WO2023004892A1 - 一种温度控制系统及方法、装置、存储介质 - Google Patents

一种温度控制系统及方法、装置、存储介质 Download PDF

Info

Publication number
WO2023004892A1
WO2023004892A1 PCT/CN2021/112826 CN2021112826W WO2023004892A1 WO 2023004892 A1 WO2023004892 A1 WO 2023004892A1 CN 2021112826 W CN2021112826 W CN 2021112826W WO 2023004892 A1 WO2023004892 A1 WO 2023004892A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
exhaust
preset temperature
control
comparison result
Prior art date
Application number
PCT/CN2021/112826
Other languages
English (en)
French (fr)
Inventor
张国庆
杨苏
孙多才
洪兴峰
李义群
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/647,738 priority Critical patent/US20230029782A1/en
Publication of WO2023004892A1 publication Critical patent/WO2023004892A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present disclosure relates to but not limited to a temperature control system, method, device, and storage medium.
  • wafers are the basic material for manufacturing integrated circuits, on which various circuit element structures can be processed.
  • the wafer is transported to the process chamber.
  • the pressure and temperature in the process chamber have a great influence on the wafer production. quality, reducing the yield of wafers.
  • the disclosure provides a temperature control system, method, device, and storage medium.
  • An embodiment of the present disclosure provides a temperature control method, the method comprising:
  • the exhaust volume of the exhaust channel of the process chamber is adjusted to control the temperature of the reaction window.
  • An embodiment of the present disclosure provides a temperature control device, which is applied to a semiconductor machine, and the device includes:
  • An acquisition module configured to acquire the current temperature of the reaction window in the process chamber of the semiconductor machine
  • a temperature comparison module configured to compare the current temperature with a preset temperature to obtain a comparison result
  • An adjustment module configured to adjust the exhaust volume of the exhaust channel of the process chamber according to the comparison result, so as to control the temperature of the reaction window.
  • An embodiment of the present disclosure provides a temperature control system, which is applied to a semiconductor machine, and the system includes:
  • the temperature sensing component is arranged on the reaction window of the process chamber of the semiconductor machine, and is used to sense the temperature of the reaction window;
  • the control component is connected with the temperature sensing component, and is used for: acquiring the current temperature of the reaction window from the temperature sensing component; comparing the current temperature with a preset temperature to obtain a comparison result; based on the Comparing the results, controlling the exhaust adjustment component to adjust the exhaust volume of the exhaust channel of the process chamber to control the temperature of the reaction window;
  • the exhaust regulating component is arranged on the exhaust channel of the process chamber, connected with the control component, and used to control the exhaust volume of the exhaust channel.
  • An embodiment of the present disclosure provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps in the above method are implemented.
  • FIG. 1 is a schematic flow diagram of a temperature control method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flow diagram of a temperature control method provided by an embodiment of the present disclosure
  • FIG. 3A is a schematic flow diagram of a temperature control method provided by an embodiment of the present disclosure.
  • FIG. 3B is a schematic flow diagram of a temperature control method provided by an embodiment of the present disclosure.
  • FIG. 4A is a schematic diagram of the composition and structure of a temperature control system provided by an embodiment of the present disclosure
  • FIG. 4B is a schematic diagram of the composition and structure of a control component provided by an embodiment of the present disclosure.
  • FIG. 5A is a schematic diagram of the composition and structure of a temperature control system provided by an embodiment of the present disclosure
  • FIG. 5B is a schematic diagram of the composition and structure of a control component provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of the composition and structure of a temperature control device provided by an embodiment of the present disclosure.
  • first/second in this disclosure document, the following explanations will be added.
  • first ⁇ second ⁇ third are only used to distinguish similar objects, not Represents a specific ordering of objects, and it can be understood that “first ⁇ second ⁇ third” can be exchanged for a specific order or sequence if allowed, so that the embodiments of the present disclosure described here can be used in addition to the Carried out in sequences other than those shown or described.
  • the exhaust system of the machine has no temperature feedback system, and no technology for automatically controlling the opening is used.
  • the exhaust is fully open naturally, and the exhaust volume will not be adjusted according to the temperature change of the reaction window to control the temperature;
  • the heater exhaust of the reaction window is still fully open, and the temperature will drop rapidly , engineers have no time to deal with it; in addition, during the wafer production process, the temperature in the reaction chamber cannot be stabilized only by controlling the heater output power of the reaction window.
  • An embodiment of the present disclosure provides a temperature control method, as shown in FIG. 1 , the method includes:
  • Step S101 Obtain the current temperature of the reaction window in the process chamber of the semiconductor machine
  • the process chamber can be used for wafer processing, and the processing process can be to perform plasma etching on the wafer.
  • the reaction window can be located above a plasma generator, such as a transformer-coupled plasma, and the reaction window can be heated to Control the temperature in the process chamber;
  • the treatment process can also be sputter deposition of metal on the wafer with photoresist, the reaction window can be located above the sputter source, and the temperature in the process chamber can be controlled by heating the reaction window when sputtering metal ; It can also be other treatment processes that require temperature control.
  • the current temperature of the reaction window can be obtained by arranging a temperature sensor on the reaction window, or the current temperature of the reaction window can be obtained by arranging a temperature sensor on the reaction window.
  • Step S102 Comparing the current temperature with a preset temperature to obtain a comparison result
  • the preset temperature includes at least one temperature value, which can be a specific temperature value or a temperature range. In this temperature range, the machine can work normally and the amount of by-products generated is small, and the possibility of wafer damage Sex is also lower.
  • the preset temperature can be the corresponding temperature value or temperature range when the machine can work normally and the yield of wafers produced is the highest. For example, at 118 degrees Celsius, the yield of wafers produced is 99.1%. , the yield rate of wafers produced is 99.9%, and at 125 degrees Celsius, the yield rate of wafers produced is 99%, so the preset temperature can be 120 degrees Celsius.
  • Step S103 Based on the comparison result, adjust the exhaust volume of the exhaust channel of the process chamber to control the temperature of the reaction window.
  • the gas flow cross-sectional area of the exhaust channel can be adjusted to adjust the exhaust volume of the exhaust channel of the process chamber. For example, when the current temperature is higher than the preset temperature, the gas flow cross-sectional area can be increased to achieve Cooling, when the current temperature is lower than the preset temperature, the cross-sectional area of the gas flow can be reduced to achieve temperature rise; the gas flow rate of the exhaust channel can also be adjusted to adjust the exhaust volume of the exhaust channel of the process chamber, for example , when the current temperature is higher than the preset temperature, the gas flow rate can be increased to achieve cooling; when the current temperature is lower than the preset temperature, the gas flow rate can be reduced to achieve temperature rise; the exhaust channel can also be adjusted at the same time
  • the cross-sectional area of the gas flow and the gas flow rate are used to adjust the exhaust volume of the exhaust channel of the process chamber.
  • the rate of temperature reduction can be increased or decreased by adjusting the exhaust volume of the exhaust passage of the process chamber, so that the reduction or increase of temperature can be controlled indirectly;
  • the output power of the heating element controls the temperature of the reaction window.
  • the output power of the heating component and the exhaust volume of the exhaust channel of the process chamber are adjusted so that the two cooperate with each other to control the reaction window, so that the temperature of the reaction window can be quickly stabilized. For example, when the current temperature is lower than the preset temperature, the heating component can be turned on so that the output power of the heating component reaches the rated power, and the exhaust volume is reduced.
  • the current temperature is close to the preset temperature, for example, the current temperature and the preset The temperature difference is 5 degrees Celsius, you can slowly reduce the output power of the heating component, and finally make the current temperature equal to the preset temperature; for example, when the current temperature is higher than the preset temperature, you can directly turn off the heating component and increase the exhaust volume, Finally make the current temperature equal to the preset temperature.
  • the exhaust volume of the exhaust channel of the process chamber can be adjusted according to the temperature change of the reaction window, so that the temperature of the reaction window can be effectively controlled to be stable.
  • the method further includes: acquiring a working state of a heating component of a reaction window in the semiconductor tool.
  • step S101 includes: acquiring the current temperature of the reaction window in the process chamber of the semiconductor tool when the working state of the heating component is turned on.
  • the heating component may be an infrared heater, or a resistance heater or an electromagnetic heater.
  • the working state of the heating component can be on or off.
  • the working state of the heating component can be determined by detecting the output power of the heating component. For example, when the output power is zero, it can be determined that the working state of the heating component is off; when the output power is greater than zero, It can be determined that the working state of the heating element is on. It is also possible to determine the working state of the heating component by detecting whether there is current in the heating component. For example, when there is current in the heating component, it can be determined that the working state of the heating component is on, and in the case of no current in the heating component, It can be determined that the working state of the heating element is off.
  • An embodiment of the present disclosure provides a temperature control method, as shown in FIG. 2 , the method includes:
  • Step S201 Obtain the current temperature of the reaction window in the process chamber of the semiconductor machine
  • Step S202 comparing the current temperature with a preset temperature to obtain a comparison result
  • Step S203 Based on the comparison result, adjust the opening of the exhaust valve of the exhaust channel of the process chamber to control the temperature of the reaction window.
  • the exhaust valve may be an electronically controlled valve, and different openings correspond to different gas flow cross-sectional areas, that is, corresponding to different exhaust volumes.
  • the larger the exhaust volume the greater the gas exchange between the gas in the process chamber and the external environment. The greater the rate, the faster the temperature drops.
  • the preset temperature includes a first preset temperature.
  • step S202 includes: comparing the current temperature with the first preset temperature to obtain a comparison result.
  • step S203 includes step S203a: increasing the opening degree of the exhaust valve when the current temperature is greater than the first preset temperature.
  • step S203 includes: step S203b: if the current temperature is lower than the first preset temperature, decrease the opening degree of the exhaust valve.
  • the preset temperature further includes a second preset temperature
  • the second preset temperature is greater than the first preset temperature.
  • step S202 further includes: comparing the current temperature with the second preset temperature to obtain a comparison result.
  • step S203a includes: increasing the opening degree of the exhaust valve to fully open when the current temperature is greater than the second preset temperature.
  • the temperature of the reaction window needs to be lowered more quickly to maintain a stable temperature of the reaction window. Therefore, the cross-sectional area of the gas flow can be adjusted to the maximum, that is, the valve is fully opened, thereby reducing by-products The generation of wafers improves the yield of wafer production.
  • the preset temperature further includes a third preset temperature, and the third preset temperature is lower than the first preset temperature.
  • step S202 further includes: comparing the current temperature with the third preset temperature to obtain a comparison result.
  • step S203b includes: reducing the opening of the exhaust valve to fully closed when the current temperature is lower than the third preset temperature.
  • the first preset temperature, the second preset temperature and the third preset temperature may have been set when the machine leaves the factory, or may be set by later engineers themselves.
  • different first preset temperature, second preset temperature and third preset temperature can be set, for example, in the case of plasma etching process, the first preset temperature Assume that the temperature can be 120 degrees Celsius, the second preset temperature can be 125 degrees Celsius, and the third preset temperature can be 115 degrees Celsius; for example, in the case of performing a plasma enhanced chemical vapor deposition process, the first preset temperature Assume that the temperature may be 300 degrees Celsius, the second preset temperature may be 310 degrees Celsius, and the third preset temperature may be 290 degrees Celsius.
  • the current temperature of the reaction window in the process chamber of the semiconductor machine is compared with the first preset temperature, the second preset temperature, and the third preset temperature, and according to the comparison result, adjust The opening of the exhaust valve can quickly return to the preset temperature by increasing or decreasing the exhaust volume when the current temperature of the reaction window deviates from the preset temperature, so as to effectively control the temperature of the reaction window, so that It remains stable, reducing by-products due to temperature changes, thereby reducing the chance of product defects.
  • An embodiment of the present disclosure provides a temperature control method, as shown in FIG. 3A, the method includes:
  • Step S301 Obtain the working status of the heating component of the reaction window in the process chamber of the semiconductor machine
  • the working state of the heating component includes off or on.
  • Step S302 When the working state of the heating assembly is off, reduce the opening of the exhaust valve of the exhaust channel of the process chamber to fully closed.
  • the working state of the heating component is off.
  • the temperature of the reaction window is too high, for example, when the preset alarm temperature is reached, or the vacuum degree in the reaction chamber is not within the preset vacuum degree range, the machine will generate an alarm, thus triggering the joint lock, the heating element will be switched off.
  • the temperature control method also includes: The step of described method also comprises:
  • Step S303 Acquiring the current temperature of the reaction window when the working state of the heating component is on
  • Step S304 comparing the current temperature with the preset temperature to obtain a comparison result
  • Step S305 Adjust the opening of the exhaust valve based on the comparison result.
  • the control exhaust valve when the heating component is turned off, the control exhaust valve is fully closed, which can realize the deceleration and cooling in the reaction chamber, and provide enough time for the engineer to deal with the alarm. After the engineer has dealt with the alarm, open the Heating components can reduce the phenomenon that rapid cooling will make the defect of the product more serious.
  • the adjusting the exhaust volume of the exhaust channel of the process chamber based on the comparison result to control the temperature of the reaction window includes: based on the comparison result, adjusting the The exhaust volume of the exhaust channel of the chamber and the output power of the heating component are adjusted to control the temperature of the reaction window.
  • the exhaust volume can be increased while reducing the output power of the heating component, for example, adjusting the output power to 40% of the rated power to 50%, the temperature of the reaction window can be better controlled, the temperature control is fast, and the cost can be saved at the same time.
  • the exhaust valve can be controlled to control the gas flow; on the other hand, the working power of the heating component can be controlled and adjusted to maintain the temperature of the reaction window at the preset temperature. In this way, the attachment of appendages on the surface of the reaction window and the formation of particles falling to contaminate the wafer are avoided. In addition, maintaining the temperature of the reaction window can ensure the stability of chemical reactions in the plasma and maintain the uniformity of critical dimensions.
  • the exhaust volume of the exhaust channel of the process chamber is increased to increase heat dissipation, and at the same time, reduce the heat dissipation of the heating element. Output power, and then adjust the exhaust volume of the exhaust channel to gradually decrease. The two assist each other, so that the problem that the quality of the first wafer in the first batch is different from other wafers can be avoided.
  • An embodiment of the present disclosure provides a temperature control system applied to a semiconductor machine, as shown in FIG. 4A , the system includes:
  • the temperature sensing component 410 is arranged on the reaction window 441 of the process chamber 440 of the semiconductor machine, and is used to sense the temperature of the reaction window 441;
  • the temperature sensing component may be any suitable temperature sensor or temperature sensor, for example, a thermal resistance sensor and a thermocouple sensor. There may be two temperature sensing components, one is used to sense the temperature within the normal difference range, and the other is used to sense the temperature within the abnormal range, wherein the temperature within the abnormal range refers to the temperature that causes the machine to generate an alarm.
  • the control component 420 is connected with the temperature sensing component 410, and is used for: obtaining the current temperature of the reaction window 441 from the temperature sensing component 410; comparing the current temperature with a preset temperature to obtain a comparison result ; Based on the comparison result, controlling the exhaust gas adjustment component 430 to adjust the exhaust volume of the exhaust channel 442 of the process chamber 440, so as to control the temperature of the reaction window 441;
  • the exhaust regulating assembly 430 is disposed on the exhaust passage 442 of the process chamber 440 and connected with the control assembly 420 for controlling the exhaust volume of the exhaust passage 442 .
  • the exhaust regulating component can be directly arranged on the side wall of the process chamber, or directly on the top of the process chamber, so that no exhaust pipe is arranged between the exhaust regulating component and the process chamber, saving materials.
  • the exhaust adjustment assembly may include a drive motor and an exhaust valve of the exhaust channel; wherein the drive motor is used to drive the exhaust valve to control the exhaust valve of the opening.
  • the exhaust valve may be an electric regulating valve, and by installing an electric valve positioner, a closed-loop adjustment is adopted to dynamically stabilize the valve at a position.
  • An embodiment of the present disclosure provides a temperature control system applied to a semiconductor machine, as shown in FIG. 4A , the system includes:
  • the temperature sensing component 410 is arranged on the reaction window 441 of the process chamber 440 of the semiconductor machine, and is used to sense the temperature of the reaction window 441;
  • the control component 420 is connected with the temperature sensing component 410, and is used for: obtaining the current temperature of the reaction window 441 from the temperature sensing component 410; comparing the current temperature with a preset temperature to obtain a comparison result ; Based on the comparison result, controlling the exhaust gas adjustment component 430 to adjust the exhaust volume of the exhaust channel 442 of the process chamber 440, so as to control the temperature of the reaction window 441;
  • the exhaust regulating assembly 430 is disposed on the exhaust passage 442 of the process chamber 440 and connected with the control assembly 420 for controlling the exhaust volume of the exhaust passage 442 .
  • FIG. 4B is a schematic diagram of the composition and structure of a control assembly provided by an embodiment of the present disclosure.
  • the control assembly 420 includes: a temperature comparison unit 421 and an opening control unit 422; wherein,
  • the temperature comparison unit 421 is configured to: obtain the current temperature of the reaction window from the temperature sensing component; compare the current temperature with a preset temperature to obtain a comparison result;
  • the degree control unit sends the opening degree control signal;
  • the opening degree control unit 422 is configured to: receive the opening degree control signal; control the driving motor to drive the exhaust valve based on the opening degree control signal, so as to control the opening degree of the exhaust valve.
  • the temperature comparison unit can be realized by a specific logic circuit controller, such as a logic temperature controller (Logic Temperature Controller, LTC), or it can be realized in the form of a software function unit, or it can be realized by a hardware logic circuit plus a software function unit. form;
  • the opening control unit can be realized by a hardware logic circuit, such as a virtual switch processor (Virtual I/O Processor, VIOP), or it can be realized in the form of a software function unit, or a hardware logic circuit plus a software function unit form is realized.
  • An embodiment of the present disclosure provides a temperature control system, which is applied to a semiconductor machine, as shown in Figure 5A, and the system includes:
  • the temperature sensing component 410 is arranged on the reaction window 441 of the process chamber 440 of the semiconductor machine, and is used to sense the temperature of the reaction window 441;
  • the control component 420 is connected with the temperature sensing component 410, and is used for: obtaining the current temperature of the reaction window 441 from the temperature sensing component 410; comparing the current temperature with a preset temperature to obtain a comparison result ; Based on the comparison result, controlling the exhaust gas adjustment component 430 to adjust the exhaust volume of the exhaust channel 442 of the process chamber 440, so as to control the temperature of the reaction window 441;
  • the exhaust regulating assembly 430 is disposed on the exhaust passage 442 of the process chamber 440 and connected with the control assembly 420 for controlling the exhaust volume of the exhaust passage 442 .
  • the heating assembly 450 is disposed in the process chamber 440 and used for heating the reaction window. Here, the power of the heating element can be adjusted.
  • control component 420 is also used to: obtain the working state of the heating component 450; when the working state of the heating component 450 is on, obtain the reaction window 441 in the process chamber 440 of the semiconductor machine tool the current temperature of .
  • control assembly further includes: a power control unit 423, configured to: receive a power control signal; adjust the output power of the heating assembly based on the power control signal;
  • the temperature comparison unit 421 is further configured to: send a power control signal to the power control unit 423 based on the comparison result.
  • the process chamber is separated by a ceramic plate into an upper chamber and a lower chamber, and the lower chamber may be a vacuum environment for wafer processing, such as etching or coating.
  • the system may further include a support assembly for supporting and fixing the wafer.
  • the support assembly can include a chuck and a support column, and the chuck is used for absorbing and fixing the wafer;
  • the chuck can be an electrostatic adsorption chuck (ESC, Electro Static Chuck),
  • ESC Electro Static Chuck
  • the electrostatic chuck can be equipped with an electrode layer. When a DC voltage is applied to the electrode layer, different charges will appear on the electrode layer and the wafer, thereby generating Coulomb attraction between the electrode layer and the wafer, and the wafer is adsorbed on the surface of the electrostatic chuck. .
  • the embodiments of the present disclosure provide a temperature control device.
  • Each unit included in the device and each module included in each unit can be implemented by a processor in the temperature control system; A specific logic circuit implementation.
  • the processor can be a central processing unit (Central Processing Unit, CPU), a microprocessor (Microprocessor Unit, MPU), a digital signal processor (Digital Signal Processing, DSP) or a field programmable gate array (Field Programmable Gate Array, FPGA), etc.
  • CPU Central Processing Unit
  • MPU microprocessor
  • DSP Digital Signal Processing
  • FPGA Field Programmable Gate Array
  • Fig. 6 is a schematic diagram of the composition and structure of a temperature control device provided by an embodiment of the present disclosure.
  • the temperature control device 600 includes an acquisition module 610, a temperature comparison module 620, and an adjustment module 630, wherein:
  • the acquisition module 610 is configured to acquire the current temperature of the reaction window in the process chamber of the semiconductor machine
  • the temperature comparison module 620 is configured to compare the current temperature with a preset temperature to obtain a comparison result
  • the adjustment module 630 is configured to adjust the exhaust volume of the exhaust channel of the process chamber according to the comparison result, so as to control the temperature of the reaction window.
  • the temperature comparison module is further configured to compare the current temperature with a first preset temperature to obtain a comparison result.
  • the regulating module is further configured to: reduce the opening degree of the exhaust valve when the current temperature is lower than the first preset temperature.
  • the adjustment module is further configured to: increase the opening degree of the exhaust valve when the current temperature is greater than the first preset temperature.
  • the temperature comparison module is further configured to compare the current temperature with the second preset temperature to obtain a comparison result, wherein the second preset temperature is greater than the first preset temperature .
  • the adjustment module is further configured to: increase the opening degree of the exhaust valve to fully open when the current temperature is greater than the second preset temperature.
  • the temperature comparison module is further configured to compare the current temperature with the third preset temperature to obtain a comparison result, wherein the third preset temperature is lower than the first preset temperature .
  • the regulating module is further configured to: reduce the opening of the exhaust valve to fully closed when the current temperature is lower than the third preset temperature.
  • the acquiring module is further configured to: acquire the working state of the heating component of the reaction window in the semiconductor machine; if the working state of the heating component is on, acquire the process of the semiconductor machine The current temperature of the reaction window in the chamber.
  • the adjustment module includes an exhaust volume adjustment module, and the exhaust adjustment module is configured to adjust the exhaust volume of the exhaust channel of the process chamber according to the working state of the heating component, so as to control The temperature of the reaction window.
  • the exhaust volume adjustment module reduces the opening of the exhaust valve to fully closed, which can prevent the temperature in the reaction chamber from falling when the heating component is closed. Rapid lowering, causing damage to the wafer.
  • the adjustment module includes an exhaust volume adjustment module and a power adjustment module
  • the exhaust adjustment module is configured to adjust the exhaust of the exhaust channel of the process chamber according to the working state of the heating component. to control the temperature of the reaction window
  • the power adjustment module is configured to adjust the output power of the heating component to control the temperature of the reaction window according to the comparison result.
  • the output power of the heating assembly can be adjusted only through the power adjustment module, or the exhaust volume of the exhaust channel of the process chamber can be adjusted only through the exhaust volume adjustment module, or at the same time through power adjustment
  • the module and the exhaust volume adjustment module adjust the output power of the heating component and the exhaust volume of the exhaust channel of the process chamber to improve the temperature control efficiency. For example, when the current temperature of the reaction window in the process chamber of the semiconductor machine is greater than the preset temperature, the power of the heating component can be adjusted down through the power adjustment module, and the exhaust valve can be opened through the exhaust adjustment module.
  • the power of the heating component can be increased through the power adjustment module, and the exhaust gas can be adjusted through the exhaust adjustment module.
  • the opening of the valve decreases, and the two assist each other to control the temperature of the reaction window together, stabilize the reaction window at the preset temperature, and improve the temperature control efficiency.
  • the above temperature control method is realized in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the computer software products are stored in a storage medium, and include several instructions to make
  • the temperature control system executes all or part of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes: various media that can store program codes such as U disk, mobile hard disk, read-only memory (Read Only Memory, ROM), magnetic disk or optical disk.
  • embodiments of the present disclosure are not limited to any specific combination of hardware and software.
  • an embodiment of the present disclosure provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps in the foregoing method embodiments are implemented.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units; they may be located in one place or distributed to multiple network units; Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be used as a single unit, or two or more units may be integrated into one unit; the above-mentioned integration
  • the unit can be realized in the form of hardware or in the form of hardware plus software functional unit.
  • the above-mentioned integrated units of the present disclosure are realized in the form of software function modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the computer software products are stored in a storage medium, and include several instructions to make
  • the temperature control system executes all or part of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes various media capable of storing program codes such as removable storage devices, ROMs, magnetic disks or optical disks.
  • Embodiments of the present disclosure provide a temperature control system, method, device, and storage medium, wherein the temperature control method includes: obtaining the current temperature of the reaction window in the process chamber of the semiconductor machine; The temperature is compared to obtain a comparison result; based on the comparison result, the exhaust volume of the exhaust channel of the process chamber is adjusted to control the temperature of the reaction window.
  • the exhaust volume of the exhaust channel of the process chamber can be adjusted based on the temperature change of the reaction window in the process chamber to control the temperature of the reaction window, so that the temperature of the reaction window can be effectively stabilized, which is beneficial Improve process stability and uniformity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种温度控制系统及方法、装置、存储介质,其中,所述方法包括:获取半导体机台的工艺腔室中反应窗口的当前温度(S101);对所述当前温度与预设温度进行比较,得到比较结果(S102);基于所述比较结果,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度(S103)。

Description

一种温度控制系统及方法、装置、存储介质
相关申请的交叉引用
本公开基于申请号为202110871667.9、申请日为2021年07月30日、申请名称为“一种温度控制系统及方法、装置、存储介质”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以全文引入的方式引入本公开。
技术领域
本公开涉及但不限于一种温度控制系统及方法、装置、存储介质。
背景技术
随着半导体技术的快速发展,集成电路器件的特征尺寸不断缩小,为了制造出高品质的集成电路器件,对集成电路的制造工艺及工艺结果要求越来越严苛,因为每一道工艺的处理结果都有可能影响集成电路器件的特性、品质以及使用寿命。
在半导体领域,晶圆是制造集成电路的基础材料,在晶圆上可加工制作成各种电路元件结构。通常,晶圆被传输至工艺腔体,工艺腔中的气压和温度对晶圆生产有很大的影响,温度过高或过低,都会生成副产物掉落到晶圆上,影响晶圆的品质,降低晶圆的良率。
发明内容
本公开提供一种温度控制系统及方法、装置、存储介质。
本公开实施例的技术方案是这样实现的:
本公开实施例提供一种温度控制方法,所述方法包括:
获取半导体机台的工艺腔室中反应窗口的当前温度;
对所述当前温度与预设温度进行比较,得到比较结果;
基于所述比较结果,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度。
本公开实施例提供一种温度控制装置,应用于半导体机台中,所述装置包括:
获取模块,配置为获取半导体机台的工艺腔室中反应窗口的当前温度;
温度比较模块,配置为对所述当前温度与预设温度进行比较,得到比较结果;
调节模块,配置为根据所述比较结果,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度。
本公开实施例提供一种温度控制系统,应用于半导体机台中,所述系统包括:
温度感应组件,控制组件以及排气调节组件;其中,
所述温度感应组件,设置于所述半导体机台的工艺腔室的反应窗口上,用于对所述反应窗口的温度进行感应;
所述控制组件,与所述温度感应组件连接,用于:从所述温度感应组件获取所述反应窗口的当前温度;对所述当前温度与预设温度进行比较,得到比较结果;基于所述比较结果,控制所述排气调节组件调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度;
所述排气调节组件,设置于所述工艺腔室的排气通道上,与所述控制组件连接,用于控制所述排气通道的排气量。
本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法中的步骤。
附图说明
图1为本公开实施例提供的一种温度控制方法的实现流程示意图;
图2为本公开实施例提供的一种温度控制方法的实现流程示意图;
图3A为本公开施例提供的一种温度控制方法的实现流程示意图;
图3B为本公开实施例提供的一种温度控制方法的实现流程示意图;
图4A为本公开实施例提供的一种温度控制系统的组成结构示意图;
图4B为本公开实施例提供的一种控制组件的组成结构示意图;
图5A为本公开实施例提供的一种温度控制系统的组成结构示意图;
图5B为本公开实施例提供的一种控制组件的组成结构示意图;
图6为本公开实施例提供的温度控制装置的组成结构示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面结合附图和实施例对本公开的技术方案进一步详细阐述,所描述的实施例不应视为对本公开的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
如果本公开文件中出现“第一/第二”的类似描述则增加以下的说明,在以下的描述中,所涉及的术语“第一\第二\第三”仅仅是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本公开实施例能够以除了在这里图示或描述的以外的顺序实施。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本公开实施例的目的,不是旨在限制本公开。
为了更好地理解本公开实施例提供的温度控制方法,下面先对相关技 术中半导体机台的工艺腔室中存在的问题进行说明。
发明人在实施本公开的过程中发现,相关技术中半导体机台的工艺腔室中存在以下问题:一方面,机台排气系统没有温度反馈系统,没有应用自动控制开度的技术,是纯自然全开排气,不会随着反应窗口的温度变化而调整排气量从而控制温度;另一方面,当机台发生报警时,反应窗口的加热器排气依旧全开,温度会快速降低,工程师没有时间处理;此外,在晶圆生产过程中,仅靠控制反应窗口的加热器输出功率并不能稳定反应腔体内的温度。
本公开实施例提供一种温度控制方法,如图1所示,所述方法包括:
步骤S101:获取半导体机台的工艺腔室中反应窗口的当前温度;
这里,工艺腔室可以用于进行晶圆工艺处理,处理工艺可以是对晶圆进行等离子刻蚀处理,反应窗口可以是位于等离子体产生器,例如变压器耦合等离子体的上方,通过加热反应窗口来控制工艺腔室内的温度;处理工艺也可以是在带光刻胶的晶圆上溅射沉积金属,反应窗口可以位于溅射源上方,通过加热反应窗口来控制溅射金属时工艺腔室内的温度;还可以是其他需要控制温度的处理工艺。
在实施时,可以通过在反应窗口设置温度传感器来获取反应窗口的当前温度,也可以通过在反应窗口设置温度感应器来获取反应窗口的当前温度。
步骤S102:对所述当前温度与预设温度进行比较,得到比较结果;
这里,预设温度至少包括一个温度值,可以是一个具体的温度值,也可以是一个温度范围,在这个温度范围内,机台可以正常工作并且副产物生成量较小,晶圆损坏的可能性也较低。例如,预设温度可以是机台能够正常工作并且生产的晶圆良率最高时对应的温度值或温度范围,例如,在118摄氏度时,生产晶圆的良率是99.1%,在120摄氏度时,生产的晶圆良率99.9%,在125摄氏度时,生产的晶圆良率是99%,那么,预设温度就 可以是120摄氏度。
步骤S103:基于所述比较结果,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度。
这里,可以调节排气通道的气体流通截面积来实现调节工艺腔室的排气通道的排气量,例如,在当前温度高于预设温度的情况下,可以增大气体流通截面积来实现降温,在当前温度低于预设温度的情况下,可以减小气体流通截面积来实现升温;还可以调节排气通道的气体流速来实现调节工艺腔室的排气通道的排气量,例如,在当前温度高于预设温度的情况下,可以增大气体流速来实现降温,在当前温度低于预设温度的情况下,可以减小气体流速来实现升温;还可以同时调节排气通道的气体流通截面积和气体流速来实现调节工艺腔室的排气通道的排气量。
在实施时,通过调节工艺腔室的排气通道的排气量可以增大或者减小温度降低的速率,从而可以间接控制温度的降低或升高;在反应窗口中设置加热组件,可以通过调节加热组件的输出功率控制反应窗口的温度。同时调节加热组件的输出功率和工艺腔室的排气通道的排气量,使两者相互配合,来控制反应窗口,使反应窗口的温度能够快速稳定。例如,在当前温度小于预设温度时,可以开启加热组件使加热组件的输出功率达到额定功率,并减小排气量,在当前温度接近预设温度的情况下,例如,当前温度与预设温度差值为5摄氏度,可以缓慢调小加热组件的输出功率,最终使当前温度等于预设温度;例如,在当前温度大于预设温度时,可以直接关闭加热组件,并增大排气量,最终使当前温度等于预设温度。
在本实施例中,可以根据反应窗口的温度变化调节工艺腔室的排气通道的排气量,从而能够有效控制反应窗口的温度稳定。
在一些实施例中,所述方法还包括:获取所述半导体机台中反应窗口的加热组件的工作状态。对应地,步骤S101包括:在所述加热组件的工作状态为开启的情况下,获取半导体机台的工艺腔室中反应窗口的当前温度。
这里,加热组件可以为红外加热器,还可以为电阻加热器或者电磁加热器等。加热组件的工作状态可以为开启,也可以为关闭。在实施时,可以通过检测加热组件的输出功率来确定加热组件的工作状态,例如,在输出功率为零的情况下,可以确定加热组件的工作状态为关闭;在输出功率大于零的情况下,可以确定加热组件为的工作状态为开启。也可以通过检测加热组件中是否有电流来确定加热组件的工作状态,例如,在加热组件中有电流的情况下,可以确定加热组件的工作状态为开启,在加热组件中无电流的情况下,可以确定加热组件的工作状态为关闭。
本公开实施例提供一种温度控制方法,如图2所示,所述方法包括:
步骤S201:获取半导体机台的工艺腔室中反应窗口的当前温度;
步骤S202:对所述当前温度与预设温度进行比较,得到比较结果;
步骤S203:基于所述比较结果,调节所述工艺腔室的排气通道的排气阀的开度,以控制所述反应窗口的温度。
这里,所述排气阀可以是电子控制阀,不同开度对应不同的气体流通截面积,即对应不同的排气量,排气量越大,工艺腔室内的气体与外界环境进行气体交换的速率越大,则温度下降的越快。
在一些实施例中,所述预设温度包括第一预设温度。对应地,步骤S202包括:对所述当前温度与所述第一预设温度进行比较,得到比较结果。对应地,步骤S203包括步骤S203a:在所述当前温度大于所述第一预设温度的情况下,增大所述排气阀的开度。
在一些实施例中,步骤S203包括:步骤S203b:在所述当前温度小于所述第一预设温度的情况下,减小所述排气阀的开度。
在一些实施例中,所述预设温度还包括第二预设温度,所述第二预设温度大于所述第一预设温度。对应地,步骤S202还包括:对所述当前温度与所述第二预设温度进行比较,得到比较结果。对应地,步骤S203a包括:在所述当前温度大于所述第二预设温度的情况下,增大所述排气阀的开度 至全开。这里,当温度大于第二预设温度时,需要更快速地降低反应窗口的温度,维持反应窗口的温度稳定,因此,可以将气体流通截面积调至最大,即阀门全开,从而减少副产物的生成,提高晶圆生产的良率。
在一些实施例中,所述预设温度还包括第三预设温度,所述第三预设温度小于所述第一预设温度。对应地,步骤S202还包括:对所述当前温度与所述第三预设温度进行比较,得到比较结果。对应地,步骤与S203b包括:在所述当前温度小于所述第三预设温度的情况下,减小所述排气阀的开度至全闭。
这里,第一预设温度、第二预设温度和第三预设温度可以是机台出厂时就已经设定好的,也可以是后期工程师自己设定的。在机台进行不同的工艺进程时,可以设置不同的第一预设温度、第二预设温度和第三预设温度,例如,在进行等离子体刻蚀进程的情况下,所述第一预设温度可以是120摄氏度,所述第二预设温度可以是125摄氏度,所述第三预设温度可以是115摄氏度;例如,在进行等离子增强化学气相沉积进程的情况下,所述第一预设温度可以是300摄氏度,所述第二预设温度可以是310摄氏度,所述第三预设温度可以是290摄氏度。
本实施例提供的温度控制方法,将半导体机台的工艺腔室中反应窗口的当前温度分别与第一预设温度、第二预设温度和第三预设温度比较,根据比较的结果,调节排气阀的开度,可以在反应窗口的当前温度偏离预设温度时,能够通过增大排气量或者减小排气量,迅速恢复到预设温度,从而有效控制反应窗口的温度,使其维持稳定,减少因温度变化产生的副产物,从而降低产品缺陷产生的机率。
本公开实施例提供一种温度控制方法,如图3A所示,所述方法包括:
步骤S301:获取半导体机台的工艺腔室中反应窗口的加热组件的工作状态;
这里,加热组件的工作状态包括关闭或者开启。
步骤S302:在所述加热组件的工作状态为关闭的情况下,减小所述工艺腔室的排气通道的排气阀的开度至全闭。
这里,当机台发生报警时,加热组件的工作状态为关闭。在实际应用中,当反应窗口的温度过高,例如,达到预设的报警温度时,或者反应腔室内的真空度不在预设的真空度范围内时,机台就会发生报警,从而触发联锁,加热组件就会关闭。
在一些实施例中,在机台报警后,工程师会尽快处理报警,机台异常状态处理后,会打开加热组件,加热组件的工作状态为开启,所述温度控制方法还包括如图3B所示的步骤,所述方法还包括:
步骤S303:在所述加热组件的工作状态为开启的情况下,获取所述反应窗口的当前温度;
步骤S304:对所述当前温度与预设温度进行比较,得到比较结果;
步骤S305:基于所述比较结果,调节所述排气阀的开度。
本实施例提供温度控制方法中,在加热组件处于关闭的情况下,控制排气阀全关,可以实现反应腔室内的减速降温,为工程师提供足够时间处理报警,当工程师处理完报警后,开启加热组件,可以减少快速降温使产品的缺陷更加严重的现象。
在一些实施例中,所述基于所述比较结果,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度,包括:基于所述比较结果,对所述工艺腔室的排气通道的排气量以及所述加热组件的输出功率进行调节,以控制所述反应窗口的温度。在实际应用中,在所述当前温度大于所述第一预设温度的情况下,可以增大排气量,同时减小加热组件的输出功率,例如,将输出功率调至额定功率的40%至50%,能较好的控制反应窗口的温度,控温快速,同时可以节省成本。
在反应窗口的温度与预设温度有偏差时,一方面可以控制排气阀来控制气体流量大小;另一方面可以控制调整加热组件的工作功率,以实现反 应窗口的温度维持于预设温度,从而避免反应窗口的表面上附着附属物,以及避免形成的微粒掉落污染晶圆,另外,维持反应窗口的温度可以确保等离子中化学性反应稳定性,保持关键尺寸的均匀性。
在实际应用中,由于在批量生产晶圆的情况下,当第一批中第一个晶圆进入反应腔室内,使用等离子体刻蚀晶圆就会产生较高的能量,造成反应窗口的温度异常。因此,在一些实施例中,在第一批中的第一个晶圆进入反应腔室内时,就增大工艺腔室的排气通道的排气量,增大散热,同时,减少加热组件的输出功率,之后调节排气通道的排气量缓慢变小,两者相互辅助,这样就可以避免第一批中第一片晶圆与其他晶圆品质不同的问题。
本公开实施例提供一种温度控制系统,应用于半导体机台中,如图4A所示,所述系统包括:
温度感应组件410,控制组件420以及排气调节组件430;其中,
所述温度感应组件410,设置于所述半导体机台的工艺腔室440的反应窗口441上,用于对所述反应窗口441的温度进行感应;
这里,温度感应组件可以是任意合适的温度感应器或者温度传感器,例如,热电阻传感器和热电偶传感器。温度感应组件可以为两个,一个用于感应正常差异范围内的温度,一个用于感应异常范围内的温度,其中,异常范围内的温度是指使机台发生报警的温度。
所述控制组件420,与所述温度感应组件410连接,用于:从所述温度感应组件410获取所述反应窗口441的当前温度;对所述当前温度与预设温度进行比较,得到比较结果;基于所述比较结果,控制所述排气调节组件430调节所述工艺腔室440的排气通道442的排气量,以控制所述反应窗口441的温度;
所述排气调节组件430,设置于所述工艺腔室440的排气通道442上,与所述控制组件420连接,用于控制所述排气通道442的排气量。
这里,排气调节组件可以直接设置在工艺腔室的侧壁上,也可以直接 设置在工艺腔室的顶部,这样排气调节组件和工艺腔室之间可以不设置排气管,节省材料。
在一些实施例中,所述排气调节组件可以包括驱动电机和所述排气通道的排气阀;其中,所述驱动电机,用于驱动所述排气阀,以控制所述排气阀的开度。
这里,排气阀可以是电动调节阀,通过安装电动阀门定位器,采用闭环调节来使阀门动态稳定在一个位置上。
本公开实施例提供一种温度控制系统,应用于半导体机台中,如图4A所示,所述系统包括:
温度感应组件410,控制组件420以及排气调节组件430;其中,
所述温度感应组件410,设置于所述半导体机台的工艺腔室440的反应窗口441上,用于对所述反应窗口441的温度进行感应;
所述控制组件420,与所述温度感应组件410连接,用于:从所述温度感应组件410获取所述反应窗口441的当前温度;对所述当前温度与预设温度进行比较,得到比较结果;基于所述比较结果,控制所述排气调节组件430调节所述工艺腔室440的排气通道442的排气量,以控制所述反应窗口441的温度;
所述排气调节组件430,设置于所述工艺腔室440的排气通道442上,与所述控制组件420连接,用于控制所述排气通道442的排气量。
图4B为本公开实施例提供的一种控制组件的组成结构示意图,如图4B所示,所述控制组件420包括:温度比较单元421和开度控制单元422;其中,
所述温度比较单元421,用于:从所述温度感应组件获取所述反应窗口的当前温度;对所述当前温度与预设温度进行比较,得到比较结果;基于所述比较结果向所述开度控制单元发送开度控制信号;
所述开度控制单元422,用于:接收所述开度控制信号;基于所述开度 控制信号,控制所述驱动电机驱动所述排气阀,以控制所述排气阀的开度。
这里,温度比较单元可以通过具体的逻辑电路控制器来实现,例如逻辑温度控制器(Logic Temperature Controller,LTC),也可以采用软件功能单元的形式实现,还可以采用硬件逻辑电路加软件功能单元的形式实现;开度控制单元可以通过硬件逻辑电路,例如虚拟开关处理器(Virtual I/O Processor,VIOP)来实现,也可以采用软件功能单元的形式实现,还可以采用硬件逻辑电路加软件功能单元的形式实现。
本公开实施例提供一种温度控制系统,应用于半导体机台中,如图所示5A,所述系统包括:
温度感应组件410,控制组件420、排气调节组件430以及加热组件450;其中,
所述温度感应组件410,设置于所述半导体机台的工艺腔室440的反应窗口441上,用于对所述反应窗口441的温度进行感应;
所述控制组件420,与所述温度感应组件410连接,用于:从所述温度感应组件410获取所述反应窗口441的当前温度;对所述当前温度与预设温度进行比较,得到比较结果;基于所述比较结果,控制所述排气调节组件430调节所述工艺腔室440的排气通道442的排气量,以控制所述反应窗口441的温度;
所述排气调节组件430,设置于所述工艺腔室440的排气通道442上,与所述控制组件420连接,用于控制所述排气通道442的排气量。
所述加热组件450,设置于所述工艺腔室440内,用于对所述反应窗口进行加热。这里,加热组件的功率可以调节。
对应地,所述控制组件420还用于:获取所述加热组件450的工作状态;在所述加热组件450的工作状态为开启的情况下,获取半导体机台的工艺腔室440中反应窗口441的当前温度。
在一些实施例中,如图5B所示,所述控制组件还包括:功率控制单元 423,用于:接收功率控制信号;基于所述功率控制信号,调节所述加热组件的输出功率;
对应地,所述温度比较单元421,还用于:基于所述比较结果向所述功率控制单元423发送功率控制信号。
在一些实施例中,所述工艺腔室被陶瓷盘隔离成上腔室和下腔室,下腔室可以是真空环境,用于进行晶圆处理,例如,刻蚀或者镀膜等。
在一些实施例中,所述系统还可以包括支撑组件,用于支撑和固定晶圆。其中,所述支撑组件可以包括卡盘和支撑柱,所述卡盘用于吸附和固定晶圆;在一些实施例中,所述卡盘可以为静电吸附卡盘(ESC,Electro Static Chuck),静电卡盘可设置电极层,当对电极层施加直流电压时,就会在电极层和晶片上出现不同的电荷,从而在电极层和晶片之间产生库仑引力,将晶片吸附在静电卡盘表面。
基于前述的实施例,本公开实施例提供一种温度控制装置,该装置包括的各个单元、以及各单元所包括的各模块,可以通过温度控制系统中的处理器来实现;也可以是通过某种具体的逻辑电路实现。在实施的过程中,处理器可以为中央处理器(Central Processing Unit,CPU)、微处理器(Microprocessor Unit,MPU)、数字信号处理器(Digital Signal Processing,DSP)或现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
图6为本公开实施例提供的温度控制装置的组成结构示意图,如图6所示,所述温度控制装置600包括获取模块610、温度比较模块620、调节模块630,其中:
所述获取模块610,配置为获取半导体机台的工艺腔室中反应窗口的当前温度;
所述温度比较模块620,配置为对所述当前温度与预设温度进行比较,得到比较结果;
所述调节模块630,配置为根据所述比较结果,调节所述工艺腔室的排 气通道的排气量,以控制所述反应窗口的温度。
在一些实施例中,所述温度比较模块,还配置为对所述当前温度与第一预设温度进行比较,得到比较结果。所述调节模块,还配置为:在所述当前温度小于所述第一预设温度的情况下,减小所述排气阀的开度。
在一些实施例中,所述调节模块还配置为:在所述当前温度大于所述第一预设温度的情况下,增大所述排气阀的开度。
在一些实施例中,所述温度比较模块,还配置为对所述当前温度与所述第二预设温度进行比较,得到比较结果,其中,所述第二预设温度大于第一预设温度。所述调节模块,还配置为:在所述当前温度大于所述第二预设温度的情况下,增大所述排气阀的开度至全开。
在一些实施例中,所述温度比较模块,还配置为对所述当前温度与所述第三预设温度进行比较,得到比较结果,其中,所述第三预设温度小于第一预设温度。所述调节模块,还配置为:在所述当前温度小于所述第三预设温度的情况下,减小所述排气阀的开度至全闭。
在一些实施例中,所述获取模块,还配置为:获取所述半导体机台中反应窗口的加热组件的工作状态;在所述加热组件的工作状态为开启的情况下,获取半导体机台的工艺腔室中反应窗口的当前温度。
在一些实施例中,所述调节模块,包括排气量调节模块,所述排气调节模块配置为根据加热组件的工作状态,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度。这里,在所述加热组件的工作状态为关闭的情况下,排气量调节模块减小所述排气阀的开度至全闭,可以防止在加热组件关闭的情况下,反应腔室内的温度快速降低,使晶圆发生损坏。
在一些实施例中,所述调节模块,包括排气量调节模块和功率调节模块,所述排气调节模块配置为根据加热组件的工作状态,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度;所述功率调节模块 配置为根据所述比较结果,调节加热组件的输出功率,以控制所述反应窗口的温度。
在实际应用中,可以只通过功率调节模块对加热组件的输出功率进行调节,也可以只通过排气量调节模块对工艺腔室的排气通道的排气量进行调节,也可以同时通过功率调节模块和排气量调节模块,对加热组件的输出功率和工艺腔室的排气通道的排气量进行调节,提高温度控制效率。例如,在半导体机台的工艺腔室中反应窗口的当前温度大于所述预设温度的情况下,可以通过功率调节模块将加热组件的功率调小,同时通过排气调节模块将排气阀门开度增大;在半导体机台的工艺腔室中反应窗口的当前温度小于所述预设温度的情况下,可以通过功率调节模块将加热组件的功率调大,同时通过排气调节模块将排气阀门开度减小,两者相互辅助,一起控制所述反应窗口的温度,将反应窗口的稳定于预设温度,提高温度控制效率。
以上装置实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本公开装置实施例中未披露的技术细节,请参照本公开方法实施例的描述而理解。
需要说明的是,本公开实施例中,如果以软件功能模块的形式实现上述的温度控制方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得温度控制系统执行本公开各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本公开实施例不限制于任何特定的硬件和软件结合。
对应地,本公开实施例提供一种计算机可读存储介质,其上存储有计 算机程序,该计算机程序被处理器执行时实现上述方法实施例中的步骤。
这里需要指出的是:以上存储介质实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本公开存储介质实施例中未披露的技术细节,请参照本公开方法实施例的描述而理解。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本公开的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本公开所提供的几个实施例中,应该理解到,所揭露的系统和方法,可以通过其它的方式实现。以上所描述的系统实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的, 作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本公开各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本公开上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得温度控制系统执行本公开各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。
工业实用性
本公开实施例提供一种温度控制系统及方法、装置、存储介质,其中,所述温度控制方法包括:获取半导体机台的工艺腔室中反应窗口的当前温 度;对所述当前温度与预设温度进行比较,得到比较结果;基于所述比较结果,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度。这样,根据本公开实施例,能够基于工艺腔室中的反应窗口的温度变化调整工艺腔室的排气通道的排气量,以控制反应窗口温度,从而能够有效稳定反应窗口的温度,有利于提高工艺进程的稳定性和均匀性。

Claims (18)

  1. 一种温度控制方法,所述方法包括:
    获取半导体机台的工艺腔室中反应窗口的当前温度;
    对所述当前温度与预设温度进行比较,得到比较结果;
    基于所述比较结果,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度。
  2. 根据权利要求1所述的方法,其中,所述工艺腔室的排气通道具有排气阀;
    所述基于所述比较结果,调节所述工艺腔室的排气通道的排气量,包括:
    基于所述比较结果,调节所述排气阀的开度。
  3. 根据权利要求2所述的方法,其中,所述预设温度包括第一预设温度;
    所述对所述当前温度与预设温度进行比较,得到比较结果,包括:对所述当前温度与所述第一预设温度进行比较,得到比较结果;
    所述基于所述比较结果,调节所述排气阀的开度,包括:在所述当前温度大于所述第一预设温度的情况下,增大所述排气阀的开度。
  4. 根据权利要求3所述的方法,其中,所述预设温度还包括第二预设温度,所述第二预设温度大于所述第一预设温度;
    所述对所述当前温度与预设温度进行比较,得到比较结果,还包括:对所述当前温度与所述第二预设温度进行比较,得到比较结果;
    所述在所述当前温度大于所述第一预设温度的情况下,增大所述排气阀的开度,包括:在所述当前温度大于所述第二预设温度的情况下,增大所述排气阀的开度至全开。
  5. 根据权利要求4所述的方法,其中,所述第一预设温度为120摄氏 度,所述第二预设温度为125摄氏度。
  6. 根据权利要求3所述的方法,其中,所述基于所述比较结果,调节所述排气阀的开度,包括:
    在所述当前温度小于所述第一预设温度的情况下,减小所述排气阀的开度。
  7. 根据权利要求6所述的方法,其中,所述预设温度还包括第三预设温度,所述第三预设温度小于所述第一预设温度;
    所述对所述当前温度与预设温度进行比较,得到比较结果,还包括:对所述当前温度与所述第三预设温度进行比较,得到比较结果;
    所述在所述当前温度小于所述第一预设温度的情况下,减小所述排气阀的开度,包括:在所述当前温度小于所述第三预设温度的情况下,减小所述排气阀的开度至全闭。
  8. 根据权利要求7所述的方法,其中,所述第三预设温度为115摄氏度。
  9. 根据权利要求1至8任一项所述的方法,还包括:
    获取所述半导体机台中反应窗口的加热组件的工作状态;
    所述获取半导体机台的工艺腔室中反应窗口的当前温度,包括:在所述加热组件的工作状态为开启的情况下,获取半导体机台的工艺腔室中反应窗口的当前温度。
  10. 根据权利要求9所述的方法,还包括:
    在所述加热组件的工作状态为关闭的情况下,减小所述排气阀的开度至全闭。
  11. 根据权利要求9所述的方法,其中,所述基于所述比较结果,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度,包括:基于所述比较结果,对所述工艺腔室的排气通道的排气量以及所述加热组件的输出功率进行调节,以控制所述反应窗口的温度。
  12. 一种温度控制装置,应用于半导体机台中,所述装置包括:
    获取模块,配置为获取半导体机台的工艺腔室中反应窗口的当前温度;
    温度比较模块,配置为对所述当前温度与预设温度进行比较,得到比较结果;
    调节模块,配置为根据所述比较结果,调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度。
  13. 一种温度控制系统,应用于半导体机台中,所述系统包括:
    温度感应组件,控制组件以及排气调节组件;其中,
    所述温度感应组件,设置于所述半导体机台的工艺腔室的反应窗口上,用于对所述反应窗口的温度进行感应;
    所述控制组件,与所述温度感应组件连接,用于:从所述温度感应组件获取所述反应窗口的当前温度;对所述当前温度与预设温度进行比较,得到比较结果;基于所述比较结果,控制所述排气调节组件调节所述工艺腔室的排气通道的排气量,以控制所述反应窗口的温度;
    所述排气调节组件,设置于所述工艺腔室的排气通道上,与所述控制组件连接,用于控制所述排气通道的排气量。
  14. 根据权利要求13所述的系统,其中,所述排气调节组件包括驱动电机和所述排气通道的排气阀;其中,
    所述驱动电机,用于驱动所述排气阀,以控制所述排气阀的开度。
  15. 根据权利要求14所述的系统,还包括:加热组件,设置于所述工艺腔室内,用于对所述反应窗口进行加热;
    所述控制组件还用于:获取所述加热组件的工作状态;在所述加热组件的工作状态为开启的情况下,获取半导体机台的工艺腔室中反应窗口的当前温度。
  16. 根据权利要求15所述的系统,其中,所述控制组件包括温度比较单元和开度控制单元;其中,
    所述温度比较单元用于:从所述温度感应组件获取所述反应窗口的当前温度;对所述当前温度与预设温度进行比较,得到比较结果;基于所述比较结果向所述开度控制单元发送开度控制信号;
    所述开度控制单元用于:接收所述开度控制信号;基于所述开度控制信号,控制所述驱动电机驱动所述排气阀,以控制所述排气阀的开度。
  17. 根据权利要求16所述的系统,其中,所述控制组件还包括:
    功率控制单元,用于:接收功率控制信号;基于所述功率控制信号,调节所述加热组件的输出功率;
    所述温度比较单元还用于:基于所述比较结果向所述功率控制单元发送功率控制信号。
  18. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至11任一项所述方法中的步骤。
PCT/CN2021/112826 2021-07-30 2021-08-16 一种温度控制系统及方法、装置、存储介质 WO2023004892A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/647,738 US20230029782A1 (en) 2021-07-30 2022-01-12 System, method and device for temperature control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110871667.9 2021-07-30
CN202110871667.9A CN113594067B (zh) 2021-07-30 2021-07-30 一种温度控制系统及方法、装置、存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/647,738 Continuation US20230029782A1 (en) 2021-07-30 2022-01-12 System, method and device for temperature control

Publications (1)

Publication Number Publication Date
WO2023004892A1 true WO2023004892A1 (zh) 2023-02-02

Family

ID=78252652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112826 WO2023004892A1 (zh) 2021-07-30 2021-08-16 一种温度控制系统及方法、装置、存储介质

Country Status (2)

Country Link
CN (1) CN113594067B (zh)
WO (1) WO2023004892A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116313946B (zh) * 2023-05-24 2023-10-17 长鑫存储技术有限公司 温度调节系统及调节方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040144488A1 (en) * 2003-01-27 2004-07-29 Renesas Technology Corp. Semiconductor wafer processing apparatus
CN202331010U (zh) * 2011-11-21 2012-07-11 中芯国际集成电路制造(上海)有限公司 烘烤设备
CN105892243A (zh) * 2016-04-07 2016-08-24 上海华力微电子有限公司 一种热板抽气装置及其温控方法
CN110875208A (zh) * 2018-08-29 2020-03-10 北京北方华创微电子装备有限公司 工艺腔室用控温装置及方法、工艺腔室
CN111063623A (zh) * 2018-10-16 2020-04-24 东京毅力科创株式会社 基片处理装置、基片处理方法和存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050029802A (ko) * 2003-09-23 2005-03-29 삼성전자주식회사 반도체 웨이퍼 베이크 장치
JP2009263764A (ja) * 2008-04-01 2009-11-12 Hitachi Kokusai Electric Inc 半導体製造装置及び半導体装置の製造方法
JP2018113275A (ja) * 2017-01-06 2018-07-19 東京エレクトロン株式会社 基板処理装置のクリーニング方法及び基板処理システム
CN107424947A (zh) * 2017-08-16 2017-12-01 君泰创新(北京)科技有限公司 薄膜电池工艺设备的温度测试方法及系统
CN108167214B (zh) * 2017-12-11 2020-06-19 深圳比特微电子科技有限公司 对设备进行温度控制的方法
CN110797249B (zh) * 2018-08-02 2022-05-27 北京北方华创微电子装备有限公司 工艺腔室和半导体处理设备
JP7000393B2 (ja) * 2019-09-25 2022-01-19 株式会社Kokusai Electric 基板処理装置、ガスボックス及び半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040144488A1 (en) * 2003-01-27 2004-07-29 Renesas Technology Corp. Semiconductor wafer processing apparatus
CN202331010U (zh) * 2011-11-21 2012-07-11 中芯国际集成电路制造(上海)有限公司 烘烤设备
CN105892243A (zh) * 2016-04-07 2016-08-24 上海华力微电子有限公司 一种热板抽气装置及其温控方法
CN110875208A (zh) * 2018-08-29 2020-03-10 北京北方华创微电子装备有限公司 工艺腔室用控温装置及方法、工艺腔室
CN111063623A (zh) * 2018-10-16 2020-04-24 东京毅力科创株式会社 基片处理装置、基片处理方法和存储介质

Also Published As

Publication number Publication date
CN113594067A (zh) 2021-11-02
CN113594067B (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
JP6556046B2 (ja) プラズマ処理方法およびプラズマ処理装置
KR200497481Y1 (ko) 에지 균일성 제어를 위한 조정가능한 연장되는 전극
JP6663994B2 (ja) 静電チャック機構および半導体処理装置
TWI575638B (zh) A substrate processing apparatus, a manufacturing method, a program, and a recording medium of a semiconductor device
JP5881277B2 (ja) 調整可能な静電チャックのための可変温度方法
US10998204B2 (en) Method of processing substrate and substrate processing apparatus
US20110220288A1 (en) Temperature control system, temperature control method, plasma processing apparatus and computer storage medium
US7713431B2 (en) Plasma processing method
KR20180089852A (ko) 에지 균일성 제어를 위한 조정가능한 연장되는 전극
US9343336B2 (en) Plasma processing apparatus and plasma processing method
JP7296829B2 (ja) プラズマ処理装置、処理方法、上部電極構造
WO2023004892A1 (zh) 一种温度控制系统及方法、装置、存储介质
US20070215180A1 (en) Cleaning method of substrate processing equipment, substrate processing equipment, and recording medium for recording program thereof
CN115552565A (zh) 调谐可调谐边缘鞘系统的脉冲rf信号中的电压设定点
US9831112B2 (en) Substrate processing apparatus and substrate detaching method
US20140288726A1 (en) Temperature control method, control apparatus, and plasma processing apparatus
KR101216701B1 (ko) 건식 식각 장치
US11978614B2 (en) Substrate processing apparatus
US20100263196A1 (en) Substrate processing apparatus, substrate processing method, and storage medium storing program for implementing the method
US20230029782A1 (en) System, method and device for temperature control
US10923333B2 (en) Substrate processing apparatus and substrate processing control method
CN101133682A (zh) 用于蚀刻具有受控制的制程结果分配的方法
TWI784770B (zh) 用於處理基板之支撐單元、設備及用於處理基板之方法
US20220199377A1 (en) Substrate processing apparatus, temperature control method of substrate processing apparatus, and program of control device for controlling substrate processing apparatus
US20200035465A1 (en) Substrate processing apparatus and plasma sheath height control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE