WO2023004780A1 - 电池、用电设备、制备电池的方法和设备 - Google Patents

电池、用电设备、制备电池的方法和设备 Download PDF

Info

Publication number
WO2023004780A1
WO2023004780A1 PCT/CN2021/109722 CN2021109722W WO2023004780A1 WO 2023004780 A1 WO2023004780 A1 WO 2023004780A1 CN 2021109722 W CN2021109722 W CN 2021109722W WO 2023004780 A1 WO2023004780 A1 WO 2023004780A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
blocking member
opening
cooling system
Prior art date
Application number
PCT/CN2021/109722
Other languages
English (en)
French (fr)
Other versions
WO2023004780A8 (zh
Inventor
杨海奇
曾智敏
唐彧
黄小腾
王鹏
徐晨怡
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020237005329A priority Critical patent/KR102555927B1/ko
Priority to JP2023512757A priority patent/JP7353533B2/ja
Priority to CN202180072794.0A priority patent/CN116349058A/zh
Priority to EP21951370.2A priority patent/EP4184658A4/en
Priority to PCT/CN2021/109722 priority patent/WO2023004780A1/zh
Publication of WO2023004780A1 publication Critical patent/WO2023004780A1/zh
Publication of WO2023004780A8 publication Critical patent/WO2023004780A8/zh
Priority to US18/352,276 priority patent/US11830996B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery, an electrical device, a method and a device for preparing a battery.
  • Embodiments of the present application provide a battery, an electrical device, a method for preparing a battery, and a device, which can enhance the safety of the battery.
  • a battery including: a battery cell group, the battery cell group includes N battery cell rows, the N battery cell rows are arranged along a first direction, and the N battery cell rows The battery cells of each battery cell row are arranged along the second direction, the first direction is perpendicular to the second direction, and N is an integer greater than 1;
  • the signal transmission component is arranged on the first surface of the battery cell group , the first surface is parallel to the plane defined by the first direction and the second direction, the signal transmission component includes a bus component and an insulating layer, the insulating layer is used to encapsulate the bus component, the insulating layer has an opening, the bus The component is used to electrically connect the battery cells in the battery cell group at the opening;
  • the cooling system is arranged between two adjacent battery cell rows in the N battery cell rows; wherein, the The gap between two adjacent battery cell rows is provided with a blocking member facing the opening on the first surface, and the blocking member is used to block the opening to prevent the condensate generated by the cooling system
  • An embodiment of the present application provides a battery including a battery cell group, a signal transmission assembly, and a cooling system, wherein the signal transmission assembly includes a busbar for transmitting electric energy of the battery cell group and an insulating layer for encapsulating the busbar.
  • the setting of the layer can reduce the impact of external environmental factors on the confluence parts, and ensure the transmission performance and safety performance of the confluence parts.
  • the openings are electrically connected to the battery cells in the battery cell group.
  • the cooling system can be arranged between two adjacent battery cell columns in the battery cell group, which can be used to cool down the battery cells in the battery cell group to prevent safety problems caused by the heating of the battery cells.
  • the gap between the two adjacent battery cell rows is provided with a blocking member at the opening of the first plane of the battery cell group, so as to prevent the condensate generated by the cooling system from reaching the confluence part in the signal transmission assembly , to prevent the condensate from causing problems such as short circuit and corrosion of the confluence parts, thereby preventing safety problems such as fire and explosion caused by short circuit, improving the safety performance of the battery, and also preventing battery life problems caused by corrosion, and improving the overall life of the battery .
  • the blocking member extends into the gap, which improves the stability of the blocking member in the gap, reduces the air entering the gap, reduces the possibility of condensate generated by the cooling system, and improves the The blocking effect of the blocking piece.
  • the blocking member is connected to the cooling system in the gap.
  • the entry of air between the blocking member and the cooling system can be greatly reduced or avoided, thereby better preventing the cooling system from producing condensate, and further improving the blocking effect of the blocking member.
  • the material of the blocking member is a liquid-absorbing material.
  • the blocking member can absorb the condensate, preventing the condensate from moving in the battery and reaching the confluence component or other components in the battery, causing potential safety hazards.
  • the blocking member is elastic, and the blocking member is compressed between the insulating layer and the first surface.
  • the blocking member has elasticity, which is convenient to be installed in the gap between two adjacent battery cell rows, and when the blocking member located in the gap is in a compressed state, the gap between it and the battery cells There is a certain force between them, which can improve the installation stability and sealing effect of the sealing member in the gap. Further, in addition to being compressed and arranged in the gap between two adjacent battery cell rows, the blocking member is also compressed and arranged between the insulating layer and the first surface of the battery cell group, so that the battery cell group can be further improved. The installation stability and sealing effect of the sealing member.
  • the insulating layer protrudes toward the opening to form the blocking member.
  • the sealing member can also be formed by reusing the original components in the battery, such as an insulating layer, without providing additional components for sealing, which can reduce the manufacturing cost of the battery.
  • the cross section of the blocking member on a plane perpendicular to the second direction is convex or ⁇ -shaped.
  • the blocking element is a strip-shaped blocking element, and the strip-shaped blocking element extends along the second direction.
  • an electric device including: the battery in the first aspect or any possible implementation manner of the first aspect, where the battery is used to provide electric energy.
  • a method for preparing a battery including: providing a battery cell group, the battery cell group includes N battery cell columns, the N battery cell columns are arranged along a first direction, and the N battery cell columns The battery cells of each battery cell row in the cell row are arranged along the second direction, the first direction is perpendicular to the second direction, and N is an integer greater than 1; a signal transmission component is provided, and the signal transmission component is arranged on The first surface of the battery cell group, the first surface is parallel to the plane defined by the first direction and the second direction, the signal transmission assembly includes a busbar and an insulating layer, and the insulating layer is used to encapsulate the busbar, The insulating layer has an opening, and the bus member is used to electrically connect the battery cells in the battery cell group at the opening; a cooling system is provided, and the cooling system is arranged adjacent to the N battery cell rows Between the two battery cell rows; wherein, the gap between the two adjacent battery cell rows is provided with a blocking member facing
  • a device for preparing a battery including a module for performing the method of the third aspect above.
  • the technical solution of the embodiment of the present application provides a battery including a battery cell group, a signal transmission component, and a cooling system, wherein the cooling system is arranged between two adjacent battery cell columns in the battery cell group, and can be used It is used to cool down the battery cells in the battery cell group to prevent safety problems caused by the heating of the battery cells.
  • the gap between the two adjacent battery cell rows is within the first plane of the battery cell group.
  • the opening of the opening is provided with a blocking piece to prevent the condensate generated by the cooling system from reaching the confluence part in the signal transmission component, preventing the condensate from causing problems such as short circuit and corrosion of the confluence part, thereby preventing fire, explosion and other safety hazards caused by the short circuit. It can improve the safety performance of the battery, prevent battery life problems caused by corrosion, and improve the overall life of the battery.
  • Fig. 1 is the schematic diagram of the vehicle of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a battery according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a battery according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a battery cell according to an embodiment of the present application.
  • Fig. 5 is a schematic exploded view of a battery according to an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional view of a battery according to an embodiment of the present application.
  • Fig. 7 is a schematic partial enlarged view of the area where the blocking member is located in Fig. 6;
  • Figure 8 is a schematic partial enlarged view of the area where the blocking member is located in Figure 6;
  • Fig. 9 is a schematic partial enlarged view of the area where the blocking member is located in Fig. 6;
  • Fig. 10 is a schematic partial enlarged view of the area where the blocking member is located in Fig. 6;
  • Fig. 11 is a partial perspective view of the blocking member in the embodiment shown in Fig. 10;
  • FIG. 12 is a schematic flow chart of a method for preparing a battery according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a device for preparing a battery according to an embodiment of the present application.
  • first, second, third, etc. are used for descriptive purposes only and should not be construed as indicating or implying relative importance. “Vertical” is not strictly vertical, but within the allowable range of error. “Parallel” is not strictly parallel, but within the allowable range of error.
  • connection should be interpreted in a broad sense, for example, it can be a fixed connection or a flexible connection. Disassembled connection, or integral connection; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • batteries mentioned in this application may include battery packs and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the material of the isolation film may be polypropylene (Polypropylene, PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery is further arranged in the electric device to provide electric energy for the electric device.
  • a cooling system can be provided in the battery.
  • the cooling system is used to accommodate the cooling medium to lower the temperature of the battery cells.
  • the cooling system may also be called a cooling component or a cooling plate, and the cooling medium may also be called a cooling fluid, and more specifically, it may be called a cooling liquid or a cooling gas.
  • the cooling fluid is circulated for better temperature regulation.
  • the cooling medium may be water, a mixture of water and ethylene glycol, or air. When the cooling medium is water, the cooling system can also be called a water-cooled plate.
  • the box may be square, with six walls.
  • the above-mentioned cooling system may be integrated with the bottom wall and the top wall of the box to cool the battery cells at the bottom and top of the box respectively.
  • a beam is arranged on the side wall of the box, and the beam includes multiple sub-walls, and the multiple sub-walls form a hollow beam structure, that is, the beam has a cavity inside.
  • a cooling system may also be provided in the middle of the box, such as between multiple battery cells, to further enhance the cooling effect.
  • the present application provides a technical solution, in which a blocking member is provided in the gap between the battery cells to prevent the condensate generated by the cooling system between the battery cells from reaching the electrical connection area in the battery.
  • the electrical connection area is affected, thereby enhancing the safety of the battery.
  • the battery in addition to the above-mentioned battery cells and cooling components, it may also include bus components and other components of the battery. In some embodiments, a structure for fixing the battery cells may also be provided in the case.
  • the bus component is used to realize the electrical connection between multiple battery cells, such as parallel connection, series connection or mixed connection.
  • the bus component can realize the electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
  • the bus member may be fixed to the electrode terminal of the battery cell by welding.
  • the electrical connection formed by the busbar part may also be referred to as a "high voltage connection”.
  • a sensor device may also be provided in the battery, and the sensor device is used for sensing the state of the battery cell, for example, sensing the temperature and state of charge of the battery cell.
  • the electrical connection area in the battery may include the electrical connection area formed by the busbar and/or the electrical connection area in the sensor device.
