WO2023007709A1 - プロバイオテックス高純度多機能粉末の製造方法、及びプロバイオテックス高純度多機能粉末 - Google Patents

プロバイオテックス高純度多機能粉末の製造方法、及びプロバイオテックス高純度多機能粉末 Download PDF

Info

Publication number
WO2023007709A1
WO2023007709A1 PCT/JP2021/028390 JP2021028390W WO2023007709A1 WO 2023007709 A1 WO2023007709 A1 WO 2023007709A1 JP 2021028390 W JP2021028390 W JP 2021028390W WO 2023007709 A1 WO2023007709 A1 WO 2023007709A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
purity
bacillus subtilis
producing
lactic acid
Prior art date
Application number
PCT/JP2021/028390
Other languages
English (en)
French (fr)
Inventor
修一 汐見
浩道 大島
Original Assignee
株式会社ニナファームジャポン
株式会社Sky・ライフ
方 明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニナファームジャポン, 株式会社Sky・ライフ, 方 明 filed Critical 株式会社ニナファームジャポン
Priority to PCT/JP2021/028390 priority Critical patent/WO2023007709A1/ja
Priority to JP2023538171A priority patent/JPWO2023007709A1/ja
Publication of WO2023007709A1 publication Critical patent/WO2023007709A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the present invention relates to a method for producing a probiotic high-purity multifunctional powder and a probiotic high-purity multifunctional powder.
  • BACKGROUND ART Conventionally, it is known that powdery dried products (lactic acid bacteria dried products) containing highly pure lactic acid bacteria have been used, for example, in health foods, livestock feeds, and the like.
  • lactic acid dried product 1.5% pure culture solution of Lactobacillus fermentum, 4% skim milk, 0.5% to 1.5% natural salt, 1% molasses, 0.5% monosodium glutamate, 2 potato starch % ⁇ 6%, defatted soy flour 3% ⁇ 9% is stirred and mixed with 100% purified water, and after the growth process for a predetermined time, the inlet temperature is 150 ° C ⁇ 180 ° C and the temperature is 75 ° C ⁇ 87 ° C.
  • the viable count of Lactobacillus fermentum is 1.1 ⁇ 10 9 cfu / g to 1.2 ⁇ 10 10 cfu / g and the average particle size is 1 ⁇ m to 9 ⁇ m
  • Patent Document 1 A method for producing a powdery lactic acid bacterium dried product has been proposed (see, for example, Patent Document 1).
  • a method for producing mixed bacteria in which lactic acid bacteria and other types of bacteria are mixed can also be considered.
  • the function of each bacterium may be restricted by mixing a plurality of types of bacterium.
  • the present invention has been made in view of the problems described above. It is an object of the present invention to provide a method for producing a probiotic high-purity multifunctional powder that can maintain a high number of bacteria with high purity when producing a probiotic powder.
  • the present invention is characterized by mixing three types of bacteria, lactic acid bacteria, Bacillus subtilis, and actinomycetes, which are separately powdered, in a predetermined ratio.
  • a method for producing a multifunctional powder According to the present invention, it is possible to grow to a high number of bacteria while maintaining high purity without causing contamination during the growth process of each of the three types of bacteria, and even after mixing the three types of bacteria, the high number of bacteria It can hold the number of bacteria.
  • the predetermined ratio is 60% by mass of the lactic acid bacteria, 20% by the Bacillus subtilis, and 20% by the actinomycetes. It is good also as a manufacturing method of powder.
  • the predetermined ratio is advantageous in making lactic acid bacteria the main bacterium in the probiotic high-purity multifunctional powder, and allowing each of the three types of bacteria to exert their functions.
  • a predetermined amount of Lactobacillus fermentum is cultured at a constant temperature, yeast, glucose and peptone are mixed with purified water, and a mixed solution is added to the Lactobacillus fermentum and mixed,
  • a method for producing a probiotic high-purity multifunctional powder may be characterized in that after culturing the number of bacteria to 1.0 ⁇ 10 12 cfu/g or more, the lactic acid bacteria are pulverized to produce a dried product of the lactic acid bacteria. According to this, a sufficient amount of dried lactic acid bacteria can be obtained for producing a probiotic high-purity multifunctional powder.
  • the Lactobacillus fermentum may be cultured at a constant temperature of 36°C for 24 hours. For example, a mixture of 5 g of yeast, 5 g of glucose, and 5 g of peptone in 1000 ml of purified water may be added to the Lactobacillus fermentum.
  • a method for producing a probiotic high-purity multifunctional powder may be characterized by pulverizing to a diameter of up to 0.2 mm to produce a dried product of the Bacillus subtilis. According to this, a sufficient amount of dried Bacillus subtilis can be obtained for producing a probiotic high-purity multifunctional powder.
  • sun-dried pineapple skin is pulverized, the pulverized pineapple skin is immersed in purified water, chitin-chitosan is added, and the temperature is maintained for a predetermined period of time to obtain 1.0 ⁇ 10 10 cfu/g.
  • trehalose and inulin are added to the solution obtained by straining the resulting bacterial cells, and the mixture is dehumidified and dried at low temperature to produce a dried product of the actinomycetes. It may also be a method for producing a pure multifunctional powder. According to this, a sufficient amount of dried actinomycetes can be obtained for producing a probiotic high-purity multifunctional powder.
  • Pineapple skins can be dried in the sun for three years. Soak 200 g of the pulverized pineapple skin in 1000 ml of purified water, add 20 g of chitin chitosan, incubate at 35 to 40° C. for 72 hours, strain the resulting cells, and add trehalose and inulin to the solution. The solution, the trehalose, the inulin and water may be added so that the mass ratio is 10:25:15:50, and the mixture is dried at low temperature for 72 hours to produce the dried product of the actinomycetes. .
  • it may be a probiotic high-purity multifunctional powder containing 60% lactic acid bacteria, 20% Bacillus subtilis, and 20% actinomycetes, each of which is powdery in terms of mass ratio. According to this, each bacterial count has a high degree of purity.
  • lactic acid bacteria are anaerobic bacteria
  • Bacillus subtilis and actinomycetes are aerobic bacteria. For this reason, Bacillus subtilis and actinomycetes can absorb oxygen released by lactic acid bacteria. Bacteria and actinomycetes can maintain an active state without dormancy, and a synergistic effect with lactic acid bacteria can produce endospores and create resistant spores.
  • each of lactic acid bacteria, Bacillus subtilis, and actinomycetes can be grown to a high number while maintaining high purity.
  • FIG. 1 is a flow chart showing a method for producing lactic acid bacteria powder in this embodiment.
  • FIG. 2 is a flow chart showing a method for producing Bacillus subtilis powder in this example.
  • FIG. 3 is a flow chart showing the method for producing actinomycete powder in this example.
  • FIG. 4 is a flow chart showing the method for producing the probiotic high-purity multifunctional powder in this example.
  • FIG. 5 is a schematic diagram showing an example of a stirrer used for producing the probiotic high-purity multifunctional powder in this example.
  • FIG. 6 is a schematic diagram showing an example of a stirrer used for producing the probiotic high-purity multifunctional powder in this example.
  • FIG. 1 is a flow chart showing a method for producing lactic acid bacteria powder according to an embodiment of the present invention. The flow of the method for producing lactic acid bacteria powder will be described below with reference to FIG. FIG. 1 illustrates an example of producing a powder of lactic acid bacteria from a Lactobacillus fermentum strain.
  • S101 is the culturing process for Lactobacillus fermentum strains (NBRC numbers 3071 and 3072).
  • a BCP plate count agar medium is formed by pouring molten agar into a petri dish (a circular glass container) so that lactic acid bacteria can be detected and the number of bacteria can be measured. Apply a 2 mm thick layer with a platinum rod. After that, the petri dish smeared with the Lactobacillus fermentum strain is placed in an incubator and cultured at a constant temperature of 36° C. for 24 hours.
  • S102 is a step of generating a culture solution for culturing the Lactobacillus fermentum strain in the colonies generated in the petri dish in S101.
  • This culture solution is produced by putting 1000 ml of purified water in a hard heat-resistant container and mixing 5 g of yeast, 5 g of glucose and 5 g of peptone. Then, the produced mixed solution is placed in an autoclave and sterilized by heating at a constant temperature of 120°C for 20 minutes, and then cooled to 40°C or lower.
  • S103 is a step of adding the Lactobacillus fermentum strain to the culture solution produced in S102.
  • S104 is a step of growing and culturing lactic acid bacteria. Specifically, the culture solution added with the Lactobacillus fermentum strain in S103 is placed in an incubator and grown at 35 to 40° C. for 48 hours. In S104, the number of lactic acid bacteria is grown and cultured to 1.0 ⁇ 10 12 cfu/g or more. As a guideline for confirming proliferation, the culture solution should become cloudy and a swirling state can be observed when the container is tilted. Finally, in the powdering step of S105, after drying the solution grown and cultured in S104, the lactic acid bacteria are powdered.
  • FIG. 2 is a flow chart showing a method for producing a Bacillus subtilis powder according to an embodiment of the present invention. The flow of the method for producing Bacillus subtilis powder will be described below with reference to FIG. FIG. 2 illustrates an example of producing Bacillus subtilis powder using soybeans as a medium. In addition, it is important to have a technique that enables pure cultivation of the spore-bearing fungus, which adheres to dead leaves as a soil bacterium, Bacillus subtilis, and proliferates with spores.
  • S106 is the process of processing soybeans as a culture medium. First, in S106, soybeans are soaked in water and boiled, and the boiled soybeans are cooled and drained. This soybean is used as a medium for Bacillus subtilis. S107 is a step of growing Bacillus subtilis on soybeans. Here, Bacillus natto is exemplified as Bacillus subtilis.
  • S108 is a step of growing and culturing Bacillus subtilis. Specifically, the soybeans grown with Bacillus subtilis in S107 are placed in an incubator and cultured at a constant temperature of 37° C. for 24 hours. At this time, the surface of the soybean is covered with spore-like or cotton-like Bacillus subtilis, and the odor of ammonia is released. In S108, if the environment for growth and culture is prepared, the number of bacteria of Bacillus subtilis can be grown and cultured to 1.0 ⁇ 10 12 cfu/g or more. Finally, in the powdering step of S109, the Bacillus subtilis is powdered with a moisture content of 8% or less so that the diameter becomes 0.1 mm to 0.2 mm. By pulverizing with a moisture content of 8% or less, the odor of ammonia released in S108 is eliminated.
  • FIG. 3 is a flow chart showing a method for producing actinomycete powder according to an embodiment of the present invention. The flow of the method for producing actinomycete powder will be described below with reference to FIG. FIG. 3 illustrates an example of producing actinomycete powder from pineapple skin.
  • S110 is the step of culturing actinomycetes.
  • actinomycetes are cultured using pineapple peel dried in the sun for three years as a medium.
  • S111 is a step of pulverizing the culture medium. Specifically, in step S110, the sun-dried pineapple skin is pulverized with a mixer.
  • S112 is a step of growing and culturing actinomycetes. Specifically, in S111, 200 g of pineapple peel dust crushed in a 2-liter container is immersed in 1000 ml of purified water, 20 g of chitin-chitosan is added as a nutrient for actinomycetes, and the mixture is placed in an incubator for 35-40 minutes. Incubate for 72 hours at a constant temperature of °C. After that, in the stirring step of S113, by stirring the solution, filamentous and sticky actinomycetes are generated. A new solution is obtained by straining the actinomycetes. At this time, the actinomycetes grow to 1.0 ⁇ 10 10 cfu/g or more, preferably 1.0 ⁇ 10 11 cfu/g to 1.0 ⁇ 10 12 cfu/g or more.
  • S114 is a step of mixing inulin and trehalose with the solution obtained in S113. Specifically, the solution is mixed with inulin and trehalose so that the mass ratio of the solution, trehalose, inulin and water is 10:25:15:50. Finally, in the low-temperature dehumidifying drying step of S115, 80% of the mixture obtained in S114 is dried for 72 hours. Further, the dried mixture is pulverized in the pulverization step of S116.
  • FIG. 4 is a flow chart showing a method for producing a probiotic high-purity multifunctional powder according to an embodiment of the present invention. The flow of the method for producing the probiotic high-purity multifunctional powder will be described below with reference to FIG.
  • S117 the lactic acid bacteria powder, the Bacillus subtilis powder, and the actinomycete powder are mixed at mass ratios of 60%, 20%, and 20%, respectively.
  • the main strain of probiotic high-purity multifunctional powder is lactic acid bacteria.
  • Lactic acid bacteria, Bacillus subtilis, and actinomycetes are all positive bacteria (good bacteria), and good effects can be obtained even when taken alone. For example, when lactic acid bacteria are ingested alone, the effect of improving the intestinal constitution can be obtained. On the other hand, when probiotic high-purity multifunctional powder mixed with lactic acid bacteria, Bacillus subtilis, and actinomycetes is ingested, as described above, the synergistic effect with lactic acid bacteria produces endospores and resistant spores can be made. This resistance can kill cancer cells, for example.
  • FIGS. 5 and 6 are schematic diagrams showing an example of the stirrer 1 used for producing the probiotic high-purity multifunctional powder in the embodiment of the present invention.
  • the structure of the stirrer 1 for stirring and mixing the powder of lactic acid bacteria, the powder of Bacillus subtilis, and the powder of actinomycetes will be described below with reference to FIGS. 5 and 6.
  • FIG. 5 is a schematic diagram showing an example of the stirrer 1 used for producing the probiotic high-purity multifunctional powder in the embodiment of the present invention.
  • the structure of the stirrer 1 for stirring and mixing the powder of lactic acid bacteria, the powder of Bacillus subtilis, and the powder of actinomycetes will be described below with reference to FIGS. 5 and 6.
  • the lactic acid bacteria powder, the Bacillus subtilis powder, and the actinomycete powder (hereinafter referred to as "three mixed powders") are carried in from the loading unit 2.
  • the carrying-in part 2 has a conveyor inside, and the three kinds of mixed powder is moved to the hopper 3 by the operation of the conveyor.
  • the hopper 3 is connected to the stirring/mixing section 4 .
  • the stirring/mixing section 4 has an internal cylinder 4a in which a screw 41 is provided. That is, the stirring/mixing section 4 has a double cylindrical structure as shown in FIG. 5A.
  • FIG. 5B is a cross-sectional view of the stirring/mixing section 4 along the cross-section XX in FIG. 5A (illustration of the screw 41 is omitted).
  • the stirring and mixing section 4 has a double circular cross section.
  • the inner cylinder 4a of the stirring/mixing section 4 is in contact with one drive wheel 42, and the outer cylinder of the stirring/mixing section 4 is in contact with two supporting sections 43 having relatively large diameters.
  • the rotation of the two driving wheels 42 causes the internal cylinder 4a of the stirring/mixing section 4 and the screw 41 inside the stirring/mixing section 4 to also rotate.
  • the support portion 43 supports the stirring and mixing portion 4, and the outer cylinder of the stirring and mixing portion 4 and the support portion 43 do not rotate.
  • the screw 41 rotates for 30 minutes in the direction in which the powder advances at a rate of 10 times per minute, and then rotates in the reverse direction once. By rotating the screw 41 in the reverse direction by one rotation, it is possible to separate the powder stuck to the screw 41, for example.
  • FIG. 6A is a plan view of the stirrer 1 for showing the process after the three-mixed powder has passed through the second hopper 5 and moved to the conveying section 6.
  • the conveying section 6 also has a conveyor inside, and the three-mixed powder is moved to the second conveying section 7 by the operation of the conveyer.
  • the three-mixed powder passes through the second conveying section 7 and returns to the carrying-in section 2 shown in FIG. 5A.
  • the conveying section 6 and the second conveying section 7 are illustrated as a series of line-shaped structures in FIG. 6A, the conveying section 6 and the second conveying section 7 may have a stepped structure.
  • FIG. 6B is a side view of FIG. 6A viewed in the direction of the arrow. Since the carrying-in section 2 is located higher than the conveying section 6 and the second conveying section 7 , the conveying section 6 and the second conveying section 7 are inclined with respect to the whole stirrer 1 and are directed toward the carry-in section 2 . It may also be a structure that goes up.
  • FIG. 6C is a cross-sectional view of the second transport section 7 according to cross-section YY of FIG. 6A.
  • the three-mixed powder is conveyed by the belt 8 (the belt 8 is also provided in the conveying section 6) in the second conveying section 7, and the belt 8 is sandwiched between the motor 9 and the training wheels 10 and is moved by them.
  • stirrer 1 As described above, by using the stirrer 1, it is possible to stir and mix the three types of mixed powder, and even after mixing, it is possible to retain the number of each of the three types of bacteria with high purity.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

乳酸菌と枯草菌と放線菌類との三種類の菌を混合したプロバイオテックス高純度多機能粉末を製造する際に、各々の菌数を高い純度をもって保有することを可能とする、プロバイオテックス高純度多機能粉末の製造方法を提供する。当該製造方法によって得られるプロバイオテックス高純度多機能粉末は、人間の腸内のような無酸素環境においても、嫌気性菌である乳酸菌が放出する酸素を好気性菌である枯草菌と放線菌類が吸収することで、枯草菌と放線菌類が休眠することなく活性状態を維持することができ、乳酸菌との相乗効果で内生胞子を生成して抵抗性を持つ胞子を作ることができる。当該製造方法においては、それぞれ別々に粉末化した乳酸菌と枯草菌と放線菌類との三種類の菌を、所定の比率で混合する。

Description

プロバイオテックス高純度多機能粉末の製造方法、及びプロバイオテックス高純度多機能粉末
 本発明は、プロバイオテックス高純度多機能粉末の製造方法、及びプロバイオテックス高純度多機能粉末に関する。
 従来、高純度の乳酸菌を含む粉体の乾燥物(乳酸菌乾燥物)が、例えば健康食品や家畜の飼料等に使用されていることが公知である。当該乳酸菌乾燥物の製造方法について、一例として、ラクトバチルスファーメンタム(Lactobacillus fermentum)の純粋培養液1.5%、スキムミルク4%、天然塩0.5%~1.5%、糖蜜1%、グルタミン酸ソーダ0.5%、片栗粉2%~6%、脱脂大豆粉3%~9%を、精製水100%に対して攪拌混合し、所定時間の増殖工程の後に、150℃~180℃の入口温度であって75℃~87℃の出口温度に設定したスプレードライヤーにて噴霧乾燥して、ラクトバチルスファーメンタムの生菌数が1.1×109cfu/g~1.2×1010cfu/gであると共に平均粒径が1μm~9μmの粉体状の乳酸菌乾燥物を製造する乳酸菌乾燥物製造方法が提案されていた(例えば、特許文献1参照)。
 上記のような乳酸菌乾燥物製造方法に対して、乳酸菌と他の種類の菌を混合した混合菌(ハイブリッド菌)の製造方法も考え得る。しかし、当該製造方法においては、複数の種類の菌を混合することで、各々の菌の機能が制限されてしまう虞があった。
特許4067474号公報
 本発明は、上記のような問題点に鑑みてなされたものであり、一例として乳酸菌と枯草菌と放線菌類との三種類の菌を混合した混合菌(以下、「プロバイオテックス高純度多機能粉末」という)を製造する際に、各々の菌を高純度で高い菌数に維持することを可能とする、プロバイオテックス高純度多機能粉末の製造方法を提供することを目的とする。
 上記の課題を解決するための本発明は、それぞれ別々に粉末化した乳酸菌と枯草菌と放線菌類との三種類の菌を、所定の比率で混合することを特徴とする、プロバイオテックス高純度多機能粉末の製造方法である。本発明によれば、三種類の菌それぞれの増殖過程においてコンタミが生じることなく、高い純度を維持しつつ高い菌数まで増殖することができ、また、三種類の菌を混合した後も当該高い菌数を保有することができる。
 また、本発明においては、前記所定の比率は、質量比で前記乳酸菌を60%、前記枯草菌を20%、前記放線菌類を20%とすることを特徴とする、プロバイオテックス高純度多機能粉末の製造方法としてもよい。当該所定の比率は、プロバイオテックス高純度多機能粉末の中でも乳酸菌を主力菌としつつ、三種類の菌のそれぞれの機能を発揮させる上で有利である。 
 また、本発明においては、所定量のラクトバチルスファーメンタムを一定温度で培養し、酵母、グルコース、ペプトンを、精製水に対して混合した混合液を当該ラクトバチルスファーメンタムに添加して混合し、菌数を1.0×1012cfu/g以上まで増殖培養した後に、粉末化して前記乳酸菌の乾燥物を製造することを特徴とする、プロバイオテックス高純度多機能粉末の製造方法としてもよい。これによれば、プロバイオテックス高純度多機能粉末を製造するうえで十分な量の乳酸菌の乾燥物を得ることができる。その際、ラクトバチルスファーメンタムは、36℃の一定温度で24時間培養してもよい。例えば、酵母5g、グルコース5g、ペプトン5gを、精製水1000mlに対して混合した混合液を当該ラクトバチルスファーメンタムに添加してもよい。
 また、本発明においては、ボイルした後に冷却し、水切りした大豆に前記枯草菌を殖菌し、菌数を1.0×1012cfu/g以上まで増殖培養した後に、水分率8%以内で0.1mm~0.2mmの径に粉末化して前記枯草菌の乾燥物を製造することを特徴とする、プロバイオテックス高純度多機能粉末の製造方法としてもよい。これによれば、プロバイオテックス高純度多機能粉末を製造するうえで十分な量の枯草菌の乾燥物を得ることができる。
 また、本発明においては、天日に干したパイナップルの皮を粉砕し、粉砕した当該パイナップルの皮を精製水に浸漬し、キチンキトサンを添加して所定時間保温し、1.0×1010cfu/g以上まで増殖した後に、生じた菌体を布漉しした溶液に、トレハロースとイヌリンを添加し、混合物を低温除湿乾燥して前記放線菌類の乾燥物を製造することを特徴とする、プロバイオテックス高純度多機能粉末の製造方法としてもよい。これによれば、プロバイオテックス高純度多機能粉末を製造するうえで十分な量の放線菌類の乾燥物を得ることができる。なお、パイナップルの皮は3年間天日に干してもよい。粉砕した当該パイナップルの皮200gを精製水1000mlに浸漬し、キチンキトサン20gを添加して35~40℃にて72時間保温した後に、生じた菌体を布漉しした溶液に、トレハロースとイヌリンを、当該溶液と当該トレハロースと当該イヌリンと水分の質量比が10:25:15:50となるように添加し、混合物を72時間低温除湿乾燥して前記放線菌類の乾燥物を製造することとしてもよい。
 また、本発明においては、質量比でそれぞれ粉末状である、乳酸菌を60%、枯草菌を20%、放線菌類を20%含んで構成される、プロバイオテックス高純度多機能粉末としてもよい。これによれば、それぞれの菌数が高い純度を有する。また、乳酸菌は嫌気性菌であり、枯草菌と放線菌類は好気性菌である。このため、枯草菌と放線菌類は、乳酸菌が放出した酸素を吸収することができ、本発明におけるプロバイオテックス高純度多機能粉末について、例えば人間の腸内のような無酸素環境においても、枯草菌と放線菌類が休眠することなく活性状態を維持することができ、乳酸菌との相乗効果で内生胞子を生成して抵抗性を持つ胞子を作ることができる。
 本発明によれば、乳酸菌と枯草菌と放線菌類のそれぞれを高純度を維持しつつ高い菌数まで増殖することができる。
図1は、本実施例における乳酸菌の粉末の製造方法を示すフローチャートである。 図2は、本実施例における枯草菌の粉末の製造方法を示すフローチャートである。 図3は、本実施例における放線菌類の粉末の製造方法を示すフローチャートである。 図4は、本実施例におけるプロバイオテックス高純度多機能粉末の製造方法を示すフローチャートである。 図5は、本実施例におけるプロバイオテックス高純度多機能粉末の製造に用いる撹拌機の一例を示す模式図である。 図6は、本実施例におけるプロバイオテックス高純度多機能粉末の製造に用いる撹拌機の一例を示す模式図である。
 以下、本発明の実施形態について図面を用いて詳細に説明する。以下の実施形態においては、乳酸菌と枯草菌と放線菌類から成るプロバイオテックス高純度多機能粉末の製造方法の一例、及び当該プロバイオテックス高純度多機能粉末の製造に用いる装置の一例を示す。以下に示すプロバイオテックス高純度多機能粉末の製造方法、装置は一例に過ぎず、その製造条件や仕様を記載された内容に限定する趣旨ではない。
 図1は、本発明の実施形態における乳酸菌の粉末の製造方法を示すフローチャートである。以下、図1を用いて乳酸菌の粉末の製造方法の流れについて説明する。図1では、ラクトバチルスファーメンタム菌株から乳酸菌の粉末を製造する例について説明する。
 S101は、ラクトバチルスファーメンタム菌株(NBRC番号3071及び3072)の培養工程である。まず、S101では、乳酸菌の検出や菌数の測定が可能となるよう、シャーレ(円形状のガラス容器)に溶融した寒天を流し込むことでBCPプレートカウント寒天培地を形成し、ラクトバチルスファーメンタム菌株を白金棒で厚み2mmの層に塗り込む。その後、ラクトバチルスファーメンタム菌株を塗り込んだシャーレをインキューベータに入れて36℃の一定温度で24時間培養する。
 S102は、S101においてシャーレ内に生じたコロニーにおけるラクトバチルスファーメンタム菌株を培養するための培養溶液を生成する工程である。この培養溶液は、硬質耐熱容器に精製水1000mlを入れ、酵母5g、グルコース5g、ペプトン5gを混合して生成する。そして、生成された混合液をオートクレーブに入れて120℃の一定温度で20分加熱して滅菌し、その後、40℃以下まで冷却する。
 S103は、S102において生成した培養溶液にラクトバチルスファーメンタム菌株を添加する工程である。
 S104は、乳酸菌の増殖培養工程である。具体的には、S103においてラクトバチルスファーメンタム菌株を添加した培養溶液をインキューベータに入れて35~40℃にて48時間増殖培養する。S104では、乳酸菌の菌数を1.0×1012cfu/g以上まで増殖培養する。増殖確認の目安としては、培養溶液が白濁状態となり容器を傾けると渦巻き状態が観察できることであり、PH測定を行った場合に、PH3.2~3.5の値を示すことである。最後に、S105の粉末化工程において、S104で増殖培養したの溶液を乾燥させた上で、乳酸菌を粉末化する。
 図2は、本発明の実施形態における枯草菌の粉末の製造方法を示すフローチャートである。以下、図2を用いて枯草菌の粉末の製造方法の流れについて説明する。図2では、大豆を培地として枯草菌の粉末を製造する例について説明する。なお、枯草菌(ナット菌)土壌細菌バチルスサブチルス有胞子菌として枯葉に付着して胞子によって増殖している、その有胞子菌を純粋培養可能とする技術が重要である。
 S106は、培地としての大豆を処理する工程である。まず、S106では、大豆を水に浸してボイルし、ボイルした大豆を冷却し、水切りする。この大豆を枯草菌の培地とする。S107は、枯草菌を大豆に殖菌する工程である。ここで、枯草菌としては納豆菌が例示される。
 S108は、枯草菌の増殖培養工程である。具体的には、S107において枯草菌を殖菌した大豆をインキューベータに入れて37℃の一定温度で24時間培養する。このとき、大豆の表面は胞子状または綿状の枯草菌で覆われ、アンモニアの臭気が放たれる。S108では、増殖培養のための環境が整えば、枯草菌の菌数を1.0×1012cfu/g以上まで増殖培養できる。最後に、S109の粉末化工程において、水分率8%以内で枯草菌を粉末化して径が0.1mm~0.2mmとなるようにする。水分率8%以内で粉末化することで、S108において放たれたアンモニアの臭気が解消される。
 図3は、本発明の実施形態における放線菌類の粉末の製造方法を示すフローチャートである。以下、図3を用いて放線菌類の粉末の製造方法の流れについて説明する。図3では、パイナップルの皮から放線菌類の粉末を製造する例について説明する。
 S110は、放線菌類の培養工程である。まず、S110では、3年間天日に干したパイナップルの皮を培地として放線菌類を培養する。S111は、培地の粉砕工程である。具体的には、S110において天日に干したパイナップルの皮をミキサーで粉砕する工程である。
 S112は、放線菌類の増殖培養工程である。具体的には、S111において粉砕したパイナップルの皮の粉塵200gを2lの容器に入れ1000mlの精製水に浸漬し、放線菌の栄養分としてキチンキトサン20gを添加し、インキューベータに入れて35~40℃の一定温度で72時間培養する。その後、S113の攪拌工程において、溶液を攪拌することで、糸状で粘り気のある放線菌類を生成する。その放線菌類を布漉することで新たな溶液を得る。このとき、放線菌類は1.0×1010cfu/g以上、好ましくは1.0×1011cfu/g~1.0×1012cfu/g以上まで増殖する。
 S114は、S113において得られた溶液にイヌリンとトレハロースを混合する工程である。具体的には、溶液とトレハロースとイヌリンと水分の質量比が10:25:15:50となるように、溶液にイヌリンとトレハロースを混合する。最後に、S115の低温除湿乾燥工程において、S114において得られた混合物80%を72時間乾燥する。さらに、S116の粉末化工程においてその乾燥した混合物を粉末化する。
 図4は、本発明の実施形態におけるプロバイオテックス高純度多機能粉末の製造方法を示すフローチャートである。以下、図4を用いてプロバイオテックス高純度多機能粉末の製造方法の流れについて説明する。
 図1に示すS105において得られた乳酸菌の粉末、及び図2に示すS109において得られた枯草菌の粉末、及び図3に示すS116において得られた放線菌類の粉末を撹拌機(図5、図6参照)によって攪拌し、混合することでプロバイオテックス高純度多機能粉末を製造する(S117)。S117において、乳酸菌の粉末、及び枯草菌の粉末、及び放線菌類の粉末は、それぞれ重量比で60%、20%、20%の質量比で混合する。すなわち、プロバイオテックス高純度多機能粉末の中でも主力菌は乳酸菌である。
 乳酸菌、及び枯草菌、及び放線菌類はいずれも陽性菌(善玉菌)であり、単体で摂取した場合でも良好な効果が得られる。例えば乳酸菌単体を摂取した場合は、腸内の体質改善の効果が得られる。対して乳酸菌、及び枯草菌、及び放線菌類を混合したプロバイオテックス高純度多機能粉末を摂取した場合は、上述の通り、乳酸菌との相乗効果によって内生胞子を生成して抵抗性を持つ胞子を作ることができる。この抵抗性によって、例えばがん細胞を終息させることができる。
 また、乳酸菌、及び枯草菌、及び放線菌類のそれぞれを乾燥して粉末化する前に混合すると、それぞれの菌が加水分解する虞がある。本実施例では、それぞれの菌を別々に水分率8%以下まで乾燥して粉末化することで、このような加水分解の発生を抑制することが可能である。
 図5及び図6は、本発明の実施形態におけるプロバイオテックス高純度多機能粉末の製造に用いる撹拌機1の一例を示す模式図である。以下、図5及び図6を用いて、乳酸菌の粉末、及び枯草菌の粉末、及び放線菌類の粉末を攪拌し、混合するための撹拌機1の構造について説明する。
 図5Aにおいて、まず搬入部2から乳酸菌の粉末、及び枯草菌の粉末、及び放線菌類の粉末(以下、「三種混合粉末」という)を搬入する。搬入部2は内部にコンベアを有し、コンベアの稼働によって三種混合粉末はホッパ3に移動する。ホッパ3は攪拌混合部4とつながっている。攪拌混合部4は、内部にスクリュー41が設けられた内部円筒4aを有する。すなわち、攪拌混合部4は、図5Aに示すように二重の円筒構造を有する。
 図5Bは、図5Aの断面X-Xによる攪拌混合部4の断面図である(スクリュー41は図示を省略する)。攪拌混合部4は二重円形の断面を有する。また、攪拌混合部4の内部円筒4aは一つの駆動輪42に接しており、攪拌混合部4の外側の円筒は比較的直径の大きい二つの支持部43に接している。二つの駆動輪42の回転によって攪拌混合部4の内部円筒4a、及び攪拌混合部4の内部のスクリュー41も回転する。支持部43は攪拌混合部4を支えており、攪拌混合部4の外側の円筒、及び支持部43は回転しない。なお、スクリュー41は、1分間に10回の割合で粉体を前進させる方向に30分回転した後、逆方向に1回転回転する。1回転逆方向に回転させることで、例えばスクリュー41に固着した粉体を離脱させることが可能である。
 ここで、図5Aの説明に戻る。スクリュー41の回転によって押し出された三種混合粉末は、第2のホッパ5に移動する。ここで、所定のサイクル数以内では、三種混合粉末は第2のホッパ5に移動した後、再び搬入部2から搬入され、以降同じプロセスを繰り返す。ホッパ5から搬入部2へ至る経路については、以下の図6に示す。
 図6Aは、三種混合粉末が第2のホッパ5を経て搬送部6に移動した後のプロセスを示すための撹拌機1の平面図である。搬送部6も内部にコンベアを有し、コンベアの稼働によって三種混合粉末は第2の搬送部7に移動する。三種混合粉末は、第2の搬送部7を経て再び図5Aに示す搬入部2に戻る。なお、図6Aでは搬送部6と第2の搬送部7を一連のライン状の構成として図示しているが、搬送部6と第2の搬送部7は段違いの構成であってもよい。すなわち、三種混合粉末が搬送部6から第2の搬送部7に移動する際に落下する構成であってもよい。図6Bは、図6Aを矢印の方向から見た側面図である。搬入部2は搬送部6及び第2の搬送部7より高い位置にあるため、搬送部6及び第2の搬送部7は撹拌機1全体に対して斜めに傾いており、搬入部2に向かって上がっていく構造であってもよい。図6Cは、図6Aの断面Y-Yによる第2の搬送部7の断面図である。三種混合粉末は第2の搬送部7におけるベルト8(ベルト8は搬送部6にも備わっている)によって搬送され、ベルト8はモーター9と補助輪10に挟まれ、それらによって動いている。
 以上のように、撹拌機1を用いることによって三種混合粉末を攪拌し、混合することが可能であり、混合した後も三種類それぞれの菌数を高い純度をもって保有することが可能である。
1     :撹拌機
2     :搬入部
3     :ホッパ
4     :攪拌混合部
4a    :内部円筒
41    :スクリュー
42    :駆動輪
43    :支持部
5     :第2のホッパ
6     :搬送部
7     :第2の搬送部
8     :ベルト
9     :モーター
10    :補助輪
 

Claims (6)

  1.  それぞれ別々に粉末化した乳酸菌と枯草菌と放線菌類との三種類の菌を、所定の比率で混合することを特徴とする、プロバイオテックス高純度多機能粉末の製造方法。
  2.  前記所定の比率は、質量比で前記乳酸菌を60%、前記枯草菌を20%、前記放線菌類を20%とすることを特徴とする、請求項1に記載のプロバイオテックス高純度多機能粉末の製造方法。
  3.  所定量のラクトバチルスファーメンタムを一定温度で培養し、酵母、グルコース、ペプトンを、精製水に対して混合した混合液を当該ラクトバチルスファーメンタムに添加して混合し、菌数を1.0×1012cfu/g以上まで増殖培養した後に、粉末化して前記乳酸菌の乾燥物を製造することを特徴とする、請求項1または2に記載のプロバイオテックス高純度多機能粉末の製造方法。
  4.  ボイルした後に冷却し、水切りした大豆に前記枯草菌を殖菌し、菌数を1.0×1012cfu/g以上まで増殖培養した後に、水分率8%以内で0.1mm~0.2mmの径に粉末化して前記枯草菌の乾燥物を製造することを特徴とする、請求項1または2に記載のプロバイオテックス高純度多機能粉末の製造方法。
  5.  天日に干したパイナップルの皮を粉砕し、粉砕した当該パイナップルの皮を精製水に浸漬し、キチンキトサンを添加して所定時間保温し、1.0×1010cfu/g以上まで増殖した後に、生じた菌体を布漉しした溶液に、トレハロースとイヌリンを添加し、混合物を低温除湿乾燥して前記放線菌類の乾燥物を製造することを特徴とする、請求項1または2に記載のプロバイオテックス高純度多機能粉末の製造方法。
  6.  それぞれ粉末状である、乳酸菌を60%、枯草菌を20%、放線菌類を20%含んで構成される、プロバイオテックス高純度多機能粉末。
PCT/JP2021/028390 2021-07-30 2021-07-30 プロバイオテックス高純度多機能粉末の製造方法、及びプロバイオテックス高純度多機能粉末 WO2023007709A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/028390 WO2023007709A1 (ja) 2021-07-30 2021-07-30 プロバイオテックス高純度多機能粉末の製造方法、及びプロバイオテックス高純度多機能粉末
JP2023538171A JPWO2023007709A1 (ja) 2021-07-30 2021-07-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028390 WO2023007709A1 (ja) 2021-07-30 2021-07-30 プロバイオテックス高純度多機能粉末の製造方法、及びプロバイオテックス高純度多機能粉末

Publications (1)

Publication Number Publication Date
WO2023007709A1 true WO2023007709A1 (ja) 2023-02-02

Family

ID=85086512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028390 WO2023007709A1 (ja) 2021-07-30 2021-07-30 プロバイオテックス高純度多機能粉末の製造方法、及びプロバイオテックス高純度多機能粉末

Country Status (2)

Country Link
JP (1) JPWO2023007709A1 (ja)
WO (1) WO2023007709A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016769A (ja) * 2009-07-10 2011-01-27 Shimizu Shoko Kaigisho 農業用資材
US20110262372A1 (en) * 2010-04-27 2011-10-27 Syngen Biotech Co., Ltd. Lactobacillus Fermentum SG-A95 for Improving Oral Bacterial Groups and Health Care Compositions Thereof
JP2013512197A (ja) * 2009-11-25 2013-04-11 王立平 糖尿病治療用複合微生物製剤及びその製造方法と利用
CN107744052A (zh) * 2017-11-28 2018-03-02 佛山宝来迪生物科技有限公司 一种菠萝皮的再利用方法
JP2019511912A (ja) * 2016-02-19 2019-05-09 アドバンスド バイオニュートリション コーポレーション 生物学的材料で種子をコーティングするための安定化方法
KR20200080629A (ko) * 2018-12-27 2020-07-07 주식회사 웰빙엘에스 바실러스 서브틸리스를 이용한 식용 효소식품의 제조방법
CN112369532A (zh) * 2020-12-11 2021-02-19 辽宁众友饲料有限公司 一种蛋鸡饲料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016769A (ja) * 2009-07-10 2011-01-27 Shimizu Shoko Kaigisho 農業用資材
JP2013512197A (ja) * 2009-11-25 2013-04-11 王立平 糖尿病治療用複合微生物製剤及びその製造方法と利用
US20110262372A1 (en) * 2010-04-27 2011-10-27 Syngen Biotech Co., Ltd. Lactobacillus Fermentum SG-A95 for Improving Oral Bacterial Groups and Health Care Compositions Thereof
JP2019511912A (ja) * 2016-02-19 2019-05-09 アドバンスド バイオニュートリション コーポレーション 生物学的材料で種子をコーティングするための安定化方法
CN107744052A (zh) * 2017-11-28 2018-03-02 佛山宝来迪生物科技有限公司 一种菠萝皮的再利用方法
KR20200080629A (ko) * 2018-12-27 2020-07-07 주식회사 웰빙엘에스 바실러스 서브틸리스를 이용한 식용 효소식품의 제조방법
CN112369532A (zh) * 2020-12-11 2021-02-19 辽宁众友饲料有限公司 一种蛋鸡饲料及其制备方法和应用

Also Published As

Publication number Publication date
JPWO2023007709A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
Sabu et al. Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation
CN106479927B (zh) 利用地衣芽孢杆菌生物合成纳米硒的方法及其应用
CN107164269B (zh) 一种副干酪乳杆菌、制剂及其在猪饲料中的应用
CN102409007B (zh) 一种芽孢杆菌微生态制剂及其液固结合发酵制备工艺
CN106858066A (zh) 协同促进肠道益生菌增殖与定植的添加剂及使用方法
AU2016297405B2 (en) Bacillus pumilus strain and microbial ecological combined agent thereof for weaned piglet
CN114921385B (zh) 一种枯草芽孢杆菌及其在饲料添加和无抗养殖中的应用
CN113170842A (zh) 一种防治家禽坏死性肠炎的复合微生态制剂及其应用
CN112980735B (zh) 丁酸梭菌、菌剂及它们的应用以及菌剂的制备方法
CN110945116A (zh) 产生包含具有有益细菌的生物膜的细菌组合物的方法
CN113736716B (zh) 一株副干酪乳杆菌及黄贮复合生物发酵剂和黄贮方法
CN1911118A (zh) 一种开菲尔冻干菌粉及其制备方法和应用
CN112391325B (zh) 一种副干酪乳杆菌及其应用
KR101876566B1 (ko) 축산 사료 첨가용 유산균제제 제조방법 및 이에 의해 제조된 유산균 제제
CN103222540A (zh) 一种复合微生态鱼类饲料添加剂及其制备工艺
KR101805174B1 (ko) 알로에 감압추출물을 이용한 돼지사료 첨가제 제조방법
WO2019204494A2 (en) Date palm medium compositions and methods
WO2023007709A1 (ja) プロバイオテックス高純度多機能粉末の製造方法、及びプロバイオテックス高純度多機能粉末
CN104195091B (zh) 一种固体生物菌剂的制备方法及以其制备的固体生物菌剂
US20210015879A1 (en) Method for preserving probiotic composition and use thereof
CN103881936A (zh) 纳豆芽孢杆菌和枯草芽孢杆菌固态微生态制备方法
KR101252132B1 (ko) 고-유단백 우유 생성을 위한 사료 첨가제 및 이를 이용한 비유 젖소 사료의 제조방법
KR102325467B1 (ko) 용암해수 천연 미네랄 발효 효소의 제조방법 및 이를 이용하여 제조한 효소식품
JP2015501635A (ja) 桿状菌の生存能力を高める手段及び方法
US2766176A (en) Process for culturing anaerobic bacteria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538171

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE