WO2023007687A1 - スピン偏極走査電子顕微鏡 - Google Patents

スピン偏極走査電子顕微鏡 Download PDF

Info

Publication number
WO2023007687A1
WO2023007687A1 PCT/JP2021/028244 JP2021028244W WO2023007687A1 WO 2023007687 A1 WO2023007687 A1 WO 2023007687A1 JP 2021028244 W JP2021028244 W JP 2021028244W WO 2023007687 A1 WO2023007687 A1 WO 2023007687A1
Authority
WO
WIPO (PCT)
Prior art keywords
spin
polarized
electron beam
electron microscope
scanning electron
Prior art date
Application number
PCT/JP2021/028244
Other languages
English (en)
French (fr)
Inventor
照生 孝橋
英郎 森下
卓 大嶋
真人 ▲桑▼原
Original Assignee
株式会社日立ハイテク
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク, 国立大学法人東海国立大学機構 filed Critical 株式会社日立ハイテク
Priority to US18/290,321 priority Critical patent/US20240249911A1/en
Priority to PCT/JP2021/028244 priority patent/WO2023007687A1/ja
Priority to JP2023537877A priority patent/JP7535664B2/ja
Publication of WO2023007687A1 publication Critical patent/WO2023007687A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/285Emission microscopes, e.g. field-emission microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3301Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts beam is modified for scan, e.g. moving collimator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/612Specific applications or type of materials biological material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06383Spin polarised electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/065Source emittance characteristics
    • H01J2237/0653Intensity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24557Spin polarisation (particles)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2812Emission microscopes

Definitions

  • the present invention relates to a spin-polarized scanning electron microscope that scans a sample with a spin-polarized electron beam, which is an electron beam whose spin is polarized in a specific direction.
  • a spin-polarized electron microscope which irradiates a specimen with a spin-polarized electron beam, which is an electron beam whose spin is polarized in a specific direction, can observe the magnetic domain structure of magnetic substances and the molecular structure of proteins, etc. However, it is difficult to obtain high contrast images.
  • Patent Document 1 the reversal of the spin direction of a spin-polarized electron beam that irradiates a sample is synchronized with the recording of the electron beam intensity distribution that passes through the sample, and the difference in the electron beam intensity distribution before and after the reversal is obtained. , a transmission electron microscope that obtains high contrast images is disclosed.
  • the electron beam intensity distribution recorded in Patent Document 1 includes electrons having spins in various directions, and electrons having spins in directions different from the spin direction of the spin-polarized electron beam are detected as noise. be. If the detected signal contains a lot of noise, the SNR (Signal to Noise Ratio) will decrease, making it difficult to observe the magnetic domain structure of the magnetic material and the molecular structure of proteins and the like.
  • SNR Signal to Noise Ratio
  • an object of the present invention is to provide a spin-polarized scanning electron microscope capable of improving the SNR of detected signals.
  • the present invention provides a spin-polarized electron source that irradiates a sample with a spin-polarized electron beam, which is an electron beam whose spin is biased in a specific direction, and a spin-polarized electron beam that deflects the spin-polarized electron beam.
  • a scanning unit for scanning the sample; a spin detector for detecting a spin direction of emitted electrons, which are electrons emitted from the sample scanned by the spin-polarized electron beam; and a spin of the spin-polarized electron beam.
  • a control unit for controlling the direction of the spin detected by the spin detector based on the direction of the spin.
  • Diagram showing an example of the overall configuration of a spin-polarized scanning electron microscope Diagram explaining the measurement of the leakage magnetic field from the surface of the sample Diagram explaining the measurement procedure for reversal magnetization A diagram showing an example of the structure of a virus
  • a diagram showing an example of an observation image of a virus Diagram showing the flow of virus inspection processing A diagram showing an example of a database used to determine the type of virus
  • a spin-polarized scanning electron microscope is a device that observes a sample by scanning the sample with an electron beam whose spin is polarized in a specific direction.
  • the spin-polarized scanning electron microscope comprises a spin-polarized electron source 108 , scanning coil 121 , spin detector 114 and controller 118 .
  • the spin-polarized electron source 108 is a device that irradiates the sample 111 with a spin-polarized electron beam 109, which is an electron beam whose spin is biased in a specific direction.
  • the spin-polarized electron source 108 includes a laser light source 101, a polarizer 102, a phase modulator 103, a polarizer 104, a condenser lens 106, and a semiconductor superlattice 107, for example.
  • Excitation light emitted from a laser light source 101 passes through a polarizer 102, a phase modulator 103, and a polarizer 104, becomes circularly polarized light 105, is condensed by a condensing lens 106, and is irradiated onto a semiconductor superlattice 107.
  • the semiconductor superlattice 107 is an electron source that emits spin-polarized electron beams 109 when irradiated with circularly polarized light 105, and is made of a semiconductor such as GaAs or GaAsP, for example.
  • the spin direction of the spin-polarized electron beam 109 is controlled by the direction of the circularly polarized light 105 that is changed by the operation of the phase modulator 103. When the left-right polarization direction of the circularly polarized light 105 is reversed, the spin-polarized electron beam 109 The spin direction is also reversed.
  • the spin-polarized electron beam 109 emitted from the semiconductor superlattice 107 is deflected by the magnetic field formed by the scanning coil 121 and scans the field of view on the surface of the sample 111 .
  • a spin angle of the spin-polarized electron beam 109 is adjusted by a spin rotator 110 arranged between the scanning coil 121 and the sample 111, for example, the spin direction is adjusted to be perpendicular to the surface of the sample 111. be.
  • the spin rotator 110 adjusts the spin angle of the spin-polarized electron beam 109 using power supplied from a spin rotator drive power source 113 .
  • the spin detector 114 is a device for detecting the spin direction of the emitted electrons 120, which are the electrons emitted from the sample 111 scanned by the spin-polarized electron beam 109, and the power supplied from the spin detector drive power supply 115. to switch the spin direction to be detected. Emitted electrons 120 are reflected electrons or secondary electrons.
  • Spin detector 114 may be connected to controller 118 via lock-in amplifier 116 .
  • a spin rotator 112 arranged between the sample 111 and the spin detector 114 adjusts the angle of the spin of the emitted electrons 120, for example, so that the direction of the spin is parallel to the detection surface of the spin detector 114. adjusted.
  • the spin rotator 112 adjusts the spin angle of the emitted electrons 120 using power supplied from the spin rotator drive power source 113 .
  • the control unit 118 is a device that controls the phase modulator 103, the scanning coil 121, the spin rotator drive power supply 113, the spin detector drive power supply 115, etc., and is, for example, an MPU (Micro-Processing Unit).
  • the control unit 118 also causes the image display device 117 to display an observation image generated based on the signal detected by the spin detector 114 .
  • the spin direction detected by the spin detector 114 is controlled based on the spin direction of the spin-polarized electron beam 109 . More specifically, the spin detector 114 detects spins in the same direction as the spin direction of the spin-polarized electron beam 109 . By matching the spin direction of the spin-polarized electron beam 109 and the spin direction of the emitted electrons 120, only necessary components are detected and noise is reduced, so that the SNR can be improved. Furthermore, the lock-in amplifier 116 may be used to cause the spin detector 114 to detect the spin-polarized electron beam 109 while synchronizing it with the variation, thereby improving the SNR.
  • the spin direction detected by the spin detector 114 is not limited to the same direction as the spin direction of the spin-polarized electron beam 109. It may be in a rotated direction. That is, the spin direction detected by the spin detector 114 is switched according to the purpose of observation. Also, the spin direction of the spin-polarized electron beam 109 and the spin direction of the emitted electrons 120 may be synchronized with the scanning of the spin-polarized electron beam 109 by the scanning coil 121 .
  • the spin direction detected by the spin detector 114 is controlled based on the spin direction of the spin-polarized electron beam 109. Therefore, the SNR of the detected signal is can be improved.
  • Example 2 measurement of the magnetic field leaking from the surface of the sample 111 will be described. Since part of the configuration and functions described in the first embodiment can be applied to the second embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
  • the measurement of the leakage magnetic field from the surface of the sample 111 will be described with reference to FIG.
  • a leakage magnetic field 205 is generated on the surface of the sample 111 .
  • the spins 202 of the spin-polarized electron beam 109 undergo precession 207 due to the leakage magnetic field 205 .
  • the rotation angle of the precession motion 207 depends on the strength of the leakage magnetic field 205 .
  • the spin detector 114 detects the direction of the spin of the emitted electrons 120 with respect to the direction of the spin 202 of the spin-polarized electron beam 109 . That is, the relative angle between the direction of the spin 202 of the spin-polarized electron beam 109 and the direction of the spin of the emitted electron 120 is the rotation angle of the precession motion 207, and the intensity of the leakage magnetic field 205 changes from the rotation angle of the precession motion 207. Desired.
  • the leakage magnetic field 205 strength is required.
  • Example 3 measurement of reversed magnetization will be described. Since part of the configuration and functions described in the first embodiment can be applied to the third embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
  • the sample 111 is, for example, a memory element such as an MRAM (Magneto-resistive Random Access Memory).
  • MRAM Magnetic-resistive Random Access Memory
  • the magnetization 305 in the magnetic material 302 is reversed by, for example, the spin injection magnetization torque effect, and the reversed magnetization 307 is generated.
  • the intensity of the pulsed spin-polarized electron beam 306 is preferably set according to the thickness and coercive force of the magnetic material 302 . That is, the intensity of the pulsed spin-polarized electron beam 306 is set higher as the thickness of the magnetic material 302 increases or as the coercive force increases. By appropriately setting the intensity of the pulsed spin-polarized electron beam 306, the magnetization 305 can be sufficiently reversed.
  • the spin of the emitted electrons 120 emitted by the irradiation of the spin-polarized electron beam 109 to the magnetic material 302 of the sample 111 is detected by the spin detector 114 . Then, the direction and magnitude of the reversed magnetization 307 are measured based on the signal detected by the spin detector. By continuously executing the irradiation of the spin-polarized electron beam 109 and the detection by the spin detector 114, the temporal change of the reversed magnetization 307 is measured.
  • the reversed magnetization 307 is generated by irradiating the sample 111 with the pulsed spin-polarized electron beam 306 prior to detection by the spin detector 114 .
  • the reversed magnetization 307 is measured by irradiation with the spin-polarized electron beam 109 and detection by the spin detector 114 .
  • Example 4 virus inspection will be explained. Since part of the configuration and functions described in the first embodiment can be applied to the fourth embodiment, the same reference numerals are used for the same configurations and functions, and the description thereof is omitted.
  • a virus has a nucleus 401 and a capsid 402 .
  • the nucleus 401 is composed of DNA (DeoxyriboNucleic Acid) and RNA (RiboNucleic Acid) and is located in the center of the virus.
  • Capsid 402 is composed of proteins and is located around nucleus 401 .
  • Many of DNA, RNA, and proteins have a chirality structure, and the transmittance of electrons passing through the chirality structure changes depending on the spin direction. Therefore, by detecting the intensity and spin direction of the emitted electrons 120 emitted from the virus by irradiation with the spin-polarized electron beam 109, an observation image reflecting the chirality structure can be generated.
  • FIG. 4B An example of a virus observation image will be described using FIG. 4B. Since the nucleus 401 and the capsid 402 have different chirality structures, there is a difference between the nucleus contrast 403 and the capsid contrast 404, as illustrated in FIG. 4B. Further, data regarding the chirality structure can be obtained from the observed image illustrated in FIG. 4B, and viruses can be inspected based on the obtained data.
  • S502 As a pretreatment for the specimen collected in S501, immersion of the specimen in triethylene glycol, immobilization of the specimen by blowing liquid nitrogen gas, and the like are performed. A virus-containing sample 111 is created by performing the pretreatment.
  • S503 An observed image of the sample 111 created by the preprocessing in S502 is generated. Specifically, a sample 111 containing viruses is irradiated with a spin-polarized electron beam 109 , and the intensity and spin direction of electrons 120 emitted from the sample 111 are detected by a spin detector 114 . Based on the signals detected by the spin detector 114, an observed image as illustrated in FIG. 4B is generated. Observation conditions such as the acceleration voltage of the spin-polarized electron beam 109 are adjusted as necessary.
  • the chirality data is obtained from the observation image generated in S503.
  • the chirality data includes the direction of the spin, the period of the chirality structure, and the intensity, which is the rate at which the chirality structure is formed.
  • the chirality data acquired in S504 is compared with a database as illustrated in FIG. 6 to determine the type of virus.
  • the database in FIG. 6 records chirality data obtained from observed images of known viruses and is created in advance. Note that the database in FIG. 6 has items such as the spin direction, the period of the chirality structure, and the intensity that is the ratio of forming the chirality structure.
  • a sample collected from a subject is examined based on the irradiation of the spin-polarized electron beam 109 and the detection by the spin detector 114 to determine the type of virus. can be determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

検出される信号のSNRを向上させることが可能なスピン偏極走査電子顕微鏡を提供するために、スピンが特定の方向に偏った電子線であるスピン偏極電子線を試料に照射するスピン偏極電子源と、前記スピン偏極電子線を偏向させて前記試料を走査する走査部と、前記スピン偏極電子線で走査される前記試料から放出される電子である放出電子のスピンの方向を検出するスピン検出器と、前記スピン偏極電子線のスピンの方向に基づいて、前記スピン検出器が検出するスピンの方向を制御する制御部を備えることを特徴とする。

Description

スピン偏極走査電子顕微鏡
 本発明は、スピンが特定の方向に偏った電子線であるスピン偏極電子線で試料を走査するスピン偏極走査電子顕微鏡に関する。
 スピンが特定の方向に偏った電子線であるスピン偏極電子線を試料に照射して観察するスピン偏極電子顕微鏡は、磁性体の磁区構造やタンパク質等の分子構造等の観察が可能であるものの、高いコントラストの像を得ることが困難である。
 特許文献1には、試料に照射するスピン偏極電子線のスピンの方向の反転と試料を透過する電子線強度分布の記録とを同期させ、反転前後の電子線強度分布の差分を求めることで、高いコントラストの像を得る透過型電子顕微鏡が開示される。
特許第5626694号公報
 しかしながら、特許文献1で記録される電子線強度分布には、様々な方向のスピンを有する電子が含まれ、スピン偏極電子線のスピンの方向と異なる方向のスピンを有する電子はノイズとして検出される。検出される信号に含まれるノイズが多ければ、SNR(Signal to Noise Ratio)が低下し、磁性体の磁区構造やタンパク質等の分子構造等の観察が困難になる。
 そこで本発明は、検出される信号のSNRを向上させることが可能なスピン偏極走査電子顕微鏡を提供することを目的とする。
 上記目的を達成するために本発明は、スピンが特定の方向に偏った電子線であるスピン偏極電子線を試料に照射するスピン偏極電子源と、前記スピン偏極電子線を偏向させて前記試料を走査する走査部と、前記スピン偏極電子線で走査される前記試料から放出される電子である放出電子のスピンの方向を検出するスピン検出器と、前記スピン偏極電子線のスピンの方向に基づいて、前記スピン検出器が検出するスピンの方向を制御する制御部を備えることを特徴とする。
 本発明によれば、検出される信号のSNRを向上させることが可能なスピン偏極走査電子顕微鏡を提供することができる。
スピン偏極走査電子顕微鏡の全体構成の一例を示す図 試料の表面からの漏洩磁界の測定について説明する図 反転磁化の計測手順を説明する図 ウィルスの構造例を示す図 ウィルスの観察画像の一例を示す図 ウィルス検査の処理の流れを示す図 ウィルスの種類の判定に用いられるデータベースの例を示す図
 以下、添付図面に従って本発明に係るスピン偏極走査電子顕微鏡の実施例について説明する。スピン偏極走査電子顕微鏡は、スピンが特定の方向に偏った電子線で試料を走査することによって試料を観察する装置である。
 図1を用いて実施例1のスピン偏極走査電子顕微鏡の全体構成について説明する。なお鉛直方向をZ方向、水平方向をX方向及びY方向とする。スピン偏極走査電子顕微鏡は、スピン偏極電子源108、走査コイル121、スピン検出器114、制御部118を備える。
 スピン偏極電子源108は、スピンが特定の方向に偏った電子線であるスピン偏極電子線109を試料111に照射する装置である。スピン偏極電子源108は、例えばレーザー光源101、偏光子102、位相変調器103、偏光子104、集光レンズ106、半導体超格子107を備える。レーザー光源101から放出される励起光は、偏光子102、位相変調器103、偏光子104を通過することで円偏光105となり、集光レンズ106で集光されて半導体超格子107に照射される。半導体超格子107は円偏光105が照射されることによりスピン偏極電子線109を放出する電子源であり、例えばGaAsやGaAsP等の半導体である。スピン偏極電子線109のスピンの方向は、位相変調器103の動作によって変更される円偏光105の方向によって制御され、円偏光105の左右の偏光方向が反転すると、スピン偏極電子線109のスピンの方向も反転する。
 半導体超格子107から放出されたスピン偏極電子線109は、走査コイル121が形成する磁界によって偏向され、試料111の表面上の視野を走査する。なお走査コイル121と試料111との間に配置されるスピン回転器110によって、スピン偏極電子線109のスピンの角度が調整され、例えばスピンの方向が試料111の表面と直交するように調整される。スピン回転器110はスピン回転器駆動電源113から供給される電力を用いてスピン偏極電子線109のスピンの角度を調整する。
 スピン検出器114は、スピン偏極電子線109で走査される試料111から放出される電子である放出電子120のスピンの方向を検出する装置であり、スピン検出器駆動電源115から供給される電力を用いて検出するスピンの方向を切り替える。放出電子120は反射電子または二次電子である。スピン検出器114は、ロックインアンプ116を介して制御部118に接続されても良い。なお試料111とスピン検出器114との間に配置されるスピン回転器112によって、放出電子120のスピンの角度が調整され、例えばスピンの方向がスピン検出器114の検出面と平行になるように調整される。スピン回転器112はスピン回転器駆動電源113から供給される電力を用いて放出電子120のスピンの角度を調整する。
 制御部118は、位相変調器103や走査コイル121、スピン回転器駆動電源113、スピン検出器駆動電源115等を制御する装置であり、例えばMPU(Micro-Processing Unit)である。また制御部118は、スピン検出器114で検出される信号に基づいて生成される観察画像を画像表示装置117に表示させる。
 観察画像をより明瞭に表示させるには、検出される信号のノイズを低減してSNR(Signal to Noise Ratio)を向上させることが好ましい。そこで実施例1では、スピン偏極電子線109のスピンの方向に基づいて、スピン検出器114が検出するスピンの方向を制御する。より具体的には、スピン偏極電子線109のスピンの方向と同じ方向のスピンをスピン検出器114に検出させる。スピン偏極電子線109のスピンの方向と放出電子120のスピンの方向とを一致させることにより、必要な成分だけが検出され、ノイズが低減されるので、SNRを向上できる。さらにロックインアンプ116を用いて、スピン偏極電子線109の変動と同期を取りながらスピン検出器114に検出させることにより、SNRを向上させても良い。
 なおスピン検出器114が検出するスピンの方向は、スピン偏極電子線109のスピンの方向と同じ方向に限定されず、スピン偏極電子線109のスピンの方向を反転させた方向や、90度回転させた方向であっても良い。すなわちスピン検出器114が検出するスピンの方向は、観察目的に応じて切り替えられる。またスピン偏極電子線109のスピンの方向と放出電子120のスピンの方向とを、走査コイル121によるスピン偏極電子線109の走査に同期させても良い。
 以上説明したように、実施例1によれば、スピン偏極電子線109のスピンの方向に基づいて、スピン検出器114が検出するスピンの方向が制御されるので、検出される信号のSNRを向上させることができる。
 実施例2では、試料111の表面から漏洩する磁界を測定することについて説明する。なお実施例2には、実施例1で説明した構成や機能の一部を適用できるので、同様の構成、機能については同じ符号を用いて説明を省略する。
 図2を用いて、試料111の表面からの漏洩磁界の測定について説明する。試料111が磁化204を有するとき、試料111の表面には漏洩磁界205が生じる。試料111に照射されるスピン偏極電子線109が試料111の表面で反射する過程において、スピン偏極電子線109のスピン202は、漏洩磁界205によって歳差運動207をする。また歳差運動207の回転角度は漏洩磁界205の強度に依存する。
 そこで実施例2では、スピン偏極電子線109のスピン202の方向に対する放出電子120のスピンの方向をスピン検出器114に検出させる。すなわちスピン偏極電子線109のスピン202の方向と、放出電子120のスピンの方向との相対角度は歳差運動207の回転角度であり、歳差運動207の回転角度から漏洩磁界205の強度が求められる。
 以上説明したように、実施例2によれば、スピン偏極電子線109のスピン202の方向に対する放出電子120のスピンの方向を検出することによって得られる歳差運動207の回転角度から漏洩磁界205の強度が求められる。
 実施例3では、反転させた磁化を計測することについて説明する。なお実施例3には、実施例1で説明した構成や機能の一部を適用できるので、同様の構成、機能については同じ符号を用いて説明を省略する。
 図3を用いて、反転磁化の計測手順について説明する。試料111は、例えばMRAM(Magneto-resistive Random Access Memory)等の記憶素子であり、非磁性体303の中に磁性体302のパターンが形成され、磁性体302は磁化305を有する。
 パルス状スピン偏極電子線306が試料111の磁性体302の全域に照射されると、例えばスピン注入磁化トルク作用などによって、磁性体302の中の磁化305が反転して反転磁化307が生成される。なおパルス状スピン偏極電子線306の強度は、磁性体302の厚さや保磁力に応じて設定されることが好ましい。すなわち磁性体302の厚さが厚いほど、または保磁力が大きいほど、パルス状スピン偏極電子線306の強度は大きく設定される。パルス状スピン偏極電子線306の強度が適切に設定されることにより、磁化305を十分に反転させることができる。
 反転磁化307が生成された後、試料111の磁性体302へのスピン偏極電子線109の照射によって放出される放出電子120のスピンがスピン検出器114によって検出される。そしてスピン検出器によって検出された信号に基づいて、反転磁化307の方向や大きさが計測される。なおスピン偏極電子線109の照射とスピン検出器114による検出とが連続的に実行されることにより、反転磁化307の経時変化が計測される。
 以上説明したように、実施例3では、スピン検出器114による検出に先立って、試料111にパルス状スピン偏極電子線306を照射することにより反転磁化307を生成する。反転磁化307は、スピン偏極電子線109の照射とスピン検出器114での検出とによって計測される。また反転磁化307の経時変化が計測されることにより、MRAM等の記憶素子の書き込み状態を簡便に評価できる。
 実施例4では、ウィルスを検査することについて説明する。なお実施例4には、実施例1で説明した構成や機能の一部を適用できるので、同様の構成、機能については同じ符号を用いて説明を省略する。
 図4Aを用いて、ウィルスの構造例について説明する。ウィルスは核401とカプシド402を有する。核401はDNA(DeoxyriboNucleic Acid)やRNA(RiboNucleic Acid)で構成され、ウィルスの中央部に位置する。カプシド402はタンパク質で構成され、核401の周辺に位置する。DNAやRNA、タンパク質はカイラリティ構造を有しているものが多く、カイラリティ構造を透過する電子はスピンの方向によって透過率が変化する。そのため、スピン偏極電子線109の照射によってウィルスから放出される放出電子120の強度やスピンの方向を検出することによって、カイラリティ構造が反映された観察画像を生成できる。
 図4Bを用いて、ウィルスの観察画像の一例について説明する。核401とカプシド402とはカイラリティ構造が異なるため、図4Bに例示されるように、核のコントラスト403とカプシドのコントラスト404とに差異が生じる。また図4Bに例示される観察画像からカイラリティ構造に関するデータを取得することができ、取得されたデータに基づいてウィルスを検査することができる。
 図5を用いて、ウィルス検査の処理の流れの一例について説明する。
 (S501)
 被検者の喉や鼻腔の粘膜等から検体が採取される。
 (S502)
 S501で採取された検体に対する前処理として、トリエチレングリコールへの検体の浸漬や、液体窒素のガス吹き付けによる検体の固定化等が実施される。前処理の実施により、ウィルスを含む試料111が作成される。
 (S503)
 S502での前処理によって作成された試料111の観察画像が生成される。すなわちウィルスを含む試料111にスピン偏極電子線109が照射され、試料111から放出される放出電子120の強度やスピンの方向がスピン検出器114によって検出される。そしてスピン検出器114が検出した信号に基づいて図4Bに例示されるような観察画像が生成される。なお必要に応じて、スピン偏極電子線109の加速電圧等の観察条件が調整される。
 (S504)
 S503で生成された観察画像からカイラリティデータが取得される。カイラリティデータには、スピンの方向や、カイラリティ構造の周期、カイラリティ構造を形成する割合である強度が含まれる。
 (S505)
 S504で取得されたカイラリティデータが図6に例示されるようなデータベースと比較され、ウィルスの種類が判定される。図6のデータベースは、既知のウィルスの観察画像から取得されるカイラリティデータが記録されたものであり、予め作成される。なお図6のデータベースは、スピンの方向や、カイラリティ構造の周期、カイラリティ構造を形成する割合である強度、といった項目を有する。このようなカイラリティデータに特化した項目を有することにより、膨大な数のウィルスの種類を短時間で判定することが可能になる。
 以上説明したように、実施例4によれば、被検者から採取される検体を、スピン偏極電子線109の照射とスピン検出器114による検出とに基づいて検査することで、ウィルスの種類を判定することができる。
 以上、本発明の複数の実施例について説明した。本発明は上記実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施例に開示されている複数の構成要素を適宜組み合わせても良い。さらに、上記実施例に示される全構成要素からいくつかの構成要素を削除しても良い。
101…レーザー光源、102…偏光子、103…位相変調器、104…偏光子、105…円偏光、106…集光レンズ、107…半導体超格子、108…スピン偏極電子源、109…スピン偏極電子線、110…スピン回転器、111…試料、112…スピン回転器、113…スピン回転器駆動電源、114…スピン検出器、115…スピン検出器駆動電源、116…ロックインアンプ、117…画像表示装置、118…制御部、120…放出電子、121…走査コイル、202…スピン、204…磁化、205…漏洩磁界、207:歳差運動、302…磁性体、303…非磁性体、305…磁化、306…パルス状スピン偏極電子線、307…反転磁化、401…核、402…カプシド、403…核のコントラスト、404…カプシドのコントラスト

Claims (8)

  1.  スピンが特定の方向に偏った電子線であるスピン偏極電子線を試料に照射するスピン偏極電子源と、
     前記スピン偏極電子線を偏向させて前記試料を走査する走査部と、
     前記スピン偏極電子線で走査される前記試料から放出される電子である放出電子のスピンの方向を検出するスピン検出器と、
     前記スピン偏極電子線のスピンの方向に基づいて、前記スピン検出器が検出するスピンの方向を制御する制御部を備えることを特徴とするスピン偏極走査電子顕微鏡。
  2.  請求項1に記載のスピン偏極走査電子顕微鏡であって、
     前記制御部は、前記スピン偏極電子線のスピンの方向と前記スピン検出器に検出される前記放出電子のスピンとの方向とを、前記走査部による走査に同期させて制御することを特徴とするスピン偏極走査電子顕微鏡。
  3.  請求項1に記載のスピン偏極走査電子顕微鏡であって、
     前記制御部は、前記スピン偏極電子線のスピンの方向と同じ方向のスピンを前記スピン検出器に検出させることを特徴とするスピン偏極走査電子顕微鏡。
  4.  請求項1に記載のスピン偏極走査電子顕微鏡であって、
     前記制御部は、前記スピン偏極電子線のスピンの方向に対する、前記放出電子のスピンの方向を前記スピン検出器に検出させることを特徴とするスピン偏極走査電子顕微鏡。
  5.  請求項1に記載のスピン偏極走査電子顕微鏡であって、
     前記制御部は、前記スピン検出器による検出に先立ち、前記スピン偏極電子源にパルス状のスピン偏極電子線を前記試料に照射させることを特徴とするスピン偏極走査電子顕微鏡。
  6.  請求項5に記載のスピン偏極走査電子顕微鏡であって、
     前記パルス状のスピン偏極電子線の強度は、前記試料の厚さまたは保磁力に応じて設定されることを特徴とするスピン偏極走査電子顕微鏡。
  7.  請求項1に記載のスピン偏極走査電子顕微鏡であって、
     前記試料はウィルスを含み、
     前記制御部は、前記スピン検出器によって検出される信号から取得される前記ウィルスのカイラリティデータを、各種ウィルスのカイラリティデータが記録されたデータベースと比較することによって、前記試料に含まれるウィルスの種類を判定することを特徴とするスピン偏極走査電子顕微鏡。
  8.  請求項7に記載のスピン偏極走査電子顕微鏡であって、
     前記データベースは、前記カイラリティデータの項目として、スピンの方向、カイラリティ構造の周期、カイラリティ構造を形成する割合である強度を有することを特徴とするスピン偏極走査電子顕微鏡。
PCT/JP2021/028244 2021-07-30 2021-07-30 スピン偏極走査電子顕微鏡 WO2023007687A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/290,321 US20240249911A1 (en) 2021-07-30 2021-07-30 Spin-polarized scanning electron microscope
PCT/JP2021/028244 WO2023007687A1 (ja) 2021-07-30 2021-07-30 スピン偏極走査電子顕微鏡
JP2023537877A JP7535664B2 (ja) 2021-07-30 2021-07-30 スピン偏極走査電子顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028244 WO2023007687A1 (ja) 2021-07-30 2021-07-30 スピン偏極走査電子顕微鏡

Publications (1)

Publication Number Publication Date
WO2023007687A1 true WO2023007687A1 (ja) 2023-02-02

Family

ID=85086540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028244 WO2023007687A1 (ja) 2021-07-30 2021-07-30 スピン偏極走査電子顕微鏡

Country Status (3)

Country Link
US (1) US20240249911A1 (ja)
JP (1) JP7535664B2 (ja)
WO (1) WO2023007687A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218063A (ja) * 2007-03-01 2008-09-18 Hitachi Ltd 透過型電子顕微鏡
JP2008251525A (ja) * 2007-03-05 2008-10-16 Hitachi Ltd 荷電粒子スピン検出器、顕微鏡、及び光電子分光装置
JP2010003450A (ja) * 2008-06-18 2010-01-07 Hitachi Ltd 走査電子顕微鏡
WO2016207961A1 (ja) * 2015-06-23 2016-12-29 株式会社日立製作所 荷電粒子装置、荷電粒子の照射方法、および分析装置
JP2017004774A (ja) * 2015-06-11 2017-01-05 国立大学法人名古屋大学 反射電子を検出する走査電子顕微鏡
US20200402762A1 (en) * 2018-03-27 2020-12-24 Hitachi High-Tech Corporation Scanning electron microscope and method for analyzing secondary electron spin polarization
US20210074509A1 (en) * 2018-05-22 2021-03-11 Hitachi High-Tech Corporation Spin polarimeter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218063A (ja) * 2007-03-01 2008-09-18 Hitachi Ltd 透過型電子顕微鏡
JP2008251525A (ja) * 2007-03-05 2008-10-16 Hitachi Ltd 荷電粒子スピン検出器、顕微鏡、及び光電子分光装置
JP2010003450A (ja) * 2008-06-18 2010-01-07 Hitachi Ltd 走査電子顕微鏡
JP2017004774A (ja) * 2015-06-11 2017-01-05 国立大学法人名古屋大学 反射電子を検出する走査電子顕微鏡
WO2016207961A1 (ja) * 2015-06-23 2016-12-29 株式会社日立製作所 荷電粒子装置、荷電粒子の照射方法、および分析装置
US20200402762A1 (en) * 2018-03-27 2020-12-24 Hitachi High-Tech Corporation Scanning electron microscope and method for analyzing secondary electron spin polarization
US20210074509A1 (en) * 2018-05-22 2021-03-11 Hitachi High-Tech Corporation Spin polarimeter

Also Published As

Publication number Publication date
US20240249911A1 (en) 2024-07-25
JP7535664B2 (ja) 2024-08-16
JPWO2023007687A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
US7755046B2 (en) Transmission electron microscope
EP3242139B1 (en) Method and apparatus for determining a magnetic field
Lacoste et al. Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM)
JP7297306B2 (ja) テラヘルツ磁気光学センサ、これを用いた高性能非破壊検査装置及び方法、並びにこれに用いる磁気光学撮像センサ
JP7549650B2 (ja) 量子情報処理デバイス、アセンブリ、構成、システム、及びセンサ
CN104704375A (zh) 纳米级扫描传感器
JP2020063960A (ja) 磁気計測装置
JP2975991B2 (ja) 偏光性測定方法及び装置
Neudert et al. Small-amplitude magnetization dynamics in permalloy elements investigated by time-resolved wide-field Kerr microscopy
Gisbert et al. Quantitative mapping of magnetic properties at the nanoscale with bimodal AFM
JP2010003450A (ja) 走査電子顕微鏡
WO2023007687A1 (ja) スピン偏極走査電子顕微鏡
JP2014059192A (ja) 蛍光顕微装置および方法
Stiewe et al. Magnetic domain scanning imaging using phase-sensitive THz-pulse detection
CN115291149A (zh) 线阵扫描装置及控制方法
JP2967172B1 (ja) スピン検出軸回転型スピン偏極走査型トンネル顕微鏡
Wegner et al. In-plane magnetization of garnet films imaged by proximal probe nonlinear magneto-optical microscopy
JP3698872B2 (ja) スピン偏極走査型トンネル顕微鏡及びその探針、及び磁化情報評価方法
EP2762896A1 (en) Dc magnetic field magnetic profile measuring device and magnetic profile measuring method
JP2810077B2 (ja) 走査トンネル顕微鏡
JP4397708B2 (ja) 磁気共鳴力顕微鏡および磁気共鳴力顕微鏡用磁気チップ
JP3630838B2 (ja) 走査型トンネル顕微鏡及び磁化検出方法
Teichert et al. Investigation of the ion acoustic effect during focused ion beam irradiation
JP2000314697A (ja) スピン偏極走査型トンネル顕微鏡
JP2011095150A (ja) スピン検出器、表面分析装置及びターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951887

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023537877

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18290321

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21951887

Country of ref document: EP

Kind code of ref document: A1