WO2020063684A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020063684A1
WO2020063684A1 PCT/CN2019/107917 CN2019107917W WO2020063684A1 WO 2020063684 A1 WO2020063684 A1 WO 2020063684A1 CN 2019107917 W CN2019107917 W CN 2019107917W WO 2020063684 A1 WO2020063684 A1 WO 2020063684A1
Authority
WO
WIPO (PCT)
Prior art keywords
common signal
system information
subcarrier interval
mapping pattern
control channel
Prior art date
Application number
PCT/CN2019/107917
Other languages
English (en)
French (fr)
Inventor
刘建琴
朱俊
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020063684A1 publication Critical patent/WO2020063684A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • mapping patterns are defined, which are used to define the data channel of the first system information, the control channel of the first system information, and the time-frequency resources between the first public signal Reuse situation.
  • regulations require that the signal transmission bandwidth of the communication equipment on the unlicensed spectrum occupies at least 80% of the entire system bandwidth or the entire available channel bandwidth. If the mapping pattern in the licensed frequency band is reused directly, it may happen that the unlicensed frequency band regulatory requirements cannot be met.
  • how to define the mapping pattern between the data channel of the first system information, the control channel of the first system information, and the first common signal in the unlicensed band, and how the network device indicates the mapping pattern to the terminal and No related solutions.
  • this application discloses a communication method and apparatus, including: a terminal receiving first indication information from a network device; wherein the first indication information is used to indicate a data channel of the first system information and the first system A mapping pattern between at least one of the control channels of the information and the first common signal, the mapping pattern is related to at least one of the first subcarrier interval or the second subcarrier interval, and the first subcarrier interval is The subcarrier interval of the control channel of the first system information, and the second subcarrier interval is a subcarrier interval of the first common signal; and the terminal receives the first system information according to the first instruction information. .
  • the network device may determine a mapping pattern between at least one of a data channel of the first system information and a control channel of the first system information and the first common signal, and map the mapping The pattern is indicated to the terminal.
  • the workload of the terminal can be reduced and the power consumption of the terminal can be reduced.
  • the first subcarrier interval or the second subcarrier interval is any one of 15kHz, 30kHz, and 60kHz, and when the first subcarrier interval is 15kHz or 30kHz, and When the second subcarrier interval is 15kHz or 30kHz, the mapping pattern is a first mapping pattern; when the first subcarrier interval or the second subcarrier interval is 60kHz, the mapping pattern is a second mapping pattern Map pattern.
  • the data channel of the first system information and the control channel of the first system information in the first mapping pattern are frequency division multiplexed, and the control channel of the first system information Time-division multiplexed with the first common signal, and the data channel of the first system information is time-division multiplexed with the first common signal.
  • the foregoing first mapping pattern may be applicable to a case where the first subcarrier interval of the first common signal is small (for example, the first subcarrier interval may be 15kHz or 30kHz). Because in actual applications, the smaller the first subcarrier interval value of the first common signal, the smaller the bandwidth occupied by the first common signal.
  • the first common signal may be repeated multiple times at different frequencies in the same time unit, and the first common signal is repeated multiple times on the same time unit it occupies, so that the The first public signal transmitted on the time unit can meet the regulatory requirements of the unlicensed frequency band.
  • control channel of the first system information, the data channel of the first system information, and the first common signal in the first mapping pattern are frequency-division-multiplexed between the three. use.
  • the first common signal, the control channel of the first system information, and the data channel of the first system information are frequency-multiplexed on the same time unit, which can be avoided on a time unit In the case where the first common signal is transmitted alone and thus cannot meet the regulatory requirements of the unlicensed frequency band.
  • a control channel of the first system information and a data channel of the first system information in the first mapping pattern or the second mapping pattern occupy the same frequency domain resources and sometimes
  • the domain resources are orthogonal
  • the time domain resources occupied by the first common signal are the same as the time domain resources jointly occupied by the control channel and the data channel of the first system information
  • the frequency domain resources occupied by the first common signal are the same as The frequency domain resources occupied by the control channel of the first system information are orthogonal.
  • the first common signal is frequency-division multiplexed with the control channel of the first system information
  • the first common signal is frequency-division multiplexed with the data channel of the first system information, which can avoid being separated on a time unit.
  • the regulatory requirements of the unlicensed frequency band can be met.
  • control channel of the first system information, the data channel of the first system information, and the first common signal in the second mapping pattern are time-division multiplexed between the three. .
  • the first common signal is repeatedly transmitted multiple times on different frequency domain resources in the same time unit that it occupies. Therefore, regardless of whether the first subcarrier interval corresponding to the first common signal is large or small, Both meet regulatory requirements for unlicensed bands.
  • control channel of the first system information in the second mapping pattern is frequency division multiplexed with the first common signal
  • data channel of the first system information is A control channel of a system information is time division multiplexed
  • first common signal is time division multiplexed with a data channel of the first system information
  • the first common signal and the control channel of the first system information are frequency division multiplexed on the same time unit, so whether the first subcarrier interval corresponding to the first common signal is large or small, it can be satisfied. Regulatory requirements for unlicensed bands.
  • a bandwidth of the data channel of the first system information is equal to a first Know the bandwidth minus the bandwidth of the control channel of the first system information; when the control channel of the first system information, the data channel of the first system information, and the first common signal, the three are frequency division multiplexed When the bandwidth of the data channel of the first system information is equal to the first known bandwidth minus the bandwidth of the control channel of the first system information and the bandwidth of the first common signal.
  • the time domain resources occupied by the data channel of the first system information are two time domains. Orthogonal frequency division multiplexing OFDM symbols between the adjacent first common signals.
  • the method further includes: determining, by the terminal, a repeated mapping pattern of the first common signal according to a second subcarrier interval of the first common signal.
  • the method further includes: receiving, by the terminal, second indication information from the network device; and determining, by the terminal, the repetition of the first common signal according to the second indication information Map pattern.
  • the method further includes: when the repeated mapping pattern of the first common signal includes at least two of the first common signals, the terminal determines the at least two first signals A first common signal among the common signals is a reference first common signal; the terminal receives a control channel of the first system information according to the reference first common signal.
  • the determining, by the terminal, one of the at least two first common signals as a reference first common signal includes: receiving, by the terminal, a third signal from the network device. Indication information, the third indication information is used to indicate the reference first common signal; and the terminal determines the reference first common signal among the at least two first common signals according to the third indication information signal.
  • the first indication information further includes indication information that refers to a first common signal; and the terminal determines that one of the at least two first common signals is a first common signal as The reference common signal includes: determining, by the terminal, the reference first common signal among the at least two first common signals according to the reference information of the reference first common signal included in the first indication information.
  • the present application discloses a communication method including: a network device generating first indication information; wherein the first indication information is used to indicate a data channel of a first system information and a control channel of the first system information A mapping pattern between at least one of the and the first common signal, the mapping pattern is related to at least one of the first subcarrier interval or the second subcarrier interval, and the first subcarrier interval is the first system information A subcarrier interval of the control channel, the second subcarrier interval is a subcarrier interval of the first common signal; and the network device sends the first indication information to the terminal.
  • the method further includes: the network device sends second indication information to the terminal, where the second indication information is used to indicate a repeated mapping pattern of the first common signal.
  • the method further includes: the network device sends third instruction information to the terminal The third indication information is used to indicate that one of the at least two first common signals is a reference first common signal.
  • the first indication information further includes indication information that refers to a common signal, and the reference The common signal is one of the at least two first common signals.
  • the first subcarrier interval or the second subcarrier interval is any one of 15kHz, 30kHz, and 60kHz.
  • the mapping pattern when the first subcarrier interval is 15kHz or 30kHz, and the second subcarrier interval is 15kHz or 30kHz, the mapping pattern is a first mapping pattern; when the first When a subcarrier interval or the second subcarrier interval is 60 kHz, the mapping pattern is a second mapping pattern.
  • the data channel of the first system information and the control channel of the first system information in the first mapping pattern are frequency division multiplexed, and the control channel of the first system information Time-division multiplexed with the first common signal, and the data channel of the first system information is time-division multiplexed with the first common signal.
  • a control channel of the first system information in the first mapping pattern, a control channel of the first system information, a data channel of the first system information, and the first A common signal, frequency division multiplexing between the three.
  • a control channel of the first system information and a data channel of the first system information in the first mapping pattern or the second mapping pattern occupy the same frequency domain resources and sometimes
  • the domain resources are orthogonal
  • the time domain resources occupied by the first common signal are the same as the time domain resources jointly occupied by the control channel and the data channel of the first system information
  • the frequency domain resources occupied by the first common signal are the same as The frequency domain resources occupied by the control channel of the first system information are orthogonal.
  • control channel of the first system information, the data channel of the first system information, and the first common signal in the second mapping pattern are time-division multiplexed between the three. .
  • control channel of the first system information in the second mapping pattern is frequency division multiplexed with the first common signal
  • data channel of the first system information is A control channel of a system information is time division multiplexed
  • first common signal is time division multiplexed with a data channel of the first system information
  • a bandwidth of the data channel of the first system information is equal to a first Know the bandwidth minus the bandwidth of the control channel of the first system information; when the control channel of the first system information, the data channel of the first system information, and the first common signal, the three are frequency division multiplexed When the bandwidth of the data channel of the first system information is equal to the first known bandwidth minus the bandwidth of the control channel of the first system information and the bandwidth of the first common signal.
  • the time domain resources occupied by the data channel of the first system information are two time domains. Orthogonal frequency division multiplexing OFDM symbols between the adjacent first common signals.
  • the present application provides a communication device for a terminal or a chip of the terminal, including: units or means for performing each step of the first aspect above.
  • the present application provides a communication device for a network device or a chip of a network device, including: a unit or a means for performing each step of the second aspect above.
  • the present application provides a communication device for a terminal or a chip of a terminal, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store a program and data, and the at least one process The element is used to perform the method provided by the first aspect of the present application.
  • the present application provides a communication device for a network device or a chip of a network device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store a program and data, and the at least one A processing element is used to perform the method provided by the second aspect of the present application.
  • the present application provides a communication device for a terminal including at least one processing element (or chip) for performing the method in the first aspect above.
  • the present application provides a communication device for a network device, including at least one processing element (or chip) for performing the method in the second aspect above.
  • the present application provides a computer program product including computer instructions that, when executed by a computer, cause the computer to execute the method of any of the above aspects.
  • the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions are executed by a computer, the computer is caused to execute the method of any of the above aspects.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a communication method according to an embodiment of the present application.
  • 4a is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • 4b is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • 5a is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • 5b is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • 6a is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • 6b is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • FIG. 7a is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • FIG. 7b is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • FIG. 8a is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • 8b is a schematic diagram of a mapping pattern provided by an embodiment of the present application.
  • FIG. 9 is a structural example of a communication device according to an embodiment of the present application.
  • FIG. 10 is another structural example of a communication device according to an embodiment of the present application.
  • FIG. 11 is a structural example of a base station according to an embodiment of the present application.
  • FIG. 12 is a structural example of a terminal provided by an embodiment of the present application.
  • the communication system 100 may include a network device 101 and a terminal 102.
  • the communication system 100 may adopt various radio access technologies (radio access technology, RAT), such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division Multiple access (frequency, multiple access, FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA), etc.
  • RAT radio access technology
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division Multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the network device 101 may be a device in a network that connects a terminal to a wireless network.
  • the network device is a node in a radio access network, and may also be called a base station, and may also be called a radio access network (RAN) node (or device).
  • RAN radio access network
  • some examples of network equipment are: gNB, transmission reception point (TRP), evolved Node B (eNB), home base station (e.g., home NodeB, or home NodeB, HNB) Baseband unit (BBU), or WiFi access point (AP).
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node. This structure separates the protocol layer of the eNB in a long term evolution (LTE) system. Some protocol layer functions are centrally controlled by the CU. The remaining part or all of the protocol layer functions are distributed in the DU. Centralized control of DU.
  • LTE long term evolution
  • Terminal 102 also known as terminal equipment, user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • UE user equipment
  • MT mobile terminal
  • some examples of terminals are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • MID mobile internet devices
  • VR virtual reality
  • augmented reality augmented reality
  • Wireless terminals wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the network device 101 and the terminal 102 may work in a licensed frequency band, and may also work in an unlicensed frequency band.
  • a licensed frequency band For example, sub 1G, 5.1-5.8G, 5.9-6.4G, 7.1G, 45GHz, 57-64G, 71GHz and industrial scientific and medical (ISM) frequency bands are allocated to unlicensed frequency bands, while 4G LTE systems use frequency bands Is a licensed band.
  • the ISM frequency band may specifically refer to a free / unlicensed spectrum resource that is universally allocated in the world for industry, science, and medicine.
  • mapping patterns may be defined as mapping pattern 1, mapping pattern 2, and mapping pattern 3.
  • the first common signal, the control channel of the first system information, and the data channel of the first system information may be time-division multiplexed.
  • the control channel of the first system information and the data channel of the first system information are time division multiplexed, and the first common signal and the data channel of the first system information are frequency division multiplexed.
  • mapping pattern 3 the control channel of the first system information and the data channel of the first system information are time-division multiplexed.
  • the control channel of the first system information and the data channel of the first system information occupy the same frequency domain resources.
  • the first common signal is frequency division multiplexed with the control channel of the first system information, and within the time unit occupied by the data channel of the first system information, the first common signal Data channel frequency division multiplexing with the first system information.
  • the frequency division multiplexing may refer to that the time domain resources occupied by multiple channels are the same, and the frequency domain resources are orthogonal or non-overlapping.
  • the mapping order of frequency division multiplexed multiple channels on different frequency domain resources of the same time domain resource is not limited, that is, multiple channels can be mapped in any order in the frequency domain resource range from low to high. As long as the frequency domain resources are orthogonal or non-overlapping.
  • Time division multiplexing can mean that the time domain resources occupied by multiple channels are orthogonal or non-overlapping, and the frequency domain resources occupied by multiple channels can be the same or different.
  • the regulations require that the signal transmission bandwidth of the network equipment or terminal on the unlicensed spectrum occupies at least 80% of the entire system bandwidth or the entire available channel bandwidth.
  • the mapping pattern shown in FIG. 2 above may not meet the requirements of unlicensed frequency band regulations.
  • an embodiment of the present application provides a communication method that can configure at least one mapping pattern according to at least one of a subcarrier interval of a control channel of a first system information and a subcarrier interval of a first common signal, and the mapping Patterns meet regulatory requirements for unlicensed bands.
  • the network device may indicate the mapping pattern to the terminal through indication information, and the terminal may receive the first system information according to the indicated mapping pattern.
  • an embodiment of the present application provides a communication method.
  • the network device in the communication method may be specifically the network device 101 in FIG. 1, and the terminal may be the terminal 102 in FIG. 1.
  • the functions of the network device may also be implemented by a chip applied to the network device, and the functions of the terminal may also be implemented by a chip applied to the terminal.
  • the process is specifically:
  • S301 The network device generates first indication information.
  • the network device may obtain the subcarrier interval of the control channel of the first system information and the subcarrier interval of the first common signal.
  • the subcarrier interval of the control channel of the first system information may be referred to as a first subcarrier interval
  • the subcarrier interval of the first common signal may be referred to as a second subcarrier interval.
  • the network device obtains a mapping pattern, which may be related to at least one of the first subcarrier interval or the second subcarrier interval.
  • the network device sends first indication information, where the first indication information is used to indicate the mapping pattern, and the mapping pattern may be at least one of a data channel of the first system information and a control channel of the first system information and A mapping pattern between the first common signals.
  • the first common signal may be a synchronization signal / physical broadcast channel block (SS / PBCH Block).
  • the first common signal may also be a signal other than SS / PBCH.
  • the first common signal may also be a collective name of SS / PBCH Block and other signals.
  • the first common signal may be SS / PBCH Block and channel state information reference signal (channel state information -reference (signal, CSI-RS), etc., which are not specifically limited here.
  • the first system information may be remaining minimum system information (RMSI), other system information (OSI), paging information, and random access response (RAR). At least one of.
  • S302 The network device sends the first indication information.
  • S303 The terminal receives the first system information according to the first instruction information.
  • the time-frequency resource location for transmitting the first common signal is available.
  • the terminal may determine a mapping pattern between at least one of a control channel of the first system information and a data channel of the first system information and the first common signal according to the first indication information.
  • the terminal may determine the time-frequency resource for transmitting the first system information control channel and / or the time-frequency resource for transmitting the first system information data channel according to the time-frequency resource location of the first common signal and the above mapping pattern.
  • the control channel of the first system information is used to transmit control information or scheduling information of the first system information
  • the data channel of the first system information is used to transmit first system information.
  • the terminal may A control channel of a system information and / or a data channel of the first system information receives the first system information.
  • the first indication information may be carried in different messages and sent to the terminal.
  • the message carrying the first indication information is not specifically limited.
  • the first indication information may be carried in at least one of a physical broadcast channel, system information, radio resource control (RRC) signaling, or a physical downlink control channel to notify the terminal.
  • RRC radio resource control
  • the mapping pattern is specifically a mapping pattern between a control channel of a first system information and a first common signal
  • the location may determine the time-frequency resource location of the control channel of the first system information.
  • the terminal may receive the control channel of the first system information at the determined location of the time-frequency resource. Based on the control information carried by the control channel, the first The time-frequency resource location of the data channel of the system information may finally receive the first system information at the determined time-frequency resource location.
  • the mapping pattern is specifically a mapping pattern between a data channel of the first system information and a first common signal, or the mapping pattern is a data channel of the first system channel
  • the first A mapping pattern between a control channel of a system information, a first common signal, and the three and the terminal may determine data of the first system information according to the mapping pattern and a time-frequency resource location of the first common signal Time-frequency resource location of the channel.
  • the first system information may be received at the corresponding time-frequency resource location.
  • the first subcarrier interval or the second subcarrier interval may be any one of 15kHz, 30kHz, and 60kHz.
  • the mapping pattern is related to at least one of the first subcarrier interval or the second subcarrier interval.
  • the “correlation” means that the mapping pattern can be selected according to one or two of the first subcarrier interval or the second subcarrier interval.
  • the first subcarrier interval or the second subcarrier interval may also be other subcarrier interval values other than 15kHz, 30kHz, and 60kHz, such as 120kHz, 240kHz, etc., and will not be performed here. Specific limitations.
  • the mapping pattern may be a first mapping pattern
  • the first subcarrier interval may be 15kHz or 30kHz
  • the first mapping pattern may be a frequency channel multiplexing of a data channel of the first system information and a control channel of the first system information, and the first system The information control channel is time-division multiplexed with the first common signal, and the data channel of the first system information is time-division multiplexed with the first common signal.
  • the first common signal is repeatedly transmitted on different frequency domain resources in the same time unit that it occupies, and the number of the first common signal transmitted repeatedly is repeated.
  • the number 2 is only an exemplary description, and is not intended to limit the present application.
  • the relative positions between the control channel of the first system information, the data channel of the first system information, and the first common signal may be in the order shown in FIG. 4a, It can also be in another order, for example, the signal mapping order from morning to night according to the time domain resources can also be the control channel of the first system information (data channel of the first system information), the first common signal, or, The first common signal, the control channel of the first system information (the data channel of the first system information), and the like.
  • the relative positions of the control channel of the first system information and the data channel of the first system information may be in the order shown in FIG. 4a, or in another order.
  • the signal mapping order from low to high in the frequency domain resources may be the data channel of the first system information and the control channel of the first system information, or may be the control channel of the first system information and the data of the first system information. Channels are not limited here.
  • the mapping pattern shown in FIG. 4a it is applicable to a case where the first subcarrier interval of the first common signal is small (for example, the first subcarrier interval may be 15kHz or 30kHz). Because in actual applications, the smaller the first subcarrier interval value of the first common signal, the smaller the bandwidth occupied by the first common signal. According to the mapping pattern shown in FIG. 4a, it can be seen that the first common signal is repeatedly repeated on the same time unit that it occupies, so that the first common signal transmitted on the time unit can meet regulatory requirements. For example, when the first subcarrier interval is 15 kHz, the signal bandwidth occupied by a first common signal is 3.6 MHz. 20M is the minimum access bandwidth of the unlicensed frequency band.
  • the first public signal needs to occupy at least 16MHz.
  • the first common signal can be designed to be repeated 5 times on different frequency domain resources in the same time unit, thereby occupying a channel bandwidth of at least 18 MHz, which can meet the regulatory requirements.
  • the mapping pattern shown in FIG. 4a may be specifically shown in FIG. 4b.
  • the control channel of the RMSI is represented by a RMSI control resource set (CORESET)
  • the data channel of the RMSI is represented by a RMSI.
  • the first mapping pattern may be a control channel of the first system information, a data channel of the first system information, and the first common signal. Frequency division multiplexing among the three. It should be understood that, in the first mapping pattern, the relative positions between the control channel of the first system information, the data channel of the first system information, and the first common signal may be in the order shown in FIG. 5a, It may also be in another order, for example, the signal mapping order corresponding to the frequency domain resources from low to high may also be the control channel of the first system information, the data channel of the first system information, and the first common signal. Or is the first common signal, the control channel of the first system information, and the data channel of the first system information, or the control channel of the first system information, the first common signal, and the data channel. The data channel and the like of the first system information are not limited here.
  • the mapping pattern shown in FIG. 5a is also applicable to a case where the first subcarrier interval of the first common signal is small (for example, the first subcarrier interval may be 15kHz or 30kHz). As the first wavelet interval is smaller, the bandwidth occupied by the first common signal is also smaller.
  • the first common signal, the control channel of the first system information, and the data channel of the first system information are frequency-division multiplexed on the same time unit, which can avoid transmitting the first common signal separately on a time unit. Signals that fail to meet regulatory requirements for unlicensed bands.
  • the mapping pattern shown in FIG. 5a may be specifically shown in FIG. 5b.
  • the control channel of the RMSI is represented by a RMSI control resource set (CORESET)
  • the data channel of the RMSI is represented by a RMSI.
  • the first mapping pattern may be that the control channel of the first system information and the data channel of the first system information occupy the same frequency domain resources and time domain resources. Orthogonally, the time domain resources occupied by the first common signal are the same as the time domain resources jointly occupied by the control channel and the data channel of the first system information, and the frequency domain resources occupied by the first common signal are the same as the The frequency domain resources occupied by the control channel of the first system information are orthogonal. It should be understood that, in the first mapping pattern, the relative positions between the control channel of the first system information, the data channel of the first system information, and the first common signal may be in the order shown in FIG.
  • the signal mapping order corresponding to the frequency domain resource from low to high may also be the first common signal, the control channel of the first system information / the data channel of the first system information, or, It is a control channel of the first system information / a data channel of the first system information, a first common signal, and the like, which are not limited herein.
  • the first common signal is frequency division multiplexed with the control channel of the first system information
  • the first common signal is frequency division multiplexed with the data channel of the first system information. It is possible to avoid the situation that the first common signal is transmitted separately on a time unit, and whether the subcarrier interval of the first common signal is large or small, the regulatory requirements of the unlicensed frequency band can be met.
  • the mapping pattern shown in FIG. 6a may be specifically shown in FIG. 6b.
  • the control channel of the RMSI is represented by a RMSI control resource set (CORESET)
  • the data channel of the RMSI is represented by a RMSI.
  • the mapping pattern when the first subcarrier interval or the second subcarrier interval is 60 kHz, the mapping pattern may be a second mapping pattern, the first mapping pattern or the second The mapping patterns are the same or different.
  • the first subcarrier interval or the second subcarrier interval is 60kHz, which may be specifically: the first subcarrier interval is 60kHz, and the second subcarrier interval is not limited.
  • the second subcarrier interval may be 15kHz, 30kHz, or 60kHz
  • the first subcarrier interval is not limited, for example, the first subcarrier interval may be any one of 15kHz, 30kHz, or 60kHz, the second subcarrier interval is 60kHz, or the first subcarrier interval and The second subcarrier interval is 60 kHz.
  • the second mapping pattern may be a control channel of the first system information, a data channel of the first system information, and the first common signal.
  • Time division multiplexing It should be noted that in the mapping pattern shown in FIG. 7a, the first common signal is repeatedly transmitted on different frequency domain resources in the same time unit that it occupies, and the number of repeatedly transmitted first common signals is The number 2 is only an exemplary description, and is not intended to limit the present application. It should be understood that, in the second mapping pattern, the relative positions between the control channel of the first system information, the data channel of the first system information, and the first common signal may be in the order shown in FIG.
  • the signal mapping order corresponding to the time domain resource from morning to night may also be the first common signal, the data channel of the first system information, the control channel of the first system information, or, The control channel of the first system information, the data signal of the first system information, the first common signal, or the control channel of the first system information, the first common signal, the data channel of the first system information, etc., Not limited here.
  • the first common signal is repeatedly transmitted on different frequency domain resources in the same time unit that it occupies, so regardless of the large first subcarrier interval corresponding to the first common signal Small or small, can meet the regulatory requirements of unlicensed frequency bands.
  • the mapping pattern shown in FIG. 7a may be specifically shown in FIG. 7b.
  • the control channel of the RMSI is represented by a RMSI control resource set (CORESET)
  • the data channel of the RMSI is represented by a RMSI.
  • the control channel of the first system information in the second mapping pattern is frequency division multiplexed with the first common signal.
  • a data channel is time division multiplexed with a control channel of the first system information
  • the first common signal is time division multiplexed with a data channel of the first system information.
  • the signal mapping order corresponding to the time domain resources from morning to night may also be the first common signal / first system information control channel, the first system information data channel, or,
  • the data channel of the first system information and the control channel of the first common signal / first system information are not limited here.
  • the first common signal and the control channel of the first system information are frequency division multiplexed on the same time unit, so whether the first subcarrier interval corresponding to the first common signal is large or small, Both meet regulatory requirements for unlicensed bands.
  • the mapping pattern shown in FIG. 8a may be specifically shown in FIG. 8b.
  • the control channel of the RMSI is represented by a RMSI control resource set (CORESET)
  • the data channel of the RMSI is represented by a RMSI.
  • the second mapping pattern may be that the frequency channel resources occupied by the control channel of the first system information and the data channel of the first system information are the same
  • the domain resources are orthogonal
  • the time domain resources occupied by the first common signal are the same as the time domain resources jointly occupied by the control channel and the data channel of the first system information
  • the frequency domain resources occupied by the first common signal are the same as The frequency domain resources occupied by the control channel of the first system information are orthogonal.
  • the mapping pattern shown in FIG. 6a may be specifically shown in FIG. 6b.
  • the control channel of the RMSI is represented by a RMSI control resource set (CORESET)
  • the data channel of the RMSI is represented by a RMSI.
  • the first mapping pattern or the second mapping pattern may be predefined for a network device and a terminal.
  • the network device may indicate the first mapping pattern or the second mapping pattern to the terminal.
  • the network device may separately indicate the first mapping pattern or the second mapping pattern, or the network device may jointly encode the first mapping pattern or the second mapping pattern with other information, thereby jointly indicating with the other information, which is not specifically limited here.
  • the number of candidate mapping patterns included in the first mapping pattern or the second mapping pattern is not limited.
  • the first mapping pattern may include one or more candidate mapping patterns
  • the second mapping pattern may also be Including one or more candidate mapping patterns.
  • the first mapping pattern and the second mapping pattern may respectively include a total of 3 candidate mapping patterns with indexes of 1 to 3, and each candidate mapping pattern may be specifically used to indicate Time-frequency multiplexing pattern between SS / PBCH Block and RMSI CORESET, the number of resource blocks (RB) occupied by the first mapping pattern or the second mapping pattern and the control channel of RMSI Number of OFDM symbols occupied by RMSI CORESET And at least one of the RB offset of the RMSI CORESET from the SS / PBCH Block is jointly indicated.
  • the bandwidth may be equal to the first known bandwidth minus the bandwidth of the control channel of the first system information. If the control channel of the first system information, the data channel of the first system information, and the first common signal are frequency-multiplexed, the bandwidth of the data channel of the first system information may be equal to the first known bandwidth minus the first The bandwidth of the control channel of the system information and the bandwidth of the first common signal.
  • the first known bandwidth may be an initial system access bandwidth (for example, in an unlicensed frequency band, a 20 MHz bandwidth may be used as an initial system access bandwidth), or the first known bandwidth may be supported by a terminal.
  • the minimum channel bandwidth that can be supported by an unlicensed band can be an integer multiple of the initial access channel bandwidth, that is, an integer multiple of 20 MHz.
  • the minimum channel bandwidth that can be supported by an unlicensed band It may be 20 * a MHz, and a may be a positive integer greater than or equal to 1, etc., which is not specifically limited in this application.
  • the time-frequency resource occupied by the data channel of the first system information is between two first public signals that are adjacent in the time domain.
  • Orthogonal frequency division multiplexing (OFDM) symbols are used to represent OFDM symbols.
  • the mapping patterns provided for the foregoing FIG. 4a to FIG. 8a may include a repeated mapping pattern of the first common signal, and the repeated mapping pattern of the first common signal may include the first common signal.
  • the repeated mapping pattern of the first common signal may be specifically: the first common signal is repeatedly mapped twice, and the frequency between two adjacent first common signals on a frequency domain resource is The frequency interval is n megahertz (MHz).
  • the repeated mapping pattern of the first common signal may be determined in the following manner:
  • Example 1 The terminal determines the repeated mapping pattern of the first common signal according to the second subcarrier interval of the first common signal. For example, when the second subcarrier interval is 15 kilohertz (kHz), the first common signal is repeatedly mapped 4 Second, the frequency interval between adjacent first common signals is n1 physical resource block (PRB). When the second subcarrier interval is 30 kHz, the first common signal is repeatedly mapped twice, and the frequency interval between adjacent first common signals is n2 PRBs. When the second subcarrier interval is 60 kHz, the first common signal is repeatedly mapped once, that is, the first common signal is not repeated. The values of n1 and n2 may be equal or unequal.
  • PRB physical resource block
  • n1 and n2 are also related to the system bandwidth of the first common signal mapping.
  • the value of n1 can be 5 PRBs (the 5 PRBs are based on the 15kHz reference subcarrier interval) ;
  • the value of n2 may be 8 PRBs (the 8 PRBs are based on the 30kHz reference subcarrier interval).
  • Example 2 The network device may send second indication information, where the second indication information is used to indicate a repeated mapping pattern of the first common signal.
  • the terminal may determine a repeated mapping pattern of the first common signal according to the second indication information.
  • the repeated mapping pattern of the first common signal includes at least two first common signals, that is, when the first common signal is repeatedly mapped multiple times, the multiple times are greater than or equal to twice.
  • the terminal may determine that one of the at least two first common signals is a reference first common signal, and then receive control information of the first system information based on the reference first common signal. Specifically, the terminal may receive control information carried in a control channel of the first system information based on the reference first common signal.
  • the second indication information may be carried in a different message to notify the terminal.
  • the second indication information may be carried in at least one of a physical broadcast channel, system information, RRC signaling, and a physical downlink control channel, and is notified to the terminal, which is not limited herein.
  • the network device may send third indication information to the terminal, where the third indication information is used to indicate a reference to a first common signal, and then the terminal may, based on the third indication information, in the at least two first public signals Among the signals, the reference first common signal is determined.
  • the third indication information may be carried in a different message to notify the terminal.
  • the third indication information may be notified to the terminal by carrying at least one of a physical broadcast channel, system information, RRC signaling, and a physical downlink control channel, which is not limited herein.
  • the first indication information sent by the network device may include indication information that refers to the first common signal, and the terminal may determine to reference the first common signal according to the indication information that refers to the first common signal in the first indication information.
  • FIG. 3 can be applied to unlicensed frequency bands and frequency-frequency bands.
  • FIG. 1 is only an example of the application of the present application, and is not intended to limit the present application.
  • the method provided in the embodiment of the present application can also be applied to a wireless-fidelity (WIFI) communication system and a worldwide microwave access (wimax) communication system.
  • WIFI wireless-fidelity
  • Wimax worldwide microwave access
  • the mapping patterns provided in FIG. 4b to FIG. 8b can be applied to unlicensed frequency bands, especially low frequency bands (such as a 5 GHz carrier frequency band range) of the unlicensed frequency bands.
  • low frequency bands such as a 5 GHz carrier frequency band range
  • the mapping patterns provided in FIG. 4b to FIG. 8b are applied to an unlicensed frequency band, regulatory requirements can be met.
  • the minimum channel bandwidth of the unlicensed frequency band is 20 MHz, for example.
  • SS / PBCH Block and RMSI CORESET are time-division multiplexed, and RMSI and RMSI CORESET are frequency-division multiplexed.
  • the frequency domain resource size of RMSI can be the same as the frequency domain resource size of RMSI CORESET, that is, the frequency domain resource size occupied by RMSI and RMSI CORESET is 10MHz, or the size of the frequency domain resource occupied by RMSI can be equal to 20MHz minus RMSI CORESET. Frequency domain resource size.
  • SS / PBCH Block can be repeatedly mapped within the minimum channel bandwidth of the unlicensed band. In Figure 4b, the SS / PBCH Block block is repeatedly mapped twice as an example.
  • SS / PBCH, Block, RMSI, and RMSI CORESET are frequency-division multiplexed.
  • the frequency domain resource size of RMSI can be the same as the frequency domain resource size of RMSI CORESET.
  • the resource size can be equal to 20MHz minus the frequency domain resource size of RMSI CORESET, and then minus the frequency domain resource size of SS / PBCH Block.
  • SS / PBCH Block and RMSI CORESET are frequency division multiplexed in the time unit occupied by RMSI CORESET
  • SS / PBCH Block and RMSI are frequency division multiplexed in the time unit occupied by RMSI
  • RMSI and RMSI and CORESET are time-division multiplexed.
  • the frequency domain resources occupied by RMSI and RMSI CORESET can be the same or different.
  • SS / PBCH Block, RMSI, and RMSI CORESET are time-division multiplexed. Further, in order to meet regulatory requirements, SS / PBCH Block can perform repeated mapping within the minimum channel bandwidth of the unlicensed band. In the example shown in FIG. 7b, repeated mapping is used as an example for description.
  • the size of the frequency domain resources occupied by RMSI and the size of the frequency domain resources occupied by RMSI CORESET can be the same.
  • SS / PBCH Block and RMSI CORESET are frequency division multiplexed, and SS / PBCH Block and RMSI are time division multiplexed.
  • the size of the frequency domain resources occupied by RMSI can be predefined.
  • the size of the frequency domain resources occupied by RMSI can be fixed at 20 MHz, or the size of the frequency domain resources occupied by RMSI can be fixed at the size of RMSI CORESET frequency domain resources and SS /
  • the sum of PBCH and Block bandwidth is not specifically limited here.
  • the SS / PBCH block can be associated with RMSI.
  • the RMSI can be located in the downlink symbol reserved in the middle of two consecutive SS / PBCH blocks in the time domain. It is not specifically limited here, or it is located on the downlink symbol after the associated SS / PBCH block.
  • SS / PBCH Block and COREST are time-division multiplexed. Therefore, in order to meet the requirements of the SS / PBCH Block under different subcarrier intervals, SS / PBCH Block can do repeated transmission in the frequency domain bandwidth. Therefore, in the embodiment of the present application, a repeated mapping pattern of SS / PBCH and Block is defined.
  • the repeated mapping pattern of the SS / PBCH block can include the number of repetitions and the frequency domain interval between two adjacent SS / PBCH blocks in the frequency domain occupied by the SS / PBCH block. Wait.
  • the repeated mapping pattern of SS / PBCH and Block can be determined by the subcarrier interval of SS / PBCH and Block. For example, when the subcarrier interval of SS / PBCH and Block is 15kHz, the number of repetitions of SS / PBCH and Block can be fixed.
  • the repetition number of the SS / PBCH block can be fixed to 2
  • the repetition number of the SS / PBCH block can be fixed Is 1.
  • multiple repeated SS / PBCH blocks may be associated with one RMSI and RMSI CORESET.
  • the associated RMSI and RMSI CORESET may determine the frequency domain resource location of RMSI and RMSI CORESET based on one of the plurality of repeated SS / PBCH blocks.
  • the SS / PBCH Block used to determine the resource location of the RMSI and RMSI CORESET frequency domain is referred to as the reference SS / PBCH Block.
  • the reference SS / PBCH block may be predefined, or the reference SS / PBCH block may also be notified to the terminal by a network device through display signaling, such as the third one described above.
  • Instruction information, or by adding a domain field indicated by SS / PBCH in the CORESET configuration information of the physical broadcast channel (PBCH) the domain field indicated by SS / PBCH can be used for other information
  • the domain field is jointly coded and indicated. For example, as shown in Table 2, it can also be indicated separately, which is not limited here. It should be noted that, in Table 2, the domain field indicated by the SS / PBCH Block is indicated as the reference SS / PBCH Block index.
  • the terminal when the terminal does not detect the reference SS / PBCH block, the terminal can pass the detected phase positions of other SS / PBCH blocks relative to the reference SS / PBCH block and the reference SS / PBCH block.
  • the frequency domain resource location further determines the frequency domain resource location of RMSI CORESET.
  • the index information of other SS / PBCH and Block can be notified to the terminal by the PBCH or other newly added signals in the SS / PBCH and Block, which is not limited herein.
  • the determination of the frequency domain resource position of RMSI CORESET (mainly referring to the frequency domain position offset relative to SS / PBCH Block) can be decoupled from the frequency domain resource position of SS / PBCH Block as much as possible, that is, RMSI CORESET
  • the frequency-domain resource location is independent of the time-frequency resource location of the first common signal.
  • the starting position of the frequency domain resources of the RMSI CORESET is fixed to the minimum physical resource block position or the maximum physical resource block position of the minimum channel bandwidth, and the frequency domain resource size occupied by the RMSI can be equal to 20 MHz minus the RMSI CORESET bandwidth.
  • the saved RMSI CORESET configuration information bits can be used to transmit some other information, such as an indication of the association relationship between SS / PBCH Block and random access opportunity (RACH Occasion, RO).
  • mapping pattern in the embodiment of the present application can maximize the multiplexing efficiency of multiple signals while minimizing the configuration signaling overhead on the basis of meeting regulatory requirements.
  • the present application provides a communication device 900.
  • the communication device 900 may include a transceiver unit 901 and a processing unit 902.
  • the communication device 900 may be applied to a terminal or a chip in the terminal, and is configured to perform steps in the process shown in FIG. 3 with the terminal as an execution subject.
  • the transceiver unit 901 may be configured to receive first indication information from a network device, wherein the first indication information is used to indicate at least one of a data channel of the first system information and a control channel of the first system information and the first channel.
  • a mapping pattern between common signals the mapping pattern being related to at least one of a first subcarrier interval or a second subcarrier interval, the first subcarrier interval being a sub-channel of a control channel of the first system information
  • a carrier interval, and the second subcarrier interval is a subcarrier interval of the first common signal.
  • the processing unit 902 may be configured to control the transceiver to receive the first system information according to the first instruction information.
  • the communication device 900 may be applied to a network device or a chip in a network device, and is configured to execute steps in the process shown in FIG.
  • the processing unit 902 may be configured to generate first indication information, where the first indication information is used to indicate at least one of a data channel of the first system information and a control channel of the first system information and a first common signal.
  • the transceiver unit 901 may be configured to send the first instruction information to the terminal.
  • processing unit 902 and the transceiver unit 901 For specific functions of the processing unit 902 and the transceiver unit 901, reference may be made to the description of the process shown in FIG. 3, and details are not described herein again.
  • the present application further provides a communication device 1000.
  • the communication device 1000 can be applied to the network device or a chip in the network device shown in FIG.
  • the terminal or the chip in the terminal is not limited herein.
  • the communication device 1000 may include a processor 1001 and a memory 1002. Further, the device may further include a receiver 1004 and a transmitter 1005. Further, the device may further include a bus system 1003.
  • the processor 1001, the memory 1002, the receiver 1004, and the transmitter 1005 can be connected through a bus system 1003.
  • the memory 1002 can store instructions.
  • the processor 1001 can execute instructions stored in the memory 1002 to control the receiver 1004 to receive. Signal, and control the transmitter 1005 to send a signal, and complete the steps in the method shown in FIG. 3 mainly using a network device or a terminal.
  • the receiver 1004 and the transmitter 1005 may be different physical entities or the same physical entity, and may be collectively referred to as a transceiver.
  • the memory 1002 may be integrated in the processor 1001, or may be a physical entity different from the processor 1001.
  • the functions of the receiver 1004 and the transmitter 1005 may be considered to be implemented through a transceiver circuit or a dedicated chip for transceiver.
  • the processor 1001 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a computer manner may be considered to implement the functions of the network device or terminal provided in the embodiments of the present application.
  • Program code that is to implement the functions of the processor 1001, the receiver 1004, and the transmitter 1005 is stored in the memory 1002, and the general-purpose processor may implement the functions of the processor 1001, the receiver 1004, and the transmitter 1005 by executing the code in the memory.
  • the communication device 1000 may be applied to a terminal or a chip in the terminal.
  • the communication device 1000 may be used to execute the steps in the process shown in FIG.
  • the receiver 1004 may be configured to receive first indication information from a network device.
  • the processor 1001 may be configured to control the receiver 1004 to receive the first system information according to the first instruction information.
  • the communication device 1000 may be applied to a network device or a chip in a network device.
  • the communication device 1000 may be used to execute the steps shown in FIG. 3 using the network device as an execution subject.
  • the processor 1001 may be configured to generate first indication information.
  • the transmitter 1005 may be configured to send the first indication information to the terminal.
  • the receiver 1004 and the transmitter 1005 refer to the description of the process shown in FIG. 3 above, and details are not described herein again.
  • the present application further provides a structure diagram of a network device, for example, a base station.
  • the base station may be applied to the scenario of the communication system shown in FIG. 1, and the base station may be a network device in the process shown in FIG. 3.
  • the base station 1100 may include one or more radio frequency units, such as a remote radio unit (RRU) 1101 and one or more baseband units (BBU) (also referred to as a digital unit, digital unit). , DU) 1102.
  • the RRU 1101 may be a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 11011 and a radio frequency unit 11012.
  • the RRU1101 part can be used for receiving and transmitting radio frequency signals and converting radio frequency signals to baseband signals, for example, sending first instruction information to a terminal.
  • the BBU1102 part can be used for baseband processing, controlling base stations, and so on.
  • the RRU1101 and BBU1102 may be physically located together or physically separated, that is, a distributed base station.
  • the BBU1102 is the control center of the base station and can also be called a processing unit, which is used to complete the baseband processing functions, such as channel coding, multiplexing, modulation, and spread spectrum.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the method in the process shown in FIG. 3.
  • the BBU1102 may be composed of one or more boards, and multiple boards may jointly support a single access system wireless access network (such as an NR network), or may separately support wireless access networks of different access systems. Go online.
  • the BBU 1102 may further include a memory 11021 and a processor 11022.
  • the memory 11021 is used to store necessary instructions and data.
  • the memory 11021 stores an instruction of the “first instruction information” in the foregoing embodiment, and the processor 11022 is configured to control the base station to perform a necessary action.
  • the necessary circuits can be set on each board.
  • FIG. 12 provides a schematic structural diagram of a terminal.
  • the terminal can be applied to the process shown in FIG. 3, and the steps are executed by the terminal.
  • FIG. 12 only shows the main components of the terminal. component.
  • the terminal 1200 may include a processor, a processor, a memory, and a control circuit.
  • the terminal 1200 may further include an antenna and / or an input / output device.
  • the processor may be used for processing communication protocols and communication data, and controlling user equipment, executing software programs, and processing data of the software programs.
  • the memory may store software programs and / or data.
  • the control circuit can be used for converting baseband signals to radio frequency signals and processing radio frequency signals.
  • the control circuit and the antenna can also be called a transceiver, which can be used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input-output devices such as touch screens, display screens, keyboards, etc., can be used to receive data input by the user and output data to the user.
  • the processor may read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 12 shows only one memory and a processor. In an actual user equipment, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor may be used to process communication protocols and communication data
  • the central processor may be used to control the entire user equipment and execute software programs. Processing data from software programs.
  • the processor in FIG. 12 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • an antenna and a control circuit having a transmitting and receiving function may be used as the transmitting and receiving unit 1201 of the terminal 1200, and a processor having a processing function may be regarded as the processing unit 1202 of the terminal 1200.
  • the terminal 1200 may include a transceiver unit 1201 and a processing unit 1202.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • a device used to implement the receiving function in the transceiver unit 1201 may be regarded as a receiving unit, and a device used to implement the transmitting function in the transceiver unit 1201 may be regarded as a transmitting unit, that is, the transceiver unit 1201 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, and the like
  • the sending unit may also be called a transmitter, a transmitter, or a transmitting circuit.
  • the network device in each of the foregoing device embodiments corresponds exactly to the network device or terminal in the terminal and method embodiments, and the corresponding module or unit executes the corresponding steps, for example, in the method embodiment of the sending module (transmitter) method execution method
  • the receiving module executes the receiving step in the method embodiment.
  • Other steps except sending and receiving can be performed by the processing module (processor).
  • the sending module and the receiving module can form a transceiver module, and the transmitter and the receiver can form a transceiver to realize the transmitting and receiving function together; the processor can be one or more.
  • the embodiment of the present application further provides a communication system including the foregoing network device and terminal.
  • an embodiment of the present application further provides a computer storage medium.
  • a software program is stored in the storage medium, and the software program can implement any one or more of the foregoing when read and executed by one or more processors.
  • the computer storage medium may include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • an embodiment of the present application further provides a chip that includes a processor, and is configured to implement a function involved in any one or more of the foregoing embodiments, such as obtaining or processing information involved in the foregoing method, or Message.
  • the chip further includes a memory, which is configured to store program instructions and data executed by the processor.
  • the chip can also include chips and other discrete devices.
  • the processor may be a central processing unit (CPU), and the processor may also be another general-purpose processor, a digital signal processor (DSP), or a special-purpose integration.
  • Circuit application-specific integrated circuit, ASIC
  • ready-made programmable gate array field programmable gate array, FPGA
  • a general-purpose processor may be a microprocessor, or any conventional processor or the like.
  • the memory may include read-only memory and random access memory, and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as a bus system in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • "at least one” means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship between related objects, and indicates that there can be three kinds of relationships. For example, A and / or B can indicate: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related object is an "or” relationship; in the formula of this application, the character "/" indicates that the related object is a "divide” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置,该方法包括:终端接收来自网络设备的第一指示信息;其中,所述第一指示信息用于指示第一系统信息的数据信道和第一系统信息的控制信道中的至少一个与第一公共信号之间的映射图样,所述映射图样与第一子载波间隔或第二子载波间隔中的至少一个有关,所述第一子载波间隔为所述第一系统信息的控制信道的子载波间隔,所述第二子载波间隔为所述第一公共信号的子载波间隔;所述终端根据所述第一指示信息,接收所述第一系统信息。采用本申请的方法和装置,可实现定义第一系统信息的数据信道、第一系统信息的控制信道以及第一公共信号之间的映射图样,且网络设备可将上述映射图样指示给终端。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2018年09月28日提交中国专利局、申请号为201811141710.0、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在新无线(new radio,NR)的授权频段中,定义了三种映射图样,用于定义第一系统信息的数据信道、第一系统信息的控制信道和第一公共信号之间的时频资源复用情况。在非授权频段中,法规要求通信设备在非授权频谱上的信号传输带宽至少占用整个系统带宽或整个可用信道带宽的80%。如果直接复用授权频段中的映射图样,可能会出现不能满足非授权频段法规要求的情况。在现有技术中,如何定义非授权频段中第一系统信息的数据信道、第一系统信息的控制信道和第一公共信号之间的映射图样,以及网络设备如何将映射图样指示给终端,并没有相关的解决方案。
发明内容
第一方面,本申请公开了一种通信方法及装置,包括:终端接收来自网络设备的第一指示信息;其中,所述第一指示信息用于指示第一系统信息的数据信道和第一系统信息的控制信道中的至少一个与第一公共信号之间的映射图样,所述映射图样与第一子载波间隔或第二子载波间隔中的至少一个有关,所述第一子载波间隔为所述第一系统信息的控制信道的子载波间隔,所述第二子载波间隔为所述第一公共信号的子载波间隔;所述终端根据所述第一指示信息,接收所述第一系统信息。
由上可见,在本申请实施例中,网络设备可确定第一系统信息的数据信道、第一系统信息的控制信道中的至少一个与第一公共信号之间的映射图样,且把所述映射图样指示给终端,相对于终端自己确定映射图样,可减少终端的工作量,降低终端的功耗。
在一种可能的实现方式中,所述第一子载波间隔或所述第二子载波间隔为15kHz、30kHz、60kHz中的任意一个,且当所述第一子载波间隔为15kHz或30kHz,且所述第二子载波间隔为15kHz或30kHz时,所述映射图样为第一映射图样;当所述第一子载波间隔或所述第二子载波间隔为60kHz时,所述映射图样为第二映射图样。
在一种可能的实现方式中,所述第一映射图样中所述第一系统信息的数据信道和所述第一系统信息的控制信道频分复用,且所述第一系统信息的控制信道与所述第一公共信号时分复用,所述第一系统信息的数据信道与所述第一公共信号时分复用。
在本申请实施例中,上述第一映射图样可适用于第一公共信号的第一子载波间隔较小的情况下(比如,第一子载波间隔可为15kHz或30kHz)。由于在实际应用中,第一公共信号的第一子载波间隔值越小,第一公共信号所占用的带宽也越小。在上述第一映射图样 中,第一公共信号可在同一时间单元的不同频率上重复多次,且通过第一公共信号在其占用的同一时间单元上进行了多次重复,从而可实现在该时间单元上传输的第一公共信号能满足非授权频段的法规要求。
在一种可能的实现方式中,所述第一映射图样中所述第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者之间频分复用。
在本申请实施例的第一映射图样中,采用在同一时间单元上频分复用第一公共信号、第一系统信息的控制信道以及第一系统信息的数据信道,可避免在一时间单元上单独传输第一公共信号从而无法满足非授权频段的法规要求的情况。
在一种可能的实现方式中,所述第一映射图样或所述第二映射图样中所述第一系统信息的控制信道与所述第一系统信息的数据信道占用的频域资源相同而时域资源正交,所述第一公共信号占用的时域资源与所述第一系统信息的控制信道和数据信道联合占用的时域资源相同,且所述第一公共信号占用的频域资源与所述第一系统信息的控制信道占用的频域资源正交。
在本申请实施例中,第一公共信号与第一系统信息的控制信道频分复用,且第一公共信号与第一系统信息的数据信道频分复用,可避免在一时间单元上单独传输第一公共信号的情况,无论第一公共信号的子载波间隔大或小,均可满足非授权频段的法规要求。
在一种可能的实现方式中,所述第二映射图样中所述第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者之间时分复用。
在本申请实施例中,第一公共信号在其占用的同一时间单元内的不同频域资源上进行了多次重复传输,因此无论第一公共信号所对应的第一子载波间隔大或小,均可满足非授权频段的法规要求。
在一种可能的实现方式中,所述第二映射图样中所述第一系统信息的控制信道与所述第一公共信号频分复用,所述第一系统信息的数据信道与所述第一系统信息的控制信道时分复用,所述第一公共信号与所述第一系统信息的数据信道时分复用。
在本申请实施例中,第一公共信号与第一系统信息的控制信道在同一时间单元上频分复用,因此无论第一公共信号所对应的第一子载波间隔大或小,均可满足非授权频段的法规要求。
在一种可能的实现方式中,当所述第一系统信息的控制信道与所述第一系统信息的数据信道频分复用时,所述第一系统信息的数据信道的带宽等于第一已知带宽减去所述第一系统信息的控制信道的带宽;当所述第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者频分复用时,所述第一系统信息的数据信道的带宽等于第一已知带宽减去所述第一系统信息的控制信道的带宽和所述第一公共信号的带宽。
在一种可能的实现方式中,当所述第一公共信号与所述第一系统信息的数据信道时分复用时,所述第一系统信息的数据信道占用的时域资源为两个时域相邻的所述第一公共信号之间的正交频分复用OFDM符号。
在一种可能的实现方式中,所述方法还包括:所述终端根据所述第一公共信号的第二子载波间隔,确定所述第一公共信号的重复映射图样。
在一种可能的实现方式中,所述方法还包括:所述终端接收来自所述网络设备的第二指示信息;所述终端根据所述第二指示信息,确定所述第一公共信号的重复映射图样。
在一种可能的实现方式中,所述方法还包括:当所述第一公共信号的重复映射图样中 包括至少两个所述第一公共信号时,所述终端确定所述至少两个第一公共信号中的一个第一公共信号为参考第一公共信号;所述终端根据所述参考第一公共信号接收所述第一系统信息的控制信道。
在一种可能的实现方式中,所述终端确定所述至少两个第一公共信号中的一个第一公共信号为参考第一公共信号,包括:所述终端接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述参考第一公共信号;所述终端根据所述第三指示信息,在所述至少两个第一公共信号中,确定所述参考第一公共信号。
在一种可能的实现方式中,所述第一指示信息中还包括所述参考第一公共信号的指示信息;所述终端确定所述至少两个第一公共信号中的一个第一公共信号为参考公共信号,包括:所述终端根据所述第一指示信息中所包括的参考第一公共信号的指示信息,在所述至少两个第一公共信号中,确定所述参考第一公共信号。
第二方面,本申请公开了一种通信方法,包括:网络设备生成第一指示信息;其中,所述第一指示信息用于指示第一系统信息的数据信道和第一系统信息的控制信道中的至少一个与第一公共信号之间的映射图样,所述映射图样与第一子载波间隔或第二子载波间隔中的至少一个有关,所述第一子载波间隔为所述第一系统信息的控制信道的子载波间隔,所述第二子载波间隔为所述第一公共信号的子载波间隔;所述网络设备向所述终端发送所述第一指示信息。
在一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端发送第二指示信息,所述第二指示信息用于指示所述第一公共信号的重复映射图样。
在一种可能的实现方式中,如果所述第一公共信号的重复图样中包括至少两个所述第一公共信号,所述方法还包括:所述网络设备向所述终端发送第三指示信息,所述第三指示信息用于指示所述至少两个第一公共信号中的一个第一公共信号为参考第一公共信号。
在一种可能的实现方式中,如果所述第一公共信号的重复图样中包括至少两个所述第一公共信号,所述第一指示信息中还包括参考公共信号的指示信息,所述参考公共信号为所述至少两个第一公共信号中的一个第一公共信号。
在一种可能的实现方式中,所述第一子载波间隔或所述第二子载波间隔为15kHz、30kHz、60kHz中的任意一个。
在一种可能的实现方式中,当所述第一子载波间隔为15kHz或30kHz,且所述第二子载波间隔为15kHz或30kHz时,所述映射图样为第一映射图样;当所述第一子载波间隔或所述第二子载波间隔为60kHz时,所述映射图样为第二映射图样。
在一种可能的实现方式中,所述第一映射图样中所述第一系统信息的数据信道和所述第一系统信息的控制信道频分复用,且所述第一系统信息的控制信道与所述第一公共信号时分复用,所述第一系统信息的数据信道与所述第一公共信号时分复用。
结合第一方面或第二方面的方法,在一种可能的实现方式中,所述第一映射图样中所述第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者之间频分复用。
在一种可能的实现方式中,所述第一映射图样或所述第二映射图样中所述第一系统信息的控制信道与所述第一系统信息的数据信道占用的频域资源相同而时域资源正交,所述第一公共信号占用的时域资源与所述第一系统信息的控制信道和数据信道联合占用的时域资源相同,且所述第一公共信号占用的频域资源与所述第一系统信息的控制信道占用的 频域资源正交。
在一种可能的实现方式中,所述第二映射图样中所述第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者之间时分复用。
在一种可能的实现方式中,所述第二映射图样中所述第一系统信息的控制信道与所述第一公共信号频分复用,所述第一系统信息的数据信道与所述第一系统信息的控制信道时分复用,所述第一公共信号与所述第一系统信息的数据信道时分复用。
在一种可能的实现方式中,当所述第一系统信息的控制信道与所述第一系统信息的数据信道频分复用时,所述第一系统信息的数据信道的带宽等于第一已知带宽减去所述第一系统信息的控制信道的带宽;当所述第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者频分复用时,所述第一系统信息的数据信道的带宽等于第一已知带宽减去所述第一系统信息的控制信道的带宽和所述第一公共信号的带宽。
在一种可能的实现方式中,当所述第一公共信号与所述第一系统信息的数据信道时分复用时,所述第一系统信息的数据信道占用的时域资源为两个时域相邻的所述第一公共信号之间的正交频分复用OFDM符号。
第三方面,本申请提供一种通信装置,用于终端或终端的芯片,包括:用于执行以上第一方面各个步骤的单元或手段(means)。
第四方面,本申请提供一种通信装置,用于网络设备或网络设备的芯片,包括:用于执行以上第二方面各个步骤的单元或手段(means)。
第五方面,本申请提供一种通信装置,用于终端或终端的芯片,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行本申请第一方面提供的方法。
第六方面,本申请提供一种通信装置,用于网络设备或网络设备的芯片,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行本申请第二方面提供的方法。
第七方面,本申请提供一种通信装置,用于终端包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
第八方面,本申请提供一种通信装置,用于网络设备,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
第九方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机指令,当该计算机指令被计算机执行时,使得所述计算机执行以上任一方面的方法。
第十方面,本申请提供了一种计算机可读存储介质,该存储介质存储有计算机指令,当所述计算机指令被计算机执行时,使得所述计算机执行以上任一方面的方法。
附图说明
图1为本申请实施例提供的通信系统的一示意图;
图2为本申请实施例提供的映射图样的一示意图;
图3为本申请实施例提供的通信方法的一流程图;
图4a为本申请实施例提供的映射图样的一示意图;
图4b为本申请实施例提供的映射图样的一示意图;
图5a为本申请实施例提供的映射图样的一示意图;
图5b为本申请实施例提供的映射图样的一示意图;
图6a为本申请实施例提供的映射图样的一示意图;
图6b为本申请实施例提供的映射图样的一示意图;
图7a为本申请实施例提供的映射图样的一示意图;
图7b为本申请实施例提供的映射图样的一示意图;
图8a为本申请实施例提供的映射图样的一示意图;
图8b为本申请实施例提供的映射图样的一示意图;
图9为本申请实施例提供的通信装置的一结构示例;
图10为本申请实施例提供的通信装置的另一结构示例;
图11为本申请实施例提供的基站的一结构示例;
图12为本申请实施例提供的终端的一结构示例。
具体实施方式
下面结合附图,对本申请实施例进行介绍。
如图1所示,本申请实施例提供一种通信系统100,该通信系统100可包括网络设备101和终端102。
其中,通信系统100,可以采用各种无线接入技术(radio access technology,RAT),例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)等,本申请对通信系统所采用的RAT不做限定。在本申请中,术语“系统”可以和“网络”相互替换。
网络设备101可以是网络中将终端接入到无线网络的设备。所述网络设备为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。目前,一些网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或WiFi接入点(access point,AP)等。另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
终端102,又称之为终端设备、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
在本申请实施例中,网络设备101与终端102可工作在授权频段中,也可工作在非授权频段中。例如sub 1G,5.1-5.8G,5.9-6.4G,7.1G,45GHz,57-64G,71GHz以及工业科学医学(industrial scientific&medical,ISM)频段是分配给非授权频段的,而4G LTE系统使用的频段为授权频段。所述ISM频段可具体指为工业、科学和医学分配的,世界上通用的免费/免授权频谱资源。
在本申请实施例中,当网络设备101与终端102工作在授权频段时,如图2所示,定义了三种映射图样,用于定义第一系统信息的数据信道、第一系统信息的控制信道和第一公共信号之间的时频资源复用情况。需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请实施例中,如图2所示,三种映射图样(multiplexing pattern),可分别定义为映射图样1、映射图样2以及映射图样3。其中,在映射图样1中,第一公共信号、第一系统信息的控制信道以及第一系统信息的数据信道,三者之间可时分复用。在映射图样2中,第一系统信息的控制信道和第一系统信息的数据信道间时分复用,第一公共信号和第一系统信息的数据信道两者间频分复用。在映射图样3中,第一系统信息的控制信道和第一系统信息的数据信道两者间时分复用,第一系统信息的控制信道和第一系统信息的数据信道占用的频域资源相同,且在第一系统信息的控制信道占用的时间单元内,第一公共信号与第一系统信息的控制信道频分复用,在第一系统信息的数据信道占用的时间单元内,第一公共信号与第一系统信息的数据信道频分复用。
在本申请实施例中,所述频分复用可以指多个信道占用的时域资源相同,频域资源正交或不重叠。频分复用的多个信道在同一时域资源的不同频域资源上的映射顺序不做限定,即,在从低到高的频域资源范围内多个信道可按照任意的顺序做映射,只要满足相互间频域资源正交或不重叠即可。
时分复用可以指多个信道占用的时域资源正交或不重叠,而多个信道占用的频域资源可以相同或不相同。
由于在非授权频段中,法规要求网络设备或终端在非授权频谱上的信号传输带宽至少占用整个系统带宽或整个可用信道带宽的80%,因此如果在非授权频段中直接复用授权频段中的上述图2所示的映射图样,可能会出现不能满足非授权频段法规要求的情况。
基于以上,本申请实施例提供一种通信方法,可以根据第一系统信息的控制信道的子载波间隔和第一公共信号的子载波间隔中的至少一个,配置至少一种映射图样,所述映射图样可满足非授权频段的法规需求。当网络设备与终端在非授权频段上进行通信时,所述网络设备可通过指示信息的方式,将所述映射图样指示给终端,所述终端可根据所指示的映射图样,接收第一系统信息。
如图3所示,本申请实施例提供一种通信方法,该通信方法中的网络设备可具体为上述图1中的网络设备101,终端可具体为上述图1中的终端102。可以理解的是,在本申请实施例中,网络设备的功能也可以通过应用于网络设备的芯片来实现,终端的功能也可以通过应用于终端的芯片来实现。该流程具体为:
S301:网络设备生成第一指示信息。
在本申请实施例中,网络设备可获取第一系统信息的控制信道的子载波间隔以及第一公共信号的子载波间隔。为了方便描述,所述第一系统信息的控制信道的子载波间隔可称 为第一子载波间隔,所述第一公共信号的子载波间隔可称为第二子载波间隔。网络设备获取映射图样,所述映射图样可与第一子载波间隔或第二子载波间隔中的至少一个有关。可以理解的是,在本申请实施例中,a或b中的至少一个,可表示为:a,b,a和b,a可以是单个,也可是多个,b可以是单个,也可以是多个。最后,网络设备发送第一指示信息,所述第一指示信息用于指示所述映射图样,所述映射图样可为第一系统信息的数据信道和第一系统信息的控制信道中的至少一个与第一公共信号之间的映射图样。
在本申请实施例中,所述第一公共信号可为同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH Block),所述第一公共信号还可以为除SS/PBCH Block之外的其他信号,所述第一公共信号还可为SS/PBCH Block与其它信号的统称,比如,所述第一公共信号可为SS/PBCH Block与信道状态信息参考信号(channel state information-reference signal,CSI-RS)的统称等,这里不做具体限定。所述第一系统信息可为剩余最小系统信息(remaining minimum system information,RMSI)、其他系统信息(other system information,OSI)、寻呼(paging)信息和随机接入响应(random access response,RAR)中的至少一个。
S302:网络设备发送第一指示信息。
S303:终端根据第一指示信息,接收第一系统信息。
在本申请实施例中,传输第一公共信号的时频资源位置是可获得的。在本申请实施例中,所终端根据所述第一指示信息,可确定第一系统信息的控制信道和第一系统信息的数据信道中的至少一个与第一公共信号之间的映射图样。进而,终端可根据第一公共信号的时频资源位置以及上述映射图样,确定传输第一系统信息控制信道的时频资源和/或传输第一系统信息数据信道的时频资源。其中,所述第一系统信息的控制信道用于传输第一系统信息的控制信息或调度信息,所述第一系统信息的数据信道用于传输第一系统信息,最终,终端可根据所述第一系统信息的控制信道和/或第一系统信息的数据信道,接收所述第一系统信息。
具体的,在本申请实施例中,所述第一指示信息可携带于不同消息中,发送给终端,在本申请实施例中,对携带第一指示信息的消息不作具体限定。比如,所述第一指示信息可携带于物理广播信道、系统信息、无线资源控制(radio resource control,RRC)信令或物理下行控制信道中的至少一个中,通知给终端。在本申请的一示例中,如果所述映射图样具体为第一系统信息的控制信道与第一公共信号之间的映射图样,那么根据所述映射图样以及所述第一公共信号的时频资源位置,可确定第一系统信息的控制信道的时频资源位置,终端可在确定的时频资源位置上接收第一系统信息的控制信道,根据所述控制信道携带的控制信息,可确定第一系统信息的数据信道的时频资源位置,最后可在确定的时频资源位置上接收第一系统信息。
在本申请的另一示例中,如果所述映射图样具体为第一系统信息的数据信道与第一公共信号之间的映射图样,或者,所述映射图样为第一系统信道的数据信道、第一系统信息的控制信道和第一公共信号,三者之间的映射图样,所述终端可根据所述映射图样以及所述第一公共信号的时频资源位置,可确定第一系统信息的数据信道的时频资源位置。最后在相应的时频资源位置上接收第一系统信息即可。
在本申请实施例中,所述第一子载波间隔或所述第二子载波间隔可为15kHz、30kHz、60kHz中的任意一个。所述映射图样与第一子载波间隔或第二子载波间隔中的至少一个相 关。其中,“相关”是指可以根据第一子载波间隔或第二子载波间隔中的一个或两个选择映射图样。
应理解,本申请实施例中,所述第一子载波间隔或所述第二子载波间隔也可以为15kHz、30kHz、60kHz外的其他子载波间隔值,如,120kHz,240kHz等,这里不做具体限定。
比如,在本申请实施例中,当所述第一子载波间隔为15kHz或30kHz,且所述第二子载波间隔为15kHz或30kHz时,所述映射图样可为第一映射图样;
在本申请实施例中,所述第一子载波间隔可为15kHz或30kHz,且第二子载波间隔为15kHz或30kHz,具体可表现为以下形式:{第一子载波间隔,第二子载波间隔}={15kHz,15kHz},{15kHz,30kHz},{30kHz,15kHz},{30kHz,30kHz}。
在本申请的一示例中,如图4a所示,所述第一映射图样可为第一系统信息的数据信道和所述第一系统信息的控制信道频分复用,且所述第一系统信息的控制信道与所述第一公共信号时分复用,所述第一系统信息的数据信道与所述第一公共信号时分复用。需要说明的是,在图4a所示的映射图样中,第一公共信号在其占用的同一时间单元内的不同频域资源上进行了多次重复传输,其中重复传输的第一公共信号的数量为2个仅为示例性说明,并不作为对本申请的限定。应理解,所述第一映射图样中,所述第一系统信息的控制信道、所述第一系统信息的数据信道与所述第一公共信号间的相对位置可以为图4a所示的顺序,也可以为其他顺序,如,按照时域资源的从早到晚的信号映射顺序也可以为第一系统信息的控制信道(第一系统信息的数据信道)、第一公共信号,或者,可为第一公共信号、第一系统信息的控制信道(第一系统信息的数据信道)等。同理,第一系统信息的控制信道与第一系统信息的数据信道的相对位置可为图4a所示的顺序,也可为其它顺序。比如,按照频域资源的从低至高的信号映射顺序可以为第一系统信息的数据信道、第一系统信息的控制信道,或者,可为第一系统信息的控制信道、第一系统信息的数据信道等,这里不作限定。
可以看出,对于图4a所示的映射图样,适用于第一公共信号的第一子载波间隔较小的情况下(比如,第一子载波间隔可为15kHz或30kHz)。由于在实际应用中,第一公共信号的第一子载波间隔值越小,第一公共信号所占用的带宽也越小。通过图4a所示的映射图样,可以看出,第一公共信号在其占用的同一时间单元上进行了多次重复,从而可实现在该时间单元上传输的第一公共信号能满足法规要求。比如,当第一子载波间隔为15kHz时,一个第一公共信号所占用的信号带宽为3.6MHz。20M作为非授权频段的最小接入带宽,如果要满足占用整个系统带宽80%的法规要求,第一公共信号至少需占用16MHz。在图4a所示的映射图样中,可设计第一公共信号在同一时间单元的不同频域资源上重复5次,从而至少占用18MHz的信道带宽,即可满足法规要求。
在本申请实施例中,当所述第一公共信号为SS/PBCH Block,所述第一系统信息为RMSI时,图4a所示的映射图样可具体参见图4b所示。在图4b所示的示例中,RMSI的控制信道用RMSI控制资源集合(control resource set,CORESET)表示,RMSI的数据信道用RMSI表示。
在本申请的另一示例中,如图5a所示,所述第一映射图样可为所述第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者之间频分复用。应理解,所述第一映射图样中,所述第一系统信息的控制信道、所述第一系统信息的数据信道与所述第一公共信号间的相对位置可以为图5a所示的顺序,也可以为其他顺序,如,按照 频域资源从低到高对应的信号映射顺序也可以为所述第一系统信息的控制信道、所述第一系统信息的数据信道和所述第一公共信号,或者为所述第一公共信号、所述第一系统信息的控制信道和所述第一系统信息的数据信道,或者为所述第一系统信息的控制信道、所述第一公共信号和所述第一系统信息的数据信道等,这里不做限定。
在本申请实施例中,图5a所示的映射图样,同样可适用于第一公共信号的第一子载波间隔较小的情况下(比如,第一子载波间隔可为15kHz或30kHz)。由于第一子波间隔越小,第一公共信号所占用的带宽也越小。在本申请实施例中,采用在同一时间单元上频分复用第一公共信号、第一系统信息的控制信道以及第一系统信息的数据信道,可避免在一时间单元上单独传输第一公共信号从而无法满足非授权频段的法规要求的情况。
在本申请实施例中,当所述第一公共信号为SS/PBCH Block,所述第一系统信息为RMSI时,图5a所示的映射图样可具体参见图5b所示。在图5b所示的示例中,RMSI的控制信道用RMSI控制资源集合(control resource set,CORESET)表示,RMSI的数据信道用RMSI表示。
在本申请实施例中,如图6a所示,所述第一映射图样可为所述第一系统信息的控制信道与所述第一系统信息的数据信道占用的频域资源相同而时域资源正交,所述第一公共信号占用的时域资源与所述第一系统信息的控制信道和数据信道联合占用的时域资源相同,且所述第一公共信号占用的频域资源与所述第一系统信息的控制信道占用的频域资源正交。应理解,所述第一映射图样中,所述第一系统信息的控制信道、所述第一系统信息的数据信道与所述第一公共信号间的相对位置可以为图6a所示的顺序,也可以为其他顺序,如,按照频域资源从低到高对应的信号映射顺序也可以为所述第一公共信号、第一系统信息的控制信道/第一系统信息的数据信道,或者,可为第一系统信息的控制信道/第一系统信息的数据信道、第一公共信号等,这里不做限定。
在本申请实施例中,图6a所示的映射图样,第一公共信号与第一系统信息的控制信道频分复用,且第一公共信号与第一系统信息的数据信道频分复用,可避免在一时间单元上单独传输第一公共信号的情况,无论第一公共信号的子载波间隔大或小,均可满足非授权频段的法规要求。在本申请实施例中,当所述第一公共信号为SS/PBCH Block,所述第一系统信息为RMSI时,图6a所示的映射图样可具体参见图6b所示。在图6b所示的示例中,RMSI的控制信道用RMSI控制资源集合(control resource set,CORESET)表示,RMSI的数据信道用RMSI表示。
再如,在本申请实施例中,当所述第一子载波间隔或所述第二子载波间隔为60kHz时,所述映射图样可为第二映射图样,所述第一映射图样或第二映射图样相同或不同。所述第一子载波间隔或第二子载波间隔为60kHz,可具体为:第一子载波间隔为60kHz,第二子载波间隔不作限定,如,第二子载波间隔可以为15kHz、30kHz或60kHz中的任意一个,或者,第一子载波间隔不作限定,如,第一子载波间隔可以为15kHz、30kHz或60kHz中的任意一个,第二子载波间隔为60kHz,或者,第一子载波间隔和第二子载波间隔均为60kHz。
在本申请的一示例中,如图7a所示,所述第二映射图样可为第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者之间时分复用。需要说明的是,在图7a所示的映射图样中,第一公共信号在其占用的同一时间单元内的不同频域资源上进行了多次重复传输,其中重复传输的第一公共信号的数量为2个仅为示例性说明,并不作 为对本申请的限定。应理解,所述第二映射图样中,所述第一系统信息的控制信道、所述第一系统信息的数据信道与所述第一公共信号间的相对位置可以为图7a所示的顺序,也可以为其他顺序,如,按照时域资源从早到晚对应的信号映射顺序也可以为所述第一公共信号、第一系统信息的数据信道、第一系统信息的控制信道,或者,为所述第一系统信息的控制信道、第一系统信息的数据信、第一公共信号,或者,为所述第一系统信息的控制信道、第一公共信号、第一系统信息的数据信道等,这里不做限定。在图7a所示的映射图样中,第一公共信号在其占用的同一时间单元内的不同频域资源上进行了多次重复传输,因此无论第一公共信号所对应的第一子载波间隔大或小,均可满足非授权频段的法规要求。
在本申请实施例中,当所述第一公共信号为SS/PBCH Block,所述第一系统信息为RMSI时,图7a所示的映射图样可具体参见图7b所示。在图7b所示的示例中,RMSI的控制信道用RMSI控制资源集合(control resource set,CORESET)表示,RMSI的数据信道用RMSI表示。
在本申请的另一示例中,如图8a所示,所述第二映射图样中所述第一系统信息的控制信道与所述第一公共信号频分复用,所述第一系统信息的数据信道与所述第一系统信息的控制信道时分复用,所述第一公共信号与所述第一系统信息的数据信道时分复用。应理解,所述第二映射图样中,所述第一系统信息的控制信道、所述第一系统信息的数据信道与所述第一公共信号间的相对位置可以为图8a所示的顺序,也可以为其他顺序,如,按照时域资源从早到晚对应的信号映射顺序也可以为所述第一公共信号/第一系统信息的控制信道、第一系统信息的数据信道,或者,为第一系统信息的数据信道、第一公共信号/第一系统信息的控制信道等,这里不做限定。
在图8a所示的映射图样中,第一公共信号与第一系统信息的控制信道在同一时间单元上频分复用,因此无论第一公共信号所对应的第一子载波间隔大或小,均可满足非授权频段的法规要求。
在本申请实施例中,当所述第一公共信号为SS/PBCH Block,所述第一系统信息为RMSI时,图8a所示的映射图样可具体参见图8b所示。在图8b所示的示例中,RMSI的控制信道用RMSI控制资源集合(control resource set,CORESET)表示,RMSI的数据信道用RMSI表示。
在本申请的又一示例中,可参照6a所示,所述第二映射图样可为所述第一系统信息的控制信道与所述第一系统信息的数据信道占用的频域资源相同而时域资源正交,所述第一公共信号占用的时域资源与所述第一系统信息的控制信道和数据信道联合占用的时域资源相同,且所述第一公共信号占用的频域资源与所述第一系统信息的控制信道占用的频域资源正交。
在本申请实施例中,当所述第一公共信号为SS/PBCH Block,所述第一系统信息为RMSI时,图6a所示的映射图样可具体参见图6b所示。在图6b所示的示例中,RMSI的控制信道用RMSI控制资源集合(control resource set,CORESET)表示,RMSI的数据信道用RMSI表示。
在本申请实施例中,上述第一映射图样或第二映射图样可以为网络设备和终端预定义好的。网络设备可将第一映射图样或第二映射图样指示给终端。比如,网络设备可单独指示第一映射图样或第二映射图样,或者,网络设备可将第一映射图样或第二映射图样与其它信息做联合编码,从而与其它信息联合指示,这里不作具体限定。在本申请实施例中, 并不限定第一映射图样或第二映射图样所包括的候选映射图样的数量,比如,第一映射图样可包括一个或多个候选映射图样,第二映射图样也可包括一个或多个候选映射图样等。
在本申请的一示例中,如表1所示,第一映射图样与第二映射图样可分别共包括3个候选映射图样,索引分别为1至3,每个候选映射图样可具体用于指示SS/PBCH Block与RMSI CORESET间的时频复用图样,第一映射图样或第二映射图样可与RMSI的控制信道所占用资源块(resource block,RB)的数量
Figure PCTCN2019107917-appb-000001
RMSI CORESET所占用OFDM符号的数量
Figure PCTCN2019107917-appb-000002
以及RMSI CORESET相对于SS/PBCH Block的RB偏移(offset)中的至少一个进行联合指示。
表1
Figure PCTCN2019107917-appb-000003
在本申请实施例中,针对上述图4a至图8a所提供的映射图样,如果第一系统信息的控制信道与第一系统信息的数据信道频分复用,那么第一系统信息的数据信道的带宽可等于第一已知带宽减去第一系统信息的控制信道的带宽。如果第一系统信息的控制信道、第一系统信息的数据信道和第一公共信号,三者频分复用,那么第一系统信息的数据信道的带宽可等于第一已知带宽减去第一系统信息的控制信道的带宽和第一公共信号的带宽。所述第一已知带宽可为初始系统接入的带宽(比如,在非授权频段中,20MHz带宽可作为初始系统接入的带宽),或者,所述第一已知带宽可为终端支持的最小信道带宽,或者,其他下行固定带宽,如,非授权频段可支持的最小信道带宽可为初始接入信道带宽的整数倍,即20MHz的整数倍,比如,非授权频段可支持的最小信道带宽可为20*a MHz,所述a可为大于或等于1的正整数等,本申请并不作具体限定。如果所述第一公共信号与第一系统信息的数据信道时分复用,所述第一系统信息的数据信道占用的时频资源为两个时域相邻的所述第一公共信号之间的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
在本申请实施例中,针对上述图4a至图8a所提供的映射图样中,可包括第一公共信号的重复映射图样,所述第一公共信号的重复映射图样中,可包括第一公共信号的重复次数,以及第一公共信号占用的时间单元内在频域资源上相邻的两个第一公共信号间的频域 间隔等。比如,在图4a所示的映射图样中,所述第一公共信号的重复映射图样可具体为:第一公共信号重复映射2次,频域资源上相邻的两个第一公共信号间的频率间隔为n兆赫兹(MHz)。
在本申请实施例中,可采用以下方式确定第一公共信号的重复映射图样:
示例1:终端根据第一公共信号的第二子载波间隔,确定第一公共信号的重复映射图样,比如,当第二子载波间隔为15千赫兹(kHz)时,第一公共信号重复映射4次,相邻第一公共信号间的频率间隔为n1个物理资源块(physical resource block,PRB)。当第二子载波间隔为30kHz时,第一公共信号重复映射2次,相邻第一公共信号间的频率间隔为n2个PRB。当第二子载波间隔为60kHz时,第一公共信号重复映射1次,即第一公共信号不做重复。所述n1,n2的值可相等或不相等。其中,所述n1和n2的取值还与第一公共信号映射的系统带宽大小相关。比如,在第二子载波间隔为15kHz,第一公共信号映射的系统带宽为20MHz的场景下,n1的取值可以为5个PRB(所述5个PRB是以15kHz为参考子载波间隔的);在第二子载波间隔为30kHz第一公共信号映射的系统带宽为20MHz的场景下,n2的取值可以为8个PRB(所述8个PRB是以30kHz为参考子载波间隔的)。
示例2:网络设备可发送第二指示信息,所述第二指示信息用于指示第一公共信号的重复映射图样。终端可根据所述第二指示信息,确定第一公共信号的重复映射图样。
在本申请实施例中,当所述第一公共信号的重复映射图样中包括至少两个第一公共信号时,即第一公共信号重复映射多次时,所述多次指大于或等于两次。所述终端可确定所述至少两个第一公共信号中的一个第一公共信号为参考第一公共信号,然后基于所述参考第一公共信号,接收第一系统信息的控制信息。具体的,所述终端可基于所述参考第一公共信号,接收所述第一系统信息的控制信道中承载的控制信息。
在本申请实施例中,所述第二指示信息可携带于不同的消息中,通知给终端。比如,所述第二指示信息可携带于物理广播信道、系统信息、RRC信令、物理下行控制信道中的至少一个,通知给终端,这里不做限定。
一示例中,网络设备可向终端发送第三指示信息,所述第三指示信息用于指示参考第一公共信号,然后终端可基于所述第三指示信息,在所述至少两个第一公共信号中,确定所述参考第一公共信号。
在本申请实施例中,所述第三指示信息可携带于不同的消息中,通知给终端。比如,所述第三指示信息可携带于物理广播信道、系统信息、RRC信令、物理下行控制信道中的至少一个通知给终端,这里不做限定。
另一示例中,网络设备所发送的第一指示信息中可包括参考第一公共信号的指示信息,终端根据第一指示信息中的参考第一公共信号的指示信息,可确定参考第一公共信号。
可以理解的是,图3所提供的方法,可应用于非授权频段中,也可应用于频权频段中,图1仅为本申请应用的一示例,并不作为对本申请的限定,比如,本申请实施例提供的方法,也可应用于无线保真(wireless-fidelity,WIFI)通信系统以及全球微波互联接入(worldwide interoperability for microwave access,wimax)通信系统等。
在本申请实施例中,图4b至图8b所提供的映射图样,可应用于非授权频段中,尤其是非授权频段的低频频段(比如5GHz载频频段范围)。当图4b至图8b所提供的映射图样应用于非授权频段时,可满足法规需求。在本申请实施例中,以非授权频段的最小信道带宽为20MHz,进行举例说明。
针对图4b所提供的映射图样,SS/PBCH Block与RMSI CORESET时分复用,RMSI和RMSI CORESET之间频分复用。RMSI的频域资源大小可与RMSI CORESET的频域资源大小相同,即RMSI与RMSI CORESET所占的频域资源大小均为10MHz,或者,RMSI占用的频域资源大小可等于20MHz减去RMSI CORESET的频域资源大小。进一步,为了满足法规要求,SS/PBCH Block在非授权频段的最小信道带宽内可作重复映射,在图4b中,以SS/PBCH Block重复映射两次为例进行说明。
针对图5b所提供的映射图样,SS/PBCH Block、RMSI以及RMSI CORESET三者频分复用,RMSI的频域资源大小可与RMSI CORESET的频域资源大小相同,或者,RMSI所占用的频域资源大小可等于20MHz减去RMSI CORESET的频域资源大小,再减去SS/PBCH Block的频域资源大小。
针对图6b所提供的映射图样,SS/PBCH Block与RMSI CORESET在RMSI CORESET占用的时间单元内频分复用,且SS/PBCH Block与RMSI在RMSI占用的时间单元内频分复用,RMSI和RMSI CORESET两者时分复用,RMSI与RMSI CORESET所占用的频域资源大小可相同或不同。
针对图7b所提供的映射图样,SS/PBCH Block、RMSI和RMSI CORESET三者时分复用。进一步,为了满足法规要求,SS/PBCH Block可在非授权频段的最小信道带宽内作重复映射,在图7b所示的示例中,以重复映射两次为示例,进行说明。RMSI所占用的频域资源大小与RMSI CORESET所占用的频域资源大小可相同。
针对图8b所提供的映射图样,SS/PBCH Block和RMSI CORESET两者间频分复用,SS/PBCH Block与RMSI间时分复用。RMSI所占用的频域资源大小可为预定义的,比如RMSI所占用的频域资源大小可固定为20MHz,或者,RMSI所占用的频域资源大小可固定为RMSI CORESET频域资源大小与SS/PBCH Block带宽之和,在此不作具体限定。在图8b所提供的映射图样中,所述SS/PBCH Block可与RMSI是相联的,可选的,所述RMSI可位于两个时域上连续的SS/PBCH Block中间预留的下行符号上,或者位于关联的SS/PBCH Block之后的下行符号上,在此不作具体限定。
在本申请实施例中,在图4b和图7b所示的映射图样中,由于SS/PBCH Block和COREST间作时分复用,因此,为了满足SS/PBCH Block不同子载波间隔下法规的要求,SS/PBCH Block可在频域带宽内做重复传输。因此,在本申请实施例中,定义了SS/PBCH Block的重复映射图样。
在本申请实施例中,SS/PBCH Block的重复映射图样中可包括重复次数,以及在SS/PBCH Block占用的同一时间单元内频域上相邻的两个SS/PBCH Block间的频域间隔等。在本申请实施例中,SS/PBCH Block的重复映射图样可由SS/PBCH Block的子载波间隔确定,比如,当SS/PBCH Block的子载波间隔为15kHz时,SS/PBCH Block的重复次数可固定为4,当SS/PBCH Block的子载波间隔为30kHz时,SS/PBCH Block的重复次数可固定为2,当SS/PBCH Block的子载波间隔为60kHz时,SS/PBCH Block的重复次数可固定为1。
在本申请实施例中,SS/PBCH Block重复多次时,多个重复的SS/PBCH Block可能关联到一个RMSI及RMSI CORESET。此时,相关联的RMSI和RMSI CORESET可基于所述多个重复SS/PBCH Block中的一个确定RMSI和RMSI CORESET的频域资源位置。为了方便描述,将用于确定RMSI和RMSI CORESET频域资源位置的SS/PBCH Block称为 参考SS/PBCH Block。
在本申请实施例中,所述参考SS/PBCH Block可以是预定义好的,或者,所述参考SS/PBCH Block也可为网络设备通过显示信令的方式通知给终端的,比如上述第三指示信息,或者,通过在物理广播信道(physical broadcasting channel,PBCH)的CORESET配置信息中新增一个参考SS/PBCH Block指示的域字段,所述参考SS/PBCH Block指示的域字段可与其他信息域字段做联合编码和指示,比如,如表2所示,也可单独指示,在此不做限定。需要说明的是,在表2中,将所述SS/PBCH Block指示的域字段表示为参考SS/PBCH Block索引。
表2
Figure PCTCN2019107917-appb-000004
在本申请实施例中,当终端未检测到参考SS/PBCH Block的情况下,终端可通过检测到的其它SS/PBCH Block相对于参考SS/PBCH Block的相位位置,及参考SS/PBCH Block的频域资源位置,进一步确定RMSI CORESET的频域资源位置。在本申请实施例中,其它SS/PBCH Block的索引信息,网络设备可通过PBCH或SS/PBCH Block中的其他新增信号通知给终端,在此不作限定。
在本申请实施例中,在非授权频段中,由于需要考虑满足法规要求,因此信号传输通常需要占掉整个最小信道带宽或最小信道带宽的大部分。因此,RMSI CORESET的频域资源位置(主要指相对于SS/PBCH Block的频域位置偏移量)的确定可以与SS/PBCH Block的频域资源位置,尽可能解耦,即,RMSI CORESET的频域资源位置与第一公共信号的时频资源位置无关。比如:RMSI CORESET的频域资源的起始位置固定为最小信道带宽的最小物理资源块位置或最大物理资源块位置,而RMSI占用的频域资源大小可等于20MHz减掉RMSI CORESET带宽。如此,节省下来的RMSI CORESET配置信息比特可以用来传输一些其他信息,如,SS/PBCH Block到随机接入时机(RACH occasion,RO)的关联关系指示等。
由上可见,采用本申请实施例中的映射图样,可在满足法规要求的基础上,最大化多种信号的复用效率,同时最小化配置信令开销。
基于以上构思,如图9所示,本申请提供一种通信装置900,该通信装置900可包括收发单元901和处理单元902。
在本申请的一示例中,所述通信装置900可应用于终端或终端中的芯片,用于执行图 3所示流程中,以终端为执行主体的步骤。
所述收发单元901,可用于接收来自网络设备的第一指示信息;其中,所述第一指示信息用于指示第一系统信息的数据信道和第一系统信息的控制信道中的至少一个与第一公共信号之间的映射图样,所述映射图样与第一子载波间隔或第二子载波间隔中的至少一个有关,所述第一子载波间隔为所述第一系统信息的控制信道的子载波间隔,所述第二子载波间隔为所述第一公共信号的子载波间隔。处理单元902,可用于根据所述第一指示信息,控制所述收发器接收所述第一系统信息。
在本申请的一示例中,所述通信装置900可应用于网络设备或网络设备中的芯片,用于执行图3所示流程中,以网络设备为执行主体的步骤。
处理单元902,可用于生成第一指示信息;其中,所述第一指示信息用于指示第一系统信息的数据信道和第一系统信息的控制信道中的至少一个与第一公共信号之间的映射图样,所述映射图样与第一子载波间隔或第二子载波间隔中的至少一个有关,所述第一子载波间隔为所述第一系统信息的控制信道的子载波间隔,所述第二子载波间隔为所述第一公共信号的子载波间隔。收发单元901,可用于向所述终端发送所述第一指示信息。
关于处理单元902和收发单元901的具体功能,可参见图3所示流程的介绍,在此不再赘述。
基于以上构思,如图10所示,本申请还提供一种通信装置1000,该通信装置1000可应用于上述图3所示的网络设备或网络设备中的芯片,也可应用于上述图3所示的终端或终端中的芯片,在此不作限定。
该通信装置1000可包括处理器1001和存储器1002。进一步的,该装置还可包括接收器1004和发送器1005。进一步的,该装置还可包括总线系统1003。
其中,处理器1001、存储器1002、接收器1004和发送器1005可通过总线系统1003相连,该存储器1002可用存储指令,该处理器1001可用于执行该存储器1002存储的指令,以控制接收器1004接收信号,并控制发送器1005发送信号,完成上述图3所示方法中以网络设备或终端为主体的步骤。
其中,接收器1004和发送器1005可以为不同的物理实体,也可为相同的物理实体,可以统称为收发器。存储器1002可以集成在处理器1001中,也可以是与处理器1001不同的物理实体。
作为一种实现方式,接收器1004和发送器1005的功能可以考虑通过收发电路或收发的专用芯片实现。处理器1001可以考虑通过专用处理芯片、处理电路、处理器或通用芯片实现。
作为另一种实现方式,可以考虑使用计算机的方式,来实现本申请实施例提供的网络设备或终端的功能。即将实现处理器1001、接收器1004和发送器1005功能的程序代码存储在存储器1002中,通用处理器可通过执行存储器中的代码来实现处理器1001、接收器1004和发送器1005的功能。
该通信装置1000所涉及的与本申请提供的技术方案相关的概念、解释和详细说明以及其他步骤,可参见前述方法或其它实施例中关于这些内容的描述,此处不作赘述。
在本申请的一示例中,该通信装置1000可应用于终端或终端中的芯片,所述通信装置1000可用于执行上述图3所示流程中,以终端为执行主体的步骤。比如,接收器1004,可用于接收来自网络设备的第一指示信息。处理器1001,可用于根据第一指示信息,控制 所述接收器1004接收第一系统信息。
在本申请的一示例中,该通信装置1000可应用于网络设备或网络设备中的芯片,所述通信装置1000可用于执行上述图3所示流程中,以网络设备为执行主体的步骤。比如,处理器1001,可用于生成第一指示信息。发送器1005,可用于向所述终端发送所述第一指示信息。
关于处理器1001、接收器1004以及发送器1005的介绍,可参见上述图3所示流程的介绍,在此不再赘述。
与上构思相同,如图11所示,本申请还提供一种网络设备,比如,基站的结构示意图。该基站可应用于上述图1所示通信系统的场景中,该基站可以为图3所示流程中的网络设备。
具体的,基站1100可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1101和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1102。该RRU1101可以为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线11011和射频单元11012。该RRU1101部分可以用于射频信号的收发以及射频信号与基带信号的转换,例如,向终端发送第一指示信息等。该BBU1102部分可以用于基带处理,对基站进行控制等。该RRU1101和BBU1102可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
该BBU1102为基站的控制中心,也可以称为处理单元,用于完成基带处理功能,如信道编码,复用,调制,扩频等。例如该BBU(处理单元)可以用于控制基站执行图3所示流程中的方法。
在一个示例中,该BBU1102可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如NR网),也可以分别支持不同接入制式的无线接入网。该BBU1102还可包括存储器11021和处理器11022。该存储器11021用以存储必要的指令和数据。例如存储器11021存储上述实施例中的“第一指示信息”的指令,该处理器11022用于控制基站进行必要的动作。此外每个单板上还可以设置有必要的电路。
与上述构思相同,图12提供了一种终端的结构示意图,该终端可适用于图3中所示的流程,以终端为执行主体的步骤,为了便于说明,图12仅示出了终端的主要部件。如图12所示,终端1200可包括处理器、处理器、存储器、控制电路,可选的,还可以包括天线和/或输入输出装置。处理器可用于对通信协议以及通信数据进行处理,以及对用户设备进行控制,执行软件程序,处理软件程序的数据。存储器可以存储软件程序和/或数据。控制电路可用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,可用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏、键盘等,可用于接收用户输入的数据以及对用户输出数据。
在本申请实施例中,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图12仅示出了一个存储器和处理器。在 实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器可用于对通信协议以及通信数据进行处理,中央处理器可用于对整个用户设备进行控制,执行软件程序,处理软件程序的数据。图12中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路作为终端1200的收发单元1201,将具有处理功能的处理器视为终端1200的处理单元1202。如图12所示,终端1200可包括收发单元1201和处理单元1202。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1201中用于实现接收功能的器件视为接收单元,将收发单元1201中用于实现发送功能的器件视为发送单元,即收发单元1201包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元也可以称为发射机、发射器或发射电路等。
应理解,上述各个装置实施例中网络设备与终端和方法实施例中的网络设备或终端完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和终端。
基于以上实施例,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。该计算机存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种芯片,该芯片包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如获取或处理上述方法中所涉及的信息或者消息。可选地,该芯片还包括存储器,该存储器,用于存储处理器所执行的程序指令和数据。该芯片,也可以包含芯片和其他分立器件。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (31)

  1. 一种通信方法,其特征在于,包括:
    终端接收来自网络设备的第一指示信息;
    其中,所述第一指示信息用于指示第一系统信息的数据信道和第一系统信息的控制信道中的至少一个与第一公共信号之间的映射图样,所述映射图样与第一子载波间隔或第二子载波间隔中的至少一个有关,所述第一子载波间隔为所述第一系统信息的控制信道的子载波间隔,所述第二子载波间隔为所述第一公共信号的子载波间隔;
    所述终端根据所述第一指示信息,接收所述第一系统信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述第一公共信号的第二子载波间隔,确定所述第一公共信号的重复映射图样。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端接收来自所述网络设备的第二指示信息;
    所述终端根据所述第二指示信息,确定所述第一公共信号的重复映射图样。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一公共信号的重复映射图样中包括至少两个所述第一公共信号时,所述终端确定所述至少两个第一公共信号中的一个第一公共信号为参考第一公共信号;
    所述终端根据所述参考第一公共信号接收所述第一系统信息的控制信道。
  5. 根据权利要求4所述的方法,其特征在于,所述终端确定所述至少两个第一公共信号中的一个第一公共信号为参考第一公共信号,包括:
    所述终端接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述参考第一公共信号;
    所述终端根据所述第三指示信息,在所述至少两个第一公共信号中,确定所述参考第一公共信号。
  6. 根据权利要求4所述的方法,其特征在于,所述第一指示信息中还包括所述参考第一公共信号的指示信息;
    所述终端确定所述至少两个第一公共信号中的一个第一公共信号为参考公共信号,包括:
    所述终端根据所述第一指示信息中所包括的参考第一公共信号的指示信息,在所述至少两个第一公共信号中,确定所述参考第一公共信号。
  7. 一种通信方法,其特征在于,包括:
    网络设备生成第一指示信息;
    其中,所述第一指示信息用于指示第一系统信息的数据信道和第一系统信息的控制信道中的至少一个与第一公共信号之间的映射图样,所述映射图样与第一子载波间隔或第二子载波间隔中的至少一个有关,所述第一子载波间隔为所述第一系统信息的控制信道的子载波间隔,所述第二子载波间隔为所述第一公共信号的子载波间隔;
    所述网络设备向所述终端发送所述第一指示信息。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送第二指示信息,所述第二指示信息用于指示所述第一公共信号的重复映射图样。
  9. 根据权利要求7或8所述的方法,其特征在于,如果所述第一公共信号的重复图样中包括至少两个所述第一公共信号,所述方法还包括:
    所述网络设备向所述终端发送第三指示信息,所述第三指示信息用于指示所述至少两个第一公共信号中的一个第一公共信号为参考第一公共信号。
  10. 根据权利要求7或8任一项所述的方法,其特征在于,如果所述第一公共信号的重复图样中包括至少两个所述第一公共信号,所述第一指示信息中还包括参考公共信号的指示信息,所述参考公共信号为所述至少两个第一公共信号中的一个第一公共信号。
  11. 一种通信装置,其特征在于,包括:
    收发器,用于接收来自网络设备的第一指示信息;
    其中,所述第一指示信息用于指示第一系统信息的数据信道和第一系统信息的控制信道中的至少一个与第一公共信号之间的映射图样,所述映射图样与第一子载波间隔或第二子载波间隔中的至少一个有关,所述第一子载波间隔为所述第一系统信息的控制信道的子载波间隔,所述第二子载波间隔为所述第一公共信号的子载波间隔;
    处理器,用于根据所述第一指示信息,控制所述收发器接收所述第一系统信息。
  12. 根据权利要求11所述的装置,其特征在于,所述处理器,还用于:
    根据所述第一公共信号的第二子载波间隔,确定所述第一公共信号的重复映射图样。
  13. 根据权利要求11或12所述的装置,其特征在于,
    所述收发器,还用于接收来自所述网络设备的第二指示信息;
    所述处理器,还用于根据所述第二指示信息,确定所述第一公共信号的重复映射图样。
  14. 根据权利要求12或13所述的装置,其特征在于,
    所述处理器,还用于在所述第一公共信号的重复图样中包括至少两个所述第一公共信号时,确定所述至少两个第一公共信号中的一个第一公共信号为参考第一公共信号;
    所述处理器,还用于根据所述参考第一公共信号接收所述第一系统信息的控制信道。
  15. 根据权利要求14所述的装置,其特征在于,所述处理器在确定所述至少两个第一公共信号中的一个第一公共信号为参考第一公共信号时,具体用于:
    控制所述收发器接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述参考第一公共信号;
    根据所述第三指示信息,在所述至少两个第一公共信号中,确定所述参考第一公共信号。
  16. 根据权利要求14所述的装置,其特征在于,所述第一指示信息中还包括所述参考第一公共信号的指示信息;
    所述处理器在确定所述至少两个第一公共信号中的一个第一公共信号为参考公共信号时,具体用于:
    根据所述第一指示信息中所包括的参考第一公共信号的指示信息,在所述至少两个第一公共信号中,确定所述参考第一公共信号。
  17. 一种通信装置,其特征在于,
    处理器,用于生成第一指示信息;
    其中,所述第一指示信息用于指示第一系统信息的数据信道和第一系统信息的控制信 道中的至少一个与第一公共信号之间的映射图样,所述映射图样与第一子载波间隔或第二子载波间隔中的至少一个有关,所述第一子载波间隔为所述第一系统信息的控制信道的子载波间隔,所述第二子载波间隔为所述第一公共信号的子载波间隔;
    收发器,用于向所述终端发送所述第一指示信息。
  18. 根据权利要求17所述的装置,其特征在于,
    所述收发器,还用于向所述终端发送第二指示信息,所述第二指示信息用于指示所述第一公共信号的重复映射图样。
  19. 根据权利要求17或18所述的装置,其特征在于,如果所述第一公共信号的重复图样中包括至少两个所述第一公共信号,所述收发器还用于:
    向所述终端发送第三指示信息,所述第三指示信息用于指示所述至少两个第一公共信号中的一个第一公共信号为参考第一公共信号。
  20. 根据权利要求17或18所述的装置,其特征在于,如果所述第一公共信号的重复图样中包括至少两个所述第一公共信号,所述第一指示信息中还包括参考公共信号的指示信息,所述参考公共信号为所述至少两个第一公共信号中的一个第一公共信号。
  21. 根据权利要求1至6任一项所述的方法,权利要求7至10任一项所述的方法,权利要求11至16任一项所述的装置,或者权利要求17至20任一项所述的装置,其特征在于,所述第一子载波间隔或所述第二子载波间隔为15kHz、30kHz、60kHz中的任意一个。
  22. 根据权利要求1至6任一项所述的方法,权利要求7至10任一项所述的方法,权利要求11至16任一项所述的装置,或者权利要求17至20任一项所述的装置,其特征在于,当所述第一子载波间隔为15kHz或30kHz,且所述第二子载波间隔为15kHz或30kHz时,所述映射图样为第一映射图样;
    当所述第一子载波间隔或所述第二子载波间隔为60kHz时,所述映射图样为第二映射图样。
  23. 根据权利要求1至6任一项所述的方法,权利要求7至10任一项所述的方法,权利要求11至16任一项所述的装置,或者权利要求17至20任一项所述的装置,其特征在于,所述第一映射图样中所述第一系统信息的数据信道和所述第一系统信息的控制信道频分复用,且所述第一系统信息的控制信道与所述第一公共信号时分复用,所述第一系统信息的数据信道与所述第一公共信号时分复用。
  24. 根据权利要求1至6任一项所述的方法,权利要求7至10任一项所述的方法,权利要求11至16任一项所述的装置,或者权利要求17至20任一项所述的装置,其特征在于,所述第一映射图样中所述第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者之间频分复用。
  25. 根据权利要求1至6任一项所述的方法,权利要求7至10任一项所述的方法,权利要求11至16任一项所述的装置,或者权利要求17至20任一项所述的装置,其特征在于,所述第一映射图样或所述第二映射图样中所述第一系统信息的控制信道与所述第一系统信息的数据信道占用的频域资源相同而时域资源正交,所述第一公共信号占用的时域资源与所述第一系统信息的控制信道和数据信道联合占用的时域资源相同,且所述第一公共信号占用的频域资源与所述第一系统信息的控制信道占用的频域资源正交。
  26. 根据权利要求1至6任一项所述的方法,权利要求7至10任一项所述的方法, 权利要求11至16任一项所述的装置,或者权利要求17至20任一项所述的装置,其特征在于,所述第二映射图样中所述第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者之间时分复用。
  27. 根据权利要求1至6任一项所述的方法,权利要求7至10任一项所述的方法,权利要求11至16任一项所述的装置,或者权利要求17至20任一项所述的装置,其特征在于,所述第二映射图样中所述第一系统信息的控制信道与所述第一公共信号频分复用,所述第一系统信息的数据信道与所述第一系统信息的控制信道时分复用,所述第一公共信号与所述第一系统信息的数据信道时分复用。
  28. 根据权利要求1至6任一项所述的方法,权利要求7至10任一项所述的方法,权利要求11至16任一项所述的装置,或者权利要求17至20任一项所述的装置,其特征在于,当所述第一系统信息的控制信道与所述第一系统信息的数据信道频分复用时,所述第一系统信息的数据信道的带宽等于第一已知带宽减去所述第一系统信息的控制信道的带宽;
    当所述第一系统信息的控制信道、所述第一系统信息的数据信道以及所述第一公共信号,三者频分复用时,所述第一系统信息的数据信道的带宽等于第一已知带宽减去所述第一系统信息的控制信道的带宽和所述第一公共信号的带宽。
  29. 根据权利要求1至6任一项所述的方法,权利要求7至10任一项所述的方法,权利要求11至16任一项所述的装置,或者权利要求17至20任一项所述的装置,其特征在于,当所述第一公共信号与所述第一系统信息的数据信道时分复用时,所述第一系统信息的数据信道占用的时域资源为两个时域相邻的所述第一公共信号之间的正交频分复用OFDM符号。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被计算机执行时,使所述计算机执行如权利要求1至10中任意一项所述的方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被计算机执行时,使所述计算机执行如权利要求1至10中任意一项所述的方法。
PCT/CN2019/107917 2018-09-28 2019-09-25 一种通信方法及装置 WO2020063684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811141710.0A CN110972238B (zh) 2018-09-28 2018-09-28 一种通信方法及装置
CN201811141710.0 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020063684A1 true WO2020063684A1 (zh) 2020-04-02

Family

ID=69950306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107917 WO2020063684A1 (zh) 2018-09-28 2019-09-25 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN110972238B (zh)
WO (1) WO2020063684A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038320A (zh) * 2013-03-04 2014-09-10 中兴通讯股份有限公司 资源映射、接收方法及装置、信令通知、获取方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10492157B2 (en) * 2017-01-04 2019-11-26 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
CN108401527B (zh) * 2017-08-04 2021-11-23 北京小米移动软件有限公司 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
CN108496317B (zh) * 2017-11-02 2021-11-16 北京小米移动软件有限公司 剩余关键系统信息的公共资源集合的查找方法及装置
US11770781B2 (en) * 2017-11-15 2023-09-26 Koninklijke Philips N.V. Method and device for indicating period information of common control resource set of remaining key system information

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038320A (zh) * 2013-03-04 2014-09-10 中兴通讯股份有限公司 资源映射、接收方法及装置、信令通知、获取方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Physical layer procedures for control(Release 15", 3GPP TS 38. 213 V15.2.0, 29 June 2018 (2018-06-29), pages 87 - 93, XP051474490 *
CATT: "Summary of Offline Discussion on Remaining Minimum System Information", R1-171688, 1 December 2017 (2017-12-01), XP051370678 *
NTT DOCOMO, INC.: "Discussion on remaining details on RMSI delivery", R1-1716071, 21 September 2017 (2017-09-21), XP051339529 *
VIVO: "Discussion on Remaining Minimum System Information", R1-1800174, 26 January 2018 (2018-01-26), XP051384664 *

Also Published As

Publication number Publication date
CN110972238A (zh) 2020-04-07
CN110972238B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN112566267B (zh) 资源指示值的获取方法及装置
JP7432708B2 (ja) 制御情報を示す方法及び装置
CN109392129B (zh) 一种资源分配的方法,终端以及网络设备
CN111726877B (zh) 数据传输方法、终端和基站
WO2021032017A1 (zh) 通信方法和装置
US20210218525A1 (en) Communication method and communications apparatus
CN110999477A (zh) 信息指示方法及相关设备
CN110267227A (zh) 一种数据传输方法、相关设备及系统
US20190349927A1 (en) Information transmission method and apparatus
CN112020145A (zh) 一种通信方法及装置
US20220248466A1 (en) Resource configuration method and device
WO2019095925A1 (zh) 一种通讯方法、网络设备及终端设备
WO2020030127A1 (zh) 一种资源分配方法、相关设备及装置
WO2019095783A1 (zh) 一种同步块与寻呼调度信令关联方法、指示方法及装置
WO2020063684A1 (zh) 一种通信方法及装置
WO2018188095A1 (zh) 一种通信方法及装置
EP3917244A1 (en) Method and device for signal transmission
CN108633058B (zh) 一种资源分配方法及基站、ue
WO2023071465A1 (zh) 通信方法和装置
CN115942340B (zh) 通信方法和装置
CN113873644A (zh) 通信方法及装置
CN114270978A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864903

Country of ref document: EP

Kind code of ref document: A1