WO2023004779A1 - 电池、用电设备、制备电池的方法和设备 - Google Patents

电池、用电设备、制备电池的方法和设备 Download PDF

Info

Publication number
WO2023004779A1
WO2023004779A1 PCT/CN2021/109708 CN2021109708W WO2023004779A1 WO 2023004779 A1 WO2023004779 A1 WO 2023004779A1 CN 2021109708 W CN2021109708 W CN 2021109708W WO 2023004779 A1 WO2023004779 A1 WO 2023004779A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
signal transmission
cell group
cooling system
Prior art date
Application number
PCT/CN2021/109708
Other languages
English (en)
French (fr)
Inventor
杨海奇
唐彧
曾智敏
黄小腾
王鹏
徐晨怡
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/109708 priority Critical patent/WO2023004779A1/zh
Priority to JP2023512756A priority patent/JP7469559B2/ja
Priority to CN202180075045.3A priority patent/CN116349053A/zh
Priority to EP21951369.4A priority patent/EP4181266A1/en
Priority to KR1020237005471A priority patent/KR20230038775A/ko
Publication of WO2023004779A1 publication Critical patent/WO2023004779A1/zh
Priority to US18/340,911 priority patent/US20230335845A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/298Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/691Arrangements or processes for draining liquids from casings; Cleaning battery or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery, an electrical device, a method and a device for preparing a battery.
  • Embodiments of the present application provide a battery, an electrical device, a method for preparing a battery, and a device, which can enhance the safety of the battery.
  • a battery including: a battery cell group, including a plurality of battery cells; a cooling system, arranged on the first surface of the battery cell group; a signal transmission component, arranged on the battery On the second surface of the monomer group, the second surface is adjacent to the first surface, the signal transmission component includes a bus component and an insulating layer, the insulating layer encapsulates the bus component, and the insulating layer has an opening, the confluence component is used to electrically connect with the battery cells in the battery cell group at the opening; a blocking member is connected to the battery cell group and protrudes from the first surface The baffle is used to prevent the condensate generated by the cooling system from reaching the signal transmission component.
  • the battery in the embodiment of the present application is provided with a cooling system on its first surface, and a signal transmission component is provided on the second surface adjacent to the first surface, so as to realize the electrical connection between multiple battery cells,
  • the battery also includes a shield connected to and protruding from the edge of the first surface to prevent condensate generated by the cooling system from reaching the signal transmission component, so as to avoid short circuit of the battery and improve the safety of the battery.
  • the orthographic projection of the shielding member on the plane parallel to the first surface covers the orthographic projection of the transmission assembly on the plane parallel to the first surface.
  • the shield extends beyond the area where the signal transmission components are located, and acts as a “roof” in the event of condensation from the cooling system, directing the condensate to areas outside the signal transmission components, such as two opposite batteries Space between monomer groups to protect signal transmission components.
  • a protruding portion of the shielding member protruding from an edge of the first surface is parallel to the first surface.
  • a protruding portion of the shielding member protruding from an edge of the first surface is bent toward the second surface. After the shield is bent, the bent part can drain the condensate, and it is easier to gather the condensate in the space between the two battery cell groups, limiting the condensate from reaching the battery cell groups.
  • the battery includes a plurality of battery cell groups; wherein, the protruding parts of the shields of the two battery cell groups that are oppositely arranged are connected to form a groove , the groove is used to collect the condensate. Condensation from the cooling system can be collected by the grooves as it drips at the shutter. The condensate collected by the groove can be discharged at an appropriate time, for example, when the vehicle goes uphill or downhill, the condensate in the groove is naturally discharged to the front and rear ends of the battery cell group.
  • a drain hole is provided at the bottom of the groove for draining the condensate.
  • the condensate collected in the groove can be discharged between the two battery cell groups oppositely arranged in a more timely manner, so as to prevent the condensate from accumulating in the groove.
  • the protruding parts of the shielding parts of the two battery cell groups arranged oppositely are connected by a connecting bar to form the groove.
  • the shielding members of the two oppositely disposed battery cell groups are integrally formed to form the groove, thereby improving the reliability of the shielding members.
  • the material of the shielding member is an insulating material, so as to ensure the insulation and isolation of the signal transmission components and further improve the safety of the battery.
  • a liquid storage tank corresponding to the shielding member is arranged in the case of the battery, and the shielding member is used to introduce the condensate into the liquid storage tank, so that the condensate
  • the signal transmission components away from the battery enhance the safety of the battery.
  • the end of the groove is connected to the wall of the battery box, and the groove communicates with the cavity in the wall of the box to guide the condensate into The cavity keeps condensate away from the signal transmission components of the battery, enhancing the safety of the battery.
  • the shielding member is fixed between the first surface and the cooling system. Since the shield is in direct contact with the cooling system, the contact area between the two is larger, so the condensate can be better guided.
  • the shielding member is fixed on the second surface, and an end of the shielding member close to the cooling system is bent to protrude from an edge of the first surface.
  • the shielding member can be fixed on the second surface of the battery cell group at the area above the signal transmission component, and since the distance between the shielding member and the signal transmission component can be set close enough, the protection effect on the signal transmission component is better.
  • the battery cell group includes N battery cell columns, the N battery cell columns are arranged along the first direction, and each of the N battery cell columns
  • the battery cells in the battery cell row are arranged along a second direction, the first direction is perpendicular to the second direction, and N is a positive integer; wherein, the first surface is perpendicular to the first direction, and the first direction is perpendicular to the second direction.
  • the two planes are parallel to the plane defined by the first direction and the second direction.
  • an electric device including: the battery in the first aspect, and the battery is used to provide electric energy.
  • a method for preparing a battery including: providing a battery cell group, including a plurality of battery cells; providing a cooling system, disposed on the first surface of the battery cell group; providing a signal transmission component , arranged on the second surface of the battery cell group, the second surface is adjacent to the first surface, the signal transmission assembly includes a bus component and an insulating layer, and the insulating layer encapsulates the bus component , the insulating layer has an opening, and the confluence part is used to electrically connect the signal transmission component with the battery cells in the battery cell group at the opening, and is arranged on the second battery cell group.
  • the signal transmission component includes a bus component and an insulating layer, the insulating layer encapsulates the bus component, the insulating layer has an opening, and the bus A component is used to electrically connect the battery cells in the battery cell group at the opening; a shielding member is provided, connected to the battery cell group and protruding from the edge of the first surface, the The shield is used to prevent the condensate generated by the cooling system from reaching the signal transmission component.
  • a device for preparing a battery including a module for performing the method of the third aspect above.
  • a cooling system is provided on the first surface of the battery, and a signal transmission component is provided on the second surface adjacent to the first surface, so as to realize the electrical connection between multiple battery cells
  • the battery also includes a shield connected to and protruding from the edge of the first surface to prevent the condensate generated by the cooling system from reaching the signal transmission component, so as to avoid short circuit of the battery and improve the safety of the battery.
  • Fig. 1 is a schematic structural view of a vehicle according to an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of some internal components of a battery according to an embodiment of the present application.
  • Fig. 6 is a schematic exploded view of some internal components of the battery according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of the three-dimensional structure of some components inside the battery shown in Fig. 6;
  • Fig. 8 is a schematic diagram of an arrangement of battery cells in a battery cell group according to an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of some internal components of a battery according to an embodiment of the present application.
  • FIG. 10 is a schematic perspective view of the three-dimensional structure of some components inside the battery shown in FIG. 9;
  • Fig. 11 is a schematic structural diagram of some internal components of a battery according to an embodiment of the present application.
  • Fig. 12 is a schematic perspective view of the three-dimensional structure of some components inside the battery shown in Fig. 11;
  • Fig. 13 is a schematic perspective view of the three-dimensional structure of some components inside the battery shown in Fig. 11;
  • Fig. 14 is a schematic structural diagram of a groove inside a battery according to an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of a cavity inside a battery according to an embodiment of the present application.
  • Fig. 16 is a schematic flowchart of a method for preparing a battery according to an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a device for preparing a battery according to an embodiment of the present application.
  • first, second, third, etc. are used for descriptive purposes only and should not be construed as indicating or implying relative importance. “Vertical” is not strictly vertical, but within the allowable range of error. “Parallel” is not strictly parallel, but within the allowable range of error.
  • connection should be interpreted in a broad sense, for example, it can be a fixed connection or a flexible connection. Disassembled connection, or integral connection; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • batteries mentioned in this application may include battery packs and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery is further arranged in the electric device to provide electric energy for the electric device.
  • a cooling system can be provided in the battery.
  • the cooling system is used to accommodate the cooling medium to lower the temperature of the battery cells.
  • the cooling system may also be called a cooling component or a cooling plate, and the cooling medium may also be called a cooling fluid, and more specifically, it may be called a cooling liquid or a cooling gas.
  • the cooling fluid is circulated for better temperature regulation.
  • the cooling medium may be water, a mixture of water and ethylene glycol, or air. When the cooling medium is water, the cooling system can also be called a water-cooled plate.
  • the battery in addition to the above-mentioned battery cells and the cooling system, signal transmission components and other components of the battery may also be included.
  • a structure for fixing the battery cells may also be provided in the case.
  • the shape of the box can be determined according to the number of battery cells to be accommodated. In some embodiments, the box may be square, with six walls.
  • the signal transmission component of the embodiment of the present application may be used to transmit signals such as the voltage and/or temperature of the battery cell.
  • the signal transmission assembly may include a confluence component, which is used to realize the electrical connection between a plurality of battery cells, such as parallel connection, series connection or hybrid connection.
  • the bus component can realize the electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
  • the bus member may be fixed to the electrode terminal of the battery cell by welding.
  • the bussing part transmits the voltage of the battery cells, and a higher voltage will be obtained after multiple battery cells are connected in series.
  • the electrical connection formed by the bussing part can also be called a "high voltage connection".
  • the signal transmission assembly may also include a sensor device for sensing the state of the battery cell, for example, the sensor device may be used to measure and transmit sensor signals such as temperature and state of charge of the battery cell.
  • the electrical connection components in the battery may include a current flow component and/or a sensor device.
  • Bus components and sensing devices can be encapsulated in an insulating layer to form a signal transmission assembly.
  • the signal transmission component can be used to transmit the voltage of the battery cell and/or the sensing signal.
  • the signal transmission component does not have an insulating layer at the connection with the electrode terminal of the battery cell, that is, the insulating layer has an opening here, so as to be connected with the electrode terminal of the battery cell.
  • the battery is easy to generate condensation in the battery box in a high-temperature and high-humidity environment, this will cause safety hazards to the signal transmission components in the battery, and may cause electrical connection failure and failure of the signal transmission components, thereby affecting the safety of the battery .
  • this will cause safety hazards to the signal transmission components in the battery, and may cause electrical connection failure and failure of the signal transmission components, thereby affecting the safety of the battery .
  • the high-temperature and high-humidity gas in the battery encounters the cooling system in the battery box, condensate will be generated. If the condensate drips onto the electrical connection area in the battery, it may affect the safety of the battery.
  • a shield is provided on the edge of the side of the battery provided with the cooling system to prevent the condensate generated by the cooling system from reaching the electrical connection area with the battery, thereby enhancing the safety of the battery.
  • a pressure balancing mechanism may be provided on the battery box to balance the pressure inside and outside the box. For example, when the pressure inside the box is higher than outside the box, the gas inside the box can flow out of the box through the pressure balance mechanism; when the pressure inside the box is lower than outside the box, the gas outside the box can flow through the pressure balance mechanism.
  • the balancing mechanism flows into the interior of the box.
  • the above-described components in the battery case should not be construed as limiting the embodiment of the present application, that is, the battery case in the embodiment of the present application may include the above-mentioned components, or may not include the above components.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 50 and a battery 10 can be arranged inside the vehicle 1 , and the controller 50 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells.
  • FIG. 2 which is a schematic structural diagram of a battery 10 according to an embodiment of the present application, the battery 10 may include at least one battery module 200 .
  • the battery module 200 includes a plurality of battery cells 20 .
  • the battery 10 may further include a box body 11 , the inside of which is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body 11 .
  • the box body 11 may include two parts, referred to here as a first part 111 (upper box body) and a second part 112 (lower box body), and the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the combined shape of a plurality of battery cells 20 , and at least one of the first part 111 and the second part 112 may have an opening.
  • both the first part 111 and the second part 112 can be hollow cuboids and only one face is an opening face, the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 and the opening of the second part 112 are arranged oppositely.
  • the second parts 112 are interlocked to form the box body 11 with a closed chamber. For another example, different from what is shown in FIG.
  • only one of the first part 111 and the second part 112 may be a hollow cuboid with an opening, while the other may be a plate to cover the opening.
  • the second part 112 is a hollow cuboid with only one face as an open face
  • the first part 111 is a plate-shaped example, so the first part 111 is covered at the opening of the second part 112 to form a box with a closed chamber , the cavity can be used to accommodate a plurality of battery cells 20 .
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel and placed in the box 11 formed by fastening the first part 111 and the second part 112 .
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the conduction means can also belong to the current-collecting part.
  • the number of battery cells 20 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, for the convenience of installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 constitutes a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • a battery may include a plurality of battery modules, which may be connected in series, in parallel or in parallel.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and an end cap 212 .
  • the housing 211 and the end cap 212 form the housing or battery compartment 21 .
  • the walls of the casing 211 and the end caps 212 are called the walls of the battery cell 20 , wherein for the rectangular parallelepiped battery cell 20 , the walls of the casing 211 include a bottom wall and four side walls.
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow cuboid or cube or cylinder, and one of the surfaces of the housing 211 has an opening so that one or more electrodes Assembly 22 may be placed within housing 211 .
  • one of the planes of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the casing 211 can be a hollow cylinder, the end surface of the casing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the end cap 212 covers the opening and is connected with the casing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the end cap 212 .
  • the end cap 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the end cap 212, and the two electrode terminals 214 are positive electrode terminals 214a and negative electrode terminals 214b respectively.
  • Each electrode terminal 214 is respectively provided with a connecting member 23 , or also called a current collecting member 23 , which is located between the end cap 212 and the electrode assembly 22 for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connection member 23
  • the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connection member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the electrode assembly 22 can be arranged as a single one or in multiples. As shown in FIG. 3 , four independent electrode assemblies 22 are arranged in the battery cell 20 .
  • a pressure relief mechanism 213 may also be provided on the battery cell 20 .
  • the pressure relief mechanism 213 is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • the plurality of battery cells 20 included in the battery 10 in the embodiment of the present application can be arranged and arranged in any direction in the box 11 .
  • the rectangular parallelepiped-shaped battery cell 20 as shown in FIG. 3 as an example, as shown in FIG.
  • the end caps 212 of the installed battery cells 20 face the upper case 111 , while the bottom walls of the housings 211 of the battery cells 20 face the lower case 112 .
  • a plurality of battery cells 20 as shown in FIG. 3 can also be arranged laterally in the box.
  • FIG. 4 shows another exploded schematic view of the battery 10 according to an embodiment of the present application.
  • a plurality of battery cells 20 can be horizontally arranged in the box.
  • the battery 10 may include a plurality of battery cells 20 , and the plurality of battery cells 20 may be arranged in multiple layers.
  • FIG. 4 takes two layers of battery cells 20 as an example.
  • the sidewall with the largest area among the side walls of each battery cell 20 in the uppermost layer is facing the opening of the lower box body 112, that is, facing the upper box body 111 ( Not shown in FIG.
  • the side walls with the largest area of the side walls of each battery cell 20 in the bottom layer face the lower box 112
  • the bottom wall that is, the wall facing the opening in the lower box 112. That is to say, as shown in FIG. 3 and FIG. 4 , one end of the end caps 212 of the plurality of battery cells 20 faces the side wall of the lower case 112 , that is, faces the wall adjacent to the opening in the lower case 112 , thus, Compared with the installation method of the battery cells 20 shown in FIG. 2 , the installation method shown in FIG. 4 is more conducive to the heat dissipation of the battery cells 20 .
  • a cooling system 30 may also be provided in the battery 10 to ensure the temperature of the battery 10 .
  • the cooling system 30 can be arranged above the plurality of battery cells 20 , so that the side walls of the battery cells 20 with larger areas face the cooling system 30 , increasing the cooling capacity of the battery cells 20 .
  • the heat dissipation area is more conducive to the heat dissipation of the battery cells 20 .
  • an upper case 111 may be provided above the cooling system 30, so that the upper case 111 and the lower case 112 are snapped together to form the case of the battery 10; or, the cooling system 30 may be integrated on the upper In the case 111 , to reduce the occupied space, that is, the cooling system 30 can be used as the upper case 111 to fasten the lower case 112 to form the case 11 of the battery 10 .
  • the battery 10 is in a high-temperature and high-humidity environment, it is easy to generate condensation in the box, especially on the surface and surroundings of the cooling system 30.
  • the condensation generated by the condensation system 30 When the condensate drips, it is likely to cause a safety hazard to the electrical connection area in the battery 10 and affect the safety of the battery 10 .
  • the high-temperature and high-humidity gas in the battery 10 encounters the cooling system 30 in the case 11 of the battery 10, condensate will be generated. If the condensate drops onto the electrical connection area in the battery 10, it may Affect the safety of the battery 10.
  • the embodiment of the present application provides a battery 10 that can solve the above problems.
  • FIG. 5 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 of the embodiment of the present application may include a battery cell group 201 .
  • the battery 10 may include a plurality of battery cell groups 201 .
  • the battery cell group 201 may include a plurality of battery cells 20 .
  • the battery cell group 201 may include a plurality of battery cell rows, and the plurality of battery cell rows are arranged along the first direction X, and FIG. 7 and FIG. 8 show four Battery cell groups 201 , each battery cell group 201 includes two battery cell columns.
  • the battery cells 20 in each of the plurality of battery cell columns may be arranged along the second direction Y, and the first direction X is perpendicular to the second direction Y.
  • the battery 10 also includes a cooling system 30 .
  • the cooling system 30 is used to accommodate a cooling medium to lower the temperature of the battery cells 20 .
  • the cooling system 30 may be disposed on the first surface 2111 of the battery cell group 201 . It should be understood that the first surface 2111 may refer to any surface of the battery cell group 201 according to the direction in which the plurality of battery cells 20 are arranged in the case 11 of the battery 10 .
  • the cooling system 30 can be arranged above the side wall with the largest area, then the side of the battery cell group 201 facing the cooling system 30, that is, The first surface 2111 is the surface with the largest area of the battery cell group 201 , which can increase the heat dissipation rate of the battery cell group 201 and achieve a better temperature regulation effect.
  • the battery cell group 201 and the cooling system 30 may be bonded together by structural glue 31 .
  • the battery 10 also includes a signal transmission component 24 .
  • the signal transmission component 24 is disposed on the second surface 2112 of the battery cell group 201 . Wherein, the second surface 2112 is adjacent to the first surface 2111 .
  • the signal transmission component 24 can be used to realize the transmission of the voltage and/or temperature signal of the battery cell 20.
  • the signal transmission component 24 may include a bus component 121 and an insulating layer 122, the insulating layer 122 is used to encapsulate the bus component 121, the insulating layer 122 has an opening 123, and the bus component 121 is used for opening 123 are electrically connected to the battery cells 20 in the battery cell group 201.
  • the insulating layer 122 can encapsulate the current-combining component 121 by means of thermocompression, and by setting openings, the current-combining component 121 can realize the connection between the battery cells 20 in the battery cell group 201 through the openings. electrical connection.
  • the signal transmission component 24 can be used to realize various forms of electrical connection between the battery cells 20 .
  • the electrical connection area in the battery 10 may include the electrical connection area formed by the bus member 121.
  • a sensor device (not shown) for sensing the state of the battery cell 20 may also be arranged in the battery 10, and the battery 10
  • the electrical connection area within can also include the electrical connection area in the sensing device.
  • the signal transmission component 24 may include a sensor device, and the insulating layer 122 may also be used to encapsulate the sensor device.
  • the battery 10 when the battery 10 is in a high-temperature and high-humidity environment, it is easy to generate condensate in the box of the battery 10 , especially the condensation generated on the cooling system 30 Liquid may drop to the electrical connection area in the battery 10, for example, may drop to the bus part 121, which may cause the battery 10 to short circuit and fail, affecting the safety of the battery. Therefore, as shown in Figure 5, the battery 10 may also include a shield 25 .
  • the shielding member 25 is connected to the battery cell group 201 and protrudes from the edge of the first surface 2111 , and the shielding member 25 is used to prevent the condensate generated by the cooling system 30 from reaching the signal transmission component 24 .
  • the shielding member 25 may be connected to the first surface 2111 or the second surface 2112 of the battery cell group 201 .
  • a cooling system 30 is provided on its first surface 2111, and a signal transmission component 24 is provided on a second surface 2112 adjacent to the first surface 2111, so as to implement multiple battery cells.
  • the battery 10 also includes a shield 25 connected and protruding from the edge of the first surface 2111 to prevent the condensate generated by the cooling system 30 from reaching the signal transmission component 24, thereby preventing the battery 10 from short circuit, improving the safety of the battery 10 .
  • the orthographic projection of the shielding member 25 on the plane parallel to the first surface 2111 covers the orthographic projection of the signal transmission component 24 on the plane parallel to the first surface 2111 . That is to say, the shielding member 25 extends out of the area corresponding to the signal transmission component 24 , and when the cooling system 30 generates condensate, the shielding member 25 can play the role of “eaves” to guide the condensate to the signal transmission component 24
  • the area outside, such as the space between two battery cell groups 201 oppositely arranged, is to protect the signal transmission component 24 .
  • the shielding member 25 is made of an insulating material, for example, the shielding member 25 may be an insulating sheet, so as to ensure the insulation and isolation of the signal transmission component 24 and further improve the safety of the battery 10 .
  • the shield 25 may be fixed between the first surface 2111 and the cooling system 30 .
  • the shield 25 does not need to cover the entire first surface 2111 of the battery cell group 201.
  • one end of the blocking member 25 is aligned with the structural adhesive 31 , which will not affect the adhesion of the structural adhesive 31 to the battery cell group 201 and the cooling system 30 .
  • the shielding member 25 is in direct contact with the cooling system 30 , and the contact area between the two is relatively large, which can better guide the condensate.
  • the shielding member 25 can also be fixed on the second surface 2112 of the battery cell group 201, and the end of the shielding member 25 close to the cooling system 30 is bent to protrude from the first surface 2111 Edge.
  • the shielding member 25 can be fixed on the second surface 2112 of the battery cell group 201 at the area above the signal transmission component 24, and since the distance between the signal transmission component 24 and the signal transmission component 24 can be set close enough, the protection of the signal transmission component 24 Better results.
  • the shielding part 25 fixed on the second surface 2112 can be a whole body, or can be composed of a plurality of sub-shielding parts.
  • the shielding member 25 includes a plurality of sub-shading members respectively disposed on the first walls of the plurality of battery cells 20 in the first battery cell row, wherein the first battery cell row is in the battery cell group 201
  • the first wall is the wall of the battery cell 20 on the second side 2112 .
  • the shielding member 25 is fixed between the first surface 2111 of the battery cell group 201 and the cooling system 30 as an example.
  • the protruding portion of the shielding member 25 protruding from the edge of the first surface 2111 is parallel to the first surface 2111 .
  • the condensate produced by the cooling system 30 is collected in the area 32 of the cooling system 30 between the shields 25 of the two battery cell groups 201 that are oppositely arranged, that is, the area of the cooling system 30 that is not in contact with the shields 25 32, thereby avoiding the formation of condensate directly above the signal transmission component 24, and enhancing the safety of the battery.
  • the shielding member 25 is a planar structure, and the process complexity is relatively low.
  • the protruding portion of the shielding member 25 protruding from the edge of the first surface 2111 is bent toward the second surface 2112 .
  • the bent part can drain the condensate, and it is easier to collect the condensate in the space between the two battery cell groups 201 , limiting the condensate from reaching the signal transmission component 24 .
  • the protruding parts of the shields 25 of the two battery cell groups 201 oppositely arranged are connected to form a groove 251, and the groove 251 is used to collect condensate.
  • the depth of the groove 251 can be determined based on the bending degree of the shielding member 25 .
  • the condensate generated by the cooling system 30 may be collected by the groove 251 when it drips at the shield 25 .
  • the condensate collected by the groove 251 can be discharged at an appropriate time, for example, when the vehicle goes uphill or downhill, the condensate in the groove 251 is naturally discharged to the rear end or front end of the battery cell group 201 .
  • the protruding parts of the shielding parts 25 of the two battery cell groups 201 oppositely arranged can be connected by connecting bars (not shown) to form the groove 251 .
  • the shields 25 of the two battery cell groups 201 oppositely arranged can be integrally formed to form the groove 251 , so as to improve the reliability of the shields 25 .
  • a drain hole 252 is provided at the bottom of the groove 251 , and the drain hole 252 is used to discharge the condensate.
  • the condensed liquid collected in the groove 251 can be discharged to the space between the two opposite battery cell groups 201 in a more timely manner, so as to avoid excessive accumulation of the condensed liquid in the groove 251 .
  • the embodiment of the present application does not limit the number and shape of the drain holes 252 .
  • a liquid storage tank 113 corresponding to the shielding member 25 is provided in the case 11 of the battery 10, and the shielding member 25 is used to guide the condensate into the liquid storage Groove 113.
  • the cooling system 30 produces condensate
  • the condensate drips along the shield 25 to the liquid storage tank 113, or first drops into the groove 251, and the groove 251 then guides the condensate into the liquid storage tank 113, so that the condensation
  • the liquid is kept away from the signal transmission component 24 of the battery 10, thus enhancing the safety of the battery.
  • the liquid storage tank 113 may be located at the bottom of the tank 11 .
  • a gravity valve may be provided in the liquid storage tank 113, and the gravity valve is used to discharge the condensate in the liquid storage tank 113 out of the tank 11 when the condensate in the liquid storage tank 113 accumulates to a certain extent.
  • a gravity valve may not be provided in the liquid storage tank 113 , but directly connected to the outside of the tank 11 , for example, communicated with the outside of the tank 11 through a through hole on the wall of the tank 11 .
  • the end of the groove 251 is connected to the wall of the box body 11 of the battery 10, and the groove 251 communicates with the cavity in the wall of the box body 11 to The condensate is directed into the cavity.
  • the cavity may be a cavity already existing in the wall of the box body 11 .
  • the cavity may also be a specially provided liquid storage tank 113 as shown in FIG. 15 .
  • the end of the groove 251 is connected to the cavity in the wall of the box body 11 of the battery 10, when the cooling system 30 generates condensate, the condensate will drop into the groove 251 along the bend of the shield 25, and the The groove 251 guides the condensate from its end into the cavity in the wall of the box 11 to store the condensate, or further discharge the box 11 to keep the condensate away from the signal transmission component 24 of the battery 10 , Therefore, the safety of the battery 10 can be enhanced.
  • An embodiment of the present application also provides an electric device, which may include the battery 10 in the foregoing embodiments, so as to provide electric energy for the electric device.
  • the electric device may be a vehicle 1 , a ship or a spacecraft.
  • FIG. 16 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application.
  • the method 300 may include: 310, providing a battery cell group 201, and the battery cell group 201 includes a plurality of battery cells 20; On one side 2111; 330, the signal transmission component 24 is provided, which is arranged on the second side 2112 of the battery cell group 201, the second side 2112 is adjacent to the first side 2111, and the signal transmission component 24 includes a bus component 121 and an insulating layer 122, the insulating layer 122 encapsulates the bus component 121, the insulating layer 122 has an opening, and the bus component 121 is used to electrically connect with the battery cells 20 in the battery cell group 201 at the opening; 340, providing a shield 25 , connected to the battery cell group 201 and protruding from the edge of the first surface 2111 , the shield 25 is used to prevent the condensate generated by the cooling system 30 from reaching the
  • the equipment 400 for preparing a battery may include a providing module 410 for: providing a battery cell group 201, the battery cell group 201 includes a plurality of battery cells 20; providing a cooling system 30 disposed on the battery cells On the first surface 2111 of the group 201; a signal transmission component 24 is provided, which is arranged on the second surface 2112 of the battery cell group 201, the second surface 2112 is adjacent to the first surface 2111, and the signal transmission component 24 includes a bus component 121 and Insulating layer 122, the insulating layer 122 encapsulates the bus component 121, the insulating layer 122 has an opening, the bus component 121 is used to electrically connect with the battery cells 20 in the battery cell group 201 at the opening; provide a shield 25 , connected to the battery cell group 201 and protruding from the edge of the first surface 2111 , the shield

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种电池、用电设备、制备电池的方法和设备。该电池包括:电池单体组(201),包括多个电池单体(20);冷却系统,设置于电池单体组(201)的第一面(2111);信号传输组件(24),设置于电池单体组(201)的第二面(2112),第二面(2112)与第一面(2111)相邻,信号传输组件(24)包括汇流部件(121)和绝缘层(122),绝缘层(122)封装汇流部件(121),绝缘层(122)具有开孔,汇流部件(121)用于在开孔处与电池单体组(201)中的电池单体(20)电连接;遮挡件(25),连接于电池单体组(201)并凸出于第一面(2111)的边缘,用于阻挡冷却系统产生的冷凝液到达信号传输组件(24)。本申请的电池、用电设备、制备电池的方法和设备,能够增强电池的安全性。

Description

电池、用电设备、制备电池的方法和设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电设备、制备电池的方法和设备。
背景技术
随着环境污染的日益加剧,新能源产业越来越受到人们的关注。在新能源产业中,电池技术是关乎其发展的一项重要因素。
在电池技术的发展中,安全问题是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。
电池在高温高湿环境中,容易在电池的箱体内产生冷凝液,造成安全隐患,影响电池的安全性。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供一种电池、用电设备、制备电池的方法和设备,能够增强电池的安全性。
第一方面,提供了一种电池,包括:电池单体组,包括多个电池单体;冷却系统,设置于所述电池单体组的第一面上;信号传输组件,设置于所述电池单体组的第二面上,所述第二面与所述第一面相邻,所述信号传输组件包括汇流部件和绝缘层,所述绝缘层封装所述汇流部件,所述绝缘层具有开孔,所述汇流部件用于在所述开孔处与所述电池单体组中的电池单体电连接;遮挡件,连接于所述电池单体组并凸出于所述第一面的边缘,所述遮挡件用于阻挡所述冷却系统产生的冷凝液到达所述信号传输组件。
本申请实施例中的电池,在其第一面上设置冷却系统,在与第一面相邻的第二面上设置信号传输组件,以用于实现多个电池单体之间的电连接,该电池还包括连接并凸出于第一面边缘的遮挡件,以阻挡冷却系统产生的冷凝液到达信号传输组件,从而避免电池发生短路,提高该电池的安全性。
在一种可能的实现方式中,所述遮挡件在平行于所述第一面的平面上的正投影覆盖所述传输组件在平行于所述第一面的平面上的正投影。遮挡件延伸出信号传输组件所在的区域,在冷却系统产生冷凝液的情况下,可以起到“屋檐”的作用,将冷凝液引导至信号传输组件之外的区域,例如相对设置的两个电池单体组之间的空间, 以对信号传输组件进行保护。
在一种可能的实现方式中,所述遮挡件凸出于所述第一面的边缘的凸出部分平行于所述第一面。这样,冷却系统产生的冷凝液就被聚集在冷却系统位于相对设置的两个电池单体组的遮挡件之间的区域,即冷却系统上未与遮挡件接触的区域,从而避免信号传输组件的正上方形成冷凝液,增强了电池的安全性。
在一种可能的实现方式中,所述遮挡件凸出于所述第一面的边缘的凸出部分朝向所述第二面弯折。对遮挡件进行弯折后,弯折部分可以对冷凝液进行引流,更容易将冷凝液聚集于两个电池单体组之间的空间,限制冷凝液到达电池单体组。
在一种可能的实现方式中,所述电池包括多个所述电池单体组;其中,相对设置的两个所述电池单体组的所述遮挡件的所述凸出部分连接形成凹槽,所述凹槽用于收集所述冷凝液。冷却系统产生的冷凝液在遮挡件处滴落时,可以被凹槽收集。被凹槽收集的冷凝液可以在合适的时机被排出,例如在车辆上坡或者下坡时,凹槽内的冷凝液被自然地排至电池单体组的前后端。
在一种可能的实现方式中,所述凹槽底部设置有排液孔,用于排放所述冷凝液。这样,凹槽收集的冷凝液可以更及时地排放至相对设置的两个电池单体组之间,避免冷凝液在凹槽内聚集。
在一种可能的实现方式中,相对设置的两个所述电池单体组的所述遮挡件的所述凸出部分通过连接条连接形成所述凹槽。
在一种可能的实现方式中,相对设置的两个所述电池单体组的所述遮挡件一体成型以形成所述凹槽,从而提高遮挡件的可靠性。
在一种可能的实现方式中,所述遮挡件的材料为绝缘材料,从而能够保证信号传输组件的绝缘隔离,进一步提高电池的安全性。
在一种可能的实现方式中,所述电池的箱体内设置有与所述遮挡件对应的储液槽,所述遮挡件用于将所述冷凝液导入所述储液槽,从而使冷凝液远离电池的信号传输组件,增强电池的安全性。
在一种可能的实现方式中,所述凹槽的端部连接所述电池的箱体的壁,且所述凹槽与所述箱体的壁内的空腔连通以将所述冷凝液导入所述空腔,从而使冷凝液远离电池的信号传输组件,增强电池的安全性。
在一种可能的实现方式中,所述遮挡件固定于所述第一面与所述冷却系统之间。由于遮挡件与冷却系统直接接触,二者接触面积较大,因此能够更好地对冷凝液进行导流。
在一种可能的实现方式中,所述遮挡件固定于所述第二面,且所述遮挡件靠近所述冷却系统的一端弯折以凸出于所述第一面的边缘。遮挡件可以固定在电池单体组的第二面上位于信号传输组件上方的区域,由于可以与信号传输组件之间的距离设置的足够近,因此对信号传输组件的保护效果更好。
在一种可能的实现方式中,所述电池单体组包括N个电池单体列,所述N个电池单体列沿第一方向上排列,所述N个电池单体列中的每个电池单体列的电池单体沿第二方向排列,所述第一方向垂直于所述第二方向,N为正整数;其中,所述第 一面垂直于所述第一方向,所述第二面平行于所述第一方向和所述第二方向确定的平面。当第一面为该电池单体组的面积最大的一个面时,增加了电池单体组的散热速度,达到较好的温度调节效果。
第二方面,提供了一种用电设备,包括:第一方面的电池,所述电池用于提供电能。
第三方面,提供了一种制备电池的方法,包括:提供电池单体组,包括多个电池单体;提供冷却系统,设置于所述电池单体组的第一面上;提供信号传输组件,设置于所述电池单体组的第二面上,所述第二面与所述第一面相邻,所述信号传输组件包括汇流部件和绝缘层,所述绝缘层封装所述汇流部件,所述绝缘层具有开孔,所述汇流部件用于在所述开孔处与所述电池单体组中的电池单体电连接信号传输组件,设置于所述电池单体组的第二面上,所述第二面与所述第一面相邻,所述信号传输组件包括汇流部件和绝缘层,所述绝缘层封装所述汇流部件,所述绝缘层具有开孔,所述汇流部件用于在所述开孔处与所述电池单体组中的电池单体电连接;提供遮挡件,连接于所述电池单体组并凸出于所述第一面的边缘,所述遮挡件用于阻挡所述冷却系统产生的冷凝液到达所述信号传输组件。
第四方面,提供了一种制备电池的设备,包括执行上述第三方面的方法的模块。
本申请实施例的技术方案,在电池的第一面上设置冷却系统,在与第一面相邻的第二面上设置信号传输组件,以用于实现多个电池单体之间的电连接,该电池还包括连接并凸出于第一面边缘的遮挡件,以阻挡冷却系统产生的冷凝液到达信号传输组件,从而避免电池发生短路,提高该电池的安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例的一种车辆的结构示意图;
图2是本申请一实施例的一种电池的结构示意图;
图3是本申请一实施例的一种电池单体的结构示意图;
图4是本申请一实施例的一种电池的结构示意图;
图5是本申请一实施例的一种电池内部部分组件的结构示意图;
图6是本申请一实施例的电池内部部分组件的示意爆炸图;
图7是图6所示的电池内部部分组件的立体结构示意图;
图8是本申请一实施例的一种电池单体组中电池单体排列方式的示意图;
图9是本申请一实施例的一种电池内部部分组件的结构示意图;
图10是图9所示的电池内部部分组件的立体结构示意图;
图11是本申请一实施例的一种电池内部部分组件的结构示意图;
图12是图11所示的电池内部部分组件的立体结构示意图;
图13是图11所示的电池内部部分组件的立体结构示意图;
图14是本申请一实施例的一种电池内部的凹槽的结构示意图;
图15是本申请一实施例的一种电池内部的空腔的结构示意图;
图16是本申请一实施例的一种制备电池的方法的示意性流程图;
图17是本申请一实施例的一种制备电池的设备的示意性框图;
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含;“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的 关系。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(PP)或聚乙烯(PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
为了满足不同的电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的温度设计。为了控制电池单体处于适宜的温度,可以在电池内设置冷却系统。冷却系统用于容纳冷却介质以给电池单体降低温度。冷却系统也可以称为冷却部件或冷却板等,冷却介质也可以称为冷却流体,更具体的,可以称为冷却液或冷却气体。冷却流体是循环流动的,以达到更好的温度调节的效果。可选地,冷却介质可以为水、水和乙二醇的混合液或者空气等。在冷却介质为水时,冷却系统也可以称为水冷板。
在电池的箱体中,除了上文提到的电池单体以及冷却系统外,还可以包括信号传输组件以及电池的其他部件。在一些实施例中,箱体中还可以设置用于固定电池单体的结构。箱体的形状可以根据所容纳的多个电池单体而定。在一些实施例中, 箱体可以为方形,具有六个壁。
应理解,本申请实施例的信号传输组件可以用于传输电池单体的电压和/或温度等信号。该信号传输组件可以包括汇流部件,该汇流部件用于实现多个电池单体之间的电连接,例如并联或串联或混联。汇流部件可通过连接电池单体的电极端子实现电池单体之间的电连接。在一些实施例中,汇流部件可通过焊接固定于电池单体的电极端子。汇流部件传输电池单体的电压,多个电池单体串联后会得到较高的电压,相应地,汇流部件形成的电连接也可称为“高压连接”。
除了汇流部件外,该信号传输组件还可以包括用于感测电池单体的状态的传感器件,例如,该传感器件可以用于测量以及传输电池单体的温度、荷电状态等传感信号。在本申请实施例中,电池内的电连接部件可以包括汇流部件和/或传感器件。
汇流部件和传感器件可以封装在绝缘层中,形成信号传输组件。相应地,信号传输组件可用于传输电池单体的电压和/或传感信号。信号传输组件在与电池单体的电极端子的连接处没有绝缘层,即,在此处绝缘层具有开孔,从而与电池单体的电极端子连接。
考虑到电池在高温高湿环境中,容易在电池的箱体内产生冷凝液,这会对电池内的信号传输组件造成安全隐患,可能导致信号传输组件电连接故障和失效,进而影响电池的安全性。具体而言,电池内高温高湿的气体在遇到电池的箱体内的冷却系统时,会产生冷凝液,该冷凝液若滴到电池内的电连接区域,则可能会影响电池的安全性。
鉴于此,本申请提供了一种技术方案,在电池的设置有冷却系统的一面的边缘设置遮挡件,以阻挡冷却系统产生的冷凝液到达与电池的电连接区域,因此能够增强电池的安全性。
在电池中,除了上文提到的各部件外,电池的箱体上还可以设置压力平衡机构,用于平衡箱体内外的压力。例如,当箱体内的压力高于箱体外时,箱体内部的气体可以通过压力平衡机构流到箱体外;当箱体内的压力低于箱体外时,箱体外部的气体可以通过压力平衡机构流入箱体内部。
应理解,以上描述的电池的箱体中的各个部件不应理解为对本申请实施例的限定,也就是说,本申请实施例的用于电池的箱体可以包括上述的部件,也可以不包括上述的部件。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器50以及电池10,控制器 50用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体。例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括至少一个电池模块200。电池模块200包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。如图2所示,箱体11可以包括两部分,这里分别称为第一部分111(上箱体)和第二部分112(下箱体),第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以中至少一个具有一个开口。例如,如图2所示,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体11。再例如,不同于图2所示,第一部分111和第二部分112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二部分112为中空长方体且只有一个面为开口面,第一部分111为板状为例,那么第一部分111盖合在第二部分112的开口处以形成具有封闭腔室的箱体,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体11内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
如图3所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和端盖212。壳体211和端盖212形成外壳或电池盒21。壳体211的壁以及端盖212均称为电池单体20的壁,其中对于长方体型电池单体20,壳体211的壁包括底壁和四个侧壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。 例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。端盖212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在端盖212上。端盖212通常是平板形状,两个电极端子214固定在端盖212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件23,其位于端盖212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图3所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图3所示,电池单体20内设置有4个独立的电极组件22。
电池单体20上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
应理解,本申请实施例中的电池10包括的多个电池单体20在箱体11内可以沿任意方向排列和摆放。例如,以如图3所示的长方体形状的电池单体20为例,如图2所示,可以将多个电池单体20按照如图3所示的竖直方向安装在箱体内,以使得安装之后的多个电池单体20的端盖212面向上箱体111,而电池单体20的壳体211的底壁面向下箱体112。再例如,与图2不同,还可以将多个如图3所示的电池单体20横向设置于箱体内。
具体地,图4示出了本申请一个实施例的电池10的另一分解示意图,如图4所示,可以将多个电池单体20横向设置在箱体内。如图4所示,电池10可以包括多个电池单体20,该多个电池单体20可以排列为多层,例如,图4以设置两层电池单体20为例。对于电池10中最上一层电池单体20而言,该最上层中每个电池单体20的侧壁中面积最大的侧壁朝向下箱体112的开口处,也就是朝向上箱体111(图4中未示出);相对的,对电池10中最下方一层电池单体20而言,该最下层中每个电池单体20的侧壁中面积最大的侧壁朝向下箱体112的底壁,也就是朝向下箱体112中与开口相对 的壁。也就是说,如图3和图4所示,多个电池单体20的端盖212一端面向下箱体112的侧壁,也就是面向下箱体112中与开口相邻的壁,这样,相比于图2所示的电池单体20的安装方式,图4所示的安装方式更有利于电池单体20的散热。
为了进一步控制电池单体20能够处于合适的温度下工作,还可以在该电池10中设置冷却系统30,以保证电池10的温度。具体地,如图4所示,该冷却系统30可以设置在多个电池单体20的上方,以使得电池单体20的面积较大的侧壁朝向该冷却系统30,增加电池单体20的散热面积,更加有利于电池单体20散热。
可选地,可以在该冷却系统30的上方设置上箱体111,以使得上箱体111与下箱体112扣合,从而形成该电池10的箱体;或者,冷却系统30可以集成于上箱体111中,以减小占用的空间,即该冷却系统30可以作为上箱体111,以扣合下箱体112形成该电池10的箱体11。
由于电池10在高温高湿环境中,容易在箱体内产生冷凝液,尤其是冷却系统30表面和周围可能产生冷凝液,对于如图4所示的电池单体的安装方式,冷凝系统30产生的冷凝液滴落时,很可能对电池10内的电连接区域造成安全隐患,影响电池10的安全性。具体而言,电池10内高温高湿的气体在遇到电池10的箱体11内的冷却系统30时,会产生冷凝液,该冷凝液若滴落到电池10内的电连接区域,则可能影响电池10的安全性。
因此,本申请实施例提供了一种电池10,能够解决上述问题。
图5示出了本申请一个实施例的电池10的结构示意图。如图5所示,本申请实施例的电池10可以包括电池单体组201。可选地,电池10可以包括多个电池单体组201。对于其中任意一个电池单体组201而言,电池单体组201可以包括多个电池单体20。
具体地,对于任意一个电池单体组201,可以通过多种方式排列其中的多个电池单体20。例如,如图7和图8所示,电池单体组201可以包括多个电池单体列,并且多个电池单体列沿第一方向X排列,图7和图8中示出了四个电池单体组201,每个电池单体组201包括两个电池单体列。多个电池单体列中的每个电池单体列中的电池单体20可以沿第二方向Y排列,第一方向X垂直于第二方向Y。
电池10还包括冷却系统30。冷却系统30用于容纳冷却介质以给电池单体20降低温度。如图5和图8所示,冷却系统30可以设置于电池单体组201的第一面2111上。应理解,根据多个电池单体20在电池10的箱体11内设置的方向的不同,该第一面2111可以指该电池单体组201的任意一个表面。以电池单体20是长方体为例,为了增加电池单体20的散热能力,可以将冷却系统30设置于面积最大的侧壁的上方,那么电池单体组201朝向冷却系统30的一面,即,第一面2111为电池单体组201的面积最大的一个面,这样可以增加电池单体组201的散热速度,达到较好的温度调节效果。可选地,如图8所示,电池单体组201与冷却系统30之间可以通过结构胶31粘接在一起。
电池10还包括信号传输组件24。信号传输组件24设置于电池单体组201的第二面2112上。其中,第二面2112与第一面2111相邻。具体地,信号传输组件24可 以用于实现电池单体20的电压和/或温度信号的传输。例如,如图6所示,该信号传输组件24可以包括汇流部件121和绝缘层122,绝缘层122用于封装汇流部件121,绝缘层122具有开孔123,汇流部件121用于在开孔123处与电池单体组201中的电池单体20电连接。
可选地,绝缘层122可以通过热压的方式封装该汇流部件121,并且,通过设置开孔的方式,使得汇流部件121能够经由开孔处实现电池单体组201中电池单体20之间的电连接。
信号传输组件24可以用于实现电池单体20之间的多种形式的电连接。例如,电池10内的电连接区域可以包括汇流部件121形成的电连接区域,另外,电池10内还可以设置用于感测电池单体20的状态的传感器件(未图示),而电池10内的电连接区域还可以包括传感器件中的电连接区域。可选地,信号传输组件24可以包括传感器件,而绝缘层122还可以用于封装该传感器件。
考虑到如图5所示的电池单体20与冷却系统30的排列方式,在电池10处于高温高湿环境中,容易在电池10的箱体内产生冷凝液,尤其是冷却系统30上产生的冷凝液,可能会滴落到电池10内的电连接区域,例如,可能会滴落到汇流部件121上,可能导致电池10短路并失效,影响电池的安全性,因此,如图5所示,电池10还可以包括遮挡件25。遮挡件25连接于电池单体组201并凸出于第一面2111的边缘,遮挡件25用于阻挡冷却系统30产生的冷凝液到达信号传输组件24。具体地,遮挡件25可以连接于电池单体组201的第一面2111或者第二面2112。
因此,本申请实施例的电池10,在其第一面2111上设置冷却系统30,在与第一面2111相邻的第二面2112上设置信号传输组件24,以用于实现多个电池单体20之间的电连接,另外,该电池10还包括连接并凸出于第一面2111边缘的遮挡件25,以阻挡冷却系统30产生的冷凝液到达信号传输组件24,从而避免电池10发生短路,提高该电池10的安全性。
可选地,在本申请一个实施例中,遮挡件25在平行于第一面2111的平面上的正投影覆盖信号传输组件24在平行于第一面2111的平面上的正投影。也就是说,遮挡件25延伸出信号传输组件24所对应的区域,在冷却系统30产生冷凝液的情况下,遮挡件25可以起到“屋檐”的作用,将冷凝液引导至信号传输组件24之外的区域,例如相对设置的两个电池单体组201之间的空间,以对信号传输组件24进行保护。
可选地,在本申请一个实施例中,遮挡件25的材料为绝缘材料,例如遮挡件25可以是绝缘片,从而能够保证信号传输组件24的绝缘隔离,进一步提高电池10的安全性。
可选地,在本申请一个实施例中,遮挡件25可以固定于该第一面2111与冷却系统30之间。遮挡件25无需覆盖电池单体组201的整个第一面2111,例如图5所示,遮挡件25固定在电池单体组201的第一面2111与冷却系统30之间且仅接触第一面2111靠近边缘的位置,遮挡件25的一端与结构胶31对齐,不会影响结构胶31对电池单体组201和冷却系统30的粘接。并且遮挡件25与冷却系统30直接接触,二者接触面积较大,能够更好地对冷凝液进行导流。
可选地,在本申请一个实施例中,遮挡件25还可以固定于电池单体组201的第二面2112,且遮挡件25靠近冷却系统30的一端弯折以凸出于该第一面2111的边缘。遮挡件25可以固定在电池单体组201的第二面2112上位于信号传输组件24上方的区域,由于可以与信号传输组件24之间的距离设置的足够近,因此对信号传输组件24的保护效果更好。固定于该第二面2112的遮挡件25可以是一个整体,也可以由多个子遮挡件组成。具体地,遮挡件25包括分别设置于第一电池单体列的多个电池单体20的第一壁上的多个子遮挡件,其中,该第一电池单体列为电池单体组201中与冷却系统30连接的电池单体列,该第一壁为电池单体20的在第二面2112上的壁。
无论采用何种方式安装遮挡件25,只要遮挡件25能够在信号传输组件24上方形成遮挡以阻止冷却系统30产生的冷凝液到达信号传输组件24即可。本申请实施例中以遮挡件25固定在电池单体组201的第一面2111与冷却系统30之间为例进行描述。
可选地,在本申请一个实施例中,如图9和图10所示,遮挡件25凸出于该第一面2111的边缘的凸出部分平行于该第一面2111。这样,冷却系统30产生的冷凝液就被聚集在冷却系统30位于相对设置的两个电池单体组201的遮挡件25之间的区域32,即冷却系统30上未与遮挡件25接触的区域32,从而避免信号传输组件24的正上方形成冷凝液,增强了电池的安全性。这种方式下遮挡件25为平面结构,工艺复杂度较低。
可选地,在本申请一个实施例中,如图5和图7所示,遮挡件25凸出于该第一面2111的边缘的凸出部分朝向第二面2112弯折。对遮挡件25进行弯折后,弯折部分可以对冷凝液进行引流,更容易将冷凝液聚集于两个电池单体组201之间的空间,限制冷凝液到达信号传输组件24。
进一步地,在本申请一个实施例中,如图11和图12所示,相对设置的两个电池单体组201的遮挡件25的凸出部分连接形成凹槽251,凹槽251用于收集冷凝液。凹槽251的深度可以基于遮挡件25的弯折程度而定。冷却系统30产生的冷凝液在遮挡件25处滴落时,可以被凹槽251收集。被凹槽251收集的冷凝液可以在合适的时机被排出,例如在车辆上坡或者下坡时,凹槽251内的冷凝液被自然地排至电池单体组201的后端或前端。可选地,相对设置的两个电池单体组201的遮挡件25的凸出部分可以通过连接条连接(未图示)形成凹槽251。或者,相对设置的两个电池单体组201的遮挡件25可以一体成型以形成凹槽251,从而提高遮挡件25的可靠性。
更进一步地,在本申请一个实施例中,如图13所示,凹槽251的底部设置有排液孔252,排液孔252用于排放该冷凝液。这样,凹槽251收集的冷凝液可以更及时地排放至相对设置的两个电池单体组201之间的空间,避免冷凝液在凹槽251内过度聚集。本申请实施例对排液孔252的数量和形状不限定。
可选地,在本申请一个实施例中,如图14所示,电池10的箱体11内设置有与遮挡件25对应的储液槽113,遮挡件25用于将该冷凝液导入储液槽113。当冷却系统30产生冷凝液后,冷凝液沿着遮挡件25滴落至储液槽113,或者先滴落至凹槽251内,凹槽251再将冷凝液导入储液槽113,从而使冷凝液远离电池10的信号传输组件24,因此能够增强电池的安全性。储液槽113可以位于箱体11的底部。可选地,储 液槽113内可以设置重力阀,重力阀用于在储液槽113内的冷凝液积攒到一定程度时将储液槽113内的冷凝液排出箱体11。可选地,储液槽113内也可以不设置重力阀,而是直接连通箱体11的外部,例如,通过箱体11的壁上的通孔与箱体11的外部连通。
可选地,在本申请一个实施例中,如图15所示,凹槽251的端部连接电池10的箱体11的壁,且凹槽251与箱体11的壁内的空腔连通以将该冷凝液导入该空腔。该空腔可以是箱体11的壁内原本就存在的空腔。可选地,该空腔也可以是如图15所示的专门设置的储液槽113。由于凹槽251的端部连接电池10的箱体11的壁内的空腔,当冷却系统30产生冷凝液后,冷凝液沿着遮挡件25的弯折处滴落至凹槽251内,凹槽251将冷凝液从其端部导入至箱体11的壁内的空腔内,以对冷凝液进行储存,或者再进一步排出箱体11,从而使冷凝液远离电池10的信号传输组件24,因此能够增强电池10的安全性。
本申请一个实施例还提供了一种用电设备,该用电设备可以包括前述各实施例中的电池10,以用于为该用电设备提供电能。可选地,用电设备可以为车辆1、船舶或航天器。
上文描述了本申请实施例的电池和用电设备,下面将描述本申请实施例的制备电池的方法和设备,其中未详细描述的部分可参见前述各实施例。
图16示出了本申请一个实施例的制备电池的方法300的示意性流程图。如图16所示,该方法300可以包括:310,提供电池单体组201,电池单体组201包括多个电池单体20;320,提供冷却系统30,设置于电池单体组201的第一面2111上;330,提供信号传输组件24,设置于电池单体组201的第二面2112上,第二面2112与第一面2111相邻,信号传输组件24包括汇流部件121和绝缘层122,该绝缘层122封装该汇流部件121,该绝缘层122具有开孔,该汇流部件121用于在开孔处与电池单体组201中的电池单体20电连接;340,提供遮挡件25,连接于电池单体组201并凸出于第一面2111的边缘,遮挡件25用于阻挡冷却系统30产生的冷凝液到达信号传输组件24。
图17示出了本申请一个实施例的制备电池的设备400的示意性框图。如图17所示,制备电池的设备400可以包括提供模块410,用于:提供电池单体组201,电池单体组201包括多个电池单体20;提供冷却系统30,设置于电池单体组201的第一面2111上;提供信号传输组件24,设置于电池单体组201的第二面2112上,第二面2112与第一面2111相邻,信号传输组件24包括汇流部件121和绝缘层122,该绝缘层122封装该汇流部件121,该绝缘层122具有开孔,该汇流部件121用于在开孔处与电池单体组201中的电池单体20电连接;提供遮挡件25,连接于电池单体组201并凸出于第一面2111的边缘,遮挡件25用于阻挡冷却系统30产生的冷凝液到达信号传输组件24。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (17)

  1. 一种电池,其特征在于,包括:
    电池单体组(201),包括多个电池单体(20);
    冷却系统(30),设置于所述电池单体组(201)的第一面(2111)上;
    信号传输组件(24),设置于所述电池单体组(201)的第二面(2112)上,所述第二面(2112)与所述第一面(2111)相邻,所述信号传输组件(24)包括汇流部件(121)和绝缘层(122),所述绝缘层(122)封装所述汇流部件(121),所述绝缘层(122)具有开孔,所述汇流部件(121)用于在所述开孔处与所述电池单体组(201)中的电池单体(20)电连接;
    遮挡件(25),连接于所述电池单体组(201)并凸出于所述第一面(2111)的边缘,所述遮挡件(25)用于阻挡所述冷却系统(30)产生的冷凝液到达所述信号传输组件(24)。
  2. 根据权利要求1所述的电池,其特征在于,所述遮挡件(25)在平行于所述第一面(2111)的平面上的正投影覆盖所述信号传输组件(24)在平行于所述第一面(2111)的平面上的正投影。
  3. 根据权利要求1或2所述的电池,其特征在于,所述遮挡件(25)凸出于所述第一面(2111)的边缘的凸出部分平行于所述第一面(2111)。
  4. 根据权利要求1或2所述的电池,其特征在于,所述遮挡件(25)凸出于所述第一面(2111)的边缘的凸出部分朝向所述第二面(2112)弯折。
  5. 根据权利要求4所述的电池,其特征在于,所述电池包括多个所述电池单体组(201);
    其中,相对设置的两个所述电池单体组(201)的所述遮挡件(25)的所述凸出部分连接形成凹槽(251),所述凹槽(251)用于收集所述冷凝液。
  6. 根据权利要求5所述的电池,其特征在于,所述凹槽(251)底部设置有排液孔(252),用于排放所述冷凝液。
  7. 根据权利要求5或6所述的电池,其特征在于,相对设置的两个所述电池单体组(201)的所述遮挡件(25)的所述凸出部分通过连接条连接形成所述凹槽(251)。
  8. 根据权利要求5或6所述的电池,其特征在于,相对设置的两个所述电池单体组(201)的所述遮挡件(25)一体成型以形成所述凹槽(251)。
  9. 根据权利要求1至8中任一项所述的电池,其特征在于,所述遮挡件(25)的材料为绝缘材料。
  10. 根据权利要求1至9中任一项所述的电池,其特征在于,所述电池的箱体内设置有与所述遮挡件(25)对应的储液槽(113),所述遮挡件(25)用于将所述冷凝液导入所述储液槽(113)。
  11. 根据权利要求5所述的电池,其特征在于,所述凹槽(251)的端部连接所述电池的箱体的壁,且所述凹槽(251)与所述箱体的壁内的空腔(114)连通以将所述冷 凝液导入所述空腔(114)。
  12. 根据权利要求1至11中任一项所述的电池,其特征在于,所述遮挡件(25)固定于所述第一面(2111)与所述冷却系统(30)之间。
  13. 根据权利要求1至11中任一项所述的电池,其特征在于,所述遮挡件(25)固定于所述第二面(2112),且所述遮挡件(25)靠近所述冷却系统(30)的一端弯折以凸出于所述第一面(2111)的边缘。
  14. 根据权利要求1至13中任一项所述的电池,其特征在于,所述电池单体组(201)包括N个电池单体(20)列,所述N个电池单体(20)列沿第一方向上排列,所述N个电池单体(20)列中的每个电池单体(20)列的电池单体(20)沿第二方向排列,所述第一方向垂直于所述第二方向,N为正整数;
    其中,所述第一面(2111)垂直于所述第一方向,所述第二面(2112)平行于所述第一方向和所述第二方向确定的平面。
  15. 一种用电设备,其特征在于,包括:根据权利要求1至14中任一项所述的电池,所述电池用于提供电能。
  16. 一种制备电池的方法,其特征在于,包括:
    提供(310)电池单体组(201),所述电池单体组(201)包括多个电池单体(20);
    提供(320)冷却系统(30),所述冷却系统(30)设置于所述电池单体组(201)的第一面(2111)上;
    提供(330)信号传输组件(24),所述信号传输组件(24)设置于所述电池单体组(201)的第二面(2112)上,所述第二面(2112)与所述第一面(2111)相邻,所述信号传输组件(24)包括汇流部件(121)和绝缘层(122),所述绝缘层(122)封装所述汇流部件(121),所述绝缘层(122)具有开孔,所述汇流部件(121)用于在所述开孔处与所述电池单体组(201)中的电池单体(20)电连接;
    提供(340)遮挡件(25),所述遮挡件(25)连接于所述电池单体组(201)并凸出于所述第一面(2111)的边缘,所述遮挡件(25)用于阻挡所述冷却系统(30)产生的冷凝液到达所述信号传输组件(24)。
  17. 一种制备电池的设备,其特征在于,包括提供模块(410),所述提供模块(410)用于:
    提供电池单体组(201),所述电池单体组(201)包括多个电池单体(20);
    提供冷却系统(30),所述冷却系统(30)设置于所述电池单体组(201)的第一面(2111)上;
    提供信号传输组件(24),所述信号传输组件(24)设置于所述电池单体组(201)的第二面(2112)上,所述第二面(2112)与所述第一面(2111)相邻,所述信号传输组件(24)包括汇流部件(121)和绝缘层(122),所述绝缘层(122)封装所述汇流部件(121),所述绝缘层(122)具有开孔,所述汇流部件(121)用于在所述开孔处与所述电池单体组(201)中的电池单体(20)电连接;
    提供遮挡件(25),所述遮挡件(25)连接于所述电池单体组(201)并凸出于所 述第一面(2111)的边缘,所述遮挡件(25)用于阻挡所述冷却系统(30)产生的冷凝液到达所述信号传输组件(24)。
PCT/CN2021/109708 2021-07-30 2021-07-30 电池、用电设备、制备电池的方法和设备 WO2023004779A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2021/109708 WO2023004779A1 (zh) 2021-07-30 2021-07-30 电池、用电设备、制备电池的方法和设备
JP2023512756A JP7469559B2 (ja) 2021-07-30 2021-07-30 電池、電力消費機器、電池を製造する方法と機器
CN202180075045.3A CN116349053A (zh) 2021-07-30 2021-07-30 电池、用电设备、制备电池的方法和设备
EP21951369.4A EP4181266A1 (en) 2021-07-30 2021-07-30 Battery, power consuming device, and preparation method and device for battery
KR1020237005471A KR20230038775A (ko) 2021-07-30 2021-07-30 배터리, 전기 설비, 배터리의 제조 방법 및 제조 설비
US18/340,911 US20230335845A1 (en) 2021-07-30 2023-06-26 Battery, power consuming apparatus, and method and apparatus for manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109708 WO2023004779A1 (zh) 2021-07-30 2021-07-30 电池、用电设备、制备电池的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/340,911 Continuation US20230335845A1 (en) 2021-07-30 2023-06-26 Battery, power consuming apparatus, and method and apparatus for manufacturing battery

Publications (1)

Publication Number Publication Date
WO2023004779A1 true WO2023004779A1 (zh) 2023-02-02

Family

ID=85087435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109708 WO2023004779A1 (zh) 2021-07-30 2021-07-30 电池、用电设备、制备电池的方法和设备

Country Status (6)

Country Link
US (1) US20230335845A1 (zh)
EP (1) EP4181266A1 (zh)
JP (1) JP7469559B2 (zh)
KR (1) KR20230038775A (zh)
CN (1) CN116349053A (zh)
WO (1) WO2023004779A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016285A (ja) * 2007-07-09 2009-01-22 Kojima Press Co Ltd 冷却装置
CN111148382A (zh) * 2018-11-03 2020-05-12 扬州正扬电力科技有限公司 一种具有防雨雪功能的电气控制柜
CN113013503A (zh) * 2020-10-19 2021-06-22 江苏时代新能源科技有限公司 电池及用电装置
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434662B2 (ja) 2010-02-23 2014-03-05 三菱自動車工業株式会社 車両用バッテリユニットの排水構造
JP2017059505A (ja) 2015-09-18 2017-03-23 株式会社Gsユアサ 蓄電装置
JP6693480B2 (ja) 2017-06-22 2020-05-13 株式会社デンソー 端子冷却装置
CN113169408B (zh) 2018-11-28 2023-05-26 三洋电机株式会社 电池组件
CN112259937A (zh) 2019-07-05 2021-01-22 宁德时代新能源科技股份有限公司 电池包
JPWO2021079595A1 (zh) 2019-10-24 2021-04-29
JP2021128925A (ja) 2020-02-10 2021-09-02 三菱自動車工業株式会社 車両用電池パック
CN116349062A (zh) 2021-07-30 2023-06-27 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电设备、制备电池的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016285A (ja) * 2007-07-09 2009-01-22 Kojima Press Co Ltd 冷却装置
CN111148382A (zh) * 2018-11-03 2020-05-12 扬州正扬电力科技有限公司 一种具有防雨雪功能的电气控制柜
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN113013503A (zh) * 2020-10-19 2021-06-22 江苏时代新能源科技有限公司 电池及用电装置

Also Published As

Publication number Publication date
US20230335845A1 (en) 2023-10-19
JP7469559B2 (ja) 2024-04-16
EP4181266A1 (en) 2023-05-17
CN116349053A (zh) 2023-06-27
KR20230038775A (ko) 2023-03-21
JP2023542478A (ja) 2023-10-10

Similar Documents

Publication Publication Date Title
CN216872114U (zh) 电池和用电设备
CN216872137U (zh) 电池和用电设备
CN216872134U (zh) 电池和用电设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
CN216872133U (zh) 一种电池和用电设备
US20230411761A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2023004726A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
CN219067027U (zh) 电池和用电设备
CN216872190U (zh) 一种电池和用电设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
EP4254591A1 (en) Battery, electrical apparatus, and method and apparatus for preparing battery
WO2023000234A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004779A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004750A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004780A1 (zh) 电池、用电设备、制备电池的方法和设备
JP7484016B2 (ja) 電池、電力消費機器、電池を製造する方法と機器
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155211A1 (zh) 电池、用电设备、制备电池的方法和设备
CN116325314A (zh) 电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20237005471

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023512756

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021951369

Country of ref document: EP

Effective date: 20230210

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE