WO2021078172A1 - 一种配置导频序列的方法及装置 - Google Patents

一种配置导频序列的方法及装置 Download PDF

Info

Publication number
WO2021078172A1
WO2021078172A1 PCT/CN2020/122603 CN2020122603W WO2021078172A1 WO 2021078172 A1 WO2021078172 A1 WO 2021078172A1 CN 2020122603 W CN2020122603 W CN 2020122603W WO 2021078172 A1 WO2021078172 A1 WO 2021078172A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
pilot
matrix
array element
array
Prior art date
Application number
PCT/CN2020/122603
Other languages
English (en)
French (fr)
Inventor
王磊
王闻今
邱晓
陈雁
高西奇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021078172A1 publication Critical patent/WO2021078172A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application relates to the field of communication technologies, and in particular, to a method and device for configuring a pilot sequence.
  • mMTC massive machine type of communication
  • network equipment usually needs to connect to a large number of terminals. If each terminal to be accessed uses the traditional access method to access the network equipment, the network equipment is required to perform resource scheduling for the terminal equipment to be accessed, and The resource configuration is sent to the terminal to be accessed.
  • the terminal to be accessed does not need the network equipment to perform pre-resource scheduling during the access to the network equipment, but will actively select a resource for data processing. send.
  • each block of resources corresponds to at least one pilot sequence.
  • the network equipment can complete the work of active user detection and data demodulation and decoding through the pilot sequence.
  • the pilot sequence generation in the prior art generally adopts a ZC (Zadoff-Chu) sequence generation method, or a pseudo random (Pseudo Random Noise, PN) sequence generation method.
  • the method for generating a pilot sequence from the PN sequence mainly adopts a recursive manner to obtain the corresponding pilot sequence.
  • the above methods for configuring the pilot sequence all require a large number of formula derivations or calculations, the method for generating the pilot sequence is more complicated, and the number of the generated pilot sequence is correspondingly limited.
  • the present application provides a method and device for configuring a pilot sequence to provide a method for configuring a pilot sequence in a scenario of a large number of potential terminals to be accessed.
  • an embodiment of the present application provides a pilot sequence method, which includes: a network device determines the length L of the pilot sequence, and determines the number N of the pilot sequence; where L and N are positive integers, and L is not greater than N; The network device generates a sequence matrix according to the length L of the pilot sequence, the number N of the pilot sequence, and a preset sequence matrix generation rule, and each array element in the sequence matrix is used for Compose a pilot sequence with a length of L; wherein the array elements are one row or one column in the sequence matrix; the network device obtains the preset number M of pilot sequences of the managed target cell, and obtains it from the sequence Select M array elements from the matrix, and determine the sequence numbers of the M array elements, wherein the sequence number of each array element is the sequence number of the row or column constituting the array element in the sequence matrix, and M is positive Integer; the network device broadcasts pilot sequence configuration information in the target cell, where the pilot sequence configuration information includes: the length of the pilot sequence L, the
  • the number of pilot sequences and the length of the pilot sequences can be set arbitrarily, so that a large number of pilot sequences can be generated, and the method of generating the pilot sequences is simple and efficient.
  • the network device generates a sequence matrix according to the length L of the pilot sequence, the number N of the pilot sequence, and a preset sequence matrix generation rule, including: the network device generates the sequence matrix according to the pilot sequence
  • the number of sequences N is to generate an N-order DFT or IDFT matrix according to a preset matrix generation rule; the network device selects L rows in the DFT or IDFT matrix according to the preset row selection rule to form the sequence matrix,
  • the array element is a column in the sequence matrix; or the network device selects L columns in the DFT or IDFT matrix according to a preset column selection rule to form the sequence matrix, and the array element is the sequence matrix.
  • the method further includes: the network device selecting at least one array element from the sequence numbers of the M array elements And send RRC signaling to the terminal device, where the RRC signaling contains the sequence number of the at least one array element; or the network device selects at least one array element from the M array elements and sends it to The terminal device sends RRC signaling, where the RRC signaling includes the array number of the at least one array element among the M array elements, and the correspondence between the array number and the sequence number of the array element.
  • determining the pilot sequence length L by the network device includes: determining the pilot sequence length L by the network device according to the size of time-frequency resources occupied by the pilot sequence; or After the network device determines the number N of pilot sequences, the length L of the pilot sequence is determined according to the number N of pilot sequences.
  • the network device determines the length L of the pilot sequence according to the number N of the pilot sequence, including: the network device determines the length L of the pilot sequence according to the length of the pilot sequence and the number of the pilot sequence. Correspondence, determining the length L of the pilot sequence corresponding to the number N of the pilot sequence; or the network device generates N according to the number N of the pilot sequence and the preset sequence matrix generation rule Order DFT or IDFT matrix; and determine the number of rows corresponding to a difference matrix of the DFT or IDFT matrix as the preset length L of the pilot sequence.
  • the network device determining the number N of the pilot sequences includes: the network device determining the pilot sequence length L, based on the ratio between the length of the pilot sequence and the number of pilot sequences Correspondence, determining the number N of the pilot sequences corresponding to the length L of the pilot sequence.
  • an embodiment of the present application provides a method for a pilot sequence, including: a terminal device receives pilot sequence configuration information broadcast by a network device; wherein the pilot sequence configuration information includes: the length of the pilot sequence L, The number N of the pilot sequence, the sequence number of the M array elements; the terminal device according to the length L of the pilot sequence, the number N of the pilot sequence, and a preset sequence matrix generation rule, A sequence matrix is generated, and each array element in the sequence matrix is used to form a pilot sequence of length L; wherein the array element is a row or a column in the sequence matrix; the terminal device according to the M The sequence numbers of the array elements, the M array elements are determined in the sequence matrix; the terminal device generates M pilot sequences according to the M array elements, and selects a target among the M pilot sequences The pilot sequence is used for random access.
  • the pilot sequence configuration information includes: the length of the pilot sequence L, The number N of the pilot sequence, the sequence number of the M array elements; the terminal device according to the length L of the pilot sequence,
  • the terminal device generates a sequence matrix according to the length L of the pilot sequence, the number N of the pilot sequence, and a preset sequence matrix generation rule, including: the terminal The device determines the N-order DFT or IDFT matrix generated by the network device according to the number N of pilot sequences in the pilot sequence configuration information and according to a preset sequence matrix generation rule; the terminal device is in the DFT or In the IDFT matrix, L rows are selected to form the sequence matrix according to a preset row selection rule, and the array element is a column in the sequence matrix; or the terminal device is in the DFT or IDFT matrix according to the preset The column selection rule of selects L columns to form the sequence matrix, and the array element is a row in the sequence matrix.
  • the method further includes: the terminal device receives RRC signaling from the network device, Wherein, the RRC signaling includes the sequence number of at least one array element among the M array elements; the terminal device determines at least one array element among the M array elements according to the sequence number of the at least one array element , And generate at least one pilot sequence according to the at least one array element, the at least one pilot sequence is used for the terminal device to communicate with the network device; or the terminal device receives RRC signaling from the network device , Wherein the RRC signaling includes the array number of at least one array element in the M array elements, and the correspondence between the array number and the sequence number of the array element; the terminal device is in accordance with the at least one array element Determine the sequence number of the at least one array element by the array number of the M array elements and the corresponding relationship between the array number and the sequence number of the array element; then determine the at least one array element from the M arrays
  • an embodiment of the present application provides a communication device, which has the function of implementing the terminal device or the network device in the foregoing embodiment.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the communication device may be a terminal device, or a component that can be used in a terminal device, such as a chip or a chip system or a circuit
  • the communication device may include a transceiver and a processor.
  • the processor may be configured to support the communication device to perform the corresponding functions of the terminal device shown above, and the transceiver is used to support the communication between the communication device and the network device and other terminal devices.
  • the communication device may further include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication device may be a network device, or a component that can be used in a network device, such as a chip or a chip system or a circuit.
  • the communication device may include a transceiver, which is used to support the Communication between the communication device and other network equipment and terminal equipment.
  • the transceiver may be an independent receiver, an independent transmitter, a transceiver with integrated transceiver functions, or an interface circuit.
  • the communication device may further include a memory, and the memory is coupled to store necessary program instructions and data of the communication device.
  • an embodiment of the present application provides a communication device, which is used to implement any one of the foregoing first aspect or the first aspect, or is used to implement any one of the foregoing second aspect or the second aspect. , Including the corresponding functional modules, respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device when it is a terminal device, it may include a processing unit and a transceiving unit. These units can perform the corresponding functions of the terminal device in the above method example. For details, please refer to the detailed description in the method example. Do not repeat it.
  • the communication device may also be a network device, and may include a transceiving unit, which can perform corresponding functions of the network device in the above method example.
  • a transceiving unit which can perform corresponding functions of the network device in the above method example.
  • an embodiment of the present application provides a communication system, and the communication system includes a network device and a terminal device.
  • the network device may be used to execute any method in the first aspect or the first aspect
  • the terminal device may be used to execute any method in the second aspect or the second aspect.
  • the present application provides a chip system including a processor.
  • it may further include a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device installed with the chip system executes any one of the first aspect and the first aspect.
  • an embodiment of the present application provides a computer storage medium, in which instructions are stored in the computer storage medium, which when run on a communication device, cause the communication device to execute the above-mentioned first aspect or any possible implementation of the first aspect Or make the computer execute the second aspect or the method in any possible implementation manner of the second aspect.
  • embodiments of the present application provide a computer program product containing instructions, which when run on a communication device, cause the communication device to execute the method in the first aspect or any possible implementation of the first aspect, or The computer is caused to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • Figure 1 is a schematic diagram of a communication system architecture provided by this application.
  • Figure 2 is a schematic diagram of row sequence extraction based on row number extraction table provided by this application;
  • FIG. 3 is a schematic flowchart of a method for configuring a pilot sequence provided in a random access scenario of this application;
  • FIG. 4 is a schematic flowchart of a method for configuring a pilot sequence after a connection between the network device and the terminal device of the application is established;
  • FIG. 5 is a schematic diagram of the first type of network equipment provided by this application.
  • FIG. 6 is a schematic diagram of the second type of network equipment provided by this application.
  • FIG. 7 is a schematic diagram of the first terminal device provided by this application.
  • FIG. 8 is a schematic diagram of the second type of terminal device provided by this application.
  • each resource corresponds to at least one pilot sequence
  • the base station as the receiving end, needs to complete the work of active user detection and data demodulation and decoding through the pilot sequence. Therefore, a large number of pilot sequences are required to ensure that the terminal equipment and The network equipment successfully completes the communication process.
  • the network device after the network device establishes a connection with the terminal device, it may still be necessary to transmit data through the pilot sequence.
  • the probability of the same pilot sequence also requires a larger number of pilot sequences.
  • the pilot sequence is generally generated using a ZC (Zadoff-Chu) sequence, or generated using a pseudo random (Pseudo Random Noise, PN) sequence.
  • the method for generating a pilot sequence from the PN sequence mainly adopts a recursive manner to obtain the corresponding pilot sequence.
  • the main problem with the above configuration of the pilot sequence is: when using the ZC sequence to configure the pilot sequence, the ZC sequence with a sequence length of N needs to be limited, and there are only N-1 different roots, and only N-1 different root sequences can be generated. Therefore, the number of configured pilot sequences is limited.
  • the PN sequence is used to configure the pilot sequence, a recursive generation method is required to generate the pilot sequence. A large number of formula derivations or calculations are required, the method of generating pilot sequences is relatively complicated, and the number of generated pilot sequences is correspondingly limited.
  • an embodiment of the present application provides a method for configuring a pilot sequence.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as long term evolution (LTE) systems, worldwide interoperability for microwave access (WiMAX) communication systems, and the fifth generation of the future (5th Generation, 5G) systems, such as new radio access technology (NR), and future communication systems, such as 6G systems.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio access technology
  • 6G systems such as new radio access technology
  • 5G system also known as the New Radio system
  • a new communication scenario is defined in the 5G system: Ultra-Reliable and Low-Latency Communication (URLLC), enhanced Enhanced Mobile Broadband (eMBB) and Massive Machine Type Communication (mMTC).
  • URLLC Ultra-Reliable and Low-Latency Communication
  • eMBB enhanced Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • an embodiment of the present application proposes a method for configuring the pilot sequence.
  • the method is mainly based on the discrete Fourier transform (Discrete Fourier Transform, DFT) matrix configuration pilot sequence.
  • the network device can simply and quickly generate a large number of pilot sequences, which effectively reduces the collision probability of the pilot sequences when the terminal device competes for the same block of resources. Further, the elements of the DFT or IDFT matrix have low correlation.
  • the pilot sequence generated by the DFT or IDFT matrix in this application can effectively reduce the interference between the pilot sequences and improve the transmission performance in the mMTC scenario. Robustness.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system to which the embodiments of the present application are applicable.
  • the communication system includes a network device 100 and a terminal device 101.
  • the network device 100 is a device that provides wireless communication functions for the terminal device 101 in a communication system, and can connect the terminal device 101 to a wireless network.
  • the network device 100 may also be referred to as a base station (base station, BS).
  • base station base station
  • some examples of network equipment 100 are: next-generation base stations (gnodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (RNC), node B ( node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit) , BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • next-generation base stations (gnodeB, gNB), evolved node B (evolved node B, eNB), radio network controller (RNC), node B ( no
  • the terminal device 101 is a device that provides voice and/or data connectivity to users. It can also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, and remote Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the terminal in the embodiment of this application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety The wireless terminal in the smart city, the wireless terminal in the smart city, the wireless terminal in the smart home, and so on.
  • the network device 100 in the communication scenario between the network device 100 and the terminal device 101 in the embodiment of the present application, generally when the terminal device 101 is to be connected to the network device 100, it is necessary to use a pilot sequence to communicate with the network device. 100 for random access.
  • the network device 100 successfully connects to the terminal device 101, and after the connection is established, in the subsequent data transmission process, the network device 100 will also notify the terminal device 101 to use RRC signaling to Information about the pilot sequence for data transmission, so that the terminal device 101 determines the pilot sequence for data transmission with the network device 100 based on the received pilot sequence information, and uses the pilot sequence The sequence performs data transmission with the network device 100.
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding, and the communication system may also include other network devices or other terminals, which are not shown in FIG. 1.
  • Pilot frequency is a technology that can effectively improve the success rate of handover between different carrier frequencies. It is widely used in network optimization, and pseudo pilot frequency is more commonly used.
  • Pseudo Random Noise (PN) sequence refers to a sequence with a certain random characteristic, that is, a certain relationship between the sequences. Wherein, the sequence can be predetermined, and can be repeatedly produced and copied.
  • Zadoff-chu (ZC) sequence namely physical random access channel (Physical random access channel, PRACH) root sequence. Since the preamble sequence of each cell is generated by the ZC root sequence through cyclic shift, the preamble sequence of each cell is 64, and the preamble sequence used by the UE is randomly selected or allocated by the evolved base station (eNB), so In order to reduce excessive preamble interference between adjacent cells, multiple cells can be configured with a ZC root sequence index to ensure that the preamble sequences generated by the index are different between adjacent cells.
  • eNB evolved base station
  • DFT Discrete Fourier Transform
  • DTFT discrete time Fourier transform
  • Robustness is the robustness of the system. It is the key to the survival of the system under abnormal and dangerous conditions. For example, whether the computer software can not crash or crash in the case of input errors, disk failures, network overloads or intentional attacks is the robustness of the software.
  • the so-called “robustness” refers to the characteristic that the control system maintains certain performance under certain parameter perturbation. According to different definitions of performance, it can be divided into stability robustness and performance robustness.
  • Peak to Average Power Ratio refers to the ratio of the peak power of the signal to the average power.
  • Difference set means that any non-zero element in the N-order matrix is represented by the difference of two elements in a certain sub-matrix of the N-order matrix ⁇ times, then the sub-matrix is called It is the difference set of the N-order matrix.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A , B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the following at least one item (item) or similar expressions refer to any combination of these items, including any combination of single item (item) or plural items (item).
  • at least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a and c can be single or multiple.
  • the network equipment described in the embodiment of the present application needs to configure a pilot sequence for the terminal equipment in the managed cell.
  • the network device determines a sequence matrix based on the DFT or IDFT matrix. Wherein, the network device determines the number N of generated pilot sequences, and then generates an N-order DFT or IDFT matrix according to the number N of pilot sequences.
  • the embodiments of the present application are described based on the situation of the DFT matrix.
  • the case when the matrix is an IDFT matrix in the embodiment of this application is similar to the case when the matrix is a DFT matrix in the implementation of this application, and will not be repeated here.
  • the network device generates an N-order DFT matrix through the number N of pilot sequences. Assuming that the number N of pilot sequences is 8, then the DFT matrix generated by the network device is as Shown in matrix 1.
  • each row element or each column element in the DFT matrix is called an array element.
  • the array element corresponding to the second column element in the matrix 1 is shown in the following array element 2.
  • the value of each element in the array element can be determined according to the following formula 1, so as to determine the pilot sequence generated by the network device.
  • the array element is a row or a column in the sequence matrix.
  • the N pq represents the element in the p-th row and the q-th column in the DFT matrix
  • the N represents the order of the DFT
  • j is an imaginary unit.
  • the element in the second row and the third column in the DFT matrix can be obtained according to the formula 1
  • the network device determines the number N of the generated pilot sequences and the length L of the pilot sequences, so as to obtain from the DFT matrix according to the number N of the pilot sequences and the length L of the pilot sequences A sequence matrix is determined, and each array element in the sequence matrix is used to form a pilot sequence of length L.
  • sequence matrix determined by the network device may have multiple forms, specifically including the following two situations.
  • Case 1 Determine a sequence matrix with L rows and N columns from the DFT matrix.
  • the network device can determine from the DFT matrix shown in matrix 1.
  • a sequence matrix For example, assume that the embodiment of the present application extracts the second row, the fourth row, the fifth row, and the seventh row from the DFT matrix to generate a sequence matrix with 4 rows and 8 columns as shown in matrix 2. Wherein, each row element in the sequence matrix is used to form a pilot sequence with a length of 4.
  • Case 2 Determine a sequence matrix with N rows and L columns from the DFT matrix.
  • the network device can determine from the DFT matrix shown in matrix 1.
  • a sequence matrix For example, assume that the embodiment of the present application extracts the second column, the third column, the fourth column, and the eighth column from the DFT matrix to generate a sequence matrix with 8 rows and 4 columns as shown in matrix 3. Wherein, each column element in the sequence matrix is used to form a pilot sequence with a length of 4.
  • the array element when selecting an array element from the DFT matrix according to the length L of the pilot sequence in this embodiment of the present application, the array element may be selected by random selection, that is, the network device selects the array element from the DFT matrix. Randomly select L rows or L columns of array elements.
  • the network device randomly selects 4 rows of array elements from the DFT matrix to form a sequence matrix of 4 rows and 8 columns; or The network device randomly selects 4 columns of array elements from the DFT matrix to form a sequence matrix with 8 rows and 4 columns.
  • the network device in the embodiment of the present application may determine the length L of the pilot sequence in a variety of ways, which are specifically not limited to the following.
  • Determination method 1 The network device determines the length of the preset pilot sequence as the length L of the pilot sequence.
  • Determination method 2 The network device determines the length L of the pilot sequence according to the size of the time-frequency resource occupied by the pilot sequence.
  • Determination method 3 The network device determines the pilot sequence corresponding to the number N of pilot sequences according to the corresponding relationship between the length of the pilot sequence and the number of pilot sequences after determining the number N of pilot sequences.
  • the length of the frequency sequence L The length of the frequency sequence L.
  • Determination method 4 The network device generates an N-order DFT or IDFT matrix according to the number N of the pilot sequences and the preset sequence matrix generation rule, and corresponds to a difference matrix of the DFT or IDFT matrix The number of rows is determined as the preset length L of the pilot sequence. Exemplarily, if the number of rows of the difference matrix is 4, as shown in FIG. 2, 4 row numbers can be selected from the DFT matrix.
  • the network device may determine a difference set matrix from the multiple difference set matrices corresponding to the DFT according to characteristics such as PAPR , And determine the number of rows corresponding to the difference set matrix as the length L of the pilot sequence; or determine the number of columns corresponding to the difference set matrix as the length L of the pilot sequence.
  • the number N of the pilot sequences in the embodiment of the present application can be preset, or after the length L of the pilot sequence is determined, according to the corresponding relationship between the number of the pilot sequence and the length of the pilot sequence , Determining the number N of the pilot sequences corresponding to the length L of the pilot sequence.
  • the network device may manage multiple cells, and if terminal devices in the multiple cells use the same pilot sequence, interference may occur.
  • the network device may also allocate different pilot sequences to different cells, so as to reduce the resources that occur when terminal devices in multiple cells use the same pilot sequence. Probability of collision.
  • the pilot sequences corresponding to different cells may be completely different, may be partially the same, or may be completely the same.
  • the network device in the embodiment of the present application allocates pilot sequences to the managed cell, acquires the preset number M of pilot sequences of the target cell. Then, M array elements are selected from the sequence matrix, and the sequence numbers of the M array elements are determined. Finally, the network device broadcasts pilot sequence configuration information in the target cell.
  • the pilot sequence configuration information includes: the length L of the pilot sequence, the number N of the pilot sequence, the sequence number of the M array elements, and the sequence number of each array element is in the sequence matrix The sequence number of the row or column constituting the array element, and M is a positive integer.
  • the sequence matrix generated by the network device is the matrix 2 above, the number of pilot sequences is 8, and the pilot sequence
  • the sequence numbers of the sequence are N1 to N8, that is, the sequence numbers of the N array elements in the sequence matrix are N1 to N8.
  • the network equipment separately obtains the number M of preset pilot sequences of the target cells 1 to 3, assuming that the number of preset pilot sequences of the target cells 1 to 3 obtained by the network equipment M is shown in Table 1, the network device selects the sequence numbers of the 4 array elements from the generated sequence matrix, and determines the pilot sequence corresponding to the sequence numbers of the 4 array elements as used to communicate with the target cell 1.
  • a pilot sequence for communication select the sequence numbers of five array elements from the sequence matrix, and determine the pilot sequence corresponding to the sequence numbers of the five array elements as the ones used for communication with the target cell 2 Pilot sequence; because the number of preset pilot sequences corresponding to the target cell 3 is the same as the number of array elements in the sequence matrix, the corresponding pilot sequences of all array elements in the sequence matrix are determined Is a pilot sequence used to communicate with the target cell 3.
  • sequence numbers of the array elements respectively selected by the network equipment for the target cells 1 to 3 are as shown in Table 2.
  • the network device carries the M array element sequence numbers corresponding to the target cell in the pilot sequence configuration information, and informs the target cell in a broadcast manner.
  • the pilot sequence configuration information further includes the length L of the pilot sequence and the number N of the pilot sequence.
  • the network device may also first determine the pilot sequence allocated to the target cell 1 to 3 from the sequence matrix, and then determine that the pilot sequence is in the sequence The sequence number of the array element in the matrix, and the sequence number of the array element is carried in the pilot sequence configuration information, and notified to the target cell in a broadcast manner.
  • the network device determines that the sequence numbers of the array elements corresponding to the four array elements are N1, N2, N5, N7; the five array elements selected by the network device from the generated sequence matrix are shown in matrix 5, then the network device determines that the sequence numbers of the array elements corresponding to the five array elements are respectively N2 ⁇ N6.
  • the network device determines the matrix 2 as the one used to communicate with the target cell 3. Pilot sequence, so the network equipment can determine that the sequence numbers of the array elements corresponding to the target cell 3 are N1 to N8.
  • the terminal device to be accessed in the target cell needs to communicate and transmit with the network device, the terminal device receives the pilot sequence configuration information broadcast by the network device, and then, the terminal device The sequence length L, the number of pilot sequences N, and the preset sequence matrix generation rule are used to generate the sequence matrix.
  • the length of the pilot sequence acquired by the terminal device is 4, the number of pilot sequences is 8, and the preset matrix generation rule is to generate one based on the number N of pilot sequences
  • An N-order DFT matrix, and a sub-matrix with N rows and L columns from the N-order DFT matrix is selected as a sequence matrix.
  • the terminal device generates the DFT matrix shown in matrix 1 according to the number of pilot sequences 8, and then selects a sub-matrix with 8 rows and 4 columns from the DFT matrix to determine that it is generated by the network device
  • the sequence matrix for example, the sub-matrix selected by the terminal device is shown in matrix 3 above. Wherein, each row of array element in the sequence matrix may be determined as a pilot sequence.
  • the terminal device also needs to determine the pilot sequence corresponding to the target cell where it is located according to the sequence numbers of the M array elements in the pilot configuration information.
  • the terminal device can determine that the pilot sequence corresponding to the cell where it is located can be as shown in the matrix 6, where: Each row of array elements in the matrix 6 is used to determine a pilot sequence.
  • the terminal device generates 4 pilot sequences according to the 4 array elements in the matrix 6, and selects a target pilot sequence from the 4 pilot sequences for random access. Wherein, the terminal device may select a target pilot sequence for communicating with the network device from the four pilot sequences in a random selection manner.
  • the network device may also directly notify the terminal device of the information of the pilot sequence used for communication by means of RRC signaling, which can be specifically divided into various situations, as follows: Make an introduction.
  • Allocation method 1 The RRC signaling sent by the network device to the terminal device includes the array number of at least one array element among the M array elements, and the correspondence between the array number and the sequence number of the array element.
  • the terminal device receives the RRC signaling sent by the network device, and determines the sequence matrix generated by the network device according to the number N of pilot sequences in the RRC signaling and the length L of the pilot sequence . Then, the network device determines the at least one array element according to the array number of the at least one array element in the M array elements contained in the RRC signaling, and the corresponding relationship between the array number and the sequence number of the array element The sequence number of the array element; then the at least one array element is determined from the sequence matrix.
  • the terminal can only select the pilot sequence for communicating with the network device within the range of the pilot sequence corresponding to the cell where it is located, the terminal device determines from the sequence matrix At least one array element may default to that the array element selected by the terminal device is included in the M array elements.
  • the terminal device may randomly select an array element from the selected at least one array element, and generate a pilot sequence for communicating with the network device according to the determined array element.
  • the network device selects the sequence number of at least one array element from the sequence numbers N1, N2, N5, and N7 of the array elements corresponding to the target cell.
  • the corresponding relationship between the serial number of the array element in the target cell and the serial number of the array element in the target cell in the sequence matrix is shown in Table 3.
  • the number of the array element selected by the network device is number 1 and number 3
  • the number of the selected array element is number 1 and the number 3 of the array element, and the corresponding relationship between the number of the array element and the number of the array element Notify the terminal device.
  • the terminal device receives the RRC signaling sent by the network device, and determines the sequence matrix generated by the network device according to the number N of pilot sequences in the RRC signaling and the length L of the pilot sequence. Then, the terminal device determines that the serial number of the array element corresponding to the serial number 1 of the received array element is N1 according to the serial number of the array element contained in the RRC signaling and the correspondence between the serial number of the array element and the serial number of the array element, It is determined that the sequence number of the array element corresponding to the number 3 of the received array element is N5.
  • the terminal device selects an array element from the array element corresponding to the N1 and the array element corresponding to the N5 to generate a pilot sequence, and the terminal device communicates with the network device according to the generated pilot sequence.
  • the terminal device in this embodiment of the application may first select the number of an array element from the received number of at least one array element, and then only need to determine the array element corresponding to the number of the selected array element. And generate a pilot sequence; or, after determining the received pilot sequence corresponding to the number of at least one array element, the terminal device may select one of the determined at least one pilot sequence to communicate with the network device The pilot sequence for communication.
  • the terminal device can substitute the sequence number of the selected array element, the number N of pilot sequences, and the length L of the pilot sequence into Formula 2 according to Formula 2 for determining the pilot sequence, thereby obtaining the pilot sequence.
  • the s(n) represents the element value of the nth row in the pilot sequence
  • q represents the pilot sequence
  • the N represents the total number of array elements in the sequence matrix
  • j is an imaginary unit.
  • Allocation method 2 The RRC signaling sent by the network device to the terminal device includes the sequence number of at least one of the M array elements, the number of the pilot sequence N, and the length of the pilot sequence L.
  • the terminal device receives the RRC signaling sent by the network device, and determines the sequence matrix generated by the network device according to the number N of pilot sequences in the RRC signaling and the length L of the pilot sequence . Then, the network device determines at least one array element from the sequence matrix according to the sequence number of at least one of the M array elements included in the RRC signaling.
  • the terminal can only select the pilot sequence for communicating with the network device within the range of the pilot sequence corresponding to the cell where it is located, the terminal device determines from the sequence matrix At least one array element may default to that the array element selected by the terminal device is included in the M array elements.
  • the terminal device may randomly select an array element from the selected at least one array element, and generate a pilot sequence for communicating with the network device according to the determined array element.
  • the network device selects the sequence number of at least one array element from the sequence numbers N1, N2, N5, and N7 of the array elements corresponding to the target cell.
  • the sequence numbers of the selected array elements are N2 and N5, and select The sequence numbers N2 and N5 of the array elements of are notified to the terminal device.
  • the terminal device receives the RRC signaling sent by the network device, and determines the sequence matrix generated by the network device according to the number N of pilot sequences in the RRC signaling and the length L of the pilot sequence. Then, the terminal device determines, according to the sequence numbers N2 and N5 of the array elements contained in the RRC signaling, that the corresponding array elements of the N2 and N5 in the sequence matrix are as shown in the following array element 2 and array elements, respectively As shown in FIG. 5, an array element is selected from the array element corresponding to N2 and the array element corresponding to N5 to generate a pilot sequence, and the terminal device communicates with the network device according to the generated pilot sequence.
  • the terminal device in this embodiment of the application may first select the sequence number of an array element from the received sequence numbers of at least one array element, and then only need to determine the array element corresponding to the sequence number of the selected array element. And generate a pilot sequence; or, after determining the received pilot sequence corresponding to the sequence number of at least one array element, the terminal device may select one from the determined at least one pilot sequence to communicate with the network device The pilot sequence for communication.
  • the terminal device can substitute the sequence number of the selected array element, the number N of pilot sequences, and the length L of the pilot sequence into Formula 2 according to Formula 2 for determining the pilot sequence, thereby obtaining the pilot sequence.
  • Allocation mode 3 The RRC signaling sent by the network device to the terminal device includes the range of the pilot used for communication, the number N of the pilot sequence, and the length L of the pilot sequence.
  • the pilot frequency range mainly refers to the starting number of the selected pilot frequency sequence.
  • the terminal device receives the RRC signaling sent by the network device, and determines the sequence matrix generated by the network device according to the number N of pilot sequences in the RRC signaling and the length L of the pilot sequence . Then, the network device determines the sequence number of the at least one array element according to the starting number of the pilot sequence included in the RRC signaling; and then determines the at least one array element from the sequence matrix.
  • the terminal can only select the pilot sequence for communicating with the network device within the range of the pilot sequence corresponding to the cell where it is located, the terminal device determines from the sequence matrix At least one array element may default to that the array element selected by the terminal device is included in the M array elements.
  • the terminal device may randomly select an array element from the selected at least one array element, and generate a pilot sequence for communicating with the network device according to the determined array element.
  • the network device determines the range of a pilot sequence from the sequence numbers N2 to N6 of the array elements corresponding to the target cell, that is, the sequence number range of the array elements corresponding to the pilot sequence.
  • the network device passes the range of the pilot sequence, the number N of the pilot sequence, and the length L of the pilot sequence RRC signaling is notified to the terminal device.
  • the terminal device receives the RRC signaling sent by the network device, and determines the sequence matrix generated by the network device according to the number N of pilot sequences in the RRC signaling and the length L of the pilot sequence. Then, the terminal device determines, according to the range N2 to N5 of the array elements included in the RRC signaling, that the array elements corresponding to the N2 to N5 in the sequence matrix are as shown in the following matrix 7 respectively.
  • the terminal device randomly selects a column of array elements from the array elements to generate a pilot sequence, and the terminal device communicates with the network device according to the generated pilot sequence.
  • the terminal device can substitute the sequence number of the selected array element, the number N of pilot sequences, and the length L of the pilot sequence into Formula 2 according to Formula 2 for determining the pilot sequence, thereby obtaining the pilot sequence.
  • the flow of a method for configuring a pilot sequence provided by the embodiment of the present application includes the following steps.
  • S300 The network device determines the number N of pilot sequences and the length L of the pilot sequences, where L and N are positive integers, and L is not greater than N.
  • the network device generates an N-order DFT or IDFT matrix according to the number N of the pilot sequences.
  • the network device selects L rows in the DFT or IDFT matrix according to a preset row selection rule to form the sequence matrix, and the array element is a column in the sequence matrix.
  • the network device may also select L columns in the DFT or IDFT matrix according to a preset column selection rule to form the sequence matrix, and the array elements are the sequence matrix Line in.
  • the network device obtains the preset number M of pilot sequences of the managed target cell, selects M array elements from the sequence matrix, and determines the sequence numbers of the M array elements.
  • the sequence number of each array element is the sequence number of the row or column constituting the array element in the sequence matrix, and M is a positive integer.
  • S304 The network device broadcasts pilot sequence configuration information in the target cell.
  • the pilot sequence configuration information includes: the length L of the pilot sequence, the number N of the pilot sequence, and the sequence numbers of the M array elements.
  • S305 The terminal device receives the pilot sequence configuration information broadcast by the network device.
  • the terminal device generates a sequence matrix according to the length L of the pilot sequence, the number N of the pilot sequence, and a preset sequence matrix generation rule.
  • the terminal device determines the M array elements in the sequence matrix according to the sequence numbers of the M array elements.
  • the terminal device generates M pilot sequences according to the M array elements, and selects a target pilot sequence from the M pilot sequences for random access.
  • the flow of another method for configuring a pilot sequence provided by the embodiment of the present application includes the following steps.
  • the network device determines the number N of pilot sequences and the length L of the pilot sequences, where L and N are positive integers, and L is not greater than N.
  • the network device generates an N-order DFT or IDFT matrix according to the number N of pilot sequences.
  • the network device selects L rows in the DFT or IDFT matrix according to a preset row selection rule to form the sequence matrix, and the array element is a column in the sequence matrix.
  • the network device may also select L columns in the DFT or IDFT matrix according to a preset column selection rule to form the sequence matrix, and the array elements are the sequence matrix Line in.
  • the network device obtains the preset number of pilot sequences M of the managed target cell, and selects M array elements from the sequence matrix as the communication between the network device and the terminal device in the target cell. Pilot sequence.
  • the network device in the embodiment of the application may determine the sequence number of the array element corresponding to the selected M array elements in the sequence matrix; or the network device in the embodiment of the application may determine the selection of M arrays The number of the array element of the array element corresponding to the element in the M array elements.
  • S404 The network device sends RRC signaling carrying pilot sequence configuration information to the terminal device.
  • the content contained in the pilot sequence configuration information in this scenario in the embodiment of the present application can be divided into the following types:
  • the first type the pilot sequence configuration information includes: the number of pilot sequences N, the length of the pilot sequence L, and the sequence number of at least one array element among the sequence numbers of the M array elements.
  • the second type: the pilot sequence configuration information includes: the number of pilot sequences N, the length of the pilot sequence L, the array number of at least one array element in the M array elements, and the number of the array number and the sequence number of the array element Correspondence.
  • the third type the pilot sequence configuration information includes: the number of pilot sequences N, the length of the pilot sequence L, and the sequence number range of the M array elements.
  • the terminal device receives RRC signaling from the network device.
  • the terminal device determines at least one array element according to the pilot sequence configuration information in the RRC signaling.
  • the terminal device selects an array element from the at least one array element, and generates a pilot sequence for communicating with the network device.
  • a network device of the present application includes a processor 500, a memory 501, and a communication interface 502.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 501 can store data used by the processor 500 when performing operations.
  • the transceiver communication interface 502 is used to receive and send data under the control of the processor 500 for data communication with the memory 501.
  • the processor 500 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor 500 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the memory 501 may include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.
  • the processor 500, the memory 501, and the communication interface 502 are connected to each other.
  • the processor 500, the memory 501, and the communication interface 502 may be connected to each other through a bus 503; the bus 503 may be a peripheral component interconnect (PCI) bus or an extended industry Standard structure (extended industry standard architecture, EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used to represent in FIG. 5, but it does not mean that there is only one bus or one type of bus.
  • the processor 500 is configured to read a program in the memory 501 and execute:
  • each array element in the sequence matrix is used to form a pilot sequence of length L; wherein the array element is a row in the sequence matrix Or a column; obtain the preset number of pilot sequences M of the managed target cell, select M array elements from the sequence matrix, and determine the sequence number of the M array elements, wherein each array element The sequence number of is the sequence number of the row or column of the array element in the sequence matrix, and M is a positive integer; the pilot sequence configuration information is broadcast in the target cell, where the pilot sequence configuration information includes: the pilot sequence The length L of the frequency sequence, the number N of the pilot sequence, and the sequence numbers of the M array elements.
  • the processor 500 is specifically configured to:
  • an N-order DFT or IDFT matrix is generated according to a preset matrix generation rule; in the DFT or IDFT matrix, L rows are selected to form the sequence matrix according to a preset row selection rule ,
  • the array element is a column in the sequence matrix; or the network device selects L columns in the DFT or IDFT matrix according to a preset column selection rule to form the sequence matrix, and the array elements are all A row in the sequence matrix.
  • the processor 500 is further configured to:
  • the processor 500 is specifically configured to:
  • the length L of the pilot sequence is determined according to the size of the time-frequency resource occupied by the pilot sequence; or after the number N of pilot sequences is determined, the length L of the pilot sequence is determined according to the number N of pilot sequences.
  • the processor 500 is specifically configured to:
  • the processor 500 is specifically configured to:
  • the length L of the pilot sequence is determined, and the number N of the pilot sequences corresponding to the length L of the pilot sequence is determined according to the corresponding relationship between the length of the pilot sequence and the number of pilot sequences.
  • the present application provides a network device that includes: at least one processing unit 600, at least one storage unit 601, and at least one communication unit 602, wherein the communication unit 602 is used for processing The data is received and sent under the control of the unit 600.
  • the storage unit 601 stores program code, and when the program code is executed by the processing unit 600, the processing unit 600 is caused to perform the following processes:
  • each array element in the sequence matrix is used to form a pilot sequence of length L; wherein the array element is a row in the sequence matrix Or a column; obtain the preset number of pilot sequences M of the managed target cell, select M array elements from the sequence matrix, and determine the sequence number of the M array elements, wherein each array element The sequence number of is the sequence number of the row or column of the array element in the sequence matrix, and M is a positive integer; the pilot sequence configuration information is broadcast in the target cell, where the pilot sequence configuration information includes: the pilot sequence The length L of the frequency sequence, the number N of the pilot sequence, and the sequence numbers of the M array elements.
  • the processing unit 600 is specifically configured to:
  • an N-order DFT or IDFT matrix is generated according to a preset matrix generation rule; in the DFT or IDFT matrix, L rows are selected to form the sequence matrix according to a preset row selection rule ,
  • the array element is a column in the sequence matrix; or the network device selects L columns in the DFT or IDFT matrix according to a preset column selection rule to form the sequence matrix, and the array elements are all A row in the sequence matrix.
  • the processing unit 600 is further configured to:
  • the processing unit 600 is specifically configured to:
  • the length L of the pilot sequence is determined according to the size of the time-frequency resource occupied by the pilot sequence; or after the number N of pilot sequences is determined, the length L of the pilot sequence is determined according to the number N of pilot sequences.
  • the processing unit 600 is specifically configured to:
  • the processing unit 600 is specifically configured to:
  • the length L of the pilot sequence is determined, and the number N of the pilot sequences corresponding to the length L of the pilot sequence is determined according to the corresponding relationship between the length of the pilot sequence and the number of pilot sequences.
  • an embodiment of the present application also provides a terminal device, which includes a processor 700, a memory 701, and a transceiver 702;
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 701 can store data used by the processor 700 when performing operations.
  • the transceiver 702 is used to receive and transmit data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 700 and various circuits of the memory represented by the memory 701 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 701 can store data used by the processor 700 when performing operations.
  • the process disclosed in the embodiment of the present application may be applied to the processor 700 or implemented by the processor 700.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 700 or instructions in the form of software.
  • the processor 700 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 701, and the processor 700 reads the information in the memory 701 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 700 is configured to read a program in the memory 701 and execute:
  • the pilot sequence configuration information includes: the length L of the pilot sequence, the number of the pilot sequences N, and the sequence numbers of the M array elements; according to The length L of the pilot sequence, the number N of the pilot sequence, and a preset sequence matrix generation rule are used to generate a sequence matrix.
  • Each array element in the sequence matrix is used to form a pilot sequence of length L.
  • Frequency sequence wherein the array elements are a row or a column in the sequence matrix; determine the M array elements in the sequence matrix according to the sequence numbers of the M array elements; according to the M array elements Generate M pilot sequences, and select a target pilot sequence from the M pilot sequences for random access.
  • the processor 700 is specifically configured to:
  • the N-order DFT or IDFT matrix generated by the network device is determined according to a preset sequence matrix generation rule; in the DFT or IDFT matrix, according to A preset row selection rule selects L rows to form the sequence matrix, and the array element is a column in the sequence matrix; or the terminal device selects in the DFT or IDFT matrix according to a preset column selection rule L columns form the sequence matrix, and the array element is a row in the sequence matrix.
  • the processor 700 is further configured to:
  • RRC signaling is received from the network device, where the RRC signaling includes the sequence number of at least one array element among the M array elements; the terminal device displays the sequence number of the at least one array element according to the sequence number of the at least one array element. At least one array element is determined from the M array elements, and at least one pilot sequence is generated according to the at least one array element, and the at least one pilot sequence is used for the terminal device to communicate with the network device; or
  • the network device receives RRC signaling, where the RRC signaling includes the array number of at least one array element in the M array elements, and the correspondence between the array number and the sequence number of the array element; Describe the array number of at least one array element in the M array elements, and the corresponding relationship between the array number and the sequence number of the array element, and determine the sequence number of the at least one array element; and then determine the sequence number of the at least one array element; At least one array element, and at least one pilot sequence is generated according to the at least one array element, and the at least one pilot sequence is
  • the present application provides a terminal device.
  • the terminal device includes: at least one processing unit 800, at least one storage unit 801, and at least one communication unit 802, wherein the communication unit 802 is used for processing The data is received and sent under the control of the unit 800.
  • the storage unit 801 stores program code, and when the program code is executed by the processing unit 800, the processing unit 800 executes the following processes:
  • the pilot sequence configuration information includes: the length L of the pilot sequence, the number of the pilot sequences N, and the sequence numbers of the M array elements; according to The length L of the pilot sequence, the number N of the pilot sequence, and a preset sequence matrix generation rule are used to generate a sequence matrix.
  • Each array element in the sequence matrix is used to form a pilot sequence of length L.
  • Frequency sequence wherein the array elements are a row or a column in the sequence matrix; determine the M array elements in the sequence matrix according to the sequence numbers of the M array elements; according to the M array elements Generate M pilot sequences, and select a target pilot sequence from the M pilot sequences for random access.
  • the processing unit 800 is specifically configured to:
  • the N-order DFT or IDFT matrix generated by the network device is determined according to a preset sequence matrix generation rule; in the DFT or IDFT matrix, according to A preset row selection rule selects L rows to form the sequence matrix, and the array element is a column in the sequence matrix; or the terminal device selects in the DFT or IDFT matrix according to a preset column selection rule L columns form the sequence matrix, and the array element is a row in the sequence matrix.
  • the processing unit 800 is further configured to:
  • RRC signaling is received from the network device, where the RRC signaling includes the sequence number of at least one array element among the M array elements; the terminal device displays the sequence number of the at least one array element according to the sequence number of the at least one array element. At least one array element is determined from the M array elements, and at least one pilot sequence is generated according to the at least one array element, and the at least one pilot sequence is used for the terminal device to communicate with the network device; or
  • the network device receives RRC signaling, where the RRC signaling includes the array number of at least one array element in the M array elements, and the correspondence between the array number and the sequence number of the array element; Describe the array number of at least one array element in the M array elements, and the corresponding relationship between the array number and the sequence number of the array element, and determine the sequence number of the at least one array element; and then determine the sequence number of the at least one array element; At least one array element, and at least one pilot sequence is generated according to the at least one array element, and the at least one pilot sequence is
  • the various aspects of the method for configuring a pilot sequence provided in the embodiments of the present application can also be implemented in the form of a program product, which includes program code, when the program code is on a computer device When running, the program code is used to make the computer device execute the steps in the method for configuring a pilot sequence according to various exemplary embodiments of the present application described in this specification.
  • the program product can use any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Type programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the program product for executing a configuration pilot sequence may adopt a portable compact disk read-only memory (CD-ROM) and include program code, and may run on a server device.
  • CD-ROM portable compact disk read-only memory
  • the program product of this application is not limited to this.
  • the readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with information transmission, devices, or devices.
  • the readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and readable program code is carried therein. This propagated data signal can take many forms, including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the readable signal medium may also be any readable medium other than a readable storage medium, and the readable medium may send, propagate, or transmit a program for use by or in combination with a periodic network action system, apparatus, or device.
  • the program code contained on the readable medium can be transmitted by any suitable medium, including, but not limited to, wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • the program code used to perform the operations of this application can be written in any combination of one or more programming languages.
  • the programming languages include object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural programming languages. Programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computing device, partly on the user's device, executed as an independent software package, partly on the user's computing device and partly executed on the remote computing device, or entirely on the remote computing device or server Executed on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device.
  • LAN local area network
  • WAN wide area network
  • the embodiment of the present application also provides a storage medium readable by a computing device for the method for performing configuration of a pilot sequence for a network device, that is, the content is not lost after a power failure.
  • the storage medium stores a software program, including program code.
  • the program code runs on a computing device, the software program can implement any of the above embodiments of the present application when it is read and executed by one or more processors.
  • the scheme of configuring the pilot sequence is described in accordance with a pilot sequence.
  • the embodiment of the present application also provides a storage medium readable by a computing device for the method for performing configuration of a pilot sequence on a terminal device, that is, the content is not lost after a power failure.
  • the storage medium stores a software program, including program code.
  • the software program can implement any of the above embodiments of the present application when it is read and executed by one or more processors.
  • the scheme of configuring the pilot sequence is not limited to, but not limited to the pilot sequence.
  • this application can also be implemented by hardware and/or software (including firmware, resident software, microcode, etc.).
  • this application may take the form of a computer program product on a computer-usable or computer-readable storage medium, which has a computer-usable or computer-readable program code implemented in the medium to be used or used by the instruction execution system. Used in conjunction with the instruction execution system.
  • a computer-usable or computer-readable medium can be any medium that can contain, store, communicate, transmit, or transmit a program for use by an instruction execution system, apparatus, or device, or in combination with an instruction execution system, Device or equipment use.

Abstract

本申请涉及通信技术领域,公开了一种配置导频序列的方法及装置。其中方法包括:网络设备根据确定的导频序列的长度L、导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每行或每列数组元素用于组成一个长度为L的导频序列;所述网络设备从所述序列矩阵中选取M个数组元素,并确定所述M个数组元素在所述序列矩阵中构成所述数组元素的行或列的序号,M为正整数;并在所述目标小区内广播包括所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号的导频序列配置信息。因导频序列的数量与导频序列的长度可以任意设置,从而可以生成大量的导频序列,生成导频序列的方式简单高效。

Description

一种配置导频序列的方法及装置
相关申请的交叉引用
本申请要求在2019年10月22日提交中国专利局、申请号为201911006147.0、申请名称为“一种配置导频序列的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种配置导频序列的方法及装置。
背景技术
在大部分通信场景中,经常存在海量的潜在待接入终端,例如下一代蜂窝通信网的热门标准NR所覆盖的大规模机器间通信(massive machine type of communication,mMTC)场景。在mMTC场景中,网络设备通常要连接海量的终端,那么如果每个待接入终端均采用传统的接入方法接入网络设备时,需要网络设备为待接入终端设备进行资源调度,并将资源配置发送给待接入终端。
为了降低通信系统中的终端在接入网络设备过程中的信令开销,待接入终端在接入网络设备过程中不需要网络设备进行预先资源调度,而是会主动选择一块资源用于进行数据发送。其中,每块资源对应至少一个导频序列。而网络设备作为接收端,可以通过导频序列完成活跃用户检测和数据解调译码的工作。
目前现有技术中生成导频序列一般采用ZC(Zadoff-Chu)序列生成方式,或者采用伪随机(Pseudo Random Noise,PN)序列生成方式。其中,所述PN序列生成导频序列的方法主要采用递推的方式得到对应的导频序列。所述ZC序列生成导频序列的方法主要采用序列公式x(n)=exp(-j*pi*u*n1*(n1+1)/Nzc)计算得到导频序列,其中n1=n mod Nzc(n=0,1,…,L-1,L为序列长度),u为ZC序列的根,Nzc为小于等于序列长度L的最大素数,exp表示指数运算。
上述配置导频序列的方式都需要大量的公式推导或者计算,生成导频序列的方式较为复杂,且生成导频序列的数量也相应的受到了限制。
发明内容
本申请提供一种配置导频序列的方法及装置,用以提供适用于海量潜在待接入终端场景下导频序列配置的方法。
第一方面,本申请实施例提供一种导频序列的方法,包括:网络设备确定导频序列的长度L,以及确定导频序列的数量N;其中,L、N为正整数,L不大于N;所述网络设备根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列;其中所述数组元素为所述序列矩阵中的一行或一列;所述网络设备获取管理的目标小区的预设导频序列个数M,并从所述序列矩阵中选取M个数组元素,并确定所述M个数组元素的序 号,其中,所述每个数组元素的序号为所述序列矩阵中构成所述数组元素的行或列的序号,M为正整数;所述网络设备在所述目标小区内广播导频序列配置信息,其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号。
基于该方案,本申请实施例因导频序列的数量与导频序列的长度可以任意设置,从而可以生成大量的导频序列,生成导频序列的方式简单高效。
相应地,所述网络设备根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,包括:所述网络设备根据所述导频序列的数量N,按照预设的矩阵生成规则,生成N阶DFT或IDFT矩阵;所述网络设备在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列;或所述网络设备在所述DFT或IDFT矩阵中,按照预设的列选择规则选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
在一种可能的实现方式中,所述网络设备在所述目标小区内广播导频序列配置信息之后,还包括:所述网络设备从所述M个数组元素的序号中选择至少一个数组元素的序号,并向所述终端设备发送RRC信令,其中,RRC信令中包含所述至少一个数组元素的序号;或所述网络设备从所述M个数组元素中选择至少一个数组元素,并向所述终端设备发送RRC信令,其中,所述RRC信令中包含所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系。
在一种可能的实现方式中,所述网络设备确定所述导频序列长度L,包括:所述网络设备根据导频序列占用的时频资源大小确定所述导频序列的长度L;或所述网络设备确定导频序列的数量N之后,根据所述导频序列的数量N,确定导频序列长度L。
在一种可能的实现方式中,所述网络设备确根据所述导频序列的数量N,确定导频序列的长度L,包括:所述网络设备根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的数量N对应的所述导频序列的长度L;或所述网络设备根据所述导频序列的数量N以及所述预设的序列矩阵生成规则,生成N阶DFT或IDFT矩阵;并将所述DFT或IDFT矩阵的一个差集矩阵对应的行数确定为预设的所述导频序列的长度L。
在一种可能的实现方式中,所述网络设备确定所述导频序列的数量N,包括:所述网络设备确定所述导频序列长度L,根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的长度L对应的所述导频序列的数量N。
第二方面,本申请实施例提供一种导频序列的方法,包括:终端设备接收网络设备广播的导频序列配置信息;其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号;所述终端设备根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列;其中所述数组元素为所述序列矩阵中的一行或一列;所述终端设备根据所述M个数组元素的序号,在所述序列矩阵中确定所述M个数组元素;所述终端设备根据所述M个数组元素生成M个导频序列,并在所述M个导频序列中选择目标导频序列进行随机接入。
在一种可能的实现方式中,所述终端设备根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,包括:所述终端设备根据所述导频序列配置信息中的导频序列的数量N,按照预设的序列矩阵生成规则,确定所述网络 设备生成的N阶DFT或IDFT矩阵;所述终端设备在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列;或所述终端设备在所述DFT或IDFT矩阵中,按照预设的列选择规选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
在一种可能的实现方式中,所述终端设备在所述M个导频序列中选择目标导频序列进行随机接入之后,还包括:所述终端设备从所述网络设备接收RRC信令,其中,所述RRC信令中包含所述M个数组元素中至少一个数组元素的序号;所述终端设备根据所述至少一个数组元素的序号,在所述M个数组元素中确定至少一个数组元素,并根据所述至少一个数组元素生成至少一个导频序列,所述至少一个导频序列用于所述终端设备与所述网络设备通信;或所述终端设备从所述网络设备接收RRC信令,其中,所述RRC信令中包含至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系;所述终端设备根据所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系,确定所述至少一个数组元素的序号;然后从所述M个数组中确定所述至少一个数组元素,并根据所述至少一个数组元素生成至少一个导频序列,所述至少一个导频序列用于所述终端设备与所述网络设备通信。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述实施例中的终端设备或网络设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的实现方式中,该通信装置可以是终端设备,或者是可用于终端设备的部件,例如芯片或芯片系统或者电路,该通信装置可以包括:收发器和处理器。该处理器可被配置为支持该通信装置执行以上所示终端设备的相应功能,该收发器用于支持该通信装置与网络设备和其它终端设备等之间的通信。可选地,该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。其中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。
在另一种可能的实现方式中,该通信装置可以是网络设备,或者是可用于网络设备的部件,例如芯片或芯片系统或者电路,该通信装置可以包括:收发器,该收发器用于支持该通信装置与其它网络设备和终端设备等之间的通信。其中,收发器可以为独立的接收器、独立的发射器、集成收发功能的收发器、或者是接口电路。可选地,该通信装置还可以包括存储器,该存储器耦保存该通信装置必要的程序指令和数据。
第四方面,本申请实施例提供一种通信装置,用于实现上述第一方面或第一方面中的任意一种方法,或者用于实现上述第二方面或第二方面中的任意一种方法,包括相应的功能模块,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实施方式中,该通信装置为终端设备时,可以括处理单元和收发单元,这些单元可以执行上述方法示例中终端设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在另一种可能的实施方式中,该通信装置还可以是网络设备,可以包括收发单元,这些单元可以执行上述方法示例中网络设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,本申请实施例提供一种通信系统,该通信系统包括网络设备和终端设备。 其中,网络设备可以用于执行上述第一方面或第一方面中的任意一种方法,终端设备可以用于执行上述第二方面或第二方面中的任意一种方法。
第六方面,本申请提供了一种芯片系统,包括处理器。可选地,还可包括存储器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片系统的通信装置执行上述第一方面、第一方面中的任意一种方法、第二方面或第二方面中的任意一种方法。
第七方面,本申请实施例提供一种计算机存储介质,计算机存储介质中存储有指令,当其在通信装置上运行时,使得该通信装置执行上述第一方面或第一方面的任意可能的实现方式中的方法、或者使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第八方面,本申请实施例提供一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置执行第一方面或第一方面的任意可能的实现方式中的方法、或者使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1为本申请提供的一种通信系统架构示意图;
图2为本申请提供的一种基于行序号抽取表格抽取行序列示意图;
图3为本申请随机接入场景下提供的一种配置导频序列的方法流程示意图;
图4为本申请网络设备与终端设备建立连接后的一种配置导频序列的方法流程示意图;
图5为本申请提供的第一种网络设备示意图;
图6为本申请提供的第二种网络设备示意图;
图7为本申请提供的第一种终端设备示意图;
图8为本申请提供的第二种终端设备示意图。
具体实施方式
下面将结合附图对申请实施例的具体实施过程进行详尽的描述。
目前通信场景中经常存在海量的潜在待接入终端,例如mMTC场景。而在mMTC场景中为了减少通信过程中的信令开销,这些潜在的待接入终端在传输时不需要基站进行预先调度,会主动选择一块资源用于进行数据发送。
其中,因每块资源对应至少一个导频序列,而基站作为接收端,需要通过导频序列完成活跃用户检测和数据解调译码的工作,因此,需要大量的导频序列来保障终端设备与网络设备顺利完成通信过程。并且,所述网络设备与所述终端设备建立连接后,依旧可能需要通过导频序列进行数据传输,为了减小终端设备竞争同一块资源时的导频序列碰撞概率,即多个终端设备选择了同一个导频序列的概率,同样也需要更多数量的导频序列。
现有技术中导频序列一般采用ZC(Zadoff-Chu)序列生成,或者采用伪随机(Pseudo Random Noise,PN)序列生成。其中,所述PN序列生成导频序列的方法主要采用递推的方式得到对应的导频序列。所述ZC序列生成导频序列的方法主要采用序列公式x(n)=exp(-j*pi*u*n1*(n1+1)/Nzc)计算得到导频序列,其中n1=n mod Nzc(n=0,1,…,L-1,L为序列长度),u为ZC序列的根,Nzc为小于等于序列长度L的最大素数,exp表示指数 运算。
上述配置导频序列的主要问题是:采用ZC序列配置导频序列时,需要限定序列长度为N的ZC序列,只有N-1个不同的根,仅能生成N-1个不同根的序列,因此所配置的导频序列的数量是有限的。而采用PN序列配置导频序列时,需要通过递推生成方式从而使生成导频序列。需要大量的公式推导或者计算,生成导频序列的方式较为复杂,且生成导频序列的数量也相应的受到了限制。
为解决该问题,本申请实施例提供一种配置导频序列的方法。本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),及未来的通信系统,如6G系统等。
以5G系统(也可以称为New Radio系统)为例,具体来说,5G系统中定义了新的通信场景:超高可靠低时延通信(Ultra-Reliable and Low-Latency Communication,URLLC)、增强移动宽带(Enhanced Mobile Broadband,eMBB)和海量机器连接通信(Massive Machine Type Communication,mMTC),这些通信场景,尤其是mMTC场景,对导频序列的设计有更严苛的需求。因此,当待接入终端的数量日益增加的前提下,如何通过更简单的方案,快速生成数量更多的导频序列,在5G通信过程中尤为重要。
为了实现所述网络设备配置的导频序列数量更多,且配置导频序列的方式更加简单,本申请实施例提出了一种配置导频序列的方法。该方法主要基于离散傅里叶变换(Discrete Fourier Transform,DFT)矩阵配置导频序列。
通过该方法,网络设备可以简单快速的生成大量导频序列,有效的减少了终端设备竞争同一块资源时的导频序列碰撞概率。进一步的,所述DFT或IDFT矩阵间的元素具有较低的相关性,本申请基于所述DFT或IDFT矩阵生成的导频序列能有效降低导频序列之间的干扰,提高mMTC场景下传输的鲁棒性。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明本申请实施例适用的通信系统。如图1所示,该通信系统包括网络设备100和终端设备101。
网络设备100,是通信系统中为终端设备101提供无线通信功能的设备,可以将终端设备101接入到无线网络中。网络设备100也可称为基站(base station,BS)。目前,一些网络设备100的举例为:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
终端设备101,是一种向用户提供语音和/或数据连通性的设备,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial  control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
其中,本申请实施例中所述网络设备100与所述终端设备101进行通信场景中,一般在所述终端设备101待接入所述网络设备100时,需要使用导频序列与所述网络设备100进行随机接入。其中,所述网络设备100与所述终端设备101接入成功,建立连接后,在后续进行数据传输过程中,所述网络设备100还会通过RRC信令的方式通知所述终端设备101用于进行数据传输的导频序列的信息,从而使所述终端设备101根据接收到的导频序列的信息,确定用于与所述网络设备100进行数据传输的导频序列,并使用所述导频序列与所述网络设备100进行数据传输。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端,图1中未予以画出。
以下再对本申请实施例中涉及的部分用语进行解释说明,以便于理解。
1)导频,是一种技术,可以有效地提高不同载频之间切换的成功率,在网络优化中广泛应用,比较常用的是伪导频。
2)伪随机(Pseudo Random Noise,PN)序列,是指具有某种随机特性的序列,即序列间具有某种确定关系。其中,所述序列可以预先确定,并且可以重复地生产和复制。
3)Zadoff-chu(ZC)序列,即物理随机接入信道(Physical random access channel,PRACH)根序列。由于每个小区前导序列是由ZC根序列通过循环移位生成,每个小区的前导(Preamble)序列为64个,UE使用的前导序列是随机选择或由演进型基站(eNB)分配的,因此为了降低相邻小区之间的前导序列干扰过大可通过给多个小区配置ZC根序列索引,从而保证相邻小区间使用该索引生成的前导序列不同。
4)离散傅里叶变换(DFT),是傅里叶变换在时域和频域上都呈现离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。在形式上,变换两端的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。
5)鲁棒性(robustness),就是系统的健壮性。它是在异常和危险情况下系统生存的关键。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,是指控制系统在一定的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。
6)峰值平均功率比(Peak to Average Power Ratio,PAPR),是指信号的峰值功率与平均功率之比。
7)差集(difference set),是指N阶矩阵中的任何一个非零元素都正好被所述N阶矩阵的某个子矩阵中的两个元素的差表示λ次,则所述子矩阵称之为所述N阶矩阵的差集。
另外,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指 一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中,A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。以下至少一项(个)下或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,c可以是单个,也可以是多个。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
此外,本申请实施例和权利要求书及附图中的术语“包括”和“具有”不是排他的。例如,包括了一系列步骤或模块的过程、方法、系统、产品或设备,不限定于已列出的步骤或模块,还可以包括没有列出的步骤或模块。
本申请实施例中所述网络设备需要针对管理的小区内终端设备配置导频序列。
在一种可能的设计中,所述网络设备基于所述DFT或IDFT矩阵,确定一个序列矩阵。其中,所述网络设备确定生成的导频序列的数量N,然后根据所述导频序列的数量N生成一个N阶的DFT或IDFT矩阵。
示例性的,本申请实施例基于DFT矩阵的情况进行描述。其中,本申请实施例中当所述矩阵为IDFT矩阵的情况与本申请实施中矩阵为DFT矩阵的情况类似,在此不进行赘述。
本申请实施例中,所述网络设备通过所述导频序列的数量N生成一个N阶的DFT矩阵,假设,所述导频序列的数量N为8,则所述网络设备生成的DFT矩阵如矩阵1所示。
Figure PCTCN2020122603-appb-000001
其中,所述DFT矩阵中的每行元素或每列元素都称为一个数组元素,例如,所述矩阵1中的第二列元素对应的数组元素如下述数组元素2所示。
Figure PCTCN2020122603-appb-000002
所述DFT矩阵中的每个数组元素,可根据下述公式1确定所述数组元素中每个元素的数值,从而确定所述网络设备生成的到导频序列。其中所述数组元素为所述序列矩阵中的一行或一列。
Figure PCTCN2020122603-appb-000003
其中,所述N pq表示所述DFT矩阵中第p行第q列的元素,P表示所述DFT矩阵的行数且p=0,…,N-1;q表示所述DFT矩阵的列数且q=0,…,N-1;所述N表示所述DFT的阶数,j为虚数单位。
例如,本申请实施例中可根据所述公式1得出所述DFT矩阵中第2行第3列的元素
Figure PCTCN2020122603-appb-000004
进一步的,所述网络设备确定生成的导频序列的数量N以及导频序列的长度L,从而根据所述导频序列的数量N以及所述导频序列的长度L,从所述DFT矩阵中确定一个序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列。
其中,所述网络设备确定的序列矩阵的形式可以有多种,具体包括下述两种情况。
情况1:从所述DFT矩阵中确定一个L行N列的序列矩阵。
示例性的,假设所述网络设备确定生成的导频序列的数量N为8个,以及生成导频序列的长度L为4个,则所述网络设备可以从矩阵1所示的DFT矩阵中确定一个序列矩阵。例如,假设本申请实施例从所述DFT矩阵中分别抽取了第2行、第4行、第5行以及第7行,生成了一个如矩阵2所示的4行8列的序列矩阵。其中,所述序列矩阵中的每行元素用于组成一个长度为4的导频序列。
Figure PCTCN2020122603-appb-000005
情况2:从所述DFT矩阵中确定一个N行L列的序列矩阵。
示例性的,假设所述网络设备确定生成的导频序列的数量N为8个,以及生成导频序列的长度L为4个,则所述网络设备可以从矩阵1所示的DFT矩阵中确定一个序列矩阵。例如,假设本申请实施例从所述DFT矩阵中分别抽取了第2列、第3列、第4列以及第8列,生成了一个如矩阵3所示的8行4列的序列矩阵。其中,所述序列矩阵中的每列元素用于组成一个长度为4的导频序列。
Figure PCTCN2020122603-appb-000006
可选的,本申请实施例中根据所述导频序列的长度L从所述DFT矩阵中选取数组元素时,可通过随机选取的方式选取数组元素,即所述网络设备从所述DFT矩阵中随机选取L行或者L列数组元素。
示例性的,本申请实施例中,假设所述导频序列的长度L为4,则所述网络设备从所 述DFT矩阵中随机选取4行数组元素,组成4行8列的序列矩阵;或者,所述网络设备从所述DFT矩阵中随机选取4列数组元素,组成8行4列的序列矩阵。
在一种可能的设计中,本申请实施例中所述网络设备可通过多种方式确定导频序列的长度L,具体并不限于下述几种。
确定方式1:所述网络设备将预先设定的导频序列的长度确定为所述导频序列的长度L。
确定方式2:所述网络设备根据导频序列占用的时频资源大小确定所述导频序列的长度L。
确定方式3:所述网络设备根据在确定所述导频序列的数量N之后,根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的数量N对应的所述导频序列的长度L。
确定方式4:所述网络设备根据所述导频序列的数量N以及所述预设的序列矩阵生成规则,生成N阶DFT或IDFT矩阵,并将所述DFT或IDFT矩阵的一个差集矩阵对应的行数确定为预设的所述导频序列的长度L。示例性的,若所述差集矩阵的行数为4,则可以如图2所示,从所述DFT矩阵中选取4个行序号。
进一步的,若所述网络设备确定的所述DFT的差集矩阵有多个,则所述网络设备可根据PAPR等特性,从所述DFT对应的多个差集矩阵中,确定一个差集矩阵,并将所述差集矩阵对应的行数量确定为所述导频序列的长度L;或者将所述差集矩阵对应的列数量确定为所述导频序列的长度L。
进一步的,本申请实施例中所述导频序列的数量N可以预先设定,也可以在确定所述导频序列的长度L后,根据导频序列的数量与导频序列的长度的对应关系,确定所述导频序列的长度L对应的所述导频序列的数量N。
本申请一种可选的实施例,所述网络设备可能管理多个小区,若该多个小区内的终端设备使用相同的导频序列,可能会产生干扰。为了防止小区间干扰,所述网络设备在生成所述导频序列后,还可针对不同小区分配不同的导频序列,以降低多个小区内的终端设备使用相同的导频序列所发生的资源碰撞概率。其中,不同小区对应的导频序列可以完全不同,可以部分相同,也可以完全相同。
进一步的,本申请所述实施例中所述网络设备对所管理的小区分配导频序列时,获取所述目标小区的预设导频序列个数M。然后,从所述序列矩阵中选取M个数组元素,并确定所述M个数组元素的序号。最后,所述网络设备在所述目标小区内广播导频序列配置信息。其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号,所述每个数组元素的序号为所述序列矩阵中构成所述数组元素的行或列的序号,M为正整数。
示例性的,假设与网络设备1管理的目标小区有3个,分别为小区1~3,且所述网络设备生成的序列矩阵为上述矩阵2,所述导频序列的数量为8,导频序列的序号为N1~N8,即所述序列矩阵中N个数组元素的序号为N1~N8。
进一步的,所述网络设备分别获取所述目标小区1~3预设的导频序列个数M,假设,所述网络设备获取到的所述目标小区1~3的预设导频序列个数M如表1所示,则所述网络 设备从生成的序列矩阵中选取4个数组元素的序号,并将所述4个数组元素的序号对应的导频序列确定为用于与所述目标小区1进行通信的导频序列;从所述序列矩阵中选取5个数组元素的序号,并将所述5个数组元素的序号对应的导频序列确定为用于与所述目标小区2进行通信的导频序列;因所述目标小区3对应的预设导频序列个数与所述序列矩阵中数组元素的个数相同,则将所述序列矩阵中的所有数组元素的对应的导频序列确定为用于与所述目标小区3进行通信的导频序列。
Figure PCTCN2020122603-appb-000007
表1目标小区与预设导频序列个数对应关系
其中,假设所述网络设备分别为所述目标小区1~3选取的数组元素序号如表2所示。
目标小区 数组元素序号
目标小区1 N1、N2、N5、N7
目标小区2 N2-N6
目标小区3 所有导频
表2目标小区与数组元素序号的对应关系
进一步的,本申请实施例中所述网络设备将所述目标小区对应的M个数组元素序号携带在所述导频序列配置信息中,通过广播的方式通知给所述目标小区。其中,所述导频序列配置信息中还包括所述导频序列的长度L以及所述导频序列的数量N。
可选的,本申请实施例中,所述网络设备还可以先从所述序列矩阵中确定分配给所述目标小区1~3的导频序列,然后在确定所述导频序列在所述序列矩阵中的数组元素序号,并将所述数组元素序号携带在所述导频序列配置信息中,通过广播的方式通知给所述目标小区。
示例性的,假设,所述网络设备从生成的序列矩阵中选取的4个数组元素如矩阵4所示,则所述网络设备确定所述4个数组元素对应的数组元素的序号分别为N1、N2、N5、N7;所述网络设备从生成的序列矩阵中选取的5个数组元素如矩阵5所示,则所述网络设备确定所述5个数组元素对应的数组元素的序号分别为N2~N6。
因所述目标小区3对应的预设导频序列个数与所述序列矩阵中数组元素的个数相同,则所述网络设备将所述矩阵2确定为用于与所述目标小区3通信的导频序列,故所述网络设备可以确定所述目标小区3对应的数组元素序号为N1~N8。
Figure PCTCN2020122603-appb-000008
Figure PCTCN2020122603-appb-000009
进一步的,所述目标小区中待接入终端设备需要与所述网络设备进行通信传输时,所述终端设备接收网络设备广播的导频序列配置信息,然后,所述终端设备根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵。
示例性的,所述终端设备获取到的所述导频序列的长度为4,所述导频序列的数量为8,且所述预设的矩阵生成规则为基于导频序列的数量N生成一个N阶DFT矩阵,并从所述N阶DFT矩阵中选取一个N行L列的子矩阵作为序列矩阵。
因此,所述终端设备根据所述导频序列的数量8生成如上述矩阵1所示的DFT矩阵,然后从所述DFT矩阵中选取一个8行4列的子矩阵确定为所述网络设备生成的序列矩阵,例如,所述终端设备选取的所述子矩阵如上述矩阵3所示。其中,所述序列矩阵中的每一行数组元素可以确定为一个导频序列。
进一步的,所述终端设备还需根据所述导频配置信息中的M个数组元素的序号,确定所在目标小区对应的导频序列。
示例性的,所述终端设备获取到的所述M个数组元素的序号为N2~N4以及N6,则所述终端设备可以确定所在小区对应的导频序列可以如上述矩阵6所示,其中,所述矩阵6中的每一行数组元素用于确定一个导频序列。
Figure PCTCN2020122603-appb-000010
进一步的,所述终端设备根据所述矩阵6中的4个数组元素生成4个导频序列,并在所述4个导频序列中选择目标导频序列进行随机接入。其中,所述终端设备可通过随机选择的方式,从所述4个导频序列中选择用于与所述网络设备进行通信的目标导频序列。
可选的,本申请实施例中,所述网络设备还可以通过RRC信令的方式直接向通知所述终端设备用于进行通信的导频序列的信息,具体可分为多种情况,下面分别进行介绍。
分配方式1:所述网络设备向所述终端设备发送的RRC信令中包含至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系。
进一步的,所述终端设备接收所述网络设备发送的RRC信令,根据所述RRC信令中的导频序列的数量N以及所述导频序列的长度L确定所述网络设备生成的序列矩阵。然后,所述网络设备根据所述RRC信令中包含的所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系,确定所述至少一个数组元素的序号;然后从所述序列矩阵中确定所述至少一个数组元素。
其中,需要说明的是,因所述终端仅能在所在小区对应的导频序列范围内选取用于与所述网络设备通信的导频序列,因此,所述终端设备从所述序列矩阵中确定至少一个数组元素可以默认为所述终端设所选取的数组元素包含在所述M个数组元素中。
进一步的,所述终端设备从选取的至少一个数组元素中可通过随机选取的方式,确定一个数组元素,并根据确定的数组元素生成用于与所述网络设备通信的导频序列。
示例性的,假设所述终端设备位于所述目标小区1中。因此,所述网络设备从所述目标小区对应的数组元素的序号N1、N2、N5、N7中选取至少一个数组元素的序号。其中,所述目标小区中数组元素的编号与所述目标小区中数组元素在所述序列矩阵中的序号的对应关系如表3所示。
例如,所述网络设备选取的数组元素的编号为编号1和编号3,并将所选取的数组元素的编号1和所述数组元素的编号3以及数组元素的编号与数组元素的序号的对应关系通知给所述终端设备。
数组元素的序号 数组元素的编号
N1 编号1
N2 编号2
N5 编号3
N7 编号4
表3数组元素的编号与数组元素的序号的对应关系
所述终端设备接收所述网络设备发送的RRC信令,根据所述RRC信令中的导频序列的数量N以及所述导频序列的长度L确定所述网络设备生成的序列矩阵。然后,所述终端设备根据所述RRC信令中包含的数组元素的编号以及数组元素的编号和数组元素的序号的对应关系确定接收到的数组元素的编号1对应的数组元素的序号为N1,确定接收到的数组元素的编号3对应的数组元素的序号为N5。所述终端设备从所述N1对应的数组元素和所述N5对应的数组元素中选取一个数组元素生成一个导频序列,所述终端设备根据生成的导频序列与所述网络设备进行通信。
需要说明的是,本申请实施例中所述终端设备可以先从接收到的至少一个数组元素的编号中选取一个数组元素的编号,然后仅需确定所选取的数组元素的编号对应的数组元素,并生成导频序列;再或者所述终端设备还可以在确定接收到的至少一个数组元素的编号对应的导频序列后,从确定的至少一个导频序列中选取一个用于与所述网络设备通信的导频序列。
因此,所述终端设备可根据用于确定导频序列的公式2,将选取的数组元素的序号、导频序列的数量N以及导频序列的长度L分别代入公式2,从而得到导频序列。
Figure PCTCN2020122603-appb-000011
其中,所述s(n)表示所述导频序列中第n行的元素值,p_n表示所述导频序列的行数且p=0,…,L-1;q表示所述导频序列在所述序列矩阵中对应的数组元素的序号;所述N表示所述序列矩阵中数组元素的总数量,j为虚数单位。
分配方式2:所述网络设备向所述终端设备发送的RRC信令中包含所述M个数组元素中至少一个数组元素的序号,所述导频序列的数量N以及所述导频序列的长度L。
进一步的,所述终端设备接收所述网络设备发送的RRC信令,根据所述RRC信令中的导频序列的数量N以及所述导频序列的长度L确定所述网络设备生成的序列矩阵。然后,所述网络设备根据所述RRC信令中包含的所述M个数组元素中至少一个数组元素的序号从所述序列矩阵中确定至少一个数组元素。
其中,需要说明的是,因所述终端仅能在所在小区对应的导频序列范围内选取用于与所述网络设备通信的导频序列,因此,所述终端设备从所述序列矩阵中确定至少一个数组元素可以默认为所述终端设所选取的数组元素包含在所述M个数组元素中。
进一步的,所述终端设备从选取的至少一个数组元素中可通过随机选取的方式,确定一个数组元素,并根据确定的数组元素生成用于与所述网络设备通信的导频序列。
示例性的,假设所述终端设备位于所述目标小区1中。因此,所述网络设备从所述目标小区对应的数组元素的序号N1、N2、N5、N7中选取至少一个数组元素的序号,例如,选取的数组元素的序号为N2和N5,并将所选取的数组元素的序号N2和N5通知给所述终端设备。
所述终端设备接收所述网络设备发送的RRC信令,根据所述RRC信令中的导频序列的数量N以及所述导频序列的长度L确定所述网络设备生成的序列矩阵。然后,所述终端设备根据所述RRC信令中包含的数组元素的序号N2和N5,确定所述N2和N5在所述序列矩阵中对应的数组元素分别如下述数组元素2所示和数组元素5所示,并从所述N2对应的数组元素和所述N5对应的数组元素中选取一个数组元素生成一个导频序列,所述终端设备根据生成的导频序列与所述网络设备进行通信。
需要说明的是,本申请实施例中所述终端设备可以先从接收到的至少一个数组元素的序号中选取一个数组元素的序号,然后仅需确定所选取的数组元素的序号对应的数组元素,并生成导频序列;再或者所述终端设备还可以在确定接收到的至少一个数组元素的序号对应的导频序列后,从确定的至少一个导频序列中选取一个用于与所述网络设备通信的导频序列。
Figure PCTCN2020122603-appb-000012
Figure PCTCN2020122603-appb-000013
因此,所述终端设备可根据用于确定导频序列的公式2,将选取的数组元素的序号、导频序列的数量N以及导频序列的长度L分别代入公式2,从而得到导频序列。
分配方式3:所述网络设备向所述终端设备发送的RRC信令中包含用于进行通信的导频的范围、所述导频序列的数量N,所述导频序列的长度L。
其中,所述导频范围主要指所选择的导频序列的起始编号。
进一步的,所述终端设备接收所述网络设备发送的RRC信令,根据所述RRC信令中 的导频序列的数量N以及所述导频序列的长度L确定所述网络设备生成的序列矩阵。然后,所述网络设备根据所述RRC信令中包含的导频序列的起始编号,确定所述至少一个数组元素的序号;然后从所述序列矩阵中确定所述至少一个数组元素。
其中,需要说明的是,因所述终端仅能在所在小区对应的导频序列范围内选取用于与所述网络设备通信的导频序列,因此,所述终端设备从所述序列矩阵中确定至少一个数组元素可以默认为所述终端设所选取的数组元素包含在所述M个数组元素中。
进一步的,所述终端设备从选取的至少一个数组元素中可通过随机选取的方式,确定一个数组元素,并根据确定的数组元素生成用于与所述网络设备通信的导频序列。
示例性的,假设所述终端设备位于所述目标小区2中。因此,所述网络设备从所述目标小区对应的数组元素的序号N2~N6中确定一个导频序列的范围,即所述导频序列对应的数组元素的序号范围。
例如,所述网络设备确定的所述数组元素的范围为N2~N5,则所述网络设备将所述导频序列范围,所述导频序列的数量N以及所述导频序列的长度L通过RRC信令通知给所述终端设备。
所述终端设备接收所述网络设备发送的RRC信令,根据所述RRC信令中的导频序列的数量N以及所述导频序列的长度L确定所述网络设备生成的序列矩阵。然后,所述终端设备根据所述RRC信令中包含的数组元素的范围N2~N5,确定所述N2~N5在所述序列矩阵中对应的数组元素分别如下述矩阵7所示。所述终端设备从所述数组元素中随机选择一列数组元素生成一个导频序列,所述终端设备根据生成的导频序列与所述网络设备进行通信。
Figure PCTCN2020122603-appb-000014
因此,所述终端设备可根据用于确定导频序列的公式2,将选取的数组元素的序号、导频序列的数量N以及导频序列的长度L分别代入公式2,从而得到导频序列。
示例性的,如图3所示,本申请实施例在进行随机接入时,提供的一种配置导频序列的方法流程包括如下步骤。
S300,所述网络设备确定导频序列的数量N和导频序列的长度L,其中,L、N为正整数,L不大于N。
S301,所述网络设备根据所述导频序列的数量N生成N阶DFT或IDFT矩阵。
S302,所述网络设备在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列。
可选的,本申请实施例中,所述网络设备还可在所述DFT或IDFT矩阵中,按照预设的列选择规则选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
S303,所述网络设备获取管理的目标小区的预设导频序列个数M,并从所述序列矩阵中选取M个数组元素,并确定所述M个数组元素的序号。
其中,本申请实施例中,所述每个数组元素的序号为所述序列矩阵中构成所述数组元素的行或列的序号,M为正整数。
S304,所述网络设备在所述目标小区内广播导频序列配置信息。
其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号。
S305,终端设备接收网络设备广播的导频序列配置信息。
S306,所述终端设备根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵。
S307,所述终端设备根据所述M个数组元素的序号,在所述序列矩阵中确定所述M个数组元素。
S308,所述终端设备根据所述M个数组元素生成M个导频序列,并在所述M个导频序列中选择目标导频序列进行随机接入。
示例性的,如图4所示,本申请实施例在所述网络设备与所述终端设备建立连接后,提供的另一种配置导频序列的方法流程包括如下步骤。
S400,所述网络设备确定导频序列的数量N和导频序列的长度L,其中,L、N为正整数,L不大于N。
S401,所述网络设备根据所述导频序列的数量N生成N阶DFT或IDFT矩阵。
S402,所述网络设备在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列。
可选的,本申请实施例中,所述网络设备还可在所述DFT或IDFT矩阵中,按照预设的列选择规则选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
S403,所述网络设备获取管理的目标小区的预设导频序列个数M,并从所述序列矩阵中选取M个数组元素作为所述网络设备与所述目标小区中的终端设备通信使用的导频序列。
可选的,本申请实施例中所述网络设备可确定选择的M个数组元素对应的数组元素在所述序列矩阵的序号;或本申请实施例中所述网络设备可确定选择额M个数组元素对应的数组元素在所述M个数组元素中的数组元素的编号。
S404,所述网络设备向所述终端设备发送携带导频序列配置信息的RRC信令。
其中,本申请实施例中在该场景下所述导频序列配置信息中包含的内容可分为如下几种:
第一种:导频序列配置信息包含:导频序列的数量N、导频序列的长度L、所述M个数组元素的序号中至少一个数组元素的序号。
第二种:导频序列配置信息包含:导频序列的数量N、导频序列的长度L、至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系。
第三种:导频序列配置信息包含:导频序列的数量N、导频序列的长度L、所述M个数组元素的序号范围。
S405,所述终端设备从所述网络设备接收RRC信令。
S406,所述终端设备根据所述RRC信令中的导频序列配置信息确定至少一个数组元素。
S407,所述终端设备从所述至少一个数组元素中选取一个数组元素,生成与所述网络设备通信的导频序列。
基于以上实施例,如图5所示,本申请一种网络设备,该网络网设备包括处理器500、存储器501和通信接口502。
处理器500负责管理总线架构和通常的处理,存储器501可以存储处理器500在执行操作时所使用的数据。收发机通信接口502用于在处理器500的控制下接收和发送数据与存储器501进行数据通信。
所述处理器500可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器500还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器501可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
所述处理器500、所述存储器501以及所述通信接口502之间相互连接。可选的,所述处理器500、所述存储器501以及所述通信接口502可以通过总线503相互连接;所述总线503可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
具体地,所述处理器500,用于读取存储器501中的程序并执行:
用于确定导频序列的长度L,以及确定导频序列的数量N;其中,L、N为正整数,L不大于N;根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列;其中所述数组元素为所述序列矩阵中的一行或一列;获取管理的目标小区的预设导频序列个数M,并从所述序列矩阵中选取M个数组元素,并确定所述M个数组元素的序号,其中,所述每个数组元素的序号为所述序列矩阵中构成所述数组元素的行或列的序号,M为正整数;在所述目标小区内广播导频序列配置信息,其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号。
在一种可能的实现方法中,所述处理器500具体用于:
根据所述导频序列的数量N,按照预设的矩阵生成规则,生成N阶DFT或IDFT矩阵;在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列;或所述网络设备在所述DFT或IDFT矩阵中,按照预设的列选择规则选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
在一种可能的实现方法中,所述处理器500还用于:
从所述M个数组元素的序号中选择至少一个数组元素的序号,并向所述终端设备发送RRC信令,其中,RRC信令中包含所述至少一个数组元素的序号;或从所述M个数组元素中选择至少一个数组元素,并向所述终端设备发送RRC信令,其中,所述RRC信令中包含所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系。
在一种可能的实现方法中,所述处理器500具体用于:
根据导频序列占用的时频资源大小确定所述导频序列的长度L;或确定导频序列的数量N之后,根据所述导频序列的数量N,确定导频序列长度L。
在一种可能的实现方法中,所述处理器500具体用于:
根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的数量N对应的所述导频序列的长度L;或根据所述导频序列的数量N以及所述预设的序列矩阵生成规则,生成N阶DFT或IDFT矩阵;并将所述DFT或IDFT矩阵的一个差集矩阵对应的行数确定为预设的所述导频序列的长度L。
在一种可能的实现方法中,所述处理器500具体用于:
确定所述导频序列长度L,根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的长度L对应的所述导频序列的数量N。
如图6所示,本申请提供一种网络设备,该网络设备包括:至少一个处理单元600、至少一个存储单元601以及至少一个通信单元602,其中,所述通信单元602用于在所述处理单元600的控制下接收和发送数据,所述存储单元601存储有程序代码,当所述程序代码被所述处理单元600执行时,使得所述处理单元600执行下列过程:
用于确定导频序列的长度L,以及确定导频序列的数量N;其中,L、N为正整数,L不大于N;根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列;其中所述数组元素为所述序列矩阵中的一行或一列;获取管理的目标小区的预设导频序列个数M,并从所述序列矩阵中选取M个数组元素,并确定所述M个数组元素的序号,其中,所述每个数组元素的序号为所述序列矩阵中构成所述数组元素的行或列的序号,M为正整数;在所述目标小区内广播导频序列配置信息,其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号。
在一种可能的实现方法中,所述处理单元600具体用于:
根据所述导频序列的数量N,按照预设的矩阵生成规则,生成N阶DFT或IDFT矩阵;在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列;或所述网络设备在所述DFT或IDFT矩阵中,按照预设的列选择规则选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
在一种可能的实现方法中,所述处理单元600还用于:
从所述M个数组元素的序号中选择至少一个数组元素的序号,并向所述终端设备发送RRC信令,其中,RRC信令中包含所述至少一个数组元素的序号;或从所述M个数组元素中选择至少一个数组元素,并向所述终端设备发送RRC信令,其中,所述RRC信令中包含所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系。
在一种可能的实现方法中,所述处理单元600具体用于:
根据导频序列占用的时频资源大小确定所述导频序列的长度L;或确定导频序列的数量N之后,根据所述导频序列的数量N,确定导频序列长度L。
在一种可能的实现方法中,所述处理单元600具体用于:
根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的数量N对应的 所述导频序列的长度L;或根据所述导频序列的数量N以及所述预设的序列矩阵生成规则,生成N阶DFT或IDFT矩阵;并将所述DFT或IDFT矩阵的一个差集矩阵对应的行数确定为预设的所述导频序列的长度L。
在一种可能的实现方法中,所述处理单元600具体用于:
确定所述导频序列长度L,根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的长度L对应的所述导频序列的数量N。
如图7所示,本申请实施例还提供了一种终端设备,该终端设备包括处理器700、存储器701和收发机702;
处理器700负责管理总线架构和通常的处理,存储器701可以存储处理器700在执行操作时所使用的数据。收发机702用于在处理器700的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器701代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器700负责管理总线架构和通常的处理,存储器701可以存储处理器700在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器700中,或者由处理器700实现。在实现过程中,信号处理流程的各步骤可以通过处理器700中的硬件的集成逻辑电路或者软件形式的指令完成。处理器700可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器701,处理器700读取存储器701中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器700,用于读取存储器701中的程序并执行:
用于接收网络设备广播的导频序列配置信息;其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号;根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列;其中所述数组元素为所述序列矩阵中的一行或一列;根据所述M个数组元素的序号,在所述序列矩阵中确定所述M个数组元素;根据所述M个数组元素生成M个导频序列,并在所述M个导频序列中选择目标导频序列进行随机接入。
在一种可能的实现方法中,所述处理器700具体用于:
根据所述导频序列配置信息中的导频序列的数量N,按照预设的序列矩阵生成规则,确定所述网络设备生成的N阶DFT或IDFT矩阵;在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列;或所述终端设备在所述DFT或IDFT矩阵中,按照预设的列选择规选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
在一种可能的实现方法中,所述处理器700还用于:
从所述网络设备接收RRC信令,其中,所述RRC信令中包含所述M个数组元素中至少一个数组元素的序号;所述终端设备根据所述至少一个数组元素的序号,在所述M个数组元素中确定至少一个数组元素,并根据所述至少一个数组元素生成至少一个导频序列,所述至少一个导频序列用于所述终端设备与所述网络设备通信;或从所述网络设备接收RRC信令,其中,所述RRC信令中包含至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系;所述终端设备根据所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系,确定所述至少一个数组元素的序号;然后从所述M个数组中确定所述至少一个数组元素,并根据所述至少一个数组元素生成至少一个导频序列,所述至少一个导频序列用于所述终端设备与所述网络设备通信。
如图8所示,本申请提供一种终端设备,该终端设备包括:至少一个处理单元800、至少一个存储单元801以及至少一个通信单元802,其中,所述通信单元802用于在所述处理单元800的控制下接收和发送数据,所述存储单元801存储有程序代码,当所述程序代码被所述处理单元800执行时,使得所述处理单元800执行下列过程:
用于接收网络设备广播的导频序列配置信息;其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号;根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列;其中所述数组元素为所述序列矩阵中的一行或一列;根据所述M个数组元素的序号,在所述序列矩阵中确定所述M个数组元素;根据所述M个数组元素生成M个导频序列,并在所述M个导频序列中选择目标导频序列进行随机接入。
在一种可能的实现方法中,所述处理单元800具体用于:
根据所述导频序列配置信息中的导频序列的数量N,按照预设的序列矩阵生成规则,确定所述网络设备生成的N阶DFT或IDFT矩阵;在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列;或所述终端设备在所述DFT或IDFT矩阵中,按照预设的列选择规选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
在一种可能的实现方法中,所述处理单元800还用于:
从所述网络设备接收RRC信令,其中,所述RRC信令中包含所述M个数组元素中至少一个数组元素的序号;所述终端设备根据所述至少一个数组元素的序号,在所述M个数组元素中确定至少一个数组元素,并根据所述至少一个数组元素生成至少一个导频序列,所述至少一个导频序列用于所述终端设备与所述网络设备通信;或从所述网络设备接收RRC信令,其中,所述RRC信令中包含至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系;所述终端设备根据所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系,确定所述至少一个数组元素的序号;然后从所述M个数组中确定所述至少一个数组元素,并根据所述至少一个数组元素生成至少一个导频序列,所述至少一个导频序列用于所述终端设备与所述网络设备通信。
在一些可能的实施方式中,本申请实施例提供的一种配置导频序列的方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序代码在计算机设备上运行时,所述程序代码用于使所述计算机设备执行本说明书中描述的根据本申请各种示例性实施方式的配置导频序列的方法中的步骤。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
根据本申请的实施方式的用于执行一种配置导频序列的程序产品,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在服务器设备上运行。然而,本申请的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被信息传输、装置或者器件使用或者与其结合使用。
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由周期网络动作系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、有线、光缆、RF等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本申请操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算设备,或者,可以连接到外部计算设备。
本申请实施例针对网络设备执行配置导频序列的方法还提供一种计算设备可读存储介质,即断电后内容不丢失。该存储介质中存储软件程序,包括程序代码,当所述程序代码在计算设备上运行时,该软件程序在被一个或多个处理器读取并执行时可实现本申请实施例上面任何一种配置导频序列的方案。
本申请实施例针对终端设备执行配置导频序列的方法还提供一种计算设备可读存储介质,即断电后内容不丢失。该存储介质中存储软件程序,包括程序代码,当所述程序代码在计算设备上运行时,该软件程序在被一个或多个处理器读取并执行时可实现本申请实施例上面任何一种配置导频序列的方案。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的 一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (22)

  1. 一种配置导频序列的方法,其特征在于,包括:
    网络设备确定导频序列的长度L,以及确定导频序列的数量N;其中,L、N为正整数,L不大于N;
    所述网络设备根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列;其中所述数组元素为所述序列矩阵中的一行或一列;
    所述网络设备获取管理的目标小区的预设导频序列个数M,并从所述序列矩阵中选取M个数组元素,并确定所述M个数组元素的序号,其中,所述每个数组元素的序号为所述序列矩阵中构成所述数组元素的行或列的序号,M为正整数;
    所述网络设备在所述目标小区内广播导频序列配置信息,其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,包括:
    所述网络设备根据所述导频序列的数量N,按照预设的矩阵生成规则,生成N阶DFT或IDFT矩阵;
    所述网络设备在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列;或所述网络设备在所述DFT或IDFT矩阵中,按照预设的列选择规则选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
  3. 如权利要求2所述的方法,其特征在于,所述网络设备在所述目标小区内广播导频序列配置信息之后,还包括:
    所述网络设备从所述M个数组元素的序号中选择至少一个数组元素的序号,并向所述终端设备发送RRC信令,其中,RRC信令中包含所述至少一个数组元素的序号;或
    所述网络设备从所述M个数组元素中选择至少一个数组元素,并向所述终端设备发送RRC信令,其中,所述RRC信令中包含所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述网络设备确定所述导频序列长度L,包括:
    所述网络设备根据导频序列占用的时频资源大小确定所述导频序列的长度L;或
    所述网络设备确定导频序列的数量N之后,根据所述导频序列的数量N,确定导频序列长度L。
  5. 如权利要求4所述的方法,其特征在于,所述网络设备确根据所述导频序列的数量N,确定导频序列的长度L,包括:
    所述网络设备根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的数量N对应的所述导频序列的长度L;或
    所述网络设备根据所述导频序列的数量N以及所述预设的序列矩阵生成规则,生成N阶DFT或IDFT矩阵;并将所述DFT或IDFT矩阵的一个差集矩阵对应的行数确定为预设的所述导频序列的长度L。
  6. 如权利要求1-3任一项所述的方法,其特征在于,所述网络设备确定所述导频序列的数量N,包括:
    所述网络设备确定所述导频序列长度L,根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的长度L对应的所述导频序列的数量N。
  7. 一种配置导频序列的方法,其特征在于,包括:
    终端设备接收网络设备广播的导频序列配置信息;其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号;
    所述终端设备根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列;其中所述数组元素为所述序列矩阵中的一行或一列;
    所述终端设备根据所述M个数组元素的序号,在所述序列矩阵中确定所述M个数组元素;
    所述终端设备根据所述M个数组元素生成M个导频序列,并在所述M个导频序列中选择目标导频序列进行随机接入。
  8. 如权利要求7所述的方法,其特征在于,所述终端设备根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,包括:
    所述终端设备根据所述导频序列配置信息中的导频序列的数量N,按照预设的序列矩阵生成规则,确定所述网络设备生成的N阶DFT或IDFT矩阵;
    所述终端设备在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列;或所述终端设备在所述DFT或IDFT矩阵中,按照预设的列选择规选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
  9. 如权利要求7所述的方法,其特征在于,所述终端设备在所述M个导频序列中选择目标导频序列进行随机接入之后,还包括:
    所述终端设备从所述网络设备接收RRC信令,其中,所述RRC信令中包含所述M个数组元素中至少一个数组元素的序号;所述终端设备根据所述至少一个数组元素的序号,在所述M个数组元素中确定至少一个数组元素,并根据所述至少一个数组元素生成至少一个导频序列,所述至少一个导频序列用于所述终端设备与所述网络设备通信;或
    所述终端设备从所述网络设备接收RRC信令,其中,所述RRC信令中包含至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系;所述终端设备根据所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系,确定所述至少一个数组元素的序号;然后从所述M个数组中确定所述至少一个数组元素,并根据所述至少一个数组元素生成至少一个导频序列,所述至少一个导频序列用于所述终端设备与所述网络设备通信。
  10. 一种网络设备,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于确定导频序列的长度L,以及确定导频序列的数量N;其中,L、N为正整数,L不大于N;根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列;其中所述数组元素为所述序列矩阵中的一行或一列;获取管理的目标小区的预设导频序列个数M,并从所述序列矩阵中选取M个数组元素,并确定所述M个 数组元素的序号,其中,所述每个数组元素的序号为所述序列矩阵中构成所述数组元素的行或列的序号,M为正整数;在所述目标小区内广播导频序列配置信息,其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号。
  11. 如权利要求10所述的网络设备,其特征在于,所述处理单元具体用于:
    根据所述导频序列的数量N,按照预设的矩阵生成规则,生成N阶DFT或IDFT矩阵在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列;或所述网络设备在所述DFT或IDFT矩阵中,按照预设的列选择规则选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
  12. 如权利要求11所述的网络设备,其特征在于,所述处理单元还用于:
    从所述M个数组元素的序号中选择至少一个数组元素的序号,并向所述终端设备发送RRC信令,其中,RRC信令中包含所述至少一个数组元素的序号;或从所述M个数组元素中选择至少一个数组元素,并向所述终端设备发送RRC信令,其中,所述RRC信令中包含所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系。
  13. 如权利要求10~12任一项所述的网络设备,其特征在于,所述处理单元具体用于:根据导频序列占用的时频资源大小确定所述导频序列的长度L;或确定导频序列的数量N之后,根据所述导频序列的数量N,确定导频序列长度L。
  14. 如权利要求13所述的网络设备,其特征在于,所述处理单元具体用于:
    根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的数量N对应的所述导频序列的长度L;或根据所述导频序列的数量N以及所述预设的序列矩阵生成规则,生成N阶DFT或IDFT矩阵;并将所述DFT或IDFT矩阵的一个差集矩阵对应的行数确定为预设的所述导频序列的长度L。
  15. 如权利要求10~12任一所述的网络设备,其特征在于,所述处理单元具体用于:确定所述导频序列长度L,根据导频序列长度与导频序列的数量的对应关系,确定所述导频序列的长度L对应的所述导频序列的数量N。
  16. 一种终端设备,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于接收网络设备广播的导频序列配置信息;其中,导频序列配置信息包括:所述导频序列的长度L、所述导频序列的数量N,所述M个数组元素的序号;根据所述导频序列的长度L、所述导频序列的数量N,以及预设的序列矩阵生成规则,生成序列矩阵,所述序列矩阵中的每个数组元素用于组成一个长度为L的导频序列;其中所述数组元素为所述序列矩阵中的一行或一列;根据所述M个数组元素的序号,在所述序列矩阵中确定所述M个数组元素;根据所述M个数组元素生成M个导频序列,并在所述M个导频序列中选择目标导频序列进行随机接入。
  17. 如权利要求16所述的终端设备,其特征在于,所述处理单元具体用于:
    根据所述导频序列配置信息中的导频序列的数量N,按照预设的序列矩阵生成规则,确定所述网络设备生成的N阶DFT或IDFT矩阵;在所述DFT或IDFT矩阵中,按照预设的行选择规则选择L行组成所述序列矩阵,所述数组元素为所述序列矩阵中的一列;或所述终端设备在所述DFT或IDFT矩阵中,按照预设的列选择规选择L列组成所述序列矩阵,所述数组元素为所述序列矩阵中的一行。
  18. 如权利要求16所述的终端设备,其特征在于,所述处理单元还用于:
    从所述网络设备接收RRC信令,其中,所述RRC信令中包含所述M个数组元素中至少一个数组元素的序号;所述终端设备根据所述至少一个数组元素的序号,在所述M个数组元素中确定至少一个数组元素,并根据所述至少一个数组元素生成至少一个导频序列,所述至少一个导频序列用于所述终端设备与所述网络设备通信;或
    从所述网络设备接收RRC信令,其中,所述RRC信令中包含至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系;所述终端设备根据所述至少一个数组元素在所述M个数组元素中的数组编号,以及数组编号与数组元素的序号的对应关系,确定所述至少一个数组元素的序号;然后从所述M个数组中确定所述至少一个数组元素,并根据所述至少一个数组元素生成至少一个导频序列,所述至少一个导频序列用于所述终端设备与所述网络设备通信。
  19. 一种网络设备,其特征在于,包括:收发器;一个或多个处理器;存储器;一个或多个程序;其中所述一个或多个程序被存储在所述存储器中,所述一个或多个程序包括指令,当所述指令被所述处理器执行时,使得所述网络设备执行如权利要求1-6中任一所述的方法步骤。
  20. 一种终端设备,其特征在于,包括:显示屏;一个或多个处理器;存储器;一个或多个程序;其中所述一个或多个程序被存储在所述存储器中,所述一个或多个程序包括指令,当所述指令被所述处理器执行时,使得所述终端设备执行如权利要求7-9中任一所述的方法步骤。
  21. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在网络设备上运行时,使得所述网络设备执行如权利要求1-6中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在终端设备上运行时,使得所述终端设备执行如权利要求7-9中任一项所述的方法。
PCT/CN2020/122603 2019-10-22 2020-10-21 一种配置导频序列的方法及装置 WO2021078172A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911006147.0A CN112702149B (zh) 2019-10-22 2019-10-22 一种配置导频序列的方法及装置
CN201911006147.0 2019-10-22

Publications (1)

Publication Number Publication Date
WO2021078172A1 true WO2021078172A1 (zh) 2021-04-29

Family

ID=75504563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122603 WO2021078172A1 (zh) 2019-10-22 2020-10-21 一种配置导频序列的方法及装置

Country Status (2)

Country Link
CN (1) CN112702149B (zh)
WO (1) WO2021078172A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143103A (zh) * 2011-05-19 2011-08-03 新邮通信设备有限公司 一种导频序列的生成方法
CN102388588A (zh) * 2011-09-30 2012-03-21 华为技术有限公司 一种串扰信道估计方法、装置及系统
CN105610561A (zh) * 2016-01-29 2016-05-25 中国科学院计算技术研究所 一种大规模多输入多输出系统中导频序列的分配方法
US20190190753A1 (en) * 2017-12-15 2019-06-20 Huawei Technologies Co., Ltd. Methods for configurable non-orthogonal multiple access transmission

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872298B (zh) * 2016-09-26 2023-09-22 华为技术有限公司 免授权传输的方法、网络设备和终端设备
CN110166194B (zh) * 2018-02-12 2020-09-08 华为技术有限公司 一种导频信号生成方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143103A (zh) * 2011-05-19 2011-08-03 新邮通信设备有限公司 一种导频序列的生成方法
CN102388588A (zh) * 2011-09-30 2012-03-21 华为技术有限公司 一种串扰信道估计方法、装置及系统
CN105610561A (zh) * 2016-01-29 2016-05-25 中国科学院计算技术研究所 一种大规模多输入多输出系统中导频序列的分配方法
US20190190753A1 (en) * 2017-12-15 2019-06-20 Huawei Technologies Co., Ltd. Methods for configurable non-orthogonal multiple access transmission

Also Published As

Publication number Publication date
CN112702149B (zh) 2022-06-10
CN112702149A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
US11038576B2 (en) Phase tracking reference signal sending method and apparatus
US11757688B2 (en) Sequence-based signal processing method and apparatus
US11424854B2 (en) PDCCH sending method and apparatus, and PDCCH blind detection method and apparatus
US11102745B2 (en) Method and apparatus for downlink synchronization of broadcast signals in a wireless communication system
JP2023052656A (ja) 情報送信方法及び装置
US11464032B2 (en) Sequence-based signal processing method and apparatus
US11381436B2 (en) Reference signal pattern transmission method and apparatus therefor
US20220052789A1 (en) Communication method and apparatus
WO2020030253A1 (en) Reducing dci payload
WO2021078172A1 (zh) 一种配置导频序列的方法及装置
WO2019095783A1 (zh) 一种同步块与寻呼调度信令关联方法、指示方法及装置
CN111050335A (zh) 一种无线局域网络通信的方法、接入点及站点
WO2022002005A1 (zh) 一种序列生成方法及相关设备
EP4033846A1 (en) Data processing method and apparatus
WO2021031874A1 (zh) 信号传输方法和通信装置
CN110062473B (zh) 随机接入方法、终端设备和网络设备
US20240121068A1 (en) Communication method and apparatus
WO2023160675A1 (zh) 信号传输方法及相关装置
WO2021027691A1 (zh) 一种码字的传输方法及装置
EP3902154A1 (en) Data transmission method and apparatus
WO2020063684A1 (zh) 一种通信方法及装置
WO2020097942A1 (zh) 一种识别终端的带宽能力的方法、设备及系统
JP2024502661A (ja) 物理ダウンリンク制御チャネル伝送方法及び関連する装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879678

Country of ref document: EP

Kind code of ref document: A1