WO2023003027A1 - エリア通知システム - Google Patents

エリア通知システム Download PDF

Info

Publication number
WO2023003027A1
WO2023003027A1 PCT/JP2022/028258 JP2022028258W WO2023003027A1 WO 2023003027 A1 WO2023003027 A1 WO 2023003027A1 JP 2022028258 W JP2022028258 W JP 2022028258W WO 2023003027 A1 WO2023003027 A1 WO 2023003027A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
air conditioning
area
conditioning system
areas
Prior art date
Application number
PCT/JP2022/028258
Other languages
English (en)
French (fr)
Inventor
親良 前田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP22845960.8A priority Critical patent/EP4375916A1/en
Priority to CN202280051267.6A priority patent/CN117677965B/zh
Publication of WO2023003027A1 publication Critical patent/WO2023003027A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-246702
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-246702
  • An area notification system notifies a user of a facility of a first area to be used by the user from among a plurality of areas within the facility.
  • the facility is air-conditioned over a plurality of areas using a first air-conditioning system in which a plurality of utilization units are connected to one heat source unit.
  • the area notification system includes a controller that generates information about a first area in a facility. The controller performs the following steps (A) to (C). (A) Multiple patterns of operation information of the first air conditioning system and consumption of the first air conditioning system during the first period, which are acquired when multiple usage units are used in multiple areas during the first period Learn by associating with electric energy.
  • This area notification system can optimize the overall operating efficiency of an air conditioning system that performs air conditioning across multiple areas.
  • the area notification system of the second point of view is the area notification system of the first point of view, and the operational information includes information regarding the use of multiple areas.
  • This area notification system can optimize the selection of areas that users should use.
  • the area notification system of the third aspect is the area notification system of the second aspect, and the operation information further includes information regarding the operation data of the first air conditioning system.
  • This area notification system can optimize the selection of areas that users should use.
  • An area notification system is the area notification system according to any one of the first to third aspects, wherein the control unit further includes information regarding the environment of the plurality of areas during the first period, and the first Learned in association with the power consumption of the first air conditioning system in the period.
  • This area notification system improves the accuracy of learning that associates the operation pattern of the air conditioning system with the power consumption of the air conditioning system.
  • An area notification system is the area notification system according to any one of the first to fourth aspects, wherein the control unit further includes information regarding facilities, power consumption of the first air conditioning system in the first period, Learn to associate with quantity.
  • This area notification system improves the accuracy of learning that associates the operation pattern of the air conditioning system with the power consumption of the air conditioning system.
  • the area notification system of the sixth aspect is the area notification system of any one of the first to fifth aspects, wherein the control unit calculates a reward based on the power consumption of the first air conditioning system in the first period and learns the power consumption of the first air conditioning system in the first period based on the calculated reward.
  • This area notification system improves the accuracy of learning that associates the operation pattern of the air conditioning system with the power consumption of the air conditioning system.
  • An area notification system notifies users of a facility of a first area to be used by the user from among a plurality of areas within the facility.
  • the facility is air-conditioned over a plurality of areas using a first air-conditioning system in which a plurality of utilization units are connected to one heat source unit.
  • the area notification system includes a controller that generates information about a first area in a facility.
  • the controller performs the following steps (A) to (C).
  • (A) A plurality of patterns of operation information of the first air conditioning system acquired when a plurality of usage units are used in a plurality of areas in the first period, and included in the plurality of areas in the first period It learns in association with information on the propriety of using the area.
  • This area notification system can optimize the overall operating efficiency of an air conditioning system that performs air conditioning across multiple areas.
  • the area notification system of the eighth point of view is the area notification system of the seventh point of view, and the operational information includes information regarding the use of multiple areas.
  • This area notification system can optimize the selection of areas that users should use.
  • the area notification system of the ninth aspect is the area notification system of the eighth aspect, and the operation information further includes information regarding the operation data of the first air conditioning system.
  • This area notification system can optimize the selection of areas that users should use.
  • An area notification system is the area notification system according to any one of the seventh to ninth aspects, wherein the control unit further includes a power consumption amount of the first air conditioning system in the first period and a first is learned in association with information on the propriety of use of the first area during the period of
  • This area notification system improves the accuracy of learning that associates the operation pattern of the air conditioning system with the power consumption of the air conditioning system.
  • the area notification system of the eleventh aspect is the area notification system of any one of the seventh to tenth aspects, wherein the control unit further comprises a The determination information and the information regarding the propriety of use of the first area in the first period are learned in association with each other.
  • This area notification system improves the accuracy of learning that associates the operation pattern of the air conditioning system with the power consumption of the air conditioning system.
  • the area notification system of the twelfth aspect is the area notification system of the eleventh aspect, and the determination information includes economy information, comfort information, or convenience information.
  • the economic information includes information about operating costs of the first air conditioning system.
  • the comfort information includes information about the environment of multiple areas, or information about the range that the user can tolerate with respect to the environment of multiple areas.
  • Convenience information includes information on the use of multiple areas or information on a permissible range of use of multiple areas by the user.
  • This area notification system improves the accuracy of learning that associates the operation pattern of the air conditioning system with the power consumption of the air conditioning system.
  • FIG. 1 is a schematic configuration diagram of an air conditioning management system 190 using the area notification system 100; FIG. It is a figure showing an example of the utilization condition of the facility 10 which concerns on 1st Embodiment.
  • 4 is a flowchart of processing performed by the area notification system 100 according to the first embodiment; 4 is a block diagram of the control unit 110 during learning according to the first and second embodiments; FIG. 4 is a block diagram of the control unit 110 after learning according to the first and second embodiments;
  • FIG. FIG. 11 is a block diagram of a machine learning device 200 during learning according to Modification C;
  • FIG. 13 is a block diagram of the machine learning device 200 after learning according to modification C;
  • 9 is a flowchart of processing performed by the area notification system 100 according to the second embodiment;
  • FIG. 11 is a diagram showing an example of the usage status of the facility 10 according to Modification G.
  • FIG. FIG. 12 is a diagram showing an example of the usage status of the facility 10 according to Modification H.
  • the area notification system 100 of the present embodiment instructs a user U of a facility 10 to select an area A to be used by the user U from among a plurality of areas A within the facility 10. Notice. As shown in FIG. 1, the area notification system 100 is used in an air conditioning management system 190, for example. Air conditioning management system 190 primarily includes area notification system 100 and one or more air conditioning systems 20 . In this embodiment, the air conditioning management system 190 has one air conditioning system 20 .
  • the air conditioning system 20 for adjusting the air environment (temperature, humidity, air volume, etc.) of multiple areas A is installed.
  • the air conditioning system 20 mainly includes a heat source unit 21 , a utilization unit 23 and a centralized controller 26 .
  • the air conditioning system 20 includes one refrigeration cycle (refrigerant system) in which a plurality of utilization units 23 are connected to one heat source unit 21 . Therefore, in this embodiment, one refrigerant system is installed in the facility 10 .
  • the heat source unit 21 is the outdoor unit 22, and the utilization unit 23 is the indoor unit 24.
  • FIG. 1 the heat source unit 21 is the outdoor unit 22
  • the utilization unit 23 is the indoor unit 24.
  • the air conditioning system 20 is a multi-air conditioning system in which a single heat source unit 21 can control multiple usage units 23 by means of a centralized controller 26 .
  • the heat source unit 21 has a compressor that compresses refrigerant circulating in the refrigeration cycle of the air conditioning system 20 .
  • Area notification system 100 is connected to centralized controller 26 of air conditioning system 20 .
  • the facility 10 is a building or part of a building in which the air environment of the interior space is adjusted by the air conditioning system 20.
  • Facilities 10 are, for example, offices, hospitals, hotels, schools, large-scale stores, research facilities, and restaurants occupying part or all of a building.
  • the air conditioning system 20 air-conditions the facility 10 across multiple areas A within the facility 10 .
  • a single usage unit 23 is installed in each area A within the facility 10 .
  • the area A within the facility 10 may be a space partitioned from other areas A by walls or the like.
  • area A may be a relatively small room (such as a conference room) within facility 10 .
  • one user unit 23 is installed in a room consisting of only one area A. FIG.
  • multiple areas A within the facility 10 may be included in the same space.
  • the areas A are arranged so as not to overlap each other.
  • the space containing multiple areas A may be a relatively large room (such as a lobby) within facility 10 .
  • a plurality of usage units 23 equal to the number of areas A are installed.
  • the area notification system 100 is used by an usher (or administrator) of the facility 10 to guide the user U to one predetermined area A.
  • the area notification system 100 provides the information about the area A to be used by the user U of the facility 10 to the usher of the facility 10, and the usher guides the user U to the predetermined area A based on the information. invite.
  • the information staff of the facility 10 guides the user U visiting the facility 10 to a predetermined area A, or guides the user U already using the predetermined area A to another area A. do.
  • the user U may be one person or may be a group consisting of a plurality of people.
  • the area notification system 100 mainly includes a control section 110, an input section 120, an output section 130, a setting section 140, and a storage section 150.
  • the control unit 110 is hardware that executes arithmetic processing for realizing various functions of the area notification system 100 . Control unit 110 implements these functions by executing a predetermined program using predetermined data.
  • the control unit 110 is, for example, an integrated circuit such as a CPU, ASI, and FPGA.
  • the control unit 110 executes processing for determining how to use the facility 10 .
  • the usage method of the facility 10 is, for example, information regarding the area A to be used by the user U of the facility 10 and information regarding control of the air conditioning system 20 .
  • Information related to control of the air conditioning system 20 includes operation information of the plurality of usage units 23 of the air conditioning system 20 .
  • the operating information is, for example, information about the usage unit 23 to be operated among the plurality of usage units 23, and information about the set temperature, set humidity, set air volume, etc. of the usage unit 23 installed in each area A.
  • the input unit 120 is hardware for inputting information used by the control unit 110 to determine how to use the facility 10 .
  • the input unit 120 is a network device for communicating with the facility terminal 30 and the like.
  • the facility terminal 30 is a PC, mobile terminal, or the like that is owned by the facility 10 and that is used by an usher, manager, or the like of the facility 10 for business purposes.
  • the output unit 130 is hardware for outputting information included in the usage method of the facility 10 determined by the control unit 110 .
  • the output unit 130 is a network device for communicating with the facility terminal 30 and the like.
  • the setting unit 140 is hardware for outputting information included in the usage method of the facility 10 determined by the control unit 110 and transmitting the information to the centralized controller 26 of the air conditioning system 20 .
  • the setting unit 140 is, for example, a network device for communicating with the centralized controller 26 of the air conditioning system 20 .
  • the storage unit 150 is hardware that stores programs executed by the control unit 110 and data used by the control unit 110 to determine how to use the facility 10 .
  • Storage unit 150 is, for example, an auxiliary storage device (RAM, HDD, SSD, etc.) for storing data input by input unit 120 and data output by output unit 130 and setting unit 140 .
  • the area notification system 100 causes the control unit 110 to determine how to use the facility 10 using various types of information input to the input unit 120 from the outside. Information is output to the outside via the output unit 130 and the setting unit 140 .
  • Area notification system 100 permanently or temporarily stores programs and data used in the series of processes in storage unit 150 .
  • the area notification system 100 uses various data input to the input unit 120 to determine how to use the facility 10 . Next, main data that can be input to the input unit 120 from the outside will be specifically described.
  • Operational information is information about the usage status of the facility 10 .
  • Operational information is dynamic information that changes according to the timing of input to the input unit 120 .
  • the operation information is specifically information on the following items. ⁇ Operating information of air conditioning system 20 ⁇ Usage information of area A ⁇ Environment tolerance information of user U ⁇ Usage information of user U
  • the operation information of the air conditioning system 20 is real-time information regarding the operation data of the air conditioning system 20 .
  • the operation information of the air conditioning system 20 is, for example, the operation time of the heat source unit 21 and the utilization unit 23, the set temperature, the set humidity, and the set air volume of the area A.
  • the area A usage information is real-time information about the user U who uses each area A.
  • the usage information of area A is, for example, the number of users U who use each area A, usage time, and usage purpose.
  • User U's permissible environment information is information about the temperature range, humidity range, air volume range, and air cleanliness range of area A that user U in area A can tolerate.
  • An air cleanliness range is, for example, a carbon dioxide concentration range.
  • the user U's environment tolerance information may be set for each time zone.
  • the user U's usage information is real-time information about the area A used by each user U.
  • the usage information of the user U is, for example, information regarding the usage status of the facility 10 .
  • the operation information of the air conditioning system 20, the usage information of the area A, and the usage information of the user U are automatically input from the centralized controller 26 of the air conditioning system 20, for example.
  • the input operational information is saved in the storage unit 150 .
  • the user U's environment tolerance information is input by the user U, for example, using the facility terminal 30 or the like.
  • the input unit 120 may acquire the user U's environment tolerance information via the SNS system.
  • the user U logs into the SNS system with his/her own account and inputs his/her environment tolerance information, and the input unit 120 acquires the environment tolerance information input by the user U.
  • the user U may input his/her own environmental tolerance information using an application dedicated to the area notification system 100 installed on his/her mobile terminal. In this case, the input unit 120 acquires the environment tolerance information input by the user U.
  • the thermal environment information is information about the environment of area A and weather information.
  • the information about the environment of area A is the temperature, humidity, air volume, and air cleanliness of area A, for example. Air cleanliness is, for example, carbon dioxide concentration.
  • the thermal environment information is acquired in real time by a sensor installed in area A, for example, and automatically input to the input unit 120 .
  • the input thermal environment information is stored in the storage unit 150 .
  • the information about the environment of area A may be an estimated value calculated based on data obtained in the past.
  • the weather information is information about the environment of the area where the facility 10 is located.
  • the weather information is, for example, the temperature, humidity, amount of solar radiation, wind direction, and wind volume in the area where the facility 10 is located.
  • Weather information is dynamic information that varies according to the timing of input to input unit 120 .
  • Weather information is automatically input from an external network 34 such as, for example, a weather forecast service.
  • the building information is mainly information regarding buildings including the facility 10 and information regarding the space within the facility 10 .
  • the building information is static information with low update frequency.
  • the building information is specifically information on the following items. ⁇ Layout of facility 10 ⁇ Ventilation amount of facility 10 ⁇ Internal heat generation amount of OA equipment installed in facility 10 ⁇ Materials of walls, doors, windows, etc. of facility 10
  • the layout of the facility 10 includes, for example, the layout of rooms in the facility 10 and the air-conditioned area (floor area) of each area A (room).
  • the ventilation rate of the facility 10 includes, for example, the ventilation rate of each area A (room).
  • the building information is input, for example, by the contractor of the facility 10 and the administrator of the area notification system 100 using the facility terminal 30 or the like.
  • the manager of the area notification system 100 is, for example, a sales person who proposes installation of the area notification system 100 and an engineer who is in charge of installation of the area notification system 100 .
  • the building information input to input unit 120 is stored in storage unit 150 .
  • the facility drawing information is mainly information regarding the installation of the air conditioning system 20 in the facility 10 .
  • the facility drawing information is static information that is not frequently updated.
  • the equipment drawing information is specifically information regarding the following items. ⁇ Refrigerant system ⁇ Refrigerant pipe length ⁇ Arrangement of heat source unit 21 and utilization unit 23
  • the information regarding the arrangement of the heat source units 21 and the usage units 23 includes installation information linking the usage units 23 and the area A where the usage units 23 are installed. Using this installation information, the user units 23 installed in each area A can be specified.
  • the facility drawing information specifically includes the following items: Information about ⁇ Duct system ⁇ Water piping system
  • the facility drawing information is input, for example, by the contractor of the air conditioning system 20 and the manager of the area notification system 100 using the facility terminal 30 or the like.
  • the facility drawing information input to the input unit 120 is stored in the storage unit 150 .
  • Equipment performance characteristics information is information relating to performance characteristics of equipment included in the air conditioning system 20 .
  • the equipment performance characteristic information is, for example, the capacity and rotation speed of the compressor of the heat source unit 21, the rotation speed of the fan of the heat source unit 21, and the rotation speed of the fan of the usage unit 23.
  • the equipment performance characteristic information is input by the contractor of the air conditioning system 20 and the administrator of the area notification system 100 using the facility terminal 30 or the like.
  • the facility drawing information input to the input unit 120 is stored in the storage unit 150 .
  • the area notification system 100 outputs various information included in the method of use of the facility 10 determined by the control section 110 to the outside via the output section 130 and the setting section 140 .
  • the information output to the outside via the output unit 130 is, for example, information about the area A (first area) to be used by the user U of the facility 10 .
  • This information is transmitted from the area notification system 100 to the facility terminal 30 and the like.
  • the usher at the facility 10 receives a notification from the area notification system 100 regarding how to use the facility 10 .
  • the usher of the facility 10 refers to the information transmitted from the output unit 130 and displayed on the screen of the facility terminal 30, and guides the user U to the predetermined area A to be used by the user U. .
  • Information output to the outside via the output unit 130 may be transmitted to the user terminal 32 in addition to the facility terminal 30 or instead of the facility terminal 30 .
  • the user terminal 32 is a PC, mobile terminal, or the like used by the user U of the facility 10 .
  • the user U receives notification from the area notification system 100 regarding how to use the facility 10 .
  • the user U can refer to the information transmitted from the output unit 130 and displayed on the screen of the user terminal 32 and move to the predetermined area A to be used by the user.
  • the information output to the outside via the setting unit 140 is information used for controlling the air conditioning system 20, such as a control signal for the air conditioning system 20.
  • the information output to the outside via the setting unit 140 is, for example, information on the usage unit 23 to be operated among the plurality of usage units 23 of the air conditioning system 20, and the setting of the usage unit 23 installed in each area A. It includes information on temperature, set humidity, and set air volume. These pieces of information are transmitted from the area notification system 100 to the centralized controller 26 of the air conditioning system 20 .
  • Central controller 26 controls heat source unit 21 and utilization unit 23 based on information received from area notification system 100 .
  • the control unit 110 determines how to use the facility 10 using a machine learning technique. Specifically, as shown in FIG. 3, the control unit 110 executes the following steps S11 to S13 to generate information on how to use the facility .
  • Step S11 A plurality of patterns of operation information of the air conditioning system 20 acquired when a plurality of usage units 23 are used in a plurality of areas A in the first period, and the operation information of the air conditioning system 20 in the first period. Learn by associating with power consumption.
  • Step S12 Based on the result of the learning in step S11, the air-conditioning system 20 information obtained when a plurality of usage units 23 are used in a plurality of areas A during a second period different from the first period.
  • Step S13 Based on the comparison of the inference results in step S12 for each of the plurality of patterns, generate information about the area A to be used by the user U so that the power consumption of the air conditioning system 20 is reduced. .
  • FIG. 4 is a block diagram of the control section 110 in step S11.
  • FIG. 5 is a block diagram of control unit 110 in step S12.
  • the control unit 110 mainly includes an explanatory variable acquisition unit 101 , an objective variable acquisition unit 102 , a learning unit 103 and an inference unit 104 . These elements of control unit 110 correspond to functions realized by the CPU of control unit 110 executing programs stored in storage unit 150 .
  • the explanatory variable acquisition unit 101 acquires explanatory variables used for learning in step S11 and explanatory variables used for inference in step S12.
  • the explanatory variable acquisition unit 101 acquires data input to the input unit 120 as explanatory variables.
  • Candidates for explanatory variables are operation information, thermal environment information, building information, equipment drawing information, and equipment performance characteristic information.
  • the explanatory variable includes at least usage information of area A included in the operational information.
  • the explanatory variable acquisition unit 101 may further acquire operating information of the air conditioning system 20 included in the operating information as an explanatory variable in order to improve the accuracy of learning.
  • the explanatory variable acquisition unit 101 uses at least one of user U's environment tolerance information and user U's usage information included in the operation information as an explanatory variable. You can get more.
  • the objective variable acquisition unit 102 acquires objective variables used for learning in step S11.
  • the objective variable acquisition unit 102 acquires at least the power consumption of the air conditioning system 20 as an objective variable.
  • the power consumption of the air conditioning system 20 is the total power consumption of the devices included in the air conditioning system 20 .
  • the power consumption of the air conditioning system 20 includes, for example, the power consumption of the heat source unit 21 and the power consumption of the usage unit 23 .
  • the centralized controller 26 of the air conditioning system 20 measures and acquires the power consumption of the air conditioning system 20 .
  • the objective variable acquisition unit 102 acquires the power consumption of the air conditioning system 20 , which is the objective variable input to the input unit 120 via the centralized controller 26 .
  • the learning unit 103 learns by associating the explanatory variables acquired by the explanatory variable acquiring unit 101 and the objective variables acquired by the objective variable acquiring unit 102.
  • the explanatory variables used for learning are the plurality of patterns of the operation information of the air conditioning system 20 acquired by the explanatory variable acquiring unit 101 when the plurality of usage units 23 are used in the plurality of areas A in the first period. be.
  • a plurality of patterns of operation information are various patterns of usage information of area A.
  • FIG. Examples of patterns of operation information are the arrangement of areas A used by users U and the number of users U using each area A.
  • the objective variable used for learning is the power consumption of the air conditioning system 20 in the first period acquired by the objective variable acquisition unit 102 .
  • the learning unit 103 learns by associating each of a plurality of patterns of operation information of the air conditioning system 20 with the power consumption of the air conditioning system 20 under the conditions of the pattern. In other words, the learning unit 103 learns the amount of power consumption when each device of the air conditioning system 20 consumes power in various operation patterns over a predetermined period in the first period, in association with the operation pattern.
  • the learning unit 103 outputs a trained model that is the result of learning.
  • the learning unit 103 sends the trained model to the inference unit 104 .
  • the inference unit 104 obtains the estimated value of the objective variable from the explanatory variables acquired by the explanatory variable acquisition unit 101 based on the learned model obtained as a result of the learning by the learning unit 103. is calculated to infer the objective variable.
  • the explanatory variable used for inference is the explanatory variable of the air conditioning system 20 acquired by the explanatory variable acquiring unit 101 when the plurality of usage units 23 are used in the plurality of areas A in the second period different from the first period. There are multiple patterns of operational information.
  • the inference unit 104 based on the learned model, for each of the plurality of patterns of operational information, which is the explanatory variable acquired by the explanatory variable acquisition unit 101, The power consumption of the air conditioning system 20 is inferred to calculate an estimated power consumption.
  • the inference unit 104 calculates the estimated power consumption of the air conditioning system 20 when the user U uses each of the plurality of areas A that can be used, based on the learning result.
  • the control unit 110 associates each pattern of the operation information of the air conditioning system 20 with the estimated value of the power consumption of the air conditioning system 20 corresponding to each pattern, and stores them in the storage unit 150 as an inference result.
  • step S13 the control unit 110 compares the inference results for each of the plurality of patterns of the operation information of the air conditioning system 20 to reduce the power consumption of the air conditioning system 20. Generate information about area A. For example, the control unit 110 selects the pattern with the smallest estimated power consumption of the air conditioning system 20 from among the plurality of patterns of operation information acquired in step S12. Next, the control unit 110 generates information regarding the area A to be used by the user U based on the selected pattern. The control unit 110 generates, for example, the position of the area A to be used by each user U, the maximum number of users U who can use each area A, and the like. As described above, in the present embodiment, the control unit 110 notifies the user U of the area A to be used so that the power consumption of the air conditioning system 20 is reduced by comparing a plurality of estimation results. .
  • the area notification system 100 of this embodiment can optimize the overall operating efficiency of the air conditioning system 20 that performs air conditioning over a plurality of areas A.
  • the area notification system 100 can use a machine learning technique to determine the area A to be used by the user U so that the power consumption of the air conditioning system 20 as a whole is suppressed.
  • the air conditioning system 20 controls the heat source unit 21 and the usage unit 23 based on the usage method of the facility 10 determined by the area notification system 100 .
  • the air-conditioning management system 190 using the area notification system 100 can efficiently perform energy-saving control for suppressing the power consumption of the air-conditioning system 20 .
  • the explanatory variable acquisition unit 101 may further acquire thermal environment information in the first period as an explanatory variable used for learning in step S11.
  • the learning unit 103 further associates and learns the thermal environment information in the first period with the power consumption of the air conditioning system 20 in the first period.
  • the learning unit 103 learns by associating both the plurality of patterns of operation information of the air conditioning system 20 in the first period and the thermal environment information with the power consumption of the air conditioning system 20 in the first period. .
  • the area notification system 100 can improve the accuracy of learning that associates a plurality of patterns of operation information of the air conditioning system 20 with the power consumption of the air conditioning system 20 .
  • the explanatory variable acquisition unit 101 may further acquire at least one of building information, equipment drawing information, and equipment performance characteristics information as explanatory variables used in learning in step S11.
  • the learning unit 103 further learns by associating at least one of the building information, facility drawing information, and equipment performance characteristics information with the power consumption of the air conditioning system 20 in the first period.
  • the learning unit 103 learns by associating both a plurality of patterns of operation information of the air conditioning system 20 in the first period and building information with the power consumption of the air conditioning system 20 in the first period.
  • the area notification system 100 can improve the accuracy of learning that associates a plurality of patterns of operation information of the air conditioning system 20 with the power consumption of the air conditioning system 20 .
  • the control unit 110 may perform reinforcement learning using rewards.
  • the control unit 110 further has an evaluation data acquisition unit 105 and a function update unit 106.
  • the evaluation data acquisition unit 105 acquires evaluation data for evaluating control results of the air conditioning system 20 .
  • the evaluation data includes at least the power consumption of the air conditioning system 20 .
  • the evaluation data acquisition unit 105 acquires evaluation data input to the input unit 120 via the centralized controller 26 .
  • the function update unit 106 calculates a reward based on the evaluation data acquired by the evaluation data acquisition unit 105. Specifically, the function updating unit 106 calculates a higher reward as the power consumption of the air conditioning system 20 included in the evaluation data is smaller.
  • the learning unit 103 updates the learning state using the reward calculated by the function updating unit 106, and outputs a trained model.
  • the area notification system 100 can improve the accuracy of learning that associates a plurality of patterns of operation information of the air conditioning system 20 with the power consumption of the air conditioning system 20 .
  • the area notification system 100 of this embodiment has the same basic configuration and operation as the area notification system 100 of the first embodiment. Specifically, the descriptions of "(1) Overall configuration of area notification system 100" and "(3) Output information" in the first embodiment are applicable to this embodiment. Differences between the present embodiment and the first embodiment will be described below.
  • the main data that can be input to the input unit 120 from the outside are operation information, weather information, power consumption information, and usage suitability determination information. Operational information and weather information are the same as those described in the first embodiment.
  • the power consumption information includes the power consumption of the air conditioning system 20 described in the first embodiment.
  • the centralized controller 26 of the air conditioning system 20 measures and acquires the power consumption of the air conditioning system 20 .
  • the power consumption information is input to the input section 120 via the centralized controller 26 .
  • the usage suitability determination information is an index for evaluating the suitability of area A and user U from the perspectives of economy, comfort, and convenience.
  • the usage suitability determination information includes at least one of economy information, comfort information, and convenience information, which will be described below.
  • the economic information includes information about the operating costs of the air conditioning system 20.
  • the information about the operating cost of the air conditioning system 20 is, for example, the power consumption of the air conditioning system 20 .
  • the power consumption of the air conditioning system 20 may be a value measured by the centralized controller 26 or an estimated value calculated based on past measured values.
  • the comfort information includes at least one of information related to the environments of multiple areas A and information related to the acceptable range of the environments of multiple areas A for the user U.
  • the comfort information includes at least one of area A's thermal environment information and user's U's environmental tolerance information.
  • the thermal environment information of area A and the environmental tolerance information of user U are the same as those described in the first embodiment.
  • the thermal environment information of area A may be a value measured by the centralized controller 26 or an estimated value calculated based on past measured values.
  • User U's environment tolerance information may be input by user U as in the first embodiment.
  • the usability information includes at least one of information related to the use of multiple areas A and information related to the acceptable range of use of multiple areas A by the user U. Specifically, the usability information includes at least one of area A attribute information and user U usage permission information.
  • the attribute information of area A is, for example, information about the capacity of area A, usage, location, equipment, communication environment, and power supply environment.
  • the information about the capacity of the area A is the maximum number of users U who can use the area A.
  • the information on the position of area A is information on the floor plan of area A, for example.
  • the information about equipment in area A is, for example, the amount of internal heat generated by OA equipment installed in area A.
  • the attribute information of the area A is input by, for example, the contractor of the facility 10 and the administrator of the area notification system 100 using the facility terminal 30 or the like.
  • User U's use permission information is information on how to use Area A that User U in Area A can use.
  • the usage permission information of the user U is, for example, information about the range that the user U can tolerate regarding the number of users of the area A, usage, location, equipment, communication environment, and power supply environment.
  • the user U's usage permission information may be input by the user U as in the first embodiment.
  • the control unit 110 determines how to use the facility 10 using a machine learning technique. Specifically, as shown in FIG. 8, the control unit 110 executes the following steps S21 to S23 to generate information on how to use the facility 10.
  • FIG. Step S21 A plurality of patterns of operation information of the air conditioning system 20 acquired when a plurality of usage units 23 are used in a plurality of areas A in the first period, and a plurality of areas A in the first period. information (use propriety information) regarding the propriety of use of the area included in .
  • Step S22 Based on the result of the learning in step S21, the air-conditioning system 20 information obtained when a plurality of usage units 23 are used in a plurality of areas A during a second period different from the first period. From the plurality of patterns of operation information, information (use propriety information) regarding the propriety of using the areas included in the plurality of areas A in the second period is inferred for each of the plurality of patterns.
  • Step S23 Generate information about area A to be used by user U, including the most appropriate area among multiple areas A, based on the comparison of the inference results in step S22 for each of the multiple patterns. do.
  • FIG. 4 is a block diagram of the control unit 110 in step S21.
  • FIG. 5 is a block diagram of control unit 110 in step S22.
  • the control unit 110 mainly includes an explanatory variable acquisition unit 101 , an objective variable acquisition unit 102 , a learning unit 103 and an inference unit 104 . These elements of control unit 110 correspond to functions realized by the CPU of control unit 110 executing programs stored in storage unit 150 .
  • the explanatory variable acquisition unit 101 acquires explanatory variables used for learning in step S21 and explanatory variables used for inference in step S22.
  • the explanatory variable acquisition unit 101 acquires data input to the input unit 120 as explanatory variables.
  • Candidates for explanatory variables are operation information, weather information, power consumption information, and usage suitability determination information.
  • the explanatory variable includes at least usage information of area A included in the operational information.
  • the explanatory variable acquisition unit 101 may further acquire operating information of the air conditioning system 20 included in the operating information as an explanatory variable in order to improve the accuracy of learning.
  • the explanatory variable acquisition unit 101 uses at least one of user U's environment tolerance information and user U's usage information included in the operation information as an explanatory variable. You can get more.
  • the objective variable acquisition unit 102 acquires objective variables used for learning in step S21.
  • the objective variable acquisition unit 102 acquires at least information (use propriety information) regarding the propriety of using the areas included in the plurality of areas A as objective variables.
  • the usage propriety information is data obtained by quantifying the propriety of usage of the area A.
  • FIG. For example, the usage suitability information is a value obtained by quantifying each item included in the above-mentioned economic efficiency information, comfort information, and convenience information, and weighting each item according to a predetermined priority. is. Below, the higher the value of the usage suitability information, the more suitable the area A is for the user U to use. In this case, the centralized controller 26 of the air conditioning system 20 calculates the usage suitability information, and the objective variable acquisition unit 102 acquires the usage suitability information, which is the objective variable input to the input unit 120 via the centralized controller 26. good too.
  • the learning unit 103 associates the explanatory variable acquired by the explanatory variable acquiring unit 101 and the objective variable acquired by the objective variable acquiring unit 102 and learns them.
  • the explanatory variables used for learning are the plurality of patterns of the operation information of the air conditioning system 20 acquired by the explanatory variable acquiring unit 101 when the plurality of usage units 23 are used in the plurality of areas A in the first period. be.
  • a plurality of patterns of operation information are various patterns of usage information of area A.
  • FIG. Examples of patterns of operation information are the arrangement of areas A used by users U and the number of users U using each area A.
  • the objective variable used for learning is usage propriety information acquired by the objective variable acquisition unit 102 .
  • the learning unit 103 learns by associating each of the plurality of patterns of operation information of the air conditioning system 20 with usage propriety information under the conditions of the pattern. In other words, the learning unit 103 learns usage appropriateness information when each device of the air conditioning system 20 is operated in various operation patterns over a predetermined period in the first period in association with the operation pattern.
  • the learning unit 103 outputs a trained model that is the result of learning.
  • the learning unit 103 sends the trained model to the inference unit 104 .
  • the inference unit 104 obtains the estimated value of the objective variable from the explanatory variables acquired by the explanatory variable acquisition unit 101 based on the learned model obtained as a result of the learning by the learning unit 103. is calculated to infer the objective variable.
  • the explanatory variable used for inference is the explanatory variable of the air conditioning system 20 acquired by the explanatory variable acquiring unit 101 when the plurality of usage units 23 are used in the plurality of areas A in the second period different from the first period. There are multiple patterns of operational information.
  • the inference unit 104 based on the learned model, for each of the plurality of patterns of operational information, which is the explanatory variable acquired by the explanatory variable acquisition unit 101, The usage suitability information is inferred, and an estimated value of the usage suitability information is calculated. In other words, the inference unit 104 calculates an estimated value of usage suitability information when the user U uses each of the plurality of areas A that can be used, based on the learning result.
  • the control unit 110 associates each pattern of the operation information of the air conditioning system 20 with the estimated value of the usage propriety information corresponding to each pattern, and stores them in the storage unit 150 as an inference result.
  • step S23 the control unit 110 compares the inference results for each of the plurality of patterns of the operation information of the air conditioning system 20, and determines the area to be used by the user U so that the estimated value of the usage suitability information becomes high. Generate information about A. For example, the control unit 110 selects the pattern with the highest estimated value of the usage suitability information from among the plurality of patterns of the operational information acquired in step S22. Next, based on the selected pattern, the control unit 110 generates information regarding the area A to be used by the user U, including the most suitable area among the plurality of areas A. FIG. The control unit 110 generates, for example, the position of the area A to be used by each user U, the maximum number of users U who can use each area A, and the like. As described above, in this embodiment, the control unit 110 notifies the area A to be used by the user U by comparing a plurality of estimation results so that the value of the usage suitability information increases.
  • the area notification system 100 of this embodiment can optimize the overall operating efficiency of the air conditioning system 20 that performs air conditioning over a plurality of areas A.
  • the area notification system 100 can use a machine learning technique to determine the area A to be used by the user U so that the value of the usage suitability information is high.
  • the air conditioning system 20 controls the heat source unit 21 and the usage unit 23 based on the usage method of the facility 10 determined by the area notification system 100 .
  • the air-conditioning management system 190 using the area notification system 100 can efficiently perform energy-saving control for suppressing the power consumption of the air-conditioning system 20 .
  • the explanatory variable acquisition unit 101 may further acquire power consumption information in the first period as an explanatory variable used for learning in step S21.
  • the learning unit 103 further associates the power consumption information in the first period with the usage suitability information in the first period for learning.
  • the learning unit 103 learns by associating both a plurality of patterns of the operation information of the air conditioning system 20 in the first period and the power consumption information with the usage suitability information in the first period.
  • the area notification system 100 can improve the accuracy of learning that associates a plurality of patterns of operation information of the air conditioning system 20 with usage suitability information.
  • the explanatory variable acquisition unit 101 may further acquire usage suitability determination information in the first period as an explanatory variable used for learning in step S21.
  • the learning unit 103 further learns the usage suitability determination information in the first period and the usage suitability information in the first period in association with each other.
  • the learning unit 103 learns by associating both a plurality of patterns of operation information of the air conditioning system 20 in the first period and usage suitability determination information with the usage suitability information in the first period.
  • the area notification system 100 can improve the accuracy of learning that associates a plurality of patterns of operation information of the air conditioning system 20 with usage suitability information.
  • the air conditioning management system 190 using the area notification system 100 may have multiple air conditioning systems 20 .
  • the facility 10 where the area notification system 100 is used is provided with a plurality of air conditioning systems 20 for adjusting the air environment (temperature, humidity, air volume, etc.) of a plurality of areas A.
  • Each air conditioning system 20 includes one refrigeration cycle (refrigerant system) in which a plurality of utilization units 23 are connected to one heat source unit 21 . Therefore, the facility 10 is provided with a plurality of refrigerant systems. Each refrigerant system is independent of each other.
  • Each air conditioning system 20 can air-condition the facility 10 across multiple areas A within the facility 10 . However, the multiple air conditioning systems 20 do not air-condition the common area A. FIG. In other words, the areas A air-conditioned by each air-conditioning system 20 do not overlap each other.
  • the area notification system 100 is used to control the multiple air conditioning systems 20 installed across multiple areas A based on the overall operating efficiency. For example, as in the first embodiment, the area notification system 100 uses a machine learning technique to determine the area A to be used by the user U so that the power consumption of each air conditioning system 20 is suppressed. do. Also, as in the second embodiment, the area notification system 100 uses a machine learning technique to determine the area A to be used by the user U so that the value of the usage suitability information is high.
  • the area notification system 100 of this modified example can optimize the overall operating efficiency of the plurality of air conditioning systems 20 that perform air conditioning over a plurality of areas A.
  • Each air conditioning system 20 controls the heat source unit 21 and the usage unit 23 based on the usage method of the facility 10 determined by the area notification system 100 .
  • the air-conditioning management system 190 using the area notification system 100 can efficiently perform energy-saving control for suppressing power consumption of the plurality of air-conditioning systems 20 .
  • the air conditioning management system 190 using the area notification system 100 may have an air conditioning system 20 that transports heat through air and water.
  • one air conditioning system 20 for adjusting the air environment (temperature, humidity, air volume, etc.) of multiple areas A is installed in the facility 10 where the area notification system 100 is used.
  • the air conditioning system 20 includes one refrigeration cycle (refrigerant system) in which a plurality of utilization units 23 are connected to one heat source unit 21 . Therefore, one refrigerant system is installed in the facility 10 .
  • the air conditioning system 20 conveys heat using air and water as media.
  • the air conditioning system 20 mainly consists of a chiller 121, a secondary pump 122, an air handling unit (AHU) 123, a duct 124, and a variable air volume unit (VAV) 125.
  • the heat source unit 21 is a unit mainly composed of a chiller 121 , a secondary pump 122 , an AHU 123 and a duct 124 .
  • the utilization unit 23 is the VAV 125 .
  • One VAV 125 is installed in each area A within the facility 10 .
  • the AHU 123 sends temperature-controlled air to the VAV 125 in each area A.
  • the VAV 125 supplies area A with temperature-conditioned air.
  • the chiller 121 has a compressor that compresses the refrigerant circulating in the refrigeration cycle, like the outdoor unit 22 of the first embodiment.
  • the chiller 121 adjusts the temperature of the heat transfer medium by heat exchange with the refrigerant circulating in the refrigeration cycle.
  • the heat transfer medium is a liquid that circulates through chiller 121 and AHU 123 . In this modification, the heat transfer medium is water.
  • the water whose temperature has been adjusted by the chiller 121 is sent to the AHU 123 by the secondary pump 122.
  • the AHU 123 has an outside air damper 123a, a blower fan 123b, and a heat exchange coil 123c.
  • AHU 123 takes in air from outdoors and indoors by driving blower fan 123b, and sends it to heat exchange coil 123c.
  • the AHU 123 can adjust the amount of air taken in from the outdoors by adjusting the degree of opening of the outside air damper 123a.
  • the heat exchange coil 123 c exchanges heat between air taken in from the outdoors and indoors and water sent from the chiller 121 .
  • the AHU 123 sends to the duct 124 air whose temperature has been adjusted by heat exchange with the heat exchange coil 123c.
  • the duct 124 is connected to the VAV 125 in each area A. Air flowing through duct 124 is sent to each area A via VAV 125 . Thereby, each area A is supplied with air whose temperature is adjusted by the AHU 123 .
  • VAV125 has the air supply damper 125a for adjusting the air volume supplied to the area A.
  • the VAV 125 has a controller for acquiring the opening degree of the air supply damper 125a and setting the opening degree of the air supply damper 125a to a predetermined value.
  • the air conditioning system 20 of this modification performs air conditioning control and ventilation control.
  • Air-conditioning control is control for adjusting the amount of air required to process the air-conditioning load of each area A.
  • FIG. In the air-conditioning control, the control unit 110 adjusts the opening degree of the air supply damper 125a of each VAV 125 according to the air-conditioning load of each area A to control the amount of air supplied to each area A (air supply amount).
  • Ventilation control is control for adjusting the amount of air required to satisfy the ventilation volume of each area A.
  • ventilation control the control unit 110 adjusts the amount of outside air introduced into the AHU 123 (outside air amount) by adjusting the opening degree of the outside air damper 123a.
  • the control unit 110 can acquire and set the opening degrees of the outside air damper 123a and the supply air damper 125a, and the capacity (rotational speed) of the blower fan 123b. Control unit 110 can start or stop operation of VAV 125 .
  • the opening degree of the supply air damper 125a of the VAV 125 that has been started and is in operation is greater than zero.
  • the opening degree of the supply air damper 125a of the VAV 125 that has been stopped and is not working is zero.
  • the facility drawing information is specifically information regarding the following items.
  • System of ducts 124 System of piping for water circulating through chiller 121 and AHU 123 Placement of chiller 121, AHU 123 and VAV 125 Performance characteristics of equipment such as chiller 121, secondary pump 122, AHU 123 and VAV 125
  • the area notification system 100 is used to perform control based on the overall operating efficiency of the air conditioning system 20 installed over a plurality of areas A. For example, as in the first embodiment, the area notification system 100 uses a machine learning technique to determine the area A to be used by the user U so that the power consumption of the air conditioning system 20 is suppressed. . Also, as in the second embodiment, the area notification system 100 uses a machine learning technique to determine the area A to be used by the user U so that the value of the usage suitability information is high.
  • the area notification system 100 of this modification can optimize the overall operating efficiency of the air conditioning system 20 that performs air conditioning across multiple areas A.
  • the air conditioning system 20 controls the opening degrees of the outside air damper 123a and the supply air damper 125a, and the performance of the blower fan 123b, based on the usage of the facility 10 determined by the area notification system 100.
  • FIG. Thereby, the air-conditioning management system 190 using the area notification system 100 can efficiently perform energy-saving control for suppressing the power consumption of the air-conditioning system 20 .
  • the air conditioning management system 190 using the area notification system 100 may have a plurality of air conditioning systems 20 in this modification as well.
  • the air conditioning management system 190 using the area notification system 100 may have multiple air conditioning systems 20 that transport heat using water as a medium.
  • the facility 10 in which the area notification system 100 is used is provided with a plurality of air conditioning systems 20 for adjusting the air environment (temperature, humidity, air volume, etc.) of the plurality of areas A.
  • Each air conditioning system 20 includes one refrigeration cycle (refrigerant system) in which a plurality of utilization units 23 are connected to one heat source unit 21 . Therefore, the facility 10 is provided with a plurality of refrigerant systems. Each refrigerant system is independent of each other.
  • the air conditioning system 20 conveys heat using water as a medium.
  • the air conditioning system 20 is mainly composed of a chiller 221, a fan coil unit (FCU) 222 and a secondary pump 223.
  • FCU fan coil unit
  • each air conditioning system 20 one chiller 221 is connected to multiple FCUs 222 .
  • the heat source unit 21 is a unit mainly composed of a chiller 221 and a secondary pump 223 .
  • the utilization unit 23 is the FCU 222 .
  • One FCU 222 is installed in each area A within the facility 10 .
  • the chiller 22 like the chiller 121 of Modification G, has a compressor that compresses the refrigerant circulating in the refrigeration cycle. Chiller 221 adjusts the temperature of the heat transfer medium by heat exchange with the refrigerant circulating in the refrigeration cycle.
  • the heat transfer medium is a liquid that circulates through chiller 221 and FCU 222 . In this modification, the heat transfer medium is water.
  • FCU 222 mainly includes a coil and a fan.
  • the coil of FCU 222 exchanges heat between the air taken from area A and the water sent from chiller 221 .
  • the fan of FCU 222 returns to area A the air taken from area A and temperature regulated by the coil.
  • Each FCU 222 further includes a valve provided in the piping through which water sent from the chiller 221 flows.
  • a valve of the FCU 222 is, for example, an electromagnetic valve. When the FCU 222 valve is closed, no heat exchange takes place in that FCU 222 . When the valve of FCU 222 is open, heat exchange takes place in that FCU 222 . When the FCU 222 is running, the FCU 222 valves are open.
  • Each air conditioning system 20 can air-condition the facility 10 across multiple areas A within the facility 10 . However, the multiple air conditioning systems 20 do not air-condition the common area A. FIG. In other words, the areas A air-conditioned by each air-conditioning system 20 do not overlap each other.
  • the area notification system 100 is used to control the multiple air conditioning systems 20 installed across multiple areas A based on the overall operating efficiency. For example, as in the first embodiment, the area notification system 100 uses a machine learning technique to determine the area A to be used by the user U so that the power consumption of the air conditioning system 20 is suppressed. . Also, as in the second embodiment, the area notification system 100 uses a machine learning technique to determine the area A to be used by the user U so that the value of the usage suitability information is high.
  • the area notification system 100 of this modified example can optimize the overall operating efficiency of the plurality of air conditioning systems 20 that perform air conditioning over a plurality of areas A.
  • Each air conditioning system 20 controls the capacity of the chillers 221 and secondary pumps 223 based on how the facility 10 is used as determined by the area notification system 100 .
  • the air-conditioning management system 190 using the area notification system 100 can efficiently perform energy-saving control for suppressing power consumption of the plurality of air-conditioning systems 20 .
  • the user U's environment permission information included in the operational information may include information on demand event participation conditions.
  • the demand event participation condition is a condition for the user U to participate in demand control in a type of demand control in which the user U can participate.
  • the area notification system 100 may provide the user U with an incentive when information on the demand event participation conditions of the user U is included as the user U's environment permission information.
  • the area notification system 100 may output information regarding the incentive given to the user U participating in the demand control to the outside via the output unit 130 and the setting unit 140 .
  • the area notification system 100 sends points that can be used in the SNS system used by the user U to the user U via the SNS system after the end of the demand control. may be given.
  • the area notification system 100 may be used as an energy management support tool.
  • an energy management consultant uses the area notification system 100 to present the customer with suggestions for improving the energy management of the facility 10 .
  • the area notification system 100 uses a machine learning technique to determine how to use the facility 10 so that the power consumption of the air conditioning system 20 is suppressed.
  • the area notification system 100 uses a machine learning technique to determine how to use the facility 10 so as to increase the value of the usage suitability information.
  • the consultant presents the customer with a proposal on how to use the facility 10 based on the information output to the output unit 130 .
  • the area notification system 100 may be used to manage schedules regarding use of the facility 10.
  • the area notification system 100 may allocate the available area A to the user U based on the reservation status of use of the area A within the facility 10, and control the air conditioning system 20 based on the schedule.
  • the information input to the input unit 120 includes reservation information.
  • the reservation information is information related to reservation for use of area A.
  • the reservation information includes, for example, information on the user U who has reserved the use of the area A and information on the desired time slot for using the area A.
  • the area notification system 100 cooperates with an area reservation system, the user U may use the area reservation system to input, change, or cancel reservation information.
  • the area notification system 100 uses a machine learning technique to determine schedule information based on reservation information so that the power consumption of the air conditioning system 20 is suppressed.
  • the area notification system 100 uses a machine learning technique to determine schedule information based on the reservation information so that the value of the usage suitability information is high.
  • the schedule information includes, for example, information on the location of area A to be used by user U who has reserved use of area A, and the available time zone of area A.
  • Area notification system 100 outputs the determined schedule information to the outside via output unit 130 and setting unit 140 . Also, the area notification system 100 may control the air conditioning system 20 based on the schedule information.
  • Facility 20 Air conditioning system (first air conditioning system) 21: heat source unit 23: usage unit 100: area notification system 110: control unit A: area U: user

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Signal Processing (AREA)
  • Primary Health Care (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

複数のエリアにまたがって空調を行う空調システムの全体の運転効率を最適化することができるエリア通知システムを提供する。エリア通知システム(100)は、施設(10)の利用者(U)に、施設(10)内の複数のエリア(A)の中から、利用者(U)が利用すべき第1エリアを通知する。施設(10)は、1つの熱源ユニット(21)に複数の利用ユニット(23)が接続される空調システム(20)を用いて複数のエリア(A)にまたがって空調が行われる。エリア通知システム(100)の制御部(110)は、第1の期間における空調システム(20)の運用情報の複数のパターンと、空調システム(20)の消費電力量とを関連付けて学習し、学習の結果に基づき、第2の期間における空調システム(20)の運用情報の複数のパターンのそれぞれに対して空調システム(20)の消費電力量を推論し、推論の結果の比較に基づき、空調システム(20)の消費電力量が小さくなるように、第1エリアに関する情報を生成する。

Description

エリア通知システム
 エリア通知システムに関する。
 特許文献1(特開2013-246702号公報)に記載のように、ビル設備のエネルギー消費量が少なくなるように、ビルの入居者が利用するワークプレイスを決定するシステムが知られている。
 従来のシステムでは、複数のエリアにまたがって設置され、かつ、複数の利用ユニットを有する空調システムの全体の運転効率の最適化が十分ではない場合がある。
 第1観点のエリア通知システムは、施設の利用者に、施設内の複数のエリアの中から、利用者が利用すべき第1エリアを通知する。施設は、1つの熱源ユニットに複数の利用ユニットが接続される第1空調システムを用いて複数のエリアにまたがって空調が行われる。エリア通知システムは、施設において、第1エリアに関する情報を生成する制御部を備える。制御部は、次のステップ(A)~(C)を行う。
(A)第1の期間において複数の利用ユニットが複数のエリアで利用された際に取得される、第1空調システムの運用情報の複数のパターンと、第1の期間における第1空調システムの消費電力量とを関連付けて学習する。
(B)学習の結果に基づき、第2の期間において複数の利用ユニットが複数のエリアで利用された際に取得される、第1空調システムの運用情報の複数のパターンから、第2の期間における第1空調システムの消費電力量を、当該複数のパターンのそれぞれに対して推論する。
(C)複数のパターンのそれぞれに対する推論の結果の比較に基づき、第1空調システムの消費電力量が小さくなるように、第1エリアに関する情報を生成する。
 このエリア通知システムは、複数のエリアにまたがって空調を行う空調システムの全体の運転効率を最適化することができる。
 第2観点のエリア通知システムは、第1観点のエリア通知システムであって、運用情報は、複数のエリアの利用に関する情報を含む。
 このエリア通知システムは、利用者が利用すべきエリアの選定を最適化することができる。
 第3観点のエリア通知システムは、第2観点のエリア通知システムであって、運用情報は、さらに、第1空調システムの運転データに関する情報を含む。
 このエリア通知システムは、利用者が利用すべきエリアの選定を最適化することができる。
 第4観点のエリア通知システムは、第1乃至第3観点のいずれか1つのエリア通知システムであって、制御部は、さらに、第1の期間における複数のエリアの環境に関する情報と、第1の期間における第1空調システムの消費電力量とを関連付けて学習する。
 このエリア通知システムは、空調システムの運用パターンと、空調システムの消費電力量とを関連付ける学習の精度を向上させる。
 第5観点のエリア通知システムは、第1乃至第4観点のいずれか1つのエリア通知システムであって、制御部は、さらに、施設に関する情報と、第1の期間における第1空調システムの消費電力量とを関連付けて学習する。
 このエリア通知システムは、空調システムの運用パターンと、空調システムの消費電力量とを関連付ける学習の精度を向上させる。
 第6観点のエリア通知システムは、第1乃至第5観点のいずれか1つのエリア通知システムであって、制御部は、第1の期間における第1空調システムの消費電力量に基づいて報酬を算出し、算出された報酬に基づいて、第1の期間における第1空調システムの消費電力量を学習する。
 このエリア通知システムは、空調システムの運用パターンと、空調システムの消費電力量とを関連付ける学習の精度を向上させる。
 第7観点のエリア通知システムは、施設の利用者に、施設内の複数のエリアの中から、利用者が利用すべき第1エリアを通知する。施設は、1つの熱源ユニットに複数の利用ユニットが接続される第1空調システムを用いて複数のエリアにまたがって空調が行われる。エリア通知システムは、施設において、第1エリアに関する情報を生成する制御部を備える。制御部は、次のステップ(A)~(C)を行う。
(A)第1の期間において複数の利用ユニットが複数のエリアで利用された際に取得される、第1空調システムの運用情報の複数のパターンと、第1の期間における複数のエリアに含まれるエリアの利用の適否に関する情報とを関連付けて学習する。
(B)学習の結果に基づき、第2の期間において複数の利用ユニットが複数のエリアで利用された際に取得される、第1空調システムの運用情報の複数のパターンから、第2の期間における複数のエリアに含まれるエリアの利用の適否に関する情報を、当該複数のパターンのそれぞれに対して推論する。
(C)複数のパターンのそれぞれに対する推論の結果の比較に基づき、複数のエリアの中で最も適切なエリアを含む第1エリアに関する情報を生成する。
 このエリア通知システムは、複数のエリアにまたがって空調を行う空調システムの全体の運転効率を最適化することができる。
 第8観点のエリア通知システムは、第7観点のエリア通知システムであって、運用情報は、複数のエリアの利用に関する情報を含む。
 このエリア通知システムは、利用者が利用すべきエリアの選定を最適化することができる。
 第9観点のエリア通知システムは、第8観点のエリア通知システムであって、運用情報は、さらに、第1空調システムの運転データに関する情報を含む。
 このエリア通知システムは、利用者が利用すべきエリアの選定を最適化することができる。
 第10観点のエリア通知システムは、第7乃至第9観点のいずれか1つのエリア通知システムであって、制御部は、さらに、第1の期間における第1空調システムの消費電力量と、第1の期間における第1エリアの利用の適否に関する情報とを関連付けて学習する。
 このエリア通知システムは、空調システムの運用パターンと、空調システムの消費電力量とを関連付ける学習の精度を向上させる。
 第11観点のエリア通知システムは、第7乃至第10観点のいずれか1つのエリア通知システムであって、制御部は、さらに、第1の期間における第1エリアの利用の適否を判定するための判定情報と、第1の期間における第1エリアの利用の適否に関する情報とを関連付けて学習する。
 このエリア通知システムは、空調システムの運用パターンと、空調システムの消費電力量とを関連付ける学習の精度を向上させる。
 第12観点のエリア通知システムは、第11観点のエリア通知システムであって、判定情報は、経済性情報、快適性情報、または、利便性情報を含む。経済性情報は、第1空調システムの運用コストに関する情報を含む。快適性情報は、複数のエリアの環境に関する情報、または、利用者が複数のエリアの環境に関して許容できる範囲に関する情報を含む。利便性情報は、複数のエリアの利用に関する情報、または、利用者が複数のエリアの利用に関して許容できる範囲に関する情報を含む。
 このエリア通知システムは、空調システムの運用パターンと、空調システムの消費電力量とを関連付ける学習の精度を向上させる。
エリア通知システム100を用いる空調管理システム190の概略構成図である。 第1実施形態に係る施設10の利用状況の一例を表す図である。 第1実施形態に係るエリア通知システム100が行う処理のフローチャートである。 第1および第2実施形態に係る学習中の制御部110のブロック図である。 第1および第2実施形態に係る学習後の制御部110のブロック図である。 変形例Cに係る学習中の機械学習装置200のブロック図である。 変形例Cに係る学習後の機械学習装置200のブロック図である。 第2実施形態に係るエリア通知システム100が行う処理のフローチャートである。 変形例Gに係る施設10の利用状況の一例を表す図である。 変形例Hに係る施設10の利用状況の一例を表す図である。
 ―第1実施形態―
 (1)エリア通知システム100の全体構成
 本実施形態のエリア通知システム100は、施設10の利用者Uに、施設10内の複数のエリアAの中から、利用者Uが利用すべきエリアAを通知する。図1に示されるように、エリア通知システム100は、例えば、空調管理システム190に用いられる。空調管理システム190は、主として、エリア通知システム100と、1つまたは複数の空調システム20とを有する。本実施形態では、空調管理システム190は、1つの空調システム20を有する。
 施設10には、図2に示されるように、複数のエリアAの空気環境(温度、湿度および風量等)を調整するための1つの空調システム20が設置されている。空調システム20は、主として、熱源ユニット21と、利用ユニット23と、集中コントローラ26とを備える。空調システム20は、1台の熱源ユニット21に複数台の利用ユニット23が接続される1つの冷凍サイクル(冷媒系統)を備える。そのため、本実施形態では、施設10には、1つの冷媒系統が設置されている。本実施形態では、図2に示されるように、熱源ユニット21は、室外機22であり、利用ユニット23は、室内機24である。
 空調システム20は、集中コントローラ26によって、1台の熱源ユニット21で複数台の利用ユニット23を制御することができるマルチエアコンシステムである。熱源ユニット21は、空調システム20の冷凍サイクルを循環する冷媒を圧縮する圧縮機を有する。エリア通知システム100は、空調システム20の集中コントローラ26に接続されている。
 施設10は、空調システム20によって内部空間の空気環境が調整される建物、または、建物の一部である。施設10は、例えば、ビルの一部または全体を占める、オフィス、病院、ホテル、学校、大型店舗、研究施設および飲食店である。空調システム20は、施設10内の複数のエリアAにまたがって施設10の空調を行う。
 施設10内の各エリアAには、1台の利用ユニット23が設置される。施設10内のエリアAは、壁等によって他のエリアAから区画された空間であってもよい。例えば、エリアAは、施設10内の比較的小さい部屋(会議室等)であってもよい。この場合、1つのエリアAのみからなる部屋には、1台の利用ユニット23が設置される。
 また、施設10内の複数のエリアAは、同一の空間に含まれてもよい。複数のエリアAを含む空間において、各エリアAは互いに重ならないように配置される。例えば、複数のエリアAを含む空間は、施設10内の比較的大きい部屋(ロビー等)であってもよい。この場合、複数のエリアAからなる部屋には、エリアAの数と同じ複数台の利用ユニット23が設置される。
 エリア通知システム100は、施設10の案内係(または管理者)が、所定の1つのエリアAに利用者Uを案内するために用いられる。エリア通知システム100は、施設10の利用者Uが利用すべきエリアAに関する情報を、施設10の案内係に提供し、案内係は、その情報に基づいて、利用者Uを所定のエリアAに案内する。この場合、施設10の案内係は、施設10を訪れた利用者Uを所定のエリアAに案内するか、または、既に所定のエリアAを利用している利用者Uを他のエリアAに案内する。利用者Uは、1人であってもよく、複数人から構成されるグループであってもよい。
 図1に示されるように、エリア通知システム100は、主として、制御部110と、入力部120と、出力部130と、設定部140と、記憶部150とを有する。
 制御部110は、エリア通知システム100の種々の機能を実現するための演算処理を実行するハードウェアである。制御部110は、所定のデータを用いて所定のプログラムを実行することによって、これらの機能を実現する。制御部110は、例えば、CPU、ASIおよびFPGA等の集積回路である。制御部110は、施設10の利用方法を決定するための処理を実行する。施設10の利用方法とは、例えば、施設10の利用者Uが利用すべきエリアAに関する情報、および、空調システム20の制御に関する情報である。空調システム20の制御に関する情報は、空調システム20の複数の利用ユニット23の稼働情報を含む。稼働情報は、例えば、複数の利用ユニット23のうち稼働するべき利用ユニット23に関する情報、および、各エリアAに設置される利用ユニット23の設定温度、設定湿度および設定風量等に関する情報である。
 入力部120は、制御部110が施設10の利用方法を決定するために使用する情報を入力するためのハードウェアである。入力部120は、施設用端末30等と通信するためのネットワーク機器である。施設用端末30とは、施設10によって所有され、かつ、施設10の案内係および管理者等が業務上用いるPCおよび携帯端末等である。
 出力部130は、制御部110によって決定された施設10の利用方法に含まれる情報を出力するためのハードウェアである。出力部130は、施設用端末30等と通信するためのネットワーク機器である。
 設定部140は、制御部110によって決定された施設10の利用方法に含まれる情報を出力して、空調システム20の集中コントローラ26に送信するためのハードウェアである。設定部140は、例えば、空調システム20の集中コントローラ26と通信するためのネットワーク機器である。
 記憶部150は、制御部110が実行するプログラム、および、制御部110が施設10の利用方法を決定するために使用するデータを記憶するハードウェアである。記憶部150は、例えば、入力部120によって入力されたデータ、および、出力部130および設定部140が出力するデータを記憶するための補助記憶装置(RAM、HDDおよびSSD等)である。
 図3に示されるように、エリア通知システム100は、外部から入力部120に入力された各種情報を用いて、制御部110に施設10の利用方法を決定させ、施設10の利用方法に含まれる情報を出力部130および設定部140を介して外部に出力する。エリア通知システム100は、これらの一連の処理で用いられるプログラムおよびデータを、記憶部150に永続的にまたは一時的に記憶する。
 (2)入力情報
 エリア通知システム100は、施設10の利用方法を決定するために、入力部120に入力される種々のデータを用いる。次に、外部から入力部120に入力され得る主なデータについて具体的に説明する。
 (2-1)運用情報
 運用情報は、施設10の利用状況に関する情報である。運用情報は、入力部120に入力されるタイミングに応じて異なる動的な情報である。運用情報は、具体的には、以下の項目に関する情報である。
 ・空調システム20の運転情報
 ・エリアAの利用情報
 ・利用者Uの環境許容情報
 ・利用者Uの利用情報
 空調システム20の運転情報とは、空調システム20の運転データに関するリアルタイムの情報である。空調システム20の運転情報は、例えば、熱源ユニット21および利用ユニット23の運転時間、および、エリアAの設定温度、設定湿度、設定風量である。
 エリアAの利用情報とは、各エリアAを利用している利用者Uに関するリアルタイムの情報である。エリアAの利用情報は、例えば、各エリアAを利用している利用者Uの人数、利用時間、および、利用目的である。
 利用者Uの環境許容情報とは、エリアAにいる利用者Uが許容できる、当該エリアAの温度範囲、湿度範囲、風量範囲、および、空気清浄度範囲に関する情報である。空気清浄度範囲は、例えば、二酸化炭素濃度の範囲である。利用者Uの環境許容情報は、時間帯ごとに設定されてもよい。
 利用者Uの利用情報とは、各利用者Uが利用しているエリアAに関するリアルタイムの情報である。利用者Uの利用情報は、例えば、施設10の利用状況に関する情報である。
 空調システム20の運転情報、エリアAの利用情報、および、利用者Uの利用情報は、例えば、空調システム20の集中コントローラ26から自動的に入力される。入力された運用情報は、記憶部150に保存される。
 利用者Uの環境許容情報は、例えば、利用者Uによって施設用端末30等を用いて入力される。しかし、エリア通知システム100が、利用者Uが利用しているSNSシステムと連携している場合、入力部120は、SNSシステムを介して、利用者Uの環境許容情報を取得してもよい。この場合、利用者Uは、自身のアカウントでSNSシステムにログインして自身の環境許容情報を入力し、入力部120は、利用者Uによって入力された環境許容情報を取得する。また、利用者Uは、自身の携帯端末にインストールされたエリア通知システム100専用のアプリケーションを用いて自身の環境許容情報を入力してもよい。この場合、入力部120は、利用者Uによって入力された環境許容情報を取得する。
 (2-2)温熱環境情報
 温熱環境情報は、エリアAの環境に関する情報、および、気象情報である。エリアAの環境に関する情報は、例えば、エリアAの温度、湿度、風量および空気清浄度である。空気清浄度は、例えば、二酸化炭素濃度である。温熱環境情報は、例えば、エリアAに設置されるセンサによってリアルタイムで取得され、入力部120に自動的に入力される。入力された温熱環境情報は、記憶部150に保存される。エリアAの環境に関する情報は、過去に取得したデータに基づいて算出される推定値であってもよい。
 気象情報は、施設10が位置する地域の環境に関する情報である。気象情報は、例えば、施設10が位置する地域の温度、湿度、日射量、風向および風量である。気象情報は、入力部120に入力されるタイミングに応じて異なる動的な情報である。気象情報は、例えば、気象予報サービス等の外部ネットワーク34から自動的に入力される。
 (2-3)建物情報
 建物情報は、主に、施設10を含む建物に関する情報、および、施設10内の空間に関する情報である。建物情報は、更新頻度が低い静的な情報である。建物情報は、具体的には、以下の項目に関する情報である。
 ・施設10のレイアウト
 ・施設10の換気量
 ・施設10内に設置されるOA機器の内部発熱量
 ・施設10の壁、扉および窓等の材質
 施設10のレイアウトは、例えば、施設10内の部屋の間取り、および、各エリアA(部屋)の空調面積(床面積)を含む。施設10の換気量は、例えば、各エリアA(部屋)の換気量を含む。
 建物情報は、例えば、施設10の施工業者、および、エリア通知システム100の管理者によって施設用端末30等を用いて入力される。エリア通知システム100の管理者とは、例えば、エリア通知システム100の設置を提案する営業担当者、および、エリア通知システム100の設置を担当するエンジニアである。入力部120に入力された建物情報は、記憶部150に保存される。
 (2-4)設備図面情報
 設備図面情報は、主に、施設10内における空調システム20の設置に関する情報である。設備図面情報は、更新頻度が低い静的な情報である。空調対象空間であるエリアAにおいて利用ユニット23が冷媒と空気との熱交換を行う直接膨張式の空調システム20の場合、設備図面情報は、具体的には、以下の項目に関する情報である。
 ・冷媒系統
 ・冷媒配管長
 ・熱源ユニット21および利用ユニット23の配置
 本実施形態のように、使用される空調システム20が1つの場合、冷媒系統は1つであるので、冷媒系統に関する情報は用いられない。
 熱源ユニット21および利用ユニット23の配置に関する情報は、利用ユニット23と、利用ユニット23が設置されるエリアAとを紐づける設置情報を含む。この設置情報により、各エリアAに設置されている利用ユニット23を特定できる。
 また、冷媒と熱交換された媒体(空気および水等)を、空調対象空間であるエリアAに移送する間接膨張式の空調システム20の場合、設備図面情報は、具体的には、以下の項目に関する情報である。
 ・ダクト系統
 ・水配管系統
 設備図面情報は、例えば、空調システム20の施工業者、および、エリア通知システム100の管理者によって施設用端末30等を用いて入力される。入力部120に入力された設備図面情報は、記憶部150に保存される。
 (2-5)機器性能特性情報
 機器性能特性情報とは、空調システム20に含まれる機器の性能特性に関する情報である。機器性能特性情報は、例えば、熱源ユニット21の圧縮機の容量および回転数、熱源ユニット21のファンの回転数、および、利用ユニット23のファンの回転数である。
 機器性能特性情報は、例えば、空調システム20の施工業者、および、エリア通知システム100の管理者によって施設用端末30等を用いて入力される。入力部120に入力された設備図面情報は、記憶部150に保存される。
 (3)出力情報
 エリア通知システム100は、制御部110によって決定された、施設10の利用方法に含まれる種々の情報を出力部130および設定部140を介して外部に出力する。
 出力部130を介して外部に出力される情報は、例えば、施設10の利用者Uが利用すべきエリアA(第1エリア)に関する情報である。この情報は、エリア通知システム100から、施設用端末30等に送信される。これにより、施設10の案内係は、施設10の利用方法に関してエリア通知システム100から通知を受ける。施設10の案内係は、出力部130から送信されて施設用端末30の画面に表示された情報を参照して、利用者Uを、当該利用者Uが利用すべき所定のエリアAに案内する。また、出力部130を介して外部に出力される情報は、施設用端末30の他に、または、施設用端末30の代わりに、利用者端末32に送信されてもよい。利用者端末32とは、施設10の利用者Uが使用するPCおよび携帯端末等である。この場合、利用者Uは、施設10の利用方法に関してエリア通知システム100から通知を受ける。利用者Uは、出力部130から送信されて利用者端末32の画面に表示された情報を参照して、自身が利用すべき所定のエリアAに移動することができる。
 設定部140を介して外部に出力される情報は、空調システム20の制御信号等、空調システム20の制御に用いられる情報である。設定部140を介して外部に出力される情報は、例えば、空調システム20の複数の利用ユニット23のうち稼働するべき利用ユニット23に関する情報、および、各エリアAに設置される利用ユニット23の設定温度、設定湿度および設定風量等に関する情報を含む。これらの情報は、エリア通知システム100から、空調システム20の集中コントローラ26に送信される。集中コントローラ26は、エリア通知システム100から受信した情報に基づいて、熱源ユニット21および利用ユニット23を制御する。
 (4)施設10の利用方法の決定処理
 制御部110は、機械学習の手法を用いて、施設10の利用方法を決定する。具体的には、制御部110は、図3に示されるように、次のステップS11~S13を実行して、施設10の利用方法に関する情報を生成する。
・ステップS11:第1の期間において複数の利用ユニット23が複数のエリアAで利用された際に取得される、空調システム20の運用情報の複数のパターンと、第1の期間における空調システム20の消費電力量とを関連付けて学習する。
・ステップS12:ステップS11での学習の結果に基づき、第1の期間とは異なる第2の期間において複数の利用ユニット23が複数のエリアAで利用された際に取得される、空調システム20の運用情報の複数のパターンから、第2の期間における空調システム20の消費電力量を、当該複数のパターンのそれぞれに対して推論する。
・ステップS13:複数のパターンのそれぞれに対する、ステップS12での推論の結果の比較に基づき、空調システム20の消費電力量が小さくなるように、利用者Uが利用すべきエリアAに関する情報を生成する。
 図4は、ステップS11における制御部110のブロック図である。図5は、ステップS12における制御部110のブロック図である。制御部110は、主として、説明変数取得部101と、目的変数取得部102と、学習部103と、推論部104とを備える。制御部110のこれらの要素は、記憶部150に記憶されているプログラムを、制御部110のCPUが実行することにより実現される機能に相当する。
 説明変数取得部101は、ステップS11での学習の際に用いられる説明変数、および、ステップS12での推論の際に用いられる説明変数を取得する。説明変数取得部101は、入力部120に入力されたデータを説明変数として取得する。説明変数の候補は、運用情報、温熱環境情報、建物情報、設備図面情報、および、機器性能特性情報である。説明変数は、運用情報に含まれる、エリアAの利用情報を少なくとも含む。
 説明変数取得部101は、学習の精度を向上させるために、運用情報に含まれる、空調システム20の運転情報を、説明変数としてさらに取得してもよい。また、説明変数取得部101は、学習の精度をさらに向上させるために、運用情報に含まれる、利用者Uの環境許容情報、および、利用者Uの利用情報の少なくとも1つを、説明変数としてさらに取得してもよい。
 目的変数取得部102は、ステップS11での学習の際に用いられる目的変数を取得する。目的変数取得部102は、少なくとも空調システム20の消費電力量を目的変数として取得する。空調システム20の消費電力量とは、空調システム20に含まれる機器の消費電力量の合計である。空調システム20の消費電力量は、例えば、熱源ユニット21の消費電力量、および、利用ユニット23の消費電力量を含む。空調システム20の集中コントローラ26は、空調システム20の消費電力量を計測して取得する。目的変数取得部102は、集中コントローラ26を介して入力部120に入力された目的変数である、空調システム20の消費電力量を取得する。
 学習部103は、図4に示されるように、ステップS11において、説明変数取得部101が取得した説明変数と、目的変数取得部102が取得した目的変数とを関連付けて学習する。学習に用いられる説明変数は、第1の期間において複数の利用ユニット23が複数のエリアAで利用された際に、説明変数取得部101が取得する、空調システム20の運用情報の複数のパターンである。運用情報の複数のパターンとは、エリアAの利用情報の様々なパターンである。運用情報のパターンの例は、利用者Uに利用されているエリアAの配置、および、各エリアAを利用している利用者Uの数である。学習に用いられる目的変数は、目的変数取得部102が取得する、第1の期間における空調システム20の消費電力量である。
 このように、本実施形態では、学習部103は、空調システム20の運用情報の複数のパターンのそれぞれと、そのパターンの条件下における空調システム20の消費電力量とを関連付けて学習する。言い換えると、学習部103は、第1の期間において空調システム20の各機器が所定の期間をかけて様様な運用パターンで電力消費した場合の消費電力量を、運用パターンと関連付けて学習する。学習部103は、学習の結果である学習済みモデルを出力する。学習部103は、学習済みモデルを推論部104に送る。
 推論部104は、図5に示されるように、ステップS12において、学習部103による学習の結果得られた学習済みモデルに基づき、説明変数取得部101が取得した説明変数から、目的変数の推定値を算出して、目的変数を推論する。推論に用いられる説明変数は、第1の期間とは異なる第2の期間において複数の利用ユニット23が複数のエリアAで利用された際に、説明変数取得部101が取得する、空調システム20の運用情報の複数のパターンである。
 このように、本実施形態では、推論部104は、学習済みモデルに基づき、説明変数取得部101が取得した説明変数である運用情報の複数のパターンのそれぞれに対して、そのパターンの条件下における空調システム20の消費電力量を推論して、消費電力量の推定値を算出する。言い換えると、推論部104は、学習の結果に基づいて、利用者Uが利用し得る複数のエリアAのそれぞれを利用する場合における、空調システム20の消費電力量の推定値を算出する。制御部110は、空調システム20の運用情報の各パターンと、各パターンに対応する空調システム20の消費電力量の推定値とを関連付けて、推論の結果として記憶部150に記憶する。
 制御部110は、ステップS13において、空調システム20の運用情報の複数のパターンのそれぞれに対する推論の結果の比較に基づき、空調システム20の消費電力量が小さくなるように、利用者Uが利用すべきエリアAに関する情報を生成する。例えば、制御部110は、ステップS12において取得した運用情報の複数のパターンの中から、空調システム20の消費電力量の推定値が最も小さいパターンを選択する。次に、制御部110は、選択されたパターンに基づいて、利用者Uが利用すべきエリアAに関する情報を生成する。制御部110は、例えば、各利用者Uが利用すべきエリアAの位置、および、各エリアAを利用できる利用者Uの最大人数等を生成する。このように、本実施形態では、制御部110は、複数の推定の結果を比較することにより、空調システム20の消費電力量が小さくなるように、利用者Uが利用すべきエリアAを通知する。
 (5)効果
 本実施形態のエリア通知システム100は、複数のエリアAにまたがって空調を行う空調システム20の全体の運転効率を最適化することができる。具体的には、エリア通知システム100は、機械学習の手法を用いて、空調システム20全体の消費電力量が抑制されるように、利用者Uが利用すべきエリアAを決定することができる。空調システム20は、エリア通知システム100が決定した、施設10の利用方法に基づいて、熱源ユニット21および利用ユニット23を制御する。これにより、エリア通知システム100を用いる空調管理システム190は、空調システム20の消費電力量を抑制する省エネ制御を効率的に行うことができる。
 (6)変形例
 以下に本実施形態の変形例を示す。各変形例の内容の一部または全部は、互いに矛盾しない範囲で他の変形例の内容と組み合わされてもよい。
 (6-1)変形例A
 説明変数取得部101は、ステップS11での学習の際に用いられる説明変数として、第1の期間における温熱環境情報をさらに取得してもよい。この場合、学習部103は、さらに、第1の期間における温熱環境情報と、第1の期間における空調システム20の消費電力量とを関連付けて学習する。例えば、学習部103は、第1の期間における空調システム20の運用情報の複数のパターン、および、温熱環境情報の両方と、第1の期間における空調システム20の消費電力量とを関連付けて学習する。これにより、エリア通知システム100は、空調システム20の運用情報の複数のパターンと、空調システム20の消費電力量とを関連付ける学習の精度を向上させることができる。
 (6-2)変形例B
 説明変数取得部101は、ステップS11での学習の際に用いられる説明変数として、建物情報、設備図面情報、および、機器性能特性情報の少なくとも1つをさらに取得してもよい。この場合、学習部103は、さらに、建物情報、設備図面情報、および、機器性能特性情報の少なくとも1つと、第1の期間における空調システム20の消費電力量とを関連付けて学習する。例えば、学習部103は、第1の期間における空調システム20の運用情報の複数のパターン、および、建物情報の両方と、第1の期間における空調システム20の消費電力量とを関連付けて学習する。これにより、エリア通知システム100は、空調システム20の運用情報の複数のパターンと、空調システム20の消費電力量とを関連付ける学習の精度を向上させることができる。
 (6-3)変形例C
 制御部110は、報酬を用いて学習する強化学習を行ってもよい。この場合、図6および図7に示されるように、制御部110は、評価データ取得部105および関数更新部106をさらに有する。
 評価データ取得部105は、空調システム20の制御結果を評価する評価データを取得する。本変形例では、評価データは、空調システム20の消費電力量を少なくとも含む。評価データ取得部105は、集中コントローラ26を介して入力部120に入力された評価データを取得する。
 関数更新部106は、評価データ取得部105が取得した評価データに基づいて報酬を算出する。具体的には、関数更新部106は、評価データに含まれる空調システム20の消費電力量が小さいほど、高い報酬を算出する。
 学習部103は、関数更新部106が算出した報酬を用いて学習状態を更新して、学習済みモデルを出力する。
 本変形例では、エリア通知システム100は、空調システム20の運用情報の複数のパターンと、空調システム20の消費電力量とを関連付ける学習の精度を向上させることができる。
 ―第2実施形態―
 本実施形態のエリア通知システム100は、第1実施形態のエリア通知システム100と基本的な構成および動作が共通している。具体的には、第1実施形態の「(1)エリア通知システム100の全体構成」および「(3)出力情報」の記載は、本実施形態に適用可能である。以下、本実施形態と第1実施形態との相違点を説明する。
 (1)入力情報
 本実施形態では、外部から入力部120に入力され得る主なデータは、運用情報、気象情報、消費電力情報、および、利用適否判定情報である。運用情報および気象情報は、第1実施形態で説明したものと同じである。
 消費電力情報は、第1実施形態で説明した、空調システム20の消費電力量を含む。空調システム20の集中コントローラ26は、空調システム20の消費電力量を計測して取得する。消費電力情報は、集中コントローラ26を介して入力部120に入力される。
 利用適否判定情報は、経済性、快適性および利便性の観点から、エリアAと利用者Uとの適合性を評価するための指標である。利用適否判定情報は、次に説明する、経済性情報、快適性情報、および、利便性情報の少なくとも1つを含む。
 経済性情報は、空調システム20の運用コストに関する情報を含む。空調システム20の運用コストに関する情報は、例えば、空調システム20の消費電力量である。空調システム20の消費電力量は、集中コントローラ26が計測した値でもよく、過去の計測値に基づいて算出される推定値であってもよい。
 快適性情報は、複数のエリアAの環境に関する情報、および、利用者Uが複数のエリアAの環境に関して許容できる範囲に関する情報の少なくとも1つを含む。具体的には、快適性情報は、エリアAの温熱環境情報、および、利用者Uの環境許容情報の少なくとも1つを含む。エリアAの温熱環境情報、および、利用者Uの環境許容情報は、第1実施形態で説明したものと同じである。エリアAの温熱環境情報は、集中コントローラ26が計測した値でもよく、過去の計測値に基づいて算出される推定値であってもよい。利用者Uの環境許容情報は、第1実施形態と同様に利用者Uによって入力されてもよい。
 利便性情報は、複数のエリアAの利用に関する情報、および、利用者Uが複数のエリアAの利用に関して許容できる範囲に関する情報の少なくとも1つを含む。具体的には、利便性情報は、エリアAの属性情報、および、利用者Uの利用許容情報の少なくとも1つを含む。
 エリアAの属性情報は、例えば、エリアAの定員、用途、位置、備品、通信環境および電源環境に関する情報である。エリアAの定員に関する情報とは、当該エリアAを利用することができる利用者Uの最大数である。エリアAの位置に関する情報とは、例えば、エリアAの間取りに関する情報である。エリアAの備品に関する情報とは、例えば、エリアAに設置されるOA機器の内部発熱量である。エリアAの属性情報は、例えば、施設10の施工業者、および、エリア通知システム100の管理者によって施設用端末30等を用いて入力される。
 利用者Uの利用許容情報は、エリアAにいる利用者Uが許容できる、当該エリアAの利用方法に関する情報である。利用者Uの利用許容情報は、例えば、エリアAの利用人数、用途、位置、備品、通信環境および電源環境に関して、利用者Uが許容できる範囲に関する情報である。利用者Uの利用許容情報は、第1実施形態と同様に利用者Uによって入力されてもよい。
 (2)施設10の利用方法の決定処理
 制御部110は、機械学習の手法を用いて、施設10の利用方法を決定する。具体的には、制御部110は、図8に示されるように、次のステップS21~S23を実行して、施設10の利用方法に関する情報を生成する。
・ステップS21:第1の期間において複数の利用ユニット23が複数のエリアAで利用された際に取得される、空調システム20の運用情報の複数のパターンと、第1の期間における複数のエリアAに含まれるエリアの利用の適否に関する情報(利用適否情報)とを関連付けて学習する。
・ステップS22:ステップS21での学習の結果に基づき、第1の期間とは異なる第2の期間において複数の利用ユニット23が複数のエリアAで利用された際に取得される、空調システム20の運用情報の複数のパターンから、第2の期間における複数のエリアAに含まれるエリアの利用の適否に関する情報(利用適否情報)を、当該複数のパターンのそれぞれに対して推論する。
・ステップS23:複数のパターンのそれぞれに対する、ステップS22での推論の結果の比較に基づき、複数のエリアAの中で最も適切なエリアを含む、利用者Uが利用すべきエリアAに関する情報を生成する。
 図4は、ステップS21における制御部110のブロック図である。図5は、ステップS22における制御部110のブロック図である。制御部110は、主として、説明変数取得部101と、目的変数取得部102と、学習部103と、推論部104とを備える。制御部110のこれらの要素は、記憶部150に記憶されているプログラムを、制御部110のCPUが実行することにより実現される機能に相当する。
 説明変数取得部101は、ステップS21での学習の際に用いられる説明変数、および、ステップS22での推論の際に用いられる説明変数を取得する。説明変数取得部101は、入力部120に入力されたデータを説明変数として取得する。説明変数の候補は、運用情報、気象情報、消費電力情報、および、利用適否判定情報である。説明変数は、運用情報に含まれる、エリアAの利用情報を少なくとも含む。
 説明変数取得部101は、学習の精度を向上させるために、運用情報に含まれる、空調システム20の運転情報を、説明変数としてさらに取得してもよい。また、説明変数取得部101は、学習の精度をさらに向上させるために、運用情報に含まれる、利用者Uの環境許容情報、および、利用者Uの利用情報の少なくとも1つを、説明変数としてさらに取得してもよい。
 目的変数取得部102は、ステップS21での学習の際に用いられる目的変数を取得する。目的変数取得部102は、少なくとも、複数のエリアAに含まれるエリアの利用の適否に関する情報(利用適否情報)を目的変数として取得する。利用適否情報は、エリアAの利用の適否を数値化したデータである。例えば、利用適否情報は、上述の経済性情報、快適性情報、および、利便性情報に含まれるそれぞれの項目を数値化し、所定の優先度に応じて項目ごとに重み付けをして得られた値である。以下、利用適否情報の値が高いほど、利用者UによるエリアAの利用により適している。この場合、空調システム20の集中コントローラ26が利用適否情報を算出し、目的変数取得部102は、集中コントローラ26を介して入力部120に入力された目的変数である、利用適否情報を取得してもよい。
 学習部103は、図4に示されるように、ステップS21において、説明変数取得部101が取得した説明変数と、目的変数取得部102が取得した目的変数とを関連付けて学習する。学習に用いられる説明変数は、第1の期間において複数の利用ユニット23が複数のエリアAで利用された際に、説明変数取得部101が取得する、空調システム20の運用情報の複数のパターンである。運用情報の複数のパターンとは、エリアAの利用情報の様々なパターンである。運用情報のパターンの例は、利用者Uに利用されているエリアAの配置、および、各エリアAを利用している利用者Uの数である。学習に用いられる目的変数は、目的変数取得部102が取得する、利用適否情報である。
 このように、本実施形態では、学習部103は、空調システム20の運用情報の複数のパターンのそれぞれと、そのパターンの条件下における利用適否情報とを関連付けて学習する。言い換えると、学習部103は、第1の期間において空調システム20の各機器が所定の期間をかけて様様な運用パターンで運用した場合の利用適否情報を、運用パターンと関連付けて学習する。学習部103は、学習の結果である学習済みモデルを出力する。学習部103は、学習済みモデルを推論部104に送る。
 推論部104は、図5に示されるように、ステップS22において、学習部103による学習の結果得られた学習済みモデルに基づき、説明変数取得部101が取得した説明変数から、目的変数の推定値を算出して、目的変数を推論する。推論に用いられる説明変数は、第1の期間とは異なる第2の期間において複数の利用ユニット23が複数のエリアAで利用された際に、説明変数取得部101が取得する、空調システム20の運用情報の複数のパターンである。
 このように、本実施形態では、推論部104は、学習済みモデルに基づき、説明変数取得部101が取得した説明変数である運用情報の複数のパターンのそれぞれに対して、そのパターンの条件下における利用適否情報を推論して、利用適否情報の推定値を算出する。言い換えると、推論部104は、学習の結果に基づいて、利用者Uが利用し得る複数のエリアAのそれぞれを利用する場合における、利用適否情報の推定値を算出する。制御部110は、空調システム20の運用情報の各パターンと、各パターンに対応する利用適否情報の推定値とを関連付けて、推論の結果として記憶部150に記憶する。
 制御部110は、ステップS23において、空調システム20の運用情報の複数のパターンのそれぞれに対する推論の結果の比較に基づき、利用適否情報の推定値が高くなるように、利用者Uが利用すべきエリアAに関する情報を生成する。例えば、制御部110は、ステップS22において取得した運用情報の複数のパターンの中から、利用適否情報の推定値が最も高いパターンを選択する。次に、制御部110は、選択されたパターンに基づいて、複数のエリアAの中で最も適切なエリアを含む、利用者Uが利用すべきエリアAに関する情報を生成する。制御部110は、例えば、各利用者Uが利用すべきエリアAの位置、および、各エリアAを利用できる利用者Uの最大人数等を生成する。このように、本実施形態では、制御部110は、複数の推定の結果を比較することにより、利用適否情報の値が高くなるように、利用者Uが利用すべきエリアAを通知する。
 (3)効果
 本実施形態のエリア通知システム100は、複数のエリアAにまたがって空調を行う空調システム20の全体の運転効率を最適化することができる。具体的には、エリア通知システム100は、機械学習の手法を用いて、利用適否情報の値が高くなるように、利用者Uが利用すべきエリアAを決定することができる。空調システム20は、エリア通知システム100が決定した、施設10の利用方法に基づいて、熱源ユニット21および利用ユニット23を制御する。これにより、エリア通知システム100を用いる空調管理システム190は、空調システム20の消費電力量を抑制する省エネ制御を効率的に行うことができる。
 (4)変形例
 以下に本実施形態の変形例を示す。各変形例の内容の一部または全部は、互いに矛盾しない範囲で他の変形例の内容と組み合わされてもよい。
 (4-1)変形例D
 説明変数取得部101は、ステップS21での学習の際に用いられる説明変数として、第1の期間における消費電力情報をさらに取得してもよい。この場合、学習部103は、さらに、第1の期間における消費電力情報と、第1の期間における利用適否情報とを関連付けて学習する。例えば、学習部103は、第1の期間における空調システム20の運用情報の複数のパターン、および、消費電力情報の両方と、第1の期間における利用適否情報とを関連付けて学習する。これにより、エリア通知システム100は、空調システム20の運用情報の複数のパターンと、利用適否情報とを関連付ける学習の精度を向上させることができる。
 (4-2)変形例E
 説明変数取得部101は、ステップS21での学習の際に用いられる説明変数として、第1の期間における利用適否判定情報をさらに取得してもよい。この場合、学習部103は、さらに、第1の期間における利用適否判定情報と、第1の期間における利用適否情報とを関連付けて学習する。例えば、学習部103は、第1の期間における空調システム20の運用情報の複数のパターン、および、利用適否判定情報の両方と、第1の期間における利用適否情報とを関連付けて学習する。これにより、エリア通知システム100は、空調システム20の運用情報の複数のパターンと、利用適否情報とを関連付ける学習の精度を向上させることができる。
 ―変形例―
 以下に実施形態の変形例を示す。各変形例の内容の一部または全部は、互いに矛盾しない範囲で他の変形例の内容と組み合わされてもよい。
 (1)変形例F
 第1および第2実施形態において、エリア通知システム100を用いる空調管理システム190は、複数の空調システム20を有してもよい。この場合、エリア通知システム100が用いられる施設10には、複数のエリアAの空気環境(温度、湿度および風量等)を調整するための複数の空調システム20が設置されている。各空調システム20は、1台の熱源ユニット21に複数台の利用ユニット23が接続される1つの冷凍サイクル(冷媒系統)を備える。そのため、施設10には、複数の冷媒系統が設置されている。各冷媒系統は、互いに独立している。
 各空調システム20は、施設10内の複数のエリアAにまたがって施設10の空調を行うことができる。しかし、複数の空調システム20は、共通のエリアAの空調を行わない。言い換えると、各空調システム20によって空調が行われるエリアAは、互いに重なり合わない。
 エリア通知システム100は、複数のエリアAにまたがって設置される複数の空調システム20の全体の運転効率に基づく制御を行うために用いられる。例えば、第1実施形態と同様に、エリア通知システム100は、機械学習の手法を用いて、各空調システム20の消費電力量が抑制されるように、利用者Uが利用すべきエリアAを決定する。また、第2実施形態と同様に、エリア通知システム100は、機械学習の手法を用いて、利用適否情報の値が高くなるように、利用者Uが利用すべきエリアAを決定する。
 本変形例のエリア通知システム100は、複数のエリアAにまたがって空調を行う複数の空調システム20の全体の運転効率を最適化することができる。各空調システム20は、エリア通知システム100が決定した、施設10の利用方法に基づいて、熱源ユニット21および利用ユニット23を制御する。これにより、エリア通知システム100を用いる空調管理システム190は、複数の空調システム20の消費電力量を抑制する省エネ制御を効率的に行うことができる。
 (2)変形例G
 第1および第2実施形態において、エリア通知システム100を用いる空調管理システム190は、空気および水を媒体として熱を搬送する空調システム20を有してもよい。この場合、エリア通知システム100が用いられる施設10には、複数のエリアAの空気環境(温度、湿度および風量等)を調整するための1つの空調システム20が設置されている。空調システム20は、1台の熱源ユニット21に複数台の利用ユニット23が接続される1つの冷凍サイクル(冷媒系統)を備える。そのため、施設10には、1つの冷媒系統が設置されている。
 本変形例では、空調システム20は、空気および水を媒体として熱を搬送する。図9に示されるように、空調システム20は、主として、チラー121と、二次ポンプ122と、エアハンドリングユニット(AHU)123と、ダクト124と、変風量ユニット(VAV)125とから構成される。熱源ユニット21は、主として、チラー121と、二次ポンプ122と、AHU123と、ダクト124とから構成されるユニットである。利用ユニット23は、VAV125である。施設10内の各エリアAには、1台のVAV125が設置される。AHU123は、各エリアAのVAV125に、温度が調整された空気を送り出す。VAV125は、温度が調整された空気をエリアAに供給する。
 チラー121は、第1実施形態の室外機22と同様に、冷凍サイクルを循環する冷媒を圧縮する圧縮機を有する。チラー121は、冷凍サイクルを循環する冷媒との熱交換によって、熱搬送媒体の温度を調節する。熱搬送媒体は、チラー121およびAHU123を通過しながら循環する液体である。本変形例では、熱搬送媒体は、水である。
 チラー121によって温度が調整された水は、二次ポンプ122によって、AHU123に送られる。AHU123は、外気ダンパ123aと、送風ファン123bと、熱交換コイル123cとを有する。AHU123は、送風ファン123bの駆動によって、屋外および室内から空気を取り込み、熱交換コイル123cに送る。AHU123は、外気ダンパ123aの開度を調整することで、屋外から取り込む空気の量を調整することができる。熱交換コイル123cは、屋外および室内から取り込まれた空気と、チラー121から送られてきた水との間で熱交換を行う。AHU123は、熱交換コイル123cで熱交換されて温度が調整された空気をダクト124に送る。ダクト124は、各エリアAのVAV125と連結されている。ダクト124を流れる空気は、VAV125を介して各エリアAに送られる。これにより、各エリアAには、AHU123によって温度が調整された空気が供給される。VAV125は、エリアAに供給される風量を調整するための給気ダンパ125aを有する。VAV125は、給気ダンパ125aの開度を取得し、かつ、給気ダンパ125aの開度を所定の値に設定するためのコントローラを有する。
 本変形例の空調システム20は、空調制御および換気制御を行う。空調制御とは、各エリアAの空調負荷を処理するために必要な空気の量を調整する制御である。空調制御では、制御部110は、各エリアAの空調負荷に応じて、各VAV125の給気ダンパ125aの開度を調整して、各エリアAに供給される空気の量(給気量)を調整する。換気制御とは、各エリアAの換気量を満たすために必要な空気の量を調整する制御である。換気制御では、制御部110は、外気ダンパ123aの開度を調整して、AHU123に導入される外気の量(外気量)を調整する。制御部110は、外気ダンパ123aおよび給気ダンパ125aの開度、および、送風ファン123bの能力(回転数)を取得および設定することができる。制御部110は、VAV125の運転を開始または停止することができる。運転が開始されて稼働しているVAV125の給気ダンパ125aの開度は、ゼロより大きい。運転が停止されて稼働していないVAV125の給気ダンパ125aの開度は、ゼロである。
 本変形例において、設備図面情報とは、具体的には、以下の項目に関する情報である。
 ・ダクト124の系統
 ・チラー121およびAHU123を循環する水の配管の系統
 ・チラー121、AHU123およびVAV125の配置
 ・チラー121、二次ポンプ122、AHU123およびVAV125等の機器の性能特性
 エリア通知システム100は、複数のエリアAにまたがって設置される空調システム20の全体の運転効率に基づく制御を行うために用いられる。例えば、第1実施形態と同様に、エリア通知システム100は、機械学習の手法を用いて、空調システム20の消費電力量が抑制されるように、利用者Uが利用すべきエリアAを決定する。また、第2実施形態と同様に、エリア通知システム100は、機械学習の手法を用いて、利用適否情報の値が高くなるように、利用者Uが利用すべきエリアAを決定する。
 本変形例のエリア通知システム100は、複数のエリアAにまたがって空調を行う空調システム20の全体の運転効率を最適化することができる。空調システム20は、エリア通知システム100が決定した、施設10の利用方法に基づいて、外気ダンパ123aおよび給気ダンパ125aの開度、および、送風ファン123bの能力を制御する。これにより、エリア通知システム100を用いる空調管理システム190は、空調システム20の消費電力量を抑制する省エネ制御を効率的に行うことができる。
 なお、変形例Fで説明したように、本変形例においても、エリア通知システム100を用いる空調管理システム190は、複数の空調システム20を有してもよい。
 (3)変形例H
 第1および第2実施形態において、エリア通知システム100を用いる空調管理システム190は、水を媒体として熱を搬送する複数の空調システム20を有してもよい。この場合、エリア通知システム100が用いられる施設10には、複数のエリアAの空気環境(温度、湿度および風量等)を調整するための複数の空調システム20が設置されている。各空調システム20は、1台の熱源ユニット21に複数台の利用ユニット23が接続される1つの冷凍サイクル(冷媒系統)を備える。そのため、施設10には、複数の冷媒系統が設置されている。各冷媒系統は、互いに独立している。
 本変形例では、空調システム20は、水を媒体として熱を搬送する。図10に示されるように、空調システム20は、主として、チラー221と、ファンコイルユニット(FCU)222と、二次ポンプ223とから構成される。各空調システム20では、1台のチラー221に、複数台のFCU222が接続されている。熱源ユニット21は、主として、チラー221と、二次ポンプ223とから構成されるユニットである。利用ユニット23は、FCU222である。施設10内の各エリアAには、1台のFCU222が設置される。
 チラー221は、変形例Gのチラー121と同様に、冷凍サイクルを循環する冷媒を圧縮する圧縮機を有する。チラー221は、冷凍サイクルを循環する冷媒との熱交換によって、熱搬送媒体の温度を調節する。熱搬送媒体は、チラー221およびFCU222を通過しながら循環する液体である。本変形例では、熱搬送媒体は、水である。
 チラー221によって温度が調整された水は、二次ポンプ223によって、各FCU222に送られる。FCU222は、主として、コイルとファンとを備える。FCU222のコイルは、エリアAから取り込まれた空気と、チラー221から送られてきた水との間で熱交換を行う。FCU222のファンは、エリアAから取り込まれてコイルで温度が調整された空気をエリアAに戻す。各FCU222は、チラー221から送られてきた水が流れる配管に設けられる弁をさらに備える。FCU222の弁は、例えば、電磁弁である。FCU222の弁が閉じられている場合、そのFCU222では熱交換が行われない。FCU222の弁が開いている場合、そのFCU222では熱交換が行われる。FCU222が稼働しているとき、FCU222の弁は開いている。
 各空調システム20は、施設10内の複数のエリアAにまたがって施設10の空調を行うことができる。しかし、複数の空調システム20は、共通のエリアAの空調を行わない。言い換えると、各空調システム20によって空調が行われるエリアAは、互いに重なり合わない。
 エリア通知システム100は、複数のエリアAにまたがって設置される複数の空調システム20の全体の運転効率に基づく制御を行うために用いられる。例えば、第1実施形態と同様に、エリア通知システム100は、機械学習の手法を用いて、空調システム20の消費電力量が抑制されるように、利用者Uが利用すべきエリアAを決定する。また、第2実施形態と同様に、エリア通知システム100は、機械学習の手法を用いて、利用適否情報の値が高くなるように、利用者Uが利用すべきエリアAを決定する。
 本変形例のエリア通知システム100は、複数のエリアAにまたがって空調を行う複数の空調システム20の全体の運転効率を最適化することができる。各空調システム20は、エリア通知システム100が決定した、施設10の利用方法に基づいて、チラー221および二次ポンプ223の能力を制御する。これにより、エリア通知システム100を用いる空調管理システム190は、複数の空調システム20の消費電力量を抑制する省エネ制御を効率的に行うことができる。
 (4)変形例I
 第1および第2実施形態において、運用情報に含まれる、利用者Uの環境許容情報は、デマンドイベント参加条件に関する情報を含んでもよい。デマンドイベント参加条件とは、利用者Uが参加できるタイプのデマンド制御において、利用者Uがデマンド制御に参加するための条件である。
 利用者Uの環境許容情報として、利用者Uのデマンドイベント参加条件に関する情報を含んでいる場合、エリア通知システム100は、利用者Uにインセンティブを付与してもよい。この場合、エリア通知システム100は、デマンド制御に参加した利用者Uに付与されるインセンティブに関する情報を、出力部130および設定部140を介して外部に出力してもよい。例えば、利用者Uがデマンド制御に参加した後、エリア通知システム100は、利用者Uが利用しているSNSシステムで使用可能なポイントを、デマンド制御終了後に当該SNSシステムを介して利用者Uに付与してもよい。
 (5)変形例J
 第1および第2実施形態において、エリア通知システム100は、エネルギーマネジメント支援ツールとして用いられてもよい。この場合、例えば、エネルギーマネジメントのコンサルタントは、エリア通知システム100を用いて、施設10のエネルギーマネジメントの改善に関する提案を顧客に提示する。
 本変形例では、エリア通知システム100は、機械学習の手法を用いて、空調システム20の消費電力量が抑制されるように、施設10の利用方法を決定する。または、エリア通知システム100は、機械学習の手法を用いて、利用適否情報の値が高くなるように、施設10の利用方法を決定する。コンサルタントは、出力部130に出力される情報に基づいて、施設10の利用方法に関する提案を顧客に提示する。
 (6)変形例K
 第1および第2実施形態において、エリア通知システム100は、施設10の利用に関するスケジュールを管理するために用いられてもよい。例えば、エリア通知システム100は、施設10内のエリアAの利用の予約状況に基づいて、利用可能なエリアAを利用者Uに割り当て、空調システム20をスケジュールに基づいて制御してもよい。この場合、入力部120に入力される情報は、予約情報を含む。予約情報とは、エリアAの利用の予約に関する情報である。予約情報は、例えば、エリアAの利用を予約した利用者Uに関する情報、および、エリアAの利用希望時間帯に関する情報を含む。エリア通知システム100が、エリア予約システムと連携している場合、利用者Uは、エリア予約システムを用いて予約情報の入力、変更および取消等を行ってもよい。
 本変形例では、エリア通知システム100は、機械学習の手法を用いて、空調システム20の消費電力量が抑制されるように、かつ、予約情報に基づいて、スケジュール情報を決定する。または、エリア通知システム100は、機械学習の手法を用いて、利用適否情報の値が高くなるように、かつ、予約情報に基づいて、スケジュール情報を決定する。スケジュール情報は、例えば、エリアAの利用を予約した利用者Uが利用すべきエリアAの位置、および、当該エリアAの利用可能時間帯に関する情報を含む。エリア通知システム100は、決定されたスケジュール情報を、出力部130および設定部140を介して外部に出力する。また、エリア通知システム100は、スケジュール情報に基づいて、空調システム20の制御を行ってもよい。
 ―むすび―
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 10  :施設
 20  :空調システム(第1空調システム)
 21  :熱源ユニット
 23  :利用ユニット
100  :エリア通知システム
110  :制御部
  A  :エリア
  U  :利用者
特開2013-246702号公報

Claims (12)

  1.  施設(10)の利用者(U1,U2,・・・)に、前記施設内の複数のエリア(A1,A2,・・・)の中から、前記利用者が利用すべき第1エリアを通知するエリア通知システムであって、
     1つの熱源ユニット(21)に複数の利用ユニット(23)が接続される第1空調システム(20)を用いて前記複数のエリアにまたがって空調が行われる前記施設において、前記第1エリアに関する情報を生成する制御部(110)を備え、
     前記制御部は、
      第1の期間において前記複数の利用ユニットが前記複数のエリアで利用された際に取得される、前記第1空調システムの運用情報の複数のパターンと、前記第1の期間における前記第1空調システムの消費電力量とを関連付けて学習し、
      学習の結果に基づき、第2の期間において前記複数の利用ユニットが前記複数のエリアで利用された際に取得される前記複数のパターンから、前記第2の期間における前記第1空調システムの消費電力量を、前記複数のパターンのそれぞれに対して推論し、
      前記複数のパターンのそれぞれに対する推論の結果の比較に基づき、前記第1空調システムの消費電力量が小さくなるように、前記第1エリアに関する情報を生成する、
    エリア通知システム(100)。
  2.  前記運用情報は、前記複数のエリアの利用に関する情報を含む、
    請求項1に記載のエリア通知システム。
  3.  前記運用情報は、さらに、前記第1空調システムの運転データに関する情報を含む、
    請求項2に記載のエリア通知システム。
  4.  前記制御部は、さらに、前記第1の期間における前記複数のエリアの環境に関する情報と、前記第1の期間における前記第1空調システムの消費電力量とを関連付けて学習する、
    請求項1から3のいずれか1項に記載のエリア通知システム。
  5.  前記制御部は、さらに、前記施設に関する情報と、前記第1の期間における前記第1空調システムの消費電力量とを関連付けて学習する、
    請求項1から4のいずれか1項に記載のエリア通知システム。
  6.  前記制御部は、
      前記第1の期間における前記第1空調システムの消費電力量に基づいて報酬を算出し、
      算出された前記報酬に基づいて、前記第1の期間における前記第1空調システムの消費電力量を学習する、
    請求項1から5のいずれか1項に記載のエリア通知システム。
  7.  施設(10)の利用者(U1,U2,・・・)に、前記施設内の複数のエリア(A1,A2,・・・)の中から、前記利用者が利用すべき第1エリアを通知するエリア通知システムであって、
     1つの熱源ユニット(21)に複数の利用ユニット(23)が接続される第1空調システム(20)を用いて前記複数のエリアにまたがって空調が行われる前記施設において、前記第1エリアに関する情報を生成する制御部(110)を備え、
     前記制御部は、
      第1の期間において前記複数の利用ユニットが前記複数のエリアで利用された際に取得される前記第1空調システムの運用情報の複数のパターンと、前記第1の期間における、前記複数のエリアに含まれるエリアの利用の適否に関する情報とを関連付けて学習し、
      学習の結果に基づき、第2の期間において前記複数の利用ユニットが前記複数のエリアで利用された際に取得される前記複数のパターンから、前記第2の期間における前記複数のエリアに含まれるエリアの利用の適否に関する情報を、前記複数のパターンのそれぞれに対して推論し、
      前記複数のパターンのそれぞれに対する推論の結果の比較に基づき、前記複数のエリアの中で最も適切なエリアを含む前記第1エリアに関する情報を生成する、
    エリア通知システム(100)。
  8.  前記運用情報は、前記複数のエリアの利用に関する情報を含む、
    請求項7に記載のエリア通知システム。
  9.  前記運用情報は、さらに、前記第1空調システムの運転データに関する情報を含む、
    請求項8に記載のエリア通知システム。
  10.  前記制御部は、さらに、前記第1の期間における前記第1空調システムの消費電力量と、前記第1の期間における前記第1エリアの利用の適否に関する情報とを関連付けて学習する、
    請求項7から9のいずれか1項に記載のエリア通知システム。
  11.  前記制御部は、さらに、前記第1の期間における前記第1エリアの利用の適否を判定するための判定情報と、前記第1の期間における前記第1エリアの利用の適否に関する情報とを関連付けて学習する、
    請求項7から10のいずれか1項に記載のエリア通知システム。
  12.  前記判定情報は、経済性情報、快適性情報、または、利便性情報を含み、
     前記経済性情報は、前記第1空調システムの運用コストに関する情報を含み、
     前記快適性情報は、前記複数のエリアの環境に関する情報、または、前記利用者が前記複数のエリアの環境に関して許容できる範囲に関する情報を含み、
     前記利便性情報は、前記複数のエリアの利用に関する情報、または、前記利用者が前記複数のエリアの利用に関して許容できる範囲に関する情報を含む、
    請求項11に記載のエリア通知システム。
PCT/JP2022/028258 2021-07-21 2022-07-20 エリア通知システム WO2023003027A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22845960.8A EP4375916A1 (en) 2021-07-21 2022-07-20 Area notification system
CN202280051267.6A CN117677965B (zh) 2021-07-21 2022-07-20 区域通知系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021120816A JP7280525B2 (ja) 2021-07-21 2021-07-21 エリア通知システム
JP2021-120816 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023003027A1 true WO2023003027A1 (ja) 2023-01-26

Family

ID=84980037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028258 WO2023003027A1 (ja) 2021-07-21 2022-07-20 エリア通知システム

Country Status (4)

Country Link
EP (1) EP4375916A1 (ja)
JP (2) JP7280525B2 (ja)
CN (1) CN117677965B (ja)
WO (1) WO2023003027A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165122A (ja) * 2010-02-15 2011-08-25 Mitsubishi Electric Corp 施設管理システム
JP2011187030A (ja) * 2010-03-11 2011-09-22 Omron Corp 環境情報提供装置、環境情報提供装置連携システム、環境情報提供方法、および、表示装置
JP2013246702A (ja) 2012-05-28 2013-12-09 Ntt Facilities Inc ワークプレイス管理システム、ワークプレイス管理装置、ワークプレイス管理方法、及びプログラム
WO2017149748A1 (ja) * 2016-03-04 2017-09-08 楽天株式会社 情報処理装置、情報処理方法、および情報処理プログラム
WO2020218563A1 (ja) * 2019-04-26 2020-10-29 ダイキン工業株式会社 機械学習装置、空調システム及び機械学習方法
JP2021057008A (ja) * 2019-06-21 2021-04-08 ダイキン工業株式会社 情報処理方法、情報処理装置、及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108302719B (zh) * 2018-01-29 2020-06-05 广东美的暖通设备有限公司 多联机空调系统的控制方法、装置、系统和存储介质
JP2020183816A (ja) * 2019-04-26 2020-11-12 ダイキン工業株式会社 熱源システム、目標運転容量推定方法、目標運転容量推定プログラム
JP7330750B2 (ja) * 2019-05-10 2023-08-22 三菱電機ビルソリューションズ株式会社 空調制御システム及びプログラム
US20210034967A1 (en) * 2019-08-01 2021-02-04 Distech Controls Inc. Environment controller and methods for validating an estimated number of persons present in an area
CN112963946B (zh) * 2021-02-26 2022-06-17 南京邮电大学 一种面向共享办公区域的暖通空调系统控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165122A (ja) * 2010-02-15 2011-08-25 Mitsubishi Electric Corp 施設管理システム
JP2011187030A (ja) * 2010-03-11 2011-09-22 Omron Corp 環境情報提供装置、環境情報提供装置連携システム、環境情報提供方法、および、表示装置
JP2013246702A (ja) 2012-05-28 2013-12-09 Ntt Facilities Inc ワークプレイス管理システム、ワークプレイス管理装置、ワークプレイス管理方法、及びプログラム
WO2017149748A1 (ja) * 2016-03-04 2017-09-08 楽天株式会社 情報処理装置、情報処理方法、および情報処理プログラム
WO2020218563A1 (ja) * 2019-04-26 2020-10-29 ダイキン工業株式会社 機械学習装置、空調システム及び機械学習方法
JP2021057008A (ja) * 2019-06-21 2021-04-08 ダイキン工業株式会社 情報処理方法、情報処理装置、及びプログラム

Also Published As

Publication number Publication date
JP2023016479A (ja) 2023-02-02
JP2023099615A (ja) 2023-07-13
CN117677965A (zh) 2024-03-08
EP4375916A1 (en) 2024-05-29
CN117677965B (zh) 2024-09-27
JP7280525B2 (ja) 2023-05-24

Similar Documents

Publication Publication Date Title
Mossolly et al. Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm
Karunakaran et al. Energy efficient fuzzy based combined variable refrigerant volume and variable air volume air conditioning system for buildings
Lam et al. An occupant-participatory approach for thermal comfort enhancement and energy conservation in buildings
Wang et al. Intelligent control of ventilation system for energy-efficient buildings with ${\rm CO} _ {2} $ predictive model
US20160061469A1 (en) Building power management systems
WO2015174176A1 (ja) 換気制御装置および換気制御方法
Klein et al. Towards optimization of building energy and occupant comfort using multi-agent simulation
Aktacir et al. Life-cycle cost analysis for constant-air-volume and variable-air-volume air-conditioning systems
US20160290667A1 (en) Air-conditioning control device and storage medium
Bengea et al. Model predictive control for mid-size commercial building hvac: Implementation, results and energy savings
JP2019163885A (ja) 空調制御装置、空調制御方法及びコンピュータプログラム
Arens et al. Thermal and air quality acceptability in buildings that reduce energy by reducing minimun airflow from overhead diffusers
JP7280525B2 (ja) エリア通知システム
JP5016343B2 (ja) 空調制御システム
JP7117443B1 (ja) 需要調整管理サーバ、需要調整管理方法、需要調整管理プログラム
Webster et al. Supply fan energy use in pressurized underfloor air distribution systems
WO2023003042A1 (ja) エリア通知システム
Takagi et al. Next generation HVAC system for office buildings-The optimal control structure for DHC buildings
Stippel et al. Online hvac optimization under comfort constraints via reinforcement learning
Li et al. Harmonizing comfort and energy: A multi-objective framework for central air conditioning systems
Li et al. HVAC control strategies for thermal comfort and indoor air quality
US20240011659A1 (en) Building system with multi-space air quality and occupancy optimization
Xing Building load control and optimization
US20230169221A1 (en) Systems and methods for balancing space utilization in a building
Yang et al. Optimizing Demand Response in Multi-HVAC Systems by RL Control with Comfort Consideration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280051267.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202417009208

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022845960

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845960

Country of ref document: EP

Effective date: 20240221