WO2023005884A1 - 滤波器及其制作方法和天线 - Google Patents

滤波器及其制作方法和天线 Download PDF

Info

Publication number
WO2023005884A1
WO2023005884A1 PCT/CN2022/107659 CN2022107659W WO2023005884A1 WO 2023005884 A1 WO2023005884 A1 WO 2023005884A1 CN 2022107659 W CN2022107659 W CN 2022107659W WO 2023005884 A1 WO2023005884 A1 WO 2023005884A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
board
resonant
teeth
filter
Prior art date
Application number
PCT/CN2022/107659
Other languages
English (en)
French (fr)
Inventor
邓良勇
蔡丹涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023005884A1 publication Critical patent/WO2023005884A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type

Definitions

  • the present application relates to the field of filters, in particular to a filter, a manufacturing method thereof, and an antenna.
  • filters can better allow useful signals to pass and shield unwanted signals.
  • the filter is a structural component.
  • the filter can be flexibly installed in antennas, cables, or connectors in equipment such as plug-in installation.
  • the existing filter is mainly composed of a split shell and a resonant tooth.
  • the resonant tooth and the shell are processed separately and then installed.
  • the resonant tooth usually needs to add a support structure to be placed in the shell, and the grounding point needs to be welded. Or it is connected with the casing by means of screw fastening. Therefore, the existing filter requires more assembly procedures.
  • each connection point needs to be adjusted to make the precision of the filter meet the processing requirements, thus , the existing filter has the problems of complex assembly process and radiation performance degradation caused by more intermodulation points.
  • the application provides a filter, its manufacturing method and an antenna, so as to simplify the assembly process of the filter, improve the reliability of the connection, and reduce the intermodulation point of the filter.
  • the present application provides a filter.
  • the filter includes a casing and a plurality of resonant teeth arranged at intervals.
  • the casing and the plurality of resonant teeth are formed by an integrated plate, and the plurality of resonant teeth are located in the casing.
  • the board body includes n sequentially connected sub-boards, and in the arrangement direction of the n sub-boards, it is divided into the first sub-board, the second sub-board, ..., and the nth sub-board, the first sub-board and the first sub-board The n sub-boards are closed and connected, and the n sub-boards enclose the housing of the filter; n is an integer greater than or equal to 3.
  • the board body also includes a plurality of resonant teeth, at least one of the plurality of resonant teeth is connected to the nth sub-board, and the resonant teeth are provided with free ends.
  • the filter since its housing and resonant teeth are formed by an integrated plate body, n sub-boards are integrally bent and connected to form the housing, and the resonant teeth are located in the cavity formed by the housing And it is integrally connected with the nth sub-board, therefore, no additional parts are needed for fixing between the shell of the filter and the resonant teeth, which can greatly reduce the number of parts and simplify the assembly process.
  • the contact points of the parts can be effectively reduced to reduce the intermodulation points, and the process of intermodulation analysis caused by too many parts can be avoided; in addition, the integrated structure also has Helps reduce the weight of the filter.
  • n 5 wherein, in the housing of the filter, the first sub-board is closed and connected to the fifth sub-board and is arranged opposite to the third sub-board, and the second The sub-board is arranged opposite to the fourth sub-board.
  • a tetrahedral shell can be formed.
  • the total area of the first sub-board and the fifth sub-board is the same as the area of the third sub-board.
  • the area of the second sub-board is the same as that of the fourth sub-board.
  • the housing composed of the first sub-board, the second sub-board, the third sub-board, the fourth sub-board and the fifth sub-board is a rectangular parallelepiped structure with both ends opened.
  • the second sub-board or the fourth sub-board is provided with a tuning part, and the tuning part is arranged corresponding to the free ends of the resonant teeth.
  • the second sub-board or the fourth sub-board is provided with an opening, and the tuning part is provided in the opening. Wherein, when specifically setting the tuning part, one end of the tuning part is connected to the second sub-board or the fourth sub-board, and the free end of the tuning part can move in a direction approaching or away from the free end of the resonating tooth.
  • the present application provides a method for manufacturing a filter, which includes the following steps: bending an integrated board to form the filter, wherein,
  • the board body includes a first sub-board, a second sub-board, ..., an n-th sub-board and a plurality of resonant teeth connected in sequence, the first sub-board, the second sub-board, ... 1.
  • n is an integer greater than or equal to 3; there are bending marks between the n-th sub-board and multiple resonant teeth, and multiple resonant teeth At least one of them is connected to the nth sub-board;
  • the first sub-board, the second sub-board, ... and the n-th sub-board are closed and connected, the first sub-board, the second sub-board, ... , and the nth sub-board forms a cavity to form a housing of the filter; the multiple resonant teeth are folded into the housing along the bending line between the n-th sub-board and the multiple resonant teeth, and the resonant teeth are provided with free ends.
  • the manufacturing method provided by this application adopts an integrated plate body. Since the plate body is preset with multiple bending marks and n sub-plates and resonant teeth separated by multiple bending marks, the n The sub-boards are bent and assembled to form a filter. Wherein, in the assembled filter, the first sub-board, the second sub-board, ..., and the nth sub-board form the housing of the filter, wherein the first sub-board and the n-th sub-board are butted, and multiple resonance The teeth are bent into cavities formed by the casing enclosure. In the manufacturing method, since the housing and the resonant teeth are designed in an integrated manner and formed by bending, the number of components can be greatly reduced and the assembly process can be simplified.
  • the filter formed by this manufacturing method is integrally connected between the housing and the resonant teeth. After greatly reducing the number of components that make up the filter, the contact points of the components can be effectively reduced to reduce the intermodulation point, and avoid excessive components.
  • the process of intermodulation analysis; in addition, the use of an integrated structure is also conducive to reducing the weight of the filter.
  • the manufacturing method of the filter further includes: a step of forming the plate body by a stamping process.
  • the stamping process can be used to form bending marks and resonant teeth, which is convenient for processing.
  • forming the plate body using a stamping process includes: processing n spaced apart bending marks on the surface of the integrated metal plate using a stamping process to form the first sub-plate and the second sub-plate ,..., the nth sub-board and the sub-board for processing resonant teeth.
  • forming the plate body by a stamping process further includes: processing and forming a plurality of resonant teeth by a stamping process in a region of the metal plate corresponding to the sub-plate for processing the resonant teeth.
  • the processing of the bending marks and the processing of the resonant teeth can be processed and formed in two steps, or can be processed and formed in one step.
  • the value of n is 5.
  • the metal plate is divided into six sub-boards by using the bending marks, in the shell formed after bending, the first sub-board and the fifth sub-board are closed and connected to the third sub-board, and the second sub-board is arranged opposite to the third sub-board.
  • the fourth sub-board is relatively arranged.
  • the formed housing includes four side walls, the first sub-board and the fifth sub-board are closed and connected to form one side wall, and the second sub-board, third sub-board and fourth sub-board respectively form the remaining three side wall.
  • the total area of the first sub-board and the fifth sub-board is the same as the area of the third sub-board.
  • the area of the second sub-board is the same as that of the fourth sub-board.
  • the housing composed of the first sub-board, the second sub-board, the third sub-board, the fourth sub-board and the fifth sub-board is a rectangular parallelepiped structure with both ends opened.
  • the present application also provides a filter, which is prepared by using the fabrication method in the second aspect of the present application.
  • the filter in this application may be a band-pass filter or a band-stop filter.
  • the present application further provides an antenna, which includes the filter of the first aspect of the present application or the filter of the third aspect of the present application.
  • the antenna may be, for example, a base station antenna for receiving or transmitting signals.
  • FIG. 1 is a block diagram of the internal structure of a base station antenna according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a filter according to an embodiment of the present application.
  • FIG. 3 is a schematic structural view of a plate body with an integrated plate structure according to an embodiment of the present application
  • FIG. 4 is a schematic flow chart of a manufacturing method of a filter according to an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a metal plate according to an embodiment of the present application.
  • FIG. 6 is a schematic structural view of another integrated plate-like structure of the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another filter according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a joint between a first sub-board and a fifth sub-board according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another connection between a first sub-board and a fifth sub-board according to an embodiment of the present application.
  • FIG. 1 is a block diagram of the internal structure of the base station antenna in an embodiment of the present application.
  • the unit 41 receives or transmits radio frequency signals through the feeding network 42 .
  • the feed network 42 can realize different radiation beam directions through the transmission part 423, or obtain the required calibration signal through the calibration network 424.
  • the feed network 42 can also include a phase shifter 421, a combiner , filter 30 and other components for extending the performance of the feed network 42 .
  • the above-mentioned base station antenna is only an example of an application scenario of the filter, and the filter can also be applied to other devices such as uninterruptible power supply and switching power supply.
  • the types of filters 30 commonly used in the base station antenna 40 mainly include metal coaxial cavity filters and suspended stripline filters.
  • the metal coaxial cavity filter has a three-dimensional outline, so it takes up a lot of space, which is not conducive to the use of miniaturized equipment.
  • Suspension stripline filter is mainly composed of resonant teeth and shell formed by metal conductors. The resonant teeth and the shell are processed separately and then assembled. During installation, the resonant teeth usually need to add support structures to be placed in the shell, and the connection The site needs to be connected to the shell by welding or screw fastening. Therefore, the suspension stripline filter has more assembly procedures and intermodulation points, resulting in complex assembly procedures and the need to separately perform multiple intermodulation points. Intermodulation analysis problem.
  • the present application provides a filter, a manufacturing method thereof, and an antenna.
  • the terms used in the following examples are for the purpose of describing particular examples only, and are not intended to limit the application.
  • the singular expressions "a”, “an”, “above”, “the” and “this” are intended to also include such as “one or multiple” unless the context clearly indicates otherwise.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • Fig. 2 is a structural schematic diagram of a filter according to an embodiment of the present application.
  • the filter 30 includes a housing 31 and resonant teeth 261, and the housing 31 and resonant teeth 261 is formed by bending a plate body with an integrated structure.
  • Fig. 3 is a structural schematic diagram of a plate body 20 of an integrated plate structure according to an embodiment of the present application.
  • the plate body 20 includes n sub-boards connected in sequence, along the arrangement direction of the n sub-boards, The n sub-boards can be recorded as the first sub-board, the second sub-board, .
  • a casing 31 can be formed, and the main structure of the formed casing 31 is a hollow cylindrical structure with two ends open, wherein the first sub-board and The nth sub-board is closed and connected.
  • the connection between the first sub-board and the n-th sub-board can be fixedly connected by means of welding, riveting, bonding, etc., or can be fixedly connected by means of locking members such as screws and bolts.
  • n may be 5, and the five sub-boards are sequentially recorded as the first sub-board 21, the second sub-board 22, and the third sub-board according to the arrangement direction.
  • board 23 , fourth sub-board 24 and fifth sub-board 25 In the housing 31, the first sub-board 21 and the fifth sub-board 25 are closed and connected, and the first sub-board 21 and the fifth sub-board 25 are closed and connected to form a side wall of the housing 31.
  • the second sub-board 22, the fifth sub-board 25 The third sub-board 23 and the fourth sub-board 24 respectively form the other three side walls of the housing 31, wherein the first sub-board 21 and the fifth sub-board 25 are closed and connected to the third sub-board 23, and the second sub-board 23 is arranged opposite to the third sub-board 23.
  • the board 22 is disposed opposite to the fourth sub-board 24 .
  • the shape of the housing 31 surrounded by the five sub-boards is a tetrahedron.
  • the first sub-board passes through the second sub-board and the third sub-board in sequence.
  • the shape area of the side wall formed by the first sub-board 21 and the fifth sub-board 25 is the same as the shape area of the side wall formed by the third sub-board 23, the second sub-board
  • the shape area of the side wall formed by plate 22 is the same as the shape area of the side wall formed by the fourth sub-board 24, like this, the first sub-board 21, the second sub-board 22, the third sub-board 23, the fourth sub-board 24 and The fifth sub-board 25 may form a rectangular parallelepiped-shaped housing 31 with both ends open.
  • the shape of the housing formed by the above five sub-boards is only an example, and the shape of the housing can form other shapes according to the number of specific sub-boards in addition to the above-mentioned tetrahedral structure. structure.
  • n is three
  • the shape of the formed shell may be a trihedral structure.
  • n is four, a trihedral or tetrahedral structure can be formed, wherein, when the first sub-plate and the fourth sub-plate are butted together to form a side wall of the housing, the four sub-plates can form a trihedral shell body; and when the first sub-board and the fourth sub-board are butted to form two side walls of the housing respectively, the four sub-boards can form a tetrahedron-shaped housing.
  • n is six, a shell with a pentahedron or hexahedron structure can be formed.
  • the embodiment of the present application does not limit the specific shape of the shell, which can be designed according to specific application scenarios.
  • the board body 20 further includes a plurality of resonant teeth 261, and the plurality of resonant teeth 261 are arranged on the side close to the nth sub-board, and the plurality of resonant teeth 261 At least one of them is connected to the nth sub-board, for example, connected to the fifth sub-board.
  • the resonant tooth 261 is located in a cavity surrounded by the casing 31 .
  • the number of resonant teeth 261 may be multiple, such as 3, 4, 5, 6, 7 or more, and this embodiment of the present application does not specifically limit the number of resonant teeth 261 .
  • a plurality of resonant teeth 261 can be arranged in a comb-like structure, and one end of any resonant tooth 261 can be integrally connected with the fifth sub-board 25 , and the other end is a free end.
  • the extending direction of the resonant teeth 261 may be parallel to the second sub-board 22 and the fourth sub-board 24 and perpendicular to the third sub-board 23 .
  • a connecting conductor 262 may be provided between any two adjacent resonating teeth 261 , and the connecting conductor 262 may serve as a signal transmission wire between the resonating teeth 261 .
  • the outermost resonant tooth 261 can also be provided with a signal input terminal 263 and a signal output terminal 264, so as to facilitate the connection of external lines.
  • the filter 30 of this structure can be used as a band-pass filter.
  • the fourth sub-board 24 may be provided with a tuning portion 27 , and in the filter 30 , the tuning portion 27 is disposed corresponding to the free end of the resonant tooth 261 .
  • the tuning part 27 is arranged correspondingly to the free end of the resonant tooth 261 , it can be understood that the two are arranged opposite to each other in the vibration direction of the free end of the resonant tooth 261 .
  • the frequency of the transmission signal of the filter 30 can be fine-tuned by setting the tuning part 27 to make the filtering function of the filter 30 more accurate.
  • one end of the tuning portion 27 can be connected to the fourth sub-board 24, and the free end of the tuning portion 27 can approach or move away from the resonance under the action of an external force.
  • the direction of the free end of the tooth 261 moves, but is fixed when not subjected to external force.
  • the tuning part 27 when the tuning part 27 is provided, the fourth sub-board 24 is provided with an opening, the tuning part 27 is arranged in the opening, one end of which is connected to the fourth sub-board 24, and the other end It is a free end, so that the free end of the tuning part 27 can change its position under the action of external force.
  • the free end of the tuning part 27 When the free end of the tuning part 27 is subjected to an active force towards the cavity, the free end of the tuning part 27 can move to a position closer to the free end of the resonating tooth 261; When a force is applied, the free end of the tuning portion 27 can move to a position farther away from the free end of the resonant tooth 261 .
  • the shape of the tuning portion 27 is not specifically limited in the present application, for example, the shape may be a rectangle or an ellipse, or a combination of a rectangle and a semicircle. It can be understood that, besides the fourth sub-board 24 , the tuning part 27 can also be arranged on the second sub-board 22 , and the same tuning effect can also be produced.
  • Fig. 4 is a schematic flow chart of the manufacturing method of the filter of an embodiment of the present application, as shown in Fig. 4, the manufacturing method of the filter 30 of an embodiment of the present application comprises the following steps:
  • Step S101 providing a plate with an integrated plate structure, wherein the structure of the plate with an integrated plate structure can be referred to as shown in FIG. 3 .
  • the board body 20 includes a first sub-board 21, a second sub-board 22.
  • the third sub-board 23, the fourth sub-board 24, the fifth sub-board 25 and a plurality of resonant teeth 261, the first sub-board 21, the second sub-board 22, the third sub-board 23, the fourth sub-board 24 and A bending line is provided between any two adjacent sub-boards of the fifth sub-board 25 , and a bending line is also provided between the fifth sub-board and the plurality of resonant teeth.
  • each resonant tooth 261 is directly connected to the fifth sub-board 25 , and extends from the fifth sub-board 25 to a direction away from the fifth sub-board 25 , and each resonant tooth 261 The end far away from the fifth sub-board 25 is a free end.
  • the number of resonant teeth 261 can be, for example, greater than or equal to 3, for example, can be 4, 5, 6, 7, 8 or more, and the specific number of resonant teeth 261 depends on the transmission required by the filter 30. signal to set.
  • a comb-like structure may be formed between the plurality of resonant teeth 261 .
  • Step S102 bending the first sub-board 21, the second sub-board 22, the third sub-board 23, the fourth sub-board 24 and the fifth sub-board 25 along the bending line, after bending the first sub-board 21 and The fifth sub-board 25 is closed and connected so that the first sub-board 21, the second sub-board 22, the third sub-board 23, the fourth sub-board 24 and the fifth sub-board 25 form the housing 31 of the filter 30, wherein, When bending, a plurality of resonant teeth 261 are folded into the cavity formed by the casing 31 , and the structure of the filter 30 of an embodiment formed after bending is shown in FIG. 2 .
  • the first sub-board 21, the second sub-board 22, the third sub-board 23, the fourth sub-board 24 and the fifth sub-board 25 form a tetrahedron structure of the housing 31, wherein the first sub-board 21 and the fifth sub-board 25 are closed and connected to form a side wall of the housing 31, and the second sub-board 22, the third sub-board 23 and the fourth sub-board 24 respectively form
  • a plurality of resonant teeth 261 are located in the cavity formed by the housing 31 , and the free ends of the resonant teeth 261 are separated from the housing 31 .
  • the plate body 20 contains n sub-boards
  • the first sub-board 21 to the nth sub-board are used to form the housing 31,
  • the resonant teeth 261 are connected with the n-th sub-board, and when bent, the first sub-board 21 is docked with the nth sub-board, and a plurality of resonant teeth 261 are folded into the cavity of the housing 31 from the part where the first sub-board 21 and the n-th sub-board are docked.
  • the manufacturing method of the filter may further include a step of forming the plate body by a stamping process.
  • forming the plate body using a stamping process includes: providing a metal plate with an integrated structure.
  • FIG. 5 is a schematic structural diagram of a metal plate 10 in an embodiment of the present application, combined with FIGS. 3 and 5 , using a stamping process to process n intervals of bending marks on the surface of the metal plate 10 to form the first sub-board 21, the second sub-board 22, ..., the nth sub-board and the n+th sub-board for processing the resonant teeth 1 daughter board.
  • the metal plate 10 can be a copper plate, for example, and its thickness can be 0.5-2 mm, and the material and thickness of the metal plate 10 can be set according to the specific application scene and application size of the filter 30, and no specific limitation is made here. .
  • forming the plate body by stamping process further includes: forming resonant teeth 261 by stamping process on the region of the metal plate 10 corresponding to the n+1th sub-plate.
  • the resonant teeth 261 can be formed in the region corresponding to the sixth sub-board 26 by using a stamping process.
  • the bending marks and the resonant teeth 261 can be formed synchronously by one stamping process, or can be formed separately by step stamping process, which is not specifically limited in this embodiment of the present application.
  • the connecting conductor 262 can also be formed by a stamping process at the same time.
  • the tuning portion 27 can also be formed on the second sub-board 22 or the fourth sub-board 24 by using a stamping process.
  • FIG. 6 is a schematic structural view of a filter according to another embodiment of the present application
  • FIG. 7 is a schematic structural view of an integrated board 20 according to another embodiment of the present application.
  • the difference between the embodiment of the present application and the filter 30 in the first embodiment above is that the structure of the resonant tooth 261 is different.
  • the shape of the resonant teeth 261 is L-shaped, and the multiple resonant teeth 261 are arranged at intervals, and the multiple resonant teeth 261 are connected by connecting conductors 262 . And the signal is transmitted through the connection conductor 262 .
  • connection conductor 262 can be a strip-shaped conductor, and the connection conductor 262 can be disposed on a side away from the fifth sub-board 25 .
  • One end of the connection conductor 262 can be used as a signal input terminal 263 , and the other end of the connection conductor 262 can be used as a signal output terminal 264 .
  • one end of some of the resonant teeth 261 can be connected to the fifth sub-board 25 , and the other end is a free end.
  • the connection conductor 262 can be electrically connected to the middle part of the part of the resonant tooth 261 .
  • One end of the remaining resonant teeth 261 can be connected to the connecting conductor 262 , and the other end is a free end.
  • the number of resonant teeth 261 may be three, wherein one end of each resonant tooth 261 of the two resonant teeth 261 is connected to the fifth sub-board 25 , The other end is a free end, and the middle part of any resonant tooth 261 is connected with the connecting conductor 262 .
  • Another resonant tooth 261 has one end connected to the connecting conductor 262 and the other end is a free end.
  • the manufacturing method of the filter in the embodiment of the present application can be carried out with reference to the manufacturing method of the filter in the first embodiment, and the plate body with the structure shown in FIG. 7 can be bent to form the filter.
  • the filter 30 formed by the plate body 20 with the structure shown in Fig. 7 can also use the first sub-board 21, second sub-board 22, third sub-board 23, fourth The board 24 and the fifth sub-board 25 form the housing 31 of the filter 30, and the housing 31 is also a tetrahedral structure.
  • the first sub-board 21 and the fifth sub-board 25 form a side wall of the housing 31 after being joined together.
  • the second sub-board 22 , the third sub-board 23 and the fourth sub-board 24 form the other three side walls of the housing 31 , and the first sub-board 21 and the fifth sub-board 25 are closed and connected to the third sub-board 23 and are arranged opposite to each other.
  • the second sub-board 22 is disposed opposite to the fourth sub-board 24 , and the resonant teeth 261 and the connecting conductors 262 are located in the cavity formed by the housing 31 .
  • the filter 30 having this structure can be used as the band rejection filter 30 .
  • the width dimension of the first sub-board 21 and the fifth sub-board 25 and the width dimension of the third sub-board 23 same, the area formed after the connection of the first sub-board 21 and the fifth sub-board 25 is the same as the area of the third sub-board; and in the first direction, the width dimension of the second sub-board 22 is the same as the fourth sub-board 24 The width dimensions are the same, but the area of the second sub-board 22 is the same as that of the fourth sub-board 24 .
  • the side walls formed by the first sub-board 21 and the fifth sub-board 25 are parallel to the side walls formed by the third sub-board 23, and the side walls formed by the second sub-board 22 are parallel to the side walls formed by the fourth sub-board.
  • the side walls formed by 24 are parallel, which can facilitate the formation of mutually perpendicular tetrahedral structures.
  • Fig. 8 is a structural schematic diagram of the joint of the first sub-board 21 and the fifth sub-board 25 according to an embodiment of the present application.
  • the first sub-board 21 and the fifth sub-board 25 when the first sub-board 21 and the fifth sub-board 25 have the same shape area, the first sub-board 21 and the fifth sub-board 25 can be half of the area of the third sub-board 23 respectively, thus, the resonant tooth 261 can be located in an equal portion of the cavity on-line.
  • the first sub-board 21 and the fifth sub-board 25 are butted, they can be butted by welding or by bonding.
  • FIG. 9 is a schematic structural view of the junction of the first sub-board 21 and the fifth sub-board 25 in another embodiment of the present application.
  • the area of the first sub-board 21 may be larger than the area of the fifth sub-board 25,
  • there may be an overlapping area so that the first sub-board 21 and the fifth sub-board 25 are fixed with the locking member 28.
  • the area of the side wall of the casing formed by 25 is the same as the area of the third sub-board.
  • the locking member 28 can be, for example, elements such as rivets or screws.
  • the docking manners shown in FIG. 8 and FIG. 9 are only illustrative, and other manners for fixing the first sub-board 21 and the fifth sub-board 25 are within the scope of the embodiments of the present application.
  • the filter provided in the embodiment of the present application can be prepared by an integrated molding process of stamping and bending to reduce the assembly process of different parts and reduce the manufacturing cost; in addition, the integrated filter can reduce the number of different parts. Contact between components, thereby reducing intermodulation points and intermodulation procedures, simplifying the assembly process.
  • the manufacturing method of the filter in the embodiment of the present application can use a thin metal plate, and the overall thickness is relatively thin, which can reduce the overall weight of the filter. During the preparation process, resonant teeth of different structures and connecting conductors of different structures can be obtained through the punching process, and then band-pass filters and band-stop filters can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请提供了一种滤波器及其制作方法和天线。该滤波器包括壳体和多个间隔设置的谐振齿,壳体和多个谐振齿由一体化板体形成,且多个谐振齿位于壳体内。其中,该板体包括n个依次连接的子板,n个子板围设形成滤波器的壳体;n为大于等于3的整数。另外,该板体还包括多个谐振齿,多个谐振齿中的至少一个与第n子板连接,谐振齿设有自由端。该滤波器的装配工序简单,连接的可靠性高,组装完成后需要调节的互调点较少。

Description

滤波器及其制作方法和天线
相关申请的交叉引用
本申请要求在2021年07月29日提交中国专利局、申请号为202110863257.X、申请名称为“滤波器及其制作方法和天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及滤波器领域,具体涉及一种滤波器及其制作方法和天线。
背景技术
在无线通信系统中,滤波器可以较好实现允许有用信号通过、屏蔽无用信号。随着天线集成度越来越高,对滤波器的小型化、轻量化要求也越来越高。另外,滤波器作为结构组件,为了便于组装和拆卸维护,现有设备往往需要滤波器可采用插拔式安装方式灵活设置于天线、线缆或者连接器等设备内。
目前,现有滤波器主要由分体式设置的壳体和谐振齿组成,谐振齿以及壳体分别单独加工后再进行安装,谐振齿通常需要增加支撑结构置于壳体内,且接地点需要通过焊接或者螺钉紧固方式与壳体相连接,因此,现有滤波器具有较多的装配工序。另外,由于在组装时需要使用较多的零部件对壳体和谐振齿进行安装连接,因此,组装完成后,还需对各个连接点进行调节,以使滤波器的精度满足加工要求,由此,现有滤波器存在装配工序复杂以及因互调点较多而导致的辐射性能下降的问题。
发明内容
本申请提供了一种滤波器及其制作方法和天线,以简化滤波器的装配工序,提高连接的可靠性,减少滤波器的互调点。
第一方面,本申请提供一种滤波器,该滤波器包括壳体和多个间隔设置的谐振齿,壳体和多个谐振齿由一体化板体形成,且多个谐振齿位于壳体内。其中,该板体包括n个依次连接的子板,在n个子板的排列方向,依次分为第一子板、第二子板、……、和第n子板,第一子板和第n子板闭合连接,n个子板围设形成滤波器的壳体;n为大于等于3的整数。另外,该板体还包括多个谐振齿,多个谐振齿中的至少一个与第n子板连接,谐振齿设有自由端。
本申请提供的滤波器,由于其壳体和谐振齿是采用一体化的板体形成的,其中,n个子板一体化弯折连接形成壳体,谐振齿位于壳体围设形成的空腔内并与第n子板一体连接,因此,该滤波器的壳体和谐振齿之间不再需要额外的零部件进行固定,可大幅减少零部件的数量,简化装配工序。另外,在大幅减少组成滤波器的零部件数量后,可有效减少零部件的接触点以减少互调点,避免零部件过多造成互调分析的过程;此外,采用一体化的结构,还有利于减少滤波器的重量。
在本申请一种可能的实现方式中,n的取值为5,其中,在滤波器的壳体中,第一子 板与第五子板闭合连接并与第三子板相对设置,第二子板与第四子板相对设置。由此,可形成四面体结构的壳体。
在本申请一种可能的实现方式中,第一子板与第五子板的总面积与第三子板的面积相同。在本申请另一种可能的实现方式中,第二子板的面积与第四子板的面积相同。由此,由第一子板、第二子板、第三子板、第四子板和第五子板组成的壳体为两端开口的长方体结构。
在本申请一种可能的实现方式中,第二子板或第四子板设有调谐部,调谐部与谐振齿的自由端对应设置。在本申请一种可能的实现方式中,第二子板或第四子板设有开孔,调谐部设于开孔内。其中,在具体设置调谐部时,调谐部的一端与第二子板或第四子板连接,调谐部的自由端可沿靠近或远离谐振齿自由端的方向移动。
第二方面,本申请提供一种滤波器的制作方法,该制作方法包括以下步骤:对一体化板体进行弯折形成所述滤波器,其中,
沿板体的第一方向,该板体包括依次连接的第一子板、第二子板、……、第n子板和多个谐振齿,第一子板、第二子板、……、第n子板中的任意两相邻子板之间设有弯折痕,n为大于等于3的整数;第n子板和多个谐振齿之间设有弯折痕,多个谐振齿中的至少一个与第n子板连接;
沿弯折痕对第一子板、第二子板、……和第n子板进行弯折,第一子板与第n子板闭合连接,第一子板、第二子板、……、以及第n子板形成一空腔以形成滤波器的壳体;沿第n子板和多个谐振齿之间的弯折痕将多个谐振齿折入壳体内,谐振齿设有自由端。
本申请提供的制作方法,采用一体化结构的板体,由于板体预设有多个弯折痕以及由多个弯折痕分隔形成的n个子板和谐振齿,通过沿弯折痕对n个子板进行弯折,可组装形成滤波器。其中,组装成的滤波器中,第一子板、第二子板、……、以及第n子板形成滤波器的壳体,其中,第一子板和第n子板对接,多个谐振齿被弯折进入壳体围设形成的空腔内。该制作方法中,由于壳体与谐振齿之间采用一体化设计,且通过弯折形成,可大幅减少零部件的数量,简化装配工序。利用该制作方法形成的滤波器,壳体与谐振齿之间一体化连接,在大幅减少组成滤波器的部件数量后,可有效减少部件的接触点以降低互调点,避免零部件过多造成互调分析的过程;另外,采用一体化的结构,还有利于减少滤波器的重量。
在本申请一种可能的实现方式中,该滤波器的制作方法还包括:利用冲压工艺形成板体的步骤。利用冲压工艺可形成弯折痕和谐振齿,方便加工。
在本申请一种可能的实现方式中,利用冲压工艺形成板体包括:利用冲压工艺在一体化的金属板表面加工n条间隔设置的弯折痕,以形成第一子板、第二子板、……、第n子板和用于加工谐振齿的子板。在本申请一种可能的实现方式中,利用冲压工艺形成板体还包括:在用于加工谐振齿的子板对应的金属板的区域,利用冲压工艺加工形成多个谐振齿。其中,加工弯折痕与加工谐振齿可分两步加工成型,也可一步加工成型。
在本申请一种可能的实现方式中,n的取值为5。当利用弯折痕将金属板分为六块子板时,弯折后形成的壳体中,第一子板与第五子板闭合连接后与第三子板相对设置,第二子板与第四子板相对设置。该结构中,形成的壳体包括四个侧壁,第一子板和第五子板闭合连接后形成一个侧壁,第二子板、第三子板和第四子板分别形成其余三个侧壁。
在本申请一种可能的实现方式中,第一子板与第五子板的总面积与第三子板的面积相 同。在本申请一种可能的实现方式中,第二子板的面积与第四子板的面积相同。由此,由第一子板、第二子板、第三子板、第四子板和第五子板组成的壳体为两端开口的长方体结构。
第三方面,本申请还提供一种滤波器,该滤波器利用本申请第二方面的制作方法制备得到。其中,本申请中的滤波器可为带通滤波器,也可为带阻滤波器。
第四方面,本申请还提供一种天线,该天线包括本申请第一方面的滤波器或本申请第三方面的滤波器。
其中,天线例如可为基站天线,用于接收或发射信号。
上述第三方面和第四方面可以达到的技术效果,可以参照上述第一方面和第二方面中的相应效果描述,这里不再重复赘述。
附图说明
图1为本申请实施例一种基站天线的内部结构框图;
图2为本申请实施例一种滤波器的结构示意图;
图3为本申请实施例一种一体化板状结构的板体的结构示意图;
图4为本申请实施例一种滤波器的制作方法流程示意图;
图5为本申请实施例一种金属板的结构示意图;
图6为本申请实施例另一种一体化板状结构的板体的结构示意图;
图7为本申请实施例另一种滤波器的结构示意图;
图8为本申请实施例一种第一子板和第五子板对接处的结构示意图;
图9为本申请实施例另一种第一子板和第五子板对接处的结构示意图。
附图标记:10-金属板;20-板体;21-第一子板;22-第二子板;23-第三子板;24-第四子板;25-第五子板;26-第六子板;261-谐振齿;262-连接导体;263-信号输入端;264-信号输出端;27-调谐部;28-紧固件;30-滤波器;31-壳体;40-基站天线;41-辐射单元;42-馈电网络;421-移相器;422-合路器;423-传动部件;424-校准网络。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为理解本申请,先对本申请滤波器的应用场景做简单介绍。下面以基站天馈系统为例进行说明。在基站天馈系统中,通常包括基站天线、馈线、抱杆、天线调整支架等部件。其中,图1为本申请一种实施例中基站天线的内部结构框图,如图1所示,在本申请一种实施例中,基站天线40内部通常含有辐射单元41和馈电网络42,辐射单元41通过馈电网络42接收或发射射频信号。馈电网络42可通过其中的传动部件423实现不同辐射波束指向,或通过校准网络424以获取所需的校准信号,除此之外,馈电网络42还可包括移相器421、合路器、滤波器30等部件,以用于扩展馈电网络42的性能。可以理解的是,上述基站天线仅为滤波器的一种应用场景举例说明,在其他设备例如不间断电源、开关电源等设备中也均可应用滤波器。
目前,基站天线40中常用的滤波器30类型主要包括金属同轴腔滤波器和悬置带线滤 波器等。金属同轴腔滤波器外形轮廓立体因此占用空间较大,不利于小型化设备的使用。悬置带线滤波器主要由金属导体形成的谐振齿及壳体组成,谐振齿以及壳体分别单独加工后再进行组装,在安装时,谐振齿通常需要增加支撑结构置于壳体内,且接地点需要通过焊接或者螺钉紧固方式与壳体相连接,因此,该悬置带线滤波器具有较多的装配工序及互调点,造成装配工序复杂,且需要对多个互调点分别进行互调分析的问题。
为解决上述技术问题,本申请提供一种滤波器及其制作方法以及天线。以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
实施例一
图2为本申请一种实施例的滤波器的结构示意图,如图2所示,在本申请一种实施例中,该滤波器30包括壳体31和谐振齿261,壳体31和谐振齿261采用一体化结构的板体弯折形成。图3为本申请一种实施例的一体化板状结构的板体20的结构示意图,如图3所示,该板体20包括n个依次连接的子板,沿n个子板的排列方向,n个子板可依次记为第一子板、第二子板、……、和第n子板,n可为大于等于3的整数。如图2和图3所示,n个依次连接的子板弯折对接后可形成壳体31,形成的壳体31的主体结构为两端开口的中空柱体结构,其中第一子板和第n子板闭合连接。其中,第一子板和第n子板的连接可采用焊接、铆接、粘结等方式固定连接,也可利用锁紧件如螺钉、螺栓等方式固定连接。
继续参照图2和图3,在本申请一种实施例中,n的取值可为5,该5个子板按照排列方向依次记为第一子板21、第二子板22、第三子板23、第四子板24和第五子板25。该壳体31中,第一子板21和第五子板25闭合连接,第一子板21和第五子板25闭合连接后形成壳体31的一个侧壁,第二子板22、第三子板23和第四子板24分别形成壳体31的另外三个侧壁,其中,第一子板21与第五子板25闭合连接后与第三子板23相对设置,第二子板22与第四子板24相对设置。由此,五个子板围设形成的壳体31的形状为四面体形状。
继续参照图2和图3,在本申请一种实施例中,沿壳体31的周向,即沿着壳体的侧壁,由第一子板依次经第二子板、第三子板和第四子板指向第五子板的方向,第一子板21与第五子板25形成的侧壁的形状面积与第三子板23对应形成的侧壁的形状面积相同,第二子板22形成的侧壁的形状面积与第四子板24形成的侧壁的形状面积相同,这样,第一子板21、第二子板22、第三子板23、第四子板24和第五子板25可形成两端开口的长方体形状的壳体31。
可以理解的是,上述五个子板形成的壳体的形状仅为示例性说明,壳体的形状除可形成上述四面体的结构外,还可根据具体的使用的子板的数量形成其他形状的结构。例如, 当n为三个时,形成的壳体的形状可为三面体结构。当n为四个时,可形成三面体或四面体结构,其中,当第一子板和第四子板对接共同形成壳体的一个侧壁时,该四个子板可形成三面体形状的壳体;而当第一子板和第四子板对接后分别形成壳体的两个侧壁时,该四个子板可形成四面体形状的壳体。同样,当n为六时,可形成五面体或六面体结构的壳体,在此,本申请实施例不对壳体的具体形状做出限定,可根据具体的应用场景进行设计。
继续参照图2和图3,在本申请一种实施例中,板体20还包括多个谐振齿261,多个谐振齿261设于靠近第n子板的一侧,且多个谐振齿261中的至少一个与第n子板连接,例如与第五子板连接。谐振齿261位于由壳体31围设形成的空腔内。其中,谐振齿261的数量可为多个,例如3个、4个、5个、6个、7个或更多,在此本申请实施例不对谐振齿261的数量做具体的限定。多个谐振齿261可以梳齿状结构排列,任一谐振齿261的一端可与第五子板25一体连接,另一端为自由端。该实施例滤波器30结构中,谐振齿261的延伸方向可与第二子板22和第四子板24平行,同时与第三子板23垂直。
参照图3所示,在本申请一种实施例中,任意两相邻谐振齿261之间还可设置连接导体262,该连接导体262可作为谐振齿261之间的信号传输导线。最外侧的谐振齿261还可设置信号输入端263和信号输出端264,以便于连接外部线路。该结构的滤波器30可作为带通滤波器。
一并参照图2和图3,在本申请的一种实施例中,第四子板24可设置调谐部27,在滤波器30中,调谐部27与谐振齿261的自由端对应设置。其中,调谐部27与谐振齿261的自由端对应设置,可理解为,两者在谐振齿261自由端的振动方向相对设置。通过设置调谐部27可对滤波器30的传输信号频率进行微调,以使滤波器30的滤波作用更精确。其中,在本申请一种实施例中,在设置调谐部27时,可使调谐部27的一端与第四子板24连接,调谐部27的自由端可在外力的作用下沿靠近或远离谐振齿261自由端的方向移动,而在不受外力作用时是固定不动的。具体的,在本申请一种实施例中,在设置调谐部27时,第四子板24设有开孔,调谐部27设于开孔内,其一端与第四子板24连接,另一端为自由端,这样,该调谐部27的自由端可在外力作用下更改位置。当调谐部27的自由端受到朝向空腔内的作用力时,该调谐部27的自由端可移动至更靠近谐振齿261的自由端的位置;当调谐部27的自由端受到朝向空腔外的作用力时,该调谐部27的自由端可移动至更远离谐振齿261的自由端的位置。可以理解的是,本申请中并未对调谐部27的形状做具体的限定,例如其形状可为矩形或椭圆形、或矩形和半圆形的组合等。可以理解的是,调谐部27除可设置在第四子板24外,还可设置于第二子板22,也可产生相同的调谐效果。
以下将结合附图对本申请实施例的滤波器的制作方法做具体说明。
图4为本申请一种实施例的滤波器的制作方法流程示意图,如图4所示,本申请一种实施例的滤波器30的制作方法包括以下步骤:
步骤S101、提供一体化板状结构的板体,其中,一体化板状结构的板体的结构可参照图3所示。
如图3所示,在本申请一种实施例中,沿板体20的第一方向,如图3中的X方向,该板体20包括依次排列的第一子板21、第二子板22、第三子板23、第四子板24、第五子板25和多个谐振齿261,第一子板21、第二子板22、第三子板23、第四子板24和第五子板25任意相邻的两个子板之间设有一条弯折痕,第五子板与多个谐振齿之间也设有 弯折痕。继续参照图3,在本申请一种实施例中,每个谐振齿261与第五子板25直接连接,自第五子板25向远离第五子板25的方向延伸,每个谐振齿261的远离第五子板25的一端为自由端。其中,谐振齿261的数量例如可大于等于3个,例如可为4个、5个、6个、7个、8个或更多个,具体谐振齿261的数量根据滤波器30所需的传输信号进行设定。多个谐振齿261之间可形成梳齿状结构。
步骤S102、沿弯折痕对第一子板21、第二子板22、第三子板23、第四子板24和第五子板25进行弯折,弯折后第一子板21与第五子板25闭合连接,以使第一子板21、第二子板22、第三子板23、第四子板24和第五子板25形成滤波器30的壳体31,其中,弯折时将多个谐振齿261折入壳体31围设形成的空腔内,弯折后形成的一种实施例的滤波器30的结构如图2所示。如图2所示,在本申请一种实施例中,弯折后第一子板21、第二子板22、第三子板23、第四子板24和第五子板25形成四面体结构的壳体31,其中,第一子板21与第五子板25闭合连接后形成壳体31的一个侧壁,第二子板22、第三子板23和第四子板24分别形成壳体31的另外三个侧壁,多个谐振齿261位于壳体31围设形成的空腔内,且谐振齿261的自由端与壳体31分离。
可以理解的是,当板体20含有n个子板时,第一子板21至第n子板用于形成壳体31,谐振齿261与第n子板连接,弯折时,第一子板21和第n子板对接,多个谐振齿261从第一子板21和第n子板对接的部位处折入壳体31的空腔内。
在本申请一种实施例中,滤波器的制作方法还可包括利用冲压工艺形成板体的步骤。其中,在本申请一种实施例中,利用冲压工艺形成板体包括:提供一体化结构的金属板,图5为本申请一种实施例的金属板10的结构示意图,结合图3和图5,利用冲压工艺在金属板10表面加工n条间隔设置的弯折痕,以形成第一子板21、第二子板22、……、第n子板和用于加工谐振齿的第n+1子板。当n为5时,可利用冲压工艺在金属板10的表面形成5条弯折痕,以将金属板10划分为第一子板21、第二子板22、第三子板23、第四子板24、第五子板25和第六子板26。其中,金属板10例如可为铜板,其厚度例如可为0.5-2mm,金属板10的材质以及厚度可根据具体的滤波器30的应用场景以及应用尺寸进行设定,在此不做具体的限定。
在本申请一种实施例中,结合图3和图5,利用冲压工艺形成板体还包括:在第n+1子板对应的金属板10的区域,利用冲压工艺加工形成谐振齿261。当n为5时,可利用冲压工艺在第六子板26对应的区域形成谐振齿261。其中,弯折痕和谐振齿261,可采用一次冲压工艺同步形成,也可采用分步冲压工艺分别形成,对此,本申请实施例不做具体的限定。另外,在加工谐振齿261时,还可同时利用冲压工艺形成连接导体262。此外,还可利用冲压工艺在第二子板22或第四子板24形成调谐部27。
实施例二
图6为本申请另一种实施例的滤波器的结构示意图,图7为本申请另一种实施例的一体化结构的板体20的结构示意图。如图6和图7所示,本申请实施例与上述实施例一中滤波器30的不同之处在于谐振齿261的结构不同。如图6和图7所示,在本申请一种实施例中,谐振齿261的形状为L形,多个谐振齿261之间间隔设置,多个谐振齿261之间通过连接导体262连接,并通过连接导体262进行信号的传输。该实施例中,连接导体262可为一根长条形结构的导体,该连接导体262可设于远离第五子板25的一侧。连接导体262的一端可作为信号输入端263,连接导体262的另一端可作为信号输出端264。
继续参照图7,多个谐振齿261中,其中部分谐振齿261的一端可与第五子板25连接,另一端为自由端。该部分谐振齿261在与连接导体262连接时,连接导体262可与该部分谐振齿261的中间部位电连接。其余谐振齿261的一端可与连接导体262连接,另一端为自由端。
一并参照图6和图7,在本申请一种实施例中,谐振齿261的数量可为三个,其中两个谐振齿261中每个谐振齿261的一端与第五子板25连接,另一端为自由端,任一谐振齿261的中间部位与连接导体262连接。另外一个谐振齿261,其一端与连接导体262连接,另一端为自由端。
本申请实施例滤波器的制作方法可参照实施例一中滤波器的制作方法进行,可对图7所示结构的板体进行弯折,以形成滤波器。一并参照图6和图7,利用图7所示结构的板体20形成的滤波器30,同样,可利用第一子板21、第二子板22、第三子板23、第四子板24和第五子板25形成滤波器30的壳体31,该壳体31也为四面体结构,第一子板21和第五子板25对接后形成壳体31的一个侧壁,第二子板22、第三子板23和第四子板24形成壳体31的另外三个侧壁,第一子板21与第五子板25闭合连接后与第三子板23相对设置,第二子板22与第四子板24相对设置,谐振齿261以及连接导体262位于该壳体31围设形成的空腔内。该结构的滤波器30可作为带阻滤波器30使用。
继续参照图7,在本申请一种实施例中,在第一方向,即图中所示X方向,第一子板21与第五子板25的宽度尺寸与第三子板23的宽度尺寸相同,可使第一子板21与第五子板25连接后形成的面积与第三子板的面积相同;且在该第一方向,第二子板22的宽度尺寸与第四子板24的宽度尺寸相同,可是第二子板22的面积与第四子板24的面积相同。由此,形成壳体31后,第一子板21和第五子板25形成的侧壁与第三子板23形成的侧壁平行,第二子板22形成的侧壁与第四子板24形成的侧壁平行,可便于形成相互垂直的四面体结构。
图8为本申请一种实施例的第一子板21和第五子板25对接处的结构示意图,一并参照图7和图8,在本申请一种实施例中,当第一子板21和第五子板25的形状面积相同时,第一子板21和第五子板25可分别为第三子板23面积的一半,由此,可使谐振齿261位于空腔的等分线上。第一子板21和第五子板25对接时,可采用焊接的方式对接,或采用粘接的方式对接。图9为本申请另一实施例中第一子板21和第五子板25对接处的结构示意图,如图9所示,第一子板21的面积可大于第五子板25在面积,由此,两者在对接时,可存在重叠区域,以便于用锁紧件28对第一子板21和第五子板25进行固定,固定连接后,第一子板21和第五子板25形成的壳体的侧壁面积与第三子板的面积相同。锁紧件28例如可为铆钉或螺钉等元件。图8和图9所示对接方式仅为示例性说明,其他可固定第一子板21和第五子板25的方式均在本申请实施例的范围内。
本申请实施例提供的滤波器,可采用冲压和弯折的一体化成型工艺制备而成,以减少不同零部件的装配工序,制备成本低;另外,一体化形成的滤波器,可减少不同零部件间的接触,进而减少了互调点和互调工序,简化了组装流程。此外,本申请实施例滤波器的制作方法,可采用薄板金属板,整体厚度较薄,可减少滤波器的整体重量。在制备过程中,通过冲压工艺可得到不同结构的谐振齿、不同结构的连接导体,进而可得到带通滤波器和带阻滤波器。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本 技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种滤波器,其特征在于,包括壳体和多个间隔设置的谐振齿,所述壳体和所述多个谐振齿由一体化板体形成,且所述多个谐振齿位于所述壳体内;其中,
    所述板体包括n个依次连接的子板,在n个所述子板的排列方向,依次分为第一子板、第二子板、……、和第n子板,所述第一子板和所述第n子板闭合连接,n个所述子板围设形成所述壳体;n为大于等于3的整数;
    所述板体还包括所述多个谐振齿,所述多个谐振齿中的至少一个与所述第n子板连接,所述谐振齿设有自由端。
  2. 根据权利要求1所述的滤波器,其特征在于,n的取值为5,所述壳体中,所述第一子板与第五子板闭合连接并与第三子板相对设置,第二子板与第四子板相对设置。
  3. 根据权利要求2所述的滤波器,其特征在于,所述第一子板与所述第五子板的总面积与所述第三子板的面积相同。
  4. 根据权利要求3所述的滤波器,其特征在于,所述第二子板的面积与所述第四子板的面积相同。
  5. 根据权利要求2-4任一项所述的滤波器,其特征在于,所述第二子板或所述第四子板设有调谐部,所述调谐部与所述谐振齿的自由端对应设置。
  6. 根据权利要求5所述的滤波器,其特征在于,所述调谐部的一端与所述第二子板或所述第四子板连接,所述调谐部的自由端能够沿靠近或远离所述谐振齿自由端的方向移动。
  7. 一种滤波器的制作方法,其特征在于,包括:对一体化板体进行弯折形成所述滤波器,其中,
    沿所述板体的第一方向,所述板体包括依次连接的第一子板、第二子板、……、第n子板和多个谐振齿,所述第一子板、所述第二子板、……、所述第n子板任意两相邻子板之间设有弯折痕,n为大于等于3的整数;所述第n子板和所述多个谐振齿之间设有弯折痕,所述多个谐振齿中的至少一个与所述第n子板连接;
    沿所述弯折痕对所述第一子板、所述第二子板、……和所述第n子板进行弯折,所述第一子板与所述第n子板闭合连接,所述第一子板、所述第二子板、……、以及所述第n子板形成所述滤波器的壳体;沿弯折痕将所述多个谐振齿折入所述壳体内,所述谐振齿设有自由端。
  8. 根据权利要求7所述的制作方法,其特征在于,所述制作方法还包括:利用冲压工艺形成所述板体的步骤。
  9. 根据权利要求8所述的制作方法,其特征在于,所述利用冲压工艺形成所述板体包括:利用冲压工艺在一体化的金属板表面加工n条间隔设置的弯折痕,以形成所述第一子板、所述第二子板、……、所述第n子板和用于加工谐振齿的子板;并利用冲压工艺在所述用于加工谐振齿的子板加工形成所述多个谐振齿。
  10. 根据权利要求7-9任一项所述的制作方法,其特征在于,n的取值为5,弯折后形成的所述壳体中,所述第一子板与第五子板闭合连接后与第三子板相对设置,第二子板与第四子板相对设置。
  11. 根据权利要求10所述的制作方法,其特征在于,所述第一子板与所述第五子板的总面积与所述第三子板的面积相同。
  12. 根据权利要求11所述的制作方法,其特征在于,所述第二子板的面积与所述第四子板的面积相同。
  13. 一种滤波器,其特征在于,利用权利要求7-12任一项所述的制作方法制备得到。
  14. 一种天线,其特征在于,包括权利要求1-6任一项所述的滤波器或权利要求13所述的滤波器。
PCT/CN2022/107659 2021-07-29 2022-07-25 滤波器及其制作方法和天线 WO2023005884A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110863257.XA CN115693056A (zh) 2021-07-29 2021-07-29 滤波器及其制作方法和天线
CN202110863257.X 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023005884A1 true WO2023005884A1 (zh) 2023-02-02

Family

ID=85059175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107659 WO2023005884A1 (zh) 2021-07-29 2022-07-25 滤波器及其制作方法和天线

Country Status (2)

Country Link
CN (1) CN115693056A (zh)
WO (1) WO2023005884A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091806A (ja) * 1998-09-09 2000-03-31 Nec Corp バンドエリミネーションフィルタ
JP2009232037A (ja) * 2008-03-21 2009-10-08 Panasonic Corp フィルタ装置用の枠体と、これを用いたフィルタ装置
CN209133656U (zh) * 2018-08-27 2019-07-19 重庆思睿创瓷电科技有限公司 一种介质块、介质波导滤波器及电磁波设备
CN110380170A (zh) * 2019-07-10 2019-10-25 广东通宇通讯股份有限公司 一种afu天线及其滤波器
CN110492208A (zh) * 2019-07-26 2019-11-22 西安电子科技大学 小型化的扁平同轴腔体滤波器
CN212303856U (zh) * 2019-04-26 2021-01-05 微数据电子创新斯德哥尔摩股份公司 金属片材射频腔体滤波器
CN112514156A (zh) * 2018-08-01 2021-03-16 株式会社Eltronix 高通滤波器
CN112838347A (zh) * 2021-02-26 2021-05-25 江苏亨鑫科技有限公司 一种框架式谐振器及滤波器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091806A (ja) * 1998-09-09 2000-03-31 Nec Corp バンドエリミネーションフィルタ
JP2009232037A (ja) * 2008-03-21 2009-10-08 Panasonic Corp フィルタ装置用の枠体と、これを用いたフィルタ装置
CN112514156A (zh) * 2018-08-01 2021-03-16 株式会社Eltronix 高通滤波器
CN209133656U (zh) * 2018-08-27 2019-07-19 重庆思睿创瓷电科技有限公司 一种介质块、介质波导滤波器及电磁波设备
CN212303856U (zh) * 2019-04-26 2021-01-05 微数据电子创新斯德哥尔摩股份公司 金属片材射频腔体滤波器
CN110380170A (zh) * 2019-07-10 2019-10-25 广东通宇通讯股份有限公司 一种afu天线及其滤波器
CN110492208A (zh) * 2019-07-26 2019-11-22 西安电子科技大学 小型化的扁平同轴腔体滤波器
CN112838347A (zh) * 2021-02-26 2021-05-25 江苏亨鑫科技有限公司 一种框架式谐振器及滤波器

Also Published As

Publication number Publication date
CN115693056A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
JP3879548B2 (ja) 導波管形偏分波器
CN102282778B (zh) 一种集成天线
US20140097913A1 (en) Multi-mode filter
CN109478705B (zh) 同轴线-波导管转换器
JP2013533700A (ja) Pcbに取り付けられたマイクロ波リエントラント型共振空洞のためのカップリング機構
WO2020155723A1 (zh) 移相馈电装置及基站天线
WO2019050284A1 (ko) 안테나 엘리먼트간 격리 구조를 갖는 안테나 장치
WO2023005884A1 (zh) 滤波器及其制作方法和天线
KR100561634B1 (ko) 유도성 아이리스를 갖는 전계면 결합망 구조의 도파관다이플렉서
CN212412206U (zh) 馈电网络、天线系统及基站
JP2001060801A (ja) 誘電体共振器装置、誘電体フィルタ、複合誘電体フィルタ装置、誘電体デュプレクサおよび通信装置
EP3297092B1 (en) Cable and high-frequency device using same
US10033075B2 (en) Cross coupled band-pass filter
US20180048043A1 (en) Radio frequency filter having cavity structure
WO2022085881A1 (en) Wireless board-to-board interconnect for high-rate wireless data transmission
CN210926308U (zh) 一种双极化双工振子和天线
CN113013563A (zh) 滤波装置
CN111755779A (zh) 一种元器件通信装置
JP4076594B2 (ja) 導波管形分波器及び偏分波器
CN219436118U (zh) 一种耦合组件和定向耦合器
WO2022141004A1 (zh) 信号收发装置、馈电结构和天线
CN219436117U (zh) 一种定向耦合器
CN219436149U (zh) 介质谐振天线及终端设备
CN219144465U (zh) 具有介电tm01模式谐振器的电子系统和设备
CN214254694U (zh) 一种定向电桥

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE