WO2017179795A1 - 레독스 흐름전지 - Google Patents

레독스 흐름전지 Download PDF

Info

Publication number
WO2017179795A1
WO2017179795A1 PCT/KR2016/014994 KR2016014994W WO2017179795A1 WO 2017179795 A1 WO2017179795 A1 WO 2017179795A1 KR 2016014994 W KR2016014994 W KR 2016014994W WO 2017179795 A1 WO2017179795 A1 WO 2017179795A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
flow path
charging
flow battery
Prior art date
Application number
PCT/KR2016/014994
Other languages
English (en)
French (fr)
Inventor
조범희
김부기
김기현
최담담
김원태
이수정
김다영
Original Assignee
스탠다드에너지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스탠다드에너지(주) filed Critical 스탠다드에너지(주)
Publication of WO2017179795A1 publication Critical patent/WO2017179795A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0269Separators, collectors or interconnectors including a printed circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery, and more particularly, a redox flow capable of varying a charge voltage and a discharge voltage by switching and controlling three or more conductive terminals in a redox flow battery in which a plurality of cells are stacked. It relates to a battery.
  • An energy storage system is a system that stores power produced by thermal power, hydropower, nuclear power, solar power, wind power and tidal power, and cogeneration, and then supplies power to devices or systems that require power.
  • the energy storage system is composed of a storage method using a battery using a secondary battery such as a LiB battery, a NaS battery, a flow battery (FB), a super capacitor, and a non-battery storage method.
  • electrolyte containing an electroactive material inside the flow cell, and the electrolyte flows through an electrochemical reactor, and chemical energy is converted into electric energy. Material that can participate in or be absorbed by the electrode)
  • ion exchange is performed while the anode electrolyte and the cathode electrolyte are circulated on both sides of the membrane, and in this process, electrons move to generate charge and discharge.
  • Such a flow battery is known to be most suitable for an energy storage system because it has a longer lifespan than a conventional secondary battery and can be manufactured in a kW to MW class medium and large system.
  • the flow cell can be recharged quickly by replacing the electrolyte (just like filling a tank with gasoline for the operation of an internal combustion engine) and the existing electrolyte collected can be recharged and then recycled.
  • the flow cell can freely modify its structure and has the advantages of long operating life, fast reaction time and no emission of harmful substances.
  • some flow cells have a simple state of charge measurement, low maintenance costs and resistance to overcharge / over discharge.
  • Redox flow battery is a combination of words of reduction, oxidation, and flow. It means a battery that stores electrolyte in a tank and sends the electrolyte to a part called a cell with a pump to charge / discharge it. do.
  • Korean Patent [10-1241532] discloses a battery charging device for adaptively varying the charging voltage and a battery charging control method thereof.
  • Patent Document 1 Korean Registered Patent [10-1241532] (Registration Date: March 04, 2013)
  • an object of the present invention is to provide a switching voltage, three or more conductive terminals in the redox flow battery is stacked a plurality of cells, the charge voltage and discharge voltage It is to provide a redox flow battery that can vary.
  • Redox flow battery for achieving the above object, in the redox flow battery for storing the electrolyte in the tank and circulating the electrolyte into the cell, is formed in the form of a membrane, A separator 110 through which ions pass between electrolytes transferred from both sides; Flow path frames 120a and 120b stacked on both surfaces of the separator 110 and having flow paths through which the positive and negative electrolytes pass, respectively; And stacked plates 130a and 130b that are stacked on the outer surfaces of the flow path frames 120a and 120b and through which charge passes.
  • the cells 100 including one or more cells are stacked and the outermost cells 100 on both sides thereof.
  • a first circulation flow path is introduced into the fixed frame 300a and flows out through the flow path frame 120a to the fixed frame 300a.
  • a cathode electrolyte flows into the fixed frame 300b provided on the other side.
  • the switching unit 600 is characterized in that a plurality of switches are provided to selectively switch the electrical connection between the cell 100, series connection, parallel connection, serial-to-parallel mixed connection.
  • controller 900 controls the switching unit 600 differently from a cell connected to a charging circuit and a cell connected to a discharge circuit.
  • the redox flow battery is characterized in that the charge and discharge can proceed at the same time.
  • control unit 900 controls the switching unit 600 based on the charging power supplied through the charging circuit unit 400.
  • control unit 900 is characterized in that for controlling the switching unit 600 based on the discharge power to be supplied to the external load through the discharge circuit unit 500.
  • an external circuit connection terminal is formed on at least three current collector plates among the current collector plates, and the charging and discharging can be varied.
  • the number of series-connected cells to be used for charging can be adjusted according to the charging voltage, thereby increasing the charging efficiency.
  • the present invention since the cells share the electrolyte, it is possible to perform the charging and discharging at the same time, there is an effect that can switch the charging voltage and the discharge voltage differently.
  • FIG. 1 is a conceptual diagram of a redox flow battery according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating a flow path through which a positive electrolyte and a negative electrolyte circulate in a redox flow battery according to an exemplary embodiment of the present invention.
  • FIG. 3 is a conceptual diagram showing an example of the components of the cell of the redox flow battery according to an embodiment of the present invention.
  • FIG. 4 is an assembly view showing an example of assembling the addition of the impregnation member in FIG.
  • FIG. 5 is an assembly view showing an example of assembling the outermost cell of the redox flow battery according to an embodiment of the present invention to a fixed frame.
  • FIG. 6 is a circuit diagram of a redox flow battery according to an embodiment of the present invention.
  • FIG. 7 is a circuit diagram illustrating an example in which a plurality of switches are provided to enable a series, parallel, series-parallel mixed connection between cells in an electrical connection of a redox flow battery according to an embodiment of the present invention.
  • FIG. 8 is a circuit diagram illustrating an example of charging only some cells of a redox flow battery according to an embodiment of the present invention.
  • FIG. 9 is a circuit diagram showing an example of discharging only some cells of the redox flow battery according to an embodiment of the present invention.
  • FIG. 10 is a circuit diagram illustrating an example in which some cells of a redox flow battery according to an embodiment of the present invention are connected to a charging circuit for charging and some other cells are connected to a discharge circuit for discharging.
  • FIG. 1 is a conceptual diagram of a redox flow battery according to an embodiment of the present invention
  • Figure 2 is a conceptual diagram showing a flow path through which the positive and negative electrolyte flow of the redox flow battery according to an embodiment of the present invention
  • 3 is a conceptual diagram showing an example of the components of the cell of the redox flow battery according to an embodiment of the present invention
  • Figure 4 is an assembly diagram showing an example of assembling the addition of the impregnation member in Figure 3
  • Figure 5 is 6 is an assembly view showing an example of assembling the outermost cell of the redox flow battery according to an embodiment of the present invention to a fixed frame
  • FIG. 6 is a circuit diagram of a redox flow battery according to an embodiment of the present invention
  • FIG. 8 is a circuit diagram illustrating an example in which a plurality of switches are provided to enable a series, parallel, series-parallel mixed connection of an electrical connection between cells of a redox flow battery according to an embodiment of the present invention
  • FIG. 9 is a circuit diagram showing an example of charging only some cells of a redox flow battery according to an embodiment
  • FIG. 9 is a circuit diagram showing an example of discharging only some cells of a redox flow battery according to an embodiment of the present invention
  • FIG. Some cells of a redox flow battery according to an embodiment of the present invention are connected to a charging circuit to charge, and some other cells are connected to a discharge circuit to show an example of discharging.
  • the redox flow battery according to an embodiment of the present invention in the redox flow battery (see Figure 1) for storing the electrolyte in the tank and circulating the electrolyte into the cell,
  • One or more cells 100 including the separator 110, the flow path frames 120a and 120b, and the separators 130a and 130b are stacked, and the outermost surface of the outermost cell 100 on both sides is stacked.
  • a current collector plate 200a, 200b, and 200c stacked between the cell 100 and the cell 100 and formed of a conductive material and provided with at least three.
  • the fixed frame having a cathode electrolyte on one side thereof.
  • a first circulation flow path is introduced into the fixed frame 300a through the flow path frame 120a through the flow path frame 120a, and the negative electrolyte flows into the fixed frame 300b provided on the other side, and thus flow path frame 120b.
  • a second circulation passage flowing through the fixed frame 300b is formed,
  • the charging circuit unit 400 further includes a discharge circuit unit 500, a switching unit 600, and a controller 900.
  • the flow path of the redox flow battery according to the exemplary embodiment of the present invention is circulated to the anode electrolyte flow path, and the cathode electrolyte is circulated to the cathode electrolyte flow path. That is, the anolyte and the catholyte are not mixed with each other, and the anolyte is circulated only through the anolyte passage, and the anolyte is circulated only through the anolyte passage.
  • An anode electrolyte flows into the anode side flow path 120a through the inflow side flow path of the anode flow path frame 120a from the anode electrolyte flow path (lower flow path in FIG. 2), and then inside the anode flow path frame 120a.
  • the positive electrolyte flowed into the positive electrode flows out into the positive electrolyte flow path (the upper flow path in FIG. 2) through the outflow side flow path of the anode side flow path frame 120a.
  • the inflow side flow path and the outflow side flow path are formed in one edge and the opposite edge in FIG.
  • the negative electrolyte flows into the negative electrode flow path frame 120b from the negative electrolyte flow path (the lower flow path in FIG. 2) through the inflow flow path of the negative electrode flow path frame 120b, and then inside the negative electrode flow path frame 120b.
  • the negative electrolyte solution introduced into the negative electrode solution flows out into the negative electrolyte flow path (the upper flow path in FIG. 2) through the outflow side flow path of the negative electrode flow path frame 120b.
  • the inflow side flow path and the outflow side flow path are formed in one edge and the other edge in FIG.
  • the outlet side flow path and the inflow side flow path of the anode side flow path frame 120a are alternately formed so as not to face the outflow side flow path and the inflow side flow path of the cathode side flow path frame 120b, but the present invention is limited thereto.
  • various flow paths may be formed since the anode electrolyte and the cathode electrolyte are not mixed by the separator 110, various flow paths may be formed.
  • the anode electrolyte is circulated along the anode electrolyte flow path
  • the cathode electrolyte is circulated along the cathode electrolyte flow path
  • the cathode electrolyte flows into the anode side flow path frame 120a and inside the cathode side flow path frame 120b. Charged and discharged by the negative electrode electrolyte introduced by the oxidation and reduction reaction.
  • the separation plate 130a, the flow path frame 120a, the separation membrane 110, the flow path frame 120b, and the separation plate 130b may be stacked in this order to form one cell.
  • One or more of these cells are stacked, and there is at least one section in which a current collector plate 200c is provided between the cells and the cells, and one modular cell may be configured by stacking the current collector plates 200a and 200b at both ends. have. Multiple such modular cells can be connected to form a stack.
  • the separation membrane 110 is formed in the form of a membrane, and ions pass between electrolytes transferred from both sides.
  • the separator 110 is also called a membrane, and an anode electrolyte is circulated on one side of the separator 110, and an anode electrolyte is circulated on the other side of the separator 110, and ion exchange is performed between the cathode electrolyte and the cathode electrolyte.
  • the separator 110 may pass ions. That is, by placing the separator 110 in the center, ion exchange is possible without mixing the positive and negative electrolyte solutions.
  • Such a flow battery is known to be most suitable for an energy storage system because it has a longer lifespan than a conventional secondary battery and can be manufactured in a kW to MW class medium and large system.
  • the flow path frames 120a and 120b are stacked on both sides of the separator 110, and flow paths through which the positive and negative electrolytes pass, respectively, are formed.
  • the flow path frames 120a and 120b have spaces formed therein and flow paths formed outwardly, and one is stacked on the cathode side and one on the cathode side.
  • the flow paths of the flow path frames 120a and 120b are formed with an inflow side flow path through which an electrolyte flows in and an outlet side flow path through which the electrolyte flows out.
  • the electrolyte flowing through the flow path frames 120a and 120b flows out to the flow path frames 120a and 120b.
  • the anode electrolyte flows into the inflow side flow path of the flow path frame 120a stacked on the anode side, and the cathode electrolyte flows out of the outflow side flow path of the flow path frame 120a.
  • the negative electrolyte flows into the inflow side flow path of the flow path frame 120b stacked on the negative electrode side, and the negative electrolyte flows out of the outflow side flow path of the flow path frame 120b.
  • the separation plates 130a and 130b are stacked on the outer surfaces of the flow path frames 120a and 120b and charges pass therethrough.
  • One or more separators 130a and 130b are stacked on one cathode side and one anode side.
  • the separation membrane 110, the flow path frames 120a and 120b and the separation plates 130a and 130b form a space in a predetermined region and prevent the electrolyte from escaping to a place other than a predetermined flow path.
  • the separation plates 130a and 130b may pass electrons. That is, the electrons can be moved while preventing the electrolyte from escaping to a place other than a predetermined flow path.
  • the impregnation member 160 may be further provided (see FIG. 4) in a space formed by stacking the separator 110, the flow path frames 120a and 120b, and the separator plates 130a and 130b.
  • the impregnation member may be located in a space formed by stacking the separator 110, the flow path frames 120a and 120b, and the separator plates 130a and 130b.
  • the current collector plates 200a, 200b, and 200c are stacked on both outermost sides of the outermost cell 100 and between the cells 100 and 100, and are formed of a conductive material and provided with at least three.
  • the current collector plates 200a, 200b, and 200c each have one current collector plate 200a and 200b stacked on one side of the anode side of one outermost cell and one cathode side of the other outermost cell, respectively. ) Has at least one section. That is, at least one current collector plate 200c is provided between the cell and the cell. However, as well as the case where the current collector plate is provided between all the cells and the cells as well as the current collector plate for each of the two or more cells, a plurality of cells located between the current collector plate and the current collector plate can be connected through the separator.
  • the current collector plates 200a, 200b, and 200c may be formed of a conductive material, and may be electrically connected to the current collector plates 200a, 200b, and 200c, respectively.
  • the charging circuit unit 400 supplies charging power to the cells 100.
  • the charging circuit unit 400 serves to supply charging power to the cell 100, and receives the external power to charge the cell 100.
  • the discharge circuit unit 500 supplies discharge power to the external load from the cells 100.
  • the discharge circuit unit 500 serves to supply power supplied from the cell 100 to an external load, and applies (discharges) power generated from the cell 100 to an external load.
  • the switching unit 600 switches electrical connections between the cells 100, the charging circuit unit 400, and the discharge circuit unit 500.
  • the switching unit 600 switches an electrical connection between the connection terminal of the current collector plate 200, the charging circuit unit 400, and the discharge circuit unit 500.
  • the switching unit 600 switches so that all or part of the cells 100 are charged, discharged, or charged / discharged.
  • the controller 900 may control the switching unit 600 by dividing the cell 100 used for charging and the cell 100 used for discharging.
  • the controller 900 controls the switching unit 600 to charge, discharge or charge / discharge the redox flow battery according to an embodiment of the present invention.
  • the switching unit 600 of the redox flow battery selects an electrical connection between the cells 100, a series connection, a parallel connection, and a series-parallel mixed connection.
  • a plurality of switches may be provided so as to be switchable.
  • the cells 100 and cells 100 of the modular cell may be in a series, parallel, or parallel parallel structure.
  • Modular cells and modular cells in a stack may be connected in a series, parallel, or parallel mixed structure, and one or more such stacks may be connected in a series, parallel, or parallel mixed structure.
  • FIG. 7 illustrates an example in which six cells 100 are assembled to form a modular cell.
  • FIG. 7 illustrates an electrical connection between the cells 100.
  • the voltage of one modular cell may be increased to the maximum. That is, when the voltage required by the load is high, the cells 100 may be switched to be connected in series to match the required voltage.
  • Switching all the cells 100 of FIG. 7 to be electrically connected in parallel may maximize the amount of current generated in one modular cell. That is, when there is a large amount of current required by the load, the cells 100 may be switched to be connected in parallel to match the required current.
  • the electrical connection between the cells 100 may be switched to be a mixed series in parallel according to the value of the voltage and current required by the load. For example, if two cells require a series-connected voltage at the load, two cells can be connected in series, and the two cells in series can be connected in parallel.
  • control unit 900 of the redox flow battery uses the switching unit 600 differently from a cell connected to a charging circuit and a cell connected to a discharge circuit. It may be characterized by controlling.
  • FIG. 8 is a circuit diagram showing an example of charging only some cells of the redox flow battery according to an embodiment of the present invention, shows an example of charging only four cells from the left.
  • the circuit may be configured as shown in FIG. 8.
  • the redox flow battery sharing the electrolyte may be charged. It is desirable to avoid increasing the number of cells connected in series because charging may not be possible.
  • the entire charge is possible by connecting one cell to the charging circuit unit 400 due to sharing of the electrolyte. This may be performed by connecting some cells to the charging circuit unit 400 even if a low voltage that cannot be used to charge the entire cell is applied from the charging circuit unit 400. That is, since the electrolyte charged in some cells charges the redox flow battery while circulating, the charging efficiency may be increased.
  • FIG. 9 is a circuit diagram showing an example of discharging only some cells of a redox flow battery according to an embodiment of the present invention, and shows an example of discharging four cells from the second cell to the fifth cell from the left to the left.
  • a circuit may be configured as shown in FIG. 9.
  • the redox flow battery sharing the electrolyte may be discharged as a whole. It is desirable to change the number of cells connected in series here because it may cause an electrical problem (low voltage or overvoltage) at the load end.
  • the redox flow battery according to an embodiment of the present invention may be characterized in that the charging and discharging at the same time.
  • FIG. 10 is a circuit diagram illustrating an example in which some cells of a redox flow battery according to an embodiment of the present invention are connected to a charging circuit for charging and some other cells are connected to a discharge circuit for discharging. In addition, three cells are discharged from the fourth cell from the left to the sixth cell from the left.
  • charging and discharging can be performed simultaneously.
  • the charging and discharging can be simultaneously performed, and the charging voltage and the discharge voltage can be switched differently.
  • the control unit 900 of the redox flow battery may control the switching unit 600 based on the charging power supplied through the charging circuit unit 400.
  • connection terminal of the current collecting plate 200, the charging circuit unit 400, and the discharge circuit unit 500 may be switched according to a DC voltage input through the inverter.
  • the number of cells connected in series to increase the charging efficiency by the DC voltage coming through the inverter is four, it can be charged by switching as shown in FIG. At this time, connecting all of the cells connected in series (six in the case of FIG. 8) to the charging circuit rather decreases the charging efficiency, and in some cases, the charging itself may not be performed.
  • the control unit 900 of the redox flow battery according to an embodiment of the present invention is characterized in that for controlling the switching unit 600 based on the discharge power to be supplied to the external load through the discharge circuit unit 500. can do.
  • the number of cells connected in series and the number of cells connected in series to increase the charging efficiency by the DC voltage coming through the inverter is four, the number of cells connected in series is switched, as shown in FIG. Charge and discharge can be performed at the same time.
  • the output-only cell is only responsible for the output and the charge-only cell is divided into output-only cells, cells that can vary the output and charge, and charge-only cells. It is also possible to charge only the charge.
  • the cells that can vary the output and the charge can be connected in series with the charge-only cells in accordance with the number of cells connected in series to increase the charging efficiency by the DC voltage coming through the inverter, and the load side than the output-only cells If high outputs are required, they can be connected in series with output-only cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Power Engineering (AREA)

Abstract

본 발명은 레독스 흐름전지에 관한 것으로서, 더욱 상세하게는 다수의 셀이 적층된 레독스 흐름전지에 셋 이상의 전도성 단자를 구비하고 스위칭 제어하여, 충전전압과 방전전압을 가변시킬 수 있는 레독스 흐름전지를 제공한다.

Description

레독스 흐름전지
본 발명은 레독스 흐름전지에 관한 것으로서, 더욱 상세하게는 다수의 셀이 적층된 레독스 흐름전지에 셋 이상의 전도성 단자를 구비하고 스위칭 제어하여, 충전전압과 방전전압을 가변시킬 수 있는 레독스 흐름전지에 관한 것이다.
최근 에너지저장시스템(ESS:Energy storage system)의 개발이 활발히 진행되고 있는 가운데 충방전이 가능한 이차전지(Secondary battery)가 유력한 기술로 각광받고 있다.
에너지저장시스템은 화력, 수력, 원자력, 태양광, 풍력 및 조력, 열병합발전 등에 의하여 생산된 전력을 저장한 뒤에 전력이 필요한 장치나 계통에 전원을 공급하는 시스템이다. 이를 위하여 에너지저장시스템은 LiB전지, NaS 전지, 흐름전지(FB: Flow Battery), 수퍼캐패시터 등의 이차전지를 이용한 배터리를 이용한 저장방식과 비 배터리 저장방식으로 구성된다.
이중, 흐름전지 내부에는 전기활성물질을 포함하고 있는 전해액이 있으며, 해당 전해액이 전기화학반응기를 통해 흐르면서 화학적 에너지가 전기 에너지로 변환된다.(여기서 '전기활성물질'이란 전해액에 포함되어 있어 전극반응에 참여하거나 전극에 흡수될 수 있는 물질을 말한다)
보다 상세하게 설명하자면, 흐름전지는 멤브레인의 양측에 양극 전해액(Electrolyte)과 음극 전해액이 순환하면서 이온 교환이 이루어지고 이 과정에서 전자의 이동이 발생하여 충방전이 이루어진다. 이와 같은 흐름전지는 기존 이차전지에 비해 수명이 길고 kW~MW급 중대형 시스템으로 제작할 수 있기 때문에 에너지저장시스템에 가장 적합한 것으로 알려져 있다.
흐름전지는 전해액을 교체함으로써 빠르게 재충전할 수 있으며,(마치 내연기관의 작동을 위해 휘발유를 탱크에 채우는 것과 같다) 수거된 기존의 전해액은 재충전한 다음 재활용할 수 있다.
흐름전지는 그 구조를 자유롭게 변형시킬 수 있으며, 긴 작동수명, 빠른 반응시간, 그리고 유해물질을 배출하지 않는다는 장점을 가진다.
몇몇 흐름전지는 위에서 말한 것 외에도 충전상태 측정이 간단하다는 점, 낮은 유지보수 비용 및 초과충전/초과방전에 저항력을 가진다.
에너지저장시스템(ESS:Energy storage system)으로 이차전지의 용량을 늘리기 위하여 반응 물질이 내부로 순환하는 레독스 흐름전지(Redox-Flow battery)가 각광 받고 있다.
레독스 흐름전지란 reduction(환원), oxidation(산화), flow(흐름)의 단어를 합성한 것으로 전해액을 탱크에 저장하고 그 전해액을 펌프로 셀이라고 불리는 부분에 송액 하여 충전/방전하는 전지를 의미한다.
다수의 셀이 적층되어 스택을 이루는 레독스 흐름전지 구조에서, 종래에는 양 끝단에만 전도성 단자가 구비되어, 충전 및 방전 에너지의 전기 밀도가 시간에 따라 가변적인 시스템에 연결 시 충전 및 방전 효율이 떨어지는 문제점이 있다.
한국등록특허 [10-1241532]에서는 충전 전압을 적응적으로 가변시키는 배터리 충전 장치 및 그의 배터리 충전 제어방법이 개시되어 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국등록특허 [10-1241532](등록일자: 2013년03월04일)
따라서, 본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 다수의 셀이 적층된 레독스 흐름전지에 셋 이상의 전도성 단자를 구비하고 스위칭 제어하여, 충전전압과 방전전압을 가변시킬 수 있는 레독스 흐름전지를 제공하는 것이다.
본 발명의 실 시예들의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따른 레독스 흐름전지는, 전해액을 탱크에 저장하고 그 전해액을 셀 내부로 순환시키는 레독스 흐름전지에 있어서, 막의 형태로 형성되며, 양 면에서 각각 전달되는 전해액 간에 이온이 통과되는 분리막(110); 상기 분리막(110)의 양 면에 적층되며, 양극 전해액과 음극 전해액이 각각 통과되는 유로가 형성된 유로프레임(120a, 120b); 및 상기 유로프레임(120a, 120b)의 외측 면으로 적층되며, 전하가 통과되는 분리판(130a, 130b);을 포함하는 셀(100)이 하나 또는 복수로 적층되고, 양 측 최 외곽 셀(100) 외측 면 및 상기 셀(100)과 셀(100) 사이에 적층되며, 도전성 재질로 형성되고 셋 이상 구비되는 집전판(200a, 200b, 200c);을 더 포함하며, 양극 전해액이 일측에 구비된 상기 고정프레임(300a)으로 유입되어 유로프레임(120a)을 지나 상기 고정프레임(300a)으로 유출되는 제1순환유로가 형성되고, 음극 전해액이 타측에 구비된 상기 고정프레임(300b)으로 유입되어 유로프레임(120b)을 지나 상기 고정프레임(300b)으로 유출되는 제2순환유로가 형성되되, 상기 셀(100)들에 충전전원을 공급하는 충전회로부(400); 상기 셀(100)들로부터 외부 부하에 방전전원을 공급하는 방전회로부(500); 상기 셀(100)들과 상기 충전회로부(400) 및 방전회로부(500) 간의 전기적 연결을 스위칭하는 스위칭부(600); 및 충전에 사용되는 셀(100)과 방전에 사용되는 셀(100)을 구분하여 상기 스위칭부(600)를 제어하는 제어부(900);를 더 포함하는 것을 특징으로 한다.
또한, 상기 스위칭부(600)는 상기 셀(100) 간의 전기적인 연결을, 직렬연결, 병렬연결, 직병렬 혼합 연결을 선택적으로 스위칭 가능하도록 다수의 스위치가 구비된 것을 특징으로 한다.
또, 상기 제어부(900)는 충전회로에 연결된 셀과 방전 회로에 연결된 셀이 서로 다르게 상기 스위칭부(600)를 제어하는 것을 특징으로 한다.
또한, 상기 레독스 흐름전지는 충전과 방전을 동시에 진행할 수 있는 것을 특징으로 한다.
또, 상기 제어부(900)는 상기 충전회로부(400)를 통해 공급되는 충전전원을 근거로 상기 스위칭부(600)를 제어하는 것을 특징으로 한다.
아울러, 상기 제어부(900)는 상기 방전회로부(500)를 통해 외부 부하에 공급하여야 하는 방전전원을 근거로 상기 스위칭부(600)를 제어하는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 레독스 흐름전지에 의하면, 집전판 중 셋 이상의 집전판에 외부회로 연결단자를 각각 형성되며, 충전과 방전을 가변시킬 수 있는 효과가 있다.
또한, 셀간의 연결을 직렬 또는 직병렬 혼합 연결을 사용함으로써, 사용자의 필요에 따른 전력을 공급할 수 있는 효과가 있다.
또, 충전회로에 연결된 셀과 방전 회로에 연결된 셀을 서로 다르게 스위칭 함으로써, 회로를 안정화 시킬 수 있는 효과가 있다.
또한, 충전되는 셀과 방전되는 셀의 전기적 연결을 조절하여, 충전과 방전을 동시에 진행할 수 있되, 충전 전압과 방전 전압을 동일 또는 다르게 제어할 수 있는 효과가 있다.
또, 충전전압에 따라 충전에 사용할 직렬 연결된 셀의 수를 조정할 수 있어, 충전 효율을 높일 수 있는 효과가 있다.
또한, 사용자의 목적에 따라 원하는 출력을 설정(가변)하여 사용할 수 있는 효과가 있다.
아울러, 본 발명은 셀이 전해액을 공유하기 때문에 충전과 방전을 동시에 수행할 수 있음은 물론이고, 충전전압과 방전전압을 서로 다르게 스위칭 할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름전지의 개념도.
도 2는 본 발명의 일 실시예에 따른 레독스 흐름전지의 양극 전해액과 음극 전해액이 순환하는 유로를 보여주는 개념도.
도 3은 본 발명의 일 실시예에 따른 레독스 흐름전지의 셀의 구성요소에 대한 예를 보여주는 개념도.
도 4는 도 3에 함침부재를 추가하여 조립하는 예를 보여주는 조립도.
도 5는 본 발명의 일 실시예에 따른 레독스 흐름전지의 최 외곽 셀을 고정프레임에 조립하는 예를 보여주는 조립도.
도 6은 본 발명의 일 실시예에 따른 레독스 흐름전지의 회로도.
도 7은 본 발명의 일 실시예에 따른 레독스 흐름전지의 셀 간 전기적인 연결을 직렬, 병렬, 직병렬 혼합 연결이 가능하도록 다수의 스위치가 구비된 예를 보여주는 회로도.
도 8은 본 발명의 일 실시예에 따른 레독스 흐름전지의 일부 셀만 충전하는 예를 보여주는 회로도.
도 9는 본 발명의 일 실시예에 따른 레독스 흐름전지의 일부 셀만 방전하는 예를 보여주는 회로도.
도 10은 본 발명의 일 실시예에 따른 레독스 흐름전지의 일부 셀은 충전회로에 연결되어 충전하고 다른 일부 셀은 방전회로에 연결되어 방전하는 예를 보여주는 회로도.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 명세서에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 공정, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 공정, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미가 있는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 또한, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한, 명세서 전반에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 도면들 중 동일한 구성요소들은 가능한 한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름전지의 개념도이며, 도 2는 본 발명의 일 실시예에 따른 레독스 흐름전지의 양극 전해액과 음극 전해액이 순환하는 유로를 보여주는 개념도이고, 도 3은 본 발명의 일 실시예에 따른 레독스 흐름전지의 셀의 구성요소에 대한 예를 보여주는 개념도이며, 도 4는 도 3에 함침부재를 추가하여 조립하는 예를 보여주는 조립도이고, 도 5는 본 발명의 일 실시예에 따른 레독스 흐름전지의 최 외곽 셀을 고정프레임에 조립하는 예를 보여주는 조립도이며, 도 6은 본 발명의 일 실시예에 따른 레독스 흐름전지의 회로도이고, 도 7은 본 발명의 일 실시예에 따른 레독스 흐름전지의 셀 간 전기적인 연결을 직렬, 병렬, 직병렬 혼합 연결이 가능하도록 다수의 스위치가 구비된 예를 보여주는 회로도이며, 도 8은 본 발명의 일 실시예에 따른 레독스 흐름전지의 일부 셀만 충전하는 예를 보여주는 회로도이고, 도 9는 본 발명의 일 실시예에 따른 레독스 흐름전지의 일부 셀만 방전하는 예를 보여주는 회로도이며, 도 10은 본 발명의 일 실시예에 따른 레독스 흐름전지의 일부 셀은 충전회로에 연결되어 충전하고 다른 일부 셀은 방전회로에 연결되어 방전하는 예를 보여주는 회로도이다.
도 1 내지 도 6에 도시된 바와 같이, 본 발명의 일 실시예에 따른 레독스 흐름전지는 전해액을 탱크에 저장하고 그 전해액을 셀 내부로 순환시키는 레독스 흐름전지(도 1 참조)에 있어서, 분리막(110), 유로프레임(120a, 120b) 및 분리판(130a, 130b)을 포함하는 셀(100)(도 3 참조)이 하나 또는 복수로 적층되고, 양 측 최 외곽 셀(100) 외측 면 및 상기 셀(100)과 셀(100) 사이에 적층되며, 도전성 재질로 형성되고 셋 이상 구비되는 집전판(200a, 200b, 200c);을 더 포함하며, 양극 전해액이 일측에 구비된 상기 고정프레임(300a)으로 유입되어 유로프레임(120a)을 지나 상기 고정프레임(300a)으로 유출되는 제1순환유로가 형성되고, 음극 전해액이 타측에 구비된 상기 고정프레임(300b)으로 유입되어 유로프레임(120b)을 지나 상기 고정프레임(300b)으로 유출되는 제2순환유로가 형성되되, 도 6에 도시된 바와 같이, 충전회로부(400), 방전회로부(500), 스위칭부(600) 및 제어부(900)를 더 포함한다.
본 발명의 일 실시예에 따른 레독스 흐름전지의 유로는 도 2에 도시된 바와 같이, 양극 전해액은 양극 전해액 유로로 순환되며, 음극 전해액은 음극 전해액 유로로 순환된다. 즉, 양극 전해액과 음극 전해액은 서로 섞이지 않고 양극 전해액은 양극 전해액 유로로만 순환되고, 음극 전해액은 음극 전해액 유로로만 순환된다.
이를, 도 3의 결합구조로 이루어진 단일 셀의 우측에 도시된 분리판(130a) 을 양극 측으로 가정하고 셀의 좌측에 도시된 분리판(130b)을 음극 측으로 가정하여 설명하면,
양극 전해액이 양극 전해액 유로로(도 2의 하부 유로)부터 양극 측 유로프레임(120a)의 유입측 유로를 통해 양극 측 유로프레임(120a) 내부에 유입되고, 이후, 양극 측 유로프레임(120a) 내부에 유입된 양극 전해액은 양극 측 유로프레임(120a)의 유출측 유로를 통해 양극 전해액 유로로(도 2의 상부 유로) 유출된다. 여기서, 유입측 유로와 유출측 유로가 도 3에서는 한쪽 모서리와 반대쪽 모서리에 형성되어 있다.
음극 전해액이 음극 전해액 유로로(도 2의 하부 유로)부터 음극 측 유로프레임(120b)의 유입측 유로를 통해 음극 측 유로프레임(120b) 내부에 유입되고, 이후, 음극 측 유로프레임(120b) 내부에 유입된 음극 전해액은 음극 측 유로프레임(120b)의 유출측 유로를 통해 음극 전해액 유로로(도 2의 상부 유로) 유출된다. 여기서, 유입측 유로와 유출측 유로가 도 3에서는 일측 모서리와 타측 모서리에 형성되어 있다.
도 3에는 양극 측 유로프레임(120a)의 유출측 유로 및 유입측 유로가, 음극 측 유로프레임(120b)의 유출측 유로 및 유입측 유로와 마주보지 않도록 엇갈리게 형성되어 있으나, 본 발명이 이에 한정된 것은 아니며, 분리막(110)에 의해 양극 전해액과 음극 전해액이 섞이지 못하기 때문에 다양한 유로의 형성이 가능함은 물론이다.
이와 같이, 양극 전해액은 양극 전해액 유로를 따라 순환하게 되고, 음극 전해액은 음극 전해액 유로를 따라 순환하게 되며, 양극 측 유로프레임(120a) 내부에 유입된 양극 전해액과 음극 측 유로프레임(120b) 내부에 유입된 음극 전해액은 산화 및 환원반응에 의해 충방전이 일어난다.
일측 에서부터 분리판(130a), 유로프레임(120a), 분리막(110), 유로프레임(120b), 분리판(130b) 순으로 적층되어 하나의 셀을 구성할 수 있다. 이러한 셀이 하나 또는 다수 적층되고 셀과 셀 사이에 집전판(200c)이 구비된 구간이 최소 한 구간 이상 있으며, 양측 끝단에 집전판(200a, 200b)이 적층되어 하나의 모듈러 셀이 구성될 수 있다. 이러한 모듈러 셀이 다수 연결되어 스택을 구성할 수 있다.
분리막(110)은 막의 형태로 형성되며, 양 면에서 각각 전달되는 전해액 간에 이온이 통과된다.
상기 분리막(110)은 멤브레인 이라고도 하며, 상기 분리막(110) 일측에 양극 전해액(Electrolyte)이 순환되고, 상기 분리막(110) 타측에 음극 전해액이 순환하면서 양극 전해액과 음극 전해액 간에 이온 교환이 이루어진다. 이때, 상기 분리막(110)은 이온의 통과가 가능하다. 즉, 중앙에 분리막(110)을 둠으로써, 양극 전해액과 음극 전해액이 섞이지 않으면서 이온 교환이 가능하다.
이러한 과정에서 발생된 전자는 추후 설명하는 집전판(200a, 200b, 200c)을 통해 이동되면서 충방전이 이루어진다. 이와 같은 흐름전지는 기존 이차전지에 비해 수명이 길고 kW~MW급 중대형 시스템으로 제작할 수 있기 때문에 에너지저장시스템에 가장 적합한 것으로 알려져 있다.
유로프레임(120a, 120b)은 상기 분리막(110)의 양 면에 적층되며, 양극 전해액과 음극 전해액이 각각 통과되는 유로가 형성된다.
상기 유로프레임(120a, 120b)은 안쪽에 공간이 형성되고 바깥쪽으로 유로가 형성되어 있으며, 양극 측에 하나 음극 측에 하나가 각각 적층된다.
상기 유로프레임(120a, 120b)의 유로는 전해액이 유입되는 유입측 유로와 전해액이 유출되는 유출측 유로가 형성된다.
즉, 상기 유로프레임(120a, 120b)을 통해 유입된 전해액이 해당 유로프레임(120a, 120b)으로 유출된다.
다시 말해, 양극 측에 적층된 유로프레임(120a)의 유입측 유로로 양극 전해액이 유입되고, 유로프레임(120a)의 유출측 유로로 양극 전해액이 유출된다. 또한, 음극 측에 적층된 유로프레임(120b)의 유입측 유로로 음극 전해액이 유입되고, 유로프레임(120b)의 유출측 유로로 음극 전해액이 유출된다.
분리판(130a, 130b)은 상기 유로프레임(120a, 120b)의 외측 면으로 적층되며, 전하가 통과된다.
상기 분리판(130a, 130b)은 양극 측에 하나 음극 측에 하나가 각각 적층된다.
상기 분리막(110), 유로프레임(120a, 120b) 및 분리판(130a, 130b)이 일정 영역의 공간을 형성하고 정해진 유로를 제외한 다른 곳으로 전해액이 빠져나가지 못하게 한다.
이때, 상기 분리판(130a, 130b)은 전자의 통과가 가능하다. 즉, 정해진 유로를 제외한 다른 곳으로 전해액이 빠져나가지 못하게 하면서 전자의 이동이 가능하다.
즉, 상기 분리막(110), 유로프레임(120a, 120b) 및 분리판(130a, 130b)이 형성한 공간에 유입된 전해액에서 이온은 상기 분리막(110)으로 통과되고, 전자는 상기 분리판(130a, 130b)으로 통과되어 추후 설명하는 집전판(200a, 200b)을 통해 이동된다.
또한, 상기 분리막(110), 유로프레임(120a, 120b) 및 분리판(130a, 130b)이 적층되면서 형성된 공간에 함침부재(160)를 더 구비(도 4 참고)할 수 있다. 상기 함침부재는 상기 분리막(110), 유로프레임(120a, 120b) 및 분리판(130a, 130b)이 적층되면서 형성된 공간에 위치할 수 있다.
집전판(200a, 200b, 200c)은 양 측 최 외곽 셀(100) 외측 면 및 상기 셀(100)과 셀(100) 사이에 적층되며, 도전성 재질로 형성되고 셋 이상 구비된다.
상기 집전판(200a, 200b, 200c)은 일측 최 외곽 셀의 양극 측에 하나 타측 최 외곽 셀의 음극 측에 하나씩 집전판(200a, 200b)이 각각 적층되며, 셀과 셀 사이에 집전판(200c)이 구비된 구간이 최소 한 구간 이상 있다. 즉, 셀과 셀 사이에 구비된 집전판(200c)은 적어도 하나 존재한다. 하지만 이처럼 모든 셀과 셀 사이에 집전판이 구비되는 경우뿐만 아니라 2개 이상의 셀마다 집전판을 구비하고 집전판과 집전판 사이에 위치한 복수개의 셀은 분리판을 통해 연결되도록 할 수 있다.
상기 집전판(200a, 200b, 200c)은 도전성 재질로 형성되며, 각각의 집전판(200a, 200b, 200c)을 전기적으로 연결할 수 있다.
충전회로부(400)는 상기 셀(100)들에 충전전원을 공급한다.
상기 충전회로부(400)는 상기 셀(100)에 충전전원을 공급하는 역할을 하는 것으로, 외부 전원을 공급받아 상기 셀(100)을 충전시킨다.
방전회로부(500)는 상기 셀(100)들로부터 외부 부하에 방전전원을 공급한다.
상기 방전회로부(500)는 상기 셀(100)로부터 공급받은 전원을 외부 부하에 공급하는 역할을 하는 것으로, 상기 셀(100)로부터 발생된 전원을 외부 부하에 인가(방전)한다.
스위칭부(600)는 상기 셀(100)들과 상기 충전회로부(400) 및 방전회로부(500) 간의 전기적 연결을 스위칭한다.
상기 스위칭부(600)는 상기 집전판(200)의 연결단자와 충전회로부(400) 및 방전회로부(500) 간의 전기적 연결을 스위칭한다.
즉, 상기 스위칭부(600)는 셀(100)들의 전부 또는 일부가 충전, 방전 또는 충방전 되도록 스위칭한다.
제어부(900)는 충전에 사용되는 셀(100)과 방전에 사용되는 셀(100)을 구분하여 상기 스위칭부(600)를 제어할 수 있다.
상기 제어부(900)는 본 발명의 일 실시예에 따른 레독스 흐름전지의 충전, 방전 또는 충방전되도록 상기 스위칭부(600)를 제어를 한다.
도 7에 도시된 바와 같이, 본 발명의 일 실시예에 따른 레독스 흐름전지의 스위칭부(600)는 상기 셀(100) 간의 전기적인 연결을, 직렬연결, 병렬연결, 직병렬 혼합 연결을 선택적으로 스위칭 가능하도록 다수의 스위치가 구비된 것을 특징으로 할 수 있다.
예를 들어, 하나 이상의 셀(100) 집합체를 모듈러 셀이라고 하고, 하나 이상의 모듈러 셀 집합체를 스택이라고 할 경우, 모듈러셀의 셀(100)과 셀(100)은 직렬, 병렬 또는 직병렬 혼합 구조로 연결할 수 있고, 스택의 모듈러셀과 모듈러셀은 직렬, 병렬 또는 직병렬 혼합 구조로 연결할 수 있으며, 이러한 스택을 하나 이상 직렬, 병렬 또는 직병렬 혼합 구조로 연결할 수 있다.
도 7은 셀(100) 여섯 개가 모여 하나의 모듈러셀을 구성한 예 이며, 도 7의 예를 들어, 셀(100) 간의 전기적 연결을 설명하도록 한다.
도 7의 모든 셀(100)들을 전기적으로 직렬로 연결되도록 스위칭을 하면, 하나의 모듈러셀의 전압을 최대로 끌어올릴 수 있다. 즉, 부하에서 요구하는 전압이 높을 경우, 요구하는 전압에 맞추기 위하여 셀(100)들이 직렬로 연결되도록 스위칭할 수 있다.
도 7의 모든 셀(100)들을 전기적으로 병렬로 연결되도록 스위칭을 하면, 하나의 모듈러셀에서 생성되는 전류의 양을 최대로 끌어올릴 수 있다. 즉, 부하에서 요구하는 전류가 많을 경우, 요구하는 전류에 맞추기 위하여 셀(100)들이 병렬로 연결되도록 스위칭할 수 있다.
따라서, 부하에서 요구하는 전압과 전류의 값에 따라 셀(100) 간의 의 전기적 연결을 직병렬로 혼합된 연결이 되도록 스위칭 할 수 있다. 예를 들어, 두 개의 셀이 직렬 연결된 전압을 부하에서 필요로 한 다면, 두 개의 셀 씩 직렬로 연결 하고, 이렇게 직렬 연결된 두 개의 셀 들을 병렬로 연결할 수 있다.
도 8 내지 도 10에 도시된 바와 같이, 본 발명의 일 실시예에 따른 레독스 흐름전지의 제어부(900)는 충전회로에 연결된 셀과 방전 회로에 연결된 셀이 서로 다르게 상기 스위칭부(600)를 제어하는 것을 특징으로 할 수 있다.
도 8은 본 발명의 일 실시예에 따른 레독스 흐름전지의 일부 셀만 충전하는 예를 보여주는 회로도로, 좌측에서부터 네 개의 셀만 충전하는 예를 보여준다.
즉, 전체 셀을 충전하는 것이 아니고, 일부 셀만 선택적으로 충전이 가능하다. 예를 들어, 충전회로부(400)를 통해 인가된 전압의 충전효율을 가장 높일 수 있는 셀의 직렬 연결된 수가 네 개일 경우, 도 8과 같이 회로를 구성할 수 있다.
이때, 충전에 사용되는 셀은 네 개이지만, 전해액을 공유하고 있는 레독스 흐름전지는 충전이 가능하다. 여기서 직렬 연결된 셀의 수를 늘리는 것은 오히려 충전이 안 될 수 있으므로 지양하는 것이 바람직하다.
다시 말해, 레독스 흐름전지는 하나의 셀을 충전할 수 있는 전압만 인가되어도, 전해액의 공유로 인해 하나의 셀을 충전회로부(400)에 연결하여 전체적인 충전이 가능하다. 이는, 전체 셀의 충전에 사용되지 못하는 낮은 전압이 상기 충전회로부(400)로부터 인가된다 하더라도 일부 셀을 충전회로부(400)에 연결하여 충전할 수 있다. 즉, 일부 셀에서 충전된 전해액은 순환하면서 레독스 흐름전지를 충전시키기 때문에 충전효율을 높일 수 있다.
도 9는 본 발명의 일 실시예에 따른 레독스 흐름전지의 일부 셀만 방전하는 예를 보여주는 회로도로, 좌측에서부터 두 번째 셀부터 좌측에서 다섯 번째 셀 까지 네 개의 셀을 방전하는 예를 보여준다.
즉, 전체 셀을 방전하는 것이 아니고, 일부 셀만 선택적으로 방전이 가능하다. 예를 들어, 방전회로부(500)를 통해 부하에서 요구하는 전압이 셀의 직렬 연결된 수가 네 개일 경우, 도 9와 같이 회로를 구성할 수 있다.
이때, 방전에 사용되는 셀은 네 개이지만, 전해액을 공유하고 있는 레독스 흐름전지는 전체적인 방전이 가능하다. 여기서 직렬 연결된 셀의 수를 변화하는 것은 부하단에서 전기적 문제(저전압 또는 과전압)가 될 수 있으므로 지양하는 것이 바람직하다.
도 10에 도시된 바와 같이, 본 발명의 일 실시예에 따른 레독스 흐름전지는 충전과 방전을 동시에 진행하는 것을 특징으로 할 수 있다.
도 10은 본 발명의 일 실시예에 따른 레독스 흐름전지의 일부 셀은 충전회로에 연결되어 충전하고 다른 일부 셀은 방전회로에 연결되어 방전하는 예를 보여주는 회로도로, 좌측 끝단 한 개의 셀은 충전하고, 좌측에서부터 네 번째 셀부터 좌측에서 여섯 번째 셀 까지 세 개의 셀은 방전하는 예를 보여준다.
즉, 일부 셀을 충전함과 동시에 충전하는 셀을 제외한 다른 셀들 중 일부 셀은 방전할 수 있다.
다시 말해, 충전과 방전을 동시에 수행할 수 있다.
또한, 충전전압과 방전전압을 서로 다르게 스위칭 하는 것도 가능하다.
이는, 전해액을 공유하지 않는 이차전지에서는 셀 간의 충전상태(SOC - State Of Charge) 불균형으로 배터리 수명을 단축하는 일이기 때문에 현실적으로 불가능한 일이다.
그러나, 본 발명은 전해액을 공유하기 때문에 충전과 방전을 동시에 수행할 수 있음은 물론이고, 충전전압과 방전전압을 서로 다르게 스위칭 하는 것도 가능하다.
본 발명의 일 실시예에 따른 레독스 흐름전지의 제어부(900)는 상기 충전회로부(400)를 통해 공급되는 충전전원을 근거로 상기 스위칭부(600)를 제어하는 것을 특징으로 할 수 있다.
예를 들어, 인버터를 통해 들어오는 직류전압(충전전원)에 따라, 상기 집전판(200)의 연결단자와 충전회로부(400) 및 방전회로부(500) 간의 전기적 연결을 스위칭 할 수 있다.
예를 들어, 인버터를 통해 들어오는 직류전압으로 충전 효율을 높일 수 있는, 직렬로 연결된 셀의 개수가 네 개 일 경우, 도 8과 같이 스위칭을 하여 충전할 수 있다. 이때, 직렬로 연결된 셀 전부(도 8의 경우 여섯 개)를 충전회로에 연결하는 것은 오히려 충전 효율을 떨어트리게 되며, 심할 경우 충전 자체가 이루어지지 않을 수도 있다.
본 발명의 일 실시예에 따른 레독스 흐름전지의 상기 제어부(900)는 상기 방전회로부(500)를 통해 외부 부하에 공급하여야 하는 방전전원을 근거로 상기 스위칭부(600)를 제어하는 것을 특징으로 할 수 있다.
사용자가 원하는 출력이, 직렬로 연결된 셀의 개수가 네 개 일 경우, 도 9와 같이 스위칭을 하여 방전할 수 있다. 이는 충전에 대한 가변적 적용이 가능한 도 8의 예와 동일한 원리로 사용자의 목적에 따라 원하는 출력을 설정(가변)하여 사용할 수 있다.
아울러, 인버터를 통해 들어오는 직류전압으로 충전 효율을 높일 수 있는, 직렬로 연결된 셀의 개수가 한 개 이고, 사용자가 원하는 출력이, 직렬로 연결된 셀의 개수가 네 개 일 경우, 도 10과 같이 스위칭을 하여 충전 및 방전을 동시에 수행할 수 있다.
예를 들어, 항상 충전과 방전을 동시에 하여야 하는 경우, 출력 전용 셀, 출력과 충전을 가변시킬 수 있는 셀, 충전 전용 셀 등으로 구분을 하여, 출력 전용 셀은 출력만 담당하고, 충전 전용 셀은 충전만 담당하도록 하는 것도 가능하다.
이때, 출력과 충전을 가변시킬 수 있는 셀은, 인버터를 통해 들어오는 직류전압으로 충전 효율을 높일 수 있는 직렬로 연결된 셀의 개수에 맞추어 충전 전용 셀과 직렬로 연결 가능하고, 부하측에서 출력 전용 셀 보다 높은 출력을 요구할 경우 출력 전용 셀과 직렬로 연결 가능하다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.

Claims (6)

  1. 전해액을 탱크에 저장하고 그 전해액을 셀 내부로 순환시키는 레독스 흐름전지에 있어서,
    막의 형태로 형성되며, 양 면에서 각각 전달되는 전해액 간에 이온이 통과되는 분리막(110);
    상기 분리막(110)의 양 면에 적층되며, 양극 전해액과 음극 전해액이 각각 통과되는 유로가 형성된 유로프레임(120a, 120b); 및
    상기 유로프레임(120a, 120b)의 외측 면으로 적층되며, 전하가 통과되는 분리판(130a, 130b);
    을 포함하는 셀(100)이 하나 또는 복수로 적층되고, 양 측 최 외곽 셀(100) 외측 면 및 상기 셀(100)과 셀(100) 사이에 적층되며, 도전성 재질로 형성되고 셋 이상 구비되는 집전판(200a, 200b, 200c);
    을 더 포함하며,
    양극 전해액이 일측에 구비된 고정프레임(300a)으로 유입되어 유로프레임(120a)을 지나 유출되는 제1순환유로가 형성되고, 음극 전해액이 타측에 구비된 고정프레임(300b)으로 유입되어 유로프레임(120b)을 지나 유출되는 제2순환유로가 형성되되,
    상기 셀(100)들에 충전전원을 공급하는 충전회로부(400);
    상기 셀(100)들로부터 외부 부하에 방전전원을 공급하는 방전회로부(500);
    상기 셀(100)들과 상기 충전회로부(400) 및 방전회로부(500) 간의 전기적 연결을 스위칭하는 스위칭부(600); 및
    충전에 사용되는 셀(100)과 방전에 사용되는 셀(100)을 구분하여 상기 스위칭부(600)를 제어하는 제어부(900);
    를 더 포함하는 레독스 흐름전지.
  2. 제1항에 있어서,
    상기 스위칭부(600)는
    상기 셀(100) 간의 전기적인 연결을, 직렬연결, 병렬연결, 직병렬 혼합 연결을 선택적으로 스위칭 가능하도록 다수의 스위치가 구비된 것을 특징으로 하는 레독스 흐름전지.
  3. 제1항에 있어서,
    상기 제어부(900)는
    충전회로에 연결된 셀과 방전 회로에 연결된 셀이 서로 다르게 상기 스위칭부(600)를 제어하는 것을 특징으로 하는 레독스 흐름전지.
  4. 제3항에 있어서,
    상기 레독스 흐름전지는
    충전과 방전을 동시에 진행하는 것을 특징으로 하는 레독스 흐름전지.
  5. 제1항에 있어서,
    상기 제어부(900)는
    상기 충전회로부(400)를 통해 공급되는 충전전원을 근거로 상기 스위칭부(600)를 제어하는 것을 특징으로 하는 레독스 흐름전지.
  6. 제1항에 있어서,
    상기 제어부(900)는
    상기 방전회로부(500)를 통해 외부 부하에 공급하여야 하는 방전전원을 근거로 상기 스위칭부(600)를 제어하는 것을 특징으로 하는 레독스 흐름전지.
PCT/KR2016/014994 2016-04-15 2016-12-21 레독스 흐름전지 WO2017179795A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0046433 2016-04-15
KR1020160046433A KR101655292B1 (ko) 2016-04-15 2016-04-15 레독스 흐름전지

Publications (1)

Publication Number Publication Date
WO2017179795A1 true WO2017179795A1 (ko) 2017-10-19

Family

ID=56950025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014994 WO2017179795A1 (ko) 2016-04-15 2016-12-21 레독스 흐름전지

Country Status (4)

Country Link
US (1) US10090550B2 (ko)
JP (1) JP6316400B2 (ko)
KR (1) KR101655292B1 (ko)
WO (1) WO2017179795A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655292B1 (ko) * 2016-04-15 2016-09-07 스탠다드에너지(주) 레독스 흐름전지
KR101824170B1 (ko) * 2016-09-30 2018-01-31 롯데케미칼 주식회사 레독스 흐름 전지
KR102102507B1 (ko) * 2017-05-31 2020-04-21 (주)에너지와공조 동시 충방전이 가능한 레독스 흐름전지 시스템
KR102126343B1 (ko) * 2017-12-22 2020-06-24 스탠다드에너지(주) 레독스 흐름전지
WO2020056275A1 (en) 2018-09-14 2020-03-19 University Of South Carolina Polybenzimidazole (pbi) membranes for redox flow batteries
WO2020056268A2 (en) 2018-09-14 2020-03-19 University Of South Carolina Low permeability polybenzimidazole (pbi) membranes for redox flow batteries
CN112823182B (zh) 2018-09-14 2022-08-30 南卡罗莱纳大学 无有机溶剂生产pbi膜的新方法
KR102213375B1 (ko) * 2018-12-13 2021-02-09 한국에너지기술연구원 전극-집전체 어셈블리 및 이를 포함하는 레독스 흐름 전지
KR102283441B1 (ko) * 2018-12-27 2021-07-30 스탠다드에너지(주) 직병렬 구조가 혼합된 레독스 흐름전지용 전지셀
US11777124B2 (en) 2020-03-06 2023-10-03 University Of South Carolina Proton-conducting PBI membrane processing with enhanced performance and durability
WO2024092344A1 (en) * 2022-11-01 2024-05-10 Cambria Geosciences Inc. A redox flow battery and system for simultaneous charging and discharging and method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040591A (ja) * 2004-07-22 2006-02-09 Kansai Electric Power Co Inc:The レドックスフロー電池
KR20140015433A (ko) * 2011-03-02 2014-02-06 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 개별 셀 관리를 이용하는 배터리
KR20150064516A (ko) * 2013-12-03 2015-06-11 주식회사휴비스 연료전지 스택의 활성화 장치
JP2015156266A (ja) * 2014-02-19 2015-08-27 住友電気工業株式会社 レドックスフロー電池システム、及びレドックスフロー電池の運転方法
KR101560202B1 (ko) * 2015-04-30 2015-10-14 스탠다드에너지(주) 레독스 흐름전지
KR101655292B1 (ko) * 2016-04-15 2016-09-07 스탠다드에너지(주) 레독스 흐름전지

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326007A (ja) 1992-05-18 1993-12-10 Ebara Corp 電解液流通型電池装置
JP3193992B2 (ja) * 1993-12-24 2001-07-30 経済産業省産業技術総合研究所長 電解液流通型電池
AT410268B8 (de) * 2001-07-02 2003-04-25 Funktionswerkstoffe Forschungs Lade- bzw. entladestation für eine redox-durchflussbatterie
KR101241532B1 (ko) 2011-09-05 2013-03-11 에스케이씨앤씨 주식회사 충전 전압을 적응적으로 가변시키는 배터리 충전 장치 및 그의 배터리 충전 제어방법
KR101470735B1 (ko) 2013-05-15 2014-12-08 주식회사 엘지씨엔에스 직렬 연결된 다수의 2차 전지 충방전을 위한 능동 벨런스회로와 알고리즘을 구비한 2차 전지 충방전 제어장치 및 방법
KR101609907B1 (ko) 2013-07-11 2016-04-07 오씨아이 주식회사 레독스 흐름 전지 시스템 및 그 제어방법
KR101586349B1 (ko) 2013-12-02 2016-01-21 전자부품연구원 레독스 흐름전지용 배터리 관리 시스템 및 그 제어방법
JP6378923B2 (ja) 2014-04-22 2018-08-22 株式会社日立製作所 蓄電システム及びその運転方法
JP6308366B2 (ja) * 2014-07-25 2018-04-11 住友電気工業株式会社 電解液循環型電池
JP6607357B2 (ja) * 2014-11-06 2019-11-20 住友電気工業株式会社 電池セル、およびレドックスフロー電池
JP2017134938A (ja) * 2016-01-26 2017-08-03 学校法人智香寺学園埼玉工業大学 レドックス二次電池システム
KR20180107122A (ko) 2016-02-02 2018-10-01 소니 주식회사 광학 소자 구동 장치, 교환 렌즈 및 촬상 장치
US10147957B2 (en) * 2016-04-07 2018-12-04 Lockheed Martin Energy, Llc Electrochemical cells having designed flow fields and methods for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040591A (ja) * 2004-07-22 2006-02-09 Kansai Electric Power Co Inc:The レドックスフロー電池
KR20140015433A (ko) * 2011-03-02 2014-02-06 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 개별 셀 관리를 이용하는 배터리
KR20150064516A (ko) * 2013-12-03 2015-06-11 주식회사휴비스 연료전지 스택의 활성화 장치
JP2015156266A (ja) * 2014-02-19 2015-08-27 住友電気工業株式会社 レドックスフロー電池システム、及びレドックスフロー電池の運転方法
KR101560202B1 (ko) * 2015-04-30 2015-10-14 스탠다드에너지(주) 레독스 흐름전지
KR101655292B1 (ko) * 2016-04-15 2016-09-07 스탠다드에너지(주) 레독스 흐름전지

Also Published As

Publication number Publication date
JP6316400B2 (ja) 2018-04-25
US20170301943A1 (en) 2017-10-19
US10090550B2 (en) 2018-10-02
KR101655292B1 (ko) 2016-09-07
JP2017191768A (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
WO2017179795A1 (ko) 레독스 흐름전지
WO2018147542A1 (en) Dual power supply system
WO2012023804A2 (ko) 개선된 리드 구조의 이차전지
WO2014112685A1 (ko) 엘씨 직렬공진을 이용한 배터리셀 밸런싱 회로
WO2015057014A1 (ko) 수직 배치된 공통 출입구가 형성된 2이상의 분리된 유로를 가진 히트싱크
WO2016099217A1 (ko) 플로우 배터리의 전해액 재생 모듈 및 이를 이용한 플로우 배터리의 전해액 재생 방법
WO2015057017A1 (ko) 단열재를 포함하여 2이상의 분리된 유로를 가진 히트싱크
WO2018182376A1 (ko) 전해액유로가 독립적으로 구비된 레독스 흐름전지
WO2018169358A1 (ko) 레독스 흐름 전지
WO2015056921A1 (ko) 2 이상의 분리된 유로를 가진 히트싱크
WO2024005418A1 (ko) 직렬 배터리 충방전 장치에 적용되는 파우치형 배터리 셀의 직렬 연결 구조
WO2017065480A1 (ko) 공기-아연 전지 모듈
WO2018062888A1 (ko) 레독스 흐름 전지
WO2018186562A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2015083954A1 (ko) 출력 및 용량 특성이 다른 전극들을 포함하고 있는 하이브리드형 이차전지
WO2020075899A1 (ko) 레독스 흐름전지
AU2018243794A1 (en) Multipoint electrolyte flow field embodiment for vanadium redox flow battery
US20100244772A1 (en) Battery module
WO2022146059A1 (ko) Soc 밸런싱 장치를 포함한 고전압형 레독스 흐름전지
CN113224816B (zh) 串联电池组隔离接口、选通网络、保护与均衡电路、方法
WO2020218794A1 (ko) 전극조립체
WO2021230414A1 (ko) 바나듐 레독스 흐름 전지 스택을 이용한 전력 변환 시스템 및 이의 실행 방법
JP3574514B2 (ja) レドックスフロー型二次電池システム
WO2018117331A1 (ko) 공기-아연 전지 모듈
WO2019124599A1 (ko) 레독스 흐름전지

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898757

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16898757

Country of ref document: EP

Kind code of ref document: A1