  • Bus components and sensing devices can be encapsulated in an insulating layer to form a signal transmission assembly.
  • the signal transmission component can be used to transmit the voltage of the battery cell and/or the sensing signal.
  • the signal transmission component does not have an insulating layer at the connection with the electrode terminal of the battery cell, that is, the insulating layer has an opening here, so as to be connected with the electrode terminal of the battery cell.
  • a pressure balance mechanism can also be arranged on the battery case to balance the pressure inside and outside the case. For example, when the pressure inside the box is higher than outside the box, the gas inside the box can flow out of the box through the pressure balance mechanism; when the pressure inside the box is lower than outside the box, the gas outside the box can flow through the pressure balance mechanism.
  • the balancing mechanism flows into the interior of the box.
  • the above-described components in the battery case should not be construed as limiting the embodiment of the present application, that is, the battery case in the embodiment of the present application may include the above-mentioned components, or may not include the above components.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 14 , a controller 13 and a battery 10 can be arranged inside the vehicle 1 , and the controller 13 is used to control the battery 10 to supply power to the motor 14 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells.
  • FIG. 2 which is a schematic structural diagram of a battery 10 according to an embodiment of the present application, the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may further include a box body 11 , the inside of which is a hollow structure, and a plurality of battery cells 10 are accommodated in the box body 11 .
  • the box body 11 may include two parts, here referred to as a first part 111 (upper box body) and a second part 112 (lower box body), and the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 can be determined according to the combined shape of a plurality of battery cells 20 , and each of the first part 111 and the second part 112 can have an opening.
  • both the first part 111 and the second part 112 can be hollow cuboids and each has only one face as an open face, the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 and the second part 112 are interlocked Combined to form a box 11 with a closed chamber.
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel and placed in the box 11 formed by fastening the first part 111 and the second part 112 .
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box body 11 through the conductive mechanism.
  • the conduction means can also belong to the current-collecting part.
  • the number of battery cells 20 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, for the convenience of installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 constitutes a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • a battery may include a plurality of battery modules, which may be connected in series, in parallel or in parallel.
  • the first part 111 of the box body 11 may be an upper cover without an opening, that is, the first part 111 is a flat upper cover.
  • the upper cover can be integrated with cooling components to cool the battery cells 20 at the top of the box body 11 .
  • the second part 112 of the box body 11 is a cavity with an opening, including a bottom wall and a side wall.
  • the bottom wall may integrate cooling components to cool the battery cells 20 at the bottom of the case 11 .
  • the side wall may be provided with a beam, and the beam includes multiple sub-walls, and the multiple sub-walls form a hollow beam structure, that is, the beam has a cavity inside.
  • a cooling component may also be provided in the middle of the box 11 .
  • a cooling component may also be provided between the upper and lower rows of battery cells 20 to further enhance the cooling effect.
  • the walls of the battery cells 20 inside the case 11 provided with the electrode terminals may be perpendicular to the bottom wall of the case 11 . That is, the battery cells 20 can be placed in a lateral direction (“lay flat”). In this way, in a direction perpendicular to the bottom wall of the box body 11 , cooling components can be provided between every two rows of battery cells 20 , and correspondingly, cooling components are provided on both sides of each battery cell 20 .
  • the side wall with the largest area of each battery cell 20 is connected to a cooling component, so as to achieve maximum cooling of the battery cell 20 .
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and a cover plate 212 .
  • the housing 211 and the cover plate 212 form the housing or battery compartment 21 .
  • the walls of the casing 211 and the cover plate 212 are both called the walls of the battery cell 20 , wherein for the rectangular parallelepiped battery cell 20 , the walls of the casing 211 include a bottom wall and four side walls.
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow cuboid or cube or cylinder, and one of the surfaces of the housing 211 has an opening so that one or more electrodes Assembly 22 may be placed within housing 211 .
  • one of the planes of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the casing 211 can be a hollow cylinder, the end surface of the casing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the cover plate 212 covers the opening and is connected with the casing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the cover plate 212 .
  • the cover plate 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat plate surface of the cover plate 212, and the two electrode terminals 214 are positive electrode terminals 214a and negative electrode terminals 214b respectively.
  • Each electrode terminal 214 is respectively provided with a connecting member 23 , or also referred to as a current collecting member 23 , which is located between the cover plate 212 and the electrode assembly 22 for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connection member 23
  • the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connection member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the electrode assembly 22 can be set as single or multiple, as shown in FIG. 4 , four independent electrode assemblies 22 are arranged in the battery cell 20 .
  • a pressure relief mechanism 213 may also be provided on the battery cell 20 .
  • the pressure relief mechanism 213 is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • FIG. 5 shows a schematic exploded view of a battery 10 provided by an embodiment of the present application.
  • the battery 10 includes: a battery cell group 110, the battery cell group 110 includes N battery cell columns 113, the N battery cell columns 113 are arranged along the first direction, and the N battery cell columns 113
  • the battery cells 20 of each battery cell row 113 in the cell row 113 are arranged along the second direction, wherein the first direction is perpendicular to the second direction, and N is an integer greater than 1.
  • the z direction is the first direction
  • the x direction is the second direction
  • a plurality of battery cells 20 are arranged to form a battery cell column 113.
  • N battery cells are arranged sequentially.
  • FIG. 5 it schematically shows that the two battery cell rows 113 are arranged sequentially in the z direction.
  • the z direction may be a direction perpendicular to the ground level.
  • the N battery cell rows 113 in the battery cell group 110 are aligned along the z direction. Stack settings.
  • the battery 10 of the embodiment of the present application further includes: a signal transmission component 120 disposed on the first surface 101 of the above-mentioned battery cell group 110 , the first surface 101 is parallel to the above-mentioned first direction and the above-mentioned second direction Determined plane, the signal transmission component 120 includes a bus component 121 and an insulating layer 122, the insulating layer 122 is used to package the bus component 121, and the insulating layer 122 has an opening 123, and the bus component 121 is used for opening 123 are electrically connected to the battery cells 20 in the battery cell group 110 .
  • the battery cell 20 in the battery cell group 110 can be approximately understood as a block battery cell, for example, it can be a cubic structure or a rectangular parallelepiped structure, and the battery cell 20
  • the surface provided with the electrode terminals 214 can be referred to as the first surface of the battery cell 20.
  • the number of the plurality of battery cells 20 are spliced together to form a large plane, which is called the first surface of a battery cell row 113 .
  • the first surfaces of the N battery cell rows 113 are spliced to form a larger plane, called the battery cell group 110.
  • the first surface 101 of the battery cell group 110 is parallel to the plane defined by the z direction and the x direction. That is, in the embodiment of the present application, the first surface 101 of the battery cell group 110 is parallel to the xz plane.
  • a signal transmission component 120 of the battery 10 is provided on the first plane 101 of the battery cell group 110.
  • the signal transmission component 120 includes a busbar 121 and an insulating layer 122, and the busbar 121 can Connected to the electrode terminals of multiple battery cells 20, and used to transmit the electric energy of the multiple battery cells 20, since the confluence part 121 is used to transmit the electric energy of the multiple battery cells 20, its transmission performance and safety performance are higher than those of the battery 10. Therefore, the signal transmission component 120 also includes an insulating layer 122, which is used to encapsulate the confluence component 121, reduce the impact of external environmental factors on the confluence component 121, and ensure the transmission performance and safety performance of the confluence component 121. .
  • an opening 123 is formed in the insulating layer 122, and the bus part 121 is used to communicate with the battery cells in the battery cell group 110 at the opening 123.
  • the electrode terminals 214 of the body 20 are electrically connected.
  • the battery 10 of the embodiment of the present application further includes: a cooling system 130 disposed between two adjacent battery cell columns 113 among the N battery cell columns 113 , wherein the adjacent two battery cell columns The gap between the cell rows 113 is provided with a blocking member 140 facing the opening of the first plane 101 of the battery cell group 110 to prevent the condensate generated by the cooling system 130 from reaching the confluence member 121 .
  • the cooling system 130 may include a cooling plate, which may be arranged between two adjacent battery cell rows 113 among the N battery cell rows 113, and cool The plates may be disposed perpendicular to the first plane 101 of the battery cell group 110 .
  • the cooling system 130 is arranged between two adjacent battery cell columns 113, and can cool the battery cells 20 in the two adjacent battery cell columns 113.
  • the The cooling system 130 may include a cooling plate, which has a larger corresponding area with the battery cells 20 in two adjacent battery cell columns 113 , and has a better cooling effect on the battery cells 20 .
  • the cooling system 130 is not in contact with the first surface 101 of the battery cell group 110 , so that there is a gap between two adjacent battery cell rows 113 .
  • the gap between the two adjacent battery cell rows 113 is on the first plane of the battery cell group 110 101, or in other words, the gap between two adjacent battery cell rows 113 is on the first plane 101 of the battery cell group 110, and a blocking member 140 is provided to block the condensation generated by the cooling system 130.
  • the liquid reaches the confluence part 121.
  • the blocking member 140 can prevent the condensate generated by the cooling system 130 from reaching the confluence component 121 at the opening 123 of the insulating layer 122 , preventing the condensate from causing problems such as short circuit and corrosion of the confluence component 121 .
  • the embodiment of the present application provides a battery 10 including a battery cell group 110, a signal transmission assembly 120, and a cooling system 130, wherein the signal transmission assembly 120 includes a confluence component for transmitting electric energy of the battery cell group 113 121 and the insulating layer 122 for encapsulating the busbar 121.
  • the setting of the insulating layer 122 can reduce the impact of external environmental factors on the busbar 121, ensure the transmission performance and safety performance of the busbar 121, and in order to realize the connection between the busbar 121 and the battery cell
  • the insulating layer 122 is provided with an opening 123
  • the bus component 121 is used for electrically connecting with the battery cells 20 in the battery cell group 110 at the opening 123 .
  • the cooling system 130 can be arranged between two adjacent battery cell rows 113 in the battery cell group 110 , which can be used to cool down the battery cells 20 in the battery cell group 110 to prevent the battery cells 20 from Heat generation causes safety problems.
  • the gap between the two adjacent battery cell rows 113 is provided with a blocking member 140 at the opening of the first plane 101 of the battery cell group 110 to prevent the cooling system 130 from generating
