WO2023010686A1 - 抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品 - Google Patents

抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品 Download PDF

Info

Publication number
WO2023010686A1
WO2023010686A1 PCT/CN2021/124018 CN2021124018W WO2023010686A1 WO 2023010686 A1 WO2023010686 A1 WO 2023010686A1 CN 2021124018 W CN2021124018 W CN 2021124018W WO 2023010686 A1 WO2023010686 A1 WO 2023010686A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
antibacterial plastic
plastic
preparation
thermoplastic
Prior art date
Application number
PCT/CN2021/124018
Other languages
English (en)
French (fr)
Inventor
赵梓俨
李伟
赵梓权
刘帅卓
李鹏辉
万文超
Original Assignee
成都嗪环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都嗪环科技有限公司 filed Critical 成都嗪环科技有限公司
Publication of WO2023010686A1 publication Critical patent/WO2023010686A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics

Definitions

  • the invention relates to the technical field of plastics, in particular to an antibacterial plastic, a preparation method of the antibacterial plastic and an antibacterial plastic product.
  • Plastics are macromolecular compounds (macromolecules) that are polymerized from monomers through polyaddition or polycondensation reactions. It has the advantages of light weight, stable chemical properties, good impact resistance, high transparency and wear resistance, good insulation, low thermal conductivity, good formability and coloring, and low processing cost.
  • antibacterial materials of the mainstream antibacterial plastics on the market are silver ion antibacterial agents and ZnO series antibacterial agents, but the cost of such antibacterial agents is relatively high, and the prepared antibacterial plastics still have the problems of metal pollution, large difference in antibacterial performance and instability. .
  • the existing photocatalytic materials can only have a good photocatalytic effect under the condition of light, which greatly limits the application of this material under the condition of no light.
  • the main purpose of the present invention is to provide a kind of antibacterial plastic, the preparation method of antibacterial plastic and antibacterial plastic product, aim to solve existing silver ion antibacterial agent, the antibacterial plastic cost of ZnO series antibacterial agent is high, antibacterial effect is unstable, and there is metal Pollution, and the technical problem that photocatalytic materials only have good photocatalytic effect under light conditions.
  • the present invention provides an antibacterial plastic, which is made of C 3 N 4 and its compound and thermoplastics by heating and melting, and the C 3 N 4 and its compound and The mass ratio of the thermoplastic is 0.01-5:100.
  • the molecular formula of the thermoplastic contains -CH 3 and/or -CH 2 - structures.
  • the thermoplastics include polyethylene (PE), polyethylene terephthalate (PET), polycarbonate (PC), polymethyl methacrylate (PMMA) , polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), acrylonitrile-butadiene-styrene (ABS), polyamide (PA), thermoplastic polyurethane (TPU) or Various.
  • PE polyethylene
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • PVC polyvinyl chloride
  • PP polypropylene
  • PS polystyrene
  • ABS acrylonitrile-butadiene-styrene
  • PA thermoplastic polyurethane
  • the polyethylene (PE) includes one of low-density polyethylene (LDPE), high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) polymer plastics or Various.
  • LDPE low-density polyethylene
  • HDPE high-density polyethylene
  • LLDPE linear low-density polyethylene
  • the C 3 N 4 and its composites include C 3 N 4 , graphene/C 3 N 4 , SiO 2 /C 3 N 4 , GO/C 3 N 4 , boron Doped C 3 N 4 , Silicon doped C 3 N 4 , Carbon doped C 3 N 4 , Phosphorous doped C 3 N 4 , Nitrogen doped C 3 N 4 , Oxygen doped C 3 N 4 , Sulfur doped One or more of C 3 N 4 .
  • the present invention also provides a preparation method of antibacterial plastic, the preparation method of described antibacterial plastic is used for preparing above-mentioned antibacterial plastic, comprises the following steps:
  • the heating and melting temperature ranges from 100°C to 300°C.
  • the heating and melting time is 1-10 hours.
  • the present invention also provides an antibacterial plastic product, which is obtained from the above antibacterial plastic through plastic processing technology.
  • the plastic processing technology includes injection molding, blow molding, blister molding and extrusion molding.
  • the inorganic non-metallic material C 3 N 4 and its compound are added to thermoplastics as an antibacterial agent, so that the plastic has excellent antibacterial and catalytic properties, and the two are mixed by heating and melting, and the inorganic The non-metallic material C 3 N 4 and its compound react with thermoplastic plastics, so that the inorganic non-metallic material C 3 N 4 and its compound are firmly combined with thermoplastic plastics, thus forming an antibacterial plastic.
  • the antibacterial plastic has excellent antibacterial effect, stable antibacterial ability, and no metal pollution under the condition of light or no light; and the antibacterial agent of the antibacterial plastic is only inorganic non-metallic material C 3 N 4 and its compound, and thermoplastic only It only needs to be heated and melted after mixing, so the preparation method of the antibacterial plastic is simple and the production cost is low.
  • Fig. 1 is the Raman spectrogram of a kind of antibacterial plastic and polyethylene (PE) material provided in the embodiment of the present invention in a certain section;
  • PE polyethylene
  • Fig. 2 is the Raman spectrogram of a kind of antibacterial plastic and polyethylene (PE) material provided in the embodiment of the present invention in another section;
  • Fig. 3 is an infrared spectrogram of an antibacterial plastic and polyethylene (PE) material provided in an embodiment of the present invention.
  • An antibacterial plastic the components of the antibacterial plastic are composed of inorganic non-metallic materials C 3 N 4 and its composites and thermoplastics, the C 3 N 4 and its composites include C 3 N 4 , graphene/C 3 N 4 , SiO 2 /C 3 N 4 , GO/C 3 N 4 , boron doped C 3 N 4 , silicon doped C 3 N 4 , carbon doped C 3 N 4 , phosphorus doped C 3 N 4 , nitrogen-doped C 3 N 4 , oxygen-doped C 3 N 4 , sulfur-doped C 3 N 4 , etc.; the thermoplastics include polyethylene (PE), polyethylene terephthalate Glycol ester (PET), polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), acrylonitrile-butadiene - One or more of polymer plastics such as styrene (
  • Antibacterial plastics have remarkable antibacterial effects and can be applied in the field of medical antibacterial materials.
  • medical grade thermoplastics are selected when preparing medical antibacterial plastics.
  • This embodiment provides a preparation method of antibacterial plastics: take 1 mass part of inorganic non-metallic material C 3 N 4 and 100 mass parts of polyethylene respectively, and mix the above-mentioned mass parts of inorganic non-metallic material C 3 N 4 and The polyethylene is thoroughly mixed, heated, melted and mixed at 120-135°C for 1-10 hours to obtain an antibacterial plastic.
  • Antibacterial plastic products can be obtained by further processing the antibacterial plastic in this embodiment through plastic processing technology.
  • the above-mentioned antibacterial plastics can be made into antibacterial plastic bags or plastic films by plastic blow molding process. antibacterial plastic products.
  • the antibacterial plastic product prepared by the antibacterial plastic of the present invention also has excellent antibacterial ability, and the antibacterial plastic product can be widely used in various occasions requiring antibacterial. According to different needs, various antibacterial plastic products of different types and uses can be prepared through different plastic processing techniques. For example, various plastic products used in public places; plastic products used for food packaging and storage, and plastic products used for decoration, etc.
  • the antibacterial plastic of the present invention all possesses excellent antibacterial effect under the conditions of light and no light, and the antibacterial rates of Escherichia coli and Staphylococcus aureus are all greater than 99.99%.
  • the ability is stable and there is no metal pollution.
  • the excellent antibacterial effect of the antibacterial plastic can not only meet the daily antibacterial needs, but also meet the antibacterial requirements of medical antibacterial products.
  • the antibacterial plastic products can be used as medical plastic products, especially medical antibacterial plastic products, including medical intubations, medical catheters, medical hoses, medical straws, medical pipelines, dialysis filters, oxygen masks, medical housings, injection containers , medical packaging, laboratory utensils, catheter plates, transparent plastic covers, disposable syringes, etc.
  • the characteristic peak of polyethylene (PE) at 1471cm -1 is a typical CH in-plane bending vibration peak, while the broad peak at 2774-3117cm -1 is the stretching vibration peak of CH, located at 1376cm -1 and 1302cm -1
  • the peaks at are the stretching vibration peaks of CC, and these peaks are the infrared characteristic peaks of polyethylene (PE).
  • the inorganic non-metallic material C 3 N 4 in antibacterial plastics is firmly combined with PE molecules and is not easy to fall off, which makes the antibacterial performance of antibacterial plastics stable and long-lasting.
  • the unprocessed sample sheet is polyethylene
  • the antibacterial sample sheet is antibacterial plastic
  • the blank control sample is polyethylene
  • the control sample is the film for experimental testing
  • the photocatalytic sample is antibacterial plastic.
  • the blank control sample is polyethylene
  • the control sample is the film used for experimental testing
  • the photocatalytic sample is pure phase C 3 N 4 powder.
  • the antibacterial rate of pure phase inorganic non-metallic material C 3 N 4 is generally about 80% to escherichia coli and Staphylococcus aureus; And from the test result of table 2 and table 3 shows that, the antibacterial plastic that embodiment makes is to escherichia coli
  • the antibacterial rate of Staphylococcus aureus and Staphylococcus aureus is more than 99%, which has strong antibacterial property.
  • the antibacterial plastic prepared by the present invention has excellent antibacterial properties against bacteria such as Escherichia coli and Staphylococcus aureus, which greatly expands the application range of thermoplastic materials in the field of antibacterial products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品,所述抗菌塑料由C 3N 4及其复合物和热塑性塑料通过加热熔融的方式制得,且所述C 3N 4及其复合物和所述热塑性塑料的质量比为0.01-5:100。所述抗菌塑料在有无光照条件下均具备优异的抗菌效果,大肠杆菌和金黄色葡萄球菌的抗菌率均大于99.99%、抗菌能力稳定,且无金属污染,依据优异的抗菌效果可用于医用抗菌材料领域;并且所述抗菌塑料的抗菌剂仅为无机非金属材料C 3N 4及其复合物,与热塑性塑料仅通过混合后加热熔融即可,制备方法简单且生产成本低。

Description

抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品
本申请要求于2021年07月31日提交中国专利局,申请号为CN2021108774354,申请名称为“抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及塑料技术领域,尤其涉及一种抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品。
背景技术
塑料是以单体为原料,通过加聚或缩聚反应聚合而成的高分子化合物(macromolecules)。具有质量轻,化学性质稳定,耐冲击性好,具有较高的透明性和耐磨耗型,绝缘性好,导热性低,成形性、着色性好,加工成本低等优越的特性。
塑料制品在大众的日常生活和工农业中发挥着必不可少的作用,但塑料制品只提供了便捷性而忽视了抗菌性,长期使用和堆积会造成大量细菌滋生,威胁食品安全和人体健康。为解决其抗菌性,常常会在塑料中加入抗菌剂,以形成抗菌塑料以及塑料制品。目前市面上主流的抗菌塑料的抗菌材料是银离子抗菌剂,ZnO系列抗菌剂,但是这类抗菌剂成本较高,所制得的抗菌塑料还存在金属污染、抗菌性能差异大且不稳的问题。另外,现有光催化材料只能在光照条件下具备良好的光催化作用,极大的限制了这种材料在无光条件下的应用。
发明内容
本发明的主要目的在于提供一种抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品,旨在解决现有的银离子抗菌剂,ZnO系列抗菌剂的抗菌塑料成本高、抗菌效果不稳定,存在金属污染,且光催化材料只有在光照条件下具备良好的光催化作用的技术问题。
为实现上述目的,本发明提供了一种抗菌塑料,所述抗菌塑料由C 3N 4及 其复合物和热塑性塑料通过加热熔融的方式制得,且所述C 3N 4及其复合物和所述热塑性塑料的质量比为0.01-5:100。
可选的,在一实施例中,所述热塑性塑料的分子式中含有-CH 3和/或-CH 2-结构。
可选的,在一实施例中,所述热塑性塑料包括聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚氯乙烯(PVC)、聚丙烯(PP)、聚苯乙烯(PS)、丙烯腈-丁二烯-苯乙烯(ABS)、聚酰胺(PA)、热塑性聚氨酯(TPU)中的一种或多种。
可选的,在一实施例中,所述聚乙烯(PE)包括低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、线性低密度聚乙烯(LLDPE)高分子塑料中的一种或者多种。
可选的,在一实施例中,所述C 3N 4及其复合物包括C 3N 4、石墨烯/C 3N 4、SiO 2/C 3N 4、GO/C 3N 4、硼掺杂C 3N 4、硅掺杂C 3N 4、碳掺杂C 3N 4、磷掺杂C 3N 4、氮掺杂C 3N 4、氧掺杂C 3N 4、硫掺杂C 3N 4其中的一种或者多种。
为实现上述目的,本发明还提供了一种抗菌塑料的制备方法,所述抗菌塑料的制备方法用于制备上述抗菌塑料,包括以下步骤:
分别按配比称取C 3N 4及其复合物和热塑性塑料;
将所述C 3N 4及其复合物、所述热塑性塑料混合均匀获得混合物;
加热熔融所述混合物。
可选的,在一实施例中,所述加热熔融温度范围在100℃-300℃。
可选的,在一实施例中,所述加热熔融的时间为1-10小时。
为实现上述目的,本发明还提供了一种抗菌塑料制品,所述抗菌塑料制品由上述抗菌塑料通过塑料加工工艺获制得。
可选的,在一实施例中,所述塑料加工工艺包括注塑、吹塑、吸塑和挤塑。
本发明提供的技术方案中,将无机非金属材料C 3N 4及其复合物作为抗菌剂加入到热塑性塑料中,使得塑料拥有卓越的抗菌和催化性能,并且二者通 过加热熔融方式混合,无机非金属材料C 3N 4及其复合物与热塑性塑料相互反应,使得无机非金属材料C 3N 4及其复合物与热塑性塑料牢固结合,从而形成了一种抗菌塑料。该抗菌塑料在有无光照条件下均具备优异的抗菌效果、抗菌能力稳定,且无金属污染;并且抗菌塑料的抗菌剂仅为无机非金属材料C 3N 4及其复合物,与热塑性塑料仅通过混合后加热熔融即可,因此抗菌塑料的制备方法简单且生产成本低。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例中提供的一种抗菌塑料与聚乙烯(PE)材料在某一区间段的拉曼光谱图;
图2为本发明实施例中提供的一种抗菌塑料与聚乙烯(PE)材料在另一区间段的拉曼光谱图;
图3为本发明实施例中提供的一种抗菌塑料与聚乙烯(PE)材料的红外光谱图。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
一种抗菌塑料,所述抗菌塑料的组分由无机非金属材料C 3N 4及其复合物和热塑性塑料组成,所述C 3N 4及其复合物包括C 3N 4、石墨烯/C 3N 4、SiO 2/C 3N 4、GO/C 3N 4、硼掺杂C 3N 4、硅掺杂C 3N 4、碳掺杂C 3N 4、磷掺杂C 3N 4、氮掺杂C 3N 4、氧掺杂C 3N 4、硫掺杂C 3N 4等其中的一种或者多种;所述热塑性塑料包括聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚甲 基丙烯酸甲酯(PMMA)、聚氯乙烯(PVC)、聚丙烯(PP)、聚苯乙烯(PS)、丙烯腈-丁二烯-苯乙烯(ABS)、聚酰胺(PA)、热塑性聚氨酯(TPU)等高分子塑料中的一种或多种。其中聚乙烯(PE)可以为低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、线性低密度聚乙烯(LLDPE)其中的一种或多种组合。
抗菌塑料的抗菌效果显著,可应用于医用抗菌材料领域。为了把控医用塑料制品的品质,制备医用抗菌塑料时,选用医用级别热塑性塑料。
本实施例提供了一种抗菌塑料的制备方法:分别称取1质量份的无机非金属材料C 3N 4和100质量份的聚乙烯,将上述质量份的无机非金属材料C 3N 4和聚乙烯充分混匀,120-135℃加热熔融混合1-10小时,即可获得抗菌塑料。
将本实施例中的抗菌塑料经塑料加工工艺进一步加工可得到抗菌塑料制品。一般可使用塑料吹塑工艺将上述抗菌塑料制成抗菌塑料袋或者塑料膜,在其他实施例中,也可以使用其他的塑料加工工艺如注塑、吸塑和挤塑等,制备获得更多不同类型的抗菌塑料制品。
由本发明抗菌塑料制备的抗菌塑料制品也具有优异的抗菌能力,所述抗菌塑料制品可以广泛应用于需要抗菌的多种场合。根据需求的不同,可通过不同的塑料加工工艺制备获得多种不同类型、不同用途的抗菌塑料制品。例如用于公共场所的各种塑料制品;用于食品包装、盛放的塑料制品以及用于装饰的塑料制品等。
依据下表中的表2和表3测试数据,本发明所述抗菌塑料在有光照和无光照条件下均具备优异的抗菌效果,大肠杆菌和金黄色葡萄球菌的抗菌率均大于99.99%、抗菌能力稳定,且无金属污染。所述抗菌塑料优异的抗菌效果不仅能满足日常抗菌需求,也满足医疗抗菌制品的抗菌要求。因此所述抗菌塑料制品可作为医用塑料制品,尤其医用抗菌塑料制品,包括医用插管、医用导管、医用软管、医用吸管、医用管路、渗析过滤器、氧气面罩、医用壳体、注射容器、医用包装品、实验器皿、导管盘子、透明塑料罩、一次性注射器等。
一、抗菌塑料对比测试:
1、分别对实施例所制得的抗菌塑料和聚乙烯(PE)材料进行拉曼光谱测试,得到的拉曼光谱如图1和图2所示,聚乙烯化学键的特征拉曼位移如表1所示,
表1聚乙烯化学键的特征拉曼位移
拉曼位移/cm -1 对应结构及特征 所属相区
1459 CH 2 bending N
1438 CH 2 bending N
1417 CH 2 bending C
1293 CH 2 twsiting A
1127 C-C stretching C,N
1062 C-C stretching C,N
表1中,A,无定形相;C,结晶相;N,中间相。
通过图1、图2各自的对比发现,如图1所示,1000-1500cm -1范围内,抗菌塑料在1293cm -1、1438cm -1、1459cm -1信号增强,1417cm -1信号减弱,由表1可知,1293cm -1为结晶相和中间相PE的-CH 2-特征峰,1417cm -1为结晶相的-CH 2-特征峰,1438cm -1为中间相PE的-CH 2-特征峰,1459cm -1为中间相PE的-CH 2-特征峰;如图2所示,2700-3050cm -1范围内,抗菌塑料在2929cm -1、2900cm -1和2846cm -1信号减弱,根据参考文献《俞欣.超高分子量聚乙烯结晶行为及其结构性能关系的研究[D].上海.华东理工大学.2016》和《陈杰勋.拉曼光谱在聚合物产品质量检测中的应用[D].浙江.浙江大学.2010》可知,2846cm-1、2879cm-1为-CH 3的对称拉伸振动峰,2900cm -1、2929cm -1分别为-CH 3对称拉伸振动峰和-CH 2-拉伸振动峰。
因此由图1、图2结合表1可以看出,无机非金属材料C 3N 4加入到PE中,在加热熔融混合之后,PE中的-CH 3和-CH 2-分子结构与无机非金属材料C 3N 4反应,造成了-CH 3和-CH 2-键的断裂,使得PE分子进行重新排列,并形成了新的结晶态和中间态的PE分子。
2、分别对实施例所制得的抗菌塑料和聚乙烯(PE)材料进行红外光谱测试,得到的红外谱图如图3所示。
聚乙烯(PE)位于1471cm -1处的特征峰为典型的C-H面内弯曲振动峰, 而2774-3117cm -1处的宽峰则是C-H的伸缩振动峰,位于1376cm -1处和1302cm -1处的峰则是C-C的伸缩振动峰,这些峰位是聚乙烯(PE)的红外特征峰,在PE中加入无机非金属材料C 3N 4之后这些特征峰峰强都相应减弱;且加入无机非金属材料C 3N 4后,-CH 2-的特征峰峰位从1083cm -1偏移到1016cm -1,因此可知无机非金属材料C 3N 4与PE之间具有强相互作用,并且在抗菌塑料的红外谱图中,可以观察到位于775cm -1的C 3N 4结构中三嗪环的弯曲振动峰,位于2152cm -1的C 3N 4结构中C≡N的特征峰,上述C 3N 4的典型吸收峰都证明了无机非金属材料C 3N 4被成功引入到了PE中。
因此抗菌塑料中的无机非金属材料C 3N 4与PE分子结合牢固,不易脱落,使得抗菌塑料的抗菌性能稳定长久。
二、抗菌塑料的抗菌性试验:
1、依据国家标准《GB/T31402-2015塑料表面抗菌性能试验方法》对实施例所制得的抗菌塑料进行抗菌试验测试,测试结果如表2所示,且该测试在正常的弱光环境下进行。
表2 GB/T31402-2015塑料表面抗菌性能试验方法测试结果
Figure PCTCN2021124018-appb-000001
表2中,无加工试样片为聚乙烯、抗菌试样片为抗菌塑料
2、依据国家标准《GB/T30706-2014可见光照射下光催化抗菌材料及制品 抗菌测试方法及评价》对实施例所制得的抗菌塑料进行抗菌试验测试,测试结果如表3所示。
表3 GB/T30706-2014可见光照射下光催化抗菌材料及制品抗菌测试方法及评价测试结果
Figure PCTCN2021124018-appb-000002
表3中,空白对照样为聚乙烯,对照样片为实验测试用膜,光催化样片为抗菌塑料。
3、依据国家标准《GB/T30706-2014可见光照射下光催化抗菌材料及制品抗菌测试方法及评价》对纯相C 3N 4粉末进行抗菌试验测试,测试结果如表4所示。
表4 GB/T 30706-2014可见光照射下纯相C 3N 4粉末抗菌测试方法及评价
Figure PCTCN2021124018-appb-000003
Figure PCTCN2021124018-appb-000004
表4中,空白对照样为聚乙烯,对照样片为实验测试用膜,光催化样片为纯相C 3N 4粉末。
纯相无机非金属材料C 3N 4对大肠杆菌和金黄色葡萄球菌的抗菌率一般为80%左右;而从表2和表3的测试结果显示可知,实施例制得的抗菌塑料对于大肠杆菌和金黄色葡萄球菌的抗菌率均超过99%,具有很强的强抗菌性。
另外,由表3和表4的测试结果可得,在暗条件下纯相C 3N 4粉末的抗菌率为:[(7×10 6)-(3.3×10 6)]/(7×10 6)*100%=52.9%,而在暗条件下实施例所制得的抗菌塑料的抗菌率为:[(4.9×10 6)-(1.2×10 2)]/(4.9×10 6)*100%=99.99%,表明本发明所制备的抗菌塑料在有光和无光的条件下均具备优异的抗菌效果。
综上,本发明所制备的抗菌塑料,对于大肠杆菌和金黄色葡萄球菌等细菌有优异的抗菌特性,极大扩展了热塑性材料在抗菌制品领域的应用范围。
以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (15)

  1. 一种抗菌塑料,其特征在于,所述抗菌塑料由C 3N 4及其复合物和热塑性塑料通过加热熔融的方式制得,且所述C 3N 4及其复合物和所述热塑性塑料的质量比为0.01-5:100。
  2. 根据权利要求1所述的抗菌塑料,其特征在于,所述热塑性塑料的分子式中含有-CH 3和/或-CH 2-结构。
  3. 根据权利要求2所述的抗菌塑料,其特征在于,所述热塑性塑料包括聚乙烯、聚对苯二甲酸乙二醇酯、聚碳酸酯、聚甲基丙烯酸甲酯、聚氯乙烯、聚丙烯、聚苯乙烯、丙烯腈-丁二烯-苯乙烯、聚酰胺、热塑性聚氨酯中的一种或多种。
  4. 根据权利要求3所述的抗菌塑料,其特征在于,所述聚乙烯包括低密度聚乙烯、高密度聚乙烯、线性低密度聚乙烯中的一种或多种。
  5. 根据权利要求1所述的抗菌塑料,其特征在于,所述C 3N 4及其复合物包括C 3N 4、石墨烯/C 3N 4、SiO 2/C 3N 4、GO/C 3N 4、硼掺杂C 3N 4、硅掺杂C 3N 4、碳掺杂C 3N 4、磷掺杂C 3N 4、氮掺杂C 3N 4、氧掺杂C 3N 4、硫掺杂C 3N 4其中的一种或者多种。
  6. 一种抗菌塑料的制备方法,其特征在于,所述抗菌塑料的制备方法用于制备权利要求1所述抗菌塑料,包括以下步骤:
    按配比称取C 3N 4及其复合物和热塑性塑料;
    将所述C 3N 4及其复合物和所述热塑性塑料混合均匀获得混合物;
    加热熔融所述混合物。
  7. 根据权利要求6所述的抗菌塑料的制备方法,其特征在于,所述抗菌塑料的制备方法用于制备权利要求2所述抗菌塑料。
  8. 根据权利要求7所述的抗菌塑料的制备方法,其特征在于,所述抗菌塑料的制备方法用于制备权利要求3所述抗菌塑料。
  9. 根据权利要求8所述的抗菌塑料的制备方法,其特征在于,所述抗菌塑料的制备方法用于制备权利要求4所述抗菌塑料。
  10. 根据权利要求6所述的抗菌塑料的制备方法,其特征在于,所述抗菌塑料的制备方法用于制备权利要求5所述抗菌塑料。
  11. 根据权利要求9所述的抗菌塑料的制备方法,其特征在于,所述加热熔融的温度范围为100℃-300℃。
  12. 根据权利要求11所述的抗菌塑料的制备方法,其特征在于,所述加热熔融的时间为1-10小时。
  13. 一种抗菌塑料制品,其特征在于,所述抗菌塑料制品由根据权利要求1所述的抗菌塑料通过塑料加工工艺制得。
  14. 根据权利要求13所述的抗菌塑料制品,其特征在于,所述抗菌塑料制品由根据权利要求2所述的抗菌塑料通过塑料加工工艺制得。
  15. 根据权利要求13所述的抗菌塑料制品,其特征在于,所述塑料加工工艺包括注塑、吹塑、吸塑和挤塑。
PCT/CN2021/124018 2021-07-31 2021-10-15 抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品 WO2023010686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110877435.4A CN115678142A (zh) 2021-07-31 2021-07-31 抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品
CN202110877435.4 2021-07-31

Publications (1)

Publication Number Publication Date
WO2023010686A1 true WO2023010686A1 (zh) 2023-02-09

Family

ID=85059849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124018 WO2023010686A1 (zh) 2021-07-31 2021-10-15 抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品

Country Status (2)

Country Link
CN (1) CN115678142A (zh)
WO (1) WO2023010686A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204738A1 (en) * 2003-04-17 2006-09-14 Nanosys, Inc. Medical device applications of nanostructured surfaces
EP2160945A1 (en) * 2008-09-09 2010-03-10 Polymers CRC Limited Antimicrobial Article
CN103483669A (zh) * 2013-10-10 2014-01-01 苏州市湘园特种精细化工有限公司 一种抗菌纳米阻燃塑料及其制备方法
WO2014207628A1 (en) * 2013-06-28 2014-12-31 Universita' Degli Studi Di Camerino Silver(i) acylpyrazolonate complexes embedded in high density polyethylene or in polyvinyl chloride with potent antibacterial activity
CN104311864A (zh) * 2014-10-16 2015-01-28 扬州喜达屋环保科技有限公司 一种高效可见光防菌保鲜塑料包装材料及其制备方法
CN105028436A (zh) * 2015-07-09 2015-11-11 东南大学 石墨相氮化碳作为抗菌材料的新用途
CN109749136A (zh) * 2019-02-25 2019-05-14 牟富书 一种可降解抗菌保鲜膜制品及其制备方法
CN109880211A (zh) * 2019-02-25 2019-06-14 牟富书 抗菌塑料及其制备方法
US20190375924A1 (en) * 2015-12-23 2019-12-12 Materie Plastiche Pisane S.R.L. Antimicrobial polymer composition
CN111424368A (zh) * 2020-03-20 2020-07-17 赵梓权 无纺布的制备方法、无纺布和防护制品
CN111574765A (zh) * 2020-04-23 2020-08-25 赵梓权 可降解抗菌原料、医用垃圾袋及其制备方法
CN113248844A (zh) * 2021-06-03 2021-08-13 浙江德首新型建材有限公司 一种环保pvc管及其生产工艺

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204738A1 (en) * 2003-04-17 2006-09-14 Nanosys, Inc. Medical device applications of nanostructured surfaces
EP2160945A1 (en) * 2008-09-09 2010-03-10 Polymers CRC Limited Antimicrobial Article
WO2014207628A1 (en) * 2013-06-28 2014-12-31 Universita' Degli Studi Di Camerino Silver(i) acylpyrazolonate complexes embedded in high density polyethylene or in polyvinyl chloride with potent antibacterial activity
CN103483669A (zh) * 2013-10-10 2014-01-01 苏州市湘园特种精细化工有限公司 一种抗菌纳米阻燃塑料及其制备方法
CN104311864A (zh) * 2014-10-16 2015-01-28 扬州喜达屋环保科技有限公司 一种高效可见光防菌保鲜塑料包装材料及其制备方法
CN105028436A (zh) * 2015-07-09 2015-11-11 东南大学 石墨相氮化碳作为抗菌材料的新用途
US20190375924A1 (en) * 2015-12-23 2019-12-12 Materie Plastiche Pisane S.R.L. Antimicrobial polymer composition
CN109749136A (zh) * 2019-02-25 2019-05-14 牟富书 一种可降解抗菌保鲜膜制品及其制备方法
CN109880211A (zh) * 2019-02-25 2019-06-14 牟富书 抗菌塑料及其制备方法
CN111424368A (zh) * 2020-03-20 2020-07-17 赵梓权 无纺布的制备方法、无纺布和防护制品
CN111574765A (zh) * 2020-04-23 2020-08-25 赵梓权 可降解抗菌原料、医用垃圾袋及其制备方法
CN113248844A (zh) * 2021-06-03 2021-08-13 浙江德首新型建材有限公司 一种环保pvc管及其生产工艺

Also Published As

Publication number Publication date
CN115678142A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN101962470B (zh) 一种可生物降解的聚碳酸亚丙酯复合材料及其制备方法
CN107345053B (zh) 一种超薄超透明全生物降解薄膜吹膜级材料及其制备方法
CN104804277A (zh) 一种聚乙烯塑料及其制备方法
CN102746629A (zh) 一种可降解色母粒及其制备方法
US20160090453A1 (en) High Strength Polyehtylene Products and a Process for Preparation Thereof
CN113024736A (zh) 离子型抗静电聚乙烯接枝物及其制备方法
Ou et al. Non-isothermal crystallization kinetics of kevlar fiber-reinforced wood flour/HDPE composites
Ren et al. Effects of carbon nanofibers on crystalline structures and properties of ultrahigh molecular weight polyethylene blend fabricated using twin‐screw extrusion
CN103421236A (zh) 一种聚丙烯组合物及聚丙烯吹塑薄膜
WO2023010686A1 (zh) 抗菌塑料、抗菌塑料的制备方法以及抗菌塑料制品
Liao et al. Mechanical and thermal performance of high-density polyethylene/alumina nanocomposites
CN115612241A (zh) 一种抗静电、抗菌改性abs树脂及制备方法
CN103205100B (zh) 高性能ppc及pbs共混物及其制备方法
JP2019501273A (ja) 抗菌性ポリマー組成物
KR20130055167A (ko) 고밀도 폴리에틸렌 수지 조성물 및 이로부터 제조된 성형품
Zhao et al. Research of the influence factors on transesterification reaction degree in PC/PBT blends
WO2017205948A1 (en) Dispersion in the form of a stable suspension of volcanic rock, masterization of an engineered polymer, a polymeric composition, a process for preparing a polymeric composition, a product and use of a polymeric composition
US20180361650A1 (en) Transparant drawn article
CN101503565B (zh) 一种透明的可生物降解聚乳酸纳米复合材料及其制备方法
Huang et al. Studies on dynamic mechanical and rheological properties of LLDPE/nano-SiO 2 composites.
CN108059804B (zh) 一种pbat降解色母粒及其制备方法
Rahmah et al. Mechanical and thermal properties of hybrid blends of LLDPE/starch/PVA
CN111205536A (zh) 一种阻燃塑料及其制备方法
JP2016035022A (ja) 透明熱伝導性樹脂組成物
Yang et al. Preparation and Modification of High-Performance Polychlorotrifluoroethylene Through Physical Blending

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE