WO2019062553A1 - 汽车热管理系统及具有该系统的汽车 - Google Patents

汽车热管理系统及具有该系统的汽车 Download PDF

Info

Publication number
WO2019062553A1
WO2019062553A1 PCT/CN2018/105536 CN2018105536W WO2019062553A1 WO 2019062553 A1 WO2019062553 A1 WO 2019062553A1 CN 2018105536 W CN2018105536 W CN 2018105536W WO 2019062553 A1 WO2019062553 A1 WO 2019062553A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
circuit
water
heat
heat exchanger
Prior art date
Application number
PCT/CN2018/105536
Other languages
English (en)
French (fr)
Inventor
谷峰
Original Assignee
爱驰汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710911875.0A external-priority patent/CN107521307B/zh
Application filed by 爱驰汽车有限公司 filed Critical 爱驰汽车有限公司
Priority to EP18863616.1A priority Critical patent/EP3689647B1/en
Publication of WO2019062553A1 publication Critical patent/WO2019062553A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00342Heat exchangers for air-conditioning devices of the liquid-liquid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure belongs to the field of pure electric vehicle thermal management technology, and relates to a management system, and more particularly to an automobile thermal management system and an automobile having the same.
  • the pure electric vehicle thermal management system is divided into passenger compartment cooling system / passenger compartment heating system, battery heating system / battery cooling system, motor / MCU / OBC cooling system.
  • Common solutions in this field are: air conditioning for passenger compartment cooling system, PTC heating for passenger compartment heating system, PTC water heating for battery heating system, air conditioning refrigeration system for battery cooling system, and direct radiator for motor/MCU/OBC cooling system
  • the air is cold.
  • This solution will require 2 PTCs and 2 heat exchangers, which requires a large space, a large cost increase and is not conducive to increasing the cruising range of the vehicle.
  • this scheme makes full use of the heating of the motor body to heat the battery. In order to effectively increase the cruising range.
  • an object of the present disclosure is to provide an automobile thermal management system and a vehicle having the same, which are used to solve the problem that the existing automobile thermal management system requires more heat exchangers to realize vehicle thermal management. This leads to the occupation of a large interior space, a large increase in cost and a problem that is not conducive to increasing the cruising range of the vehicle.
  • an aspect of the present disclosure provides an automotive thermal management system including a passenger cabin refrigeration circuit, a passenger compartment heating circuit, and a battery circuit; the passenger cabin refrigeration circuit includes a motor compressor and a condenser that are sequentially connected.
  • Heating ventilation and air conditioning assembly is connected with the electric compressor;
  • the passenger cabin heating circuit comprises a heater connected in sequence, a first water pump, a first water valve and a shared with the passenger compartment refrigeration circuit Heating ventilation and air conditioning assembly, the heating ventilation and air conditioning assembly is connected with the heater, the heater is used to provide a heat source;
  • the battery circuit comprises a heat exchanger connected in sequence, a second water pump, a power battery and a second water valve, The second water valve is in communication with the heat exchanger;
  • the automotive thermal management system further comprises: a first battery heating circuit for utilizing a heat source provided by the heater to exchange heat between the water and the water through the heat exchanger to heat the power in the battery circuit a battery; a second battery heating circuit for utilizing a heat source generated by a drive motor in the automotive thermal management system to perform water through the heat exchanger Heat exchange with water to heat the power battery in the battery circuit; a first battery cooling circuit for cooling the power battery in the battery circuit when the water temperature at the inlet of the power battery is
  • the first battery heating circuit includes a fourth water valve that is sequentially connected, a heater shared with the passenger compartment heating circuit, a first water pump, a first water valve, and a heat exchanger shared with the battery circuit.
  • the heat exchanger is in communication with the fourth water valve; wherein, according to the requirement of heating the passenger compartment by the first battery heating circuit, the first water valve directs the water flow to the heating ventilation and air conditioning assembly to generate the heater
  • the heat source exchanges heat with the warm air core in the heating ventilation and air conditioning assembly; according to the requirement that the first battery heating circuit is used for heating the power battery, the fourth water valve directs the water flow to the heater shared with the passenger compartment heating circuit.
  • the first water valve directs the water flow to the heat exchanger, and heats the power battery through a heat exchanger shared with the battery circuit.
  • the vehicle thermal management system further includes a motor heat dissipation circuit; the motor heat dissipation circuit is used to cool the drive motor in the vehicle thermal management system, and the vehicle charger is connected to the microcontroller; the motor heat dissipation circuit includes the sequentially connected Microcontroller, drive motor, third water pump, third water valve, first expansion tank, motor radiator, water temperature sensor and vehicle charger; the temperature sensor senses that the temperature of the heat generated by the drive motor exceeds the preset motor temperature Threshold, the microcontroller controls the third water valve to direct the water flow to the first expansion tank, and the heat generated by the drive motor is taken away by the first expansion tank and the motor radiator.
  • the motor heat dissipation circuit includes the sequentially connected Microcontroller, drive motor, third water pump, third water valve, first expansion tank, motor radiator, water temperature sensor and vehicle charger; the temperature sensor senses that the temperature of the heat generated by the drive motor exceeds the preset motor temperature Threshold, the microcontroller controls the third water valve to direct the water flow to the
  • the second battery heating circuit includes a heat exchanger shared with the battery circuit, a fourth water valve, a vehicle charger, a microcontroller, and a driving motor shared with the heat dissipation circuit of the motor.
  • the third water pump and the third water valve; the third water valve is in communication with the heat exchanger; according to the requirement of using the second battery heating circuit as the power battery for heating, the third water valve directs the water flow to the heat exchanger to generate the motor Heat exchanges heat with water through a heat exchanger shared with the battery circuit to heat the power battery in the battery circuit.
  • the first battery cooling circuit includes a second water pump, a power battery, a second water valve and a second expansion tank, a battery radiator, a battery radiator, and a second battery that are sequentially connected to the battery circuit.
  • the water pump is connected; when the temperature sensor provided on the power battery senses that the water temperature at the inlet is less than or equal to the preset temperature threshold, the controller of the automobile thermal management system controls the second water valve to direct the water flow to the second expansion tank, and the power is transmitted through the power.
  • the battery's cooling plate, the second water pump, and the battery heat sink take away the heat dissipated by the power battery.
  • the second battery cooling circuit is a circuit formed by the communication between the passenger compartment refrigeration circuit and the battery circuit; when the temperature sensor disposed on the power battery senses that the water temperature at the inlet thereof is greater than a preset temperature threshold, The controller of the vehicle thermal management system controls the second water valve action to direct the water flow to the heat exchanger that communicates with the passenger compartment refrigeration circuit, and the controller opens the electric compressor of the passenger compartment refrigeration circuit, and uses the condenser provided by the condenser to change The heat exchanger exchanges heat between the condensing agent and the water to remove the heat generated by the power battery.
  • the heat exchanger employs an integrated three heat exchanger.
  • the heater employs a ceramic electric heater.
  • Another aspect of the present disclosure provides an automobile, including an automotive thermal management system.
  • the automobile thermal management system of the present disclosure and the automobile having the same have the following advantageous effects:
  • the motor/MCU/OBC cooling system of the present disclosure is a single closed system with simple control.
  • the battery cooling and battery heating use integrated three heat exchangers, compared with the current two more plate heat exchangers have greater cost advantages, saving a lot of installation space and related pipelines.
  • the battery cooling circuit of the present disclosure adopts two intelligent modes of direct cooling of the battery radiator and forced cooling of the air conditioning refrigeration to save battery energy and improve cruising range.
  • the limited heat energy of the motor running process of the present disclosure is used to heat the battery, which can save battery power and increase cruising range.
  • FIG. 1 is a schematic diagram showing the principle structure of an automotive thermal management system according to an embodiment of the present disclosure.
  • the embodiment provides an automobile thermal management system, including a passenger cabin refrigeration circuit, a passenger compartment heating circuit and a battery circuit;
  • the passenger cabin refrigeration circuit includes a motor compressor, a condenser, and a heating ventilation and air conditioning assembly, which are sequentially connected, for The heat ventilation and air conditioning assembly is in communication with the electric compressor;
  • the passenger compartment heating circuit includes a heater that is sequentially connected, a first water pump, a first water valve, and a heating ventilation and air conditioning assembly shared with the passenger compartment refrigeration circuit.
  • the heat ventilation and the air conditioning assembly are in communication with the heater, the heater is configured to provide a heat source;
  • the battery circuit comprises a heat exchanger sequentially connected, a second water pump, a power battery and a second water valve, and the second water valve is connected to the heat exchanger;
  • the automotive thermal management system also includes:
  • a first battery heating circuit for utilizing a heat source provided by the heater to exchange heat between the water and the water through the heat exchanger to heat the power battery in the battery circuit;
  • a second battery heating circuit for utilizing a heat source generated by the driving motor to exchange heat between the water and the water through the heat exchanger to heat the power battery in the battery circuit;
  • a first battery cooling circuit for cooling a power battery in the battery circuit when sensing that the temperature on the power battery is less than or equal to a preset temperature threshold
  • a second battery cooling circuit for utilizing a condensing agent provided by a condenser in the passenger compartment refrigeration circuit to pass through a heat exchanger connected to the passenger compartment refrigeration circuit when sensing that the temperature on the power battery is less than or equal to a preset temperature threshold
  • the heat exchange between the condensing agent and the water is performed to cool the power battery in the battery circuit.
  • the vehicle thermal management system 1 includes a passenger compartment refrigeration circuit 11, a passenger compartment heating circuit 12, a battery circuit 13, a motor heat dissipation circuit 14, a first battery heating circuit 15, a second battery heating circuit 16, and a first battery.
  • the passenger compartment heating circuit of the automobile thermal management system of the embodiment shares a PTC with the first battery heating circuit, the first battery cooling circuit is directly cooled by the radiator, and the second battery cooling circuit is intelligently controlled by the air conditioning cooling and cooling, and the second battery The heating circuit and the second battery cooling circuit share a heat exchanger.
  • different circuits are indicated by the direction and number of arrows.
  • the passenger compartment refrigeration circuit 11 is represented by a circuit enclosed by an arrow numbered 11.
  • the passenger compartment refrigeration circuit 11 is used to cool the passenger compartment of the vehicle.
  • the passenger compartment refrigeration circuit 11 includes a motor compressor 111, a condenser 112, and a heating and ventilation and air conditioning assembly 113 (HVAC assembly, HVAC assembly including an evaporator, a heating core, a blower fan, and the like).
  • HVAC assembly heating and ventilation and air conditioning assembly 113
  • the air ventilator and the air conditioning assembly 113 are in communication with the electric compressor 111.
  • the electric compressor 111, the condenser 112, and the heating and ventilation and air conditioning assembly 113 are connected through an air conditioning duct to form an air conditioning system for cooling the passenger compartment.
  • the passenger compartment heating circuit 12 is represented by a circuit enclosed by arrows marked with the numeral 12.
  • the passenger compartment heating circuit 12 is used to heat the passenger compartment of the vehicle.
  • the passenger compartment heating circuit 12 includes a heater 121 that is sequentially connected, a first water pump 122, a first water valve 123 (the first water valve 123 is a three-way water valve), and a shared with the passenger compartment refrigeration circuit.
  • the heat venting and air conditioning assembly 113, the heating venting and air conditioning assembly 113 is in communication with the heater 121.
  • the heater 121 is used to provide a heat source.
  • the heater 121 employs a ceramic electric heater PTC.
  • the controller turns on the PTC to raise the heat source, and the controller controls the first water pump 122 to move the heat-absorbing water flow to the heating ventilation and air conditioning assembly 113 to be within The wind carries out heat exchange.
  • the battery circuit 13 is indicated by a circuit surrounded by an arrow labeled with a numeral 13.
  • the battery circuit 13 includes a heat exchanger 131, a second water pump 132, a power battery 133, and a second water valve 134 (the third water valve adopts a three-way water valve), which are sequentially connected, and the second water valve 134. It is in communication with the heat exchanger 131.
  • the power battery 133 can discharge electric energy when a certain temperature value is exceeded, it is necessary to maintain the temperature of the environment in which the power battery 133 is located.
  • the heat exchanger 131 adopts an integrated three heat exchanger, in other words, a heat exchanger having three circuits inside the integrated three heat exchanger, and one of the power batteries 133 forms a closed battery circuit 13, and then one A heat source from the heater 121 in the first battery heating circuit 15 is used to heat the power battery 133, and a refrigerant cooling power battery 133 from the condenser 112 in the passenger compartment refrigeration circuit 11 is connected.
  • the integrated three heat exchangers in this embodiment can save a large installation space and related pipelines.
  • the motor cooling circuit 14 is represented by a circuit surrounded by an arrow labeled with numeral 14.
  • the motor heat dissipation circuit 14 includes a microcontroller 141 (MCU), a drive motor 142, a third water pump 143, and a third water valve 144 (the third water valve adopts a three-way water valve), which are sequentially connected.
  • the expansion tank 145, the motor radiator 146, the water temperature sensor 147, the in-vehicle charger 148 (OBC), and the like, the in-vehicle charger 148 is in communication with the microcontroller 141.
  • the microcontroller 141 controls the third water valve 144 to direct the water flow absorbing the heat generated by the driving motor 142.
  • An expansion tank 145 carries the heat generated by the drive motor 142 through the coolant in the first expansion tank 145 and the motor radiator 146.
  • the motor heat dissipation circuit 14 is a separate closed circuit and the control is simple.
  • the first battery heating circuit 15 is represented by a circuit surrounded by arrows marked with the numeral 15.
  • the first battery heating circuit 15 includes a fourth water valve 151 that is sequentially connected (the fourth water valve uses a three-way water valve), a heater 121 shared with the passenger compartment heating circuit, a first water pump 122, and a first A water valve 123 and a heat exchanger 131 shared with the battery circuit, the heat exchanger 131 is in communication with the fourth water valve 151.
  • the first battery heating circuit 15 is for utilizing a heat source provided by the heater 121 to exchange heat between the water and the water through the heat exchanger 131 to heat the power battery in the battery circuit.
  • the first water valve 123 directs the water flow to the heating ventilation and air conditioning assembly 113 to heat and heat the heat generated by the heater 121.
  • the warm air core in the air conditioning assembly 113 performs wind and heat exchange.
  • the fourth water valve 151 acts to direct the water flow to the heater 121 shared with the passenger compartment heating circuit, and the first water valve 123 directs the water flow to the heat exchanger 131 through The heat exchanger 131 shared with the battery circuit 13 heats the power battery 133.
  • the passenger compartment heating circuit 12 and the first battery heating circuit 15 share a PTC heating, which has a comparative advantage over the current two PTC heating costs. There is basically no need to modify the platformized HVAC host to save development cycles.
  • a second battery heating circuit 16 is shown by a circuit that is represented by an arrow having the numeral 16.
  • the second battery heating circuit 16 includes a heat exchanger 131 shared with the battery circuit 13 in sequence, a fourth water valve 151, a vehicle charger 148 shared with the motor heat dissipation circuit 14, and a microcontroller 141.
  • the driving motor 142, the third water pump 143, and the third water valve 144; the third water valve 144 is in communication with the heat exchanger 131.
  • the second battery heating circuit 16 is configured to exchange heat between the water and the water through the heat exchanger 131 by using a heat source generated by the driving motor 142 to heat the power battery in the battery circuit.
  • the third water valve 144 directs the water flow to the heat exchanger 131 shared with the battery circuit, and heats the heat generated by the driving motor through the heat exchanger for water and The water exchanges heat to heat the power battery 133 in the battery circuit 13.
  • the first battery cooling circuit 17 is represented by a circuit surrounded by arrows representing data 17.
  • the first battery cooling circuit 17 includes a second water pump 132, a power battery 133 and a second water valve 134, a second expansion tank 171, and a battery radiator 172 that are sequentially connected to the battery circuit 13;
  • the 172 is in communication with the second water pump 132.
  • the first battery cooling circuit 17 is for cooling the power battery in the battery circuit when the water temperature at the inlet of the power battery is sensed to be less than or equal to a preset temperature threshold.
  • the controller of the automobile thermal management system controls the second water valve 134 to direct the water flow to the second expansion tank. 171.
  • the heat radiated from the power battery is taken away by the cooling plate of the power battery 133, the second water pump 132, and the battery heat sink 172.
  • a second battery cooling circuit 18 is represented by a circuit surrounded by arrows representing data 18.
  • the second battery cooling circuit 18 adds a battery circuit 13 to the passenger compartment refrigeration circuit 11.
  • the second battery cooling circuit 18 is configured to utilize the condensing agent provided by the condenser in the passenger compartment refrigeration circuit to communicate with the passenger compartment refrigeration circuit and the battery when the water temperature at the inlet of the power battery is sensed to be greater than a preset temperature threshold
  • the heat exchanger shared by the circuit exchanges heat between the condensing agent and the water to cool the power battery in the battery circuit.
  • the controller of the vehicle thermal management system controls the second water valve 134 to direct the water flow to the heat exchanger that communicates with the passenger compartment refrigeration circuit 11. 131.
  • the controller turns on the electric compressor 111 of the passenger compartment refrigeration circuit 11, and uses the condensing agent provided by the condenser 112 to exchange heat between the condensing agent and the water through the heat exchanger 131 to take away the heat dissipated by the power battery.
  • the first battery heating circuit 15, the second battery heating circuit 16 and the second battery cooling circuit 18 share a heat exchanger 131, which effectively utilizes the heat of the driving motor 142 during operation, thereby effectively reducing the cost and Save electricity consumption in the heat pipe system.
  • the embodiment also provides an automobile having the above-described automobile thermal management system.
  • the motor/MCU/OBC cooling system of the present disclosure is a single closed system with simple control.
  • the battery cooling and battery heating use integrated three heat exchangers, compared with the current two more plate heat exchangers have greater cost advantages, saving a lot of installation space and related pipelines.
  • the battery cooling circuit of the present disclosure adopts two intelligent modes of direct cooling of the battery radiator and forced cooling of the air conditioning refrigeration to save battery energy and improve cruising range.
  • the limited heat energy of the motor running process of the present disclosure is used to heat the battery, which can save battery power and increase cruising range. Therefore, the present disclosure effectively overcomes various shortcomings in the prior art and has a high industrial utilization value.

Abstract

一种汽车热管理系统(1)及具有该系统的汽车,汽车热管理系统(1)包括:第一电池加热回路(15),用于利用加热器(121)提供的热源,通过换热器(131)进行水与水换热,以加热动力电池(133);第二电池加热回路(16),用于利用驱动电机(142)所产生的热源,通过换热器(131)进行水与水换热,以加热动力电池(133);第一电池冷却回路(17),用于在感测到动力电池(133)的进口处水温小于等于预设温度阈值时,冷却动力电池(133);第二电池冷却回路(18),用于在感测到动力电池(133)的进口处水温大于预设温度阈值时,利用乘客舱制冷回路(11)中的冷凝器(112)提供的制冷剂,通过与乘客舱制冷回路(11)连通、且与电池回路共用的换热器(131)进行制冷剂与水换热,以冷却动力电池(133)。

Description

汽车热管理系统及具有该系统的汽车
相关申请的交叉参考
本申请要求于2017年9月29日提交中国专利局、申请号为201710911875.0、名称为“汽车热管理系统及具有该系统的汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开属于纯电动汽车热管理技术领域,涉及一种管理系统,特别是涉及一种汽车热管理系统及具有该系统的汽车。
背景技术
纯电动车热管理系统分为乘客舱降温系统/乘客舱采暖系统、电池加热系统/电池冷却系统、电机/MCU/OBC冷却系统。该领域常见的方案是:乘客舱降温系统采用空调制冷,乘客舱采暖系统采用PTC加热,电池加热系统采用PTC水加热,电池冷却系统利用空调制冷系统;电机/MCU/OBC冷却系统采用散热器直接风冷。此方案会需要用到2个PTC以及2个热交换器,需要占用较大的空间,成本增加较大且不利于增加整车续航里程,同时此方案充分利用电机本体发热,用于给电池加热,才能够有效增加续航里程。
因此,如何提供一种汽车热管理系统及具有该系统的汽车,以解决现有汽车热管理系统需要较多热交换器来实现车热管理,导致占用较大车内空间,成本增加较大及不利于增加整车续航里程等缺陷,实已成为本领域技术人员亟待解决的技术问题。
发明内容
鉴于以上所述现有技术的缺点,本公开的目的在于提供一种汽车热管理系统及具有该系统的汽车,用于解决现有汽车热管理系统需要较多热交换器来实现车热管理,导致占用较大车内空间,成本增加较大及不利于增加整车续航里程的问题。
为实现上述目的及其他相关目的,本公开一方面提供一种汽车热管理系 统,包括乘客舱制冷回路、乘客舱加热回路及电池回路;乘客舱制冷回路包括依次连通的电动压缩机、冷凝器及供热通风与空气调节总成,供热通风与空气调节总成与电动压缩机连通;乘客舱加热回路包括依次连通的加热器、第一水泵、第一水阀及与乘客舱制冷回路共用的供热通风与空气调节总成,供热通风与空气调节总成与加热器连通,加热器用于提供热源;电池回路包括依次连通的换热器、第二水泵、动力电池及第二水阀,第二水阀与换热器连通;汽车热管理系统还包括:第一电池加热回路,用于利用加热器提供的热源,通过换热器进行水与水换热,以加热电池回路中的动力电池;第二电池加热回路,用于利用汽车热管理系统内的驱动电机所产生的热源,通过换热器进行水与水换热,以加热电池回路中的动力电池;第一电池冷却回路,用于在感测到动力电池的进口处水温小于或等于预设温度阈值时,冷却电池回路中动力电池;第二电池冷却回路,用于在感测到动力电池的进口处水温大于预设温度阈值时,利用乘客舱制冷回路中的冷凝器提供的冷凝剂,通过与乘客舱制冷回路连通、且与电池回路共用的换热器进行冷凝剂与水换热,以冷却电池回路中动力电池。
于本公开的一实施例中,第一电池加热回路包括依次连通的第四水阀、与乘客舱加热回路共用的加热器、第一水泵、第一水阀及与电池回路共用的换热器,换热器与第四水阀连通;其中,根据采用第一电池加热回路为乘客舱加热的需求,第一水阀将水流引向供热通风与空气调节总成,以将加热器产生的热源与供热通风与空气调节总成中的暖风芯进行风热交换;根据采用第一电池加热回路为动力电池加热的需求,第四水阀将水流导向与乘客舱加热回路共用的加热器,第一水阀将水流导向换热器,通过与电池回路共用的换热器为动力电池加热。
于本公开的一实施例中,汽车热管理系统还包括电机散热回路;电机散热回路用于冷却汽车热管理系统内的驱动电机,车载充电机与微控制器连通;电机散热回路包括依次连通的微控制器、驱动电机、第三水泵、第三水阀、第一膨胀箱、电机散热器、水温传感器及车载充电机;在水温传感器感测到驱动电机所产生热量的温度超过预设电机温度阈值,微控制器控制第三水阀将水流导向第一膨胀箱,通过第一膨胀箱和电机散热器带走驱动电机产生的热量。
于本公开的一实施例中,第二电池加热回路包括依次连通的与电池回路共用的换热器、第四水阀、与所述电机散热回路共用的车载充电机、微控制器、驱动电机、第三水泵、第三水阀;第三水阀与换热器连通;根据采用第二电池加热回路为动力电池加热的需求,第三水阀将水流导向换热器,将驱动电机产生的热量经过与电池回路共用的换热器进行水与水换热,以加热电池回路中的动力电池。
于本公开的一实施例中,第一电池冷却回路包括依次连通的与电池回路共用的第二水泵、动力电池和第二水阀及第二膨胀箱、电池散热器,电池散热器与第二水泵连通;当动力电池上设置的温度传感器感测到其进口处水温小于或等于预设温度阈值时,汽车热管理系统的控制器控制第二水阀动作将水流导向第二膨胀箱,通过动力电池的冷却板、第二水泵及电池散热器带走动力电池散发的热量。
于本公开的一实施例中,第二电池冷却回路为乘客舱制冷回路与电池回路连通而成的回路;当动力电池上设置的温度传感器感测到其进口处水温大于预设温度阈值时,汽车热管理系统的控制器控制第二水阀动作将水流导向与乘客舱制冷回路连通的换热器,同时控制器开启乘客舱制冷回路的电动压缩机,利用冷凝器提供的冷凝剂,通过换热器进行冷凝剂与水换热,以带走动力电池散发的热量。
于本公开的一实施例中,换热器采用集成三换热器。
于本公开的一实施例中,加热器采用陶瓷电加热器。
本公开另一方面提供一种汽车,包括的汽车热管理系统。
如上所述,本公开的汽车热管理系统及具有该系统的汽车,具有以下有益效果:
第一,本公开的电机/MCU/OBC冷却系统为一个单独的封闭系统,控制简单。
第二,乘客舱加热和电池加热共用一个PTC加热,相比于现在较多的2个PTC加热成本上有比较大的优势。对平台化的HVAC主机基本不用做修改,节省开发周期。
第三,电池冷却与电池加热采用集成三换热器,相比于现在较多用2个板式换热器成本上有较大的优势,节省很大的安装空间和相关管路。
第四,本公开电池冷却回路采用电池散热器直接冷却和空调制冷强制冷却两种智能模式,节约电池能量,提高续航里程。
第五,本公开电机运行过程的热量能有限的被用来给电池加热,可节约电池电量增加续航里程。
附图说明
图1显示为本公开的汽车热管理系统于一实施例中的原理结构示意图。
元件标号说明
1 汽车热管理系统
11 乘客舱制冷回路
12 乘客舱加热回路
13 电池回路
14 电机散热回路
15 第一电池加热回路
16 第二电池加热回路
17 第一电池冷却回路
18 第二电池冷却回路
111 电动压缩机
112 冷凝器
113 供热通风与空气调节总成
121 加热器
122 第一水泵
123 第一水阀
131 换热器
132 第二水泵
133 动力电池
134 第二水阀
141 微控制器
142 驱动电机
143 第三水泵
144 第三水阀
145 第一膨胀箱
146 电机散热器
147 水温传感器
148 车载充电机
151 第四水阀
171 第二膨胀箱
172 电池散热器
具体实施方式
以下由特定的具体实施例说明本公开的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本公开的其他优点及功效。
请参阅图1。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本公开可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本公开所能产生的功效及所能达成的目的下,均应仍落在本公开所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本公开可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本公开可实施的范畴。
实施例一
本实施例提供一种汽车热管理系统,包括乘客舱制冷回路、乘客舱加热回路及电池回路;乘客舱制冷回路包括依次连通的电动压缩机、冷凝器及供热通风与空气调节总成,供热通风与空气调节总成与电动压缩机连通;乘客舱加热回路包括依次连通的加热器、第一水泵、第一水阀及与乘客舱制冷回路共用的供热通风与空气调节总成,供热通风与空气调节总成与加热器连通,加热器用于提供热源;电池回路包括依次连通的换热器、第二水泵、动力电池及第二水阀,第二水阀与换热器连通;汽车热管理系统还包括:
第一电池加热回路,用于利用加热器提供的热源,通过换热器进行水与水换热,以加热电池回路中的动力电池;
第二电池加热回路,用于利用驱动电机所产生的热源,通过换热器进行水与水换热,以加热电池回路中的动力电池;
第一电池冷却回路,用于在感测到动力电池上的温度小于等于预设温度阈值时,以冷却电池回路中动力电池;
第二电池冷却回路,用于在感测到动力电池上的温度小于等于预设温度阈值时,利用乘客舱制冷回路中的冷凝器提供的冷凝剂,通过与乘客舱制冷回路连通的换热器进行冷凝剂与水换热,以冷却电池回路中动力电池。
以下将结合图示对本实施例所提供的汽车热管理系统进行详细描述。请参阅图1,显示为汽车热管理系统于一实施例中的原理结构示意图。如图1所示,汽车热管理系统1包括乘客舱制冷回路11、乘客舱加热回路12、电池回路13、电机散热回路14、第一电池加热回路15、第二电池加热回路16、第一电池冷却回路17、第二电池冷却回路18及用于控制上述所有回路的控制器(未予图示)。本实施例的汽车热管理系统的乘客舱加热回路和第一电池加热回路共用一个PTC,第一电池冷却回路采用散热器直接冷却,第二电池冷却回路采用空调制冷冷却智能控制,第二个电池加热回路和第二电池冷却回路公用一个热交换器。在图1中,通过箭头的方向及标号来表示不同的回路。
参阅图1,通过标示有数字11的箭头所围成回路来表示乘客舱制冷回路11。乘客舱制冷回路11用于为汽车的乘客舱制冷。如图1所示,乘客舱制冷回路11包括依次连通电动压缩机111、冷凝器112及供热通风与空气调节总成113(HVAC总成,HVAC总成包括蒸发器、暖气芯、鼓风扇、空气滤清器等),供热通风与空气调节总成113与电动压缩机111连通。电动压缩机111、冷凝器112及供热通风与空气调节总成113通过空调管路连接形成一个空调系统,为乘客舱制冷。
参阅图1,通过标示有数字12的箭头所围成的回路来表示乘客舱加热回路12。乘客舱加热回路12用于加热汽车的乘客舱。如图1所示,乘客舱加热回路12包括依次连通的加热器121、第一水泵122、第一水阀123(第一水阀 123采用三通水阀)及与乘客舱制冷回路共用的供热通风与空气调节总成113,供热通风与空气调节总成113与加热器121连通。其中,加热器121用于提供热源。在本实施例中,加热器121采用陶瓷电加热器PTC。在操作人员选择为乘客舱加热时,控制器开启PTC,使其提高热源,控制器控制第一水泵122动作,以将吸收热量的水流导向供热通风与空气调节总成113,以与其内的风进行换热。
参阅图1,通过标示有数字13的箭头所围成的回路来表示电池回路13。如图1所示,电池回路13包括依次连通的换热器131、第二水泵132、动力电池133及第二水阀134(第二水阀采用三通水阀)等,第二水阀134与换热器131连通。在本实施例中,由于动力电池133在超过某一温度值时才可以释放电能,因此需保持动力电池133所处环境的温度。在本实施例中,换热器131采用集成三换热器,换句话说就是该集成三换热器内部有三个回路的换热器,一个是动力电池133形成闭合的电池回路13,再一个接来自于第一电池加热回路15中加热器121的热源用于为动力电池133加热,还有一个接来自于乘客舱制冷回路11中冷凝器112的制冷剂冷却动力电池133。相比于现在较多用2个板式换热器成本上有较大的优势,本实施例采用的集成三换热器可以节省很大的安装空间和相关管路。
参阅图1,通过标示有数字14的箭头所围成的回路来表示电机散热回路14。如图1所示,电机散热回路14包括依次连通的微控制器141(MCU)、驱动电机142、第三水泵143、第三水阀144(第三水阀采用三通水阀)、第一膨胀箱145、电机散热器146、水温传感器147及车载充电机148(OBC)等,车载充电机148与微控制器141连通。在本实施例中,在水温传感器147感测到驱动电机142所产生热量的温度超过预设电机温度阈值,微控制器141控制第三水阀144将吸收驱动电机142所产生热量的水流导向第一膨胀箱145,通过第一膨胀箱145中的冷却液和电机散热器146带走驱动电机142产生的热量。在本实施例中,电机散热回路14是一个单独的封闭回路,且控制简单。
参阅图1,通过标示有数字15的箭头所围成的回路来表示第一电池加热回路15。如图1所示,第一电池加热回路15包括依次连通的第四水阀151(第四水阀采用三通水阀)、与乘客舱加热回路共用的加热器121、第一水泵122、 第一水阀123及与电池回路共用的换热器131,换热器131与第四水阀151连通。第一电池加热回路15用于利用加热器121提供的热源,通过换热器131进行水与水换热,以加热电池回路中的动力电池。
具体地,根据采用第一电池加热回路15为乘客舱加热的需求,第一水阀123将水流引向供热通风与空气调节总成113,以将加热器121产生的热源与供热通风与空气调节总成113中的暖风芯进行风热交换。
根据采用第一电池加热回路15为动力电池133加热的需求,第四水阀151动作将水流导向与乘客舱加热回路共用的加热器121,第一水阀123将水流导向换热器131,通过与电池回路13共用的换热器131为动力电池133加热。在本实施例中,乘客舱加热回路12和第一电池加热回路15共用一个PTC加热,相比于现在较多的2个PTC加热成本上有比较大的优势。对平台化的HVAC主机基本不用做修改,节省开发周期。
参阅图1,通过表示有数字16的箭头所围成的回路来表示第二电池加热回路16。如图1所示,第二电池加热回路16包括依次连通的与电池回路13共用的换热器131、第四水阀151、与电机散热回路14共用的车载充电机148、微控制器141、驱动电机142、第三水泵143、第三水阀144;第三水阀144与换热器131连通。第二电池加热回路16用于利用驱动电机142所产生的热源,通过换热器131进行水与水换热,以加热电池回路中的动力电池。
具体地,根据采用第二电池加热回路16为动力电池133加热的需求,第三水阀144将水流导向与电池回路共用的换热器131,将驱动电机产生的热量经过换热器进行水与水换热,以加热电池回路13中的动力电池133。
参阅图1,通过表示数据17的箭头所围成的回路来表示第一电池冷却回路17。在本实施例中,第一电池冷却回路17包括依次连通的与电池回路13共用的第二水泵132、动力电池133和第二水阀134、第二膨胀箱171、电池散热器172;电池散热器172与第二水泵132连通。第一电池冷却回路17用于在感测到动力电池的进口处水温小于或等于预设温度阈值时,冷却电池回路中动力电池。
具体地,当动力电池133上设置的温度传感器感测到其进水口的水温小于或等于预设温度阈值时,汽车热管理系统的控制器控制第二水阀134动作 将水流导向第二膨胀箱171,通过动力电池133的冷却板、第二水泵132及电池散热器172带走动力电池散发的热量。
参阅图1,通过表示数据18的箭头所围成的回路来表示第二电池冷却回路18。第二电池冷却回路18为乘客舱制冷回路11加电池回路13。第二电池冷却回路18用于在感测到动力电池的进口处水温大于预设温度阈值时,利用乘客舱制冷回路中的冷凝器提供的冷凝剂,通过与乘客舱制冷回路连通、且与电池回路共用的换热器进行冷凝剂与水换热,以冷却电池回路中动力电池。
当动力电池上设置的温度传感器感测到其进口处水温大于预设温度阈值时,汽车热管理系统的控制器控制第二水阀134动作将水流导向与乘客舱制冷回路11连通的换热器131,同时控制器开启乘客舱制冷回路11的电动压缩机111,利用冷凝器112提供的冷凝剂,通过换热器131进行冷凝剂与水换热,以带走动力电池散发的热量。在本实施例中,第一电池加热回路15、第二电池加热回路16和第二电池冷却回路18共用一个换热器131,有效地利用驱动电机142工作时的热量,能有效地降低成本以及节约热管系统的用电量。
本实施例还提供一种汽车,该汽车具有上述的汽车热管理系统。
综上所述,本公开的汽车热管理系统及具有该系统的汽车,具有以下有益效果:
第一,本公开的电机/MCU/OBC冷却系统为一个单独的封闭系统,控制简单。
第二,乘客舱加热和电池加热共用一个PTC加热,相比于现在较多的2个PTC加热成本上有比较大的优势。对平台化的HVAC主机基本不用做修改,节省开发周期。
第三,电池冷却与电池加热采用集成三换热器,相比于现在较多用2个板式换热器成本上有较大的优势,节省很大的安装空间和相关管路。
第四,本公开电池冷却回路采用电池散热器直接冷却和空调制冷强制冷却两种智能模式,节约电池能量,提高续航里程。
第五,本公开电机运行过程的热量能有限的被用来给电池加热,可节约电池电量增加续航里程。所以,本公开有效克服了现有技术中的种种缺点而 具高度产业利用价值。
上述实施例仅例示性说明本公开的原理及其功效,而非用于限制本公开。任何熟悉此技术的人士皆可在不违背本公开的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本公开所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本公开的权利要求所涵盖。

Claims (8)

  1. 一种汽车热管理系统,包括乘客舱制冷回路、乘客舱加热回路及电池回路;所述乘客舱制冷回路包括依次连通的电动压缩机、冷凝器及供热通风与空气调节总成,供热通风与空气调节总成与电动压缩机连通;所述乘客舱加热回路包括依次连通的加热器、第一水泵、第一水阀及与所述乘客舱制冷回路共用的供热通风与空气调节总成,供热通风与空气调节总成与加热器连通,所述加热器用于提供热源;所述电池回路包括依次连通的换热器、第二水泵、动力电池及第二水阀,第二水阀与换热器连通;其特征在于,所述汽车热管理系统还包括:
    第一电池加热回路,用于利用所述加热器提供的热源,通过所述换热器进行水与水换热,以加热所述电池回路中的动力电池;
    第二电池加热回路,用于利用所述汽车热管理系统内的驱动电机所产生的热源,通过所述换热器进行水与水换热,以加热所述电池回路中的动力电池;
    第一电池冷却回路,用于在感测到所述动力电池的进口处水温小于或等于预设温度阈值时,冷却所述电池回路中动力电池;
    第二电池冷却回路,用于在感测到所述动力电池的进口处水温大于预设温度阈值时,利用所述乘客舱制冷回路中的冷凝器提供的冷凝剂,通过与所述乘客舱制冷回路连通、且与所述电池回路共用的换热器进行冷凝剂与水换热,以冷却所述电池回路中动力电池;
    所述第一电池加热回路包括依次连通的第四水阀、与所述乘客舱加热回路共用的加热器、第一水泵、第一水阀及与所述电池回路共用的换热器,换热器与第四水阀连通;
    其中,根据采用所述第一电池加热回路为乘客舱加热的需求,所述第一水阀将水流引向所述供热通风与空气调节总成,以将所述加热器产生的热源与所述供热通风与空气调节总成中的暖风芯进行风热交换;
    根据采用所述第一电池加热回路为所述动力电池加热的需求,所述第四水阀将水流导向与所述乘客舱加热回路共用的加热器,所述第一水阀将水流 导向所述换热器,通过与电池回路共用的换热器为所述动力电池加热。
  2. 根据权利要求1所述汽车热管理系统,其特征在于,所述汽车热管理系统还包括电机散热回路;所述电机散热回路用于冷却所述汽车热管理系统内的驱动电机;所述电机散热回路包括依次连通的微控制器、驱动电机、第三水泵、第三水阀、第一膨胀箱、电机散热器、水温传感器及车载充电机,车载充电机与微控制器连通;在所述水温传感器感测到所述驱动电机所产生热量的温度超过预设电机温度阈值,所述微控制器控制所述第三水阀将水流导向所述第一膨胀箱,通过所述第一膨胀箱和所述电机散热器带走所述驱动电机产生的热量。
  3. 根据权利要求2所述的汽车热管理系统,其特征在于:所述第二电池加热回路包括依次连通的与所述电池回路共用的换热器、第四水阀、与所述电机散热回路共用的车载充电机、微控制器、驱动电机、第三水泵、第三水阀;第三水阀与换热器连通;
    根据采用所述第二电池加热回路为所述动力电池加热的需求,所述第三水阀将水流导向所述换热器,将所述驱动电机产生的热量经过与所述电池回路共用的换热器进行水与水换热,以加热所述电池回路中的动力电池。
  4. 根据权利要求1所述的汽车热管理系统,其特征在于,所述第一电池冷却回路包括依次连通的与所述电池回路共用的第二水泵、动力电池和第二水阀及第二膨胀箱、电池散热器;电池散热器与第二水泵连通;
    当所述动力电池上设置的温度传感器感测到其进口处水温小于或等于预设温度阈值时,所述汽车热管理系统的控制器控制所述第二水阀动作将水流导向所述第二膨胀箱,通过所述动力电池的冷却板、所述第二水泵及所述电池散热器带走所述动力电池散发的热量。
  5. 根据权利要求1所述的汽车热管理系统,其特征在于,所述第二电池冷却回路为所述乘客舱制冷回路与所述电池回路连通而成的回路;
    当所述动力电池上设置的温度传感器感测到其进口处水温大于预设温度阈值时,所述汽车热管理系统的控制器控制所述第二水阀动作将水流导向与所述乘客舱制冷回路连通的换热器,同时所述控制器开启所述乘客舱制冷回路的电动压缩机,利用所述冷凝器提供的冷凝剂,通过所述换热器进行冷凝 剂与水换热,以带走所述动力电池散发的热量。
  6. 根据权利要求1所述的汽车热管理系统,其特征在于,所述换热器采用集成三换热器。
  7. 根据权利要求1所述的汽车热管理系统,其特征在于,所述加热器采用陶瓷电加热器。
  8. 一种汽车,其特征在于,包括如权利要求1-7中任一项所述的汽车热管理系统。
PCT/CN2018/105536 2017-09-29 2018-09-13 汽车热管理系统及具有该系统的汽车 WO2019062553A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18863616.1A EP3689647B1 (en) 2017-09-29 2018-09-13 Automobile thermal management system, and automobile having same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710911875.0A CN107521307B (zh) 2017-09-29 2017-09-29 汽车热管理系统及具有该系统的汽车
CN201710911875.0 2017-09-29
CN201721274154.5 2017-09-29
CN201721274154 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019062553A1 true WO2019062553A1 (zh) 2019-04-04

Family

ID=65900809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105536 WO2019062553A1 (zh) 2017-09-29 2018-09-13 汽车热管理系统及具有该系统的汽车

Country Status (2)

Country Link
EP (1) EP3689647B1 (zh)
WO (1) WO2019062553A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110356195A (zh) * 2019-08-08 2019-10-22 宜宾凯翼汽车有限公司 一种电动车热管理系统及方法
CN110525271A (zh) * 2019-08-27 2019-12-03 奇瑞商用车(安徽)有限公司 新能源车热管理系统及纯电动车
CN110588280A (zh) * 2019-08-26 2019-12-20 上海理工大学 集三热管理及余热回收功能的新能源汽车热管理系统
CN110979100A (zh) * 2019-12-12 2020-04-10 武汉格罗夫氢能汽车有限公司 电池热管理系统、电池热管理方法和氢能汽车
CN112026506A (zh) * 2020-09-21 2020-12-04 天津科技大学 一种电动拖拉机整机冷却系统
CN112467254A (zh) * 2020-11-18 2021-03-09 安徽江淮汽车集团股份有限公司 高压电池加热系统及方法
CN113547895A (zh) * 2021-08-18 2021-10-26 安徽江淮汽车集团股份有限公司 一种增程式汽车余热回收系统
CN113715581A (zh) * 2021-09-30 2021-11-30 南方英特空调有限公司 一种电动汽车集成式热管理系统
CN114435071A (zh) * 2022-03-01 2022-05-06 一汽解放汽车有限公司 热管理系统、新能源车、热管理控制方法和控制器
CN114435115A (zh) * 2020-11-06 2022-05-06 上海汽车集团股份有限公司 一种混合动力汽车及其热管理系统
CN114654959A (zh) * 2021-01-04 2022-06-24 北京新能源汽车股份有限公司 一种热管理系统及汽车
WO2022247602A1 (zh) * 2021-05-25 2022-12-01 曼德电子电器有限公司 一种车辆热管理系统及车辆
WO2023005974A1 (zh) * 2021-07-28 2023-02-02 中国第一汽车股份有限公司 一种汽车热管理系统
CN116278721A (zh) * 2023-05-22 2023-06-23 浙江零跑科技股份有限公司 热管理系统、方法、设备和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022202121A1 (de) * 2022-03-02 2023-09-07 Vitesco Technologies GmbH Thermomanagementsystem für ein Fahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633306A (zh) * 2008-07-21 2010-01-27 通用汽车环球科技运作公司 车辆hvac和ress热力管理
CN102941791A (zh) * 2012-11-08 2013-02-27 上海汽车集团股份有限公司 电动车综合热循环系统
CN105984304A (zh) * 2016-05-03 2016-10-05 浙江吉利控股集团有限公司 一种纯电动汽车整车热管理系统
US9744827B2 (en) * 2013-04-08 2017-08-29 Denso Corporation Thermal management system for vehicle
CN107097664A (zh) * 2017-04-25 2017-08-29 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车热管理系统
CN107521307A (zh) * 2017-09-29 2017-12-29 江西爱驰亿维实业有限公司 汽车热管理系统及具有该系统的汽车

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789176B2 (en) * 2007-04-11 2010-09-07 Tesla Motors, Inc. Electric vehicle thermal management system
DE102012108043A1 (de) * 2012-08-30 2014-05-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Temperierungsanordnung
US9786963B2 (en) * 2013-05-09 2017-10-10 Deere & Company Vehicle heating/cooling system with consolidated heating/cooling core
US9731576B2 (en) * 2014-10-21 2017-08-15 Atieva, Inc. EV multi-mode thermal management system
CN205970883U (zh) * 2016-05-10 2017-02-22 比亚迪股份有限公司 汽车热管理系统和电动汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101633306A (zh) * 2008-07-21 2010-01-27 通用汽车环球科技运作公司 车辆hvac和ress热力管理
CN102941791A (zh) * 2012-11-08 2013-02-27 上海汽车集团股份有限公司 电动车综合热循环系统
US9744827B2 (en) * 2013-04-08 2017-08-29 Denso Corporation Thermal management system for vehicle
CN105984304A (zh) * 2016-05-03 2016-10-05 浙江吉利控股集团有限公司 一种纯电动汽车整车热管理系统
CN107097664A (zh) * 2017-04-25 2017-08-29 上海思致汽车工程技术有限公司 一种智能化多回路电动汽车热管理系统
CN107521307A (zh) * 2017-09-29 2017-12-29 江西爱驰亿维实业有限公司 汽车热管理系统及具有该系统的汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3689647A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110356195A (zh) * 2019-08-08 2019-10-22 宜宾凯翼汽车有限公司 一种电动车热管理系统及方法
CN110588280A (zh) * 2019-08-26 2019-12-20 上海理工大学 集三热管理及余热回收功能的新能源汽车热管理系统
CN110525271A (zh) * 2019-08-27 2019-12-03 奇瑞商用车(安徽)有限公司 新能源车热管理系统及纯电动车
CN110979100A (zh) * 2019-12-12 2020-04-10 武汉格罗夫氢能汽车有限公司 电池热管理系统、电池热管理方法和氢能汽车
CN112026506A (zh) * 2020-09-21 2020-12-04 天津科技大学 一种电动拖拉机整机冷却系统
CN114435115A (zh) * 2020-11-06 2022-05-06 上海汽车集团股份有限公司 一种混合动力汽车及其热管理系统
CN114435115B (zh) * 2020-11-06 2024-03-08 上海汽车集团股份有限公司 一种混合动力汽车及其热管理系统
CN112467254A (zh) * 2020-11-18 2021-03-09 安徽江淮汽车集团股份有限公司 高压电池加热系统及方法
CN112467254B (zh) * 2020-11-18 2022-08-19 安徽江淮汽车集团股份有限公司 高压电池加热系统及方法
CN114654959A (zh) * 2021-01-04 2022-06-24 北京新能源汽车股份有限公司 一种热管理系统及汽车
CN114654959B (zh) * 2021-01-04 2024-03-22 北京新能源汽车股份有限公司 一种热管理系统及汽车
WO2022247602A1 (zh) * 2021-05-25 2022-12-01 曼德电子电器有限公司 一种车辆热管理系统及车辆
WO2023005974A1 (zh) * 2021-07-28 2023-02-02 中国第一汽车股份有限公司 一种汽车热管理系统
CN113547895B (zh) * 2021-08-18 2023-02-17 安徽江淮汽车集团股份有限公司 一种增程式汽车余热回收系统
CN113547895A (zh) * 2021-08-18 2021-10-26 安徽江淮汽车集团股份有限公司 一种增程式汽车余热回收系统
CN113715581A (zh) * 2021-09-30 2021-11-30 南方英特空调有限公司 一种电动汽车集成式热管理系统
CN113715581B (zh) * 2021-09-30 2024-04-09 南方英特空调有限公司 一种电动汽车集成式热管理系统
CN114435071A (zh) * 2022-03-01 2022-05-06 一汽解放汽车有限公司 热管理系统、新能源车、热管理控制方法和控制器
CN114435071B (zh) * 2022-03-01 2023-07-14 一汽解放汽车有限公司 热管理系统、新能源车、热管理控制方法和控制器
CN116278721A (zh) * 2023-05-22 2023-06-23 浙江零跑科技股份有限公司 热管理系统、方法、设备和存储介质
CN116278721B (zh) * 2023-05-22 2023-09-01 浙江零跑科技股份有限公司 热管理系统、方法、设备和存储介质

Also Published As

Publication number Publication date
EP3689647A1 (en) 2020-08-05
EP3689647B1 (en) 2022-12-21
EP3689647A4 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
WO2019062553A1 (zh) 汽车热管理系统及具有该系统的汽车
CN107521307B (zh) 汽车热管理系统及具有该系统的汽车
CN111216515B (zh) 一种电动汽车热管理系统
CN111016737B (zh) 一种电动汽车热管理系统、控制方法和电动汽车
CN207045140U (zh) 一种智能化多回路电动汽车热管理系统
CN205130860U (zh) 电动汽车的热管理系统
CN110774863A (zh) 一种电动汽车用集成间接式热泵的整车热管理系统
CN107097664A (zh) 一种智能化多回路电动汽车热管理系统
CN109774409B (zh) 汽车热管理系统
TWI577581B (zh) 電動車之溫控系統
CN108621743B (zh) 一种电动汽车热管理系统
CN213007493U (zh) 电动汽车及其热管理系统
CN110422082A (zh) 一种混合动力汽车集成式热管理系统及其控制方法
CN205395697U (zh) 带电池热管理功能的车辆空调系统
CN103855445B (zh) 一种热管理系统、电池热管理系统、电动车和混合动力车
CN109455059B (zh) 集合水冷冷凝器和水冷蒸发器的热泵空调及热管理系统
CN111873752A (zh) 一种电动汽车整车热管理控制系统
CN107415636B (zh) 一种汽车、车用空调系统及车用空调控制方法
CN110588281A (zh) 一种电动汽车热泵空调系统和电动汽车
CN212667068U (zh) 电动汽车整车热管理控制系统
CN211592161U (zh) 一种电动汽车用集成间接式热泵的整车热管理系统
CN116605000A (zh) 一种纯电动汽车热管理系统
CN208149059U (zh) 一种温度调节式车辆动力装置
CN207938753U (zh) 一种电动汽车动力电池散热装置
CN201706620U (zh) 一种电暖风装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018863616

Country of ref document: EP

Effective date: 20200429