WO2023004676A1 - 气溶胶产生装置、控制方法、控制装置和可读存储介质 - Google Patents

气溶胶产生装置、控制方法、控制装置和可读存储介质 Download PDF

Info

Publication number
WO2023004676A1
WO2023004676A1 PCT/CN2021/109221 CN2021109221W WO2023004676A1 WO 2023004676 A1 WO2023004676 A1 WO 2023004676A1 CN 2021109221 W CN2021109221 W CN 2021109221W WO 2023004676 A1 WO2023004676 A1 WO 2023004676A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol generating
generating device
aerosol
microwave
power
Prior art date
Application number
PCT/CN2021/109221
Other languages
English (en)
French (fr)
Inventor
杜靖
胡平
熊玉明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2021/109221 priority Critical patent/WO2023004676A1/zh
Publication of WO2023004676A1 publication Critical patent/WO2023004676A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring

Definitions

  • the present application belongs to the technical field of electronic atomization, and specifically relates to an aerosol generating device, a control method, a control device and a readable storage medium.
  • a heat not burn (Heat Not Burning, HNB) device is an electronic device that is used to heat without burning the aerosol-generating substrate (treated plant leaf products).
  • the microwave component is heated to the temperature where the aerosol-generating substrate can generate aerosol but not enough to burn through high temperature, so that the aerosol-generating substrate can generate the aerosol required by the user without burning.
  • Heat-not-burn appliances currently on the market mainly adopt resistance heating, that is, use a central heating sheet or a heating needle to insert from the center of the aerosol-generating substrate into the interior of the aerosol-generating substrate for heating.
  • This kind of appliance needs to be preheated for a long time before use, and it cannot be pumped and stopped freely.
  • the carbonization of the aerosol-generating matrix is uneven, resulting in insufficient baking of the aerosol-generating matrix and low utilization rate; Dirt is generated in the matrix extractor and the base of the heating sheet, which is difficult to clean; the local aerosol in contact with the heating element will cause the temperature of the matrix to be too high, and partial cracking will occur, releasing substances harmful to the human body. Therefore, microwave heating technology has gradually replaced resistance heating as a new heating method.
  • Microwave heating technology has the characteristics of high efficiency, timeliness, selectivity and no delay in heating, and it only has a heating effect on substances with specific dielectric properties.
  • the application advantages of using microwave heating atomization are: a. Microwave heating is radiation heating, non-thermal conduction, which can realize immediate pumping and stop; b. There is no heating sheet, so there is no problem of broken pieces and cleaning heating sheets; c. Aerosol generation The matrix utilization rate is high, the taste consistency is high, and the taste is closer to cigarettes.
  • the existing microwave heating HNB device has a single heating function and high power consumption, resulting in waste of electric energy and aerosol matrix.
  • This application aims to solve one of the technical problems existing in the prior art or related art.
  • the embodiment of the present application proposes a method for controlling an aerosol generating device.
  • the aerosol generating device includes an atomization chamber, a microwave component and a temperature acquisition device.
  • the temperature acquisition device is used to collect the temperature of the atomization chamber.
  • the inner temperature value, the atomization chamber is used to accommodate the aerosol generating substrate, and the microwave component feeds microwaves into the atomizing chamber to heat the aerosol generating substrate.
  • the control method includes: responding to the preheating control instruction, controlling the microwave component to use the first power run, so that the temperature value in the cavity is within the range of the first set temperature value; detect the suction state of the aerosol generating device, and control the microwave component to operate at the second power based on the aerosol generating device being in the suction state, so that the cavity
  • the inner temperature value is within the range of the second set temperature value; wherein, the second power is greater than the first power.
  • the present application provides a control method for an aerosol generating device for the aerosol generating device.
  • the aerosol generating device includes an atomizing chamber, a microwave component and a temperature collecting device.
  • the atomization chamber is used for accommodating the aerosol generating substrate, and the microwave component feeds microwaves into the atomizing chamber to heat the aerosol generating substrate, so that the aerosol generating substrate in the atomizing chamber is heated to generate aerosol.
  • the aerosol-generating substrate can be a solid aerosol-generating substrate or a liquid aerosol-generating substrate.
  • the aerosol generating device When the aerosol generating device is in the power-on state, it receives the preheating control command and controls the microwave component to operate at the first power until the temperature value in the atomization chamber enters the set temperature range, so that the temperature value in the cavity is maintained at the set temperature. Within a certain temperature range, it can play a role in preheating the aerosol generating matrix in the atomization chamber. It is detected whether the aerosol generating device is in a suction state, and the power of the microwave component is adjusted according to the suction state of the aerosol generating device.
  • the operating power of the aerosol generating device is adjusted from the first power to the second power, and the second power is greater than first power.
  • the preheating stage it is detected that the aerosol generating device is in the suction state, and by increasing the operating power of the microwave component, the temperature in the atomization chamber is kept within the second set temperature range, and the aerosol generating substrate is rapidly heated to the first Within the range of the set temperature value, rapid heating and atomization of the aerosol-generating substrate is realized.
  • the microwave component to preheat the atomization chamber, so that the temperature in the atomization chamber is kept within the first set temperature range.
  • This application detects whether the aerosol generating device is in a suction state, and controls the operation of the microwave component according to the suction state of the aerosol generating device, and controls the aerosol generating substrate when the aerosol generating device is not in a suction state.
  • the temperature in the atomization chamber rises rapidly, and the aerosol-generating substrate is atomized.
  • the operation of the microwave component is controlled according to the suction state.
  • the microwave component feeds the microwave into the atomization chamber to heat the aerosol to generate the substrate.
  • the microwave component increases the operating power to make the atomization
  • the cavity heats up quickly, improving the atomization efficiency of the aerosol-generating substrate.
  • the microwave component can be controlled in time to reduce the operating power and restore the preheating state of the atomization cavity.
  • the aerosol generating substrate is preheated before atomization, and when the aerosol generating device is not pumped, it can maintain the preheated state, avoiding the waste of electric energy and aerosol generating substrate, realizing instant stop of pumping, reducing While reducing energy consumption, the atomization efficiency of the aerosol-generating substrate is improved, and the degree of atomization of the aerosol-generating substrate is also improved, thereby improving user experience.
  • the operation of the microwave component is controlled to keep the temperature in the cavity within the first set temperature range, so as to ensure that the aerosol generating substrate is continuously in the preheating state Next, reduce the time spent in the atomization process and improve the user experience.
  • the operating power of the microwave component is controlled to increase, so that the temperature in the atomizing chamber is kept within the second set temperature value range, thereby rapidly heating the aerosol generating substrate for fogging Because the aerosol generating device is in the non-puffing state, it continues to preheat the aerosol generating substrate, thereby improving the atomization efficiency of the aerosol generating substrate and ensuring that the aerosol generating substrate can be fully atomized.
  • the first set temperature value range is the preheating temperature range of the aerosol-generating substrate, and the temperature value in the preheating temperature range is lower than the second set temperature value range of the aerosol-generating substrate, ensuring When the aerosol-generating device is not in a suction state, the aerosol-generating substrate is not atomized and is fully preheated.
  • control method of the aerosol generating device in the above technical solution provided by the present application, it may also have the following additional technical features:
  • the aerosol generating device also includes a pressure sensor, the pressure sensor is used to collect the air pressure value in the atomization chamber, and the step of detecting the suction state of the aerosol generating device includes: collecting the air pressure in the atomization chamber Air pressure value; according to the numerical relationship between the air pressure value and the set air pressure value, determine the suction state of the aerosol generating device.
  • the aerosol generating device includes a pressure sensor, the collection end of the pressure sensor is connected with the atomization chamber, and the pressure sensor can collect the air pressure value in the atomization chamber.
  • the pressure value in the atomization chamber is collected, and the numerical relationship between the pressure value in the atomization chamber and the set air pressure value can reflect the change of the pressure value in the atomization chamber, so as to determine whether the aerosol generating device is in a suction state. Since the aerosol generating device is in the suction state, the pressure value in the atomization chamber changes, so it can be accurately judged whether the aerosol generating device is in the suction state according to the numerical relationship between the air pressure value in the atomization chamber and the set air pressure value .
  • Whether the aerosol generating device is in a suction state is detected by whether the aerosol generating device triggers a suction signal.
  • the collected air pressure value in the atomization chamber is greater than or equal to the set air pressure value, it is determined that the aerosol generating device triggers the suction signal.
  • the aerosol generating device further includes a gas flow channel.
  • gas flows from the outside of the aerosol generating device through the gas flow channel into the atomization chamber, and flows through the atomization substrate to Outside the aerosol generating device.
  • the pressure sensor is arranged outside the atomization chamber, and the collection end of the pressure sensor is arranged in the gas flow channel.
  • the pressure sensor is disposed entirely outside the housing of the aerosol generating device, so as to prevent the operation of the microwave component from affecting the pressure sensor, resulting in a decrease in the accuracy of the data collected by the pressure sensor.
  • the step of determining the suction state of the aerosol generating device specifically includes: determining that the aerosol generating device In the suction state; based on the air pressure value being less than the set air pressure value, it is determined that the aerosol generating device is in the non-puff state.
  • the aerosol generating device When the aerosol generating device is in the suction state, the negative pressure in the atomization chamber rises until it reaches the set air pressure value, then it is determined that the aerosol generating device is in the suction state.
  • the numerical range of the air pressure value By reasonably setting the numerical range of the air pressure value, the misjudgment of the suction state by the aerosol generating device can be avoided, and the accuracy of detecting the suction state can be improved.
  • the aerosol generating device includes a trigger
  • the step of detecting the suction state of the aerosol generating device specifically includes: determining that the aerosol generating device is in the suction state based on the trigger being in the triggered state; If the component is not triggered, it is determined that the aerosol-generating device is not inhaled.
  • the aerosol generating device includes a trigger, and when the user needs to inhale the aerosol generating device, the aerosol generating device triggers a suction signal by triggering the trigger.
  • the trigger can be a button structure.
  • the user presses the button structure to keep the button pressed, that is, the trigger remains in the triggered state, and it is determined that the aerosol generating device is currently in the suction state.
  • the aerosol generating device includes a trigger
  • the step of detecting the suction state of the aerosol generating device specifically includes: based on the trigger being in the triggered state, even if the triggering duration of the trigger reaches the set For a long time, it is determined that the aerosol generating device is in a suction state.
  • the aerosol generating device is in a suction state when it is detected that the trigger duration of the trigger element reaches the set duration, thereby avoiding the occurrence of false heating of the microwave component caused by the user accidentally touching the trigger element.
  • the microwave component after the step of controlling the microwave component to operate at the first power, and before the step of detecting the suction state of the aerosol generating device, it further includes: entering a third set temperature value range based on the temperature value in the cavity, The microwave component is controlled to run at a third power; wherein, the third power is less than the first power.
  • the microwave component is controlled to operate at the first power so that the temperature in the cavity reaches the set temperature range, and the microwave component is controlled to operate at the third power less than the first power to maintain the temperature in the atomization cavity.
  • the microwave components are controlled to operate at a higher first power, so that the temperature in the cavity rises rapidly.
  • the microwave component is controlled to reduce the operating power to the third power, so that the temperature value in the cavity is maintained within the range of the first set temperature value.
  • the microwave component In the initial stage of the operation of the aerosol generating device, the microwave component is controlled to operate at a higher power to the set temperature range, and then the microwave component is controlled to continue to operate at a lower power, which not only improves the aerosol generating device’s effect on the atomization chamber
  • the preheating efficiency also reduces the waste of energy, avoids frequent start and stop of microwave components, and prolongs the service life of microwave components.
  • control method further includes: timing the standby time of the aerosol generating device, and controlling the aerosol generating device to shut down based on the standby time reaching a set time.
  • the aerosol generating device controls the aerosol generating device to be in the standby state in response to the power-on command, and counts the standby time of the aerosol generating device when the aerosol generating device enters the standby state.
  • the standby time reaches the set time, that is, the preheating command and/or heating command is not received within the set time after the aerosol generating device is turned on, it is determined that the user does not need to use the aerosol generating device at present to control the aerosol.
  • the generating device is shut down, which improves the battery life of the aerosol generating device, and avoids the situation that the aerosol generating device is on standby for a long time caused by a user's mistaken touch.
  • the microwave component is arranged outside the casing of the aerosol generating device, and the aerosol generating device also includes a resonant cavity, and the microwave component can feed microwaves into the resonant cavity to generate aerosol in the atomizing cavity.
  • the substrate is heated and atomized.
  • the embodiment of the present application proposes a control device for an aerosol generating device.
  • the aerosol generating device includes an atomization chamber, a microwave component, and a temperature acquisition device.
  • the temperature acquisition device is used to collect the temperature value in the atomization chamber
  • the atomizing chamber is used to accommodate the aerosol generating substrate
  • the microwave assembly feeds microwaves into the atomizing chamber to heat the aerosol generating substrate
  • the control device includes: a first control unit, configured to control the microwave assembly in response to a preheating control command Operate with the first power, so that the temperature value in the cavity is within the range of the set temperature value
  • the detection unit is used to detect the suction state of the aerosol generating device
  • the second control unit is used for the aerosol generating device based on the suction state, controlling the microwave component to operate at the second power to keep the temperature in the atomization chamber within the second set temperature range; wherein, the second power is greater than the first power.
  • the present application provides a control device for an aerosol generating device for the aerosol generating device.
  • the aerosol generating device includes an atomizing chamber, a microwave component and a temperature collecting device.
  • the atomization chamber is used for accommodating the aerosol generating substrate, and the microwave component feeds microwaves into the atomizing chamber to heat the aerosol generating substrate, so that the aerosol generating substrate in the atomizing chamber is heated to generate aerosol.
  • the aerosol-generating substrate can be a solid aerosol-generating substrate or a liquid aerosol-generating substrate.
  • the control unit When the aerosol generating device is in the power-on state, the control unit receives the preheating control command, and controls the microwave component to operate at the first power until the temperature value in the atomization chamber enters the range of the first set temperature value, so that the temperature in the chamber The value is maintained within the range of the first set temperature value, which can play a role in preheating the aerosol generating substrate in the atomization chamber.
  • the adjustment unit detects whether the aerosol generating device is in a suction state, and adjusts the power of the microwave component according to the suction state of the aerosol generating device.
  • the operating power of the aerosol generating device is adjusted from the first power to the second power, and the second power is greater than first power.
  • the preheating stage it is detected that the aerosol generating device is in the suction state, and by increasing the operating power of the microwave component, the aerosol generating substrate is rapidly heated to the second set temperature range, and the rapid aerosol generating substrate is realized. Heated atomization.
  • the microwave component is continued to be controlled to preheat the atomization chamber, so that the temperature in the atomization chamber is kept within the first set temperature range.
  • This application detects whether the aerosol generating device is in a suction state, and controls the operation of the microwave component according to the suction state of the aerosol generating device, and controls the aerosol generating substrate when the aerosol generating device is not in a suction state. Preheating is carried out, and when the aerosol generating device is in the suction state, the operating power of the microwave component is increased, so that the temperature in the atomization chamber rises rapidly, and the aerosol generating substrate is atomized. The operation of the microwave component is controlled according to the suction state. Before the user pumps, the microwave component can preheat the atomization chamber.
  • the atomization efficiency of the aerosol-generating substrate can control the microwave component to reduce the operating power in time after the user stops smoking, and restore the preheating state of the atomization chamber. Since the aerosol generating substrate is preheated before atomization, and when the aerosol generating device is not pumped, it can maintain the preheated state, avoiding the waste of electric energy and aerosol generating substrate, realizing instant stop of pumping, reducing While reducing energy consumption, the atomization efficiency of the aerosol-generating substrate is improved, and the degree of atomization of the aerosol-generating substrate is also improved, thereby improving user experience.
  • the operation of the microwave component is controlled to keep the temperature in the cavity within the first set temperature range, so as to ensure that the aerosol generating substrate is continuously in the preheating state Next, reduce the time spent in the atomization process and improve the user experience.
  • the microwave component is controlled to increase the first power, so as to rapidly heat the aerosol generating substrate for atomization.
  • the sol-generating substrate is preheated, thereby improving the atomization efficiency of the aerosol-generating substrate and ensuring that the aerosol-generating substrate can be fully atomized.
  • the first set temperature value range is the preheating temperature range of the aerosol-generating substrate, and the temperature value in the preheating temperature range is lower than the second set temperature value range of the aerosol-generating substrate, ensuring When the aerosol-generating device is not in a suction state, the aerosol-generating substrate is not atomized and is fully preheated.
  • the aerosol generating device also includes a pressure sensor, the pressure sensor is used to collect the air pressure value in the atomization chamber; the detection unit is also used to collect the air pressure value in the atomization chamber; The numerical relationship between the air pressure value and the set air pressure value determines the suction state of the aerosol generating device.
  • the aerosol generating device includes a pressure sensor, the collection end of the pressure sensor is connected with the atomization chamber, and the pressure sensor can collect the air pressure value in the atomization chamber.
  • the pressure value in the atomization chamber is collected, and the numerical relationship between the pressure value in the atomization chamber and the set air pressure value can reflect the change of the pressure value in the atomization chamber, so as to determine whether the aerosol generating device is in a suction state. Since the aerosol generating device is in the suction state, the pressure value in the atomization chamber changes, so it can be accurately judged whether the aerosol generating device is in the suction state according to the numerical relationship between the air pressure value in the atomization chamber and the set air pressure value .
  • Whether the aerosol generating device is in a suction state is detected by whether the aerosol generating device triggers a suction signal.
  • the collected air pressure value in the atomization chamber is greater than or equal to the set air pressure value, it is determined that the aerosol generating device triggers the suction signal.
  • the aerosol generating device further includes a gas flow channel.
  • gas flows from the outside of the aerosol generating device through the gas flow channel into the atomization chamber, and flows through the atomization substrate to Outside the aerosol generating device.
  • the pressure sensor is arranged outside the atomization chamber, and the collection end of the pressure sensor is arranged in the gas flow channel.
  • the pressure sensor is disposed entirely outside the housing of the aerosol generating device, so as to prevent the operation of the microwave component from affecting the pressure sensor, resulting in a decrease in the accuracy of the data collected by the pressure sensor.
  • the detection unit is also used to determine that the aerosol generating device is in a suction state based on the air pressure value being greater than or equal to the set air pressure value; The generating device is in a non-puffing state.
  • the aerosol generating device When the aerosol generating device is in the suction state, the negative pressure in the atomization chamber rises until it reaches the set air pressure value, then it is determined that the aerosol generating device is in the suction state.
  • the numerical range of the air pressure value By reasonably setting the numerical range of the air pressure value, the misjudgment of the suction state by the aerosol generating device can be avoided, and the accuracy of detecting the suction state can be improved.
  • the aerosol generating device includes a trigger; the detection unit is also used to determine that the aerosol generating device is in a suction state based on the trigger being in a triggered state; the detection unit is also used to determine that the trigger is in an untriggered state , to make sure the aerosol-generating device is in a non-puffing state.
  • the aerosol generating device includes a trigger, and when the user needs to inhale the aerosol generating device, the aerosol generating device triggers a suction signal by triggering the trigger.
  • the trigger can be a button structure.
  • the user presses the button structure to keep the button pressed, that is, the trigger remains in the triggered state, and it is determined that the aerosol generating device is currently in the suction state.
  • the aerosol generating device further includes: a third control unit, the third control unit is used to enter the range of the set temperature value based on the temperature value in the cavity, and control the microwave component to operate at the third power; wherein, the third control unit The third power is less than the first power.
  • the microwave component is controlled to operate at the first power so that the temperature in the cavity reaches the set temperature range, and the microwave component is controlled to operate at the third power less than the first power to maintain the temperature in the atomization cavity.
  • the microwave components are controlled to operate at a higher first power, so that the temperature in the cavity rises rapidly.
  • the microwave component is controlled to reduce the operating power to the third power, so that the temperature value in the cavity is maintained within the range of the first set temperature value.
  • the microwave component In the initial stage of the operation of the aerosol generating device, the microwave component is controlled to operate at a higher power to the set temperature range, and then the microwave component is controlled to continue to operate at a lower power, which not only improves the aerosol generating device’s effect on the atomization chamber
  • the preheating efficiency also reduces the waste of energy, avoids frequent start and stop of microwave components, and prolongs the service life of microwave components.
  • the embodiment of the present application proposes an aerosol generating device, including: an atomization chamber for accommodating an aerosol generating substrate; a microwave component feeding microwaves into the atomizing chamber to heat the aerosol generating substrate;
  • the control device of the aerosol generating device in any possible design of the second aspect above, the control device of the aerosol generating device is connected to the microwave component.
  • the control device of the aerosol generating device is connected with the microwave component, so as to control the operation of the microwave component.
  • the control device of the aerosol generating device is selected as the control device of the aerosol generating device in any possible design of the above-mentioned second aspect, thus having all the beneficial technical effects of the control device of the aerosol generating device in any of the above-mentioned possible designs, No more details will be given here.
  • the embodiment of the present application proposes an aerosol generating device, including: a memory, in which programs or instructions are stored; a processor, in which the processor executes the programs or instructions stored in the memory to achieve the above-mentioned first aspect Steps in a method of controlling an aerosol generating device in any possible design. Therefore, it has all the beneficial technical effects of the control method of the aerosol generating device in any possible design of the first aspect above, and will not be repeated here.
  • the aerosol generating device provided in the present application also includes an atomizing chamber and a microwave assembly, the atomizing chamber is used to accommodate the aerosol generating substrate, and the microwave assembly feeds microwaves into the atomizing chamber to heat and atomize the aerosol generating substrate.
  • the microwave component is connected with the processor, and the processor executes the control method of the aerosol generating device to control the microwave component in the aerosol generating device.
  • the embodiment of the present application proposes an aerosol generating device, including: a housing; an atomization chamber, disposed in the housing, for accommodating an aerosol generating substrate; a microwave component, feeding into the atomization chamber
  • the aerosol is heated by microwaves to generate the matrix
  • the temperature acquisition device is arranged in the atomization chamber, and is used to collect the temperature value in the atomization chamber
  • the control device is used to respond to the preheating control command, and control the microwave component to operate at the first power, so that the temperature value in the cavity is within the range of the set temperature value
  • the suction state of the aerosol generating device is detected, and the first power is adjusted according to the suction state.
  • the aerosol generating device includes a casing, an atomizing chamber, a microwave component, a temperature collecting device and a control device.
  • the atomization chamber is set in the shell, the atomization chamber can accommodate the aerosol generating substrate, and the microwave component can heat the aerosol generating substrate in the atomizing chamber, so that the aerosol generating substrate is heated and atomized to generate aerosol .
  • the temperature collection device is used to collect the temperature value in the atomization chamber.
  • the aerosol-generating substrate can be a solid aerosol-generating substrate or a liquid aerosol-generating substrate.
  • the aerosol generating device When the aerosol generating device is in the power-on state, it receives the preheating control command and controls the microwave component to operate at the first power until the temperature value in the atomization chamber enters the set temperature range, so that the temperature value in the cavity is maintained at the set temperature. Within a certain temperature range, it can play a role in preheating the aerosol generating matrix in the atomization chamber. Detecting whether the aerosol generating device is in a suction state, and adjusting the first power according to the suction state of the aerosol generating device.
  • This application detects whether the aerosol generating device is in a suction state, and controls the operation of the microwave component according to the suction state of the aerosol generating device, and controls the aerosol generating substrate when the aerosol generating device is not in a suction state. Preheating is carried out, and when the aerosol generating device is in the suction state, the operating power of the microwave component is increased, so that the temperature in the atomization chamber rises rapidly, and the aerosol generating substrate is atomized. The operation of the microwave component is controlled according to the suction state. Before the user pumps, the microwave component can preheat the atomization chamber.
  • the atomization efficiency of the aerosol-generating substrate can control the microwave component to reduce the operating power in time after the user stops smoking, and restore the preheating state of the atomization chamber. Since the aerosol generating substrate is preheated before atomization, and when the aerosol generating device is not pumped, it can maintain the preheated state, avoiding the waste of electric energy and aerosol generating substrate, realizing instant stop of pumping, reducing While reducing energy consumption, the atomization efficiency of the aerosol-generating substrate is improved, and the degree of atomization of the aerosol-generating substrate is also improved, thereby improving user experience.
  • the operation of the microwave component is controlled to keep the temperature in the cavity within the first set temperature range, so as to ensure that the aerosol generating substrate is continuously in the preheating state Next, reduce the time spent in the atomization process and improve the user experience.
  • the microwave component is controlled to increase the first power, so as to rapidly heat the aerosol generating substrate for atomization.
  • the sol-generating substrate is preheated, thereby improving the atomization efficiency of the aerosol-generating substrate and ensuring that the aerosol-generating substrate can be fully atomized.
  • the set temperature range is within the preheating temperature range of the aerosol-generating substrate, and the temperature value in the preheating temperature range is lower than the second set temperature range of the aerosol-generating substrate. It is ensured that the aerosol generating substrate is not atomized and fully preheated when the aerosol generating device is not in a suction state.
  • the aerosol generating device further includes: a pressure sensor, disposed on the casing, for collecting the air pressure value in the atomizing chamber.
  • the aerosol generating device includes a pressure sensor disposed on the casing, the collection end of the pressure sensor is connected to the atomization chamber, and the pressure sensor can collect the air pressure value in the atomization chamber.
  • the pressure value in the atomization chamber is collected by the pressure sensor, and the numerical relationship between the pressure value in the atomization chamber and the set air pressure value can reflect the change of the pressure value in the atomization chamber, so as to determine whether the aerosol generating device is in suction state. Since the aerosol generating device is in the suction state, the pressure value in the atomization chamber changes, so it can be accurately judged whether the aerosol generating device is in the suction state according to the numerical relationship between the air pressure value in the atomization chamber and the set air pressure value .
  • Whether the aerosol generating device is in a suction state is detected by whether the aerosol generating device triggers a suction signal.
  • the collected air pressure value in the atomization chamber is greater than or equal to the set air pressure value, it is determined that the aerosol generating device triggers the suction signal.
  • the aerosol generating device further includes a gas flow channel.
  • gas flows from the outside of the aerosol generating device through the gas flow channel into the atomization chamber, and flows through the atomization substrate to Outside the aerosol generating device.
  • the pressure sensor is arranged outside the atomization chamber, and the collection end of the pressure sensor is arranged in the gas flow channel.
  • the pressure sensor is disposed entirely outside the housing of the aerosol generating device, so as to prevent the operation of the microwave component from affecting the pressure sensor, resulting in a decrease in the accuracy of the data collected by the pressure sensor.
  • the microwave component includes a microwave generating device and/or an electric heating device.
  • a microwave assembly includes a microwave assembly.
  • the microwave component is arranged outside the casing of the aerosol generating device, and the aerosol generating device also includes a resonant cavity, and the microwave component can feed microwaves into the resonant cavity to generate aerosol in the atomizing cavity.
  • the substrate is heated and atomized.
  • the microwave assembly includes an electrothermal device.
  • the electric heating device is arranged in the atomization chamber, and the electric heating device is in contact with the aerosol generating substrate, and electrically heats and atomizes the aerosol generating substrate through heat conduction.
  • the microwave component is a microwave component
  • the aerosol generating device includes: a resonant cavity disposed in the housing; a microwave component disposed in the housing, and the microwave component is used to feed microwaves into the resonant cavity.
  • the microwave component is a microwave component, and the microwave component is arranged on the casing.
  • a resonant cavity is arranged in the casing, and the resonant cavity is used to conduct microwaves to the position of the atomizing cavity.
  • the microwave output end of the microwave component is set in the resonant cavity, and the microwave component feeds microwaves into the resonant cavity through the microwave output end, and the microwave is transmitted to the atomizing cavity through the resonant cavity, so as to control the aerosol-generating matrix in the atomizing cavity Heated atomization.
  • the heating of the aerosol-generating substrate by means of microwaves has higher heating efficiency and better atomization effect of the aerosol-generating substrate, compared with the method of heating by an electric heating device in the prior art.
  • the aerosol generating device includes: a mounting part, arranged in the housing, at least a part of the mounting part is located in the resonant cavity, and the atomization chamber is arranged in the mounting part; a resonant column, arranged in the resonant cavity, The first end of the column is connected with the bottom wall of the resonant cavity, and the second end of the resonant column is opposite to the installation part.
  • the aerosol-generating device includes a mount and a resonant column.
  • the installation part is arranged in the casing, the atomization chamber is located in the installation part, and the aerosol generating matrix is arranged in the atomization chamber of the installation part.
  • the resonant column is used for resonant conduction of microwaves.
  • the first end of the resonant column is connected to the bottom wall of the resonant cavity, the second end of the resonant column is opposite to the installation part, and the microwave fed into the resonant cavity by the microwave component is transmitted along the first end to the second end of the resonant column, thereby Microwave heating is performed on the aerosol-generating substrate in the atomization chamber of the installation part.
  • the atomization cavity and the resonance cavity are isolated from each other by the installation part, which can prevent the aerosol in the atomization cavity from producing liquid waste or fixed waste generated after the matrix atomization enters the resonance cavity, thus avoiding the microwave caused by the waste entering the resonance cavity. Component failure occurs.
  • the inner wall of the resonant cavity and the resonant column are made of conductive material.
  • Metal material is optional. For example: gold, copper, silver.
  • the inner wall of the resonant cavity and the outer wall of the resonant column are provided with a conductive coating, and the conductive coating is selected as a metal coating, such as a gold-plated layer, a copper-plated layer, or a silver-plated layer.
  • choosing a metal with high stability and good electrical conductivity to set up the resonant cavity and the resonant column not only prevents microwave leakage, but also prevents the inner wall of the resonant cavity and the resonant column from rusting.
  • the part of the mounting part inside the resonant cavity is made of low dielectric loss material, such as PTFE material (polytetrafluoroethylene material), glass material, ceramic material.
  • the microwave can be conducted into the atomizing chamber in the installation part, so as to heat the aerosol generating substrate in the atomizing chamber by microwave, so that it can generate aerosol.
  • the mounting part is detachably connected to the housing.
  • the atomization chamber for accommodating the aerosol-generating substrate is arranged in the installation part, and the atomization chamber can be disassembled and washed separately by disassembling the installation part, which improves user experience.
  • the axis of the atomization chamber is coaxial with the axis of the resonance column.
  • the coaxial setting of the atomization chamber and the resonant column can ensure that the microwave transmitted to the atomization chamber through the resonant column can be transmitted to the middle of the atomization chamber, which improves the generation of microwaves on the aerosol in the atomization chamber.
  • the uniform heating of the substrate avoids the uneven heating of the aerosol-generating substrate caused by the concentration of microwaves in the atomization chamber, and further improves the atomization effect of the aerosol-generating substrate.
  • the resonant column is spaced apart from the installation part.
  • the microwave component includes: a microwave introduction part, which is arranged on the side wall of the housing, and the microwave introduction part is connected with the resonant cavity; a microwave emission source is connected with the microwave introduction part, and the microwave output by the microwave emission source passes through The microwave introduction part is fed into the resonant cavity, so that the microwave is transmitted along the direction from the first end of the resonant column to the second end of the resonant column.
  • the microwave component includes a microwave emission source and a microwave introduction part.
  • the microwave emission source is used to generate microwaves
  • the microwave introduction part arranged on the side wall of the casing is used to transport the microwaves generated by the microwave emission source into the resonant cavity.
  • the microwave can be conducted along the direction from the first end of the resonant column to the second end of the resonant column, so that the microwave can directly act on the aerosol generating matrix in the atomization cavity, improving the aerosol Produces the atomization effect of the substrate.
  • the microwave introduction part includes: a first introduction part, which is arranged on the side wall of the casing, and the first introduction part is connected to the microwave emission source; a second introduction part, the first end of the second introduction part is connected to the The first lead-in parts are connected, the second lead-in part is located in the resonant cavity, and the second end of the second lead-in part faces the bottom wall of the resonant cavity.
  • the microwave introduction part includes a first introduction part and a second introduction part
  • the first introduction part penetrates the side wall of the casing
  • the first end of the first introduction part is connected with the microwave emission source, so that the microwave emission source
  • the generated microwave enters the microwave introducing part through the first end of the first introducing part.
  • the second end of the first introduction part is connected with the first end of the second introduction part, and the second end of the second introduction part faces the bottom wall of the resonant cavity.
  • the first introduction part is arranged coaxially with the microwave output end of the microwave emission source
  • the second introduction part has a horizontal introduction part and a vertical introduction part
  • the axis of the horizontal introduction part is parallel to the bottom wall of the resonant cavity
  • the vertical introduction part The axis is perpendicular to the bottom wall of the resonator.
  • the horizontal introduction part is connected with the vertical introduction part through the bending part, and the horizontal introduction part is arranged coaxially with the first introduction part.
  • the aerosol generating device further includes: a recessed part disposed on the bottom wall of the resonant cavity, and the second end of the second introduction part is located in the recessed part.
  • the aerosol generating device further includes a recess, the recess is arranged on the bottom wall of the resonant cavity, and the recess is arranged opposite to the second end of the second introduction part, and the second end of the second introduction part extends to the recess part, so that the microwave entering the resonant cavity can be conducted along the direction from the second end to the first end of the resonant column, reducing energy loss during the microwave conduction process.
  • the microwave introduction part includes: a third introduction part, which is arranged on the side wall of the casing, the first end of the third introduction part is connected with the microwave emission source, and the second end of the third introduction part faces the resonance column.
  • the microwave introduction part also includes a third introduction part, the third introduction part is arranged coaxially with the microwave output end of the microwave emission source, the first end of the third introduction part is connected with the microwave emission source, and the third introduction part
  • the second end faces the resonant column, and the microwave is directly transmitted to the resonant column by setting the third introduction part coaxially with the microwave output end of the microwave emission source, and the third introduction part is connected to the resonant column, so that the output of the microwave emission source Microwaves all enter the resonant cavity.
  • the embodiment of the present application proposes a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, the aerosol in any possible design of the above first aspect can be realized
  • the steps of the control method of the generating device Therefore, it has all the beneficial technical effects of the control method of the aerosol generating device in any of the above-mentioned possible designs in the first aspect, and will not be repeated here.
  • Fig. 1 shows one of the schematic flowcharts of the control method of the aerosol generating device in the first embodiment of the present application
  • Fig. 2 shows the second schematic flowchart of the control method of the aerosol generating device in the first embodiment of the present application
  • Fig. 3 shows the third schematic flowchart of the control method of the aerosol generating device in the first embodiment of the present application
  • Fig. 4 shows the fourth schematic flowchart of the control method of the aerosol generating device in the first embodiment of the present application
  • Fig. 5 shows the fifth schematic flowchart of the control method of the aerosol generating device in the first embodiment of the present application
  • Fig. 6 shows the sixth schematic flowchart of the control method of the aerosol generating device in the first embodiment of the present application
  • Fig. 7 shows the seventh schematic flow chart of the control method of the aerosol generating device in the first embodiment of the present application
  • Fig. 8 shows a schematic block diagram of the control device of the aerosol generating device in the second embodiment of the present application
  • Fig. 9 shows a schematic block diagram of the aerosol generating device in the third embodiment of the present application.
  • Fig. 10 shows a schematic block diagram of the aerosol generating device in the fourth embodiment of the present application.
  • Fig. 11 shows a schematic block diagram of an aerosol generating device in a fifth embodiment of the present application.
  • Fig. 12 shows one of the structural schematic diagrams of the aerosol generating device in the fifth embodiment of the present application.
  • Fig. 13 is a partial enlarged view at A of the aerosol generating device shown in Fig. 12;
  • Fig. 14 shows the second structural schematic diagram of the aerosol generating device in the fifth embodiment of the present application.
  • aerosol generating device 102 housing, 104 atomization chamber, 106 microwave assembly, 1062 microwave introduction part, 10622 first introduction part, 10624 second introduction part, 10626 third introduction part, 1064 microwave emission source, 108 control device , 110 temperature acquisition device, 112 pressure sensor, 114 resonant cavity, 116 installation part, 118 resonant column, 120 recessed part.
  • the following describes an aerosol generating device control method, an aerosol generating device control device, an aerosol generating device and a readable storage medium according to some embodiments of the present application with reference to FIGS. 1 to 14 .
  • the aerosol generating device includes an atomization chamber, a microwave assembly and a temperature collecting device, and the temperature collecting device is used to collect fog
  • the temperature value in the chamber, the atomization chamber is used to accommodate the aerosol generating substrate, the microwave component is connected to the atomizing chamber, and the microwave component feeds microwaves into the atomizing chamber to heat the aerosol generating substrate.
  • Control methods for aerosol-generating devices include:
  • Step 102 responding to the preheating control instruction
  • Step 104 controls the microwave assembly to run at the first power
  • Step 106 detecting the suction state of the aerosol generating device
  • Step 108 judging whether the aerosol generating device is in a suction state, if the judging result is yes, go to step 110, if the judging result is otherwise, go back to step 104;
  • Step 110 control the microwave assembly to run at the second power.
  • the second power is greater than the first power.
  • the method for controlling the aerosol generating device is used for the aerosol generating device.
  • the aerosol generating device includes an atomizing chamber, a microwave component and a temperature collecting device.
  • the atomization cavity is used to accommodate the aerosol generating substrate, the microwave component is connected with the atomizing cavity, and the microwave component can provide heat to the atomizing cavity, so that the aerosol generating substrate in the atomizing cavity is heated to generate aerosol.
  • the aerosol-generating substrate can be a solid aerosol-generating substrate or a liquid aerosol-generating substrate.
  • the aerosol generating device When the aerosol generating device is in the power-on state, it receives the preheating control command and controls the microwave component to operate at the first power until the temperature value in the atomization chamber enters the range of the first set temperature value, so that the temperature value in the cavity is maintained Within the range of the first set temperature value, it can play the role of preheating the aerosol generating substrate in the atomizing chamber. Detecting whether the aerosol generating device is in a suction state, and adjusting the first power according to the suction state of the aerosol generating device.
  • the operating power of the aerosol generating device is adjusted from the first power to the second power, and the second power is greater than first power.
  • the preheating stage it is detected that the aerosol generating device is in the suction state, and by increasing the operating power of the microwave component, the aerosol generating substrate is rapidly heated to the second set temperature range, and the rapid aerosol generating substrate is realized. Heated atomization.
  • the microwave component is continued to be controlled to preheat the atomization chamber, so that the temperature in the atomization chamber is kept within the first set temperature range.
  • the aerosol generating matrix is pre-prepared when the aerosol generating device is in a non-puffing state.
  • Heat when the aerosol generating device is in the suction state, increase the operating power of the microwave component, so that the temperature in the atomizing chamber rises rapidly, and the aerosol generating substrate is atomized.
  • the operation of the microwave component is controlled according to the suction state. Before the user pumps, the microwave component can preheat the atomization chamber.
  • the atomization efficiency of the aerosol-generating substrate can control the microwave component to reduce the operating power in time after the user stops smoking, and restore the preheating state of the atomization chamber. Since the aerosol generating substrate is preheated before atomization, and when the aerosol generating device is not pumped, it can maintain the preheated state, avoiding the waste of electric energy and aerosol generating substrate, realizing instant stop of pumping, reducing While reducing energy consumption, the atomization efficiency of the aerosol-generating substrate is improved, and the degree of atomization of the aerosol-generating substrate is also improved, thereby improving user experience.
  • the operation of the microwave component is controlled to keep the temperature in the cavity within the set temperature range, ensuring that the aerosol generating substrate is continuously in the preheating state, Reduce the time spent in the atomization process and improve the user experience.
  • the operating power of the microwave component is controlled to increase, so as to rapidly heat the aerosol generating substrate for atomization.
  • the sol-generating substrate is preheated, thereby improving the atomization efficiency of the aerosol-generating substrate and ensuring that the aerosol-generating substrate can be fully atomized.
  • the first set temperature range is the preheating temperature range of the aerosol-generating substrate, and the temperature in the preheating temperature range is lower than the second set temperature range of the aerosol-generating substrate. It is ensured that the aerosol generating substrate is not atomized and fully preheated when the aerosol generating device is not in a suction state.
  • the value range of the first power of the microwave component is 1W to 20W, and the preferred range is 2W-5W.
  • the value range of the second power is 5W to 20W, and the preferred range is 8W to 15W.
  • the first power is selected as 5W
  • the second power is selected as 10W.
  • the microwave component when it is detected that the aerosol generating device is in the non-puffing state, the microwave component is controlled to feed microwaves into the atomizing chamber with a first power of 5W, so that the temperature of the aerosol generating substrate enters the first setting range of temperature values to preheat the aerosol-generating substrate.
  • the first set temperature range is 50° C. to 150° C., which meets the temperature requirement for preheating the aerosol-generating substrate.
  • the microwave component When it is detected that the aerosol generating device is in the suction state, the microwave component is controlled to feed microwaves into the microwave atomization cavity with the second power of 10W, so that the temperature in the atomization cavity rises rapidly to the second set temperature value range
  • the second set temperature ranges from 170°C to 350°C.
  • the aerosol generating device further includes a pressure sensor, the pressure sensor is used to collect the air pressure value in the atomization chamber, and the step of detecting the suction state of the aerosol generating device specifically includes :
  • Step 202 collecting the air pressure value in the atomization chamber
  • Step 204 determine the suction state of the aerosol generating device according to the numerical relationship between the air pressure value and the set air pressure value.
  • the aerosol generating device includes a pressure sensor, the collection end of the pressure sensor is connected to the atomization chamber, and the pressure sensor can collect the air pressure value in the atomization chamber.
  • the pressure value in the atomization chamber is collected, and the numerical relationship between the pressure value in the atomization chamber and the set air pressure value can reflect the change of the pressure value in the atomization chamber, so as to determine whether the aerosol generating device is in a suction state. Since the aerosol generating device is in the suction state, the pressure value in the atomization chamber changes, so it can be accurately judged whether the aerosol generating device is in the suction state according to the numerical relationship between the air pressure value in the atomization chamber and the set air pressure value .
  • Whether the aerosol generating device is in a suction state is detected by whether the aerosol generating device triggers a suction signal.
  • the collected air pressure value in the atomization chamber is greater than or equal to the set air pressure value, it is determined that the aerosol generating device triggers the suction signal.
  • the aerosol generating device further includes a gas flow channel.
  • gas flows from the outside of the aerosol generating device through the gas flow channel into the atomization chamber, and flows through the atomization substrate to Outside the aerosol generating device.
  • the pressure sensor is arranged outside the atomization chamber, and the collection end of the pressure sensor is arranged in the gas flow channel.
  • the pressure sensor is disposed entirely outside the housing of the aerosol generating device, so as to prevent the operation of the microwave component from affecting the pressure sensor, resulting in a decrease in the accuracy of the data collected by the pressure sensor.
  • the step of determining the suction state of the aerosol generating device specifically includes:
  • Step 302 determining the numerical relationship between the air pressure value and the set air pressure value
  • Step 304 judging whether the air pressure value is greater than or equal to the set air pressure value, if the judging result is yes, go to step 306, if the judging result is no, go to step 308.
  • Step 306 determining that the aerosol generating device is in a suction state
  • Step 308 determining that the aerosol generating device is in a non-puffing state.
  • the aerosol generating device based on the air pressure value being greater than or equal to the set air pressure value, it is determined that the aerosol generating device is in a suction state. Based on the air pressure value being less than the set air pressure value, it is determined that the aerosol generating device is in a non-puffing state.
  • the aerosol generating device When the aerosol generating device is in the suction state, the negative pressure in the atomization chamber rises until it reaches the set air pressure value, then it is determined that the aerosol generating device is in the suction state.
  • the numerical range of the air pressure value By reasonably setting the numerical range of the air pressure value, the misjudgment of the suction state by the aerosol generating device can be avoided, and the accuracy of detecting the suction state can be improved.
  • the aerosol generating device includes a trigger, and the step of detecting the suction state of the aerosol generating device specifically includes:
  • Step 402 detecting the trigger state of the trigger
  • Step 404 judging whether the trigger is in the trigger device, if the judging result is the position, go to step 406, if the judging result is otherwise, go to step 408;
  • Step 406 determining that the aerosol generating device is in a suction state
  • Step 408 determine that the aerosol generating device is in a non-puffing state.
  • whether the aerosol generating device is in a suction state is detected by whether the aerosol generating device triggers a suction signal.
  • the aerosol generating device includes a trigger, and when the user needs to inhale the aerosol generating device, the aerosol generating device triggers a suction signal by triggering the trigger.
  • the aerosol-generating device is in the puff state. Determining that the aerosol-generating device is in a non-puffing state based on the trigger being in a non-firing state
  • the trigger can be a button structure.
  • the user presses the button structure to keep the button pressed, that is, the trigger remains in the triggered state, and it is determined that the aerosol generating device is currently in the suction state.
  • Step 502 determining that the temperature value in the cavity is within the range of the set temperature value
  • Step 504 controlling the microwave assembly to run at the third power.
  • the third power is smaller than the first power.
  • the microwave component is controlled to operate at the third power less than the first power so that the atomization chamber
  • the internal temperature is maintained within the range of the first set temperature value.
  • the microwave components are controlled to operate at a higher first power, so that the temperature in the cavity rises rapidly.
  • the microwave component is controlled to reduce the operating power to the third power, so that the temperature in the cavity is maintained within the range of the first set temperature value.
  • the microwave component In the initial stage of the operation of the aerosol generating device, the microwave component is controlled to operate at a higher power to the set temperature range, and then the microwave component is controlled to continue to operate at a lower power, which not only improves the aerosol generating device’s effect on the atomization chamber
  • the preheating efficiency also reduces the waste of energy, avoids frequent start and stop of microwave components, and prolongs the service life of microwave components.
  • the value range of the first power of the microwave component is 1W to 20W, and the preferred range is 2W-5W.
  • the value range of the third power is 5W to 20W, and the preferred range is 8W to 15W.
  • the first power is selected as 5W
  • the third power is selected as 1W.
  • the microwave component is controlled to operate at the first power of 5W, and the temperature in the atomization chamber is increased to preheat the aerosol-generating substrate in the atomization chamber. If the temperature inside the atomization chamber is within the set temperature range, and the set temperature range is from 50°C to 150°C, it is determined that the temperature inside the chamber meets the atomization requirements of the aerosol-generating substrate.
  • the microwave component is controlled to operate at the third power of 1W, so that the temperature in the cavity is maintained within the first set temperature range, which not only improves the preheating efficiency of the aerosol generating device for the atomization cavity, but also reduces energy consumption. waste, and avoid frequent start and stop of microwave components, prolonging the service life of microwave components.
  • control method of the aerosol generating device As shown in Figure 6, in any of the above embodiments, the control method of the aerosol generating device:
  • Step 602 timing the standby time of the aerosol generating device.
  • Step 604 based on the standby time reaching the set time, control the aerosol generating device to shut down.
  • the aerosol generating device controls the aerosol generating device to be in the standby state in response to the power-on command, and counts the standby time of the aerosol generating device when the aerosol generating device enters the standby state.
  • the standby time reaches the set time, that is, the preheating command and/or heating command is not received within the set time after the aerosol generating device is turned on, it is determined that the user does not need to use the aerosol generating device at present to control the aerosol.
  • the generating device is shut down, which improves the battery life of the aerosol generating device, and avoids the situation that the aerosol generating device is on standby for a long time caused by a user's mistaken touch.
  • the value range of the set duration is 30 seconds to 5 minutes, preferably 1 minute to 2 minutes.
  • the aerosol generating device when the aerosol generating device is in the standby state, the standby time is counted, and when the standby time reaches 1 minute, the aerosol generating device is controlled to stop running in order to avoid waste of electric energy.
  • the battery life of the aerosol generating device is improved, and the long-time standby of the aerosol generating device caused by the user's mistaken touch is avoided.
  • the microwave component is arranged outside the casing of the aerosol generating device, and the aerosol generating device also includes a resonant cavity, and the microwave component can feed microwaves into the resonant cavity to generate aerosol in the atomizing cavity.
  • the substrate is heated and atomized.
  • control method of the aerosol generating device includes:
  • Step 702 in response to the power-on command, control the aerosol generating device to be powered on;
  • Step 704 controlling the aerosol generating device to be in a standby state
  • Step 706 timing the standby time of the aerosol generating device
  • Step 708 judging whether the standby duration is greater than or equal to the set duration, if the judging result is yes, go to step 716, if the judging result is otherwise, go back to step 706;
  • Step 710 in response to the preheating control instruction, control the microwave assembly to operate at the first power, so that the temperature in the cavity is within the first set temperature range;
  • Step 712 judging whether the aerosol generating device is in a suction state, if the judging result is yes, go to step 714, if the judging result is otherwise, go back to step 710;
  • Step 714 controlling the microwave assembly to run at the second power
  • Step 716 controlling the aerosol generating device to shut down.
  • the aerosol generating device controls the aerosol generating device to be powered on and starts up, so that the aerosol generating device remains in the standby state.
  • the generating device shuts down.
  • the aerosol generating device is in the standby state and receives the preheating control instruction, it controls the operation of the microwave component and enters the preheating mode.
  • the preheating mode of the aerosol generating device it is detected whether the aerosol generating device is in the suction state.
  • the microwave component is controlled to run at the second power.
  • the microwave assembly is kept running at the first power, wherein the second power is greater than the first power.
  • the aerosol generating substrate is realized when the aerosol generating device is not in a suction state.
  • the preheating effect can quickly heat the aerosol-generating substrate to the second set temperature range in the suction state, improve the atomization efficiency of the aerosol-generating substrate, and also improve the atomization degree of the aerosol-generating substrate. Thereby, the user experience is improved.
  • a control device 800 of an aerosol generating device is provided in the second embodiment of the present application.
  • the aerosol generating device includes an atomization chamber, a microwave assembly and a temperature collecting device, and the temperature collecting device is used for collecting The temperature value in the atomization cavity, the atomization cavity is used to accommodate the aerosol generating substrate, the microwave component is connected with the atomizing cavity, and the microwave is fed into the atomizing cavity to heat the aerosol generating substrate.
  • Controls include:
  • the first control unit 802 is configured to control the microwave assembly to operate at the first power in response to the preheating control instruction, so that the temperature value in the cavity is within the first set temperature value range;
  • a detection unit 804 configured to detect the suction state of the aerosol generating device
  • the second control unit 806 is configured to control the microwave assembly to operate at the second power based on the fact that the aerosol generating device is in a suction state, so that the temperature in the cavity is within the second set temperature range.
  • the second power is greater than the first power.
  • the control device 800 for an aerosol generating device is used for an aerosol generating device.
  • the aerosol generating device includes an atomizing chamber, a microwave component and a temperature collecting device.
  • the atomization chamber is used to accommodate the aerosol generating substrate, the microwave component is connected to the atomizing chamber, and microwaves are fed into the atomizing chamber to heat the aerosol generation, so that the aerosol generating substrate in the atomization chamber is heated to generate aerosol.
  • the aerosol-generating substrate can be a solid aerosol-generating substrate or a liquid aerosol-generating substrate.
  • the aerosol generating device When the aerosol generating device is in the power-on state, it receives the preheating control command and controls the microwave component to operate at the first power until the temperature value in the atomization chamber enters the first set temperature range, which can prevent the atomization
  • the aerosol in the cavity creates the effect of preheating the matrix. It is detected whether the aerosol generating device is in a suction state, and the power of the microwave component is adjusted according to the suction state of the aerosol generating device.
  • the operating power of the aerosol generating device is adjusted from the first power to the second power, and the second power is greater than first power.
  • the preheating stage it is detected that the aerosol generating device is in a suction state, and by increasing the operating power of the microwave component, the temperature of the aerosol generating substrate is rapidly raised to within the second set temperature range. Rapid heating atomization of aerosol-generating substrates is achieved.
  • the microwave component is continued to be controlled to preheat the atomization chamber, so that the temperature in the atomization chamber is kept within the first set temperature range.
  • the aerosol generating matrix is pre-prepared when the aerosol generating device is in a non-puffing state.
  • Heat when the aerosol generating device is in the suction state, increase the operating power of the microwave component, so that the temperature in the atomizing chamber rises rapidly, and the aerosol generating substrate is atomized.
  • the operation of the microwave component is controlled according to the suction state. Before the user pumps, the microwave component can preheat the atomization chamber.
  • the atomization efficiency of the aerosol-generating substrate can control the microwave component to reduce the operating power in time after the user stops smoking, and restore the preheating state of the atomization chamber. Since the aerosol generating substrate is preheated before atomization, and when the aerosol generating device is not pumped, it can maintain the preheated state, avoiding the waste of electric energy and aerosol generating substrate, realizing instant stop of pumping, reducing While reducing energy consumption, the atomization efficiency of the aerosol-generating substrate is improved, and the degree of atomization of the aerosol-generating substrate is also improved, thereby improving user experience.
  • the operation of the microwave component is controlled to keep the temperature in the cavity within the first set temperature range, so as to ensure that the aerosol generating substrate is continuously in the preheating state Next, reduce the time spent in the atomization process and improve the user experience.
  • the microwave component is controlled to increase the first power to the second power, thereby rapidly heating the aerosol generating substrate for atomization, since the aerosol generating device is in the non-puffing state , continuously preheating the aerosol-generating substrate, thereby improving the atomization efficiency of the aerosol-generating substrate, and ensuring that the aerosol-generating substrate can be fully atomized.
  • the first set temperature value range is the preheating temperature range of the aerosol-generating substrate, and the temperature value in the preheating temperature range is lower than the second set temperature value range of the aerosol-generating substrate, ensuring When the aerosol-generating device is not in a suction state, the aerosol-generating substrate is not atomized and is fully preheated.
  • the value range of the first power of the microwave component is 1W to 20W, and the preferred range is 2W-5W.
  • the value range of the second power is 5W to 20W, and the preferred range is 8W to 15W.
  • the first power is selected as 5W
  • the second power is selected as 10W.
  • the microwave component when it is detected that the aerosol generating device is in the non-puffing state, the microwave component is controlled to feed microwaves into the atomizing chamber with the first power of 5W, so that the temperature of the aerosol generating substrate enters the set temperature range inside to preheat the aerosol-generating substrate.
  • the first set temperature range is 50° C. to 150° C., which meets the temperature requirement for preheating the aerosol-generating substrate.
  • the microwave component When it is detected that the aerosol generating device is in the suction state, the microwave component is controlled to feed microwaves into the microwave atomization cavity with the second power of 10W, so that the temperature in the atomization cavity rises rapidly to the second set temperature value range
  • the value range of the second set temperature range is 170°C to 350°C.
  • the aerosol generating device further includes a pressure sensor, and the pressure sensor is used to collect the air pressure value in the atomization chamber;
  • the detection unit 804 is also used to collect the air pressure value in the atomization chamber
  • the detection unit 804 is also used to determine the suction state of the aerosol generating device according to the numerical relationship between the air pressure value and the set air pressure value.
  • the aerosol generating device includes a pressure sensor, the collection end of the pressure sensor is connected to the atomization chamber, and the pressure sensor can collect the air pressure value in the atomization chamber.
  • the pressure value in the atomization chamber is collected, and the numerical relationship between the pressure value in the atomization chamber and the set air pressure value can reflect the change of the pressure value in the atomization chamber, so as to determine whether the aerosol generating device is in a suction state. Since the aerosol generating device is in the suction state, the pressure value in the atomization chamber changes, so it can be accurately judged whether the aerosol generating device is in the suction state according to the numerical relationship between the air pressure value in the atomization chamber and the set air pressure value .
  • Whether the aerosol generating device is in a suction state is detected by whether the aerosol generating device triggers a suction signal.
  • the collected air pressure value in the atomization chamber is greater than or equal to the set air pressure value, it is determined that the aerosol generating device triggers the suction signal.
  • the aerosol generating device further includes a gas flow channel.
  • gas flows from the outside of the aerosol generating device through the gas flow channel into the atomization chamber, and flows through the atomization substrate to Outside the aerosol generating device.
  • the pressure sensor is arranged outside the atomization chamber, and the collection end of the pressure sensor is arranged in the gas flow channel.
  • the pressure sensor is disposed entirely outside the casing of the aerosol generating device, so as to prevent the influence of the operation of the microwave component on the pressure sensor, resulting in a decrease in the accuracy of the data collected by the pressure sensor.
  • the detection unit 804 is further configured to determine that the aerosol generating device is in a suction state based on the air pressure value being greater than or equal to the set air pressure value;
  • the detection unit 804 is further configured to determine that the aerosol generating device is in a non-puffing state based on the air pressure value being less than the set air pressure value.
  • the aerosol generating device when it is detected that the air pressure in the atomization chamber is greater than or equal to the set air pressure, it is determined that the aerosol generating device is in a suction state at this time. When it is detected that the air pressure in the atomization chamber is lower than the set air pressure, it is determined that the aerosol generating device is not in a suction state at this time.
  • the aerosol generating device When the aerosol generating device is in the suction state, the negative pressure in the atomization chamber rises until it reaches the set air pressure value, then it is determined that the aerosol generating device is in the suction state.
  • the numerical range of the air pressure value By reasonably setting the numerical range of the air pressure value, the misjudgment of the suction state by the aerosol generating device can be avoided, and the accuracy of detecting the suction state can be improved.
  • the aerosol-generating device includes a trigger
  • the detection unit 804 is also used to determine that the aerosol generating device is in the suction state based on the trigger member being in the trigger state;
  • the detection unit 804 is further configured to determine that the aerosol generating device is in a non-puffing state based on the triggering member being in an untriggered state.
  • whether the aerosol generating device is in a suction state is detected by whether the aerosol generating device triggers a suction signal.
  • the aerosol generating device includes a trigger, and when the user needs to inhale the aerosol generating device, the aerosol generating device triggers a suction signal by triggering the trigger.
  • the trigger can be a button structure.
  • the user presses the button structure to keep the button pressed, that is, the trigger remains in the triggered state, and it is determined that the aerosol generating device is currently in the suction state.
  • the aerosol generating device further includes: a third control unit 808 .
  • the third control unit 808 is configured to control the microwave assembly to operate at a third power based on the temperature value in the cavity entering a third set temperature range;
  • the third power is smaller than the first power.
  • the microwave component is controlled to operate at the third power less than the first power so that the atomization chamber
  • the internal temperature is maintained within the range of the first set temperature value.
  • the microwave components are controlled to operate at a higher first power, so that the temperature in the cavity rises rapidly.
  • the microwave component is controlled to reduce the operating power to the third power, so that the temperature value in the cavity is maintained within the range of the first set temperature value.
  • the microwave component In the initial stage of the operation of the aerosol generating device, the microwave component is controlled to operate at a higher power to the first set temperature range, and then the microwave component is controlled to continue to operate at a lower power, which not only improves the resistance of the aerosol generating device to atomization
  • the preheating efficiency of the cavity also reduces the waste of energy, and avoids frequent start and stop of microwave components, prolonging the service life of microwave components.
  • the third embodiment of the present application provides an aerosol generating device 900 , including: an atomization chamber, a microwave component 902 and a control device 800 of the aerosol generating device.
  • the atomization chamber is used to accommodate the aerosol generating substrate
  • the microwave component 902 is connected with the atomization cavity, and is used to feed microwaves into the atomization cavity to heat the aerosol-generating substrate;
  • control device 800 of the aerosol generating device is connected with the microwave component 902 .
  • the control device 800 of the aerosol generating device is connected with the microwave component 902 to control the operation of the microwave component 902 .
  • the control device 800 of the aerosol generating device is selected as the control device 800 of the aerosol generating device in any embodiment of the second embodiment above, and thus has the control device 800 of the aerosol generating device in any embodiment of the second embodiment above All the beneficial technical effects of 800 will not be repeated here.
  • an aerosol generating device 1000 is provided in the fourth embodiment of the present application, including: a memory 1002, in which programs or instructions are stored; a processor 1004, which executes the programs stored in the memory;
  • the programs or instructions in 1002 are used to implement the steps of the control method for the aerosol generating device 1000 in any one of the first embodiment above. Therefore, it has all the beneficial technical effects of the control method of the aerosol generating device 1000 in any of the above-mentioned embodiments, and details will not be repeated here.
  • the aerosol generating device 1000 provided in this embodiment also includes an atomization chamber and a microwave assembly, the atomization chamber is used to accommodate the aerosol generation substrate, and the microwave assembly feeds microwaves into the atomization chamber to heat the aerosol generation substrate, so that The aerosol-generating substrate is thermally atomized.
  • the microwave component is connected to the processor 1004 , and the processor 1004 executes the control method of the aerosol generating device 1000 to control the microwave component in the aerosol generating device 1000 .
  • the fifth embodiment of the present application provides an aerosol generating device 100, including: a housing 102, an atomizing chamber 104, a microwave assembly 106, a temperature collecting device 110 and a control device 108.
  • the atomization chamber 104 is arranged in the casing 102, and is used for accommodating the aerosol generating substrate;
  • the microwave assembly 106 is connected to the atomization chamber 104, and is used to feed microwaves into the atomization chamber 104 to heat the aerosol-generating substrate;
  • the temperature acquisition device 110 is arranged in the atomization chamber 104, and is used to collect the temperature value in the atomization chamber 104;
  • the control device 108 is used to control the microwave assembly 106 to operate at the first power in response to the preheating control command, so that the temperature value in the cavity is within the first set temperature value range; detect the suction state of the aerosol generating device 100, The first power is adjusted according to the suction state.
  • the aerosol generating device 100 provided in this embodiment includes a housing 102 , an atomizing chamber 104 , a microwave assembly 106 , a temperature collecting device 110 and a control device 108 .
  • the atomization chamber 104 is opened in the housing 102, the atomization chamber 104 can accommodate the aerosol generating substrate, and the microwave component 106 can heat the aerosol generating substrate in the atomizing chamber 104, so that the aerosol generating substrate is heated Atomization produces an aerosol.
  • the temperature collection device 110 is used to collect the temperature value in the atomization chamber 104 .
  • the aerosol-generating substrate can be a solid aerosol-generating substrate or a liquid aerosol-generating substrate.
  • the aerosol generating device 100 When the aerosol generating device 100 is turned on, it receives a preheating control command, and controls the microwave component 106 to operate at the first power until the temperature value in the atomization chamber 104 enters the range of the set temperature value, so that the temperature value in the cavity Maintaining within the set temperature range can serve to preheat the aerosol-generating substrate in the atomization chamber 104 . It is detected whether the aerosol generating device 100 is in a suction state, and the first power is adjusted according to the suction state of the aerosol generating device 100 .
  • the aerosol generating device 100 By detecting whether the aerosol generating device 100 is in a suction state, and controlling the operation of the microwave assembly 106 according to the suction state of the aerosol generating device 100, the aerosol generating device 100 is in a non-puffing state.
  • the generated substrate is preheated.
  • the operating power of the microwave component 106 is increased to rapidly increase the temperature in the atomizing chamber 104 to atomize the aerosol generating substrate.
  • the operation of the microwave assembly 106 is controlled according to the suction state. Before the user inhales, the microwave assembly 106 can preheat the atomization chamber 104.
  • the microwave assembly 106 After the user starts to inhale, the microwave assembly 106 increases the operating power to make the atomization chamber 104 heats up quickly to improve the atomization efficiency of the aerosol-generating substrate. After the user stops smoking, the microwave component 106 can be controlled in time to reduce the operating power and restore the preheating state of the atomization chamber 104. Since the aerosol generating substrate is preheated before atomization, and when the aerosol generating device 100 is not inhaled, it can maintain the preheated state, avoiding the waste of electric energy and aerosol generating substrate, and realizing instant stop of pumping, While reducing energy consumption, the atomization efficiency of the aerosol-generating substrate is improved, and the degree of atomization of the aerosol-generating substrate is also improved, thereby improving user experience.
  • the operation of the microwave component 106 is controlled to keep the temperature in the cavity within the first set temperature range, so as to ensure that the aerosol generating substrate continues to be at the preset temperature. In the hot state, it reduces the time spent in the atomization process and improves the user experience.
  • the microwave component 106 is controlled to increase the first power to the second power, thereby rapidly heating the aerosol generating substrate for atomization. Since the aerosol generating device 100 is not pumping In the inhalation state, the aerosol-generating substrate is continuously preheated, thereby improving the atomization efficiency of the aerosol-generating substrate and ensuring that the aerosol-generating substrate can be fully atomized.
  • the first set temperature value range is the preheating temperature range of the aerosol-generating substrate, and the temperature value in the preheating temperature range is lower than the second set temperature value range of the aerosol-generating substrate, ensuring When the aerosol-generating device 100 is not in a suction state, the aerosol-generating substrate is not atomized and fully preheated.
  • the aerosol generating device 100 further includes: a pressure sensor 112 disposed on the casing 102 for collecting the air pressure value in the atomizing chamber 104 .
  • the aerosol generating device 100 includes a pressure sensor 112 disposed on the housing 102 , the collection end of the pressure sensor 112 communicates with the atomization chamber 104 , and the pressure sensor 112 can collect the air pressure value in the atomization chamber 104 .
  • the pressure value in the atomization chamber 104 is collected by the pressure sensor 112, and the numerical relationship between the pressure value in the atomization chamber 104 and the set air pressure value can reflect the change of the pressure value in the atomization chamber 104, thereby determining the aerosol generating device 100 Whether it is in a suction state. Because the aerosol generating device 100 is in the suction state, the pressure value in the atomization chamber 104 changes, so according to the numerical relationship between the air pressure value in the atomization chamber 104 and the set air pressure value, it is possible to determine whether the aerosol generating device 100 is in suction mode or not. The status is accurately judged.
  • Whether the aerosol generating device 100 is in a suction state is detected by whether the aerosol generating device 100 triggers a suction signal.
  • the collected air pressure value in the atomization chamber 104 is greater than or equal to the set air pressure value, it is determined that the aerosol generating device 100 triggers the suction signal.
  • the aerosol generating device 100 further includes a gas flow channel.
  • gas flows from the outside of the aerosol generating device 100 through the gas flow channel into the atomization chamber 104, through the mist
  • the substrate flows out of the aerosol generating device 100.
  • the pressure sensor 112 is disposed outside the atomization chamber 104, and the collection end of the pressure sensor 112 is disposed in the gas flow channel.
  • the pressure sensor 112 is integrally disposed outside the housing 102 of the aerosol generating device 100 , so as to prevent the influence of the operation of the microwave component 106 on the pressure sensor 112 , resulting in reduced accuracy of the data collected by the pressure sensor 112 .
  • the microwave component 106 includes a microwave generating device and/or an electric heating device.
  • the microwave assembly 106 is disposed outside the casing 102 of the aerosol generating device 100, the aerosol generating device 100 also includes a resonant cavity 114, and the microwave component 106 can feed microwaves into the resonant cavity.
  • the aerosol-generating substrate in the atomization chamber 104 is heated and atomized.
  • the microwave component 106 is a microwave component 106
  • the aerosol generating device 100 includes: a resonant cavity 114 and a microwave component 106 .
  • the resonant cavity 114 is arranged in the casing 102;
  • the microwave component 106 is disposed on the housing 102 , and the microwave component 106 is used to feed microwaves into the resonant cavity 114 .
  • the microwave assembly 106 is a microwave assembly 106 , and the microwave assembly 106 is disposed on the casing 102 .
  • a resonant cavity 114 is provided inside the housing 102 , and the resonant cavity 114 is used to transmit microwaves to the position of the atomizing cavity 104 .
  • the microwave output end of the microwave assembly 106 is arranged in the resonant cavity 114, and the microwave assembly 106 feeds microwaves into the resonant cavity 114 through the microwave output end, and the microwave is transmitted to the atomizing cavity 104 through the resonant cavity 114, so that the atomizing cavity 104
  • the aerosol-generating substrate inside is heated and atomized.
  • the heating of the aerosol-generating substrate by means of microwaves has higher heating efficiency and better atomization effect of the aerosol-generating substrate, compared with the method of heating by an electric heating device in the prior art.
  • the aerosol generating device 100 includes: an installation part 116 and a resonance column 118 .
  • the installation part 116 is arranged on the housing 102, at least a part of the installation part 116 is located in the resonant cavity 114, and the atomization chamber 104 is arranged on the installation part 116;
  • the resonant post 118 is disposed in the resonant cavity 114 , the first end of the resonant post 118 is connected to the bottom wall of the resonant cavity 114 , and the second end of the resonant post 118 is opposite to the installation part 116 .
  • the aerosol generating device 100 includes a mounting portion 116 and a resonant column 118 .
  • the installation part 116 is disposed in the casing 102
  • the atomization chamber 104 is located in the installation part 116
  • the aerosol generating substrate is disposed in the atomization chamber 104 of the installation part 116 .
  • the resonant column 118 is used for resonant conduction of microwaves.
  • the first end of the resonant column 118 is connected to the bottom wall of the resonant cavity 114, and the second end of the resonant column 118 is arranged opposite to the installation part 116. Conducted to the second end, thereby heating the aerosol-generating substrate in the atomizing chamber 104 of the installation part 116 by microwaves.
  • the atomization chamber 104 and the resonance chamber 114 are isolated from each other by the installation part 116, which can prevent the liquid waste or fixed waste generated after the atomization of the aerosol-generating matrix in the atomization chamber 104 from entering into the resonance chamber 114, thereby avoiding the waste material from entering into the resonance chamber 114.
  • the inner walls of the resonant cavity 114 and the resonant pillar 118 are made of conductive materials.
  • Metal material is optional. For example: gold, copper, silver.
  • the inner wall of the resonant cavity 114 and the outer wall of the resonant column 118 are provided with a conductive coating, and the conductive coating is selected as a metal coating, such as a gold-plated layer, a copper-plated layer, or a silver-plated layer.
  • the resonant cavity 114 and the resonant column 118 are arranged with a metal with high stability and good electrical conductivity, which not only prevents microwave leakage, but also prevents the inner wall of the resonant cavity 114 and the resonant column 118 from rusting.
  • the part of the installation part 116 inside the resonant cavity 114 is made of low dielectric loss material, such as PTFE material (polytetrafluoroethylene material), glass material, ceramic material.
  • the microwave can be conducted to the atomizing chamber 104 in the installation part 116, so as to heat the aerosol generating substrate in the atomizing chamber 104 with microwaves, so as to generate aerosol.
  • the mounting portion 116 is detachably connected to the housing 102 .
  • the atomization chamber 104 for accommodating the aerosol-generating substrate is disposed in the installation part 116, and the atomization chamber 104 can be disassembled and washed separately by disassembling the installation part 116, which improves user experience.
  • the axis of the atomization chamber 104 is coaxial with the axis of the resonant column 118 .
  • the atomization chamber 104 is arranged coaxially with the resonant column 118, which can ensure that the microwave transmitted to the atomization chamber 104 through the resonant column 118 can be transmitted to the middle of the atomization chamber 104, which improves the effect of the microwave on the mist.
  • the uniform heating of the aerosol-generating substrate in the atomizing chamber 104 avoids uneven heating of the aerosol-generating substrate caused by the concentration of microwaves in the atomizing chamber 104, and further improves the atomization effect of the aerosol-generating substrate.
  • the resonant column 118 is spaced apart from the installation part 116 .
  • the microwave assembly 106 includes: a microwave introduction part 1062 and a microwave emission source 1064 .
  • the microwave introduction part 1062 is arranged on the side wall of the housing 102, and the microwave introduction part 1062 communicates with the resonant cavity 114;
  • the microwave emission source 1064 is connected to the microwave introduction part 1062, and the microwave output by the microwave emission source 1064 is fed into the resonant cavity 114 through the microwave introduction part 1062, so that the microwave is transmitted along the direction from the first end of the resonant column 118 to the second end of the resonant column 118 .
  • the microwave assembly 106 includes a microwave emission source 1064 and a microwave introduction part 1062 .
  • the microwave emission source 1064 is used to generate microwaves
  • the microwave introduction portion 1062 provided on the side wall of the housing 102 is used to transport the microwaves generated by the microwave emission source 1064 into the resonant cavity 114 .
  • the microwave can be conducted along the direction from the first end of the resonant column 118 to the second end of the resonant column 118, so that the microwave can directly act on the aerosol in the atomizing cavity 104 to generate Substrate, to improve the atomization effect of the aerosol generating substrate.
  • the microwave introduction part 1062 includes: a first introduction part 10622 and a second introduction part 10624 .
  • the first introduction part 10622 is arranged on the side wall of the casing 102, and the first introduction part 10622 is connected with the microwave emission source 1064;
  • the first end of the second introduction part 10624 is connected with the first introduction part 10622 , the second introduction part 10624 is located in the resonance cavity 114 , and the second end of the second introduction part 10624 faces the bottom wall of the resonance cavity 114 .
  • the microwave introduction part 1062 includes a first introduction part 10622 and a second introduction part 10624, the first introduction part 10622 penetrates the side wall of the housing 102, and the first end of the first introduction part 10622 is connected to the microwave emission
  • the source 1064 is connected, so that the microwave generated by the microwave emission source 1064 enters the microwave introduction part 1062 through the first end of the first introduction part 10622 .
  • the second end of the first introduction part 10622 is connected with the first end of the second introduction part 10624, and the second end of the second introduction part 10624 faces the bottom wall of the resonant cavity 114.
  • the microwave is conducted through the first introduction part 10622 and the second introduction part 10624, the microwave is conducted from the bottom wall of the resonant cavity 114 to the atomization chamber 104, so as to heat and atomize the aerosol-generating substrate in the atomization chamber 104 by microwave.
  • the first introduction part is arranged coaxially with the microwave output end of the microwave emission source 1064
  • the second introduction part has a horizontal introduction part and a vertical introduction part
  • the axis of the horizontal introduction part is parallel to the bottom wall of the resonant cavity 114
  • the vertical introduction part The axis of the part is perpendicular to the bottom wall of the resonant cavity 114 .
  • the horizontal introduction part is connected with the vertical introduction part through the bending part, and the horizontal introduction part is arranged coaxially with the first introduction part.
  • the aerosol generating device 100 further includes: a recessed portion 120 .
  • the concave portion 120 is disposed on the bottom wall of the resonant cavity 114 , and the second end of the second introduction portion is located in the concave portion 120 .
  • the aerosol generating device 100 further includes a recessed part 120, the recessed part 120 is arranged on the bottom wall of the resonant cavity 114, and the recessed part 120 is arranged opposite to the second end of the second introduction part, and the second end of the second introduction part The second end extends into the concave portion 120 , so that the microwave entering the resonant cavity 114 can be conducted along the direction from the second end to the first end of the resonant column 118 , reducing energy loss during microwave transmission.
  • the microwave introduction part 1062 includes a third introduction part 10626 .
  • the third introduction part 10626 is disposed on the side wall of the housing 102 , the first end of the third introduction part 10626 is connected to the microwave emission source 1064 , and the second end of the third introduction part 10626 faces the resonance column 118 .
  • the microwave introduction part 1062 also includes a third introduction part 10626, the third introduction part 10626 is arranged coaxially with the microwave output end of the microwave emission source 1064, and the first end of the third introduction part 10626 is connected to the microwave emission source 1064 The second end of the third introduction part 10626 faces the resonant column 118.
  • the third introduction part 10626 coaxially with the microwave output end of the microwave emission source 1064, and the third introduction part 10626 is connected with the resonant column 118, the The microwaves are transmitted to the resonant column 118 , so that all the microwaves output by the microwave emission source 1064 enter the resonant cavity 114 .
  • the sixth embodiment of the present application provides a readable storage medium, on which a program is stored, and when the program is executed by a processor, the control method of the aerosol generating device as in any of the above-mentioned embodiments is realized, thus having the above-mentioned All the beneficial technical effects of the control method of the aerosol generating device in any embodiment.
  • the readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • It can be a fixed connection between multiple objects, or a detachable connection between multiple objects, or an integral connection; it can be a direct connection between multiple objects, or a passing connection between multiple objects Intermediaries are indirectly connected.

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种气溶胶产生装置(100)、控制方法、控制装置和(108)可读存储介质。其中,气溶胶产生装置(100)的控制方法包括步骤:响应于预热控制指令,控制微波组件(902)以第一功率运行,以使腔内温度值处于第一设定温度值范围内;检测气溶胶产生装置(100)的抽吸状态,基于气溶胶产生装置处于抽吸状态,控制微波组件(902)以第二功率运行,以使腔内温度值处于第二设定温度值范围内;其中,第二功率大于第一功率。通过对气溶胶产生装置(100)是否处于抽吸状态进行检测,根据抽吸状态对微波组件的运行进行控制,避免了电能以及气溶胶产生基质的浪费,减少了能耗的同时提高气溶胶产生基质的雾化效率和雾化程度,进而提高了用户的使用体验。

Description

气溶胶产生装置、控制方法、控制装置和可读存储介质 技术领域
本申请属于电子雾化技术领域,具体而言,涉及一种气溶胶产生装置、控制方法、控制装置和可读存储介质。
背景技术
加热不燃烧(Heat Not Burning,HNB)装置,是一种用于通过加热但不使气溶胶产生基质(经过处理的植物叶类制品)燃烧的方式的电子设备。微波组件通过高温加热到气溶胶产生基质可以产生气溶胶但是却不足以燃烧的温度,能在不燃烧的前提下,让气溶胶产生基质产生用户所需要的气溶胶。
目前市场上的加热不燃烧器具主要采用电阻加热方式,即利用中心发热片或发热针等从气溶胶产生基质中心插入至气溶胶生成基质内部进行加热。这种器具在使用前需预热等待时间长,不能抽停自由,气溶胶生成基质碳化不均匀,导致气溶胶生成基质烘烤不充分,利用率低;其次,HNB器具发热片容易在气溶胶产生基质提取器和发热片基座中产生污垢,难清洁;会使接触发热体的局部气溶胶产生基质温度过高、发生部分裂解,释放出对人体有害的物质。因此微波加热技术逐渐替代电阻加热方式成为新的加热方式。微波加热技术具有高效、及时、选择性及加热无延缓性的特点,只对特定介电特性的物质有加热效果。采用微波加热雾化的应用优势有:a、微波加热为辐射加热,非热传导,可实现即抽即停;b、无加热片,因此不存在断片、清洁发热片的问题;c、气溶胶产生基质利用率高,口感一致性高,口感更接近香烟。
但是现有微波加热的HNB装置加热功能单一,功耗大,造成了电能以及气溶胶基质的浪费。
申请内容
本申请旨在解决现有技术或相关技术中存在的技术问题之一。
有鉴于此,第一方面,本申请实施例提出一种气溶胶产生装置的控制方法,气溶胶产生装置包括雾化腔、微波组件和温度采集装置,温度采集装置用于采集雾化腔的腔内温度值,雾化腔用于容置气溶胶产生基质,微波组件向雾化腔内馈入微波加热气溶胶产生基质,控制方法包括:响应于预热控制指令,控制微波组件以第一功率运行,以使腔内温度值处于第一设定温度值范围内;检测气溶胶产生装置的抽吸状态,基于气溶胶产生装置处于抽吸状态,控制微波组件以第二功率运行,以使腔内温度值处于第二设定温度值范围内;其中,第二功率大于第一功率。
本申请提供气溶胶产生装置的控制方法用于气溶胶产生装置。气溶胶产生装置包括雾化腔、微波组件和温度采集装置。雾化腔用于容置气溶胶产生基质,微波组件向雾化腔内馈入微波加热气溶胶产生基质,以使雾化腔内的气溶胶产生基质受热产生气溶胶。其中,气溶胶产生基质可为固体气溶胶产生基质或液态气溶胶产生基质。
气溶胶产生装置处于开机状态下,接收到预热控制指令,控制微波组件以第一功率运行,直至雾化腔的腔内温度值进入设定温度值范围内,使腔内温度值维持在设定温度值范围内,能够起到对雾化腔内的气溶胶产生基质进行预热的作用。检测气溶胶产生装置是否处于抽吸状态,根据气溶胶产生装置的抽吸状态对微波组件的功率进行调整。
在气溶胶产生装置处于对气溶胶产生基质预热的阶段,检测到气溶胶产生装置处于抽吸状态下,调整气溶胶产生装置的运行功率从第一功率调整至第二功率,第二功率大于第一功率。在预热阶段,检测到气溶胶产生装置处于抽吸状态,通过提高微波组件的运行功率,使雾化腔内温度保持在第二设定温度值范围内,使气溶胶产生基质快速升温至第二设定温度值范围内,实现了对气溶胶产生基质的快速加热雾化。在检测到气溶胶产生装置未处于抽吸状态下,则继续控制微波组件对雾化腔进行预热,使雾化 腔内温度保持在第一设定温度范围内。
本申请通过对气溶胶产生装置是否处于抽吸状态进行检测,并根据气溶胶产生装置的抽吸状态对微波组件的运行进行控制,在气溶胶产生装置处于未抽吸状态下对气溶胶产生基质进行预热,使雾化腔内温度保持在第一设定温度值范围内;在气溶胶产生装置处于抽吸状态下,提高微波组件的运行功率,使雾化腔内温度保持在第二设定温度值范围内,使雾化腔内温度快速升高,对气溶胶产生基质进行雾化。根据抽吸状态对微波组件的运行进行控制,在用户抽吸之前,微波组件向雾化腔内馈入微波加热气溶胶产生基质,在用户开始抽吸后,微波组件提高运行功率,使雾化腔快速升温,提高气溶胶产生基质的雾化效率,在用户停止抽吸后,能够及时控制微波组件降低运行功率,恢复对雾化腔的预热状态。由于气溶胶产生基质在雾化前完成了预热,并且在气溶胶产生装置未被抽吸时,能够保持预热状态避免了电能以及气溶胶产生基质的浪费,实现了即抽即停,减少了能耗的同时提高气溶胶产生基质的雾化效率,还提高了气溶胶产生基质的雾化程度,进而提高了用户的使用体验。
具体地,在检测到气溶胶产生装置处于未处于抽吸状态下,控制微波组件运行,使腔内温度值继续保持在第一设定温度值范围内,保证气溶胶产生基质持续处于预热状态下,减少在雾化过程中的用时,提高用户的使用体验。当检测到气溶胶产生装置处于抽吸状态下,控制微波组件的运行功率升高,使雾化腔内温度保持在第二设定温度值范围内,从而对气溶胶产生基质进行快速加热进行雾化,由于气溶胶产生装置处于未抽吸状态时,持续对气溶胶产生基质进行预热,因而提高了气溶胶产生基质的雾化效率,还保证了气溶胶产生基质能够充分被雾化。
值得说明的是,第一设定温度值范围为气溶胶产生基质的预热温度范围,且预热温度范围中的温度值低于气溶胶产生基质的第二设定温度值范围内,保证了在气溶胶产生装置未处于抽吸状态下时,气溶胶产生基质不被雾化且充分预热。
另外,根据本申请提供的上述技术方案中的气溶胶产生装置的控制方法,还可以具有如下附加技术特征:
在一种可能的设计中,气溶胶产生装置还包括压力传感器,压力传感器用于采集雾化腔内的气压值,检测气溶胶产生装置的抽吸状态的步骤,具体包括:采集雾化腔内气压值;根据气压值与设定气压值的数值关系,确定气溶胶产生装置的抽吸状态。
在该设计中,气溶胶产生装置包括压力传感器,压力传感器的采集端与雾化腔相连,压力传感器能够采集雾化腔内的气压值。
采集雾化腔内的压力值,雾化腔内的压力值与设定气压值的数值关系能够反映出雾化腔内的压力值的变化,从而确定气溶胶产生装置是否处于抽吸状态。由于气溶胶产生装置处于抽吸状态,导致雾化腔内压力值变化,因而根据雾化腔内的气压值与设定气压值的数值关系能够对气溶胶产生装置是否处于抽吸状态进行准确判断。
通过气溶胶产生装置是否触发抽吸信号,对气溶胶产生装置是否处于抽吸状态进行检测。当采集到的雾化腔内的气压值大于等于设定气压值,则判定气溶胶产生装置触发抽吸信号。
在一些实施例中,气溶胶产生装置还包括气体流道,在气溶胶产生装置处于抽吸状态下,气体从气溶胶产生装置外流经气体流道进入雾化腔内,经由雾化基体流动至气溶胶产生装置外。压力传感器设置于雾化腔之外,压力传感器的采集端设置于气体流道中。
在这些实施例中,压力传感器整体设置于气溶胶产生装置的壳体之外,避免微波组件运行对压力传感器产生影响,导致压力传感器采集到的数据准确性降低。
在一种可能的设计中,根据气压值与设定气压值的数值关系,确定气溶胶产生装置的抽吸状态的步骤,具体包括:基于气压值大于等于设定气压值,确定气溶胶产生装置处于抽吸状态;基于气压值小于设定气压值,确定气溶胶产生装置处于未抽吸状态。
在该设计中,当检测到雾化腔内的气压值大于等于设定气压值,则判定此时气溶胶产生装置处于抽吸状态。当检测到雾化腔内的气压值小于设定气压值,则判定此时气溶胶产生装置并未处于抽吸状态。
气溶胶产生装置处于抽吸状态时,雾化腔内的负压升高,直至升高至设定气压值,则判定气溶胶产生装置处于抽吸状态。通过合理设定气压值的数值范围,能够避免气溶胶产生装置对抽吸状态的误判,提高检测抽吸状态的准确性。
在一种可能的设计中,气溶胶产生装置包括触发件,检测气溶胶产生装置的抽吸状态的步骤,具体包括:基于触发件处于触发状态,确定气溶胶产生装置处于抽吸状态;基于触发件处于未触发状态,确定气溶胶产生装置处于未抽吸状态。
在该设计中,通过气溶胶产生装置是否触发抽吸信号,对气溶胶产生装置是否处于抽吸状态进行检测。气溶胶产生装置包括触发件,用户需要对气溶胶产生装置进行抽吸时,通过对触发件进行触发,从而使气溶胶产生装置触发抽吸信号。
当检测到触发件处于触发状态,则判定气溶胶产生装置当前处于抽吸状态。触发件可选为按钮结构,用户在使用气溶胶产生装置的过程中,按压按钮结构使按钮保持按压状态,即触发件持续保持触发状态,则判定气溶胶产生装置当前处于抽吸状态下。
在一种可能的设计中,气溶胶产生装置包括触发件,检测气溶胶产生装置的抽吸状态的步骤,具体包括:基于触发件处于触发状态,即使触发件的触发时长,触发时长达到设定时长,确定气溶胶产生装置处于抽吸状态。
在该设计中,在检测到触发件的触发时长达到设定时长,判定气溶胶产生装置处于抽吸状态,避免了用户误触触发件导致的微波组件误加热的情况的发生。
在一种可能的设计中,控制微波组件以第一功率运行的步骤之后,检 测气溶胶产生装置的抽吸状态的步骤之前,还包括:基于腔内温度值进入第三设定温度值范围,控制微波组件以第三功率运行;其中,第三功率小于第一功率。
在该设计中,在控制微波组件以第一功率运行,使腔内温度值达到设定温度值范围内,控制微波组件以小于第一功率的第三功率运行,以使雾化腔内温度维持在第一设定温度值范围内。在预热开始阶段,控制微波组件以较高第一功率运行,使腔内温度值快速升高,当腔内温度值进入设定温度值范围,则判定腔内温度值已经达到所需的预热温度值,此时控制微波组件降低运行功率至第三功率,使腔内温度值维持第一设定温度值范围内。在气溶胶产生装置运行的初始阶段,控制微波组件先以较大功率运行至设定温度值范围内,再控制微波组件以较小功率持续运行,不仅提高了气溶胶产生装置对雾化腔的预热效率,还减少了能源的浪费,并且避免了频繁启停微波组件,延长了微波组件的使用寿命。
在一种可能的设计中,控制方法还包括:计时气溶胶产生装置的待机时长,基于待机时长达到设定时长,控制气溶胶产生装置关机。
在该设计中,气溶胶产生装置响应于开机指令,控制气溶胶产生装置处于待机状态,当气溶胶产生装置进入待机状态后,对气溶胶产生装置的待机时长进行计时。当检测到待机时长达到设定时长,即在气溶胶产生装置开机后的设定时长内未接收到预热指令和/或加热指令,则判定用户当前不需要使用气溶胶产生装置,控制气溶胶产生装置关机,提高了气溶胶产生装置的续航时长,避免了用户误触导致的气溶胶产生装置长时间待机的情况发生。
在这些实施例中,微波组件设置于气溶胶产生装置的壳体外部,气溶胶产生装置还包括谐振腔,微波组件能够将微波馈入到谐振腔中,以对雾化腔中的气溶胶产生基质进行加热雾化。
第二方面,本申请实施例提出了一种气溶胶产生装置的控制装置,气溶胶产生装置包括雾化腔、微波组件和温度采集装置,温度采集装置用于 采集雾化腔的腔内温度值,雾化腔用于容置气溶胶产生基质,微波组件向雾化腔内馈入微波加热气溶胶产生基质,控制装置包括:第一控制单元,用于响应于预热控制指令,控制微波组件以第一功率运行,以使腔内温度值处于设定温度值范围内;检测单元,用于检测气溶胶产生装置的抽吸状态;第二控制单元,用于基于气溶胶产生装置处于抽吸状态,控制微波组件以第二功率运行,使雾化腔内温度保持在第二设定温度值范围内;其中,第二功率大于第一功率。
本申请提供气溶胶产生装置的控制装置用于气溶胶产生装置。气溶胶产生装置包括雾化腔、微波组件和温度采集装置。雾化腔用于容置气溶胶产生基质,微波组件向雾化腔内馈入微波加热气溶胶产生基质,以使雾化腔内的气溶胶产生基质受热产生气溶胶。其中,气溶胶产生基质可为固体气溶胶产生基质或液态气溶胶产生基质。
气溶胶产生装置处于开机状态下,控制单元接收到预热控制指令,控制微波组件以第一功率运行,直至雾化腔的腔内温度值进入第一设定温度值范围内,使腔内温度值维持在第一设定温度值范围内,能够起到对雾化腔内的气溶胶产生基质进行预热的作用。调整单元检测气溶胶产生装置是否处于抽吸状态,根据气溶胶产生装置的抽吸状态对微波组件的功率进行调整。
在气溶胶产生装置处于对气溶胶产生基质预热的阶段,检测到气溶胶产生装置处于抽吸状态下,调整气溶胶产生装置的运行功率从第一功率调整至第二功率,第二功率大于第一功率。在预热阶段,检测到气溶胶产生装置处于抽吸状态,通过提高微波组件的运行功率,使气溶胶产生基质快速升温至第二设定温度值范围内,实现了对气溶胶产生基质的快速加热雾化。在检测到气溶胶产生装置未处于抽吸状态下,则继续控制微波组件对雾化腔进行预热,使雾化腔内温度保持在第一设定温度范围内。
本申请通过对气溶胶产生装置是否处于抽吸状态进行检测,并根据气溶胶产生装置的抽吸状态对微波组件的运行进行控制,在气溶胶产生装置 处于未抽吸状态下对气溶胶产生基质进行预热,在气溶胶产生装置处于抽吸状态下,提高微波组件的运行功率,使雾化腔内温度快速升高,对气溶胶产生基质进行雾化。根据抽吸状态对微波组件的运行进行控制,在用户抽吸之前,微波组件能够对雾化腔进行预热,在用户开始抽吸后,微波组件提高运行功率,使雾化腔快速升温,提高气溶胶产生基质的雾化效率,在用户停止抽吸后,能够及时控制微波组件降低运行功率,恢复对雾化腔的预热状态。由于气溶胶产生基质在雾化前完成了预热,并且在气溶胶产生装置未被抽吸时,能够保持预热状态避免了电能以及气溶胶产生基质的浪费,实现了即抽即停,减少了能耗的同时提高气溶胶产生基质的雾化效率,还提高了气溶胶产生基质的雾化程度,进而提高了用户的使用体验。
具体地,在检测到气溶胶产生装置处于未处于抽吸状态下,控制微波组件运行,使腔内温度值继续保持在第一设定温度值范围内,保证气溶胶产生基质持续处于预热状态下,减少在雾化过程中的用时,提高用户的使用体验。当检测到气溶胶产生装置处于抽吸状态下,控制微波组件升高第一功率,从而对气溶胶产生基质进行快速加热进行雾化,由于气溶胶产生装置处于未抽吸状态时,持续对气溶胶产生基质进行预热,因而提高了气溶胶产生基质的雾化效率,还保证了气溶胶产生基质能够充分被雾化。
值得说明的是,第一设定温度值范围为气溶胶产生基质的预热温度范围,且预热温度范围中的温度值低于气溶胶产生基质的第二设定温度值范围内,保证了在气溶胶产生装置未处于抽吸状态下时,气溶胶产生基质不被雾化且充分预热。
在一种可能的设计中,气溶胶产生装置还包括压力传感器,压力传感器用于采集雾化腔内的气压值;检测单元还用于采集雾化腔内气压值;检测单元还用于根据气压值与设定气压值的数值关系,确定气溶胶产生装置的抽吸状态。
在该设计中,气溶胶产生装置包括压力传感器,压力传感器的采集端与雾化腔相连,压力传感器能够采集雾化腔内的气压值。
采集雾化腔内的压力值,雾化腔内的压力值与设定气压值的数值关系能够反映出雾化腔内的压力值的变化,从而确定气溶胶产生装置是否处于抽吸状态。由于气溶胶产生装置处于抽吸状态,导致雾化腔内压力值变化,因而根据雾化腔内的气压值与设定气压值的数值关系能够对气溶胶产生装置是否处于抽吸状态进行准确判断。
通过气溶胶产生装置是否触发抽吸信号,对气溶胶产生装置是否处于抽吸状态进行检测。当采集到的雾化腔内的气压值大于等于设定气压值,则判定气溶胶产生装置触发抽吸信号。
在一些实施例中,气溶胶产生装置还包括气体流道,在气溶胶产生装置处于抽吸状态下,气体从气溶胶产生装置外流经气体流道进入雾化腔内,经由雾化基体流动至气溶胶产生装置外。压力传感器设置于雾化腔之外,压力传感器的采集端设置于气体流道中。
在这些实施例中,压力传感器整体设置于气溶胶产生装置的壳体之外,避免微波组件运行对压力传感器产生影响,导致压力传感器采集到的数据准确性降低。
在一种可能的设计中,检测单元还用于基于气压值大于等于设定气压值,确定气溶胶产生装置处于抽吸状态;检测单元还用于基于气压值小于设定气压值,确定气溶胶产生装置处于未抽吸状态。
在该设计中,当检测到雾化腔内的气压值大于等于设定气压值,则判定此时气溶胶产生装置处于抽吸状态。当检测到雾化腔内的气压值小于设定气压值,则判定此时气溶胶产生装置并未处于抽吸状态。
气溶胶产生装置处于抽吸状态时,雾化腔内的负压升高,直至升高至设定气压值,则判定气溶胶产生装置处于抽吸状态。通过合理设定气压值的数值范围,能够避免气溶胶产生装置对抽吸状态的误判,提高检测抽吸状态的准确性。
在一种可能的设计中,气溶胶产生装置包括触发件;检测单元还用于基于触发件处于触发状态,确定气溶胶产生装置处于抽吸状态;检测单元 还用于基于触发件处于未触发状态,确定气溶胶产生装置处于未抽吸状态。
在该设计中,通过气溶胶产生装置是否触发抽吸信号,对气溶胶产生装置是否处于抽吸状态进行检测。气溶胶产生装置包括触发件,用户需要对气溶胶产生装置进行抽吸时,通过对触发件进行触发,从而使气溶胶产生装置触发抽吸信号。
当检测到触发件处于触发状态,则判定气溶胶产生装置当前处于抽吸状态。触发件可选为按钮结构,用户在使用气溶胶产生装置的过程中,按压按钮结构使按钮保持按压状态,即触发件持续保持触发状态,则判定气溶胶产生装置当前处于抽吸状态下。
在一种可能的设计中,气溶胶产生装置还包括:第三控制单元,第三控制单元用于基于腔内温度值进入设定温度值范围,控制微波组件以第三功率运行;其中,第三功率小于第一功率。
在该设计中,在控制微波组件以第一功率运行,使腔内温度值达到设定温度值范围内,控制微波组件以小于第一功率的第三功率运行,以使雾化腔内温度维持在第一设定温度值范围内。在预热开始阶段,控制微波组件以较高第一功率运行,使腔内温度值快速升高,当腔内温度值进入设定温度值范围,则判定腔内温度值已经达到所需的预热温度值,此时控制微波组件降低运行功率至第三功率,使腔内温度值维持在第一设定温度值范围内。在气溶胶产生装置运行的初始阶段,控制微波组件先以较大功率运行至设定温度值范围内,再控制微波组件以较小功率持续运行,不仅提高了气溶胶产生装置对雾化腔的预热效率,还减少了能源的浪费,并且避免了频繁启停微波组件,延长了微波组件的使用寿命。
第三方面,本申请实施例提出了一种气溶胶产生装置,包括:雾化腔,用于容置气溶胶产生基质;微波组件,向雾化腔内馈入微波加热气溶胶产生基质;如上述第二方面的任一可能设计中气溶胶产生装置的控制装置,气溶胶产生装置的控制装置与微波组件相连。
气溶胶产生装置的控制装置与微波组件相连,从而对微波组件的运行 进行控制。气溶胶产生装置的控制装置选为上述第二方面的任一可能设计中的气溶胶产生装置的控制装置,因而具有上述任一可能设计中的气溶胶产生装置的控制装置的全部有益技术效果,在此不再做过多赘述。
第四方面,本申请实施例提出了一种气溶胶产生装置,包括:存储器,存储器中存储有程序或指令;处理器,处理器执行存储在存储器中的程序或指令以实现如上述第一方面中任一可能设计中的气溶胶产生装置的控制方法的步骤。因而具有上述第一方面任一可能设计中的气溶胶产生装置的控制方法的全部有益技术效果,在此不再做过多赘述。
本申请提供的气溶胶产生装置还包括雾化腔和微波组件,雾化腔用于容置气溶胶产生基质,微波组件向雾化腔内馈入微波,使气溶胶产生基质受热雾化。微波组件与处理器相连,处理器执行气溶胶产生装置的控制方法以对气溶胶产生装置中的微波组件进行控制。
第五方面,本申请实施例提出了一种气溶胶产生装置,包括:壳体;雾化腔,设置于壳体内,用于容置气溶胶产生基质;微波组件,向雾化腔内馈入微波加热气溶胶产生基质;温度采集装置,设置于雾化腔,用于采集雾化腔的腔内温度值;控制装置,用于响应于预热控制指令,控制微波组件以第一功率运行,以使腔内温度值处于设定温度值范围内;检测气溶胶产生装置的抽吸状态,根据抽吸状态对第一功率进行调整。
本申请提供的气溶胶产生装置包括壳体、雾化腔、微波组件、温度采集装置和控制装置。雾化腔开设于壳体内,雾化腔能够对气溶胶产生基质进行容置,微波组件能够对雾化腔内的气溶胶产生基质进行加热,从而使气溶胶产生基质受热雾化,产生气溶胶。温度采集装置用于采集雾化腔的腔内温度值。其中,气溶胶产生基质可为固体气溶胶产生基质或液态气溶胶产生基质。
气溶胶产生装置处于开机状态下,接收到预热控制指令,控制微波组件以第一功率运行,直至雾化腔的腔内温度值进入设定温度值范围内,使腔内温度值维持在设定温度值范围内,能够起到对雾化腔内的气溶胶产生 基质进行预热的作用。检测气溶胶产生装置是否处于抽吸状态,根据气溶胶产生装置的抽吸状态对第一功率进行调整。
本申请通过对气溶胶产生装置是否处于抽吸状态进行检测,并根据气溶胶产生装置的抽吸状态对微波组件的运行进行控制,在气溶胶产生装置处于未抽吸状态下对气溶胶产生基质进行预热,在气溶胶产生装置处于抽吸状态下,提高微波组件的运行功率,使雾化腔内温度快速升高,对气溶胶产生基质进行雾化。根据抽吸状态对微波组件的运行进行控制,在用户抽吸之前,微波组件能够对雾化腔进行预热,在用户开始抽吸后,微波组件提高运行功率,使雾化腔快速升温,提高气溶胶产生基质的雾化效率,在用户停止抽吸后,能够及时控制微波组件降低运行功率,恢复对雾化腔的预热状态。由于气溶胶产生基质在雾化前完成了预热,并且在气溶胶产生装置未被抽吸时,能够保持预热状态避免了电能以及气溶胶产生基质的浪费,实现了即抽即停,减少了能耗的同时提高气溶胶产生基质的雾化效率,还提高了气溶胶产生基质的雾化程度,进而提高了用户的使用体验。
具体地,在检测到气溶胶产生装置处于未处于抽吸状态下,控制微波组件运行,使腔内温度值继续保持在第一设定温度值范围内,保证气溶胶产生基质持续处于预热状态下,减少在雾化过程中的用时,提高用户的使用体验。当检测到气溶胶产生装置处于抽吸状态下,控制微波组件升高第一功率,从而对气溶胶产生基质进行快速加热进行雾化,由于气溶胶产生装置处于未抽吸状态时,持续对气溶胶产生基质进行预热,因而提高了气溶胶产生基质的雾化效率,还保证了气溶胶产生基质能够充分被雾化。
值得说明的使,设定温度值范围为气溶胶产生基质的预热温度范围,且预热温度范围中的温度值低于气溶胶产生基质的第二设定温度值范围内。保证了在气溶胶产生装置未处于抽吸状态下时,气溶胶产生基质不被雾化且充分预热。
另外,根据本申请提供的上述技术方案中的气溶胶产生装置,还可以具有如下附加技术特征:
在一种可能的设计中,气溶胶产生装置还包括:压力传感器,设置于壳体,用于采集雾化腔内的气压值。
在该设计中,气溶胶产生装置包括设置于壳体的压力传感器,压力传感器的采集端于雾化腔相连通,压力传感器能够采集雾化腔内的气压值。
通过压力传感器采集雾化腔内的压力值,雾化腔内的压力值与设定气压值的数值关系能够反映出雾化腔内的压力值的变化,从而确定气溶胶产生装置是否处于抽吸状态。由于气溶胶产生装置处于抽吸状态,导致雾化腔内压力值变化,因而根据雾化腔内的气压值与设定气压值的数值关系能够对气溶胶产生装置是否处于抽吸状态进行准确判断。
通过气溶胶产生装置是否触发抽吸信号,对气溶胶产生装置是否处于抽吸状态进行检测。当采集到的雾化腔内的气压值大于等于设定气压值,则判定气溶胶产生装置触发抽吸信号。
在一些实施例中,气溶胶产生装置还包括气体流道,在气溶胶产生装置处于抽吸状态下,气体从气溶胶产生装置外流经气体流道进入雾化腔内,经由雾化基体流动至气溶胶产生装置外。压力传感器设置于雾化腔之外,压力传感器的采集端设置于气体流道中。
在这些实施例中,压力传感器整体设置于气溶胶产生装置的壳体之外,避免微波组件运行对压力传感器产生影响,导致压力传感器采集到的数据准确性降低。
在一种可能的设计中,微波组件包括微波发生装置和/或电热装置。
在一些实施例中,微波组件包括微波组件。
在这些实施例中,微波组件设置于气溶胶产生装置的壳体外部,气溶胶产生装置还包括谐振腔,微波组件能够将微波馈入到谐振腔中,以对雾化腔中的气溶胶产生基质进行加热雾化。
在一些实施例中,微波组件包括电热装置。
在这些实施例中,电热装置设置于雾化腔内,电热装置与气溶胶产生基质相接触,通过热传导的方式对气溶胶产生基质进行电加热雾化。
在一种可能的设计中,微波组件为微波组件,气溶胶产生装置包括:谐振腔,设置于壳体内;微波组件,设置于壳体,微波组件用于向谐振腔内馈入微波。
在该设计中,微波组件为微波组件,微波组件设置在壳体上。壳体内设置有谐振腔,谐振腔用于将微波传导至雾化腔的位置。微波组件的微波输出端设置于谐振腔内,微波组件通过微波输出端将微波馈入至谐振腔内,微波经过谐振腔传导至雾化腔处,以对雾化腔内的气溶胶产生基质进行加热雾化。通过微波对气溶胶产生基质进行加热,相比于现有技术中通过电热装置加热的方式,具有加热效率更高,气溶胶产生基质雾化效果更好。
在一种可能的设计中,气溶胶产生装置包括:安装部,设置于壳体,安装部的至少一部分位于谐振腔内,雾化腔设置于安装部;谐振柱,设置于谐振腔内,谐振柱的第一端与谐振腔的底壁相连,谐振柱的第二端与安装部相对设置。
在该设计中,气溶胶产生装置包括安装部和谐振柱。安装部设置于壳体内,雾化腔位于安装部内,气溶胶产生基质设置在安装部的雾化腔内。谐振柱用于对微波进行谐振传导。谐振柱的第一端与谐振腔的底壁相连,谐振柱的第二端与安装部相对设置,微波组件馈入到谐振腔中的微波沿谐振柱的第一端至第二端传导,从而对安装部的雾化腔内的气溶胶产生基质进行微波加热。
雾化腔与谐振腔通过安装部相互隔离,能够避免雾化腔内的气溶胶产生基质雾化后产生的液体废料或固定废料进入到谐振腔中,从而避免由于废料进入到谐振腔导致的微波组件故障的情况发生。
在一些实施例中,谐振腔的内壁和谐振柱由导电材料制成。可选为金属材料。例如:金、铜、银。
在一些实施例中,谐振腔的内壁和谐振柱的外壁设置有导电涂层,导电涂层选为金属涂层,例如:镀金层、镀铜层、镀银层。
在这些实施例中,选择稳定性高且导电性能好的金属设置谐振腔和谐 振柱,不仅起到了防止微波外泄的效果,还能够避免谐振腔的内壁和谐振柱生锈。
在一些实施例中,安装部位于谐振腔内部的部分由低介电损耗材料制成,如PTFE材料(聚四氟乙烯材料)、玻璃材料、陶瓷材料。使微波能够传导至安装部内的雾化腔中,以对雾化腔中的气溶胶产生基质进行微波加热,使其产生气溶胶。
在一些实施例中,安装部与壳体可拆卸相连。
在这些实施例中,用于容置气溶胶产生基质的雾化腔设置于安装部内,通过拆卸安装部能够对雾化腔进行单独拆洗,提高了用户的使用体验。
在一种可能的设计中,雾化腔的轴线与谐振柱的轴线同轴。
在该设计中,将雾化腔与谐振柱同轴设置,能够保证经过谐振柱传导至雾化腔处的微波能够传导至雾化腔的中部位置,提高了微波对雾化腔内气溶胶产生基质加热的均匀性,避免了微波在雾化腔内集中导致的气溶胶产生基质受热不均匀,进一步提高了气溶胶产生基质的雾化效果。
在一种可能的设计中,谐振柱与安装部间隔设置。
在该设计中,通过在谐振柱与安装部之间设置间隙,能够避免安装部装配到壳体的过程中对谐振柱造成挤压,降低了谐振柱和安装部的生产组装精度的要求。
在一种可能的设计中,微波组件包括:微波导入部,设置于壳体的侧壁,微波导入部与谐振腔相连通;微波发射源,与微波导入部相连,微波发射源输出的微波经过微波导入部馈入谐振腔,使微波沿谐振柱的第一端至谐振柱的第二端的方向传导。
在该设计中,微波组件包括微波发射源和微波导入部。微波发射源用于产生微波,设置在壳体侧壁的微波导入部用于将微波发射源产生的微波输送至谐振腔内。微波经过微波导入部馈入谐振腔之后,微波能够沿谐振柱的第一端至谐振柱的第二端的方向进行传导,使微波能够直接作用于雾化腔中的气溶胶产生基质,提高气溶胶产生基质的雾化效果。
在一种可能的设计中,微波导入部包括:第一导入件,设置于壳体的侧壁,第一导入件与微波发射源相连;第二导入件,第二导入件的第一端与第一导入件相连,第二导入件位于谐振腔内,第二导入件的第二端朝向谐振腔的底壁。
在该设计中,微波导入部包括第一导入件和第二导入件,第一导入件穿设于壳体的侧壁,第一导入件的第一端与微波发射源相连,使微波发射源产生的微波通过第一导入件的第一端进入微波导入部。第一导入件的第二端与第二导入件的第一端相连,第二导入件的第二端朝向谐振腔的底壁。微波经过第一导入件和第二导入件的传导后,由谐振腔的底壁传导至雾化腔,以对雾化腔内气溶胶产生基质进行微波加热雾化。
其中,第一导入部与微波发射源的微波输出端同轴设置,第二导入部具有水平导入部和竖直导入部,水平导入部的轴线与谐振腔底壁相平行,竖直导入部的轴线垂直于谐振腔底壁。水平导入部通过弯折部与竖直导入部相连,水平导入部与第一导入部同轴设置。通过上述方式设置微波导入部,能够使微波发射源产生的微波全部进入谐振腔,并通过谐振柱在谐振腔内传导。
在一种可能的设计中,气溶胶产生装置还包括:凹陷部,设置于谐振腔的底壁,第二导入部的第二端位于凹陷部内。
在该设计中,气溶胶产生装置还包括凹陷部,凹陷部设置在谐振腔的底壁,并且凹陷部与第二导入部的第二端相对设置,第二导入部的第二端延伸至凹陷部内,从而使进入到谐振腔内的微波能够沿着谐振柱第二端至第一端的方向进行传导,减少了微波传导过程中的能量损耗。
在一种可能的设计中,微波导入部包括:第三导入件,设置于壳体的侧壁,第三导入件的第一端与微波发射源相连,第三导入件的第二端朝向谐振柱。
在该设计中,微波导入部还包括第三导入件,第三导入件与微波发射源的微波输出端同轴设置,第三导入件的第一端与微波发射源相连,第三 导入件的第二端朝向谐振柱,通过将第三导入件与微波发射源的微波输出端同轴设置,并且第三导入件与谐振柱相连,直接将微波传导至谐振柱上,使微波发射源输出的微波全部进入谐振腔内。
第六方面,本申请实施例提出了一种可读存储介质,可读存储介质上存储有程序或指令,程序或指令被处理器执行时实现如上述第一方面任一可能设计中的气溶胶产生装置的控制方法的步骤。因而具有第一方面上述任一可能设计中的气溶胶产生装置的控制方法的全部有益技术效果,在此不再做过多赘述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的第一个实施例中的气溶胶产生装置的控制方法的示意流程图之一;
图2示出了本申请的第一个实施例中的气溶胶产生装置的控制方法的示意流程图之二;
图3示出了本申请的第一个实施例中的气溶胶产生装置的控制方法的示意流程图之三;
图4示出了本申请的第一个实施例中的气溶胶产生装置的控制方法的示意流程图之四;
图5示出了本申请的第一个实施例中的气溶胶产生装置的控制方法的示意流程图之五;
图6示出了本申请的第一个实施例中的气溶胶产生装置的控制方法的示意流程图之六;
图7示出了本申请的第一个实施例中的气溶胶产生装置的控制方法的 示意流程图之七;
图8示出了本申请的第二个实施例中的气溶胶产生装置的控制装置的示意框图;
图9示出了本申请的第三个实施例中的气溶胶产生装置的示意框图;
图10示出了本申请的第四个实施例中的气溶胶产生装置的示意框图;
图11示出了本申请的第五个实施例中的气溶胶产生装置的示意框图;
图12示出了本申请的第五个实施例中的气溶胶产生装置的结构示意图之一;
图13为图12所示的气溶胶产生装置的在A处的局部放大图;
图14示出了本申请的第五个实施例中的气溶胶产生装置的结构示意图之二。
其中,图11至图14中附图标记与部件名称之间的对应关系为:
100气溶胶产生装置,102壳体,104雾化腔,106微波组件,1062微波导入部,10622第一导入件,10624第二导入件,10626第三导入件,1064微波发射源,108控制装置,110温度采集装置,112压力传感器,114谐振腔,116安装部,118谐振柱,120凹陷部。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图14描述根据本申请一些实施例的一种气溶胶产生装置的控制方法、一种气溶胶产生装置的控制装置、一种气溶胶产生装置和一种可读存储介质。
实施例一:
如图1所示,本申请的第一个实施例中提供了一种气溶胶产生装置的控制方法,气溶胶产生装置包括雾化腔、微波组件和温度采集装置,温度采集装置用于采集雾化腔的腔内温度值,雾化腔用于容置气溶胶产生基质,微波组件与雾化腔相连,微波组件向雾化腔内馈入微波加热气溶胶产生基质。
气溶胶产生装置的控制方法包括:
步骤102,响应于预热控制指令;
步骤104控制微波组件以第一功率运行;
步骤106,检测气溶胶产生装置的抽吸状态;
步骤108,判断气溶胶产生装置是否处于抽吸状态,判断结果为是则执行步骤110,判断结果为否则返回执行步骤104;
步骤110,控制微波组件以第二功率运行。
其中,第二功率大于第一功率。
本实施例提供的气溶胶产生装置的控制方法用于气溶胶产生装置。气溶胶产生装置包括雾化腔、微波组件和温度采集装置。雾化腔用于容置气溶胶产生基质,微波组件与雾化腔相连通,微波组件能够提供热量至雾化腔内,以使雾化腔内的气溶胶产生基质受热产生气溶胶。其中,气溶胶产生基质可为固体气溶胶产生基质或液态气溶胶产生基质。
气溶胶产生装置处于开机状态下,接收到预热控制指令,控制微波组件以第一功率运行,直至雾化腔的腔内温度值进入第一设定温度值范围内,使腔内温度值维持在第一设定温度值范围内,能够起到对雾化腔内的气溶胶产生基质进行预热的作用。检测气溶胶产生装置是否处于抽吸状态,根据气溶胶产生装置的抽吸状态对第一功率进行调整。
在气溶胶产生装置处于对气溶胶产生基质预热的阶段,检测到气溶胶产生装置处于抽吸状态下,调整气溶胶产生装置的运行功率从第一功率调整至第二功率,第二功率大于第一功率。在预热阶段,检测到气溶胶产生装置处于抽吸状态,通过提高微波组件的运行功率,使气溶胶产生基质快 速升温至第二设定温度值范围内,实现了对气溶胶产生基质的快速加热雾化。在检测到气溶胶产生装置未处于抽吸状态下,则继续控制微波组件对雾化腔进行预热,使雾化腔内温度保持在第一设定温度范围内。
通过对气溶胶产生装置是否处于抽吸状态进行检测,并根据气溶胶产生装置的抽吸状态对微波组件的运行进行控制,在气溶胶产生装置处于未抽吸状态下对气溶胶产生基质进行预热,在气溶胶产生装置处于抽吸状态下,提高微波组件的运行功率,使雾化腔内温度快速升高,对气溶胶产生基质进行雾化。根据抽吸状态对微波组件的运行进行控制,在用户抽吸之前,微波组件能够对雾化腔进行预热,在用户开始抽吸后,微波组件提高运行功率,使雾化腔快速升温,提高气溶胶产生基质的雾化效率,在用户停止抽吸后,能够及时控制微波组件降低运行功率,恢复对雾化腔的预热状态。由于气溶胶产生基质在雾化前完成了预热,并且在气溶胶产生装置未被抽吸时,能够保持预热状态避免了电能以及气溶胶产生基质的浪费,实现了即抽即停,减少了能耗的同时提高气溶胶产生基质的雾化效率,还提高了气溶胶产生基质的雾化程度,进而提高了用户的使用体验。
具体地,在检测到气溶胶产生装置处于未处于抽吸状态下,控制微波组件运行,使腔内温度值继续保持在设定温度值范围内,保证气溶胶产生基质持续处于预热状态下,减少在雾化过程中的用时,提高用户的使用体验。当检测到气溶胶产生装置处于抽吸状态下,控制微波组件的运行功率升高,从而对气溶胶产生基质进行快速加热进行雾化,由于气溶胶产生装置处于未抽吸状态时,持续对气溶胶产生基质进行预热,因而提高了气溶胶产生基质的雾化效率,还保证了气溶胶产生基质能够充分被雾化。
值得说明的是,第一设定温度值范围为气溶胶产生基质的预热温度范围,且预热温度范围中的温度值低于气溶胶产生基质的第二设定温度值范围。保证了在气溶胶产生装置未处于抽吸状态下时,气溶胶产生基质不被雾化且充分预热。
其中,微波组件的第一功率的取值范围为1W至20W,优选范围为 2W-5W。第二功率的取值范围为5W至20W,优选范围为8W至15W。
在一些实施例中,第一功率选为5W,第二功率选为10W。
在这些实施例中,在检测到气溶胶产生装置处于未抽吸状态时,则控制微波组件以5W的第一功率向雾化腔内馈入微波,使气溶胶产生基质温度进入第一设定温度值范围内,以对气溶胶产生基质进行预热。其中,第一设定温度范围为50℃至150℃,满足对气溶胶产生基质的预热的温度需求。在检测到气溶胶产生装置处于抽吸状态时,则控制微波组件以10W的第二功率向微波雾化腔内馈入微波,使雾化腔内温度快速升高至第二设定温度值范围内,实现对气溶胶产生基质雾化的效果,第二设定温度取值范围为170℃至350℃。
如图2所示,在上述任一实施例中,气溶胶产生装置还包括压力传感器,压力传感器用于采集雾化腔内的气压值,检测气溶胶产生装置的抽吸状态的步骤,具体包括:
步骤202,采集雾化腔内气压值;
步骤204,根据气压值与设定气压值的数值关系,确定气溶胶产生装置的抽吸状态。
在该实施例中,气溶胶产生装置包括压力传感器,压力传感器的采集端与雾化腔相连,压力传感器能够采集雾化腔内的气压值。
采集雾化腔内的压力值,雾化腔内的压力值与设定气压值的数值关系能够反映出雾化腔内的压力值的变化,从而确定气溶胶产生装置是否处于抽吸状态。由于气溶胶产生装置处于抽吸状态,导致雾化腔内压力值变化,因而根据雾化腔内的气压值与设定气压值的数值关系能够对气溶胶产生装置是否处于抽吸状态进行准确判断。
通过气溶胶产生装置是否触发抽吸信号,对气溶胶产生装置是否处于抽吸状态进行检测。当采集到的雾化腔内的气压值大于等于设定气压值,则判定气溶胶产生装置触发抽吸信号。
在一些实施例中,气溶胶产生装置还包括气体流道,在气溶胶产生装 置处于抽吸状态下,气体从气溶胶产生装置外流经气体流道进入雾化腔内,经由雾化基体流动至气溶胶产生装置外。压力传感器设置于雾化腔之外,压力传感器的采集端设置于气体流道中。
在这些实施例中,压力传感器整体设置于气溶胶产生装置的壳体之外,避免微波组件运行对压力传感器产生影响,导致压力传感器采集到的数据准确性降低。
如图3所示,在上述任一实施例中,根据气压值与设定气压值的数值关系,确定气溶胶产生装置的抽吸状态的步骤,具体包括:
步骤302,确定气压值与设定气压值的数值关系;
步骤304,判断气压值是否大于等于设定气压值,判断结果为是则执行步骤306,判断结果为否则执行步骤308。
步骤306,确定气溶胶产生装置处于抽吸状态;
步骤308,确定气溶胶产生装置处于未抽吸状态。
在该实施例中,基于气压值大于等于设定气压值,确定气溶胶产生装置处于抽吸状态。基于气压值小于设定气压值,确定气溶胶产生装置处于未抽吸状态。
当检测到雾化腔内的气压值大于等于设定气压值,则判定此时气溶胶产生装置处于抽吸状态。当检测到雾化腔内的气压值小于设定气压值,则判定此时气溶胶产生装置并未处于抽吸状态。
气溶胶产生装置处于抽吸状态时,雾化腔内的负压升高,直至升高至设定气压值,则判定气溶胶产生装置处于抽吸状态。通过合理设定气压值的数值范围,能够避免气溶胶产生装置对抽吸状态的误判,提高检测抽吸状态的准确性。
如图4所示,在上述任一实施例中,气溶胶产生装置包括触发件,检测气溶胶产生装置的抽吸状态的步骤,具体包括:
步骤402,检测触发件的触发状态;
步骤404,判断触发件是否处于触发装置,判断结果位置则执行步骤406, 判断结果为否则执行步骤408;
步骤406,确定气溶胶产生装置处于抽吸状态;
步骤408,确定气溶胶产生装置处于未抽吸状态。
在该实施例中,通过气溶胶产生装置是否触发抽吸信号,对气溶胶产生装置是否处于抽吸状态进行检测。气溶胶产生装置包括触发件,用户需要对气溶胶产生装置进行抽吸时,通过对触发件进行触发,从而使气溶胶产生装置触发抽吸信号。
基于触发件处于触发状态,确定气溶胶产生装置处于抽吸状态。基于触发件处于未触发状态,确定气溶胶产生装置处于未抽吸状态
当检测到触发件处于触发状态,则判定气溶胶产生装置当前处于抽吸状态。触发件可选为按钮结构,用户在使用气溶胶产生装置的过程中,按压按钮结构使按钮保持按压状态,即触发件持续保持触发状态,则判定气溶胶产生装置当前处于抽吸状态下。
如图5所示,在上述任一实施例中,控制微波组件以第一功率运行的步骤之后,检测气溶胶产生装置的抽吸状态的步骤之前,还包括:
步骤502,确定腔内温度值处于设定温度值范围内;
步骤504,控制微波组件以第三功率运行。
其中,第三功率小于第一功率。在该实施例中,在控制微波组件以第一功率运行,使腔内温度值达到第一设定温度值范围内,控制微波组件以小于第一功率的第三功率运行,以使雾化腔内温度维持在第一设定温度值范围内。在预热开始阶段,控制微波组件以较高第一功率运行,使腔内温度值快速升高,当腔内温度值进入第一设定温度值范围,则判定腔内温度值已经达到所需的预热温度值,此时控制微波组件降低运行功率至第三功率,使腔内温度值维持在第一设定温度值范围内。在气溶胶产生装置运行的初始阶段,控制微波组件先以较大功率运行至设定温度值范围内,再控制微波组件以较小功率持续运行,不仅提高了气溶胶产生装置对雾化腔的预热效率,还减少了能源的浪费,并且避免了频繁启停微波组件,延长了微波 组件的使用寿命。
其中,微波组件的第一功率的取值范围为1W至20W,优选范围为2W-5W。第三功率的取值范围为5W至20W,优选范围为8W至15W。
在一些实施例中,第一功率选为5W,第三功率选为1W。在这些实施例中,接收到预热控制指令后,控制微波组件以5W的第一功率运行,雾化腔内温度升高,以对雾化腔内的气溶胶产生基质进行预热,当检测到雾化腔的腔内温度值处于设定温度值范围内,设定温度范围为50℃至150℃,则判定腔内温度值满足气溶胶产生基质的雾化需求。此时,控制微波组件以1W的第三功率运行,使腔内温度值维持在第一设定温度值范围内,不仅提高了气溶胶产生装置对雾化腔的预热效率,还减少了能源的浪费,并且避免了频繁启停微波组件,延长了微波组件的使用寿命。
如图6所示,在上述任一实施例中,气溶胶产生装置的控制方法:
步骤602,计时气溶胶产生装置的待机时长。
步骤604,基于待机时长达到设定时长,控制气溶胶产生装置关机。
在该实施例中,气溶胶产生装置响应于开机指令,控制气溶胶产生装置处于待机状态,当气溶胶产生装置进入待机状态后,对气溶胶产生装置的待机时长进行计时。当检测到待机时长达到设定时长,即在气溶胶产生装置开机后的设定时长内未接收到预热指令和/或加热指令,则判定用户当前不需要使用气溶胶产生装置,控制气溶胶产生装置关机,提高了气溶胶产生装置的续航时长,避免了用户误触导致的气溶胶产生装置长时间待机的情况发生。
其中,设定时长的取值范围为30秒至5分钟,优选为1分钟至2分钟。
在一些实施例中,在气溶胶产生装置处于待机状态下,对待机时长进行计时,当待机时长达到1分钟,为避免电能的浪费,控制气溶胶产生装置停止运行。提高了气溶胶产生装置的续航时长,避免了用户误触导致的气溶胶产生装置长时间待机的情况发生。
在这些实施例中,微波组件设置于气溶胶产生装置的壳体外部,气溶 胶产生装置还包括谐振腔,微波组件能够将微波馈入到谐振腔中,以对雾化腔中的气溶胶产生基质进行加热雾化。
如图7所示,在一个具体实施例中,气溶胶产生装置的控制方法包括:
步骤702,响应于开机指令,控制气溶胶产生装置上电开机;
步骤704,控制气溶胶产生装置处于待机状态;
步骤706,计时气溶胶产生装置的待机时长;
步骤708,判断待机时长是否大于等于设定时长,判断结果为是则执行步骤716,判断结果为否则返回执行步骤706;
步骤710,响应于预热控制指令,控制微波组件以第一功率运行,以使腔内温度值处于第一设定温度值范围内;
步骤712,判断气溶胶产生装置是否处于抽吸状态,判断结果为是则执行步骤714,判断结果为否则返回执行步骤710;
步骤714,控制微波组件以第二功率运行;
步骤716,控制气溶胶产生装置关机。
在该实施例中,气溶胶产生装置接收到开机指令后,控制气溶胶产生装置上电开机,使气溶胶产生装置保持待机状态,当气溶胶产生装置待机时长达到设定时长,则控制气溶胶产生装置关机。当气溶胶产生装置处于待机状态接收到预热控制指令,则控制微波组件运行,进入预热模式。在气溶胶产生装置的预热模式下检测气溶胶产生装置是否处于抽吸状态,当检测到气溶胶产生装置处于抽吸状态,则控制微波组件以第二功率运行,当检测到气溶胶产生装置处于未抽吸状态,则保持微波组件以第一功率运行,其中,第二功率大于第一功率。
通过对气溶胶产生装置是否处于抽吸状态进行检测,并根据气溶胶产生装置的抽吸状态对微波组件的运行进行控制,实现了在气溶胶产生装置处于未抽吸状态下对气溶胶产生基质的预热效果,在抽吸状态下能够将气溶胶产生基质快速加热至第二设定温度值范围内,提高气溶胶产生基质的雾化效率,还提高了气溶胶产生基质的雾化程度,进而提高了用户的使用体验。
实施例二:
如图8所示,本申请的第二个实施例中提供了一种气溶胶产生装置的控制装置800,气溶胶产生装置包括雾化腔、微波组件和温度采集装置,温度采集装置用于采集雾化腔的腔内温度值,雾化腔用于容置气溶胶产生基质,微波组件与雾化腔相连,向雾化腔内馈入微波加热气溶胶产生基质。
控制装置包括:
第一控制单元802,用于响应于预热控制指令,控制微波组件以第一功率运行,以使腔内温度值处于第一设定温度值范围内;
检测单元804,用于检测气溶胶产生装置的抽吸状态;
第二控制单元806,用于基于气溶胶产生装置处于抽吸状态,控制微波组件以第二功率运行,以使腔内温度值处于第二设定温度值范围内。
其中,第二功率大于第一功率。
本实施例提供的气溶胶产生装置的控制装置800用于气溶胶产生装置。气溶胶产生装置包括雾化腔、微波组件和温度采集装置。雾化腔用于容置气溶胶产生基质,微波组件与雾化腔相连通,向雾化腔内馈入微波加热气溶胶产生,以使雾化腔内的气溶胶产生基质受热产生气溶胶。其中,气溶胶产生基质可为固体气溶胶产生基质或液态气溶胶产生基质。
气溶胶产生装置处于开机状态下,接收到预热控制指令,控制微波组件以第一功率运行,直至雾化腔的腔内温度值进入第一设定温度值范围内,能够起到对雾化腔内的气溶胶产生基质进行预热的作用。检测气溶胶产生装置是否处于抽吸状态,根据气溶胶产生装置的抽吸状态对微波组件的功率进行调整。
在气溶胶产生装置处于对气溶胶产生基质预热的阶段,检测到气溶胶产生装置处于抽吸状态下,调整气溶胶产生装置的运行功率从第一功率调整至第二功率,第二功率大于第一功率。在预热阶段,检测到气溶胶产生装置处于抽吸状态,通过提高微波组件的运行功率,使气溶胶产生基质快速升温至第二设定温度值范围内。实现了对气溶胶产生基质的快速加热雾化。在检测到气溶胶产生装置未处于抽吸状态下,则继续控制微波组件对 雾化腔进行预热,使雾化腔内温度保持在第一设定温度范围内。
通过对气溶胶产生装置是否处于抽吸状态进行检测,并根据气溶胶产生装置的抽吸状态对微波组件的运行进行控制,在气溶胶产生装置处于未抽吸状态下对气溶胶产生基质进行预热,在气溶胶产生装置处于抽吸状态下,提高微波组件的运行功率,使雾化腔内温度快速升高,对气溶胶产生基质进行雾化。根据抽吸状态对微波组件的运行进行控制,在用户抽吸之前,微波组件能够对雾化腔进行预热,在用户开始抽吸后,微波组件提高运行功率,使雾化腔快速升温,提高气溶胶产生基质的雾化效率,在用户停止抽吸后,能够及时控制微波组件降低运行功率,恢复对雾化腔的预热状态。由于气溶胶产生基质在雾化前完成了预热,并且在气溶胶产生装置未被抽吸时,能够保持预热状态避免了电能以及气溶胶产生基质的浪费,实现了即抽即停,减少了能耗的同时提高气溶胶产生基质的雾化效率,还提高了气溶胶产生基质的雾化程度,进而提高了用户的使用体验。
具体地,在检测到气溶胶产生装置处于未处于抽吸状态下,控制微波组件运行,使腔内温度值继续保持在第一设定温度值范围内,保证气溶胶产生基质持续处于预热状态下,减少在雾化过程中的用时,提高用户的使用体验。当检测到气溶胶产生装置处于抽吸状态下,控制微波组件升高第一功率至第二功率,从而对气溶胶产生基质进行快速加热进行雾化,由于气溶胶产生装置处于未抽吸状态时,持续对气溶胶产生基质进行预热,因而提高了气溶胶产生基质的雾化效率,还保证了气溶胶产生基质能够充分被雾化。
值得说明的使,第一设定温度值范围为气溶胶产生基质的预热温度范围,且预热温度范围中的温度值低于气溶胶产生基质的第二设定温度值范围内,保证了在气溶胶产生装置未处于抽吸状态下时,气溶胶产生基质不被雾化且充分预热。
其中,微波组件的第一功率的取值范围为1W至20W,优选范围为2W-5W。第二功率的取值范围为5W至20W,优选范围为8W至15W。
在一些实施例中,第一功率选为5W,第二功率选为10W。
在这些实施例中,在检测到气溶胶产生装置处于未抽吸状态时,则控制微波组件以5W的第一功率向雾化腔内馈入微波,使气溶胶产生基质温度进入设定温度范围内,以对气溶胶产生基质进行预热。其中,第一设定温度范围为50℃至150℃,满足对气溶胶产生基质的预热的温度需求。在检测到气溶胶产生装置处于抽吸状态时,则控制微波组件以10W的第二功率向微波雾化腔内馈入微波,使雾化腔内温度快速升高至第二设定温度值范围内,实现对气溶胶产生基质雾化的效果,第二设定温度值范围内取值范围为170℃至350℃。
在上述实施例中,气溶胶产生装置还包括压力传感器,压力传感器用于采集雾化腔内的气压值;
检测单元804还用于采集雾化腔内气压值;
检测单元804还用于根据气压值与设定气压值的数值关系,确定气溶胶产生装置的抽吸状态。
在该实施例中,气溶胶产生装置包括压力传感器,压力传感器的采集端与雾化腔相连,压力传感器能够采集雾化腔内的气压值。
采集雾化腔内的压力值,雾化腔内的压力值与设定气压值的数值关系能够反映出雾化腔内的压力值的变化,从而确定气溶胶产生装置是否处于抽吸状态。由于气溶胶产生装置处于抽吸状态,导致雾化腔内压力值变化,因而根据雾化腔内的气压值与设定气压值的数值关系能够对气溶胶产生装置是否处于抽吸状态进行准确判断。
通过气溶胶产生装置是否触发抽吸信号,对气溶胶产生装置是否处于抽吸状态进行检测。当采集到的雾化腔内的气压值大于等于设定气压值,则判定气溶胶产生装置触发抽吸信号。
在一些实施例中,气溶胶产生装置还包括气体流道,在气溶胶产生装置处于抽吸状态下,气体从气溶胶产生装置外流经气体流道进入雾化腔内,经由雾化基体流动至气溶胶产生装置外。压力传感器设置于雾化腔之外,压力传感器的采集端设置于气体流道中。
在这些实施例中,压力传感器整体设置于气溶胶产生装置的壳体之外, 避免微波组件运行对压力传感器产生影响,导致压力传感器采集到的数据准确性降低。
在上述任一实施例中,检测单元804还用于基于气压值大于等于设定气压值,确定气溶胶产生装置处于抽吸状态;
检测单元804还用于基于气压值小于设定气压值,确定气溶胶产生装置处于未抽吸状态。
在该实施例中,当检测到雾化腔内的气压值大于等于设定气压值,则判定此时气溶胶产生装置处于抽吸状态。当检测到雾化腔内的气压值小于设定气压值,则判定此时气溶胶产生装置并未处于抽吸状态。
气溶胶产生装置处于抽吸状态时,雾化腔内的负压升高,直至升高至设定气压值,则判定气溶胶产生装置处于抽吸状态。通过合理设定气压值的数值范围,能够避免气溶胶产生装置对抽吸状态的误判,提高检测抽吸状态的准确性。
在上述任一实施例中,气溶胶产生装置包括触发件;
检测单元804还用于基于触发件处于触发状态,确定气溶胶产生装置处于抽吸状态;
检测单元804还用于基于触发件处于未触发状态,确定气溶胶产生装置处于未抽吸状态。
在该实施例中,通过气溶胶产生装置是否触发抽吸信号,对气溶胶产生装置是否处于抽吸状态进行检测。气溶胶产生装置包括触发件,用户需要对气溶胶产生装置进行抽吸时,通过对触发件进行触发,从而使气溶胶产生装置触发抽吸信号。
当检测到触发件处于触发状态,则判定气溶胶产生装置当前处于抽吸状态。触发件可选为按钮结构,用户在使用气溶胶产生装置的过程中,按压按钮结构使按钮保持按压状态,即触发件持续保持触发状态,则判定气溶胶产生装置当前处于抽吸状态下。
在上述任一实施例中,气溶胶产生装置还包括:第三控制单元808。
第三控制单元808用于基于腔内温度值进入第三设定温度值范围,控制微波组件以第三功率运行;
其中,第三功率小于第一功率。
在该实施例中,在控制微波组件以第一功率运行,使腔内温度值达到第一设定温度值范围内,控制微波组件以小于第一功率的第三功率运行,以使雾化腔内温度维持在第一设定温度值范围内。在预热开始阶段,控制微波组件以较高第一功率运行,使腔内温度值快速升高,当腔内温度值进入设定温度值范围,则判定腔内温度值已经达到所需的预热温度值,此时控制微波组件降低运行功率至第三功率,使腔内温度值维持第一设定温度值范围内。在气溶胶产生装置运行的初始阶段,控制微波组件先以较大功率运行至第一设定温度值范围内,再控制微波组件以较小功率持续运行,不仅提高了气溶胶产生装置对雾化腔的预热效率,还减少了能源的浪费,并且避免了频繁启停微波组件,延长了微波组件的使用寿命。
实施例三:
如图9所示,本申请的第三个实施例中提供了一种气溶胶产生装置900,包括:雾化腔、微波组件902和气溶胶产生装置的控制装置800。
雾化腔用于容置气溶胶产生基质;
微波组件902与雾化腔相连,用于向雾化腔内馈入微波以对气溶胶产生基质进行加热;
如上述实施例二的任一实施例中气溶胶产生装置的控制装置800,气溶胶产生装置的控制装置800与微波组件902相连。
气溶胶产生装置的控制装置800与微波组件902相连,从而对微波组件902的运行进行控制。气溶胶产生装置的控制装置800选为上述实施例二的任一实施例中的气溶胶产生装置的控制装置800,因而具有上述实施例二的任一实施例中的气溶胶产生装置的控制装置800的全部有益技术效果,在此不再做过多赘述。
实施例四:
如图10所示,本申请的第四个实施例中提供了一种气溶胶产生装置1000,包括:存储器1002,存储器1002中存储有程序或指令;处理器1004,处理器1004执行存储在存储器1002中的程序或指令以实现如上述实施例一中任一实施例中的气溶胶产生装置1000的控制方法的步骤。因而具有上述任一实施例中的气溶胶产生装置1000的控制方法的全部有益技术效果,在此不再做过多赘述。
本实施例提供的气溶胶产生装置1000还包括雾化腔和微波组件,雾化腔用于容置气溶胶产生基质,微波组件向雾化腔内馈入微波对气溶胶产生基质进行加热,使气溶胶产生基质受热雾化。微波组件与处理器1004相连,处理器1004执行气溶胶产生装置1000的控制方法以对气溶胶产生装置1000中的微波组件进行控制。
实施例五:
如图11和图12所示,本申请的第五个实施例中提供了一种气溶胶产生装置100,包括:壳体102、雾化腔104、微波组件106、温度采集装置110和控制装置108。
雾化腔104设置于壳体102内,用于容置气溶胶产生基质;
微波组件106与雾化腔104相连,用于向雾化腔104内馈入微波以对气溶胶产生基质进行加热;
温度采集装置110,设置于雾化腔104,用于采集雾化腔104的腔内温度值;
控制装置108,用于响应于预热控制指令,控制微波组件106以第一功率运行,以使腔内温度值处于第一设定温度值范围内;检测气溶胶产生装置100的抽吸状态,根据抽吸状态对第一功率进行调整。
本实施例提供的气溶胶产生装置100包括壳体102、雾化腔104、微波组件106、温度采集装置110和控制装置108。雾化腔104开设于壳体102内,雾化腔104能够对气溶胶产生基质进行容置,微波组件106能够对雾化腔104内的气溶胶产生基质进行加热,从而使气溶胶产生基质受热雾化,产生气溶胶。 温度采集装置110用于采集雾化腔104的腔内温度值。其中,气溶胶产生基质可为固体气溶胶产生基质或液态气溶胶产生基质。
气溶胶产生装置100处于开机状态下,接收到预热控制指令,控制微波组件106以第一功率运行,直至雾化腔104的腔内温度值进入设定温度值范围内,使腔内温度值维持在设定温度值范围内,能够起到对雾化腔104内的气溶胶产生基质进行预热的作用。检测气溶胶产生装置100是否处于抽吸状态,根据气溶胶产生装置100的抽吸状态对第一功率进行调整。
通过对气溶胶产生装置100是否处于抽吸状态进行检测,并根据气溶胶产生装置100的抽吸状态对微波组件106的运行进行控制,在气溶胶产生装置100处于未抽吸状态下对气溶胶产生基质进行预热,在气溶胶产生装置100处于抽吸状态下,提高微波组件106的运行功率,使雾化腔104内温度快速升高,对气溶胶产生基质进行雾化。根据抽吸状态对微波组件106的运行进行控制,在用户抽吸之前,微波组件106能够对雾化腔104进行预热,在用户开始抽吸后,微波组件106提高运行功率,使雾化腔104快速升温,提高气溶胶产生基质的雾化效率,在用户停止抽吸后,能够及时控制微波组件106降低运行功率,恢复对雾化腔104的预热状态。由于气溶胶产生基质在雾化前完成了预热,并且在气溶胶产生装置100未被抽吸时,能够保持预热状态避免了电能以及气溶胶产生基质的浪费,实现了即抽即停,减少了能耗的同时提高气溶胶产生基质的雾化效率,还提高了气溶胶产生基质的雾化程度,进而提高了用户的使用体验。
具体地,在检测到气溶胶产生装置100处于未处于抽吸状态下,控制微波组件106运行,使腔内温度值继续保持在第一设定温度值范围内,保证气溶胶产生基质持续处于预热状态下,减少在雾化过程中的用时,提高用户的使用体验。当检测到气溶胶产生装置100处于抽吸状态下,控制微波组件106升高第一功率至第二功率,从而对气溶胶产生基质进行快速加热进行雾化,由于气溶胶产生装置100处于未抽吸状态时,持续对气溶胶产生基质进行预热,因而提高了气溶胶产生基质的雾化效率,还保证了气溶胶产生基质能够充分被雾化。
值得说明的是,第一设定温度值范围为气溶胶产生基质的预热温度范围,且预热温度范围中的温度值低于气溶胶产生基质的第二设定温度值范围内,保证了在气溶胶产生装置100未处于抽吸状态下时,气溶胶产生基质不被雾化且充分预热。
如图12所示,在上述任一实施例中,气溶胶产生装置100还包括:压力传感器112,设置于壳体102,用于采集雾化腔104内的气压值。
在该实施例中,气溶胶产生装置100包括设置于壳体102的压力传感器112,压力传感器112的采集端于雾化腔104相连通,压力传感器112能够采集雾化腔104内的气压值。
通过压力传感器112采集雾化腔104内的压力值,雾化腔104内的压力值与设定气压值的数值关系能够反映出雾化腔104内的压力值的变化,从而确定气溶胶产生装置100是否处于抽吸状态。由于气溶胶产生装置100处于抽吸状态,导致雾化腔104内压力值变化,因而根据雾化腔104内的气压值与设定气压值的数值关系能够对气溶胶产生装置100是否处于抽吸状态进行准确判断。
通过气溶胶产生装置100是否触发抽吸信号,对气溶胶产生装置100是否处于抽吸状态进行检测。当采集到的雾化腔104内的气压值大于等于设定气压值,则判定气溶胶产生装置100触发抽吸信号。
在一些实施例中,气溶胶产生装置100还包括气体流道,在气溶胶产生装置100处于抽吸状态下,气体从气溶胶产生装置100外流经气体流道进入雾化腔104内,经由雾化基体流动至气溶胶产生装置100外。压力传感器112设置于雾化腔104之外,压力传感器112的采集端设置于气体流道中。
在这些实施例中,压力传感器112整体设置于气溶胶产生装置100的壳体102之外,避免微波组件106运行对压力传感器112产生影响,导致压力传感器112采集到的数据准确性降低。
在上述任一实施例中,微波组件106包括微波发生装置和/或电热装置。
如图12所示,在一些实施例中,微波组件106设置于气溶胶产生装置100的壳体102外部,气溶胶产生装置100还包括谐振腔114,微波组件106能够将微波馈入到谐振腔114中,以对雾化腔104中的气溶胶产生基质进行加热雾化。
如图12所示,在上述任一实施例中,微波组件106为微波组件106,气溶胶产生装置100包括:谐振腔114和微波组件106。
谐振腔114设置于壳体102内;
微波组件106设置于壳体102,微波组件106用于向谐振腔114内馈入微波。
在该实施例中,微波组件106为微波组件106,微波组件106设置在壳体102上。壳体102内设置有谐振腔114,谐振腔114用于将微波传导至雾化腔104的位置。微波组件106的微波输出端设置于谐振腔114内,微波组件106通过微波输出端将微波馈入至谐振腔114内,微波经过谐振腔114传导至雾化腔104处,以对雾化腔104内的气溶胶产生基质进行加热雾化。通过微波对气溶胶产生基质进行加热,相比于现有技术中通过电热装置加热的方式,具有加热效率更高,气溶胶产生基质雾化效果更好。
如图12所示,在上述任一实施例中,气溶胶产生装置100包括:安装部116和谐振柱118。
安装部116设置于壳体102,安装部116的至少一部分位于谐振腔114内,雾化腔104设置于安装部116;
谐振柱118设置于谐振腔114内,谐振柱118的第一端与谐振腔114的底壁相连,谐振柱118的第二端与安装部116相对设置。
在该实施例中,气溶胶产生装置100包括安装部116和谐振柱118。安装部116设置于壳体102内,雾化腔104位于安装部116内,气溶胶产生基质设置在安装部116的雾化腔104内。谐振柱118用于对微波进行谐振传导。谐振柱118的第一端与谐振腔114的底壁相连,谐振柱118的第二端与安装部116相对设置,微波组件106馈入到谐振腔114中的微波沿 谐振柱118的第一端至第二端传导,从而对安装部116的雾化腔104内的气溶胶产生基质进行微波加热。
雾化腔104与谐振腔114通过安装部116相互隔离,能够避免雾化腔104内的气溶胶产生基质雾化后产生的液体废料或固定废料进入到谐振腔114中,从而避免由于废料进入到谐振腔114导致的微波组件106故障的情况发生。
在一些实施例中,谐振腔114的内壁和谐振柱118由导电材料制成。可选为金属材料。例如:金、铜、银。
在一些实施例中,谐振腔114的内壁和谐振柱118的外壁设置有导电涂层,导电涂层选为金属涂层,例如:镀金层、镀铜层、镀银层。
在这些实施例中,选择稳定性高且导电性能好的金属设置谐振腔114和谐振柱118,不仅起到了防止微波外泄的效果,还能够避免谐振腔114的内壁和谐振柱118生锈。
在一些实施例中,安装部116位于谐振腔114内部的部分由低介电损耗材料制成,如PTFE材料(聚四氟乙烯材料)、玻璃材料、陶瓷材料。使微波能够传导至安装部116内的雾化腔104中,以对雾化腔104中的气溶胶产生基质进行微波加热,使其产生气溶胶。
在一些实施例中,安装部116与壳体102可拆卸相连。
在这些实施例中,用于容置气溶胶产生基质的雾化腔104设置于安装部116内,通过拆卸安装部116能够对雾化腔104进行单独拆洗,提高了用户的使用体验。
在上述任一实施例中,雾化腔104的轴线与谐振柱118的轴线同轴。
在该实施例中,将雾化腔104与谐振柱118同轴设置,能够保证经过谐振柱118传导至雾化腔104处的微波能够传导至雾化腔104的中部位置,提高了微波对雾化腔104内气溶胶产生基质加热的均匀性,避免了微波在雾化腔104内集中导致的气溶胶产生基质受热不均匀,进一步提高了气溶胶产生基质的雾化效果。
在上述任一实施中,谐振柱118与安装部116间隔设置。
在该实施例中,通过在谐振柱118与安装部116之间设置间隙,能够避免安装部116装配到壳体102的过程中对谐振柱118造成挤压,降低了谐振柱118和安装部116的生产组装精度的要求。
如图13所示,在上述任一实施例中,微波组件106包括:微波导入部1062和微波发射源1064。
微波导入部1062设置于壳体102的侧壁,微波导入部1062与谐振腔114相连通;
微波发射源1064,与微波导入部1062相连,微波发射源1064输出的微波经过微波导入部1062馈入谐振腔114,使微波沿谐振柱118的第一端至谐振柱118的第二端的方向传导。
在该实施例中,微波组件106包括微波发射源1064和微波导入部1062。微波发射源1064用于产生微波,设置在壳体102侧壁的微波导入部1062用于将微波发射源1064产生的微波输送至谐振腔114内。微波经过微波导入部1062馈入谐振腔114之后,微波能够沿谐振柱118的第一端至谐振柱118的第二端的方向进行传导,使微波能够直接作用于雾化腔104中的气溶胶产生基质,提高气溶胶产生基质的雾化效果。
如图12所示,在上述任一实施例中,微波导入部1062包括:第一导入件10622和第二导入件10624。
第一导入件10622设置于壳体102的侧壁,第一导入件10622与微波发射源1064相连;
第二导入件10624的第一端与第一导入件10622相连,第二导入件10624位于谐振腔114内,第二导入件10624的第二端朝向谐振腔114的底壁。
在该实施例中,微波导入部1062包括第一导入件10622和第二导入件10624,第一导入件10622穿设于壳体102的侧壁,第一导入件10622的第一端与微波发射源1064相连,使微波发射源1064产生的微波通过第一导入件10622的第一端进入微波导入部1062。第一导入件10622的第二端与 第二导入件10624的第一端相连,第二导入件10624的第二端朝向谐振腔114的底壁。微波经过第一导入件10622和第二导入件10624的传导后,由谐振腔114的底壁传导至雾化腔104,以对雾化腔104内气溶胶产生基质进行微波加热雾化。
其中,第一导入部与微波发射源1064的微波输出端同轴设置,第二导入部具有水平导入部和竖直导入部,水平导入部的轴线与谐振腔114底壁相平行,竖直导入部的轴线垂直于谐振腔114底壁。水平导入部通过弯折部与竖直导入部相连,水平导入部与第一导入部同轴设置。通过上述方式设置微波导入部1062,能够使微波发射源1064产生的微波全部进入谐振腔114,并通过谐振柱118在谐振腔114内传导。
如图13所示,在上述任一实施例中,气溶胶产生装置100还包括:凹陷部120。凹陷部120设置于谐振腔114的底壁,第二导入部的第二端位于凹陷部120内。
在该实施例中,气溶胶产生装置100还包括凹陷部120,凹陷部120设置在谐振腔114的底壁,并且凹陷部120与第二导入部的第二端相对设置,第二导入部的第二端延伸至凹陷部120内,从而使进入到谐振腔114内的微波能够沿着谐振柱118第二端至第一端的方向进行传导,减少了微波传导过程中的能量损耗。
如图14所示,在上述任一实施例中,微波导入部1062包括第三导入件10626。
第三导入件10626设置于壳体102的侧壁,第三导入件10626的第一端与微波发射源1064相连,第三导入件10626的第二端朝向谐振柱118。
在该实施例中,微波导入部1062还包括第三导入件10626,第三导入件10626与微波发射源1064的微波输出端同轴设置,第三导入件10626的第一端与微波发射源1064相连,第三导入件10626的第二端朝向谐振柱118,通过将第三导入件10626与微波发射源1064的微波输出端同轴设置,并且第三导入件10626与谐振柱118相连,直接将微波传导至谐振柱118 上,使微波发射源1064输出的微波全部进入谐振腔114内。
实施例六:
本申请的第六个实施例中提供了一种可读存储介质,其上存储有程序,程序被处理器执行时实现如上述任一实施例中的气溶胶产生装置的控制方法,因而具有上述任一实施例中的气溶胶产生装置的控制方法的全部有益技术效果。
其中,可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要明确的是,在本申请的权利要求书、说明书和水明书附图中,术语“多个”则指两个或两个以上,除非有额外的明确限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了更方便地描述本申请和使得描述过程更加简便,而不是为了指示或暗示所指的装置或元件必须具有所描述的特定方位、以特定方位构造和操作,因此这些描述不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,举例来说,“连接”可以是多个对象之间的固定连接,也可以是多个对象之间的可拆卸连接,或一体地连接;可以是多个对象之间的直接相连,也可以是多个对象之间的通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据上述数据地具体情况理解上述术语在本申请中的具体含义。
在本申请的权利要求书、说明书和水明书附图中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请的权利要求书、说明书和水明书附图中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和 原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种气溶胶产生装置的控制方法,其中,所述气溶胶产生装置包括雾化腔、微波组件和温度采集装置,所述温度采集装置用于采集所述雾化腔的腔内温度值,所述雾化腔用于容置气溶胶产生基质,所述微波组件向所述雾化腔内馈入微波加热所述气溶胶产生基质,所述控制方法包括:
    响应于预热控制指令,控制所述微波组件以第一功率运行,以使所述腔内温度值处于第一设定温度值范围内;
    检测所述气溶胶产生装置的抽吸状态;
    基于所述气溶胶产生装置处于抽吸状态,控制所述微波组件以第二功率运行,以使所述腔内温度值处于第二设定温度值范围内;
    其中,所述第二功率大于所述第一功率。
  2. 根据权利要求1所述的气溶胶产生装置的控制方法,其中,所述气溶胶产生装置还包括压力传感器,所述压力传感器用于采集所述雾化腔内的气压值,所述检测所述气溶胶产生装置的抽吸状态的步骤,具体包括:
    采集所述雾化腔内气压值;
    根据所述气压值与设定气压值的数值关系,确定所述气溶胶产生装置的抽吸状态。
  3. 根据权利要求2所述的气溶胶产生装置的控制方法,其中,所述根据所述气压值与设定气压值的数值关系,确定所述气溶胶产生装置的抽吸状态的步骤,具体包括:
    基于所述气压值大于等于所述设定气压值,确定所述气溶胶产生装置处于抽吸状态;
    基于所述气压值小于所述设定气压值,确定所述气溶胶产生装置处于未抽吸状态。
  4. 根据权利要求1所述的气溶胶产生装置的控制方法,其中,所述气溶胶产生装置包括触发件,所述检测所述气溶胶产生装置的抽吸状态的步 骤,具体包括:
    基于所述触发件处于触发状态,确定所述气溶胶产生装置处于抽吸状态;
    基于所述触发件处于未触发状态,确定所述气溶胶产生装置处于未抽吸状态。
  5. 根据权利要求1至4中任一项所述的气溶胶产生装置的控制方法,其中,所述控制微波组件以第一功率运行的步骤之后,所述检测所述气溶胶产生装置的抽吸状态的步骤之前,还包括:
    基于所述腔内温度值进入设定温度值范围,控制所述微波组件以第三功率运行;
    其中,所述第三功率小于所述第一功率。
  6. 一种气溶胶产生装置的控制装置,其中,所述气溶胶产生装置包括雾化腔、微波组件和温度采集装置,所述温度采集装置用于采集所述雾化腔的腔内温度值,所述雾化腔用于容置气溶胶产生基质,所述微波组件向所述雾化腔内馈入微波加热所述气溶胶产生基质,所述控制装置包括:
    第一控制单元,用于响应于预热控制指令,控制所述微波组件以第一功率运行,以使所述腔内温度值处于第一设定温度值范围内;
    检测单元,用于检测所述气溶胶产生装置的抽吸状态;
    第二控制单元,用于基于所述气溶胶产生装置处于抽吸状态,控制所述微波组件以第二功率运行,以使所述腔内温度值处于第二设定温度值范围内;
    其中,所述第二功率大于所述第一功率。
  7. 根据权利要求6所述的气溶胶产生装置的控制装置,其中,所述气溶胶产生装置还包括压力传感器,所述压力传感器用于采集所述雾化腔内的气压值;
    检测单元还用于采集所述雾化腔内气压值;
    检测单元还用于根据所述气压值与设定气压值的数值关系,确定所述 气溶胶产生装置的抽吸状态。
  8. 根据权利要求7所述的气溶胶产生装置的控制装置,其中,
    检测单元还用于基于所述气压值大于等于所述设定气压值,确定所述气溶胶产生装置处于抽吸状态;
    检测单元还用于基于所述气压值小于所述设定气压值,确定所述气溶胶产生装置处于未抽吸状态。
  9. 根据权利要求6所述的气溶胶产生装置的控制装置,其中,所述气溶胶产生装置包括触发件;
    检测单元还用于基于所述触发件处于触发状态,确定所述气溶胶产生装置处于抽吸状态;
    检测单元还用于基于所述触发件处于未触发状态,确定所述气溶胶产生装置处于未抽吸状态。
  10. 根据权利要求6至9中任一项所述的气溶胶产生装置的控制装置,其中,还包括:
    第三控制单元,用于基于所述腔内温度值进入设定温度值范围,控制所述微波组件以第三功率运行,以使所述腔内温度值处于第一设定温度值范围内;
    其中,所述第三功率小于所述第一功率。
  11. 一种气溶胶产生装置,其中,包括:
    雾化腔,用于容置气溶胶产生基质;
    微波组件,用于向所述雾化腔内馈入微波加热所述气溶胶产生基质;
    如上述权利要求6至10中任一项所述的气溶胶产生装置的控制装置,所述控制装置与所述微波组件相连。
  12. 一种气溶胶产生装置,其中,包括:
    存储器,所述存储器中存储有程序或指令;
    处理器,所述处理器执行存储在所述存储器中的程序或指令以实现如上述权利要求1至5中任一项所述的气溶胶产生装置的控制方法的步骤。
  13. 一种可读存储介质,其中,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时实现如上述权利要求1至5中任一项所述的气溶胶产生装置的控制方法的步骤。
PCT/CN2021/109221 2021-07-29 2021-07-29 气溶胶产生装置、控制方法、控制装置和可读存储介质 WO2023004676A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109221 WO2023004676A1 (zh) 2021-07-29 2021-07-29 气溶胶产生装置、控制方法、控制装置和可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109221 WO2023004676A1 (zh) 2021-07-29 2021-07-29 气溶胶产生装置、控制方法、控制装置和可读存储介质

Publications (1)

Publication Number Publication Date
WO2023004676A1 true WO2023004676A1 (zh) 2023-02-02

Family

ID=85086026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109221 WO2023004676A1 (zh) 2021-07-29 2021-07-29 气溶胶产生装置、控制方法、控制装置和可读存储介质

Country Status (1)

Country Link
WO (1) WO2023004676A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108552614A (zh) * 2018-07-16 2018-09-21 云南中烟工业有限责任公司 一种用于电子烟的微波谐振雾化器
CN110324926A (zh) * 2019-06-19 2019-10-11 云南巴菰生物科技有限公司 一种适于微波加热烟具装置的温度控制方法
WO2020015223A1 (zh) * 2018-07-16 2020-01-23 云南中烟工业有限责任公司 一种微波谐振致雾化的电子烟
US20200120988A1 (en) * 2017-06-26 2020-04-23 Changzhou Patent Electronic Technology Co., LTD Electronic cigarette and method for pre-heating electronic cigarette
US20200214358A1 (en) * 2017-08-21 2020-07-09 Joyetech Europe Holding Gmbh Electronic cigarette and method for adjusting power thereof
CN111867409A (zh) * 2018-01-19 2020-10-30 万特斯医疗有限公司 方法、抽吸设备和计算机程序
CN111938211A (zh) * 2019-05-17 2020-11-17 常州市派腾电子技术服务有限公司 电子烟的控制方法和装置
CN111990703A (zh) * 2020-08-17 2020-11-27 深圳麦时科技有限公司 气溶胶产生装置及方法
CN112205676A (zh) * 2020-10-23 2021-01-12 深圳市卓力能技术股份有限公司 对雾化液进行加热的方法、装置及预热电路

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200120988A1 (en) * 2017-06-26 2020-04-23 Changzhou Patent Electronic Technology Co., LTD Electronic cigarette and method for pre-heating electronic cigarette
US20200214358A1 (en) * 2017-08-21 2020-07-09 Joyetech Europe Holding Gmbh Electronic cigarette and method for adjusting power thereof
CN111867409A (zh) * 2018-01-19 2020-10-30 万特斯医疗有限公司 方法、抽吸设备和计算机程序
CN108552614A (zh) * 2018-07-16 2018-09-21 云南中烟工业有限责任公司 一种用于电子烟的微波谐振雾化器
WO2020015223A1 (zh) * 2018-07-16 2020-01-23 云南中烟工业有限责任公司 一种微波谐振致雾化的电子烟
CN111938211A (zh) * 2019-05-17 2020-11-17 常州市派腾电子技术服务有限公司 电子烟的控制方法和装置
CN110324926A (zh) * 2019-06-19 2019-10-11 云南巴菰生物科技有限公司 一种适于微波加热烟具装置的温度控制方法
CN111990703A (zh) * 2020-08-17 2020-11-27 深圳麦时科技有限公司 气溶胶产生装置及方法
CN112205676A (zh) * 2020-10-23 2021-01-12 深圳市卓力能技术股份有限公司 对雾化液进行加热的方法、装置及预热电路

Similar Documents

Publication Publication Date Title
CN204907924U (zh) 非燃烧型吸烟器具
WO2020015223A1 (zh) 一种微波谐振致雾化的电子烟
WO2018209632A1 (zh) 一种电子烟的控制方法及电子烟
CN107684109B (zh) 一种一次性烟弹及其模块式电子烟
CN109965351B (zh) 外围电加热吸烟装置及加热控制方法
WO2023151330A1 (zh) 雾化器及电子雾化装置
US20220232882A1 (en) Baked item, method for preparing baked item, and microwave heating method for baked item
CN204146328U (zh) 一种烟草蒸发器
WO2023160128A1 (zh) 发热件及电子雾化装置
CN111436665A (zh) 一种微波加热型加热不燃烧卷烟加热装置
WO2023165209A1 (zh) 微波加热组件及气溶胶产生装置和气溶胶生成系统
WO2022179538A1 (zh) 雾化器及电子雾化装置
WO2022179400A1 (zh) 雾化器及电子雾化装置
WO2023004676A1 (zh) 气溶胶产生装置、控制方法、控制装置和可读存储介质
CN113662263B (zh) 雾化组件和气溶胶生成装置
CN113317560A (zh) 一种多功能的微波加热型加热卷烟抽吸装置
CN115670031A (zh) 气溶胶产生装置、控制方法、控制装置和可读存储介质
CN212590292U (zh) 一种加热不燃烧型电子烟具
WO2023050926A1 (zh) 一种气溶胶产生装置
US11992055B2 (en) Atomizer
WO2023004675A1 (zh) 气溶胶产生装置
CN209749815U (zh) 一种加热不燃烧烟具
CN221104804U (zh) 空气加热器及电子雾化装置
WO2023065138A1 (zh) 气溶胶产生装置
WO2020248475A1 (zh) 一种烟草制品的加热不燃烧装置、方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE