WO2023007687A1 - スピン偏極走査電子顕微鏡 - Google Patents
スピン偏極走査電子顕微鏡 Download PDFInfo
- Publication number
- WO2023007687A1 WO2023007687A1 PCT/JP2021/028244 JP2021028244W WO2023007687A1 WO 2023007687 A1 WO2023007687 A1 WO 2023007687A1 JP 2021028244 W JP2021028244 W JP 2021028244W WO 2023007687 A1 WO2023007687 A1 WO 2023007687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spin
- polarized
- electron beam
- electron microscope
- scanning electron
- Prior art date
Links
- 238000010894 electron beam technology Methods 0.000 claims abstract description 65
- 241000700605 Viruses Species 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 6
- 238000004626 scanning electron microscopy Methods 0.000 claims 1
- 230000005415 magnetization Effects 0.000 description 17
- 239000000696 magnetic material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 210000000234 capsid Anatomy 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 239000003362 semiconductor superlattice Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920002477 rna polymer Polymers 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/285—Emission microscopes, e.g. field-emission microscopes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/261—Details
- H01J37/265—Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/33—Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
- G01N2223/3301—Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts beam is modified for scan, e.g. moving collimator
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/612—Specific applications or type of materials biological material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
- H01J2237/063—Electron sources
- H01J2237/06383—Spin polarised electron sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
- H01J2237/065—Source emittance characteristics
- H01J2237/0653—Intensity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/245—Detection characterised by the variable being measured
- H01J2237/24507—Intensity, dose or other characteristics of particle beams or electromagnetic radiation
- H01J2237/24557—Spin polarisation (particles)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/28—Scanning microscopes
- H01J2237/2812—Emission microscopes
Definitions
- the present invention relates to a spin-polarized scanning electron microscope that scans a sample with a spin-polarized electron beam, which is an electron beam whose spin is polarized in a specific direction.
- a spin-polarized electron microscope which irradiates a specimen with a spin-polarized electron beam, which is an electron beam whose spin is polarized in a specific direction, can observe the magnetic domain structure of magnetic substances and the molecular structure of proteins, etc. However, it is difficult to obtain high contrast images.
- Patent Document 1 the reversal of the spin direction of a spin-polarized electron beam that irradiates a sample is synchronized with the recording of the electron beam intensity distribution that passes through the sample, and the difference in the electron beam intensity distribution before and after the reversal is obtained. , a transmission electron microscope that obtains high contrast images is disclosed.
- the electron beam intensity distribution recorded in Patent Document 1 includes electrons having spins in various directions, and electrons having spins in directions different from the spin direction of the spin-polarized electron beam are detected as noise. be. If the detected signal contains a lot of noise, the SNR (Signal to Noise Ratio) will decrease, making it difficult to observe the magnetic domain structure of the magnetic material and the molecular structure of proteins and the like.
- SNR Signal to Noise Ratio
- an object of the present invention is to provide a spin-polarized scanning electron microscope capable of improving the SNR of detected signals.
- the present invention provides a spin-polarized electron source that irradiates a sample with a spin-polarized electron beam, which is an electron beam whose spin is biased in a specific direction, and a spin-polarized electron beam that deflects the spin-polarized electron beam.
- a scanning unit for scanning the sample; a spin detector for detecting a spin direction of emitted electrons, which are electrons emitted from the sample scanned by the spin-polarized electron beam; and a spin of the spin-polarized electron beam.
- a control unit for controlling the direction of the spin detected by the spin detector based on the direction of the spin.
- Diagram showing an example of the overall configuration of a spin-polarized scanning electron microscope Diagram explaining the measurement of the leakage magnetic field from the surface of the sample Diagram explaining the measurement procedure for reversal magnetization A diagram showing an example of the structure of a virus
- a diagram showing an example of an observation image of a virus Diagram showing the flow of virus inspection processing A diagram showing an example of a database used to determine the type of virus
- a spin-polarized scanning electron microscope is a device that observes a sample by scanning the sample with an electron beam whose spin is polarized in a specific direction.
- the spin-polarized scanning electron microscope comprises a spin-polarized electron source 108 , scanning coil 121 , spin detector 114 and controller 118 .
- the spin-polarized electron source 108 is a device that irradiates the sample 111 with a spin-polarized electron beam 109, which is an electron beam whose spin is biased in a specific direction.
- the spin-polarized electron source 108 includes a laser light source 101, a polarizer 102, a phase modulator 103, a polarizer 104, a condenser lens 106, and a semiconductor superlattice 107, for example.
- Excitation light emitted from a laser light source 101 passes through a polarizer 102, a phase modulator 103, and a polarizer 104, becomes circularly polarized light 105, is condensed by a condensing lens 106, and is irradiated onto a semiconductor superlattice 107.
- the semiconductor superlattice 107 is an electron source that emits spin-polarized electron beams 109 when irradiated with circularly polarized light 105, and is made of a semiconductor such as GaAs or GaAsP, for example.
- the spin direction of the spin-polarized electron beam 109 is controlled by the direction of the circularly polarized light 105 that is changed by the operation of the phase modulator 103. When the left-right polarization direction of the circularly polarized light 105 is reversed, the spin-polarized electron beam 109 The spin direction is also reversed.
- the spin-polarized electron beam 109 emitted from the semiconductor superlattice 107 is deflected by the magnetic field formed by the scanning coil 121 and scans the field of view on the surface of the sample 111 .
- a spin angle of the spin-polarized electron beam 109 is adjusted by a spin rotator 110 arranged between the scanning coil 121 and the sample 111, for example, the spin direction is adjusted to be perpendicular to the surface of the sample 111. be.
- the spin rotator 110 adjusts the spin angle of the spin-polarized electron beam 109 using power supplied from a spin rotator drive power source 113 .
- the spin detector 114 is a device for detecting the spin direction of the emitted electrons 120, which are the electrons emitted from the sample 111 scanned by the spin-polarized electron beam 109, and the power supplied from the spin detector drive power supply 115. to switch the spin direction to be detected. Emitted electrons 120 are reflected electrons or secondary electrons.
- Spin detector 114 may be connected to controller 118 via lock-in amplifier 116 .
- a spin rotator 112 arranged between the sample 111 and the spin detector 114 adjusts the angle of the spin of the emitted electrons 120, for example, so that the direction of the spin is parallel to the detection surface of the spin detector 114. adjusted.
- the spin rotator 112 adjusts the spin angle of the emitted electrons 120 using power supplied from the spin rotator drive power source 113 .
- the control unit 118 is a device that controls the phase modulator 103, the scanning coil 121, the spin rotator drive power supply 113, the spin detector drive power supply 115, etc., and is, for example, an MPU (Micro-Processing Unit).
- the control unit 118 also causes the image display device 117 to display an observation image generated based on the signal detected by the spin detector 114 .
- the spin direction detected by the spin detector 114 is controlled based on the spin direction of the spin-polarized electron beam 109 . More specifically, the spin detector 114 detects spins in the same direction as the spin direction of the spin-polarized electron beam 109 . By matching the spin direction of the spin-polarized electron beam 109 and the spin direction of the emitted electrons 120, only necessary components are detected and noise is reduced, so that the SNR can be improved. Furthermore, the lock-in amplifier 116 may be used to cause the spin detector 114 to detect the spin-polarized electron beam 109 while synchronizing it with the variation, thereby improving the SNR.
- the spin direction detected by the spin detector 114 is not limited to the same direction as the spin direction of the spin-polarized electron beam 109. It may be in a rotated direction. That is, the spin direction detected by the spin detector 114 is switched according to the purpose of observation. Also, the spin direction of the spin-polarized electron beam 109 and the spin direction of the emitted electrons 120 may be synchronized with the scanning of the spin-polarized electron beam 109 by the scanning coil 121 .
- the spin direction detected by the spin detector 114 is controlled based on the spin direction of the spin-polarized electron beam 109. Therefore, the SNR of the detected signal is can be improved.
- Example 2 measurement of the magnetic field leaking from the surface of the sample 111 will be described. Since part of the configuration and functions described in the first embodiment can be applied to the second embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
- the measurement of the leakage magnetic field from the surface of the sample 111 will be described with reference to FIG.
- a leakage magnetic field 205 is generated on the surface of the sample 111 .
- the spins 202 of the spin-polarized electron beam 109 undergo precession 207 due to the leakage magnetic field 205 .
- the rotation angle of the precession motion 207 depends on the strength of the leakage magnetic field 205 .
- the spin detector 114 detects the direction of the spin of the emitted electrons 120 with respect to the direction of the spin 202 of the spin-polarized electron beam 109 . That is, the relative angle between the direction of the spin 202 of the spin-polarized electron beam 109 and the direction of the spin of the emitted electron 120 is the rotation angle of the precession motion 207, and the intensity of the leakage magnetic field 205 changes from the rotation angle of the precession motion 207. Desired.
- the leakage magnetic field 205 strength is required.
- Example 3 measurement of reversed magnetization will be described. Since part of the configuration and functions described in the first embodiment can be applied to the third embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
- the sample 111 is, for example, a memory element such as an MRAM (Magneto-resistive Random Access Memory).
- MRAM Magnetic-resistive Random Access Memory
- the magnetization 305 in the magnetic material 302 is reversed by, for example, the spin injection magnetization torque effect, and the reversed magnetization 307 is generated.
- the intensity of the pulsed spin-polarized electron beam 306 is preferably set according to the thickness and coercive force of the magnetic material 302 . That is, the intensity of the pulsed spin-polarized electron beam 306 is set higher as the thickness of the magnetic material 302 increases or as the coercive force increases. By appropriately setting the intensity of the pulsed spin-polarized electron beam 306, the magnetization 305 can be sufficiently reversed.
- the spin of the emitted electrons 120 emitted by the irradiation of the spin-polarized electron beam 109 to the magnetic material 302 of the sample 111 is detected by the spin detector 114 . Then, the direction and magnitude of the reversed magnetization 307 are measured based on the signal detected by the spin detector. By continuously executing the irradiation of the spin-polarized electron beam 109 and the detection by the spin detector 114, the temporal change of the reversed magnetization 307 is measured.
- the reversed magnetization 307 is generated by irradiating the sample 111 with the pulsed spin-polarized electron beam 306 prior to detection by the spin detector 114 .
- the reversed magnetization 307 is measured by irradiation with the spin-polarized electron beam 109 and detection by the spin detector 114 .
- Example 4 virus inspection will be explained. Since part of the configuration and functions described in the first embodiment can be applied to the fourth embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
- a virus has a nucleus 401 and a capsid 402 .
- the nucleus 401 is composed of DNA (DeoxyriboNucleic Acid) and RNA (RiboNucleic Acid) and is located in the center of the virus.
- Capsid 402 is composed of proteins and is located around nucleus 401 .
- Many of DNA, RNA, and proteins have a chirality structure, and the transmittance of electrons passing through the chirality structure changes depending on the spin direction. Therefore, by detecting the intensity and spin direction of the emitted electrons 120 emitted from the virus by irradiation with the spin-polarized electron beam 109, an observation image reflecting the chirality structure can be generated.
- FIG. 4B An example of a virus observation image will be described using FIG. 4B. Since the nucleus 401 and the capsid 402 have different chirality structures, there is a difference between the nucleus contrast 403 and the capsid contrast 404, as illustrated in FIG. 4B. Further, data regarding the chirality structure can be obtained from the observed image illustrated in FIG. 4B, and viruses can be inspected based on the obtained data.
- S502 As a pretreatment for the specimen collected in S501, immersion of the specimen in triethylene glycol, immobilization of the specimen by blowing liquid nitrogen gas, and the like are performed. A virus-containing sample 111 is created by performing the pretreatment.
- S503 An observed image of the sample 111 created by the preprocessing in S502 is generated. Specifically, a sample 111 containing viruses is irradiated with a spin-polarized electron beam 109 , and the intensity and spin direction of electrons 120 emitted from the sample 111 are detected by a spin detector 114 . Based on the signals detected by the spin detector 114, an observed image as illustrated in FIG. 4B is generated. Observation conditions such as the acceleration voltage of the spin-polarized electron beam 109 are adjusted as necessary.
- the chirality data is obtained from the observation image generated in S503.
- the chirality data includes the direction of the spin, the period of the chirality structure, and the intensity, which is the rate at which the chirality structure is formed.
- the chirality data acquired in S504 is compared with a database as illustrated in FIG. 6 to determine the type of virus.
- the database in FIG. 6 records chirality data obtained from observed images of known viruses and is created in advance. Note that the database in FIG. 6 has items such as the spin direction, the period of the chirality structure, and the intensity that is the ratio of forming the chirality structure.
- a sample collected from a subject is examined based on the irradiation of the spin-polarized electron beam 109 and the detection by the spin detector 114 to determine the type of virus. can be determined.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
被検者の喉や鼻腔の粘膜等から検体が採取される。
S501で採取された検体に対する前処理として、トリエチレングリコールへの検体の浸漬や、液体窒素のガス吹き付けによる検体の固定化等が実施される。前処理の実施により、ウィルスを含む試料111が作成される。
S502での前処理によって作成された試料111の観察画像が生成される。すなわちウィルスを含む試料111にスピン偏極電子線109が照射され、試料111から放出される放出電子120の強度やスピンの方向がスピン検出器114によって検出される。そしてスピン検出器114が検出した信号に基づいて図4Bに例示されるような観察画像が生成される。なお必要に応じて、スピン偏極電子線109の加速電圧等の観察条件が調整される。
S503で生成された観察画像からカイラリティデータが取得される。カイラリティデータには、スピンの方向や、カイラリティ構造の周期、カイラリティ構造を形成する割合である強度が含まれる。
S504で取得されたカイラリティデータが図6に例示されるようなデータベースと比較され、ウィルスの種類が判定される。図6のデータベースは、既知のウィルスの観察画像から取得されるカイラリティデータが記録されたものであり、予め作成される。なお図6のデータベースは、スピンの方向や、カイラリティ構造の周期、カイラリティ構造を形成する割合である強度、といった項目を有する。このようなカイラリティデータに特化した項目を有することにより、膨大な数のウィルスの種類を短時間で判定することが可能になる。
Claims (8)
- スピンが特定の方向に偏った電子線であるスピン偏極電子線を試料に照射するスピン偏極電子源と、
前記スピン偏極電子線を偏向させて前記試料を走査する走査部と、
前記スピン偏極電子線で走査される前記試料から放出される電子である放出電子のスピンの方向を検出するスピン検出器と、
前記スピン偏極電子線のスピンの方向に基づいて、前記スピン検出器が検出するスピンの方向を制御する制御部を備えることを特徴とするスピン偏極走査電子顕微鏡。 - 請求項1に記載のスピン偏極走査電子顕微鏡であって、
前記制御部は、前記スピン偏極電子線のスピンの方向と前記スピン検出器に検出される前記放出電子のスピンとの方向とを、前記走査部による走査に同期させて制御することを特徴とするスピン偏極走査電子顕微鏡。 - 請求項1に記載のスピン偏極走査電子顕微鏡であって、
前記制御部は、前記スピン偏極電子線のスピンの方向と同じ方向のスピンを前記スピン検出器に検出させることを特徴とするスピン偏極走査電子顕微鏡。 - 請求項1に記載のスピン偏極走査電子顕微鏡であって、
前記制御部は、前記スピン偏極電子線のスピンの方向に対する、前記放出電子のスピンの方向を前記スピン検出器に検出させることを特徴とするスピン偏極走査電子顕微鏡。 - 請求項1に記載のスピン偏極走査電子顕微鏡であって、
前記制御部は、前記スピン検出器による検出に先立ち、前記スピン偏極電子源にパルス状のスピン偏極電子線を前記試料に照射させることを特徴とするスピン偏極走査電子顕微鏡。 - 請求項5に記載のスピン偏極走査電子顕微鏡であって、
前記パルス状のスピン偏極電子線の強度は、前記試料の厚さまたは保磁力に応じて設定されることを特徴とするスピン偏極走査電子顕微鏡。 - 請求項1に記載のスピン偏極走査電子顕微鏡であって、
前記試料はウィルスを含み、
前記制御部は、前記スピン検出器によって検出される信号から取得される前記ウィルスのカイラリティデータを、各種ウィルスのカイラリティデータが記録されたデータベースと比較することによって、前記試料に含まれるウィルスの種類を判定することを特徴とするスピン偏極走査電子顕微鏡。 - 請求項7に記載のスピン偏極走査電子顕微鏡であって、
前記データベースは、前記カイラリティデータの項目として、スピンの方向、カイラリティ構造の周期、カイラリティ構造を形成する割合である強度を有することを特徴とするスピン偏極走査電子顕微鏡。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/290,321 US20240249911A1 (en) | 2021-07-30 | 2021-07-30 | Spin-polarized scanning electron microscope |
PCT/JP2021/028244 WO2023007687A1 (ja) | 2021-07-30 | 2021-07-30 | スピン偏極走査電子顕微鏡 |
JP2023537877A JP7535664B2 (ja) | 2021-07-30 | 2021-07-30 | スピン偏極走査電子顕微鏡 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/028244 WO2023007687A1 (ja) | 2021-07-30 | 2021-07-30 | スピン偏極走査電子顕微鏡 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023007687A1 true WO2023007687A1 (ja) | 2023-02-02 |
Family
ID=85086540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/028244 WO2023007687A1 (ja) | 2021-07-30 | 2021-07-30 | スピン偏極走査電子顕微鏡 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240249911A1 (ja) |
JP (1) | JP7535664B2 (ja) |
WO (1) | WO2023007687A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008218063A (ja) * | 2007-03-01 | 2008-09-18 | Hitachi Ltd | 透過型電子顕微鏡 |
JP2008251525A (ja) * | 2007-03-05 | 2008-10-16 | Hitachi Ltd | 荷電粒子スピン検出器、顕微鏡、及び光電子分光装置 |
JP2010003450A (ja) * | 2008-06-18 | 2010-01-07 | Hitachi Ltd | 走査電子顕微鏡 |
WO2016207961A1 (ja) * | 2015-06-23 | 2016-12-29 | 株式会社日立製作所 | 荷電粒子装置、荷電粒子の照射方法、および分析装置 |
JP2017004774A (ja) * | 2015-06-11 | 2017-01-05 | 国立大学法人名古屋大学 | 反射電子を検出する走査電子顕微鏡 |
US20200402762A1 (en) * | 2018-03-27 | 2020-12-24 | Hitachi High-Tech Corporation | Scanning electron microscope and method for analyzing secondary electron spin polarization |
US20210074509A1 (en) * | 2018-05-22 | 2021-03-11 | Hitachi High-Tech Corporation | Spin polarimeter |
-
2021
- 2021-07-30 WO PCT/JP2021/028244 patent/WO2023007687A1/ja active Application Filing
- 2021-07-30 US US18/290,321 patent/US20240249911A1/en active Pending
- 2021-07-30 JP JP2023537877A patent/JP7535664B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008218063A (ja) * | 2007-03-01 | 2008-09-18 | Hitachi Ltd | 透過型電子顕微鏡 |
JP2008251525A (ja) * | 2007-03-05 | 2008-10-16 | Hitachi Ltd | 荷電粒子スピン検出器、顕微鏡、及び光電子分光装置 |
JP2010003450A (ja) * | 2008-06-18 | 2010-01-07 | Hitachi Ltd | 走査電子顕微鏡 |
JP2017004774A (ja) * | 2015-06-11 | 2017-01-05 | 国立大学法人名古屋大学 | 反射電子を検出する走査電子顕微鏡 |
WO2016207961A1 (ja) * | 2015-06-23 | 2016-12-29 | 株式会社日立製作所 | 荷電粒子装置、荷電粒子の照射方法、および分析装置 |
US20200402762A1 (en) * | 2018-03-27 | 2020-12-24 | Hitachi High-Tech Corporation | Scanning electron microscope and method for analyzing secondary electron spin polarization |
US20210074509A1 (en) * | 2018-05-22 | 2021-03-11 | Hitachi High-Tech Corporation | Spin polarimeter |
Also Published As
Publication number | Publication date |
---|---|
US20240249911A1 (en) | 2024-07-25 |
JP7535664B2 (ja) | 2024-08-16 |
JPWO2023007687A1 (ja) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7755046B2 (en) | Transmission electron microscope | |
EP3242139B1 (en) | Method and apparatus for determining a magnetic field | |
Lacoste et al. | Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM) | |
JP7297306B2 (ja) | テラヘルツ磁気光学センサ、これを用いた高性能非破壊検査装置及び方法、並びにこれに用いる磁気光学撮像センサ | |
JP7549650B2 (ja) | 量子情報処理デバイス、アセンブリ、構成、システム、及びセンサ | |
CN104704375A (zh) | 纳米级扫描传感器 | |
JP2020063960A (ja) | 磁気計測装置 | |
JP2975991B2 (ja) | 偏光性測定方法及び装置 | |
Neudert et al. | Small-amplitude magnetization dynamics in permalloy elements investigated by time-resolved wide-field Kerr microscopy | |
Gisbert et al. | Quantitative mapping of magnetic properties at the nanoscale with bimodal AFM | |
JP2010003450A (ja) | 走査電子顕微鏡 | |
WO2023007687A1 (ja) | スピン偏極走査電子顕微鏡 | |
JP2014059192A (ja) | 蛍光顕微装置および方法 | |
Stiewe et al. | Magnetic domain scanning imaging using phase-sensitive THz-pulse detection | |
CN115291149A (zh) | 线阵扫描装置及控制方法 | |
JP2967172B1 (ja) | スピン検出軸回転型スピン偏極走査型トンネル顕微鏡 | |
Wegner et al. | In-plane magnetization of garnet films imaged by proximal probe nonlinear magneto-optical microscopy | |
JP3698872B2 (ja) | スピン偏極走査型トンネル顕微鏡及びその探針、及び磁化情報評価方法 | |
EP2762896A1 (en) | Dc magnetic field magnetic profile measuring device and magnetic profile measuring method | |
JP2810077B2 (ja) | 走査トンネル顕微鏡 | |
JP4397708B2 (ja) | 磁気共鳴力顕微鏡および磁気共鳴力顕微鏡用磁気チップ | |
JP3630838B2 (ja) | 走査型トンネル顕微鏡及び磁化検出方法 | |
Teichert et al. | Investigation of the ion acoustic effect during focused ion beam irradiation | |
JP2000314697A (ja) | スピン偏極走査型トンネル顕微鏡 | |
JP2011095150A (ja) | スピン検出器、表面分析装置及びターゲット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21951887 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023537877 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18290321 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21951887 Country of ref document: EP Kind code of ref document: A1 |