WO2023003276A1 - 담수화 에너지 소모량 감소를 위한 이차 전지 - Google Patents

담수화 에너지 소모량 감소를 위한 이차 전지 Download PDF

Info

Publication number
WO2023003276A1
WO2023003276A1 PCT/KR2022/010300 KR2022010300W WO2023003276A1 WO 2023003276 A1 WO2023003276 A1 WO 2023003276A1 KR 2022010300 W KR2022010300 W KR 2022010300W WO 2023003276 A1 WO2023003276 A1 WO 2023003276A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
desalination
exchange membrane
secondary battery
energy consumption
Prior art date
Application number
PCT/KR2022/010300
Other languages
English (en)
French (fr)
Inventor
김영식
김남혁
정성우
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2023003276A1 publication Critical patent/WO2023003276A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4214Arrangements for moving electrodes or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a secondary battery for reducing desalination energy consumption, and more particularly, to a secondary battery using an aqueous redox solution for reducing desalination energy consumption.
  • seawater cell desalination technology using anion exchange membrane has a higher theoretical voltage (3.46 V) and higher energy density (4010 Wh/kg electrode) than other desalination cell technologies ( ⁇ 1.25 V, ⁇ 78 Wh/kg electrode). there is.
  • seawater cell desalination technology can handle more salt ( ⁇ 2520 mg/g electrode) per desalination cell system size compared to other desalination cell technologies (136 mg/g electrode).
  • seawater battery desalination technology uses very slow oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) through the decomposition of seawater as an anode reaction during charging and discharging, respectively. Therefore, there is a problem in that the charging/discharging voltage efficiency (energy required for freshwater production) is very low compared to the same current.
  • OER oxygen evolution reaction
  • ORR oxygen reduction reaction
  • the present invention was created to solve the above problems, and an object of the present invention is to provide a secondary battery for reducing energy consumption.
  • an object of the present invention is to provide a secondary battery using a cathode solution for a cathode reaction that can replace the OER/ORR of brine.
  • a secondary battery for reducing energy consumption includes a negative electrode portion including an anode impregnated with an organic electrolyte; a demineralization unit coupled to one side of the cathode unit and into which brine is injected; a first anode unit coupled to one side of the desalination unit and including a first cathode impregnated with an aqueous redox solution; A concentrated water unit coupled to the other side of the cathode unit and into which brine is injected; and a second anode unit coupled to one side of the concentrated water unit and including a second cathode impregnated with the aqueous redox solution.
  • the aqueous redox solution may include a cathode electrolyte having a potential in which oxygen is not generated when charging and hydrogen is not generated when discharged from water in the aqueous redox solution.
  • the secondary battery for reducing the desalination energy consumption may include a first solid electrolyte positioned between the negative electrode unit and the desalination unit and allowing sodium ions to pass from the desalination unit to the negative electrode unit; and a first anion exchange membrane positioned between the first anode unit and the desalination unit and passing chlorine ions from the desalination unit to the first anode unit.
  • the secondary battery for reducing the desalination energy consumption may include a second solid electrolyte positioned between the negative electrode part and the concentrated water part and passing sodium ions from the negative electrode part to the concentrated water part; and a second anion exchange membrane positioned between the second anode part and the concentrated water part and passing chlorine ions from the second anode part to the concentrated water part.
  • the first positive electrode unit receives a first discharge unit for delivering the aqueous redox solution used during charging to the second positive electrode unit and receiving the aqueous redox solution used during discharging from the second positive electrode unit. and a first injection part for receiving the aqueous redox solution used during the charging from the first positive electrode part and the second injection part for receiving the aqueous redox solution used during the discharging from the first positive electrode part. 1 may include a second outlet for delivery to the anode.
  • the secondary battery for reducing the desalination energy consumption further includes at least one third anion exchange membrane and at least one third cation exchange membrane disposed alternately between the first anion exchange membrane and the first solid electrolyte. can do.
  • the secondary battery for reducing the desalination energy consumption further includes at least one fourth anion exchange membrane and at least one fourth cation exchange membrane disposed alternately between the second anion exchange membrane and the second solid electrolyte. can do.
  • the present invention is not limited to the embodiments disclosed below, and may be configured in a variety of different forms, so that the disclosure of the present invention is complete and those of ordinary skill in the art to which the present invention belongs ( It is provided hereafter to fully inform the "ordinary skilled person") of the scope of the invention.
  • FIG. 1 is a diagram illustrating a secondary battery for reducing desalination energy consumption according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a candidate group of aqueous redox electrolytes according to an embodiment of the present invention.
  • 3A is a diagram illustrating a graph of charge/discharge voltage performance according to an embodiment of the present invention.
  • 3B is a diagram showing a salt concentration graph of a desalination unit after charging according to an embodiment of the present invention.
  • 4A and 4B are diagrams illustrating a stacked charging unit of a secondary battery according to an embodiment of the present invention.
  • 5A and 5B are diagrams illustrating a stacked discharge unit of a secondary battery according to an embodiment of the present invention.
  • 1 is a diagram showing a secondary battery 100 for reducing desalination energy consumption according to an embodiment of the present invention.
  • 2 is a diagram showing a candidate group of aqueous redox electrolytes according to an embodiment of the present invention.
  • the secondary battery 100 for reducing desalination energy consumption includes a first positive electrode unit 110, a desalination unit 120, a negative electrode unit 130, a concentrated water unit 140, and a second positive electrode unit ( 150) may be included.
  • the cathode unit 130 may include an anode 136 impregnated with an organic electrolyte.
  • the anode 136 may include hard carbon, Na intercalation electrode, and Na metal.
  • the first solid electrolyte 125 is positioned between the negative electrode part 130 and the desalination part 120 and can pass sodium ions from the desalination part 120 to the negative electrode part 130 .
  • the first solid electrolyte 125 may include a natrium super ionic conductor (NASICON).
  • NASHCON natrium super ionic conductor
  • the demineralization unit 120 is coupled to one side of the cathode unit 130 and brine may be injected.
  • brine may be injected.
  • brackish water may include seawater, brackish water, and concentrated water.
  • the desalination unit 120 may include an inlet 122 through which salt water flows in and an outlet 124 through which fresh water generated from the salt water is discharged through a charging reaction.
  • the first anion exchange membrane (AEM) 115 is located between the first anode part 110 and the desalination part 120, and passes chlorine ions from the desalination part 120 to the first anode part 110. can make it
  • the first anode unit 110 is coupled to one side of the desalination unit 120 and may include a first cathode 116 impregnated with an aqueous redox solution.
  • the first cathode 116 is a current collector electrode and may include a carbon (felt, cloth, etc.) electrode, a metal (Pt, Ti, etc.) mesh, a rod electrode, and various electrochemically stable conductors.
  • the aqueous redox solution may include a cathode electrolyte having a potential in which oxygen is not generated when charging and hydrogen is not generated when discharged from water in the aqueous redox solution.
  • the aqueous redox solution may include a cathode electrolyte having a potential lower than oxygen evolution reaction (OER) during charging and a potential higher than hydrogen evolution reaction (HER) during discharging.
  • OER oxygen evolution reaction
  • HER hydrogen evolution reaction
  • the aqueous redox solution is Na 4 [Fe(CN) 6 ], FeCl 2 /FeCl 3 , Br - /Br 2 - , Cu + /Cu 2+ , RuO4 2- /RuO 4 - ,
  • An aqueous redox solution such as TEMPO/oxoammonium, Mn[(CN)6] 4- / Mn[(CN)6] 3- may be included.
  • a flow CDI (capacitive deionization) electrode carbonized powder or the like) may be used.
  • the concentrated water unit 140 is coupled to the other side of the cathode unit 130 and salt water may be injected.
  • the concentrated water unit 140 may include an inlet 142 through which brine flows and an outlet 144 through which concentrated brine generated from brine is discharged through a discharge reaction.
  • the second solid electrolyte 135 is positioned between the negative electrode part 130 and the concentrated water part 140 and can pass sodium ions from the negative electrode part 130 to the concentrated water part 140 .
  • the second solid electrolyte 135 may include NASICON.
  • the second anode unit 150 is coupled to one side of the concentrated water unit 140 and may include a second cathode 156 impregnated with an aqueous redox solution.
  • the second anion exchange membrane 145 is positioned between the second anode part 150 and the concentrated water part 140, and can pass chlorine ions from the second anode part 150 to the concentrated water part 140.
  • the aqueous redox solution may be circulated through the first anode part 110 and the second cathode part 150 .
  • the first positive electrode unit 110 includes a first discharge unit 112 for delivering the aqueous redox solution used during charging to the second positive electrode unit 150 and the aqueous redox solution used during discharging. It may include a first injection part 114 for receiving delivery from the second anode part 150 .
  • the second positive electrode unit 150 includes a second injection unit 152 for receiving the aqueous redox solution used during charging from the first positive electrode unit 110 and the aqueous redox solution used during discharging to the first positive electrode. It may include a second outlet 154 for delivery to unit 110 .
  • reactions in the first positive electrode portion 110 and the negative electrode portion 130 during the charging reaction of the secondary battery 100 are represented by ⁇ Formula 1> and ⁇ Formula 2>, respectively, and the discharge reaction 2 Reaction in the anode part 150 and the cathode part 130 can be represented as ⁇ Chemical Formula 3> and ⁇ Chemical Formula 4>, respectively.
  • the desalination part compartment and the concentrated water part compartment must be alternately used as one compartment. There is the hassle of having to exchange them.
  • 3A is a diagram illustrating a graph of charge/discharge voltage performance according to an embodiment of the present invention.
  • 3B is a diagram showing a salt concentration graph of a desalination unit after charging according to an embodiment of the present invention.
  • the charging voltage of the secondary battery 100 according to the present invention is lowered and the discharging voltage is increased.
  • the initial salt concentration was 35,064 ppm, but after charging, it was reduced to 555 ppm, confirming that the desalination efficiency was improved.
  • the secondary battery 100 according to the present invention is more efficient in energy consumed during charging and discharging, fresh water production, and energy per fresh water production, compared to conventional systems.
  • 4A and 4B are diagrams illustrating a stacked charging unit of a secondary battery according to an embodiment of the present invention.
  • the secondary battery 100 for reducing desalination energy consumption includes at least one third cation exchange membrane (Cation Exchange Membrane) disposed alternately between the first anion exchange membrane 115 and the first solid electrolyte 125.
  • Membrane, CEM CEM
  • at least one third anion exchange membrane 420 may be included.
  • multiple layers of the third cation exchange membrane 410 and the third anion exchange membrane 420 may be disposed between the first anion exchange membrane 115 and the first solid electrolyte 125 .
  • fresh water is provided between the first anion exchange membrane 115 and the third cation exchange membrane 410 and between the third anion exchange membrane 420 and the first solid electrolyte 125 of the desalination unit 120 through a charging reaction. can be created and released.
  • concentrated brine may be generated and discharged between the third cation exchange membrane 410 and the third anion exchange membrane 420 of the desalination unit 120 through a charging reaction.
  • 5A and 5B are diagrams illustrating a stacked discharge unit of a secondary battery according to an embodiment of the present invention.
  • the secondary battery 100 for reducing desalination energy consumption includes at least one fourth anion exchange membrane 510 intersecting between the second anion exchange membrane 145 and the second solid electrolyte 135. And at least one fourth cation exchange membrane 520 may be included.
  • several layers of the fourth anion exchange membrane 510 and the fourth cation exchange membrane 520 may be interposed between the second anion exchange membrane 145 and the second solid electrolyte 135 .
  • the concentration between the second solid electrolyte 135 of the concentrated water unit 140 and the fourth anion exchange membrane 510 and between the fourth cation exchange membrane 520 and the second anion exchange membrane 145 through the discharge reaction Brine may be produced and discharged.
  • fresh water may be generated and discharged between the fourth anion exchange membrane 510 and the fourth cation exchange membrane 520 of the concentrated water unit 140 through a discharge reaction.
  • fresh water can be produced between discharges, and consequently, energy consumption per fresh water produced can be reduced.
  • a pair of fourth anion exchange membranes (510) as shown in FIG. ) and the fourth cation exchange membrane 520 are disposed, when discharging as much as 1F charge, 1 mole of NaCl is removed, and as shown in FIG. 5B, the N pair of the fourth anion exchange membrane 510 and the fourth cation exchange membrane ( 520) is disposed, N moles of NaCl can be removed when discharging as much as 1F charge amount.
  • At least one step may be omitted or added in each figure described herein, may be performed in reverse order, or may be performed concurrently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 에너지 소모량 감소를 위한 이차 전지에 관한 것이다. 본 발명의 일 실시예에 따른 에너지 소모량 감소를 위한 이차 전지는, 유기 전해질에 함침되는 애노드(anode)를 포함하는 음극부; 상기 음극부의 일측에 결합하며, 염수(brine)가 주입되는 탈염부; 상기 탈염부의 일측에 결합하며, 수계 레독스(redox) 용액에 함침되는 제1 캐소드(cathode)를 포함하는 제1 양극부; 상기 음극부의 타측에 결합하며, 염수가 주입되는 농축수부; 및 상기 농축수부의 일측에 결합하며, 상기 수계 레독스 용액에 함침되는 제2 캐소드를 포함하는 제2 양극부;를 포함할 수 있다.

Description

담수화 에너지 소모량 감소를 위한 이차 전지
본 발명은 담수화 에너지 소모량 감소를 위한 이차 전지에 관한 것으로, 더욱 상세하게는 담수화 에너지 소모량 감소를 위한 수계 레독스(redox) 용액을 이용하는 이차 전지에 관한 것이다.
담수화의 에너지 효율을 높이기 위해 담수화 전지가 개발되어 왔다.
그 중 음이온 교환막을 활용하는 해수전지 담수화 기술은 다른 담수화 전지 기술(<1.25 V, <78 Wh/kg전극) 에 비해 높은 이론 전압 (3.46 V)과 높은 에너지 밀도(4010 Wh/kg전극)를 가지고 있다.
때문에 해수전지 담수화 기술은 다른 담수 전지 기술(136 mg/g전극)에 비해 담수화 전지 시스템 크기 당 더 많은 염(~2520 mg/g전극)을 처리할 수 있음.
하지만 해수전지 담수화 기술은 양극반응으로 해수의 물 분해를 통한 속도가 매우 느린 산소발생반응(oxygen evolution reaction, OER)과 산소 환원반응(oxygen reduction reaction, ORR)을 각각 충전과 방전 시 사용하고 있다. 따라서 동일 전류 대비 충방전 전압 효율(담수 생산 간 필요 에너지)이 매우 낮은 문제가 있다.
본 발명은 전술한 문제점을 해결하기 위하여 창출된 것으로, 에너지 소모량 감소를 위한 이차 전지를 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 염수의 OER/ORR을 대체할 수 있는 양극 반응을 위한 양극 용액을 사용하는 이차 전지를 제공하는 것을 그 목적으로 한다.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 명확하게 이해될 수 있을 것이다.
상기한 목적들을 달성하기 위하여, 본 발명의 일 실시예에 따른 에너지 소모량 감소를 위한 이차 전지는, 유기 전해질에 함침되는 애노드(anode)를 포함하는 음극부; 상기 음극부의 일측에 결합하며, 염수(brine)가 주입되는 탈염부; 상기 탈염부의 일측에 결합하며, 수계 레독스(redox) 용액에 함침되는 제1 캐소드(cathode)를 포함하는 제1 양극부; 상기 음극부의 타측에 결합하며, 염수가 주입되는 농축수부; 및 상기 농축수부의 일측에 결합하며, 상기 수계 레독스 용액에 함침되는 제2 캐소드를 포함하는 제2 양극부;를 포함할 수 있다.
실시예에서, 상기 수계 레독스 용액은, 상기 수계 레독스 용액 내의 물(water)에서 충전 시 산소가 발생되지 않고, 방전 시 수소가 발생되지 않는 포텐셜(potential)을 갖는 양극 전해질을 포함할 수 있다.
실시예에서, 상기 담수화 에너지 소모량 감소를 위한 이차 전지는, 상기 음극부와 상기 탈염부 사이에 위치하고, 상기 탈염부로부터 상기 음극부로 나트륨 이온을 통과시키는 제1 고체 전해질; 및 상기 제1 양극부와 상기 탈염부 사이에 위치하고, 상기 탈염부로부터 상기 제1 양극부로 염소 이온을 통과시키는 제1 음이온 교환막;을 더 포함할 수 있다.
실시예에서, 상기 담수화 에너지 소모량 감소를 위한 이차 전지는, 상기 음극부와 상기 농축수부 사이에 위치하고, 상기 음극부로부터 상기 농축수부로 나트륨 이온을 통과시키는 제2 고체 전해질; 및 상기 제2 양극부와 상기 농축수부 사이에 위치하고, 상기 제2 양극부로부터 상기 농축수부로 염소 이온을 통과시키는 제2 음이온 교환막;을 더 포함할 수 있다.
실시예에서, 상기 제1 양극부는, 충전 시 사용된 수계 레독스 용액을 상기 제2 양극부로 전달하기 위한 제1 배출부와 상기 방전 시 사용된 수계 레독스 용액을 상기 제2 양극부로부터 전달 받기 위한 제1 주입부를 포함하고, 상기 제2 양극부는, 상기 충전 시 사용된 수계 레독스 용액을 상기 제1 양극부로부터 전달 받기 위한 제2 주입부와 상기 방전 시 사용된 수계 레독스 용액을 상기 제1 양극부로 전달하기 위한 제2 배출부를 포함할 수 있다.
실시예에서, 상기 담수화 에너지 소모량 감소를 위한 이차 전지는, 상기 제1 음이온 교환막과 제1 고체 전해질 사이에, 교차로 배치된 적어도 하나의 제3 음이온 교환막과 적어도 하나의 제3 양이온 교환막;을 더 포함할 수 있다.
실시예에서, 상기 담수화 에너지 소모량 감소를 위한 이차 전지는, 상기 제2 음이온 교환막과 제2 고체 전해질 사이에, 교차로 배치된 적어도 하나의 제4 음이온 교환막과 적어도 하나의 제4 양이온 교환막;을 더 포함할 수 있다.
상기한 목적들을 달성하기 위한 구체적인 사항들은 첨부된 도면과 함께 상세하게 후술될 실시예들을 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라, 서로 다른 다양한 형태로 구성될 수 있으며, 본 발명의 개시가 완전하도록 하고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자(이하, "통상의 기술자")에게 발명의 범주를 완전하게 알려주기 위해서 제공되는 것이다.
본 발명의 일 실시예에 의하면, 양극 반응을 더 빠른 레독스(Redox) 반응으로 대체함에 따라 높은 충방전 전압 효율을 도출하여, 담수 생산간 필요 에너지를 최소화 할 수 있다.
본 발명의 효과들은 상술된 효과들로 제한되지 않으며, 본 발명의 기술적 특징들에 의하여 기대되는 잠정적인 효과들은 아래의 기재로부터 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 담수화 에너지 소모량 감소를 위한 이차 전지를 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 수계 레독스 전해질 후보군을 도시한 도면이다.
도 3a는 본 발명의 일 실시예에 따른 충방전 전압 성능 그래프를 도시한 도면이다.
도 3b는 본 발명의 일 실시예에 따른 충전 후 탈염부의 염 농도 그래프를 도시한 도면이다.
도 4a 및 4b는 본 발명의 일 실시예에 따른 이차 전지의 스택형 충전부를 도시한 도면이다.
도 5a 및 5b는 본 발명의 일 실시예에 따른 이차 전지의 스택형 방전부를 도시한 도면이다.
본 발명은 다양한 변경을 가할 수 있고, 여러 가지 실시예들을 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 이를 상세히 설명하고자 한다.
청구범위에 개시된 발명의 다양한 특징들은 도면 및 상세한 설명을 고려하여 더 잘 이해될 수 있을 것이다. 명세서에 개시된 장치, 방법, 제법 및 다양한 실시예들은 예시를 위해서 제공되는 것이다. 개시된 구조 및 기능상의 특징들은 통상의 기술자로 하여금 다양한 실시예들을 구체적으로 실시할 수 있도록 하기 위한 것이고, 발명의 범위를 제한하기 위한 것이 아니다. 개시된 용어 및 문장들은 개시된 발명의 다양한 특징들을 이해하기 쉽게 설명하기 위한 것이고, 발명의 범위를 제한하기 위한 것이 아니다.
본 발명을 설명함에 있어서, 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명을 생략한다.
이하, 본 발명의 일 실시예에 따른 담수화 에너지 소모량 감소를 위한 이차 전지를 설명한다.
도 1은 본 발명의 일 실시예에 따른 담수화 에너지 소모량 감소를 위한 이차 전지(100)를 도시한 도면이다. 도 2는 본 발명의 일 실시예에 따른 수계 레독스 전해질 후보군을 도시한 도면이다.
도 1을 참고하면, 담수화 에너지 소모량 감소를 위한 이차 전지(100)는, 제1 양극부(110), 탈염부(120), 음극부(130), 농축수부(140) 및 제2 양극부(150)를 포함할 수 있다.
음극부(130)는 유기 전해질에 함침되는 애노드(anode)(136)를 포함할 수 있다.
예를 들어, 애노드(136)는 하드 카본(Hard Carbon), Na 층간 삽입 전극 및 Na 금속을 포함할 수 있다.
제1 고체 전해질(125)은 음극부(130)와 탈염부(120) 사이에 위치하고, 탈염부(120)로부터 음극부(130)로 나트륨 이온을 통과시킬 수 있다.
예를 들어, 제1 고체 전해질(125)은 NASICON(natrium super ionic conductor)을 포함할 수 있다.
탈염부(120)는 음극부(130)의 일측에 결합하며 염수(brine)가 주입될 수 있다. 예를 들어, 염수는 해수(seawater), 기수 및 농축수를 포함할 수 있다.
일 실시예에서, 탈염부(120)는 염수가 유입되는 유입부(122)와 충전 반응을 통해 염수로부터 생성된 담수를 배출시키는 배출부(124)를 포함할 수 있다.
제1 음이온 교환막(Anion Exchange Membrane, AEM)(115)은 제1 양극부(110)와 탈염부(120) 사이에 위치하고, 탈염부(120)로부터 제1 양극부(110)로 염소 이온을 통과시킬 수 있다.
제1 양극부(110)는 탈염부(120)의 일측에 결합하며, 수계 레독스(redox) 용액에 함침되는 제1 캐소드(cathode)(116)를 포함할 수 있다.
예를 들어, 제1 캐소드(116)는 집전체 전극으로, 탄소(펠트, 천 등) 전극, 금속(Pt, Ti 등) 메쉬, 봉 전극 여러 가지 전기화학적으로 안정한 전도체를 포함할 수 있다.
일 실시예에서, 수계 레독스 용액은 수계 레독스 용액 내의 물(water)에서 충전 시 산소가 발생되지 않고, 방전 시 수소가 발생되지 않는 포텐셜(potential)을 갖는 양극 전해질을 포함할 수 있다.
일 실시예에서, 수계 레독스 용액은 충전 시 OER(oxygen evolution reaction)보다 낮은 포텐셜을 갖고, 방전 시 HER(hydrogen evolution reaction)보다 높은 포텐셜을 갖는 양극 전해질을 포함할 수 있다.
예를 들어, 도 2를 참고하면, 수계 레독스 용액은, Na4[Fe(CN)6], FeCl2/FeCl3, Br-/Br2-, Cu+/Cu2+, RuO42-/RuO4 -, TEMPO/oxoammonium, Mn[(CN)6]4-/ Mn[(CN)6]3- 등의 수계 레독스 용액을 포함할 수 있다. 또한, 흐름(flow) CDI(capacitive deionization) 전극(탄화 분말 등)이 사용될 수 있다.
농축수부(140)는 음극부(130)의 타측에 결합하며 염수가 주입될 수 있다.
일 실시예에서, 농축수부(140)는 염수가 유입되는 유입부(142)와 방전 반응을 통해 염수로부터 생성된 농축 염수를 배출시키는 배출부(144)를 포함할 수 있다.
제2 고체 전해질(135)은 음극부(130)와 농축수부(140) 사이에 위치하고 음극부(130)로부터 농축수부(140)로 나트륨 이온을 통과시킬 수 있다. 예를 들어, 제2 고체 전해질(135)은 NASICON을 포함할 수 있다.
제2 양극부(150)는 농축수부(140)의 일측에 결합하며, 수계 레독스 용액에 함침되는 제2 캐소드(156)를 포함할 수 있다.
제2 음이온 교환막(145)은 제2 양극부(150)와 농축수부(140) 사이에 위치하고, 제2 양극부(150)로부터 농축수부(140)로 염소 이온을 통과시킬 수 있다.
일 실시예에서, 수계 레독스 용액은 제1 양극부(110)와 제2 양극부(150)로 순환될 수 있다.
일 실시예에서, 제1 양극부(110)는 충전 시 사용된 수계 레독스 용액을 제2 양극부(150)로 전달하기 위한 제1 배출부(112)와 방전 시 사용된 수계 레독스 용액을 제2 양극부(150)로부터 전달 받기 위한 제1 주입부(114)를 포함할 수 있다.
또한, 제2 양극부(150)는 충전 시 사용된 수계 레독스 용액을 제1 양극부(110)로부터 전달 받기 위한 제2 주입부(152)와 방전 시 사용된 수계 레독스 용액을 제1 양극부(110)로 전달하기 위한 제2 배출부(154)를 포함할 수 있다.
일 실시예에서, 이차 전지(100)의 충전 반응 시 제1 양극부(110)와 음극부(130)에서의 반응은 각각 하기 <화학식 1> 및 <화학식 2>와 같이 나타내고, 방전 반응 시 제2 양극부(150)과 음극부(130)에서의 반응은 각각 하기 <화학식 3> 및 <화학식 4>와 같이 나타낼 수 있다.
Figure PCTKR2022010300-appb-img-000001
Figure PCTKR2022010300-appb-img-000002
Figure PCTKR2022010300-appb-img-000003
Figure PCTKR2022010300-appb-img-000004
이러한 순환을 통해, 충전(방전) 간 산화(환원)된 Na3Fe(CN)6와 Na4Fe(CN)6를 다시 방전(충전) 간 환원(산화)하여 용액을 가역적으로 사용할 수 있도록 다시 재생 가능하게 할 수 있다.
또한, 탈염부(120)와 농축수부(140)를 구분되게 사용하여, 충전과 방전 간에 염수 교환 과정 없이 각 격실에서 담수와 농축수 생산이 가능하도록 할 수 있다.
만약 종래와 같이 순환하지 않고, 한 자리에서 용액을 계속 사용할 경우 탈염부 격실과 농축수부 격실을 한 개의 격실로 번갈아가면서 활용해야하는데, 이 경우, 담수 생산과 농축수 생산 간에 격실 내 염수를 계속해서 교환해주어야 한다는 번거로움이 있다.
도 3a는 본 발명의 일 실시예에 따른 충방전 전압 성능 그래프를 도시한 도면이다. 도 3b는 본 발명의 일 실시예에 따른 충전 후 탈염부의 염 농도 그래프를 도시한 도면이다.
도 3a를 참고하면, 본 발명에 따른 이차 전지(100)는 충전 전압이 낮아지고 방전 전압이 높아짐을 확인할 수 있다.
즉, 본 발명의 경우, 양극 반응을 더 빠른 레독스(Redox) 반응으로 대체함에 따라 높은 충방전 전압 효율을 도출하여, 담수 생산간 필요 에너지를 최소화 할 수 있다.
도 3b를 참고하면, 본 발명의 탈염부(120)의 경우(Na-HCF Final), 초기 염 농도가 35,064ppm이었으나, 충전 후 555ppm까지 감소하여 담수화 효능이 향상됨을 확인할 수 있다.
반면, 종래의 경우(Seawater Final), 충전 후 1,294ppm으로 감소하여 본 발명에 비하여 담수화 효과가 낮음을 확인할 수 있다.
일 실시예에서, 하기 <표 1>과 같이 본 발명에 따른 이차 전지(100)는 기존 시스템에 비하여, 충방전간 소모 에너지, 담수 생성량, 담수 생성량 당 에너지가 효율적임을 확인할 수 있다.
기존 시스템
(양극부 : 염수)
본 발명에 따른 이차 전지
(양극부 : 0.1 M Na-HCF + 0.1M NaCl)
충방전간 소모 에너지(mWh) 50.0 16.7
담수 생성량(mL) 2.6 3.3
담수 생성량 당 에너지mWh/mL (kWh/m3) 19.2 5.0
도 4a 및 4b는 본 발명의 일 실시예에 따른 이차 전지의 스택형 충전부를 도시한 도면이다.
도 4a 및 4b를 참고하면, 담수화 에너지 소모량 감소를 위한 이차 전지(100)는 제1 음이온 교환막(115)과 제1 고체 전해질(125) 사이에 교차로 배치된 적어도 하나의 제3 양이온 교환막(Cation Exchange Membrane, CEM)(410)과 적어도 하나의 제3 음이온 교환막(420)을 포함할 수 있다.
일 실시예에서, 제1 음이온 교환막(115)과 제1 고체 전해질(125) 사이에 교차로 여러 층의 제3 양이온 교환막(410)과 제3 음이온 교환막(420)이 배치될 수 있다.
일 실시예에서, 충전 반응을 통해 탈염부(120)의 제1 음이온 교환막(115)과 제3 양이온 교환막(410) 사이와 제3 음이온 교환막(420)과 제1 고체 전해질(125) 사이에는 담수가 생성되어 배출될 수 있다.
일 실시예에서, 충전 반응을 통해 탈염부(120)의 제3 양이온 교환막(410)과 제3 음이온 교환막(420) 사이에는 농축 염수가 생성되어 배출될 수 있다.
이 경우, 충전 간 담수 생산량을 증가시킬 수 있어, 결과적으로, 담수 생산량 당 에너지 소모량을 감소시킬 수 있다.
예를 들어, 기존 염수담수화 배터리 충전부의 경우, 1F 전하량만큼 충전할 때, 1 몰(mole)의 NaCl이 제거되지만, 본 발명에 따른 스택형 충전부의 경우, 도 4a와 같이 한 쌍의 제3 양이온 교환막(410)과 제3 음이온 교환막(420)이 배치되어 있는 경우, 1F 전하량 만큼 충전할 때, 2 몰의 NaCl이 제거되며, 도 4b와 같이 N쌍의 제3 양이온 교환막(410)과 제3 음이온 교환막(420)이 배치되어 있는 경우, 1F 전하량 만큼 충전할 때, N 몰의 NaCl이 제거될 수 있다.
도 5a 및 5b는 본 발명의 일 실시예에 따른 이차 전지의 스택형 방전부를 도시한 도면이다.
도 5a 및 5b를 참고하면, 담수화 에너지 소모량 감소를 위한 이차 전지(100)는 제2 음이온 교환막(145)과 제2 고체 전해질(135) 사이에 교차로 배치된 적어도 하나의 제4 음이온 교환막(510)과 적어도 하나의 제4 양이온 교환막(520)을 포함할 수 있다.
일 실시예에서, 제2 음이온 교환막(145)과 제2 고체 전해질(135) 사이에 교차로 여러 층의 제4 음이온 교환막(510)과 제4 양이온 교환막(520)이 배치될 수 있다.
일 실시예에서, 방전 반응을 통해 농축수부(140)의 제2 고체 전해질(135)과 제4 음이온 교환막(510) 사이와 제4 양이온 교환막(520)과 제2 음이온 교환막(145) 사이에는 농축 염수가 생성되어 배출될 수 있다.
일 실시예에서, 방전 반응을 통해 농축수부(140)의 제4 음이온 교환막(510)과 제4 양이온 교환막(520) 사이에는 담수가 생성되어 배출될 수 있다.
이 경우, 방전 간에 담수를 생산할 수 있어, 결과적으로, 담수 생산량 당 에너지 소모량을 감소시킬 수 있다.
예를 들어, 기존 해수담수화 배터리 방전부의 경우, 담수생산이 불가하며, 농축 염수만이 생성되지만, 본 발명에 따른 스택형 방전부의 경우, 도 5a와 같이 한 쌍의 제4 음이온 교환막(510)과 제4 양이온 교환막(520)이 배치되어 있는 경우, 1F 전하량 만큼 방전할 때, 1 몰의 NaCl이 제거되고, 도 5b와 같이 N 쌍의 제4 음이온 교환막(510)과 제4 양이온 교환막(520)이 배치되어 있는 경우, 1F 전하량 만큼 방전할 때, N 몰의 NaCl이 제거될 수 있다.
이상의 설명은 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과한 것으로, 통상의 기술자라면 본 발명의 본질적인 특성이 벗어나지 않는 범위에서 다양한 변경 및 수정이 가능할 것이다.
본 명세서에 개시된 다양한 실시예들은 순서에 관계없이 수행될 수 있으며, 동시에 또는 별도로 수행될 수 있다.
일 실시예에서, 본 명세서에서 설명되는 각 도면에서 적어도 하나의 단계가 생략되거나 추가될 수 있고, 역순으로 수행될 수도 있으며, 동시에 수행될 수도 있다.
본 명세서에 개시된 실시예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라, 설명하기 위한 것이고, 이러한 실시예들에 의하여 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 보호범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 이해되어야 한다.

Claims (7)

  1. 유기 전해질에 함침되는 애노드(anode)를 포함하는 음극부;
    상기 음극부의 일측에 결합하며, 염수(brine)가 주입되는 탈염부;
    상기 탈염부의 일측에 결합하며, 수계 레독스(redox) 용액에 함침되는 제1 캐소드(cathode)를 포함하는 제1 양극부;
    상기 음극부의 타측에 결합하며, 염수가 주입되는 농축수부; 및
    상기 농축수부의 일측에 결합하며, 상기 수계 레독스 용액에 함침되는 제2 캐소드를 포함하는 제2 양극부;
    를 포함하는,
    담수화 에너지 소모량 감소를 위한 이차 전지.
  2. 제1항에 있어서,
    상기 수계 레독스 용액은, 상기 수계 레독스 용액 내의 물(water)에서 충전 시 산소가 발생되지 않고, 방전 시 수소가 발생되지 않는 포텐셜(potential)을 갖는 양극 전해질을 포함하는,
    담수화 에너지 소모량 감소를 위한 이차 전지.
  3. 제1항에 있어서,
    상기 음극부와 상기 탈염부 사이에 위치하고, 상기 탈염부로부터 상기 음극부로 나트륨 이온을 통과시키는 제1 고체 전해질; 및
    상기 제1 양극부와 상기 탈염부 사이에 위치하고, 상기 탈염부로부터 상기 제1 양극부로 염소 이온을 통과시키는 제1 음이온 교환막;
    을 더 포함하는,
    담수화 에너지 소모량 감소를 위한 이차 전지.
  4. 제1항에 있어서,
    상기 음극부와 상기 농축수부 사이에 위치하고, 상기 음극부로부터 상기 농축수부로 나트륨 이온을 통과시키는 제2 고체 전해질; 및
    상기 제2 양극부와 상기 농축수부 사이에 위치하고, 상기 제2 양극부로부터 상기 농축수부로 염소 이온을 통과시키는 제2 음이온 교환막;
    을 더 포함하는,
    담수화 에너지 소모량 감소를 위한 이차 전지.
  5. 제1항에 있어서,
    상기 제1 양극부는, 충전 시 사용된 수계 레독스 용액을 상기 제2 양극부로 전달하기 위한 제1 배출부와 상기 방전 시 사용된 수계 레독스 용액을 상기 제2 양극부로부터 전달 받기 위한 제1 주입부를 포함하고,
    상기 제2 양극부는, 상기 충전 시 사용된 수계 레독스 용액을 상기 제1 양극부로부터 전달 받기 위한 제2 주입부와 상기 방전 시 사용된 수계 레독스 용액을 상기 제1 양극부로 전달하기 위한 제2 배출부를 포함하는,
    담수화 에너지 소모량 감소를 위한 이차 전지.
  6. 제3항에 있어서,
    상기 제1 음이온 교환막과 제1 고체 전해질 사이에, 교차로 배치된 적어도 하나의 제3 음이온 교환막과 적어도 하나의 제3 양이온 교환막;
    을 더 포함하는,
    담수화 에너지 소모량 감소를 위한 이차 전지.
  7. 제4항에 있어서,
    상기 제2 음이온 교환막과 제2 고체 전해질 사이에, 교차로 배치된 적어도 하나의 제4 음이온 교환막과 적어도 하나의 제4 양이온 교환막;
    을 더 포함하는,
    담수화 에너지 소모량 감소를 위한 이차 전지.
PCT/KR2022/010300 2021-07-19 2022-07-14 담수화 에너지 소모량 감소를 위한 이차 전지 WO2023003276A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210094048A KR102590023B1 (ko) 2021-07-19 2021-07-19 담수화 에너지 소모량 감소를 위한 이차 전지
KR10-2021-0094048 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023003276A1 true WO2023003276A1 (ko) 2023-01-26

Family

ID=84979462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010300 WO2023003276A1 (ko) 2021-07-19 2022-07-14 담수화 에너지 소모량 감소를 위한 이차 전지

Country Status (2)

Country Link
KR (1) KR102590023B1 (ko)
WO (1) WO2023003276A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064080A (ja) * 1998-08-21 2000-02-29 Toshiba Corp 水素発生装置
KR20190112908A (ko) * 2018-03-27 2019-10-08 고려대학교 산학협력단 해수전지가 결합된 해수담수화 플랜트
US20200115257A1 (en) * 2017-08-11 2020-04-16 Palo Alto Research Center Incorporated Electrochemical desalination system with coupled electricity storage
KR20200133053A (ko) * 2019-05-15 2020-11-26 울산과학기술원 담수 생산을 위한 이차 전지 및 이를 포함하는 담수화 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938344B1 (ko) 2009-06-18 2010-01-22 금호산업주식회사 막여과장치 및 역삼투막장치를 이용한 해수담수화 방법
KR101394132B1 (ko) 2012-11-20 2014-05-14 한국에너지기술연구원 고효율 염분차 발전장치
KR101705791B1 (ko) * 2013-06-28 2017-02-13 한국에너지기술연구원 전도성 폼을 구비한 염분차 발전 장치
KR102131094B1 (ko) * 2018-09-13 2020-07-08 울산과학기술원 담수 생산 이차전지
KR102153995B1 (ko) 2019-03-19 2020-09-09 성균관대학교산학협력단 레독스 흐름전지용 전해질에 의한 연속적인 탈 이온화 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064080A (ja) * 1998-08-21 2000-02-29 Toshiba Corp 水素発生装置
US20200115257A1 (en) * 2017-08-11 2020-04-16 Palo Alto Research Center Incorporated Electrochemical desalination system with coupled electricity storage
KR20190112908A (ko) * 2018-03-27 2019-10-08 고려대학교 산학협력단 해수전지가 결합된 해수담수화 플랜트
KR20200133053A (ko) * 2019-05-15 2020-11-26 울산과학기술원 담수 생산을 위한 이차 전지 및 이를 포함하는 담수화 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEBRULER CAMDEN, WU WENDA, COX KEVIN, VANNESS BRICE, LIU T. LEO: "Integrated Saltwater Desalination and Energy Storage through a pH Neutral Aqueous Organic Redox Flow Battery", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 30, no. 24, 1 June 2020 (2020-06-01), DE , pages 1 - 8, XP055957595, ISSN: 1616-301X, DOI: 10.1002/adfm.202000385 *

Also Published As

Publication number Publication date
KR20230013378A (ko) 2023-01-26
KR102590023B1 (ko) 2023-10-17

Similar Documents

Publication Publication Date Title
EP1551074B1 (en) Method for operating redox flow battery and redox flow battery cell stack
US11532832B2 (en) All-vanadium sulfate acid redox flow battery system
JP3626096B2 (ja) レドックスフローバッテリシステム及びセル連設構造
WO2014181898A1 (ko) 열에너지/화학포텐셜을 이용한 대용량 전력저장시스템
WO2017179795A1 (ko) 레독스 흐름전지
WO2014035020A1 (ko) 션트전류 저감을 위한 레독스 흐름전지용 매니폴드 및 이를 포함하는 레독스 흐름전지
EP2436080A2 (en) Electrolyte compositions
JPS6215770A (ja) レドックス二次電池
WO2023003276A1 (ko) 담수화 에너지 소모량 감소를 위한 이차 전지
WO2016140521A1 (ko) 격자형 흐름전극구조체
WO2018079965A1 (ko) 효율적인 수소-전기 생산이 가능한 역전기 투석 장치를 이용한 하이브리드 발전 시스템 및 에너지 자립형 수소-전기 복합 충전 스테이션
WO2020036107A1 (ja) レドックスフロー電池用電解液、レドックスフロー電池およびその運転方法
US3622490A (en) Electrical circuit
WO2013118998A1 (ko) 레독스 플로우 이차 전지
WO2021172607A1 (ko) 전도성 중간층을 포함하는 아연-브롬 흐름전지
WO2019156415A1 (ko) 이산화탄소를 이용한 수계 이차전지 및 이를 구비하는 복합 시스템
WO2023101338A1 (ko) 바나듐 전해액의 제조 방법
CN111180777A (zh) 一种锌溴单液流电池用正极电解液
US11664518B2 (en) Alkaline manganese redox flow battery with inhibitor
JP2000100460A (ja) 全鉄電池およびその充電深度の調節方法
WO2023103313A1 (zh) 一种基于多电子转移的水系碘基电池
WO2018056732A2 (ko) 수계 레독스 플로우 전지용 유기계 양극 활물질
JP2002175829A (ja) 全バナジウムレドックスフロー電池および全バナジウムレドックスフロー電池の運転方法
WO2023113337A1 (ko) 선박평형수 전기분해용 pt-ru-ti 촉매 전극
JPH02250269A (ja) 電解液循環型二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22846146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE