WO2023005974A1 - 一种汽车热管理系统 - Google Patents

一种汽车热管理系统 Download PDF

Info

Publication number
WO2023005974A1
WO2023005974A1 PCT/CN2022/108253 CN2022108253W WO2023005974A1 WO 2023005974 A1 WO2023005974 A1 WO 2023005974A1 CN 2022108253 W CN2022108253 W CN 2022108253W WO 2023005974 A1 WO2023005974 A1 WO 2023005974A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
thermal management
radiator
management circuit
power battery
Prior art date
Application number
PCT/CN2022/108253
Other languages
English (en)
French (fr)
Inventor
李川
刘元治
庞尔超
霍海涛
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023005974A1 publication Critical patent/WO2023005974A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of automobiles, for example, to an automobile thermal management system.
  • new energy vehicles Compared with traditional fuel vehicles, new energy vehicles have the advantage of less pollution, so new energy vehicles occupy an increasing market share.
  • the thermal management system of a new energy vehicle generally includes a motor thermal management circuit, a power battery thermal management circuit, a warm air circuit and an air conditioning refrigeration circuit.
  • a motor thermal management circuit When users use new energy vehicles in winter, they need to use the power battery to provide electric energy to heat the windshield and the passenger compartment, which will shorten the driving range of the power battery.
  • the temperature of the motor rises during driving, requiring a thermal management system to cool the motor, and the heat generated by the motor is dissipated into the air, resulting in energy waste.
  • an air conditioner is needed to cool the power battery. This part of the heat of the power battery will also be dissipated into the air, resulting in energy waste.
  • the present application provides an automobile thermal management system, which can improve energy utilization rate and avoid energy waste.
  • the application provides an automobile thermal management system, including:
  • a motor thermal management circuit includes a first water pump, a power motor body, a third three-way valve, a third radiator, a first three-way valve, and a first radiator connected in sequence, and the first water pump configured to drive the flow of coolant in the thermal management circuit of the motor, the first three-way valve and the third three-way valve are configured to control whether the coolant in the thermal management circuit of the motor flows or not passing through the first radiator, and controlling the cooling fluid in the thermal management circuit of the motor to flow through or not to flow through the third radiator;
  • a power battery thermal management circuit the power battery thermal management circuit includes a power battery, a second water pump, a second three-way valve, and a second radiator connected in sequence, and the second three-way valve is set to control the second
  • the water pump communicates with the third radiator or the second radiator, and the second water pump is configured to drive the flow of coolant in the thermal management circuit of the power battery;
  • the passenger compartment thermal management circuit includes a warm air circuit and an air conditioning refrigeration circuit;
  • the warm air circuit includes a third water pump, the third radiator, an electric heating device and a fourth radiator connected in sequence , the fourth radiator is set to exchange heat with the passenger compartment, the third water pump is set to drive the flow of coolant in the heating circuit;
  • the air-conditioning refrigeration circuit includes an air-conditioning compressor assembly and a fifth a radiator, the air conditioner compressor assembly is configured to exchange heat with the fifth radiator and the second radiator, and the fifth radiator is capable of exchanging heat with the passenger compartment to cool the passenger compartment Allow to cool.
  • FIG. 1 is a schematic structural diagram of an automobile thermal management system provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic structural diagram of an automobile thermal management system provided in Embodiment 2 of the present application.
  • 601-electric heating device 602-air conditioning compressor assembly;
  • This embodiment provides an automobile thermal management system.
  • the automobile thermal management system is applied to a pure electric vehicle.
  • Pure electric vehicles are limited by the energy density of the power battery, and the mileage is short; due to the imperfect charging facilities and the limitation of the charging performance of the power battery, the charging time is long and inconvenient; and the power battery is greatly affected by the temperature. After turning on the warm air and turning on the air conditioner in summer, the driving range will be greatly reduced, which severely limits the market application of pure electric vehicles. Restricted by technical bottlenecks, the performance of power batteries cannot be greatly improved in the short term. Therefore, in order to increase the driving range of pure electric vehicles, we can only start by improving energy utilization. Since the thermal management circuits of multiple assemblies of the current pure electric vehicle thermal management system are independent, the energy utilization of the power battery is unreasonable, resulting in energy waste and shortening the driving range.
  • the power battery has high working efficiency. Under the extreme working conditions of continuous high-current operation, such as long-term high-speed driving and DC charging, the heating power will increase sharply with the increase of the working current, and it needs to be cooled by air conditioning. At present, the car air conditioner is limited by the ambient temperature. When the ambient temperature is low, the car air conditioner cannot work. Therefore, under these extreme working conditions, the performance of the battery will reduce the performance of the vehicle and cause user dissatisfaction.
  • this embodiment provides an automobile thermal management system, which includes a motor thermal management circuit, a power battery thermal management circuit and a passenger compartment thermal management circuit, which can realize energy recovery and improve energy utilization efficiency and avoid energy waste.
  • the motor heat management circuit includes the first water pump 201, the power motor body 104, the third three-way valve 304, the third radiator 403, the first three-way valve 305 and the first radiator 401 connected in sequence, the first
  • the water pump 201 is set to drive the flow of coolant in the thermal management circuit of the motor
  • the first three-way valve 305 and the third three-way valve 304 are set to control whether the coolant in the thermal management circuit of the motor flows through or not through the first radiator.
  • the radiator 401 and controls the cooling liquid in the thermal management circuit of the motor to flow through or not flow through the third radiator 403 .
  • the thermal management circuit of the power battery includes the power battery 105, the second water pump 202, the second three-way valve 303, and the second radiator 402 connected in sequence, and the second three-way valve 303 is set to control the second water pump 202 and the third radiator 403 communicates with or communicates with the second radiator 402, and the second water pump 202 is configured to drive the cooling liquid in the heat management circuit of the power battery to flow.
  • the heat management circuit of the passenger compartment includes the heating air circuit and the air conditioning refrigeration circuit.
  • the heating circuit includes a third water pump 203, a third radiator 403, an electric heating device 601 and a fourth radiator 404 connected in sequence, the fourth radiator 404 is set to exchange heat with the passenger compartment 106, and the third water pump 203 is set to To drive the coolant flow in the heater circuit.
  • the air-conditioning refrigeration circuit includes an air-conditioning compressor assembly 602 and a fifth radiator 405.
  • the air-conditioning compressor assembly 602 is configured to exchange heat with the fifth radiator 405 and the second radiator 402.
  • the fifth radiator 405 is configured to communicate with the fifth radiator 405.
  • the passenger compartment 106 exchanges heat to cool the passenger compartment 106 .
  • the waste heat of the power motor body 104 can provide warm air for the passenger compartment 106; in low temperature environment, the driver has warm air When needed, use the waste heat of the power motor body 104 to provide warm air for the passenger compartment 106, reduce the energy demand for the power battery 105, and increase the cruising range of the pure electric vehicle;
  • the waste heat of the power motor body 104 can be transferred to the third radiator 403, so that the power can be utilized
  • the waste heat of the motor body 104 heats the power battery 105.
  • the waste heat of the power motor body 104 is used to heat the power battery 105, so as to prevent the heat energy of the power motor body 104 from being dissipated in the air in vain and improve the energy utilization rate;
  • the waste heat of the power motor body 104 can be transferred to the third radiator 403, and the third radiator 403 heat can be transferred to the fourth radiator 404, so that the heat of the power battery 105 can be transferred to the fourth radiator 404; in low temperature environment, when the driver needs warm air, the waste heat of the power battery 105 can also be used as The passenger compartment 106 is heated.
  • the air conditioner compressor assembly 602 cannot work. Under extreme working conditions with continuous high current, such as long-term high-speed driving and DC charging, the power battery 105 will heat up quickly and its performance will decrease. At this time, cold air can be directly used to The power battery 105 is cooled to ensure that the performance of the vehicle will not be reduced.
  • the automobile thermal management system reduces the electric heating device of a high-voltage electrical component, thereby reducing the system cost.
  • the automobile thermal management system further includes a second fan 502 , and the second fan 502 is connected to both the fifth radiator 405 and the fourth radiator 404 .
  • the second fan 502 , the fifth radiator 405 and the fourth radiator 404 form an air-conditioning three-box assembly 801 , and the air-conditioning three-box assembly 801 can exchange heat with the passenger compartment.
  • the first three-way valve 305 includes a first port a, a second port b, and a third port c
  • the third three-way valve 304 includes a fourth port d, a fifth port e, and a sixth port f.
  • the coolant in the motor thermal management circuit can flow through the third radiator at the same time 403 and the first radiator 401.
  • the coolant in the motor thermal management circuit can flow through the third radiator 403 and does not flow through the first radiator 401.
  • the second three-way valve 303 includes a seventh port g, an eighth port h, and a ninth port i.
  • the seventh port g and the eighth port h are connected and the ninth port i is closed, the third port
  • the second water pump 202 communicates with the third radiator 403; when the seventh port g communicates with the ninth port i, the second water pump 202 communicates with the second radiator 402.
  • the motor thermal management circuit further includes a charger 101 , a DC transformer 102 , a power battery inverter 103 , a first temperature sensor 701 and a first fan 501 .
  • the charger 101 , the DC transformer 102 , and the power battery inverter 103 are sequentially connected and located between the first water pump 201 and the power motor body 104 .
  • the first temperature sensor 701 is set at the outlet of the coolant flowing through the power motor body 104 to accurately feed back the temperature of the coolant flowing through the power motor body 104 .
  • the first fan 501 is arranged on the first radiator 401 to increase the heat exchange amount between the coolant in the thermal management circuit of the motor and the outside air.
  • the first water pump 201 drives the coolant in the motor thermal management circuit to flow, and the first radiator 401, the charger 101, the DC transformer 102, the power battery inverter 103 and the power motor
  • the main body 104 exchanges heat, and the first radiator 401 can realize heat exchange between the motor heat management circuit and the outside air.
  • the first three-way valve 305 is set to guide the coolant in the motor thermal management circuit to flow through or not to flow through the first radiator 401;
  • the third three-way valve 304 is set to guide the coolant in the motor thermal management circuit to flow through Or not flow through the third radiator 403 .
  • the function of the first temperature sensor 701 is to detect the temperature after the coolant in the motor thermal management circuit flows out of the cooled assembly, it is set to judge whether the entry condition of the selected working mode is satisfied, and it is used as the first three-way valve 305 state switch Judgment conditions and calculation conditions of the working speed of the first fan 501 .
  • the charger 101 , the DC transformer 102 , the power battery inverter 103 and the power motor body 104 are cooled assemblies.
  • the thermal management circuit of the power battery further includes a second temperature sensor 702, and the second temperature sensor 702 is arranged at the inflow end of the power battery 105 along the flow direction of the coolant in the thermal management circuit of the power battery to detect The temperature of the coolant in the thermal management circuit of the power battery before entering the power battery 105 is used to calculate the output power of the electric heating device 601 and the air conditioner compressor assembly 602 .
  • the power battery 105 is a cooled assembly.
  • the second water pump 202 is set to drive the cooling liquid in the thermal management circuit of the power battery to flow, and exchange heat with the second radiator 402, the third radiator 403 and the power battery 105 .
  • the function of the second three-way valve 303 is to guide the cooling liquid in the thermal management circuit of the power battery to flow or not flow through the third radiator 403 .
  • the function of the second radiator 402 is to exchange heat between the coolant in the thermal management circuit of the power battery and the condenser in the air conditioning refrigeration circuit.
  • the function of the third radiator 403 is to exchange heat between the coolant in the motor thermal management circuit and the coolant in the warm air circuit and the power battery thermal management circuit.
  • the warm air circuit further includes a third temperature sensor 703, and the third temperature sensor 703 is arranged at the inflow end of the electric heating device 601 along the flow direction of the warm air circuit to detect temperature in the warm air circuit.
  • the temperature of the coolant before entering the electric heating device 601 is used to calculate the output power of the electric heating device 601 and the working speed of the second fan 502 .
  • the function of the third water pump 203 is to drive the cooling fluid in the warm air circuit to exchange heat with the third radiator 403 and the fourth radiator 404 .
  • the function of the fourth radiator 404 is to exchange heat between the coolant in the warm air circuit and the passenger compartment 106
  • the function of the second fan 502 is to increase the heat exchange between the coolant in the warm air circuit and the passenger compartment 106 .
  • the function of the electric heating device 601 is to convert the electric energy of the power battery 105 into heat energy to heat the coolant in the warm air circuit.
  • the passenger compartment 106 is a heated assembly in the warm air circuit.
  • the air-conditioning refrigeration circuit includes an air-conditioning compressor assembly 602 , a second radiator 402 , a fifth radiator 405 , a second fan 502 and the passenger compartment 106 .
  • the function of the air-conditioning compressor assembly 602 is to compress and cool the condensate in the air-conditioning refrigeration circuit, drive the condensate to flow, and exchange heat with the second radiator 402 and the fifth radiator 405 .
  • the function of the second radiator 402 is to exchange heat between the coolant in the heat management circuit of the power battery and the condenser in the refrigeration circuit of the air conditioner.
  • the function of the fifth radiator 405 is to exchange heat between the condensate in the air-conditioning refrigeration circuit and the passenger compartment 106 .
  • the function of the second fan 502 is to increase the heat exchange between the condensate in the air-conditioning refrigeration circuit and the passenger compartment 106 .
  • the passenger compartment 106 is a cooled assembly.
  • the automotive thermal management system includes a motor thermal management circuit, a power battery thermal management circuit, and a passenger compartment thermal management circuit.
  • the automotive thermal management system includes a motor thermal management function, a power battery thermal management function, and a passenger compartment thermal management function. Function.
  • the motor thermal management function includes a power motor cooling mode.
  • the power battery thermal management functions include power battery air-conditioning cooling mode, power battery self-circulation mode, power battery heating mode, power motor waste heat heating power battery mode and power battery fan cooling mode.
  • the power battery self-circulation mode has the highest priority
  • the power battery air-conditioning cooling mode takes the second place
  • other modes have the same priority and the lowest priority.
  • the thermal management functions of the passenger compartment include air-conditioning cooling mode, warm air heating mode, power motor waste heat heating mode and power battery waste heat heating mode.
  • multiple modes have the same priority and can be turned on at the same time.
  • the thermal management function of the motor, the thermal management function of the power battery and the thermal management function of the passenger compartment have the same priority, and multiple functions can be turned on independently at the same time.
  • the first three-way valve 305 has two states:
  • the second three-way valve 303 has two states:
  • the third three-way valve 304 has two states:
  • the control strategy of the power battery air conditioner cooling mode is:
  • the seventh port g of the second three-way valve 303 communicates with the ninth port i and the eighth port h is closed, the second water pump 202 is turned on, and the air conditioner compressor assembly 602 is turned on; the control strategy of the power battery air conditioner cooling mode is effective for the remaining components no requirement.
  • the conditions for turning on the self-circulation mode of the power battery are: the temperature difference between the cells of the power battery 105 is higher than 10°C and the maximum temperature of the power battery is lower than 48°C; the exit of the self-circulation mode of the power battery The condition is: the temperature difference between the cells of the power battery 105 is lower than 8°C, or the maximum temperature of the power battery 105 is higher than 50°C.
  • the control strategy of the power battery self-circulation mode is:
  • the seventh port g of the second three-way valve 303 communicates with the ninth port i, the eighth port h is closed, and the second water pump 202 is turned on.
  • the control strategy of the power battery self-circulation mode has no requirements for other components.
  • the opening condition of the power battery heating mode is: the whole vehicle is in the charging heating mode, and the lowest temperature of the power battery 105 is lower than 0°C; the exit condition of the power battery heating mode is: the whole vehicle quits charging Heating mode, or the minimum temperature of the power battery 105 is higher than 2°C.
  • the control strategy of the power battery heating mode is:
  • the fourth port d of the third three-way valve 304 communicates with the sixth port f and the fifth port e is closed, the seventh port g of the second three-way valve 303 communicates with the eighth port h and the ninth port i is closed, and the second
  • the water pump 202 is turned on, the third water pump 203 is turned on, and the electric heating device 601 is turned on.
  • the control strategy of the power battery heating mode has no requirements for other components.
  • the power motor waste heat heating power battery mode is enabled under the following conditions: the lowest temperature of the power battery 105 is lower than 10°C, and the temperature of the coolant in the motor thermal management circuit is higher than the highest temperature of the power battery 105 .
  • the exit condition of the power motor residual heat heating power battery mode is: the minimum temperature of the power battery 105 is higher than 15° C., or the temperature of the coolant in the motor thermal management circuit is lower than the maximum temperature of the power battery 105 .
  • the control strategy of the power motor waste heat heating power battery mode is: the fourth port d of the third three-way valve 304 is connected to the fifth port e and the sixth port f is closed, and the seventh port g of the second three-way valve 303 is connected to the ninth port Port i is connected and the eighth port h is closed, the first water pump 201 is turned on, the second water pump 202 is turned on, and the air conditioner compressor assembly 602 is turned off.
  • the control strategy of the power motor waste heat heating power battery mode has no requirements for other components.
  • the conditions for turning on the power battery fan cooling mode are: the maximum temperature of the power battery 105 is higher than 30°C; or: the ambient temperature is lower than 8°C and the maximum temperature of the power battery 105 is higher than 40°C.
  • the exit condition of the power battery fan cooling mode is: the maximum temperature of the power battery 105 is lower than 25°C; or: the ambient temperature is higher than 10°C, or the maximum temperature of the power battery 105 is lower than 36°C.
  • the control strategy of the power battery fan cooling mode is: the fourth port d of the third three-way valve 304 is connected to the fifth port e and the sixth port f is closed, the first port a of the first three-way valve 305 and the third port c connected and the second port b is closed, the seventh port g and the ninth port i of the second three-way valve 303 are connected and the eighth port h is closed, the first water pump 201 is turned on, the second water pump 202 is turned on, and the first fan 501 is turned on.
  • the control strategy of the power battery fan cooling mode has no requirements for other components.
  • the opening condition of the power motor cooling mode is: the temperature of the charger 101 is higher than 40°C, or the temperature of the DC transformer 102 is higher than 40°C, or the temperature of the power battery inverter 103 is higher than 40°C, or the temperature of the power motor body 104 is higher than 40°C.
  • the conditions for exiting the power motor cooling mode are: the temperature of the charger 101 is lower than 36°C, the temperature of the DC transformer 102 is lower than 36°C, the temperature of the power battery inverter 103 is lower than 36°C, and the temperature of the power motor body 104 is lower than 36°C. The temperature is below 36°C.
  • the control strategy of the power motor cooling mode is: the first port a of the first three-way valve 305 is connected to the third port c and the second port b is closed, the first water pump 201 is turned on, and the first fan 501 is turned on.
  • the power motor cooling mode The control strategy has no requirements for the remaining components.
  • the opening condition of the air-conditioning cooling mode is: the driver turns on the air-conditioning switch;
  • the closing condition of the air-conditioning cooling mode is: the driver turns off the air-conditioning switch.
  • the control strategy of the air conditioner cooling mode is: the air conditioner compressor assembly 602 is turned on, and the second fan 502 is turned on, and the control strategy of the air conditioner cooling mode has no requirements for other components.
  • the activation condition of the warm air heating mode is: the driver turns on the warm air switch.
  • the closing condition of the warm air heating mode is: the driver turns off the air conditioner switch.
  • the control strategy of the warm air heating mode is: the third water pump 203 is turned on, the electric heating device 601 is turned on, and the second fan 502 is turned on.
  • the control strategy of the warm air heating mode has no requirements for other components.
  • the activation condition of the waste heat heating mode of the power motor is: the driver turns on the heater switch and the temperature of the coolant in the motor thermal management circuit is higher than the heater set temperature.
  • the shutdown condition of the waste heat heating mode of the power motor is: the driver turns off the heater switch, or the temperature of the coolant in the motor thermal management circuit is lower than the heater set temperature.
  • the control strategy of the waste heat heating mode of the power motor is as follows: the fourth port d of the third three-way valve 304 is connected to the fifth port e and the sixth port f is closed, the first water pump 201 is turned on, the third water pump 203 is turned on, and the second fan 502 If it is turned on, the control strategy of the waste heat heating mode of the power motor has no requirements for other components.
  • the activation condition of the waste heat heating mode of the power battery is: the driver turns on the heater switch, and the temperature of the power battery 105 is higher than the set temperature of the heater.
  • the closing condition of the waste heat heating mode of the power battery is: the driver turns off the warm air switch, or the temperature of the power battery 105 is lower than the set temperature of the warm air.
  • the control strategy of the waste heat heating mode of the power battery is: the fourth port d and the sixth port f of the third three-way valve 304 are connected and the fifth port e is closed, and the seventh port g and the ninth port i of the second three-way valve 303 connected and the eighth port h is closed, the second water pump 202 is turned on, the third water pump 203 is turned on, and the second fan 502 is turned on.
  • the control strategy of the power battery waste heat heating mode has no requirements for other components.
  • the fuel cell system can only generate electricity and cannot recycle electric energy, and the power response of the fuel cell system is slow, it cannot meet the driving needs of electric vehicles alone. Therefore, the combination of fuel cell vehicles and power batteries can meet the needs of electric vehicles. drive performance requirements. Therefore, the powertrain of a fuel cell vehicle is based on a pure electric vehicle, and a fuel cell system is added, which makes the powertrain of a fuel cell vehicle more complicated, and the thermal management system will also be more complicated.
  • the working efficiency of the fuel cell system is greatly affected by the temperature. After the fuel cell system is started, the working efficiency is very low before reaching the set working temperature. Especially in some extreme working conditions, the fuel cell needs to be started and stopped repeatedly, which will reduce the energy utilization rate of hydrogen, increase the loss of hydrogen, and reduce the driving range.
  • the power motor system and the power battery system work synchronously, which will generate heat. Since the thermal management circuits of the multiple assemblies of the related thermal management system are independent, the energy utilization is unreasonable, resulting in waste and shortening the driving range.
  • This embodiment provides an automotive thermal management system, which adds a fuel cell thermal management circuit to the automotive thermal management system in Embodiment 1, so that the automotive thermal management system can be applied to fuel cell vehicles.
  • the automobile thermal management system further includes a fuel cell thermal management circuit
  • the fuel cell thermal management circuit includes a fourth water pump 204, a fuel cell 107, a fourth three-way valve 306, and a third radiator connected in sequence. 403.
  • the wax thermostat 307 is set to control whether the coolant of the fuel cell thermal management circuit flows through or not according to the temperature of the coolant in the fuel cell thermal management circuit
  • the sixth radiator 406 and the fourth three-way valve 306 are configured to control whether the cooling liquid of the fuel cell thermal management circuit flows through or not through the third radiator 403 .
  • the fourth three-way valve 306 includes a tenth port j, an eleventh port k, and a twelfth port l, the tenth port j communicates with the twelfth port l, and the eleventh port k
  • the cooling liquid of the fuel cell thermal management circuit can flow through the third radiator 403; when the tenth port j and the eleventh port k are connected and the twelfth port l is closed, the cooling liquid of the fuel cell thermal management circuit does not flow through the third radiator 403 .
  • the sixth radiator 406 and the first radiator 401 are arranged at a set distance, so that the first fan 501 can accelerate the heat dissipation of the sixth radiator 406 .
  • the function of the first fan 501 is to increase the heat exchange between the cooling liquid in the thermal management circuit of the fuel cell and the outside air.
  • the fuel cell thermal management circuit further includes a fourth temperature sensor 704, which is arranged at the outflow end of the fuel cell 107 along the liquid flow direction, and the function of the fourth temperature sensor 704 is to detect the temperature of the fuel cell thermal management circuit.
  • the temperature of the coolant inside after flowing out of the cooled assembly is used to determine whether the entry condition of the selected working mode is satisfied, and is used as a calculation condition for the working speed of the first fan 501 .
  • the fuel cell 107 is a cooled assembly.
  • the function of the fourth water pump 204 is to drive the cooling fluid in the thermal management circuit of the fuel cell to exchange heat with the sixth radiator 406 and the fuel cell 107 .
  • the function of the fourth three-way valve 306 is to connect the fuel cell thermal management circuit with the third radiator 403 .
  • the function of the third radiator 403 is to exchange heat between the coolant in the thermal management circuit of the fuel cell and the coolant in the warm air circuit, the thermal management circuit of the motor, and the thermal management circuit of the power battery.
  • the automotive thermal management system includes a fuel cell thermal management circuit, a motor thermal management circuit, a power battery thermal management circuit, and a passenger compartment thermal management circuit.
  • the automotive thermal management system includes a fuel cell thermal management function, a motor thermal management function, power battery thermal management function and passenger compartment thermal management function.
  • the thermal management function of the motor and the thermal management function of the passenger compartment are the same as those in Embodiment 1, and will not be repeated here.
  • the fuel cell thermal management function, the motor thermal management function, the power battery thermal management function and the passenger compartment thermal management function have the same priority, and multiple functions can be started independently at the same time.
  • Fuel cell thermal management functions include fuel cell cold start mode, fuel cell warm up mode and fuel cell cool down mode.
  • the operating conditions of the multiple modes of the thermal management function of the fuel cell are independent of each other and will not be performed simultaneously.
  • Power battery thermal management functions include power battery air-conditioning cooling mode, power battery self-circulation mode, power battery heating mode, power motor waste heat heating power battery mode, power battery fan cooling mode and fuel cell waste heat heating power battery mode.
  • the power battery air conditioner cooling mode, power battery self-circulation mode, power battery heating mode, power motor waste heat heating power battery mode, and power battery fan cooling mode are the same as those in Embodiment 1, and will not be repeated here.
  • the start condition of the fuel cell cold start mode is: the temperature of the fuel cell 107 is lower than 0°C; the turn off condition of the fuel cell cold start mode is: the temperature of the fuel cell 107 is higher than 40°C.
  • the control strategy of the fuel cell cold start mode is:
  • the fourth port d of the third three-way valve 304 communicates with the sixth port f and the fifth port e is closed, the tenth port j of the fourth three-way valve 306 communicates with the twelfth port l and the eleventh port k is closed,
  • the third water pump 203 is turned on, the fourth water pump 204 is turned on, and the electric heating device 601 is turned on.
  • the control strategy of the fuel cell cold start mode has no requirements for other components.
  • the conditions for enabling the fuel cell preheating mode are: the temperature of the fuel cell 107 is lower than 30° C., and the temperature of the coolant in the thermal management circuit of the motor is higher than that of the coolant in the thermal management circuit of the fuel cell temperature.
  • the shutdown condition of the fuel cell preheating mode is: the temperature of the fuel cell 107 is higher than 40° C., or the temperature of the coolant in the thermal management circuit of the motor is lower than the temperature of the coolant in the thermal management circuit of the fuel cell.
  • the control strategy of the fuel cell preheating mode is: the fourth port d of the third three-way valve 304 is connected to the fifth port e and the sixth port f is closed, the tenth port j of the fourth three-way valve 306 is connected to the twelfth port l is connected and the eleventh port k is closed, the third water pump 203 is turned on, the fourth water pump 204 is turned on, and the electric heating device 601 is turned on.
  • the control strategy of the fuel cell preheating mode has no requirements for other components.
  • the condition for enabling the fuel cell cooling mode is: the temperature of the fuel cell 107 is higher than 80°C.
  • the exit condition of the fuel cell cooling mode is: the temperature of the fuel cell 107 is lower than 75°C.
  • the control strategy of fuel cell cooling mode is:
  • the fourth water pump 204 is turned on, the first fan 501 is turned on, and the control strategy of the fuel cell cooling mode has no requirements for other components.
  • the conditions for turning on the fuel cell waste heat heating power battery mode are: the lowest temperature of the power battery 105 is lower than 10°C, and the temperature of the fuel cell heat management circuit coolant is higher than 45°C.
  • the conditions for exiting the fuel cell waste heat heating power battery mode are: the lowest temperature of the power battery 105 is higher than 15° C., or the temperature of the coolant in the fuel cell thermal management circuit is lower than 40° C.
  • the control strategy of fuel cell waste heat heating power battery mode is:
  • the fourth port d of the third three-way valve 304 communicates with the sixth port f and the fifth port e is closed, the seventh port g of the second three-way valve 303 communicates with the eighth port h and the ninth port i is closed, and the fourth port
  • the tenth port j and the twelfth port l of the three-way valve 306 are connected and the eleventh port k is closed, the second water pump 202 is turned on, and the fourth water pump 204 is turned on. no requirement.
  • the waste heat of the motor thermal management circuit and the power battery thermal management circuit can be used to preheat the fuel cell thermal management circuit, shortening the time for the fuel cell system to reach the set working temperature after startup, thereby Improve the working efficiency of the fuel cell system, reduce hydrogen consumption, and increase driving range.
  • the waste heat of the fuel cell thermal management circuit or the motor thermal management circuit can be used to provide warm air for the passenger compartment 106, reducing the demand for power battery energy and increasing the driving range.
  • the power battery 105 can be heated by using the waste heat of the fuel cell thermal management circuit or the motor thermal management circuit, and the performance of the power battery 105 can be rapidly improved, thereby improving the vehicle performance.

Abstract

本申请公开了一种汽车热管理系统,包括:电机热管理回路,包括第一水泵、动力电机本体、第三三通阀、第三散热器、第一三通阀和第一散热器;动力电池热管理回路,包括动力电池、第二水泵、第二三通阀、第二散热器;乘员舱热管理回路,包括暖风回路和空调制冷回路;所述暖风回路包括第三水泵、所述第三散热器、电加热装置和第四散热器,所述第四散热器能够与乘员舱交换热量;空调制冷回路包括空调压缩机总成和第五散热器,所述空调压缩机总成能够与所述第五散热器和所述第二散热器交换热量,所述第五散热器能够与所述乘员舱交换热量以对所述乘员舱进行冷却。

Description

一种汽车热管理系统
本申请要求在2021年07月28日提交中国专利局、申请号为202110856846.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车技术领域,例如涉及一种汽车热管理系统。
背景技术
新能源汽车和传统燃油汽车相比,具有污染小的优势,因而新能源占据越来越大的市场份额。
相关技术中,新能源汽车的热管理系统一般包括电机热管理回路、动力电池热管理回路、暖风回路和空调制冷回路。用户在冬季使用新能源汽车时,需要用动力电池提供电能加热挡风玻璃和乘员舱,如此会导致动力电池的续驶里程缩短。行驶过程中电机温度升高,需要热管理系统对电机进行冷却,而电机产生的热量耗散到空气中,造成能源浪费。长时间高速行驶时,动力电池温度升高,需要使用空调对动力电池进行冷却,动力电池的这一部分热量也会耗散到空气中,造成能源浪费。
发明内容
本申请提供一种汽车热管理系统,其能够提高能源利用率,避免能源浪费。
本申请提供一种汽车热管理系统,包括:
电机热管理回路,所述电机热管理回路包括依次连接的第一水泵、动力电机本体、第三三通阀、第三散热器、第一三通阀和第一散热器,所述第一水泵被设置为驱动所述电机热管理回路内的冷却液流动,所述第一三通阀和所述第三三通阀被设置为控制所述电机热管理回路内的冷却液流经或不流经所述第一散热器,且控制所述电机热管理回路内的冷却液流经或不流经所述第三散热器;
动力电池热管理回路,所述动力电池热管理回路包括依次连接的动力电池、第二水泵、第二三通阀、第二散热器,所述第二三通阀被设置为控制所述第二水泵与所述第三散热器连通或者与所述第二散热器连通,所述第二水泵被设置为驱动所述动力电池热管理回路内的冷却液流动;
乘员舱热管理回路,所述乘员舱热管理回路包括暖风回路和空调制冷回路;所述暖风回路包括依次连接的第三水泵、所述第三散热器、电加热装置和第四散热器,所述第四散热器被设置为与乘员舱交换热量,所述第三水泵被设置为驱动所述暖风回路内的冷却液流动;所述空调制冷回路包括空调压缩机总成和第五散热器,所述空调压缩机总成被设置为与所述第五散热器和所述第二散热器交换热量,所述第五散热器能够与所述乘员舱交换热量以对所述乘员舱进行冷却。
附图说明
图1是本申请实施例一提供的汽车热管理系统的结构示意图;
图2是本申请实施例二提供的汽车热管理系统的结构示意图。
图中:
101-充电机;102-直流变压器;103-动力电池逆变器;104-动力电机本体;105-动力电池;106-乘员舱;107-燃料电池;
201-第一水泵;202-第二水泵;203-第三水泵;204-第四水泵;
303-第二三通阀;304-第三三通阀;305-第一三通阀;306-第四三通阀;307-蜡式节温器;
401-第一散热器;402-第二散热器;403-第三散热器;404-第四散热器;405-第五散热器;406-第六散热器;
501-第一风扇;502-第二风扇;
601-电加热装置;602-空调压缩机总成;
701-第一温度传感器;702-第二温度传感器;703-第三温度传感器;704-第四温度传感器;
801-空调三箱总成。
具体实施方式
下面结合附图并通过具体实施方式来说明本申请的技术方案。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部。
实施例一
本实施例提供一种汽车热管理系统,本实施例中,汽车热管理系统应用于纯电动汽车上。
纯电动汽车受到动力电池能量密度限制,续驶里程短;受到充电设施不完善及动力电池充电性能的限制,充电时间长,充电不方便;并且动力电池会受到温度影响很大,驾驶员在冬季开启暖风和在夏季开启空调后,续驶里程会大幅度降低,这严重限制了纯电动汽车的市场应用。受到技术瓶颈的限制,动力电池性能在短期内无法大幅度提升,因此要想提高纯电动汽车的续驶里程,只能从提高能量利用率的途径着手。由于目前的纯电动汽车热管理系统的多个总成的热管理回路各自独立,动力电池的能量利用不合理,造成能量浪费,缩短续驶里程。
用户在冬季使用纯电动汽车时,需要用动力电池提供电能加热风挡玻璃和乘员舱,并且动力电池温度低,性能受限,造成续驶里程大幅度缩短。此时电机温度升高,需要热管理系统对它进行冷却,电机工作产生的热量耗散到空气中,白白浪费。
动力电池工作效率高,在持续大电流工作的极端工况下,例如长时间高速行驶和直流充电时,发热功率会随着工作电流的增加急剧增加,需要使用空调对它进行冷却。目前车载空调会受到环境温度的限制,当环境温度较低时,车载空调不能工作,因此在这些极端工况下,电池性能降低会导致车辆性能降低,引发用户的不满。
在上述这种极端工况下,如果驾驶员有暖风需求,也不能用电池的余热加热乘员舱,并且还需要空调对电池进行冷却,浪费更多的能量。
为解决上述问题,参见图1,本实施例提供一种汽车热管理系统,其包括电机热管理回路、动力电池热管理回路和乘员舱热管理回路,其能够实现能源的回收利用,提高能量利用率,避免能源浪费。
可选地,电机热管理回路包括依次连接的第一水泵201、动力电机本体104、第三三通阀304、第三散热器403、第一三通阀305和第一散热器401,第一水泵201被设置为驱动电机热管理回路内的冷却液流动,第一三通阀305和第三三通阀304被设置为控制电机热管理回路内的冷却液流经或不流经第一散热器401,且控制电机热管理回路内的冷却液流经或不流经第三散热器403。
动力电池热管理回路包括依次连接的动力电池105、第二水泵202、第二三通阀303、第二散热器402,第二三通阀303被设置为控制第二水泵202与第三散热器403连通或者与第二散热器402连通,第二水泵202被设置为驱动动力电池热管理回路内的冷却液流动。
乘员舱热管理回路包括暖风回路和空调制冷回路。
暖风回路包括依次连接的第三水泵203、第三散热器403、电加热装置601和第四散热器404,第四散热器404被设置为与乘员舱106交换热量,第三水泵203被设置为驱动暖风回路内的冷却液流动。
空调制冷回路包括空调压缩机总成602和第五散热器405,空调压缩机总成602被设置为与第五散热器405和第二散热器402交换热量,第五散热器405被设置为与乘员舱106交换热量以对乘员舱106进行冷却。
本实施例提供的汽车热管理系统,具有如下优势:
(1)由于第三散热器403能够将电机热管理回路的热量传递至暖风回路,从而能够使得动力电机本体104的余热为乘员舱106提供暖风;在低温环境下,驾驶员有暖风需求时,利用动力电机本体104的余热为乘员舱106提供暖风,减少对动力电池105的能量需求,提高纯电动汽车的续航里程;
(2)由于动力电池热管理回路中的第二三通阀303能够控制第二水泵202与第三散热器403连通,动力电机本体104的余热能够传递至第三散热器403,从而能够利用动力电机本体104的余热对动力电池105加热,在低温环境中,利用动力电机本体104的余热对动力电池105加热,避免动力电机本体104的热能白白耗散在空气中,提高能量利用率;
(3)由于动力电池热管理回路中的第二三通阀303能够控制第二水泵202与第三散热器403连通,动力电机本体104的余热能够传递至第三散热器403,第三散热器403的热量能够传递至第四散热器404,从而使得动力电池105的热量能够传递至第四散热器404;在低温环境下,驾驶员有暖风需求时,还可以利用动力电池105的余热为乘员舱106加热。
在低温环境下,空调压缩机总成602不能工作,在持续大电流的极端工况下,如长时间高速行驶和直流充电,动力电池105升温快,性能降低,此时可直接使用冷空气对动力电池105进行冷却,保证整车性能不会降低。
本汽车热管理系统与相关的热管理系统相比,减少了一个高压电气部件电加热装置,降低了系统成本。
可选地,本实施例中,汽车热管理系统还包括第二风扇502,第二风扇502与第五散热器405和第四散热器404均连接。如此设置,第二风扇502、第五散热器405和第四散热器404组成了空调三箱总成801,空调三箱总成801能够与乘员舱交换热量。
本实施例中,第一三通阀305包括第一端口a、第二端口b和第三端口c,第三三通阀304包括第四端口d、第五端口e和第六端口f。第一端口a和第三 端口c连通且第二端口b关闭、第四端口d和第六端口f连通且第五端口e关闭时,电机热管理回路内的冷却液能够流经第一散热器401且不流经第三散热器403。
第四端口d和第五端口e连通且第六端口f关闭、第一端口a和第三端口c连通且第二端口b关闭时,电机热管理回路内的冷却液能够同时流经第三散热器403和第一散热器401。
第四端口d和第五端口e连通且第六端口f关闭、第一端口a和第二端口b连通且第三端口c关闭时,电机热管理回路内的冷却液能够流经第三散热器403且不流经第一散热器401。
可选地,本实施例中,第二三通阀303包括第七端口g、第八端口h和第九端口i,第七端口g和第八端口h连通且第九端口i关闭时,第二水泵202与第三散热器403连通;第七端口g和第九端口i连通时,第二水泵202与第二散热器402连通。
可选地,本实施例中,电机热管理回路还包括充电机101、直流变压器102、动力电池逆变器103、第一温度传感器701和第一风扇501。其中,充电机101、直流变压器102、动力电池逆变器103依次连接且位于第一水泵201和动力电机本体104之间。第一温度传感器701设于流经动力电机本体104的冷却液的出口端,以准确反馈流经动力电机本体104的冷却液的温度。第一风扇501设于第一散热器401上,以增加电机热管理回路内的冷却液与外界空气的热交换量。
可选地,在电机热管理回路中,第一水泵201驱动电机热管理回路内的冷却液流动,与第一散热器401、充电机101、直流变压器102、动力电池逆变器103和动力电机本体104交换热量,第一散热器401能够实现电机热管理回路与外界空气交换热量。第一三通阀305被设置为引导电机热管理回路内的冷却液流经或不流经第一散热器401;第三三通阀304被设置为引导电机热管理回路内的冷却液流经或不流经第三散热器403。第一温度传感器701的作用是检测电机热管理回路内的冷却液流出被冷却总成之后的温度,被设置为判断选定工作模式进入条件是否满足,并且作为第一三通阀305状态切换的判断条件和第一风扇501的工作转速的计算条件。
可选地,在电机热管理回路中,充电机101、直流变压器102、动力电池逆变器103和动力电机本体104是被冷却总成。
可选地,本实施例中,动力电池热管理回路还包括第二温度传感器702,第二温度传感器702设于沿动力电池热管理回路内冷却液流动方向从动力电池105的流入端,以检测动力电池热管理回路内的冷却液进入动力电池105之前的温 度,并用于计算电加热装置601和空调压缩机总成602的输出功率。
可选地,动力电池热管理回路中,动力电池105是被冷却总成。
可选地,在动力电池热管理回路中,第二水泵202被设置为驱动动力电池热管理回路内的冷却液流动,并与第二散热器402、第三散热器403和动力电池105交换热量。第二三通阀303的作用是引导动力电池热管理回路中的冷却液流经或不流经第三散热器403。第二散热器402的作用是将动力电池热管理回路中的冷却液与空调制冷回路内的冷凝机交换热量。第三散热器403的作用是电机热管理回路内的冷却液与暖风回路和动力电池热管理回路内的冷却液交换热量。
可选地,本实施例中,暖风回路还包括第三温度传感器703,第三温度传感器703设于沿暖风回路的流动方向的电加热装置601的流入端,以检测暖风回路内的冷却液进入电加热装置601之前的温度,用于计算电加热装置601的输出功率和第二风扇502的工作转速。
可选地,在暖风回路中,第三水泵203的作用是驱动暖风回路内的冷却液流动,与第三散热器403和第四散热器404交换热量。第四散热器404的作用是暖风回路内的冷却液与乘员舱106交换热量,第二风扇502的作用是增加暖风回路内冷却液与乘员舱106的换热量。电加热装置601的作用是将动力电池105的电能转化为热能加热暖风回路内的冷却液。
可选地,在暖风回路中,乘员舱106是被加热总成。
可选地,本实施例中,空调制冷回路包括空调压缩机总成602、第二散热器402、第五散热器405、第二风扇502和乘员舱106。
在空调制冷回路中,空调压缩机总成602的作用是压缩并冷却空调制冷回路内的冷凝剂,并驱动冷凝剂流动,与第二散热器402、第五散热器405交换热量。第二散热器402的作用是动力电池热管理回路内的冷却液与空调制冷回路内的冷凝机交换热量。第五散热器405的作用是空调制冷回路内的冷凝剂与乘员舱106交换热量。第二风扇502的作用是增加空调制冷回路内冷凝剂与乘员舱106的换热量。
可选地,在空调制冷回路中,乘员舱106是被冷却总成。
本实施例中,汽车热管理系统包括电机热管理回路、动力电池热管理回路和乘员舱热管理回路,相应地,汽车热管理系统包括电机热管理功能、动力电池热管理功能和乘员舱热管理功能。
可选地,本实施例中,电机热管理功能包括动力电机冷却模式。
动力电池热管理功能包括动力电池空调冷却模式、动力电池自循环模式、动力电池加热模式、动力电机余热加热动力电池模式和动力电池风扇冷却模式。可选地,在动力电池热管理功能中,动力电池自循环模式优先级最高,动力电池空调冷却模式次之,其他模式的优先级相同,并且最低。
乘员舱热管理功能包括空调制冷模式、暖风采暖模式、动力电机余热采暖模式和动力电池余热采暖模式。可选地,在乘员舱热管理功能中,多个模式的优先级相同,且可以同时开启。
可选地,电机热管理功能、动力电池热管理功能和乘员舱热管理功能的优先级相同,多个功能可以同时独立开启。
可选地,本实施例中,第一三通阀305具有两种状态:
状态一:第一端口a和第三端口c连通且第二端口b关闭;
状态二:第一端口a和第二端口b连通且第三端口c关闭。
第二三通阀303具有两种状态:
状态一:第七端口g和第八端口h连通且第九端口i关闭;
状态二:第七端口g和第九端口i连通且第八端口h关闭。
第三三通阀304具有两种状态:
状态一:第四端口d和第六端口f连通且第五端口e关闭;
状态二:第四端口d和第五端口e连通且第六端口f关闭。
可选地,本实施例中,动力电池空调冷却模式的开启条件为:环境温度高于10℃且动力电池105的最高温度高于40℃;动力电池空调冷却模式的关闭条件为:环境温度低于8℃且动力电池105的最高温度低于36℃。
动力电池空调冷却模式的控制策略为:
第二三通阀303的第七端口g和第九端口i连通且第八端口h关闭,第二水泵202开启,空调压缩机总成602开启;该动力电池空调冷却模式的控制策略对其余部件没有要求。
可选地,本实施例中,动力电池自循环模式的开启条件为:动力电池105的单体之间的温差高于10℃且动力电池最高温度低于48℃;动力电池自循环模式的退出条件为:动力电池105的单体之间温差低于8℃,或者动力电池105的最高温度高于50℃。
动力电池自循环模式的控制策略为:
第二三通阀303的第七端口g和第九端口i连通且第八端口h关闭,第二水 泵202开启。该动力电池自循环模式的控制策略对其余部件没有要求。
可选地,本实施例中,动力电池加热模式的开启条件为:整车处于充电加热模式,且动力电池105的最低温度低于0℃;动力电池加热模式的退出条件为:整车退出充电加热模式,或者动力电池105的最低温度高于2℃。
动力电池加热模式的控制策略为:
第三三通阀304的第四端口d和第六端口f连通且第五端口e关闭,第二三通阀303的第七端口g和第八端口h连通且第九端口i关闭,第二水泵202开启,第三水泵203开启,电加热装置601开启,该动力电池加热模式的控制策略对其余部件没有要求。
可选地,本实施例中,动力电机余热加热动力电池模式的开启条件为:动力电池105的最低温度低于10℃,且电机热管理回路内冷却液的温度高于动力电池105的最高温度。动力电机余热加热动力电池模式的退出条件为:动力电池105的最低温度高于15℃,或者电机热管理回路内冷却液的温度低于动力电池105的最高温度。
动力电机余热加热动力电池模式的控制策略为:第三三通阀304的第四端口d和第五端口e连通且第六端口f关闭,第二三通阀303的第七端口g和第九端口i连通且第八端口h关闭,第一水泵201开启,第二水泵202开启,空调压缩机总成602关闭,该动力电机余热加热动力电池模式的控制策略对其余部件没有要求。
动力电池风扇冷却模式的开启条件为:动力电池105的最高温度高于30℃;或者:环境温度低于8℃且动力电池105的最高温度高于40℃。动力电池风扇冷却模式的退出条件为:动力电池105的最高温度低于25℃;或者:环境温度高于10℃,或者动力电池105的最高温度低于36℃。
动力电池风扇冷却模式的控制策略为:第三三通阀304的第四端口d和第五端口e连通且第六端口f关闭,第一三通阀305的第一端口a和第三端口c连通且第二端口b关闭,第二三通阀303的第七端口g和第九端口i连通且第八端口h关闭,第一水泵201开启,第二水泵202开启,第一风扇501开启,该动力电池风扇冷却模式的控制策略对其余部件没有要求。
可选地,本实施例中,动力电机冷却模式的开启条件为:充电机101的温度高于40℃,或者直流变压器102的温度高于40℃,或者动力电池逆变器103的温度高于40℃,或者动力电机本体104的温度高于40℃。动力电机冷却模式的退出条件为:充电机101的温度低于36℃,且直流变压器102的温度低于36℃,且动力电池逆变器103的温度低于36℃,且动力电机本体104的温度低于36℃。
动力电机冷却模式的控制策略为:第一三通阀305的第一端口a和第三端口c连通且第二端口b关闭,第一水泵201开启,第一风扇501开启,该动力电机冷却模式的控制策略对其余部件没有要求。
可选地,本实施例中,空调冷却模式的开启条件为:驾驶员打开空调开关;空调冷却模式的关闭条件为:驾驶员关闭空调开关。
空调冷却模式的控制策略为:空调压缩机总成602开启,第二风扇502开启,该空调冷却模式的控制策略对其余部件没有要求。
可选地,本实施例中,暖风采暖模式的开启条件为:驾驶员打开暖风开关。暖风采暖模式的关闭条件为:驾驶员关闭空调开关。
暖风采暖模式的控制策略为:第三水泵203开启,电加热装置601开启,第二风扇502开启,该暖风采暖模式的控制策略对其余部件没有要求。
可选地,本实施例中,动力电机余热采暖模式的开启条件为:驾驶员打开暖风开关且电机热管理回路内的冷却液的温度高于暖风设定温度。动力电机余热采暖模式的关闭条件为:驾驶员关闭暖风开关,或者电机热管理回路内的冷却液的温度低于暖风设定温度。
动力电机余热采暖模式的控制策略为:第三三通阀304的第四端口d和第五端口e连通且第六端口f关闭,第一水泵201开启,第三水泵203开启,第二风扇502开启,该动力电机余热采暖模式的控制策略对其余部件没有要求。
可选地,本实施例中,动力电池余热采暖模式的开启条件为:驾驶员打开暖风开关,且动力电池105的温度高于暖风设定温度。动力电池余热采暖模式的关闭条件为:驾驶员关闭暖风开关,或者动力电池105的温度低于暖风设定温度。
动力电池余热采暖模式的控制策略为:第三三通阀304的第四端口d和第六端口f连通且第五端口e关闭,第二三通阀303的第七端口g和第九端口i连通且第八端口h关闭,第二水泵202开启,第三水泵203开启,第二风扇502开启,该动力电池余热采暖模式的控制策略对其余部件没有要求。
实施例二
在燃料电池汽车中,由于燃料电池系统只能发电,不能回收电能,并且燃料电池系统的功率响应慢,无法单独满足电动汽车驱动的需求,因此燃料电池汽车与动力电池进行配合,才能满足电动汽车驱动性能的要求。因此,燃料电 池汽车的动力总成是在纯电动汽车的基础上,再增加一套燃料电池系统,这导致燃料电池汽车的动力总成更加复杂,热管理系统也会更加复杂。
燃料电池系统的工作效率受温度影响较大,燃料电池系统启动后,在到达设定工作温度之前,工作效率很低。特别是在一些极端工况下,需要燃料电池反复启停,这会降低氢气的能量利用率,增加氢气的损耗,降低续驶里程。
燃料电池汽车在工作时,动力电机系统与动力电池系统在同步工作,会产生热量。由于相关的热管理系统的多个总成的热管理回路各自独立,能量利用不合理,造成浪费,缩短续驶里程。
本实施例提供一种汽车热管理系统,其在实施例一的汽车热管理系统的基础上,增加了燃料电池热管理回路,使得汽车热管理系统能够适用于燃料电池汽车。
可选地,本实施例中,汽车热管理系统还包括燃料电池热管理回路,燃料电池热管理回路包括依次连接的第四水泵204、燃料电池107、第四三通阀306、第三散热器403、蜡式节温器307和第六散热器406,蜡式节温器307被设置为根据燃料电池热管理回路内冷却液的温度控制燃料电池热管理回路的冷却液流经或不流经第六散热器406,第四三通阀306被设置为控制燃料电池热管理回路的冷却液流经或不流经第三散热器403。
可选地,本实施例中,第四三通阀306包括第十端口j、第十一端口k和第十二端口l,第十端口j和第十二端口l连通且第十一端口k关闭时,燃料电池热管理回路的冷却液能够流经第三散热器403;第十端口j和第十一端口k连通且第十二端口l关闭时,燃料电池热管理回路的冷却液不流经第三散热器403。
可选地,本实施例中,第六散热器406与第一散热器401按照设定距离设置,以便第一风扇501能够加速第六散热器406的散热。第一风扇501的作用是增加燃料电池热管理回路内的冷却液与外界空气的换热量。
本实施例中,燃料电池热管理回路还包括第四温度传感器704,第四温度传感器704沿液流方向设于燃料电池107的流出端,第四温度传感器704的作用为检测燃料电池热管理回路内的冷却液流出被冷却总成之后的温度,用于判断选定工作模式进入条件是否满足,并作为第一风扇501的工作转速的计算条件。可选地,本实施例中,燃料电池107是被冷却总成。
在一实施例中,燃料电池热管理回路中,第四水泵204的作用是驱动燃料电池热管理回路内的冷却液流动,与第六散热器406、燃料电池107交换热量。
第四三通阀306的作用是连通燃料电池热管理回路与第三散热器403。
第三散热器403的作用是燃料电池热管理回路内的冷却液与暖风回路、电 机热管理回路、动力电池热管理回路内的冷却液交换热量。
本实施例中,汽车热管理系统包括燃料电池热管理回路、电机热管理回路、动力电池热管理回路和乘员舱热管理回路,相应地,汽车热管理系统包括燃料电池热管理功能、电机热管理功能、动力电池热管理功能和乘员舱热管理功能。
可选地,本实施例中,电机热管理功能和乘员舱热管理功能与实施例一中的相同,在此不再赘述。
可选地,本实施例中,燃料电池热管理功能、电机热管理功能、动力电池热管理功能和乘员舱热管理功能的优先级相同,多个功能可以同时独立开启。
燃料电池热管理功能包括燃料电池冷启动模式、燃料电池预热模式和燃料电池冷却模式。可选地,燃料电池热管理功能的多个模式工作条件相互独立,不会同时进行。
动力电池热管理功能包括动力电池空调冷却模式、动力电池自循环模式、动力电池加热模式、动力电机余热加热动力电池模式、动力电池风扇冷却模式和燃料电池余热加热动力电池模式。可选地,动力电池空调冷却模式、动力电池自循环模式、动力电池加热模式、动力电机余热加热动力电池模式、动力电池风扇冷却模式与实施例一中的相同,在此不再进行赘述。
可选地,本实施例中,燃料电池冷启动模式的开启条件为:燃料电池107的温度低于0℃;燃料电池冷启动模式的关闭条件为:燃料电池107的温度高于40℃。
燃料电池冷启动模式的控制策略为:
第三三通阀304的第四端口d和第六端口f连通且第五端口e关闭,第四三通阀306的第十端口j和第十二端口l连通且第十一端口k关闭,第三水泵203开启,第四水泵204开启,电加热装置601开启,该燃料电池冷启动模式的控制策略对其余部件没有要求。
可选地,本实施例中,燃料电池预热模式的开启条件为:燃料电池107的温度低于30℃,且电机热管理回路内冷却液的温度高于燃料电池热管理回路内的冷却液的温度。燃料电池预热模式的关闭条件为:燃料电池107的温度高于40℃,或者电机热管理回路内冷却液的温度低于燃料电池热管理回路内的冷却液的温度。
燃料电池预热模式的控制策略为:第三三通阀304的第四端口d和第五端口e连通且第六端口f关闭,第四三通阀306的第十端口j和第十二端口l连通且第十一端口k关闭,第三水泵203开启,第四水泵204开启,电加热装置601开启,该燃料电池预热模式的控制策略对其余部件没有要求。
可选地,本实施例中,燃料电池冷却模式的开启条件为:燃料电池107的温度高于80℃。燃料电池冷却模式的退出条件为:燃料电池107的温度低于75℃。
燃料电池冷却模式的控制策略为:
第四水泵204开启,第一风扇501开启,该燃料电池冷却模式的控制策略对其余部件没有要求。
可选地,本实施例中,燃料电池余热加热动力电池模式的开启条件为:动力电池105的最低温度低于10℃,且燃料电池热管理回路冷却液的温度高于45℃。燃料电池余热加热动力电池模式的退出条件为:动力电池105的最低温度高于15℃,或者燃料电池热管理回路冷却液的温度低于40℃。
燃料电池余热加热动力电池模式的控制策略为:
第三三通阀304的第四端口d和第六端口f连通且第五端口e关闭,第二三通阀303的第七端口g和第八端口h连通且第九端口i关闭,第四三通阀306的第十端口j和第十二端口l连通且第十一端口k关闭,第二水泵202开启,第四水泵204开启,该燃料电池余热加热动力电池模式的控制策略对其余部件没有要求。
本实施例通过设置燃料电池热管理回路,能够利用电机热管理回路和动力电池热管理回路的余热对燃料电池热管理回路进行预热,缩短燃料电池系统启动后到达设定工作温度的时间,从而提高燃料电池系统的工作效率,降低氢耗,增加续驶里程。
在低温环境下,当驾驶员有暖风需求时,可以利用燃料电池热管理回路或电机热管理回路的余热为乘员舱106提供暖风,减少对动力电池能量的需求,提高续驶里程。
在低温环境中,可以利用燃料电池热管理回路或电机热管理回路的余热加热动力电池105,快速提高动力电池105的性能,从而提高整车性能。

Claims (10)

  1. 一种汽车热管理系统,包括:
    电机热管理回路,所述电机热管理回路包括依次连接的第一水泵(201)、动力电机本体(104)、第三三通阀(304)、第三散热器(403)、第一三通阀(305)和第一散热器(401),所述第一水泵(201)被设置为驱动所述电机热管理回路内的冷却液流动,所述第一三通阀(305)和所述第三三通阀(304)被设置为控制所述电机热管理回路内的冷却液流经或不流经所述第一散热器(401),且控制所述电机热管理回路内的冷却液流经或不流经所述第三散热器(403);
    动力电池热管理回路,所述动力电池热管理回路包括依次连接的动力电池(105)、第二水泵(202)、第二三通阀(303)、第二散热器(402),所述第二三通阀(303)被设置为控制所述第二水泵(202)与所述第三散热器(403)连通或者与所述第二散热器(402)连通,所述第二水泵(202)被设置为驱动所述动力电池热管理回路内的冷却液流动;
    乘员舱热管理回路,所述乘员舱热管理回路包括暖风回路和空调制冷回路;所述暖风回路包括依次连接的第三水泵(203)、所述第三散热器(403)、电加热装置(601)和第四散热器(404),所述第四散热器(404)被设置为与乘员舱(106)交换热量,所述第三水泵(203)被设置为驱动所述暖风回路内的冷却液流动;所述空调制冷回路包括空调压缩机总成(602)和第五散热器(405),所述空调压缩机总成(602)被设置为与所述第五散热器(405)和所述第二散热器(402)交换热量,所述第五散热器(405)被设置为与所述乘员舱(106)交换热量以对所述乘员舱(106)进行冷却。
  2. 根据权利要求1所述的汽车热管理系统,其中,所述汽车热管理系统还包括第二风扇(502),所述第二风扇(502)与所述第五散热器(405)和所述第四散热器(404)均连接。
  3. 根据权利要求1所述的汽车热管理系统,其中,所述第一三通阀(305)包括第一端口(a)、第二端口(b)和第三端口(c),所述第三三通阀(304)包括第四端口(d)、第五端口(e)和第六端口(f),所述第一端口(a)和所述第三端口(c)连通且所述第二端口(b)关闭、所述第四端口(d)和所述第六端口(f)连通且所述第五端口(e)关闭时,所述电机热管理回路内的冷却液能够流经所述第一散热器(401)且不流经所述第三散热器(403)。
  4. 根据权利要求3所述的汽车热管理系统,其中,所述第四端口(d)和所述第五端口(e)连通且所述第六端口(f)关闭、所述第一端口(a)和所述第三端口(c)连通且所述第二端口(b)关闭时,所述电机热管理回路内的冷却 液能够同时流经所述第三散热器(403)和所述第一散热器(401)。
  5. 根据权利要求3所述的汽车热管理系统,其中,所述第四端口(d)和所述第五端口(e)连通且所述第六端口(f)关闭、所述第一端口(a)和所述第二端口(b)连通且所述第三端口(c)关闭时,所述电机热管理回路内的冷却液能够流经所述第三散热器(403)且不流经所述第一散热器(401)。
  6. 根据权利要求1所述的汽车热管理系统,其中,所述第二三通阀(303)包括第七端口(g)、第八端口(h)和第九端口(i),所述第七端口(g)和所述第八端口(h)连通且所述第九端口(i)关闭时,所述第二水泵(202)与所述第三散热器(403)连通;所述第七端口(g)和所述第九端口(i)连通且所述第八端口(h)关闭时,所述第二水泵(202)与所述第二散热器(402)连通。
  7. 根据权利要求1-6任一项所述的汽车热管理系统,还包括燃料电池热管理回路,所述燃料电池热管理回路包括依次连接的第四水泵(204)、燃料电池(107)、第四三通阀(306)、所述第三散热器(403)、蜡式节温器(307)和第六散热器(406),所述蜡式节温器(307)被设置为根据所述燃料电池热管理回路内冷却液的温度控制所述燃料电池热管理回路的冷却液流经或不流经所述第六散热器(406),所述第四三通阀(306)被设置为控制所述燃料电池热管理回路的冷却液流经或不流经所述第三散热器(403)。
  8. 根据权利要求7所述的汽车热管理系统,其中,所述第四三通阀(306)包括第十端口(j)、第十一端口(k)和第十二端口(1),所述第十端口(j)和所述第十二端口(1)连通且所述第十一端口(k)关闭时,所述燃料电池热管理回路的冷却液能够流经所述第三散热器(403);所述第十端口(j)和所述第十一端口(k)连通且所述第十二端口(1)关闭时,所述燃料电池热管理回路的冷却液不流经所述第三散热器(403)。
  9. 根据权利要求1所述的汽车热管理系统,其中,所述电机热管理回路还包括第一温度传感器(701),所述第一温度传感器(701)设于流经所述动力电机本体(104)的冷却液的出口端。
  10. 根据权利要求1所述的汽车热管理系统,其中,所述电机热管理回路还包括第一风扇(501),所述第一风扇(501)设于所述第一散热器(401)上。
PCT/CN2022/108253 2021-07-28 2022-07-27 一种汽车热管理系统 WO2023005974A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110856846.5A CN113427968A (zh) 2021-07-28 2021-07-28 一种汽车热管理系统
CN202110856846.5 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023005974A1 true WO2023005974A1 (zh) 2023-02-02

Family

ID=77762296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108253 WO2023005974A1 (zh) 2021-07-28 2022-07-27 一种汽车热管理系统

Country Status (2)

Country Link
CN (1) CN113427968A (zh)
WO (1) WO2023005974A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116278612A (zh) * 2023-03-30 2023-06-23 安徽理工大学 一种带有除霜功能的纯电动汽车热泵型一体化热管理系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113427968A (zh) * 2021-07-28 2021-09-24 中国第一汽车股份有限公司 一种汽车热管理系统
CN113665318A (zh) * 2021-08-31 2021-11-19 中国第一汽车股份有限公司 插电式混动车动力电池的控制系统及方法
CN113665437A (zh) * 2021-08-31 2021-11-19 中国第一汽车股份有限公司 纯电动车动力电池的控制系统及方法
CN113829838B (zh) * 2021-10-14 2023-04-25 东风汽车集团股份有限公司 一种燃料电池车辆热管理系统及方法
CN114347752A (zh) * 2022-01-14 2022-04-15 中国第一汽车股份有限公司 一种纯电动汽车热管理系统及其控制方法
CN114475156B (zh) * 2022-02-17 2023-11-03 岚图汽车科技有限公司 一种汽车热管理系统及汽车
CN114843550A (zh) * 2022-05-25 2022-08-02 一汽解放汽车有限公司 一种热管理集成系统和车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062553A1 (zh) * 2017-09-29 2019-04-04 爱驰汽车有限公司 汽车热管理系统及具有该系统的汽车
CN110380084A (zh) * 2019-08-26 2019-10-25 北京航天发射技术研究所 一种汽车氢燃料电池的温控系统及其控制方法
WO2020108542A1 (zh) * 2018-11-29 2020-06-04 比亚迪股份有限公司 车辆热管理系统及其控制方法、车辆
CN111634212A (zh) * 2020-05-14 2020-09-08 东风汽车集团有限公司 一种燃料电池汽车热管理系统、方法、存储介质及汽车
CN112389276A (zh) * 2020-11-25 2021-02-23 中国第一汽车股份有限公司 一种纯电动汽车热管理系统
CN112389162A (zh) * 2020-11-25 2021-02-23 中国第一汽车股份有限公司 一种新能源汽车整车热管理系统
CN113071286A (zh) * 2021-04-21 2021-07-06 吉林大学 基于热泵空调的燃料电池汽车集成热管理系统及控制方法
CN113427968A (zh) * 2021-07-28 2021-09-24 中国第一汽车股份有限公司 一种汽车热管理系统
CN113665318A (zh) * 2021-08-31 2021-11-19 中国第一汽车股份有限公司 插电式混动车动力电池的控制系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037182A (ja) * 2012-08-13 2014-02-27 Calsonic Kansei Corp 電動車両用熱管理システム
CN102941791B (zh) * 2012-11-08 2014-12-03 上海汽车集团股份有限公司 电动车综合热循环系统
CN106183789B (zh) * 2016-07-06 2018-11-13 中国第一汽车股份有限公司 一种电动车整车热管理系统及其控制方法
CN106585414B (zh) * 2016-12-27 2018-01-19 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车冷却系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062553A1 (zh) * 2017-09-29 2019-04-04 爱驰汽车有限公司 汽车热管理系统及具有该系统的汽车
WO2020108542A1 (zh) * 2018-11-29 2020-06-04 比亚迪股份有限公司 车辆热管理系统及其控制方法、车辆
CN110380084A (zh) * 2019-08-26 2019-10-25 北京航天发射技术研究所 一种汽车氢燃料电池的温控系统及其控制方法
CN111634212A (zh) * 2020-05-14 2020-09-08 东风汽车集团有限公司 一种燃料电池汽车热管理系统、方法、存储介质及汽车
CN112389276A (zh) * 2020-11-25 2021-02-23 中国第一汽车股份有限公司 一种纯电动汽车热管理系统
CN112389162A (zh) * 2020-11-25 2021-02-23 中国第一汽车股份有限公司 一种新能源汽车整车热管理系统
CN113071286A (zh) * 2021-04-21 2021-07-06 吉林大学 基于热泵空调的燃料电池汽车集成热管理系统及控制方法
CN113427968A (zh) * 2021-07-28 2021-09-24 中国第一汽车股份有限公司 一种汽车热管理系统
CN113665318A (zh) * 2021-08-31 2021-11-19 中国第一汽车股份有限公司 插电式混动车动力电池的控制系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116278612A (zh) * 2023-03-30 2023-06-23 安徽理工大学 一种带有除霜功能的纯电动汽车热泵型一体化热管理系统

Also Published As

Publication number Publication date
CN113427968A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2023005974A1 (zh) 一种汽车热管理系统
WO2022237261A1 (zh) 燃料电池汽车热管理系统
CN112389162B (zh) 一种新能源汽车整车热管理系统
CN109572486B (zh) 一种混合动力汽车动力电池热管理系统及控制方法
WO2022237523A1 (zh) 一种燃料电池汽车整车热管理系统
WO2012055273A1 (zh) 电动汽车及其热管理系统
CN108725134B (zh) 一种新能源汽车的热管理系统及其调节方法和新能源汽车
WO2023134413A1 (zh) 纯电动汽车热管理系统及其控制方法
CN211995079U (zh) 混合动力车辆热管理系统及车辆
CN210821903U (zh) 一种燃料电池车余热利用采暖系统
CN112389276B (zh) 一种纯电动汽车热管理系统
JP2000073763A (ja) ハイブリッド車用冷却装置
CN110978945A (zh) 一种增程式电车热管系统及其方法
CN112238733A (zh) 一种电动汽车热调控系统
CN106458010A (zh) 温度控制系统及其适用的电动车辆
CN112103532A (zh) 一种集成式氢能汽车热管理控制方法
CN113954601A (zh) 一种新能源电动汽车的热管理系统
CN113071288A (zh) 一种太阳能车载辅助空调系统
CN114161997B (zh) 双电堆大功率氢燃料电池汽车热管理系统
CN109484130A (zh) 一种电动汽车热管理系统
CN110834515A (zh) 一种氢能汽车采暖系统
CN110385963A (zh) 一种电动汽车空调系统及其控制方法
CN211493635U (zh) 驱动电机动力总成冷却系统、热管理系统及增程式车辆
CN113733858A (zh) 一种氢燃料电池和动力电池混合动力汽车热管理系统
CN111823812A (zh) 用于车辆的加热系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE