCH承载的主信息块中的预留比特;或者,所述第一PBCH的预留比特和所述第一PBCH承载的主信息块中的预留比特。
基于上述第一方面或第二方面,在一种可能的实现方法中,所述PDCCH的重复次数与子载波间隔存在对应关系。
第三方面,本申请提供一种通信装置,该通信装置具有实现上述方法实施例中终端设备或网络设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或者模块。
在一种可能的设计中,该通信装置包括:处理器、存储器、总线和通信接口;该存储器存储有计算机执行指令,该处理器与该存储器通过该总线连接,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面或第一方面的任一实现方式中的通信方法、或执行如上述第二方面或第二方面的任一实现方式中的通信方法。例如,该通信装置可以是终端设备或网络设备等。
在另一种可能的设计中,该通信装置还可以是芯片,如终端的芯片,该芯片包括处理单元,可选地,还包括存储单元,该芯片可用于执行如上述第一方面或第一方面的任一实现方式中的通信方法、或执行如上述第二方面或第二方面的任一实现方式中的通信方法。
第四方面,本申请提供一种计算机存储介质,储存有为上述终端所用的计算机软件指令,其包含用于为执行上述任意方面所设计的程序。
第五方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机软件指令,该计算机软件指令可通过处理器进行加载来实现上述任意方面的通信方法中的流程。
第六方面,本申请提供一种通信系统,该通信系统包括用于执行上述第一方面或第一方面的任一实现方式中的通信方法的终端设备,和,用于执行上述第二方面或第二方面的任一实现方式中的通信方法的网络设备。
附图说明
图1为本申请所适用的一种可能的网络架构示意图;
图2为本申请提供的一种通信方法示意图;
图3为现有技术中的一种SSB的结构示意图;
图3a为本申请提供的一种SSB的结构示意图;
图3b为本申请提供的又一种SSB的结构示意图;
图3c为本申请提供的又一种SSB的结构示意图;
图3d为本申请提供的又一种SSB的结构示意图;
图4a为本申请提供的一种SSB的结构示意图;
图4b为本申请提供的又一种SSB的结构示意图;
图4c为本申请提供的又一种SSB的结构示意图;
图4d为本申请提供的又一种SSB的结构示意图;
图5为本申请提供的又一种SSB的结构示意图;
图6为本申请提供的又一种SSB的结构示意图;
图7为现有技术中的一种SSB时域图样的示意图;
图8a为本申请提供的一种SSB时域图样的示意图;
图8b为本申请提供的又一种SSB时域图样的示意图;
图9为现有技术中的又一种SSB时域图样的示意图;
图10为本申请提供的又一种SSB时域图样的示意图;
图11为现有技术中的又一种SSB时域图样的示意图;
图12为本申请提供的又一种SSB时域图样的示意图;
图13为本申请提供的又一种SSB时域图样的示意图;
图14为本申请提供的一种装置示意图;
图15为本申请提供的又一种装置示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1所示,为本申请所适用的一种可能的网络架构示意图,包括网络设备和至少一个终端设备。该网络设备和终端设备可以工作5G NR通信系统上,其中,终端设备可以通过5G NR通信系统与网络设备通信。
终端设备是一种具有无线收发功能的设备,终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端,以及还可以包括用户设备(user equipment,UE)等。
网络设备用于从终端设备接收上行信号,或向终端设备发送下行信号。网络设备例如可以是长期演进(Long Term Evolution,LTE)和/或NR中的网络设备,如可以是基站(NodeB)、演进型基站(eNodeB)、5G移动通信系统中的基站、下一代移动通信基站(next generation Node B,gNB),未来移动通信系统中的基站或无线保真(Wireless Fidelity,Wi-Fi)系统中的接入节点等。
下面对本申请所涉及到的一些通信术语进行解释说明。
1、子载波:正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中将频域资源划分为若干个子资源,每个频域上的子资源可称为一个子载波。子载波也可以理解为频域资源的最小粒度。
2、子载波间隔:OFDM系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如,LTE系统中的子载波间隔为15千赫兹(kHz),5GNR系统的子载波间隔可以是15kHz,或30kHz,或60kHz,或120kHz等。
3、资源块:频域上连续的N个子载波可称为一个资源块。例如,LTE系统中的一个资源块包括12个子载波,5G中NR系统的一个资源块也包括12子载波。随着通信系统的演进,一个资源块包括的子载波个数也可以是其他值,本申请不做限定。
4、时隙:5G NR系统中一个时隙包括14个OFDM符号,15kHz子载波间隔对应的时隙长度为1ms,30kHz子载波间隔对应的时隙长度为0.5ms。当然,随着通信技术的演 进,一个时隙包括的OFDM符号的数量也可以是其他值,本申请不做限定。
5、子帧:5G NR系统中一个子帧的时间长度为1ms。当然,随着通信技术的演进,一个时隙的时间长度也可以是其他值,本申请不做限定。
6、OFDM符号:OFDM系统中时域上最小的时间单元。
7、时频资源单元:OFDM系统中最小的资源粒度,时域上为一个OFDM符号,频域上为一个子载波。
需要说明的是,本申请中提到资源A和资源B在时域上连续的,一般是指资源A和资源B之间在时域上不存在间隔。本申请中提到资源A在时域上是连续的,一般是资源A在时域上包含的符号是连续的,不存在间隔。两者含义存在差别,具体参见实施例的阐述。
为解决背景技术中提到问题,本申请基于图1所示的网络架构,提供一种通信方法。如图2所示,该方法包括以下步骤:
步骤201,网络设备生成第一信号。
该第一信号承载第一PBCH,该第一PBCH包含时域资源不同的第一部分以及第二部分,第一PBCH的第一部分和第一PBCH的第二部分承载的广播信息相同。可选的,第一PBCH的第一部分和第一PBCH的第二部分分别占用的时域资源没有重叠,或者,第一PBCH的第一部分和第一PBCH的第二部分分别占用的时域资源存在部分重叠。
可选的,该第一信号还承载有PSS和SSS。
可选的,在目前通信系统中,该第一信号还可以称为SSB。
可选的,这里的第一时间单元可以是一个时隙(slot),或者一个子帧等。
步骤202,网络设备在第一时间单元内向终端设备发送第一信号。相应的,终端设备可以接收到该第一信号。
步骤203,终端设备从第一信号获取第一PBCH。
可选的,终端设备还可以根据第一信号,执行与网络设备的同步。
基于上述方案,网络设备向终端设备发送的第一信号承载有第一PBCH,且该第一PBCH承载的第一部分和第二部分承载了相同的广播信息,或者,承载了部分相同的广播信息,因此提升了PBCH的覆盖范围,使得处于小区边缘的终端设备在与网络设备进行同步时,能够获取承载相同广播信息的PBCH的次数增多,达到了覆盖增强的效果,进而可以增加小区边缘的终端设备与网络设备成功同步的概率。
下面结合现有技术中的一个具体的SSB的结构,对本申请的上述方法进行说明。
如图3所示,为现有技术中的一种SSB的结构示意图。在时间域(或称为时域)上,一个SSB占用了连续的4个OFDM符号(以下简称符号)。在频率域(或称为频域)上,一个SSB占用了连续的240个子载波,且这240个子载波是从0到239进行编号的。在基于OFDM的通信系统中,通常1个频域资源块(以下简称资源块)包括12个连续的子载波,这12个子载波是从0到11进行编号的,故一个SSB占用的240个子载波也可以称为20个资源块,且这20个资源块是从0到19进行编号的。参考图2,左起第一个符号承载PSS,编号为0,1,…,55,183,184,…,239的子载波置为0,编号为56,57,…,182的子载波为PSS占用的子载波;左起第2和第4个符号承载PBCH,并且每4个连续的子载波中都有一个与PBCH对应的解调参考信号(Demodulation Reference Signal,DMRS);左起第3个符号承载了SSS和PBCH,编号为56,57,…,182的子载波承载SSS,编号为0,1,…,47,192,193,…,239的子载波承载PBCH,其余子载波置为0。
针对图3所示的SSB的结构,该SSB中的PBCH共占用了48个资源块,由于PBCH占用的资源块的数量的限制,这对于小区边缘信噪比特别低的终端设备,将难以保证PBCH的传输性能,即小区边缘信噪比特别低的终端设备将难以通过PBCH实现与网络设备的同步,进而影响这些终端设备的性能。
针对图3所示的SSB的结构,本申请可以在图3的SSB基础上对PBCH进行覆盖增强。
在一种实现方法中,本申请中的第一PBCH的第一部分占用时域上连续的M个符号,第一PBCH的第二部分占用时域上连续的N个符号,其中M、N为大于1的整数。
如图3a所示,为本申请提供的一种SSB的结构示意图。该SSB是对图3所示的SSB的PBCH进行增强后的SSB。该SSB承载有第一PBCH,该第一PBCH包含时域资源不同的第一部分(本申请可以简称为PBCH1)以及第二部分(本申请可以简称为PBCH2),PBCH1和PBCH2承载的广播信息相同。需要说明的是,该SSB是承载了一个PBCH,并不是两个PBCH。本申请只是为了方便说明,将该第一PBCH的第一部分简称为PBCH1,将第一PBCH的第二部分简称为PBCH2。该PBCH2也可以称为PBCH增强的部分。
基于图3a所示的SSB的结构,PBCH1占用时域上连续的3个符号,PBCH2占用时域上连续的2个符号。
基于图3a所示的SSB的结构,PBCH1和PBCH2占用的资源在时域上连续(即承载PBCH1的连续的符号与承载PBCH2的连续的符号之间也是连续),且第一信号所占用的资源在时域上连续。参考图3a,第2至第4个符号承载有PBCH1,第5至第6个符号承载有PBCH2,且第一信号占用第1至第6个符号,因此是连续的。
如图3b所示,为本申请提供的又一种SSB的结构示意图。该SSB是对图3所示的SSB的PBCH进行增强后的SSB。该SSB与上述图3a所示的SSB的主要区别是:PBCH1和PBCH2占用的资源在时域上不连续,且第一信号所占用的资源在时域上连续。具体的,第4至第6个符号承载有PBCH1,第1至第2个符号承载有PBCH2,且第一信号占用第1至第6个符号,因此是连续的。
如图3c所示,为本申请提供的又一种SSB的结构示意图。该SSB是对图3所示的SSB的PBCH进行增强后的SSB。该SSB与上述图3a所示的SSB的主要区别是:PBCH1和PBCH2占用的资源在时域上不连续,且第一信号所占用的资源在时域上不连续。具体的,第2至第4个符号承载有PBCH1,第K+5至第K+6个符号承载有PBCH2,PBCH1与PBCH2之前间隔了K个符号,K为正整数。第一信号占用第1至第4个符号,以及占用第K+5至第K+6个符号,因此是不连续的。
如图3d所示,为本申请提供的又一种SSB的结构示意图。该SSB是对图3所示的SSB的PBCH进行增强后的SSB。该SSB与上述图3a所示的SSB的主要区别是:PBCH1和PBCH2占用的资源在时域上不连续,且第一信号所占用的资源在时域上不连续。具体的,第1至第2个符号承载有PBCH2,第K+3至第K+6个符号承载有PBCH1,PBCH1与PBCH2之前间隔了K个符号,K为正整数。第一信号占用第1至第2个符号,以及占用第K+3至第K+6个符号,因此是不连续的。
上述图3a-图3d所示的第一信号有如下几种可能的实现方式:
第一信号的一种可能实现方式为:第一信号占用连续L个OFDM符号,所述L个OFDM符号中的前p个连续的OFDM符号承载所述第一信号的PSS、SSS和PBCH的第一部分, 所述L个OFDM符号中的后L-p个OFDM符号承载所述第一信号的所述PBCH的第二部分,所述PBCH的第一部分和所述PBCH的第二部分承载的信息相同,L为大于1的整数,p为正整数。以图3a为例,则这里的L=6,p=4。
第一信号的又一种可能实现方式为:第一信号占用连续L个OFDM符号,所述L个OFDM符号中的后p个连续的OFDM符号承载PSS、SSS和PBCH的第一部分,所述L个OFDM符号中的前L-p个OFDM符号承载所述PBCH的第二部分,所述PBCH的第一部分和所述PBCH的第二部分承载的信息相同,L为大于1的整数,p为正整数。以图3b为例,则这里的L=6,p=4。
第一信号的又一种可能实现方式为:第一信号占用L个OFDM符号,所述L个OFDM符号包括时间在前的p个连续的OFDM符号和时间在后的L-p个连续的OFDM符号,所述p个连续的OFDM符号和所述L-p个连续的OFDM符号之间不连续,所述p个连续的OFDM符号承载所述第一信号的PSS、SSS和PBCH的第一部分,所述L-p个OFDM符号承载所述第一信号的所述PBCH的第二部分,所述PBCH的第一部分和所述PBCH的第二部分承载的信息相同,L为大于1的整数,p为正整数。以图3c为例,则这里的L=6,p=4。
第一信号的又一种可能实现方式为:第一信号占用L个OFDM符号,所述k个OFDM符号包括时间在后的p个连续的OFDM符号和时间在前的L-p个连续的OFDM符号,所述p个连续的OFDM符号和所述L-p个连续的OFDM符号之间不连续,所述p个连续的OFDM符号承载所述第一信号的PSS、SSS和PBCH的第一部分,所述L-p个OFDM符号承载所述第一信号的所述PBCH的第二部分,所述PBCH的第一部分和所述PBCH的第二部分承载的信息相同,L为大于1的整数,p为正整数。以图3d为例,则这里的L=6,p=4。
基于图3a-图3d所示的任一实现方式,上述PBCH1和PBCH2的子载波间隔相同,且PBCH1和PBCH2所占用的时频资源单元的数量相同。参考图3a-图3d,PBCH1和PBCH2的子载波间隔相同,且PBCH1共占用3个符号中的48个资源块,即576个子载波,因此PBCH1共占用576个时频资源单元(一个时频资源单元在时域上占用一个符号,在频域上占用一个子载波),且PBCH2共占用2个符号中的48个资源块,即576个子载波,因此PBCH2也共占用576个时频资源单元。且,PBCH1占用的子载波中,每4个连续的子载波中有一个子载波承载DMRS。PBCH2占用的子载波中,每4个连续的子载波中有一个子载波承载DMRS。因此,PBCH1对应的DMRS的数量与PBCH2对应的DMRS的数量相同。
作为又一种实现方式,上述PBCH1和PBCH2的子载波间隔相同,且PBCH1占用的时频资源单元的数量多于PBCH2占用的时频资源单元的数量。以图3a为例,可以减少PBCH2占用的符号中的时频资源单元的数量,使得PBCH2与PBCH1所占用的带宽相同。如图4a所示,是与图3a对应的又一种SSB的结构示意图。根据前述描述可知,图3a所示的SSB在一个符号上占用20个资源块,因此图4a所示的SSB承载的PBCH2占用40个时频资源单元,少于PBCH1占用的48个时频资源单元。为达到PBCH1与PBCH2承载相同的广播信息的目的,可选的,可以减少PBCH2对应的DMRS的数量,即PBCH1对应的DMRS的数量多于PBCH2对应的DMRS的数量,和/或,减少PBCH2对应的冗余信息的比特数,即PBCH1占用的时频资源单元中用于承载冗余信息的时频资源单元的数量要多于PBCH2占用的时频资源单元中用于承载冗余信息的时频资源单元的数量,以使得PBCH1占用的时频资源单元中用于承载有效信息(即广播信息)的时频资源单元的数量等 于或基本等于PBCH2占用的时频资源单元中用于承载有效信息(即广播信息)的时频资源单元的数量。这里的“基本等于”指的是PBCH1占用的时频资源单元中用于承载有效信息(即广播信息)的时频资源单元的数量与PBCH2占用的时频资源单元中用于承载有效信息(即广播信息)的时频资源单元的数量的差值小于预设的阈值。
同样的,针对图3b-图3d所示的SSB,也可以采用图4a所示的方法,分别得到如图4b-图4d所示的SSB的结构,不再赘述。
在又一种实现方式中,上述PBCH1的子载波间隔还可以小于PBCH2的子载波间隔,比如PBCH1的子载波间隔为15kHz,PBCH2的子载波间隔为30kHz、60kHz、120kHz等;再比如,PBCH1的子载波间隔为30kHz,PBCH2的子载波间隔为60kHz、120kHz等。当上述PBCH1的子载波间隔小于PBCH2的子载波间隔时,则可以得到与上述图3a-图3d及图4a-图4d分别对应的另外8种SSB的结构。以图3a为例,且以PBCH1的子载波间隔为15kHz,PBCH2的子载波间隔为30kHz为例,则可以得到如图5所示的SSB的结构。该SSB与图3a所示的SSB的主要区别在于:图5中的SSB承载的PBCH2占用的符号数(为4个)多于图3a中的SSB承载的PBCH2占用的符号数(2个),且图5中的PBCH1占用的时频资源单元的数量少于PBCH2占用的时频资源单元的数量。可选的,图5中的PBCH2的子载波间隔与公共资源的子载波间隔相同。
在又一种实现方式中,上述PBCH1的子载波间隔还可以大于PBCH2的子载波间隔,比如PBCH1的子载波间隔为30kHz,PBCH2的子载波间隔为15kHz;再比如,PBCH1的子载波间隔为60kHz,PBCH2的子载波间隔为15kHz、30kHz等。当上述PBCH1的子载波间隔小于PBCH2的子载波间隔时,则可以得到与上述图3a-图3d及图4a-图4d分别对应的另外8种SSB的结构。以图3a为例,且以PBCH1的子载波间隔为30kHz,PBCH2的子载波间隔为15kHz为例,则可以得到如图6所示的SSB的结构。该SSB与图3a所示的SSB的主要区别在于:图6中的SSB承载的PBCH2占用的符号数(为1个)少于图3a中的SSB承载的PBCH2占用的符号数(2个),且图6中的PBCH1占用的时频资源单元的数量多于PBCH2占用的时频资源单元的数量。可选的,图6中的PBCH2的子载波间隔与公共资源的子载波间隔相同。
以上是以图3所示的现有技术的SSB的结构为例,结合本申请的覆盖增强方法,给出了上述新设计的24种SSB的结构(其中,图3a-图3d共4种,图4a-图4d共4种,图5及其他7种SSB(分别对应图3b-图3d,图4a-图4d)共8种,图6及其他7种SSB(分别对应图3b-图3d,图4a-图4d)共8种)。需要说明的是,本申请仅是以图3所示的SSB的结构为例进行示例性的说明,本申请实际上可以应用于具有任意结构的SSB(即对SSB占用的频域资源不限,占用的时域资源不限),以实现对SSB承载的PBCH的增强。
进一步的,本申请中,网络设备还可以向终端设备发送第二信号(也可以称为SSB),该第二信号承载第二PBCH,该第二PBCH包含时域资源不同的第一部分以及第二部分,第二PBCH的第一部分(以下简称为PBCH1)和第二PBCH的第二部分(以下简称PBCH2)承载的广播信息相同。
可选的,该第二信号与上述第一信号可以均在上述步骤201中发送至终端设备,或者是在不同的步骤中发送至终端设备。
可选的,该第二信号也可以是上述新设计的24种SSB的结构中的任一种。
可选的,上述第一PBCH与上述第二PBCH承载的广播信息相同。
可选的,终端设备均是在第一时间单元内接收到第一信号和第二信号,即第一信号和第二信号在时域上位于同一个时间单元。比如,当时间单元为时隙时,则终端设备在同一个时隙接收到第一信号和第二信号,且第一信号承载的第一PBCH与第二信号承载的第二PBCH所承载的广播信息相同。
可选的,终端设备是在第一时间单元内接收到第一信号,以及在第二时间单元内接收到第二信号,且第一时间单元与第二时间单元是不同的时间单元。比如,当时间单元为时隙时,则终端设备在不同的时隙接收到第一信号和第二信号,且第一信号承载的第一PBCH与第二信号承载的第二PBCH所承载的广播信息相同。可选的,第一时间单元与第二时间单元在时间上连续,即第一时间单元与第二时间单元是相邻的两个时间单元。
下面结合现有技术中的SSB时域图样以及本申请提供的SSB的设计,给出新的SSB时域图样。其中,以一个时间单元为1个时隙,且1个时隙承载两个SSB为例进行说明。并且,1个时隙包括14个OFDM符号,分别编号为0-13。
如图7所示,为现有技术中的一种SSB时域图样的示意图。其中,第一个SSB占用编号为2、3、4、5的OFDM符号,第二个SSB占用编号为8、9、10、11的OFDM符号。
比如,基于图7所示的SSB时域图样,若这两个SSB均采用图3a所示的PBCH覆盖增强方法,则可以得到如图8a所示的SSB时域图样。可以看出,一个时隙中的第一信号占用编号为2、3、4、5、6、7的OFDM符号,第二信号占用编号为8、9、10、11、12、13的OFDM符号。
再比如,基于图7所示的SSB时域图样,若时间在前的SSB采用图3b所示的PBCH覆盖增强方法,时间在后的SSB采用图3a所示的PBCH覆盖增强方法,则可以得到如图8b所示的SSB时域图样。可以看出,一个时隙中的第一信号占用编号为0、1、2、3、4、5的OFDM符号,第二信号占用编号为8、9、10、11、12、13的OFDM符号。
对于上述24种新设计的SSB与图7所示的现有技术的SSB时域图样的其他结合方式,不再一一列举说明,本领域技术人员可以根据本申请公开的上述方案进行简单组合。
如图9所示,为现有技术中的又一种SSB时域图样的示意图。其中,第一个SSB占用编号为4、5、6、7的OFDM符号,第二个SSB占用编号为8、9、10、11的OFDM符号。
比如,基于图9所示的SSB时域图样,若时间在前的SSB采用图3b所示的PBCH覆盖增强方法,时间在后的SSB采用图3a所示的PBCH覆盖增强方法,则可以得到如图10所示的SSB时域图样。可以看出,一个时隙中的第一信号占用编号为2、3、4、5、6、7的OFDM符号,第二信号占用编号为8、9、10、11、12、13的OFDM符号。
对于上述24种新设计的SSB与图9所示的现有技术的SSB时域图样的其他结合方式,不再一一列举说明,本领域技术人员可以根据本申请公开的上述方案进行简单组合。
如图11所示,为现有技术中的又一种SSB时域图样的示意图。其中,第一个SSB占用编号为2、3、4、5的OFDM符号,第二个SSB占用编号为6、7、8、9的OFDM符号。
比如,基于图11所示的SSB时域图样,若这两个SSB均采用图3a所示的PBCH覆盖增强方法,则可以得到如图12所示的SSB时域图样。可以看出,一个时隙中的第一信号占用编号为2、3、4、5、10、11的OFDM符号,第二信号占用编号为6、7、8、9、12、13的OFDM符号。
对于上述24种新设计的SSB与图11所示的现有技术的SSB时域图样的其他结合方 式,不再一一列举说明,本领域技术人员可以根据本申请公开的上述方案进行简单组合。
需要说明的是,基于本申请提供的上述新设计的时域图样,若网络设备在多个时隙向终端设备发送承载相同广播信息的PBCH,则网络设备可以在每个时隙均按照同一SSB时域图样(如图8a、图8b、图10、或图12或其他SSB时域图样)向终端设备发送PBCH,每个SSB承载PBCH的第一部分和第二部分,且第一部分域第二部分承载相同的广播信息。可选的,各个SSB之间承载的PBCH也可以相同。或者是,网络设备在不同时隙按照不同的SSB时域图样向终端设备发送PBCH,每个SSB承载PBCH的第一部分和第二部分,且第一部分与第二部分承载相同的广播信息。可选的,所述第一部分与第二部分承载的广播信息部分相同。
作为示例,图13给出了又一种SSB时域图样的示意图,其中给出了4个SSB在时域上的位置关系的一个示例。其中,第一个SSB和第二个SSB的时域图样如图10所示,第三个SSB和第四个SSB的时域图样如图12所示。对于包括多个SSB时的其他类型的SSB的时域图样的具体实现,不再一一举例说明。
在一种可能的实现方式中,网络设备向终端设备发送的一个或多个SSB所承载的PBCH中包括指示信息,该指示信息用于指示物理下行控制信道(Physical Downlink Control Channel,PDCCH)的重复次数。
以上述步骤201中的第一信号为例,则上述第一信号承载的第一PBCH包括指示信息,该指示信息用于指示PDCCH的重复次数。
可选的,第一PBCH的第一部分包括指示信息,和/或,第一PBCH的第二部分包括指示信息。
可选的,该指示信息通过以下任一实现方式携带:
实现方式一,第一PBCH中的预留比特携带指示信息
以该预留比特为2比特为例,记为b0和b1。则可以用这2比特定义4种PDCCH的重复次数。作为示例,表1给出了一种第一PBCH中的预留比特携带指示信息的示例,即指示信息为b0b1指示的信息。
表1
b0 b1 PDCCH的重复次数
00 1
01 2
10 4
11 8
基于表1,比如,终端设备接收到的指示信息为01,则终端设备可以确定PDCCH的重复次数为2。再比如,终端设备接收到的指示信息为11,则终端设备可以确定PDCCH的重复次数为8,等等。
实现方式二,第一PBCH承载的主信息块中的预留比特携带指示信息
以该预留比特为1比特为例,记为b2。作为示例,表1给出了一种第一PBCH承载的主信息块中的预留比特携带指示信息的示例,即指示信息为b2指示的信息。
表2
b2 PDCCH的重复次数
0 1
1 2
基于表2,比如,终端设备接收到的指示信息为0,则终端设备可以确定PDCCH的重复次数为1。再比如,终端设备接收到的指示信息为1,则终端设备可以确定PDCCH的重复次数为2。
实现方式三,第一PBCH的预留比特和第一PBCH承载的主信息块中的预留比特携带指示信息
以第一PBCH的预留比特为2比特,第一PBCH承载的主信息块中的预留比特为1比特为例,分别记为b0,b1,b2。作为示例,表3给出了一种第一PBCH的预留比特和第一PBCH承载的主信息块中的预留比特携带指示信息的示例,即指示信息为b0b1b2指示的信息。
表3
b0 b1 b2 PDCCH重复次数
0 0 0 1
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
其他状态 保留
基于表3,比如,终端设备接收到的指示信息为010,则终端设备可以确定PDCCH的重复次数为4。再比如,终端设备接收到的指示信息为100,则终端设备可以确定PDCCH的重复次数为16,等等。
作为一种可能的实现方法,上述PDCCH的重复次数还与子载波间隔存在对应关系,该对应关系可以通过表格定义,或者预先配置或定义。
比如,以第一PBCH中的预留比特携带指示信息为例,则该指示信息指示的PDCCH的重复次数与第一PBCH中指示的公共资源块子载波间隔相关。作为示例,表4给出了一种第一PBCH中的预留比特携带指示信息的示例,即指示信息为b0b1指示的信息。
表4
b0 b1 PDCCH子载波间隔=15kHz PDCCH子载波间隔=30kHz
0 0 1 1
0 1 4 8
1 0 8 16
1 1 16 32
基于表4,比如,终端设备接收到的指示信息为01,且第一PBCH中指示的公共资源块子载波间隔(即PDCCH子载波间隔)为15kHz,则终端设备可以确定PDCCH的重复 次数为4。再比如,终端设备接收到的指示信息为11,且第一PBCH中指示的公共资源块子载波间隔(即PDCCH子载波间隔)为30kHz,则终端设备可以确定PDCCH的重复次数为32,等等。
当然,还可以基于上述实现方法二、或实现方法三,定义另外两个类似于表4的表格,以通过指示信息指示与第一PBCH中指示的公共资源块子载波间隔相关的PDCCH的重复次数,不再赘述。
可以理解的是,上述实现各网元为了实现上述功能,其包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
如图14所示,为本申请所涉及的通信装置的一种可能的示例性框图,该通信装置1400可以以软件或硬件的形式存在。通信装置1400可以包括:处理单元1402和通信单元1403。作为一种实现方式,该通信单元1403可以包括接收单元和发送单元。处理单元1402用于对通信装置1400的动作进行控制管理。通信单元1403用于支持通信装置1400与其他网络实体的通信。通信装置1400还可以包括存储单元1401,用于存储通信装置1400的程序代码和数据。
其中,处理单元1402可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1403可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。存储单元1401可以是存储器。
该通信装置1400可以为上述任一实施例中的终端设备、或网络设备,还可以为用于终端设备的芯片、或用于网络设备的芯片。例如,当通信装置1400为终端设备、或网络设备时,该处理单元1402例如可以是处理器,该通信单元1403例如可以是收发器。可选的,该收发器可以包括射频电路,该存储单元例如可以是存储器。例如,当通信装置1400为用于终端设备的芯片、或用于网络设备的芯片时,该处理单元1402例如可以是处理器,该通信单元1403例如可以是输入/输出接口、管脚或电路等。该处理单元1402可执行存储单元存储的计算机执行指令,可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该通信设备内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
在第一实施例中,该通信装置1400为终端设备,则通信单元1403,用于在第一时间单元内接收来自网络设备的第一信号,所述第一信号承载第一物理广播信道(PBCH);处理单元1402,用于根据所述第一信号执行与所述网络设备的同步;其中,所述第一PBCH 包含时域资源不同的第一部分以及第二部分,所述第一PBCH的第一部分和所述第一PBCH的第二部分承载的广播信息相同。
在第二实施例中,该通信装置1400为网络设备,则通信单元1403,用于在第一时间单元内向终端设备发送第一信号,所述第一信号承载第一物理广播信道(PBCH);处理单元1402,用于根据所述第一信号执行与所述终端设备的同步;其中,所述第一PBCH包含时域资源不同的第一部分以及第二部分,所述第一PBCH的第一部分和所述第一PBCH的第二部分承载的广播信息相同。
在一种可能的实现方法中,所述第一PBCH的第一部分占用时域上连续的M个符号,所述第一PBCH的第二部分占用时域上连续的N个符号,其中M、N为大于1的整数。
在一种可能的实现方法中,所述第一PBCH满足以下情况中的一种:所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上连续,且所述第一信号所占用的资源在时域上连续;或者,所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上连续;或者,所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上不连续。
在一种可能的实现方法中,所述第一PBCH的第一部分和所述第一PBCH的第二部分的子载波间隔相同,所述第一PBCH的第一部分和所述第一PBCH的第二部分所占用的时频资源单元的数量相同,或者,所述第一PBCH的第一部分占用的时频资源单元的数量多于所述第一PBCH的第二部分。
在一种可能的实现方法中,所述第一PBCH的第一部分的子载波间隔小于所述第一PBCH的第二部分的子载波间隔,所述第一PBCH的第一部分占用的时频资源单元的数量少于所述第一PBCH的第二部分占用的时频资源单元的数量;或者,所述第一PBCH的第一部分的子载波间隔大于所述第一PBCH的第二部分的子载波间隔,所述第一PBCH的第一部分占用的时频资源单元的数量多于所述第一PBCH的第二部分占用的时频资源单元的数量。
在一种可能的实现方法中,所述终端设备还接收来自所述网络设备的第二信号,所述第二信号承载第二PBCH;其中,所述第二PBCH包含时域资源不同的第一部分以及第二部分,所述第二PBCH的第一部分和所述第二PBCH的第二部分承载的广播信息相同。
在一种可能的实现方法中,所述第一PBCH的第一部分占用时域上连续的M个符号,所述第一PBCH的第二部分占用时域上连续的N个符号,其中M、N为大于1的整数;所述第一PBCH满足以下情况中的一种:所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上连续,且所述第一信号所占用的资源在时域上连续;或者,所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上连续;或者,所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上不连续。
在一种可能的实现方法中,所述第一PBCH和所述第二PBCH承载的广播信息相同;以及所述第二信号为在所述第一时间单元内接收的,或者所述第二信号为在第二时间单元内接收的,所述第二时间单元与所述第一时间单元为连续的时间单元。
在一种可能的实现方法中,所述第一PBCH包括指示信息,所述指示信息用于指示 PDCCH的重复次数;其中,所述指示信息通过以下中的一个携带:所述第一PBCH中的预留比特;或者,所述第一PBCH承载的主信息块中的预留比特;或者,所述第一PBCH的预留比特和所述第一PBCH承载的主信息块中的预留比特。
基于上述第一方面或第二方面,在一种可能的实现方法中,所述PDCCH的重复次数与子载波间隔存在对应关系。
可以理解的是,该通信装置用于上述通信方法时的具体实现过程以及相应的有益效果,可以参考前述方法实施例中的相关描述,这里不再赘述。
参阅图15所示,为本申请提供的一种通信装置示意图,该通信装置可以是上述通信设备。该通信装置1500包括:处理器1502、通信接口1503、存储器1501。可选的,通信装置1500还可以包括通信线路1504。其中,通信接口1503、处理器1502以及存储器1501可以通过通信线路1504相互连接;通信线路1504可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路1504可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1502可以是一个CPU,微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口1503,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器1501可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1504与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1501用于存储执行本申请方案的计算机执行指令,并由处理器1502来控制执行。处理器1502用于执行存储器1501中存储的计算机执行指令,从而实现本申请上述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可 以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端中。可选地,处理器和存储媒介也可以设置于终端中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (26)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备在第一时间单元内接收来自网络设备的第一信号,所述第一信号承载第一物理广播信道(PBCH),所述第一PBCH包含第一部分以及第二部分,所述第一PBCH的第一部分和所述第一PBCH的第二部分的时域资源不同,且所述第一PBCH的第一部分和所述第一PBCH的第二部分承载的广播信息相同;
    所述终端设备从所述第一信号中获取所述第一PBCH。
  2. 一种通信方法,其特征在于,所述方法包括:
    网络设备生成第一信号,所述第一信号承载第一物理广播信道(PBCH),所述第一PBCH包含第一部分以及第二部分,所述第一PBCH的第一部分和所述第一PBCH的第二部分的时域资源不同,且所述第一PBCH的第一部分和所述第一PBCH的第二部分承载的广播信息相同;
    所述网络设备在第一时间单元内向终端设备发送所述第一信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一PBCH的第一部分占用时域上连续的M个符号,所述第一PBCH的第二部分占用时域上连续的N个符号,其中M、N为大于1的整数。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一PBCH满足以下情况中的一种:
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上连续,且所述第一信号所占用的资源在时域上连续;或者,
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上连续;或者,
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上不连续。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一PBCH的第一部分和所述第一PBCH的第二部分的子载波间隔相同,所述第一PBCH的第一部分和所述第一PBCH的第二部分所占用的时频资源单元的数量相同,或者,所述第一PBCH的第一部分占用的时频资源单元的数量多于所述第一PBCH的第二部分。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一PBCH的第一部分的子载波间隔小于所述第一PBCH的第二部分的子载波间隔,所述第一PBCH的第一部分占用的时频资源单元的数量少于所述第一PBCH的第二部分占用的时频资源单元的数量;或者,
    所述第一PBCH的第一部分的子载波间隔大于所述第一PBCH的第二部分的子载波间隔,所述第一PBCH的第一部分占用的时频资源单元的数量多于所述第一PBCH的第二部分占用的时频资源单元的数量。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二信号,所述第二信号承载第二PBCH;
    其中,所述第二PBCH包含第一部分以及第二部分,所述第二PBCH的第一部分和所述第二PBCH的第二部分的时域资源不同,且所述第二PBCH的第一部分和所述第二PBCH 的第二部分承载的广播信息相同。
  8. 根据权利要求7所述的方法,其特征在于,所述第一PBCH的第一部分占用时域上连续的M个符号,所述第一PBCH的第二部分占用时域上连续的N个符号,其中M、N为大于1的整数;所述第一PBCH满足以下情况中的一种:
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上连续,且所述第一信号所占用的资源在时域上连续;或者,
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上连续;或者,
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上不连续。
  9. 根据权利要求7或8所述的方法,其特征在于:
    所述第一PBCH和所述第二PBCH承载的广播信息相同;
    以及所述第二信号为在所述第一时间单元内接收的,或者所述第二信号为在第二时间单元内接收的,所述第二时间单元与所述第一时间单元为连续的时间单元。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于:
    所述第一PBCH包括指示信息,所述指示信息用于指示物理下行控制信道PDCCH的重复次数;
    其中,所述指示信息通过以下中的一个携带:
    所述第一PBCH中的预留比特;或者,
    所述第一PBCH承载的主信息块中的预留比特;或者,
    所述第一PBCH的预留比特和所述第一PBCH承载的主信息块中的预留比特。
  11. 根据权利要求10所述的方法,其特征在于,所述PDCCH的重复次数与子载波间隔存在对应关系。
  12. 一种通信装置,其特征在于,包括:
    通信单元,用于在第一时间单元内接收来自网络设备的第一信号,所述第一信号承载第一物理广播信道(PBCH),所述第一PBCH包含第一部分以及第二部分,所述第一PBCH的第一部分和所述第一PBCH的第二部分的时域资源不同,且所述第一PBCH的第一部分和所述第一PBCH的第二部分承载的广播信息相同;
    处理单元,用于从所述第一信号中获取所述第一PBCH。
  13. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第一信号,所述第一信号承载第一物理广播信道(PBCH),所述第一PBCH包含第一部分以及第二部分,所述第一PBCH的第一部分和所述第一PBCH的第二部分的时域资源不同,且所述第一PBCH的第一部分和所述第一PBCH的第二部分承载的广播信息相同;
    通信单元,用于在第一时间单元内向终端设备发送所述第一信号。
  14. 根据权利要求12或13所述的装置,其特征在于,所述第一PBCH的第一部分占用时域上连续的M个符号,所述第一PBCH的第二部分占用时域上连续的N个符号,其中M、N为大于1的整数。
  15. 根据权利要求12至14中任一项所述的装置,其特征在于,所述第一PBCH满足以下情况中的一种:
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上连续,且所述第一信号所占用的资源在时域上连续;或者,
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上连续;或者,
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上不连续。
  16. 根据权利要求12至15中任一项所述的装置,其特征在于,所述第一PBCH的第一部分和所述第一PBCH的第二部分的子载波间隔相同,所述第一PBCH的第一部分和所述第一PBCH的第二部分所占用的时频资源单元的数量相同,或者,所述第一PBCH的第一部分占用的时频资源单元的数量多于所述第一PBCH的第二部分。
  17. 根据权利要求12至15中任一项所述的装置,其特征在于,所述第一PBCH的第一部分的子载波间隔小于所述第一PBCH的第二部分的子载波间隔,所述第一PBCH的第一部分占用的时频资源单元的数量少于所述第一PBCH的第二部分占用的时频资源单元的数量;或者,
    所述第一PBCH的第一部分的子载波间隔大于所述第一PBCH的第二部分的子载波间隔,所述第一PBCH的第一部分占用的时频资源单元的数量多于所述第一PBCH的第二部分占用的时频资源单元的数量。
  18. 根据权利要求12至17中任一项所述的装置,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二信号,所述第二信号承载第二PBCH;
    其中,所述第二PBCH包含第一部分以及第二部分,所述第二PBCH的第一部分和所述第二PBCH的第二部分的时域资源不同,且所述第二PBCH的第一部分和所述第二PBCH的第二部分承载的广播信息相同。
  19. 根据权利要求18所述的装置,其特征在于,所述第一PBCH的第一部分占用时域上连续的M个符号,所述第一PBCH的第二部分占用时域上连续的N个符号,其中M、N为大于1的整数;所述第一PBCH满足以下情况中的一种:
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上连续,且所述第一信号所占用的资源在时域上连续;或者,
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上连续;或者,
    所述第一PBCH的第一部分和所述第一PBCH的第二部分占用的资源在时域上不连续,且所述第一信号所占用的资源在时域上不连续。
  20. 根据权利要求18或19所述的装置,其特征在于:
    所述第一PBCH和所述第二PBCH承载的广播信息相同;
    以及所述第二信号为在所述第一时间单元内接收的,或者所述第二信号为在第二时间单元内接收的,所述第二时间单元与所述第一时间单元为连续的时间单元。
  21. 根据权利要求12至20中任一项所述的装置,其特征在于:
    所述第一PBCH包括指示信息,所述指示信息用于指示PDCCH的重复次数;
    其中,所述指示信息通过以下中的一个携带:
    所述第一PBCH中的预留比特;或者,
    所述第一PBCH承载的主信息块中的预留比特;或者,
    所述第一PBCH的预留比特和所述第一PBCH承载的主信息块中的预留比特。
  22. 根据权利要求21所述的装置,其特征在于,所述PDCCH的重复次数与子载波间隔存在对应关系。
  23. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得装置以执行如权利要求1至11任一项所述的方法。
  24. 一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至11任一项所述的方法。
  25. 一种芯片系统,其特征在于,包括:处理器,所述处理器执行指令或程序以实现如权利要求1至11中任一项所述的方法。
  26. 一种通信系统,其特征在于,包括:用于执行如权利要求1至11中任一项所述的方法的通信装置。
PCT/CN2020/071843 2019-01-18 2020-01-13 一种通信方法及装置 WO2020147694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910108920.8 2019-01-18
CN201910108920.8A CN111465092B (zh) 2019-01-18 2019-01-18 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2020147694A1 true WO2020147694A1 (zh) 2020-07-23

Family

ID=71614269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071843 WO2020147694A1 (zh) 2019-01-18 2020-01-13 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN111465092B (zh)
WO (1) WO2020147694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220417874A1 (en) * 2021-06-24 2022-12-29 Qualcomm Incorporated Physical broadcast channel (pbch) resource allocation for reduced bandwidth devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070513B (zh) * 2020-08-06 2023-08-25 大唐移动通信设备有限公司 下行信道的传输方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282859A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种通信方法和装置
US20180324804A1 (en) * 2017-05-04 2018-11-08 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US20180376454A1 (en) * 2017-06-22 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Transmission and reception of broadcast information in a wireless communication system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780549A (zh) * 2014-01-10 2015-07-15 夏普株式会社 物理信道配置方法以及基站和用户设备
EP3244683A4 (en) * 2015-01-08 2018-08-15 Sharp Kabushiki Kaisha Terminal device, monitoring method, and integrated circuit
US10616847B2 (en) * 2016-12-22 2020-04-07 Qualcomm Incorporated Techniques and apparatuses for multiple transmission of synchronization signal blocks in new radio
US10939399B2 (en) * 2016-12-28 2021-03-02 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, communication method, and integrated circuit with synchronization signal block including first synchronization signal, second synchronization signal, and physical broadcast channel
CN108270710A (zh) * 2017-01-03 2018-07-10 中兴通讯股份有限公司 一种信号传输方法、装置及系统
JPWO2018199074A1 (ja) * 2017-04-27 2020-03-12 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN108809561B (zh) * 2017-04-28 2020-11-03 维沃移动通信有限公司 一种同步信号块的传输方法、网络设备及用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282859A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种通信方法和装置
US20180324804A1 (en) * 2017-05-04 2018-11-08 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US20180376454A1 (en) * 2017-06-22 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Transmission and reception of broadcast information in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC: "On NR-PBCH RE Mapping and SS Block Composition", 3GPP DRAFT; R1-1710917, 30 June 2017 (2017-06-30), Qingdao, P.R. China, pages 1 - 7, XP051305787 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220417874A1 (en) * 2021-06-24 2022-12-29 Qualcomm Incorporated Physical broadcast channel (pbch) resource allocation for reduced bandwidth devices
US11792754B2 (en) * 2021-06-24 2023-10-17 Qualcomm Incorporated Physical broadcast channel (PBCH) resource allocation for reduced bandwidth devices

Also Published As

Publication number Publication date
CN111465092A (zh) 2020-07-28
CN111465092B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2018219257A1 (zh) 一种通信的方法及装置
TWI728031B (zh) 一種窄頻pbch傳輸方法及裝置
WO2020147731A1 (zh) 一种通信方法及装置
WO2021031390A1 (zh) 用于指示控制信息的方法和装置
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
WO2019192345A1 (zh) 一种时域资源分配方法及装置
WO2021032017A1 (zh) 通信方法和装置
WO2017167078A1 (zh) 一种载波中prb资源分配方法、装置和计算机存储介质
WO2020147694A1 (zh) 一种通信方法及装置
WO2020220934A1 (zh) 一种同步信号块的传输方法和装置
WO2020048481A1 (zh) 通信方法及装置
WO2022048199A1 (zh) 频谱共享下的nr pdcch资源分配方法及装置
US11258571B2 (en) Downlink control information transmission method, apparatus, and system
WO2019191898A1 (zh) 免授权频谱的信道传输方法及网络设备、终端
US20210298025A1 (en) Methods and devices for determining downlink resource set and sending resource position information
WO2020063929A1 (zh) 一种发现参考信号发送方法及装置
WO2016183842A1 (zh) 一种数据传输方法、装置、系统及接入点
US20220039075A1 (en) Communication method and apparatus
WO2020224512A1 (zh) 下行控制信道的检测方法和装置
WO2018233566A1 (zh) 确定下行控制信道资源的方法、装置、用户设备及基站
WO2020088637A1 (zh) 信号的发送方法及终端
US20230180203A1 (en) Information Transmission Method and Communication Apparatus
WO2019179273A1 (zh) 一种数据传输方法及装置
WO2015039626A1 (zh) 一种发送和接收数据的方法、系统及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20740819

Country of ref document: EP

Kind code of ref document: A1