  • the condensate reaches the confluence part 121 in the signal transmission component 120, preventing the condensate from causing problems such as short circuit and corrosion of the confluence part 121, thereby preventing safety problems such as fire and explosion caused by the short circuit, and preventing battery damage caused by corrosion. performance and longevity issues.
  • FIG. 5 only illustrates the case where the battery cell group 110 includes two battery cell rows 113 arranged in the z direction.
  • the battery cell group 110 also A greater number of battery cell rows 113 may be included, and a cooling system 130 may be provided between every two adjacent battery cell rows 113, or a cooling system 130 may be provided between some of the adjacent two battery cell rows 113 There is a cooling system 130 .
  • the three-dimensional space may also include a y-direction perpendicular to the x-direction and z-direction.
  • the battery 10 in the embodiment of the present application A plurality of battery cell groups 113 may be included, and the plurality of battery cell groups 113 may be arranged in the y direction.
  • two adjacent battery cell groups 113 in the y direction may be arranged as mirror images.
  • FIG. 6 shows a schematic cross-sectional view of the battery 10 provided in the embodiment of the present application.
  • the cross-sectional view shown in FIG. 6 may be a schematic cross-sectional view of the battery 10 in FIG. 5 along the yz plane.
  • the signal transmission component 120 includes two layers of insulating layers 122, and a bus component 121 (not shown in FIG. 6) is arranged between the two layers of insulating layers 122, and the two layers of insulating layers 122 are used to cover the bus
  • the component 121 is used to package the bus component 121 .
  • the signal transmission assembly 120 also includes a sensing component (not shown), similarly, the sensing component is arranged between the above two insulating layers, and the two insulating layers 122 are also used
  • the sensing component is wrapped to package the sensing component.
  • the sensing component may include a sensor and a transmission line, wherein the sensor includes but is not limited to a sensor for sensing the temperature, voltage, current and other state signals of the battery cell 20, and the sensor senses the obtained battery cell
  • the status signal of 20 is transmitted through a transmission line, which may be, for example, an electrical signal transmission line or a flexible circuit board.
  • the signal transmission component 120 can also include other electrical components, and the two layers of insulating layers 122 can also be used to package the other electrical components.
  • the electrical components The specific type of is not limited.
  • the signal transmission component 120 may be a hot-pressed battery cell connection system (Cell Connection System, CCS), so as to realize the signal transmission of the battery cell group 110 .
  • CCS Cell Connection System
  • the cooling system 130 is a cooling plate.
  • the size of the cooling system 130 can be equal to or similar to the gap between two adjacent battery cell columns 113.
  • the large surface of the cooling system 130 It can be in contact with the battery cell 20 for cooling the battery cell 20 .
  • the size of the cooling system 130 can be smaller than the size of the battery cells 20, so that there is a gap between two adjacent battery cell rows 113, and the opening of the gap on the first surface 101 is provided with a seal.
  • the blocking member 140 is used for blocking the condensate generated by the cooling system 130 .
  • the sealing member 140 can be a strip-shaped sealing member, and the strip-shaped sealing member The member extends along the x direction, and its length can be close to or equal to the length of each battery cell column 113 in the x direction.
  • FIG. 7 shows a schematic partial enlarged view of the region (A region) where the blocking member 140 is located in FIG. 6 .
  • the blocking member 140 is blocked outside the gap, and is placed close to the first surface 101 of the battery cell group 110 , aiming to block the gap on the first surface 101. Open your mouth.
  • FIG. 8 and FIG. 9 show another two schematic partial enlarged views of the area where the blocking member 140 is located (area A) in FIG. 6 .
  • the blocking member 140 extends into the gap between two adjacent battery cell rows 113 to improve the stability of the blocking member 140 in the gap and reduce the air entering the gap.
  • the possibility of condensate generated by the cooling system 130 is reduced, and the blocking effect of the blocking member 140 is improved.
  • the blocking member 140 extends into the gap between two adjacent battery cell rows 113 and is connected to the cooling system 130 .
  • the entry of air between the blocking member 140 and the cooling system 130 can be greatly reduced or avoided, thereby better preventing the cooling system 130 from producing condensate, and improving the blocking effect of the blocking member 140 .
  • the blocking member 140 can be a liquid-absorbing material for absorbing the condensate formed in the cooling system 130.
  • the blocking member 140 can also absorb the condensed liquid, preventing the condensed liquid from moving in the battery 10 and reaching the confluence part 121 or other components in the battery 10 , causing potential safety hazards.
  • the blocking member 140 may have elasticity, which is convenient to be installed in the gap between two adjacent battery cell rows 113, and when the blocking member 140 in the gap is under compression In the state, there is a certain force between it and the battery cell 20, which can improve the installation stability and sealing effect of the blocking member 140 in the gap.
  • the partial blocking member 140 located in the gap between two adjacent battery cell rows 113 is in a compressed state, while the partial blocking member 140 located outside the gap is in a non-compressed state.
  • the entire blocking member 140 is in a compressed state.
  • the blocking member 140 is compressed between the insulating layer 122 in the signal transmission component 120 and the first surface 101 of the battery cell group 110 .
  • the blocking member 140 is not only compressed and disposed in the gap between two adjacent battery cell rows 113, but also compressed and disposed between the insulating layer 122 and the first surface 101 of the battery cell group 110. Therefore, the installation stability and sealing effect of the blocking member 140 can be further improved.
  • the blocking member 140 in addition to being compressed between the insulating layer 122 in the signal transmission component 120 and the first surface 101 of the battery cell group 110 , the blocking member 140 can also be compressed between The distance between other components and the first surface 101 of the battery cell group 110 is not specifically limited in this embodiment of the present application.
  • the material of the blocking member 140 includes but is not limited to foam, which may have liquid absorption capacity and/or elasticity, and is low in cost, and can be well applied to the battery provided by this application 10 in.
  • the blocking member 140 can be an independent component installed in the gap between two adjacent battery cell rows 113. In other embodiments, the blocking member 140 can also be reused by the battery 10 The original components are formed without setting additional components for sealing, which can reduce the manufacturing cost.
  • FIG. 10 shows another schematic partial enlarged view of the area (area A) where the blocking member 140 is located in FIG. 6 .
  • the insulating layer 122 in the signal transmission component 120 protrudes toward the first surface 101 of the battery cell group 110 to form a blocking member 140 , specifically, the insulating layer 122 faces toward the first surface 101 of the battery cell group 110 .
  • An opening in one side 101 protrudes to form a blocking member 140 , and the opening is an opening in the first side 101 between two adjacent battery cell rows 113 .
  • the cross section of the blocking member 140 on a plane perpendicular to the second direction is approximately ⁇ -shaped, for example, as shown in FIG.
  • the plane is the yz plane, and on the yz plane, the cross section of the blocking member 140 is approximately ⁇ -shaped.
  • the cross-section of the blocking member 140 on a plane perpendicular to the second direction may also be in other shapes, such as a "mouth” shape, a “convex” shape or other arbitrary shapes. This is not specifically limited.
  • the blocking member 140 can extend into the gap between two adjacent battery cell columns, and the blocking member 140 can be tightly attached to the wall of the battery cell in the gap. , so as to ensure the blocking effect of the blocking member 140.
  • the blocking member 140 may not extend to the gap between two adjacent battery cell rows 113, but is only arranged at the opening. At this time, the size of the blocking member 140 needs to be larger than The width of the gap to achieve a better sealing effect.
  • FIG. 11 A partial perspective view of piece 140.
  • the folds formed by the protrusions of the insulating layer 122 in the signal transmission component 120 extend along the x direction to form a strip-shaped blocking member 140 .
  • the blocking member 140 formed by protruding from the local remote 122 extends along the x direction, so as to complete the opening corresponding to the gap between the battery cell rows 113 extending along the x direction. blockage.
  • An embodiment of the present application also provides an electric device, which may include the battery 10 in the foregoing embodiments, and the battery 10 is used to provide electric energy to the electric device.
  • the electric device may be a vehicle 1 , a ship or a spacecraft.
  • the battery 10 and the electrical device of the embodiment of the present application are described above, and the method and device for preparing the battery of the embodiment of the present application will be described below, and the parts that are not described in detail can be referred to the foregoing embodiments.
  • FIG. 12 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application. As shown in Figure 12, the method 300 may include:
  • the battery cell group 110 includes N battery cell rows 113, the N battery cell rows are arranged along the first direction, and the battery cells of each battery cell row 113 in the N battery cell rows 113
  • the bodies 20 are arranged along the second direction, the first direction is perpendicular to the second direction, and N is an integer greater than 1.
  • the signal transmission component 120 is arranged on the first surface 101 of the battery cell group 110, the first surface 101 is parallel to the plane defined by the first direction and the second direction, and the signal transmission component 120 includes a bus component 121 and an insulating layer 122 , the insulating layer 122 is used to encapsulate the bus component 121 , the insulating layer 122 has an opening 123 , and the bus component 121 is used to electrically connect with the battery cells 20 in the battery cell group 110 at the opening 123 .
  • the cooling system 130 is arranged between two adjacent battery cell rows 110 among the N battery cell rows 110 , and the gap between the two adjacent battery cell rows 110 is at the opening of the first surface 101 A blocking member 140 is provided, and the blocking member 140 is used to block the opening to prevent the condensate generated by the cooling system 130 from reaching the confluence member 121 .
  • FIG. 13 shows a schematic block diagram of a device 400 for preparing a battery according to an embodiment of the present application.
  • the device 400 for preparing a battery may include: a supply module 410 and an installation module 420 .
  • the providing module 410 is used for: providing the battery cell group 110, wherein the battery cell group 110 includes N battery cell columns 113, the N battery cell columns are arranged along the first direction, and the N battery cell columns The battery cells 20 of each battery cell row 113 in 113 are arranged along the second direction, the first direction is perpendicular to the second direction, and N is an integer greater than 1.
  • the providing module 410 is also used for: providing the signal transmission component 120, wherein the signal transmission component 120 is arranged on the first surface 101 of the battery cell group 110, and the first surface 101 is parallel to the plane defined by the first direction and the second direction , the signal transmission assembly 120 includes a busbar 121 and an insulating layer 122, the insulating layer 122 is used to encapsulate the busbar 121, the insulating layer 122 has an opening 123, and the busbar 121 is used to communicate with the battery cell group 110 at the opening 123 The battery cells 20 are electrically connected.
  • the providing module 410 is also used for: providing a cooling system 130, wherein the cooling system 130 is arranged between two adjacent battery cell rows 110 among the N battery cell rows 110, and the adjacent two battery cell rows
  • the gap between 110 is provided with a blocking member 140 at the opening of the first surface 101 , and the blocking member 140 is used to block the opening to prevent the condensate generated by the cooling system 130 from reaching the confluence member 121 .

Abstract

本申请实施例提供一种电池,包括:电池单体组(110),包括沿第一方向排列的N个电池单体列(113),每个电池单体列(113)的电池单体(20)沿第二方向排列,第一方向垂直于第二方向;信号传输组件(120),设置于电池单体组(110)的第一面(101),包括汇流部件(121)和绝缘层(122),汇流部件(121)用于在绝缘层(122)的开孔(123)处与电池单体(20)电连接;冷却系统(130),设置于N个电池单体列(113)中相邻的两个电池单体列(113)之间,相邻的两个电池单体列(113)之间的间隙朝向第一面(101)的开口设置有封堵件(140),用于封堵开口以阻挡冷却系统(130)产生的冷凝液到达汇流部件(121)。本申请实施例的技术方案,能够增强电池的安全性。

Description

电池、用电设备、制备电池的方法和设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电设备、制备电池的方法和设备。
背景技术
随着环境污染的日益加剧,新能源产业越来越受到人们的关注。在新能源产业中,电池技术是关乎其发展的一项重要因素。
在电池技术的发展中,安全问题是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。
电池在高温高湿环境中,容易在电池的箱体内产生冷凝液,造成安全隐患,影响电池的安全性。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供一种电池、用电设备、制备电池的方法和设备,能够增强电池的安全性。
第一方面,提供一种电池,包括:电池单体组,该电池单体组包括N个电池单体列,该N个电池单体列沿第一方向排列,该N个电池单体列中的每个电池单体列的电池单体沿第二方向排列,该第一方向垂直于该第二方向,N为大于1的整数;信号传输组件,设置于该电池单体组的第一面,该第一面平行于该第一方向和该第二方向确定的平面,该信号传输组件包括汇流部件和绝缘层,该绝缘层用于封装该汇流部件,该绝缘层具有开孔,该汇流部件用于在该开孔处与该电池单体组中的电池单体电连接;冷却系统,设置于该N个电池单体列中相邻的两个电池单体列之间;其中,该相邻的两个电池单体列之间的间隙朝向该第一面的开口设置有封堵件,该封堵件用于封堵该开口以阻挡该冷却系统产生的冷凝液到达该汇流部件。
本申请实施例提供一种包括电池单体组、信号传输组件以及冷却系统的电池,其中,信号传输组件包括用于传输电池单体组电能的汇流部件以及用于封装汇流部件的绝缘层,绝缘层的设置可降低外界环境因素对汇流部件造成影响,保证汇流部件的传输性能和安全性能,且为了实现汇流部件与电池单体组的电连接,绝缘层中设置有开孔,汇流部件用于在开孔处与电池单体组中的电池单体电连接。另外,冷却系 统可设置于电池单体组中相邻的两个电池单体列之间,其可用于对电池单体组中的电池单体进行降温,防止电池单体发热造成安全问题,与此同时,该相邻的两个电池单体列之间的间隙在电池单体组的第一平面的开口设置有封堵件,以阻挡冷却系统产生的冷凝液到达信号传输组件中的汇流部件,防止冷凝液造成汇流部件的短路、腐蚀等问题,进而防止可因短路引发的起火、爆炸等安全问题,提升电池的安全性能,也可防止因腐蚀引起的电池寿命问题,提升电池的整体寿命。
在一种可能的实现方式中,该封堵件延伸至该间隙内,提高封堵件在间隙中的稳定性,并减少进入至间隙内的空气,降低冷却系统产生冷凝液的可能性,提升封堵件的封堵效果。
在一种可能的实现方式中,该封堵件在该间隙内连接于该冷却系统。
在该技术方案中,封堵件与冷却系统之间可大量减少或避免空气的进入,从而可较佳的防止冷却系统产生冷凝液,进一步提升封堵件的封堵效果。
在一种可能的实现方式中,该封堵件的材料为吸液材料。
通过该实施方式,即使有少量空气接触冷却系统产生了冷凝液,该封堵件也可吸收该冷凝液,防止冷凝液在电池中运动,达到电池中的汇流部件或者其它部件,产生安全隐患。
在一种可能的实现方式中,该封堵件具有弹性,且该封堵件被压缩于该绝缘层与该第一面之间。
在该实施方式中,封堵件具有弹性,其便于安装于相邻的两个电池单体列之间的间隙,且当位于间隙中的封堵件处于压缩态时,其与电池单体之间具有一定的作用力,可提高封堵件在间隙处的安装稳定性以及封堵效果。进一步地,封堵件除了被压缩设置于相邻的两个电池单体列之间的间隙以外,还被压缩设置于绝缘层与电池单体组的第一面之间,因此,可进一步提高封堵件的安装稳定性以及封堵效果。
在一种可能的实现方式中,该绝缘层朝向该开口凸出以形成该封堵件。
在该实现方式中,该封堵件也可复用电池中的原有部件,例如绝缘层形成,而不需设置额外的部件用于封堵,可降低电池的制造成本。
在一种可能的实现方式中,该封堵件在垂直于该第二方向的平面上的截面为凸字型或Ω型。
在一种可能的实现方式中,该封堵件为条形封堵件,该条形封堵件沿该第二方向延伸。
第二方面,提供一种用电设备,包括:第一方面或第一方面中任一可能的实现方式中的电池,该电池用于提供电能。
第三方面,提供一种制备电池的方法,包括:提供电池单体组,该电池单体组包括N个电池单体列,该N个电池单体列沿第一方向排列,该N个电池单体列中的每个电池单体列的电池单体沿第二方向排列,该第一方向垂直于该第二方向,N为大于1的整数;提供信号传输组件,该信号传输组件设置于该电池单体组的第一面,该第一面平行于该第一方向和该第二方向确定的平面,该信号传输组件包括汇流部件和绝缘层,该绝缘层用于封装该汇流部件,该绝缘层具有开孔,该汇流部件用于在该 开孔处与该电池单体组中的电池单体电连接;提供冷却系统,该冷却系统设置于该N个电池单体列中相邻的两个电池单体列之间;其中,该相邻的两个电池单体列之间的间隙朝向该第一面的开口设置有封堵件,该封堵件用于封堵该开口以阻挡该冷却系统产生的冷凝液到达该汇流部件。
第四方面,提供了一种制备电池的设备,包括执行上述第三方面的方法的模块。
本申请实施例的技术方案,提供一种包括电池单体组、信号传输组件以及冷却系统的电池,其中,冷却系统设置于电池单体组中相邻的两个电池单体列之间,可用于对电池单体组中的电池单体进行降温,防止电池单体发热造成安全问题,与此同时,该相邻的两个电池单体列之间的间隙在电池单体组的第一平面的开口设置有封堵件,以阻挡冷却系统产生的冷凝液到达信号传输组件中的汇流部件,防止冷凝液造成汇流部件的短路、腐蚀等问题,进而防止可因短路引发的起火、爆炸等安全问题,提升电池的安全性能,也可防止因腐蚀引起的电池寿命问题,提升电池的整体寿命。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例的车辆的示意图;
图2是本申请一实施例的电池的示意图;
图3是本申请一实施例的电池的示意图;
图4是本申请一实施例的电池单体的示意图;
图5是本申请一实施例的电池的示意爆炸图;
图6是本申请一实施例的电池的示意截面图;
图7是图6中封堵件所在区域的一种示意性局部放大图;
图8是图6中封堵件所在区域的一种示意性局部放大图;
图9是图6中封堵件所在区域的一种示意性局部放大图;
图10是图6中封堵件所在区域的一种示意性局部放大图;
图11是图10所示实施例中封堵件的局部立体示意图;
图12是本申请一实施例的制备电池的方法的示意性流程图;
图13是本申请一实施例的制备电池的设备的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施 例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含;“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极 集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(Polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
为了满足不同的电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的温度设计。为了控制电池单体处于适宜的温度,可以在电池内设置冷却系统。冷却系统用于容纳冷却介质以给电池单体降低温度。冷却系统也可以称为冷却部件或冷却板等,冷却介质也可以称为冷却流体,更具体的,可以称为冷却液或冷却气体。冷却流体是循环流动的,以达到更好的温度调节的效果。可选地,冷却介质可以为水、水和乙二醇的混合液或者空气等。在冷却介质为水时,冷却系统也可以称为水冷板。
对于电池的箱体而言,其形状可以根据所容纳的多个电池单体而定。在一些实施例中,箱体可以为方形,具有六个壁。可选地,箱体的底壁和顶壁可以集成上述冷却系统,以分别在箱体的底部和顶部对电池单体进行冷却。箱体的侧壁设置梁,梁包括多个子壁,多个子壁形成中空的梁结构,即梁内部具有腔体。可选地,除了箱体的底部和顶部外,在箱体的中部,例如多个电池单体之间也可以设置冷却系统,以进一步增强冷却效果。
电池在高温高湿环境中,容易在电池的箱体内产生冷凝液,造成安全隐患,影响电池的安全性。具体而言,电池内高温高湿的气体在遇到电池的箱体内的冷却系统时,会产生冷凝液,该冷凝液若滴到电池内的电连接区域,则可能会影响电池的安全性。
鉴于此,本申请提供了一种技术方案,在电池单体之间的间隙设置有封堵件,以阻挡电池单体之间的冷却系统产生的冷凝液到达电池内的电连接区域,对该电连接区域造成影响,从而增强电池的安全性。
在电池的箱体中,除了上文提到的电池单体以及冷却部件外,还可以包括 汇流部件以及电池的其他部件。在一些实施例中,箱体中还可以设置用于固定电池单体的结构。
汇流部件用于实现多个电池单体之间的电连接,例如并联或串联或混联。汇流部件可通过连接电池单体的电极端子实现电池单体之间的电连接。在一些实施例中,汇流部件可通过焊接固定于电池单体的电极端子。汇流部件形成的电连接也可称为“高压连接”。
除了汇流部件外,电池内还可以设置传感器件,传感器件用于感测电池单体的状态,例如感测电池单体的温度、荷电状态等。在本申请实施例中,电池内的电连接区域可以包括汇流部件形成的电连接区域和/或传感器件中的电连接区域。
汇流部件和传感器件可以封装在绝缘层中,形成信号传输组件。相应地,信号传输组件可用于传输电池单体的电压和/或传感信号。信号传输组件在与电池单体的电极端子的连接处没有绝缘层,即,在此处绝缘层具有开孔,从而与电池单体的电极端子连接。
电池的箱体上还可以设置压力平衡机构,用于平衡箱体内外的压力。例如,当箱体内的压力高于箱体外时,箱体内部的气体可以通过压力平衡机构流到箱体外;当箱体内的压力低于箱体外时,箱体外部的气体可以通过压力平衡机构流入箱体内部。
应理解,以上描述的电池的箱体中的各个部件不应理解为对本申请实施例的限定,也就是说,本申请实施例的用于电池的箱体可以包括上述的部件,也可以不包括上述的部件。
本申请实施例描述的技术方案均适用于各种使用电池的设备,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达14,控制器13以及电池10,控制器13用来控制电池10为马达14的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体。例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体10容纳于箱体11内。如图2所示,箱体11可以包括两部分,这里分别称为第一部分111 (上箱体)和第二部分112(下箱体),第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体11。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体11内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体11而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
可选地,如图3所示,箱体11的第一部分111可以为没有开口的上盖,即,第一部分111为平板状上盖。该上盖可以集成冷却部件,以在箱体11的顶部对电池单体20进行冷却。箱体11的第二部分112为具有开口的腔体,包括底壁和侧壁。底壁可以集成冷却部件,以在箱体11的底部对电池单体20进行冷却。侧壁可以设置梁,梁包括多个子壁,多个子壁形成中空的梁结构,即梁内部具有腔体。
可选地,除了箱体11的底部和顶部外,在箱体11的中部也可以设置冷却部件。例如,在上下两列电池单体20之间也可以设置冷却部件,以进一步增强冷却效果。
可选地,箱体11内的电池单体20的设置有电极端子的壁可以垂直于箱体11的底壁。也就是说,电池单体20可以横向(“平躺”)放置。这样,在垂直于箱体11的底壁的方向上,每两列电池单体20之间都可以设置冷却部件,相应地,每个电池单体20的两侧都设置有冷却部件。可选地,每个电池单体20的面积最大的侧壁连接冷却部件,从而实现对电池单体20的较大限度的冷却。
如图4所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。壳体211和盖板212形成外壳或电池盒21。壳体211的壁以及盖板212均称为电池单体20的壁,其中对于长方体型电池单体20,壳体211的壁包括底壁和四个侧壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211 内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图4所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置有4个独立的电极组件22。
电池单体20上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图5示出了本申请实施例提供的一种电池10的示意性爆炸图。
如图5所示,电池10包括:电池单体组110,该电池单体组110包括N个电池单体列113,该N个电池单体列113沿第一方向排列,且该N个电池单体列113中的每个电池单体列113的电池单体20沿第二方向排列,其中,第一方向垂直于第二方向,N为大于1的整数。
作为示意,图5中,z方向为第一方向,x方向为第二方向,在x方向上,多个电池单体20排列形成一个电池单体列113,在z方向上,N个电池单体列113依次排列。在图5所示实施例中,示意性的示出了两个电池单体列113在z方向上依次排列。
可选地,在一些实施方式中,z方向可为垂直于大地水平面的方向,当电池单体组110设置于大地水平面时,电池单体组110中的N个电池单体列113沿z方向堆叠设置。
继续参见图5,本申请实施例的电池10还包括:信号传输组件120,设置 于上述电池单体组110的第一面101,该第一面101平行于上述第一方向和上述第二方向确定的平面,该信号传输组件120包括汇流部件121和绝缘层122,该绝缘层122用于封装该汇流部件121,且该绝缘层122具有开孔123,该汇流部件121用于在开孔123处与电池单体组110中的电池单体20电连接。
具体地,在图5所示实施例中,电池单体组110中的电池单体20可近似理解为块状电池单体,例如,其可为立方体结构或者长方体结构,该电池单体20中设置有电极端子214的面可称之为电池单体20的第一面,当多个电池单体20沿x方向上排列形成一个电池单体列113时,该多个电池单体20的多个第一面相互拼接形成一个大平面,称之为一个电池单体列113的第一面。进一步地,N个电池单体列113沿z方向排列形成电池单体组110时,该N个电池单体列113的第一面拼接形成一个更大的平面,称之为电池单体组110的第一面101,该电池单体组110的第一面平行于z方向和x方向确定的平面。即在本申请实施例中,电池单体组110的第一面101平行于xz平面。
进一步地,在该电池单体组110的第一平面101上,设置有电池10的信号传输组件120,具体地,该信号传输组件120中包括汇流部件121和绝缘层122,该汇流部件121可连接至多个电池单体20的电极端子,并用于传输该多个电池单体20的电能,由于汇流部件121用于传输多个电池单体20的电能,其传输性能和安全性能对于电池10来讲,就显得十分重要,因此,信号传输组件120还包括绝缘层122,用于封装该汇流部件121,降低外界环境因素对该汇流部件121造成的影响,保证汇流部件121的传输性能和安全性能。但为了实现汇流部件121和多个电池单体20的电极端子的电连接,绝缘层122中形成有开孔123,汇流部件121用于在该开孔123处与电池单体组110中电池单体20的电极端子214电连接。
继续参见图5,本申请实施例的电池10还包括:冷却系统130,设置于N个电池单体列113中相邻的两个电池单体列113之间,其中,相邻的两个电池单体列113之间的间隙朝向电池单体组110的第一平面101的开口设置有封堵件140,以阻挡冷却系统130产生的冷凝液到达汇流部件121。
可选地,在图5所示实施例中,冷却系统130可包括冷却板,该冷却板可设置于N个电池单体列113中相邻的两个电池单体列113之间,且冷却板可垂直于电池单体组110的第一平面101设置。
基于该技术方案,冷却系统130设置于相邻的两个电池单体列113之间,可对该相邻的两个电池单体列113中的电池单体20进行降温,可选地,该冷却系统130可包括冷却板,冷却板与相邻的两个电池单体列113中的电池单体20具有较大的对应面积,对电池单体20的降温效果较好。
如图5所示,为了降低冷却系统130上形成的冷凝液对设置于电池单体组110的第一面101的信号传输组件120(尤其是信号传输组件120中的汇流部件121)造成的影响,冷却系统130未抵接于电池单体组110的第一面101,使得相邻的两个电池单体列113之间存在间隙。
为了进一步降低冷却系统130上形成的冷凝液对信号传输组件120中的汇 流部件121造成的影响,该相邻的两个电池单体列113之间的间隙在电池单体组110的第一平面101的开口,或者说,相邻的两个电池单体列113之间的间隙在电池单体组110的第一平面101的开口,设置有封堵件140,以阻挡冷却系统130产生的冷凝液到达汇流部件121。具体地,该封堵件140可阻挡冷却系统130产生的冷凝液到达绝缘层122的开孔123处的汇流部件121,防止冷凝液造成汇流部件121的短路、腐蚀等问题。
基于上述技术方案,本申请实施例提供一种包括电池单体组110、信号传输组件120以及冷却系统130的电池10,其中,信号传输组件120包括用于传输电池单体组113电能的汇流部件121以及用于封装汇流部件121的绝缘层122,绝缘层122的设置可降低外界环境因素对汇流部件121造成影响,保证汇流部件121的传输性能和安全性能,且为了实现汇流部件121与电池单体组110的电连接,绝缘层122中设置有开孔123,汇流部件121用于在开孔123处与电池单体组110中的电池单体20电连接。另外,冷却系统130可设置于电池单体组110中相邻的两个电池单体列113之间,其可用于对电池单体组110中的电池单体20进行降温,防止电池单体20发热造成安全问题,与此同时,该相邻的两个电池单体列113之间的间隙在电池单体组110的第一平面101的开口设置有封堵件140,以阻挡冷却系统130产生的冷凝液到达信号传输组件120中的汇流部件121,防止冷凝液造成汇流部件121的短路、腐蚀等问题,进而防止可因短路引发的起火、爆炸等安全问题,也可防止因腐蚀引起的电池性能和寿命问题。
可以理解的是,图5中仅举例示意了电池单体组110包括在z方向上排列的两个电池单体列113的情况,除此之外,在z方向上,电池单体组110还可包括更多数量的电池单体列113,每相邻的两个电池单体列113之间可设置有冷却系统130,或者,其中部分相邻的两个电池单体列113之间可设置有冷却系统130。
还可以理解的是,图5中,除了以上所述的x方向和z方向,三维空间还可包括垂直于该x方向和z方向的y方向,可选地,本申请实施例中的电池10可包括多个电池单体组113,该多个电池单体组113可沿y方向排列。可选地,在y方向上相邻的两个电池单体组113可以镜像设置。
上文结合图5对本申请实施例提供的电池10的基本技术方案进行了介绍,下面,结合图6至图9,说明本申请实施例的电池10中的各部件的相关技术方案。
图6示出了本申请实施例中提供的电池10的一种示意性截面图。可选地,该图6所示的截面图可为图5中电池10沿yz平面的示意性截面图。
如图6所示,信号传输组件120包括两层绝缘层122,两层绝缘层122之间设置有汇流部件121(图6中未示出),且该两层绝缘层122用于包覆汇流部件121,以对汇流部件121进行封装。
可选地,除了汇流部件121以外,信号传输组件120还包括传感部件(未示出),同样的,该传感部件设置于上述两层绝缘层之间,该两层绝缘层122还用于包覆该传感部件,以对传感部件进行封装。作为示例,传感部件可包括传感器和传输线路,其中,传感器包括但不限于是用于感测电池单体20的温度、电压、电流等状态 信号的传感器,该传感器感测得到的电池单体20的状态信号通过传输线路进行传输,该传输线路例如可以是电信号传输线或者是柔性电路板。
可以理解的是,除了汇流部件121和传感部件以外,信号传输组件120还可以包括其它电学部件,两层绝缘层122还可用于对该其它电学部件进行封装,本申请实施例对该电学部件的具体类型不做限定。
作为一种示例,在本申请实施例中,信号传输组件120可为热压电池单体连接系统(Cell Connection System,CCS),以实现电池单体组110的信号传输。
继续参见图6,冷却系统130为冷却板,在z方向上,该冷却系统130的尺寸可与相邻的两个电池单体列113之间的间隙相等或相近,该冷却系统130的大面可接触于电池单体20,用于对电池单体20进行冷却。
在y方向上,该冷却系统130的尺寸可小于电池单体20的尺寸,因此,使得相邻的两个电池单体列113之间存在间隙,该间隙在第一面101的开口设置有封堵件140,用于阻挡冷却系统130产生的冷凝液。
结合图5和图6可看出,上述相邻的两个电池单体列113之间的间隙沿x方向延伸,对应的,封堵件140可为条形封堵件,该条形封堵件沿x方向延伸,其长度可接近或等于每个电池单体列113在x方向的长度。
图7示出了图6中封堵件140所在区域(A区域)的一种示意性局部放大图。
如图7所示,在该实施方式中,封堵件140封堵在间隙之外,紧贴于电池单体组110的第一面101设置,旨在封堵该间隙在第一面101的开口。
或者,在其它实施方式中,图8和图9示出了图6中封堵件140所在区域(A区域)的另两种示意性局部放大图。
如图8所示,该封堵件140延伸至相邻的两个电池单体列113之间的间隙内,提高封堵件140在间隙中的稳定性,并减少进入至间隙内的空气,降低冷却系统130产生冷凝液的可能性,提升封堵件140的封堵效果。
如图9所示,封堵件140延伸至相邻的两个电池单体列113之间的间隙内,且连接于冷却系统130。在该技术方案中,封堵件140与冷却系统130之间可大量减少或避免空气的进入,从而可较佳的防止冷却系统130产生冷凝液,提升封堵件140的封堵效果。
可选地,在上述申请实施例中,封堵件140可为吸液材料,用于吸收形成于冷却系统130的冷凝液,通过该实施方式,即使有少量空气接触冷却系统130产生了冷凝液,该封堵件140也可吸收该冷凝液,防止冷凝液在电池10中运动,达到电池10中的汇流部件121或者其它部件,产生安全隐患。
可选地,在上述申请实施例中,封堵件140可具有弹性,其便于安装于相邻的两个电池单体列113之间的间隙,且当位于间隙中的封堵件140处于压缩态时,其与电池单体20之间具有一定的作用力,可提高封堵件140在间隙处的安装稳定性以及封堵效果。
在一些可能的实施方式中,位于相邻的两个电池单体列113之间的间隙中的 局部封堵件140处于压缩态,而位于间隙之外的局部封堵件140处于非压缩态。
在另一些可能的实施方式中,封堵件140整体均处于压缩态。作为示例,如图7至图9所示,封堵件140被压缩于信号传输组件120中的绝缘层122与电池单体组110的第一面101之间。
通过该实施方式,封堵件140除了被压缩设置于相邻的两个电池单体列113之间的间隙以外,还被压缩设置于绝缘层122与电池单体组110的第一面101之间,因此,可进一步提高封堵件140的安装稳定性以及封堵效果。
可以理解的是,在本申请实施例中,封堵件140除了可被压缩于信号传输组件120中的绝缘层122与电池单体组110的第一面101之间以外,还可被压缩于其它部件与电池单体组110的第一面101之间,本申请实施例对此不做具体限定。
可选地,上述申请实施例中,封堵件140的材料包括但不限于是泡棉,其可具有吸液能力和/或弹性,且成本较低,能够良好的应用于本申请提供的电池10中。
在上文实施例中,封堵件140可为独立部件,安装于相邻的两个电池单体列113之间的间隙,在其它实施例中,该封堵件140也可复用电池10中的原有部件形成,而不需设置额外的部件用于封堵,可降低制造成本。
图10示出了图6中封堵件140所在区域(A区域)的另一示意性局部放大图。
如图10所示,在本申请实施例中,信号传输组件120中的绝缘层122朝向电池单体组110的第一面101凸出以形成封堵件140,具体地,绝缘层122朝向第一面101中的开口凸出以形成封堵件140,该开口为相邻的两个电池单体列113之间的间隙在第一面101中的开口。
结合图6和图10可以看出,在本申请实施例中,信号传输组件120的两层绝缘层122中,靠近于第一面101的绝缘层122中的局部区域凸出,形成褶皱,该凸出的褶皱用于形成本申请实施例的封堵件140。
可选地,在一些实施方式中,封堵件140在垂直于第二方向的平面上的截面近似呈现为Ω型,例如,如图10所示,垂直于第二方向(即x方向)的平面为yz平面,在yz平面上,封堵件140的截面近似呈现为Ω型。
或者,在其它实施方式中,封堵件140在垂直于第二方向的平面上的截面也可呈现为其它形状,例如“口”字形,“凸”字形或者其它任意形状,本申请实施例对此不做具体限定。
可选地,如图10所示,该封堵件140可延伸至相邻的两个电池单体列之间的间隙中,该封堵件140可紧贴于电池单体位于间隙中的壁,以保证封堵件140的封堵效果。
或者,在其它实施方式中,该封堵件140也可不延伸至相邻的两个电池单体列113之间的间隙,而仅设置于开口处,此时,封堵件140的尺寸需大于间隙的宽度,以实现较好的封堵效果。
以上图10仅示意性的示出了封堵件140在yz平面上的截面图,为了更为清楚示意该封堵件140的立体形态,图11示出了图10所示实施例中封堵件140的局部 立体示意图。如图11所示,信号传输组件120中绝缘层122凸出形成的褶皱沿x方向延伸,以形成条状的封堵件140。换言之,在本申请实施例中,在x方向上,局远程122凸出形成的封堵件140沿x方向延伸,以对沿x方向延伸的电池单体列113之间的间隙对应的开口进行封堵。
本申请一个实施例还提供了一种用电设备,该用电设备可以包括前述各实施例中的电池10,电池10用于向该用电设备提供电能。可选地,用电设备可以为车辆1、船舶或航天器。
上文描述了本申请实施例的电池10和用电设备,下面将描述本申请实施例的制备电池的方法和设备,其中未详细描述的部分可参见前述各实施例。
图12示出了本申请一个实施例的制备电池的方法300的示意性流程图。如图12所示,该方法300可以包括:
310,提供电池单体组110。
其中,该电池单体组110包括N个电池单体列113,该N个电池单体列沿第一方向排列,该N个电池单体列113中的每个电池单体列113的电池单体20沿第二方向排列,第一方向垂直于第二方向,N为大于1的整数。
320,提供信号传输组件120。
其中,该信号传输组件120设置于电池单体组110的第一面101,该第一面101平行于第一方向和第二方向确定的平面,信号传输组件120包括汇流部件121和绝缘层122,该绝缘层122用于封装汇流部件121,绝缘层122具有开孔123,汇流部件121用于在开孔123处与电池单体组110中的电池单体20电连接。
330,提供冷却系统130。
其中,该冷却系统130设置于N个电池单体列110中相邻的两个电池单体列110之间,相邻的两个电池单体列110之间的间隙在第一面101的开口设置有封堵件140,封堵件140用于封堵开口以阻挡冷却系统130产生的冷凝液到达汇流部件121。
图13示出了本申请一个实施例的制备电池的设备400的示意性框图。如图13所示,制备电池的设备400可以包括:提供模块410和安装模块420。
提供模块410用于:提供电池单体组110,其中,该电池单体组110包括N个电池单体列113,该N个电池单体列沿第一方向排列,该N个电池单体列113中的每个电池单体列113的电池单体20沿第二方向排列,第一方向垂直于第二方向,N为大于1的整数。
提供模块410还用于:提供信号传输组件120,其中,该信号传输组件120设置于电池单体组110的第一面101,该第一面101平行于第一方向和第二方向确定的平面,信号传输组件120包括汇流部件121和绝缘层122,该绝缘层122用于封装汇流部件121,绝缘层122具有开孔123,汇流部件121用于在开孔123处与电池单体组110中的电池单体20电连接。
提供模块410还用于:提供冷却系统130,其中,该冷却系统130设置于N个电池单体列110中相邻的两个电池单体列110之间,相邻的两个电池单体列110之间的间隙在第一面101的开口设置有封堵件140,封堵件140用于封堵开口以阻挡冷却 系统130产生的冷凝液到达汇流部件121。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种电池,其特征在于,包括:
    电池单体组(110),所述电池单体组(110)包括N个电池单体列(113),所述N个电池单体列(113)沿第一方向排列,所述N个电池单体列(113)中的每个电池单体列(113)的电池单体(20)沿第二方向排列,所述第一方向垂直于所述第二方向,N为大于1的整数;
    信号传输组件(120),设置于所述电池单体组(110)的第一面(101),所述第一面(101)平行于所述第一方向和所述第二方向确定的平面,所述信号传输组件(120)包括汇流部件(121)和绝缘层(122),所述绝缘层(122)用于封装所述汇流部件(121),所述绝缘层(122)具有开孔(123),所述汇流部件(121)用于在所述开孔(123)处与所述电池单体组(110)中的电池单体(20)电连接;
    冷却系统(130),设置于所述N个电池单体列(113)中相邻的两个电池单体列(113)之间;
    其中,所述相邻的两个电池单体列(113)之间的间隙朝向所述第一面(101)的开口设置有封堵件(140),所述封堵件(140)用于封堵所述开口以阻挡所述冷却系统(130)产生的冷凝液到达所述汇流部件(121)。
  2. 根据权利要求1所述的电池,其特征在于,所述封堵件(140)延伸至所述间隙内。
  3. 根据权利要求2所述的电池,其特征在于,所述封堵件(140)在所述间隙内连接于所述冷却系统(130)。
  4. 根据权利要求1至3中任一项所述的电池,其特征在于,所述封堵件(140)的材料为吸液材料。
  5. 根据权利要求1至4中任一项所述的电池,其特征在于,所述封堵件(140)具有弹性,且所述封堵件(140)被压缩于所述绝缘层(122)与所述第一面(101)之间。
  6. 根据权利要求1至3中任一项所述的电池,其特征在于,所述绝缘层(122)朝向所述开口凸出以形成所述封堵件(140)。
  7. 根据权利要求1至6中任一项所述的电池,其特征在于,所述封堵件(140)在垂直于所述第二方向的平面上的截面为凸字型或Ω型。
  8. 根据权利要求1至7中任一项所述的电池,其特征在于,所述封堵件(140)为条形封堵件,所述条形封堵件沿所述第二方向延伸。
  9. 一种用电设备,其特征在于,包括:根据权利要求1至8中任一项所述的电池,所述电池用于提供电能。
  10. 一种制备电池的方法,其特征在于,包括:
    提供(310)电池单体组(110),所述电池单体组(110)包括N个电池单体列(113),所述N个电池单体列(113)沿第一方向排列,所述N个电池单体列 (113)中的每个电池单体列(113)的电池单体(20)沿第二方向排列,所述第一方向垂直于所述第二方向,N为大于1的整数;
    提供(320)信号传输组件(120),所述信号传输组件(120)设置于所述电池单体组(110)的第一面(101),所述第一面(101)平行于所述第一方向和所述第二方向确定的平面,所述信号传输组件(120)包括汇流部件(121)和绝缘层(122),所述绝缘层(122)用于封装所述汇流部件(121),所述绝缘层(122)具有开孔(123),所述汇流部件(121)用于在所述开孔(123)处与所述电池单体组(110)中的电池单体(20)电连接;
    提供(330)冷却系统(130),所述冷却系统(130)设置于所述N个电池单体列(113)中相邻的两个电池单体列(113)之间;
    其中,所述相邻的两个电池单体列(113)之间的间隙朝向所述第一面(101)的开口设置有封堵件(140),所述封堵件(140)用于封堵所述开口以阻挡所述冷却系统(130)产生的冷凝液到达所述汇流部件(121)。
  11. 一种制备电池的设备,其特征在于,包括:提供模块(410),用于:
    提供电池单体组(110),所述电池单体组(110)包括N个电池单体列(113),所述N个电池单体列(113)沿第一方向排列,所述N个电池单体列(113)中的每个电池单体列(113)的电池单体(20)沿第二方向排列,所述第一方向垂直于所述第二方向,N为大于1的整数;
    提供信号传输组件(120),所述信号传输组件(120)设置于所述电池单体组(110)的第一面(101),所述第一面(101)平行于所述第一方向和所述第二方向确定的平面,所述信号传输组件(120)包括汇流部件(121)和绝缘层(122),所述绝缘层(122)用于封装所述汇流部件(121),所述绝缘层(122)具有开孔(123),所述汇流部件(121)用于在所述开孔(123)处与所述电池单体组(110)中的电池单体(20)电连接;
    提供冷却系统(130),所述冷却系统(130)设置于所述N个电池单体列(113)中相邻的两个电池单体列(113)之间;
    其中,所述相邻的两个电池单体列(113)之间的间隙朝向所述第一面(101)的开口设置有封堵件(140),所述封堵件(140)用于封堵所述开口以阻挡所述冷却系统(130)产生的冷凝液到达所述汇流部件(121)。
PCT/CN2021/109722 2021-07-30 2021-07-30 电池、用电设备、制备电池的方法和设备 WO2023004780A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237005329A KR102555927B1 (ko) 2021-07-30 2021-07-30 배터리, 전기 설비, 배터리의 제조 방법 및 제조 설비
JP2023512757A JP7353533B2 (ja) 2021-07-30 2021-07-30 電池、電力消費機器、電池を製造する方法と機器
CN202180072794.0A CN116349058A (zh) 2021-07-30 2021-07-30 电池、用电设备、制备电池的方法和设备
EP21951370.2A EP4184658A4 (en) 2021-07-30 2021-07-30 BATTERY, ELECTRICAL DEVICE, AND BATTERY PREPARATION METHOD AND DEVICE
PCT/CN2021/109722 WO2023004780A1 (zh) 2021-07-30 2021-07-30 电池、用电设备、制备电池的方法和设备
US18/352,276 US11830996B1 (en) 2021-07-30 2023-07-14 Battery, power consuming apparatus, and method and apparatus for manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109722 WO2023004780A1 (zh) 2021-07-30 2021-07-30 电池、用电设备、制备电池的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/352,276 Continuation US11830996B1 (en) 2021-07-30 2023-07-14 Battery, power consuming apparatus, and method and apparatus for manufacturing battery

Publications (2)

Publication Number Publication Date
WO2023004780A1 true WO2023004780A1 (zh) 2023-02-02
WO2023004780A8 WO2023004780A8 (zh) 2023-03-02

Family

ID=85087440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109722 WO2023004780A1 (zh) 2021-07-30 2021-07-30 电池、用电设备、制备电池的方法和设备

Country Status (6)

Country Link
US (1) US11830996B1 (zh)
EP (1) EP4184658A4 (zh)
JP (1) JP7353533B2 (zh)
KR (1) KR102555927B1 (zh)
CN (1) CN116349058A (zh)
WO (1) WO2023004780A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130337310A1 (en) * 2011-02-28 2013-12-19 Sanyo Electric Co., Ltd. Cell module and manufacturing method for cell module
JP2015210894A (ja) * 2014-04-24 2015-11-24 株式会社東芝 組電池モジュール
CN109301116A (zh) * 2018-10-09 2019-02-01 天津瑷睿卡仕福测控技术有限公司 一种带有插拔冷却板的动力电池模组
CN211670261U (zh) * 2020-02-28 2020-10-13 湖北亿纬动力有限公司 汇流排绝缘结构
CN111952499A (zh) * 2020-07-22 2020-11-17 东风时代(武汉)电池系统有限公司 电池模组及汽车动力电池
CN112018303A (zh) * 2020-10-19 2020-12-01 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和装置
CN112018321A (zh) * 2020-10-19 2020-12-01 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN112103447A (zh) * 2019-06-17 2020-12-18 株式会社Lg化学 电池模块、包括电池模块的电池组以及包括电池组的蓄能系统
CN212810495U (zh) * 2020-08-21 2021-03-26 宁德时代新能源科技股份有限公司 一种电池以及用电设备
CN112909398A (zh) * 2020-10-19 2021-06-04 江苏时代新能源科技有限公司 电池、用电设备、制备电池的方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343048B2 (ja) * 2010-07-29 2013-11-13 日立ビークルエナジー株式会社 蓄電モジュールおよび蓄電装置
KR101179307B1 (ko) 2010-08-13 2012-09-03 삼성전기주식회사 에너지 저장장치 모듈
JP2014044884A (ja) 2012-08-27 2014-03-13 Sanyo Electric Co Ltd バッテリシステム及びバッテリシステムを備える電動車両並びに蓄電装置
JP2017208298A (ja) 2016-05-20 2017-11-24 株式会社エクセディ 蓄電池ユニット
KR102059077B1 (ko) * 2016-06-13 2019-12-24 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
DE102018118525A1 (de) * 2018-07-31 2020-02-06 Valeo Siemens Eautomotive Germany Gmbh Anordnung mit einer Stromschienenvorrichtung und einem Stromrichtergehäuse sowie Verfahren zu deren Herstellung, Stromrichter für ein Fahrzeug und Fahrzeug
CN112072008B (zh) * 2019-06-10 2021-07-13 宁德时代新能源科技股份有限公司 电池包和车辆
KR20210004189A (ko) * 2019-07-03 2021-01-13 주식회사 엘지화학 방염 플레이트를 구비한 배터리 모듈, 이를 포함하는 배터리 랙 및 전력 저장 장치

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130337310A1 (en) * 2011-02-28 2013-12-19 Sanyo Electric Co., Ltd. Cell module and manufacturing method for cell module
JP2015210894A (ja) * 2014-04-24 2015-11-24 株式会社東芝 組電池モジュール
CN109301116A (zh) * 2018-10-09 2019-02-01 天津瑷睿卡仕福测控技术有限公司 一种带有插拔冷却板的动力电池模组
CN112103447A (zh) * 2019-06-17 2020-12-18 株式会社Lg化学 电池模块、包括电池模块的电池组以及包括电池组的蓄能系统
CN211670261U (zh) * 2020-02-28 2020-10-13 湖北亿纬动力有限公司 汇流排绝缘结构
CN111952499A (zh) * 2020-07-22 2020-11-17 东风时代(武汉)电池系统有限公司 电池模组及汽车动力电池
CN212810495U (zh) * 2020-08-21 2021-03-26 宁德时代新能源科技股份有限公司 一种电池以及用电设备
CN112018303A (zh) * 2020-10-19 2020-12-01 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和装置
CN112018321A (zh) * 2020-10-19 2020-12-01 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN112909398A (zh) * 2020-10-19 2021-06-04 江苏时代新能源科技有限公司 电池、用电设备、制备电池的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184658A4 *

Also Published As

Publication number Publication date
WO2023004780A8 (zh) 2023-03-02
KR20230030010A (ko) 2023-03-03
EP4184658A1 (en) 2023-05-24
CN116349058A (zh) 2023-06-27
US20230361373A1 (en) 2023-11-09
JP2023535234A (ja) 2023-08-16
KR102555927B1 (ko) 2023-07-13
US11830996B1 (en) 2023-11-28
JP7353533B2 (ja) 2023-09-29
EP4184658A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2023070290A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
CN216872133U (zh) 一种电池和用电设备
WO2023044764A1 (zh) 压力平衡机构、电池、用电装置、制备电池的方法和装置
US11888136B2 (en) Battery, power consumption device, and method and device for producing battery
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
WO2023004726A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155133A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004780A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004779A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004750A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155210A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置
WO2023155211A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004777A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2023133781A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
CN117063333A (zh) 电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023512757

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021951370

Country of ref document: EP

Effective date: 20230217

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE