WO2023002856A1 - Ultrasonic inspection device and inspection device - Google Patents

Ultrasonic inspection device and inspection device Download PDF

Info

Publication number
WO2023002856A1
WO2023002856A1 PCT/JP2022/026966 JP2022026966W WO2023002856A1 WO 2023002856 A1 WO2023002856 A1 WO 2023002856A1 JP 2022026966 W JP2022026966 W JP 2022026966W WO 2023002856 A1 WO2023002856 A1 WO 2023002856A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
inspection
inspection unit
unit
ultrasonic
Prior art date
Application number
PCT/JP2022/026966
Other languages
French (fr)
Japanese (ja)
Inventor
楓佳 吉田
晃寛 奈良
孝生 小山
Original Assignee
ヤマハファインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021165471A external-priority patent/JP2023015965A/en
Application filed by ヤマハファインテック株式会社 filed Critical ヤマハファインテック株式会社
Priority to KR1020237043814A priority Critical patent/KR20240010028A/en
Publication of WO2023002856A1 publication Critical patent/WO2023002856A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/275Arrangements for orientation or scanning by relative movement of the head and the sensor by moving both the sensor and the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Definitions

  • the present disclosure relates to an ultrasonic inspection device and an inspection device.
  • This application claims priority based on Japanese Patent Application No. 2021-119754 filed on July 20, 2021 and Japanese Patent Application No. 2021-165471 filed on October 7, 2021. , the disclosure of which is hereby incorporated in its entirety.
  • ultrasonic inspection apparatus for detecting defects in (see, for example, Patent Document 1).
  • inspection apparatuses that inspect the appearance and internal state of a subject by an inspection section (for example, an image sensor, an X-ray sensor, or the like) as the subject passes through.
  • the transmitting unit and the receiving unit between the transmitting unit and the receiving unit, defects inside the object are detected while conveying the object in a direction that intersects the direction in which the transmitting units and the receiving units are arranged (arrangement direction). may be detected.
  • the trajectory of transporting the subject passing between the transmitter and the receiver may be curved instead of straight, or may be curved with respect to the arrangement direction of the transmitter and the receiver. It is tilted without being orthogonal. Therefore, when the subject passes between the transmitting section and the receiving section, the position of the subject in the arrangement direction of the transmitting section and the receiving section changes.
  • An object of the present disclosure is to provide an ultrasonic inspection apparatus and an inspection apparatus capable of suppressing a change in the position of a subject (carrier) with respect to an inspection unit regardless of how the subject (carrier) is transported.
  • a first aspect of the present disclosure is an inspection unit having a base, a transmitting section that emits ultrasonic waves, and a receiving section that is spaced from the transmitting section and receives the ultrasonic waves, a movable unit provided between the base and the inspection unit and capable of moving the inspection unit relative to the base in a direction in which the transmitter and the receiver are arranged;
  • the ultrasonic inspection apparatus further includes a contact portion that applies a force in the arrangement direction to the inspection unit by contacting a conveying body passing between the portion and the receiving portion.
  • a second aspect of the present disclosure includes an inspection unit that inspects at least one of the external appearance and internal state of the object through which the object passes, and a tracking mechanism that causes the inspection unit to follow the movement trajectory of the object.
  • an inspection device comprising:
  • the present disclosure it is possible to suppress a change in the position of the subject (transport body) with respect to the inspection section (inspection unit) regardless of the manner in which the subject (transport body) is transported.
  • FIG. 1 is a front view schematically showing an ultrasonic inspection apparatus according to a first embodiment
  • FIG. FIG. 2 is a cross-sectional view showing an inspection unit in the ultrasonic inspection apparatus of FIG. 1
  • FIG. 2 is a perspective view schematically showing a main part of an inspection unit in the ultrasonic inspection apparatus of FIG. 1
  • FIG. 2 is a cross-sectional view showing an inspection unit and a movable unit in the ultrasonic inspection apparatus of FIG. 1
  • FIG. 4 is a diagram showing a trajectory of transport of a subject passing between a transmitter and a receiver, and movement of an inspection unit according to the transport of the subject
  • It is a front view which shows typically the ultrasonic inspection apparatus which concerns on 2nd embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a modification of the inspection unit of the ultrasonic inspection apparatus according to the first to fourth embodiments; It is a front view which shows typically the ultrasonic inspection apparatus which concerns on 5th embodiment.
  • FIG. 13 is a top view of the ultrasonic inspection apparatus of FIG. 12 and a rotary transport device that transports a subject; FIG.
  • FIG. 14 is a diagram showing a first example of a movement trajectory of a subject when the ultrasonic inspection apparatus of FIGS. 12 and 13 is viewed from the side;
  • FIG. 14 is a diagram showing a second example of the movement trajectory of the subject when the ultrasonic inspection apparatus of FIGS. 12 and 13 is viewed from the side;
  • It is a side view which shows typically a mode that the ultrasonic inspection apparatus of 5th embodiment was applied to the conveyer type
  • FIG. 17 is a front view seen from the XVII direction of FIG. 16; It is a perspective view which shows typically a mode that the ultrasonic inspection apparatus of 5th embodiment was applied to the pillow packaging machine.
  • FIG. 19 is a cross-sectional view schematically showing a subject manufactured by the pillow packaging machine of FIG. 18 and an ultrasonic inspection apparatus of a fifth embodiment for inspecting the subject;
  • an ultrasonic inspection apparatus 1 uses ultrasonic waves W to inspect defects in a subject 100 (carrier).
  • the subject 100 of this embodiment is formed by overlapping and joining two members 101, and constitutes, for example, a packaging container.
  • a defect in the object 100 is, for example, a peeled portion of the two members 101 that are joined together.
  • an ultrasonic inspection apparatus 1 includes a base 2 , an inspection unit 3 and a movable unit 5 .
  • the inspection unit 3 functions as an inspection unit that inspects internal defects (internal state) of the object 100 through which the object 100 passes.
  • the inspection unit 3 is attached to the base 2 via a movable unit 5 which will be described later.
  • the inspection unit 3 includes a transmitter (transmitter, emitter) 11 and a receiver (receiver) 12 .
  • the transmitting section 11 and the receiving section 12 are positioned at a distance from each other.
  • the transmitting section 11 and the receiving section 12 are fixed to the same fixed section 13 . As a result, the distance between the transmitter 11 and the receiver 12 is maintained.
  • the transmitter 11 transmits (irradiates) an ultrasonic wave W toward the receiver 12 .
  • Ultrasonic waves W are transmitted from a transmission surface (irradiation surface) 11 a of the transmission unit 11 .
  • the transmission surface 11a of this embodiment is formed in a concave shape that is recessed from the periphery toward the center. As a result, the ultrasonic waves W transmitted from the transmission surface 11a are converged (focused) into a point.
  • the transmission surface 11a of the present embodiment is formed in a rectangular shape when viewed from the arrangement direction (X-axis direction) of the transmission units 11 and the reception units 12 as illustrated in FIG. However, the shape of the transmission surface 11a is not limited to this.
  • the receiving section 12 is positioned apart from the transmitting section 11 and receives the ultrasonic waves W transmitted from the transmitting section 11 .
  • the receiving section 12 has a receiving surface 12a that receives the ultrasonic wave W and faces the transmitting surface 11a of the transmitting section 11 .
  • the receiving surface 12a of this embodiment is formed in a concave shape that is recessed from the peripheral edge of the receiving surface 12a toward the center, similarly to the transmitting surface 11a. This makes it possible to receive the ultrasonic waves W that are transmitted from the transmission surface 11a and spread spherically after being converged.
  • the receiving surface 12a may be formed so as to receive the converged ultrasonic waves W, for example.
  • the receiving surface 12a is formed in a rectangular shape when viewed from the direction in which the transmitting units 11 and the receiving units 12 are arranged (the X-axis direction).
  • the shape of the receiving surface 12a is not limited to this.
  • the arrangement direction of the transmitter 11 and the receiver 12 is indicated by the X-axis direction.
  • the positive direction of the X-axis indicates the main transmission direction of the ultrasonic wave W.
  • FIG. the main direction in which the subject 100 passes between the transmitting unit 11 and the receiving unit 12 is orthogonal to the arrangement direction of the transmitting unit 11 and the receiving unit 12, and the opposite direction is the negative Y-axis direction. direction.
  • a direction orthogonal to the X-axis direction and the Y-axis direction is indicated by the Z-axis direction.
  • the two members 101 constituting the subject 100 mainly move in the arrangement direction (X axial direction). Accordingly, the ultrasonic wave W transmitted from the transmitting unit 11 can be transmitted through the subject 100 in the direction in which the two members 101 overlap, and then received by the receiving unit 12 .
  • the movable unit 5 is provided between the base 2 and the inspection unit 3. As shown in FIG. 1, the movable unit 5 enables the inspection unit 3 to move in the X-axis direction with respect to the base 2 .
  • the movable unit 5 has a rail 31 and a block 32 attached to the rail 31 so as to be slidable in a linear direction.
  • the rail 31 extends linearly and is fixed to the inspection unit 3 .
  • the block 32 is fixed to the base 2 and is movable in its longitudinal direction with respect to the rail 31 within a predetermined range. Note that the rail 31 may be fixed to the base 2 and the block 32 may be fixed to the inspection unit 3 .
  • the movable unit 5 configured as described above allows the inspection unit 3 to move linearly in the X-axis direction with respect to the base 2 .
  • the movable unit 5 may be, for example, a linear guide that allows the blocks 32 to move smoothly in a straight line direction without rattling with respect to the rails 31 .
  • the movable unit 5 may be configured to allow the blocks 32 to rattle with respect to the rails 31, for example.
  • the inspection unit 3 further includes a contact portion (contact member) 15.
  • the contact section 15 applies force in the X-axis direction (arrangement direction) to the inspection unit 3 by contacting the subject 100 passing between the transmission section 11 and the reception section 12 .
  • a force in the X-axis direction is applied to the inspection unit 3 , and the inspection unit 3 moves in the X-axis direction with respect to the base 2 .
  • the contact portion 15 of the present embodiment is guide portions (guide members) 21 and 22 that guide the subject 100 toward (the space between) the transmission portion 11 and the reception portion 12 .
  • the guiding units 21 and 22 may be provided in at least one of the transmitting unit 11 and the receiving unit 12 .
  • the guides 21 and 22 are provided in both the transmitter 11 and the receiver 12 .
  • the two guide portions 21 and 22 provided in the transmitting portion 11 and the receiving portion 12 are positioned apart from each other in the X-axis direction. In this embodiment, the distance between the two guides 21 and 22 is smaller than the distance between the transmitter 11 and receiver 12 .
  • the first guide section 21 provided in the transmission section 11 is provided at the edge of the transmission surface 11a located on the Y-axis negative direction side.
  • the first guide portion 21 has a guide surface 21a facing in the Y-axis negative direction.
  • the guide surface 21a of the first guide portion 21 is inclined in the positive direction of the Y-axis toward the positive direction of the X-axis (the side of the receiving portion 12).
  • the second guide portion 22 provided in the receiving portion 12 is provided at the edge of the receiving surface 12a located on the Y-axis negative direction side.
  • the second guide portion 22 has a guide surface 22a facing in the Y-axis negative direction.
  • the guide surface 22a of the second guide portion 22 is inclined in the positive direction of the Y-axis toward the negative direction of the X-axis (transmission portion 11 side). As a result, the distance between the guide surfaces 21a and 22a of the first and second guide portions 21 and 22 in the X-axis direction decreases toward the positive Y-axis direction.
  • the inspection unit 3 can be moved in the X-axis direction with respect to the base 2 by the movable unit 5 .
  • the guiding portions 21 and 22 of this embodiment also serve as the restricting portions (shielding portions) 25 and 26 .
  • the regulating units 25 and 26 prevent the ultrasonic wave W transmitted from the transmitting unit 11 from passing through the object 100 when the object 100 passes between the transmitting unit 11 and the receiving unit 12, as shown in FIG. It restricts (prevents) the arrival of the receiving unit 12 without Ultrasonic waves W from the transmitting unit 11 that try to reach the receiving unit 12 without passing through the subject 100 include ultrasonic waves that try to go around the edge 103 of the subject 100 as illustrated in FIG. There is a sound wave W2 (ie, a diffracted wave).
  • the regulating units 25 and 26 do not regulate the ultrasonic wave W ⁇ b>1 (that is, transmitted wave) transmitted from the transmitting unit 11 through the subject 100 from reaching the receiving unit 12 .
  • the regulating units 25 and 26 regulate the second propagation path of the ultrasonic wave W2 that is different from the first propagation path of the ultrasonic wave W1 that passes through the subject 100 and reaches the receiver 12 .
  • the second propagation path of the ultrasonic wave W2 is the propagation path of the diffracted wave (the ultrasonic wave W2 trying to go around the edge 103 of the subject 100) illustrated in FIG.
  • the regulating units 25 and 26 may be provided in at least one of the transmitting unit 11 and the receiving unit 12 .
  • regulation sections 25 and 26 are provided in both the transmission section 11 and the reception section 12.
  • FIG. The first restricting portion 25 provided in the transmitting portion 11 is arranged to face the transmitting surface 11a in the X-axis direction (arrangement direction) and covers a part of the transmitting surface 11a.
  • the first restricting portion 25 is formed in a cylindrical shape, the inner cross-sectional area of which decreases in the positive direction of the X axis (toward the receiving portion 12) from the transmitting surface 11a.
  • the first restricting portion 25 may be formed in a conical tubular shape, for example.
  • the first restricting portion 25 is formed in a quadrangular-pyramidal tubular shape as shown in FIG. Of the openings at both ends of the cylindrical first restricting portion 25, the opening having the larger inner cross-sectional area is connected to the peripheral edge of the transmission surface 11a. Of the outer surface of the conical first restricting portion 25, the surface facing the Y-axis negative direction functions as the guide surface 21a of the first guide portion 21 described above.
  • the second restricting section 26 provided in the receiving section 12 is arranged to face the receiving surface 12a in the X-axis direction (arrangement direction) and covers a part of the receiving surface 12a.
  • the second restricting portion 26 is formed in a cylindrical shape, the inner cross-sectional area of which decreases in the X-axis negative direction (transmitting side) from the receiving surface 12a.
  • the second restricting portion 26 may be formed in a conical tubular shape, for example.
  • the second restricting portion 26 is formed in a quadrangular-pyramidal tubular shape as shown in FIG.
  • the opening having the larger inner cross-sectional area is connected to the peripheral edge of the receiving surface 12a.
  • the surface facing the Y-axis negative direction functions as the guide surface 22 a of the second guide portion 22 described above.
  • the ultrasonic wave W emitted from the transmitting side opening 25a is transmitted inside the second restricting portion 26 from the opening 26a (receiving side opening 26a) of the conical cylindrical second restricting portion 26 with a smaller cross-sectional area. As it enters, it can reach the receiving surface 12 a of the receiving section 12 after expanding in a spherical shape.
  • the distance between the transmitting side opening 25a and the receiving side opening 26a of the first and second restricting portions 25 and 26 is the distance between the transmitting portion 11 and the receiving portion. corresponds to a substantial spacing of 12. It is preferable that the distance between the two restricting portions 25 and 26 be as small as possible within the range where the subject 100 can be passed between them. For example, in a state where the subject 100 is positioned between the two restricting sections 25 and 26, it is preferable that the distance between the restricting sections 25 and 26 and the subject 100 is equal to or less than the wavelength of the ultrasonic waves W. FIG. In this case, the ultrasonic waves W2 (diffracted waves) that attempt to reach the receiving section 12 from the transmitting section 11 without passing through the subject 100 can be more effectively restricted.
  • the movable unit 5 and the contact portion 15 of this embodiment function as a tracking mechanism that causes the inspection unit 3 to follow the movement locus of the subject 100 .
  • the movable unit 5 and the contact part 15 forming a follow-up mechanism cause the inspection unit 3 to follow the movement locus of the inspection target site inspected by the inspection unit 3 of the subject 100 .
  • a site to be inspected of the subject 100 is, for example, a joint portion of two members 101 that are joined together in the subject 100 .
  • the inspection unit 3 including the transmitter 11 and the receiver 12 moves the transmitter 11 and the receiver 12 to the base 2 by the movable unit 5. are movable in the arrangement direction (X-axis direction).
  • the inspection unit 3 also has a contact portion 15 that applies a force in the arrangement direction to the inspection unit 3 by contacting the subject 100 passing between the transmitter 11 and the receiver 12 . Therefore, if the position of the subject 100 in the arrangement direction changes when the subject 100 passes between the transmitter 11 and the receiver 12 , the subject 100 contacts the contact portion 15 of the inspection unit 3 .
  • the inspection unit 3 is pushed in the arrangement direction.
  • the inspection unit 3 is moved in the arrangement direction by the movable unit 5 so as to follow the change in the position of the subject 100 .
  • the subject 100 can be moved between the transmitter 11 and the receiver 12 while allowing the position of the subject 100 to change in the arrangement direction. can pass between In other words, it is possible to substantially reduce the distance between the transmitting section 11 and the receiving section 12 and suppress the generation of diffracted waves. Therefore, regardless of how the subject 100 is transported between the transmitter 11 and the receiver 12, the generation of diffracted waves can be suppressed.
  • the subject 100 is transported such that the trajectory T1 of the transportation of the subject 100 passing between the transmitting unit 11 and the receiving unit 12 is an arc when viewed from the Z-axis direction.
  • the trajectory T1 of the transport of the subject 100 becomes an arc as shown in FIG.
  • the position of the subject 100 (in particular, the inspection target portion of the subject 100) in the array direction (X-axis direction) changes while the subject 100 passes through the inspection unit 3 .
  • the movable unit 5 moves the inspection unit 3 in the arrangement direction so as to follow the change in the position of the subject 100 (that is, the movement locus of the subject 100). be able to.
  • the inspection unit 3 follows the positional change of the subject 100 by pressing the subject 100 against the guide surfaces 21a and 22a of the guide sections 21 and 22 in the arrangement direction in accordance with the positional change of the subject 100. This is performed by applying a force in the arrangement direction to the inspection unit 3.
  • the transmitter 11 and the receiver of the inspection unit 3 indicated by two-dot chain lines 12 changes in the negative direction of the X-axis so as to become the positions of the transmitter 11 and the receiver 12 indicated by solid lines.
  • the distance between the two guides 21 and 22 is smaller than the distance between the transmitter 11 and the receiver 12 . Therefore, it is possible to suppress variation in the position of the subject 100 passing between the transmitter 11 and the receiver 12 in the arrangement direction of the transmitter 11 and the receiver 12 . As a result, it is possible to suppress variations in the intensity of the ultrasonic wave W transmitted through the subject 100 and received by the receiving unit 12 (received signal intensity). Therefore, it is possible to inspect the subject 100 with high accuracy.
  • the guide units 21 and 22 for guiding the subject 100 between the transmitter 11 and the receiver 12 are arranged such that the subject 100 is positioned between the transmitter 11 and the receiver 12. 12 , the ultrasonic wave W transmitted from the transmitting unit 11 does not pass through the subject 100 and reaches the receiving unit 12 .
  • ultrasonic waves W2 for example, diffracted waves
  • the object 100 are suppressed from reaching the receiving unit 12 without increasing the number of component parts of the ultrasonic inspection apparatus 1, thereby detecting defects in the object 100. can be detected more correctly.
  • the tracking mechanism including the movable unit 5 and the contact portion 15 causes the inspection unit 3 (inspection portion) to move in the direction in which the subject 100 passes (the Y-axis direction). ), the inspection unit 3 is moved in the orthogonal direction (arrangement direction, X-axis direction). As a result, the inspection unit 3 follows the movement trajectory of the subject 100 by the tracking mechanism. Therefore, when the subject 100 passes through the inspection unit 3 , positional change of the subject 100 with respect to the inspection unit 3 can be suppressed. Therefore, the internal state of the subject 100 can be correctly inspected by the inspection unit 3 .
  • an ultrasonic inspection apparatus 1D of the second embodiment includes a base 2, an inspection unit 3, and a movable unit 5, as in the first embodiment.
  • the ultrasonic inspection apparatus 1D of this embodiment further includes a return section 6D.
  • the return section 6D returns the inspection unit 3 to the reference position RP in the X-axis direction (arrangement direction).
  • the return section 6D of the present embodiment returns the inspection unit 3 to the reference position RP by gravity.
  • the return portion 6D is the rail 31 of the movable unit 5 arranged such that its longitudinal direction is inclined with respect to the horizontal direction.
  • the X-axis direction indicates the horizontal direction.
  • the Z-axis direction indicates the vertical direction, and the Z-axis positive direction side indicates the upper side in the vertical direction.
  • the rail 31 extends in the negative direction of the Z-axis (that is, downward in the vertical direction) as it extends in the positive direction of the X-axis.
  • a force (gravity) acting in the positive direction of the X-axis acts on the inspection unit 3 due to its own weight.
  • the magnitude of the gravitational force acting on the inspection unit 3 (the force of the return portion 6D) is greater than the force of the subject 100 pushing the inspection unit 3 in the X-axis direction (X-axis negative direction in FIG. 6) against the gravity. Small is preferred.
  • the reference position RP of the inspection unit 3 in FIG. 6 is the end position in the movement range of the inspection unit 3 by the movable unit 5 and the lowest position in the movement range of the inspection unit 3 .
  • the ultrasonic inspection apparatus 1D of the second embodiment as in the first embodiment, when the subject 100 passes between the transmitter 11 and the receiver 12 of the inspection unit 3, the subject 100 in the X-axis direction The inspection unit 3 moves in the X-axis direction with respect to the base 2 so as to follow the position change of . Thereafter, when the subject 100 passes through between the transmitter 11 and the receiver 12 and the inspection unit 3 is positioned away from the reference position RP, the inspection unit 3 returns to the reference position RP by its own weight. .
  • the ultrasonic inspection apparatus 1D of the second embodiment also includes a return section 6D that returns the inspection unit 3 to the reference position RP in the arrangement direction (X-axis direction) of the transmission section 11 and the reception section 12.
  • FIG. Therefore, even if the inspection unit 3 is positioned away from the reference position RP when the predetermined subject 100 passes through between the transmission unit 11 and the reception unit 12, the inspection unit 3 is returned to the reference position by the return unit 6D. It can be returned to RP.
  • This allows the subsequent subject 100 to enter between the transmitter 11 and receiver 12 of the inspection unit 3 placed at the reference position RP. Therefore, even if the position of the inspection unit 3 when the subject 100 passes through is deviated from the reference position RP, a plurality of subjects 100 can be continuously passed through the inspection unit 3 .
  • an ultrasonic inspection apparatus 1E of the third embodiment includes a base 2, an inspection unit 3, and a movable unit 5, as in the first embodiment. Further, similarly to the second embodiment, the ultrasonic inspection apparatus 1E of the third embodiment further includes a return section 6E that returns the inspection unit 3 to the reference position RP in the X-axis direction (arrangement direction).
  • the return part 6E of the third embodiment is an elastic body 41E provided between the base 2 and the inspection unit 3.
  • the elastic body 41E elastically expands and contracts according to the movement of the inspection unit 3 with respect to the base 2 in the X-axis direction.
  • the magnitude of the elastic force of the elastic body 41E (the force of the return portion 6E) acting on the inspection unit 3 is smaller than the force of the subject 100 pushing the inspection unit 3 in the X-axis direction against the elastic force.
  • the elastic body 41E illustrated in FIG. 7 is a spring, but may be, for example, rubber. In the case where there is one elastic body 41E that constitutes the return portion 6E as illustrated in FIG. do not do.
  • the reference position RP of the inspection unit 3 in FIG. 7 is the end position of the movement range of the inspection unit 3 by the movable unit 5 .
  • the reference position RP is not limited to the example shown in FIG. 7, and may be in the middle of the movement range of the inspection unit 3, for example.
  • the ultrasonic inspection apparatus 1E of the third embodiment as in the first embodiment, when the subject 100 passes between the transmitter 11 and the receiver 12 of the inspection unit 3, the subject 100 in the X-axis direction The inspection unit 3 moves in the X-axis direction with respect to the base 2 so as to follow the position change of . After that, when the subject 100 passes through between the transmitter 11 and the receiver 12, if the inspection unit 3 is positioned away from the reference position RP, the inspection unit 3 moves toward the reference position due to the elastic force of the elastic body 41E. Return to position RP.
  • an ultrasonic inspection apparatus 1F of the fourth embodiment includes a base 2, an inspection unit 3, and a movable unit 5, as in the first embodiment.
  • the ultrasonic inspection apparatus 1F of the fourth embodiment further includes a holding section 7F.
  • the holding part 7F holds the inspection unit 3 at the reference position RP in the X-axis direction (arrangement direction).
  • the holding part 7F of this embodiment is composed of a pair of magnets 51F and 52F provided on the base 2 and the inspection unit 3.
  • the pair of magnets 51F and 52F includes a base-side magnet 51F fixed to the base 2 and a unit-side magnet 52F fixed to the inspection unit 3 .
  • the pair of magnets 51F and 52F are located closest to each other when the inspection unit 3 is placed at the reference position RP. are arranged so that The magnitude of the magnetic force (attractive force) acting between the pair of magnets 51F and 52F when the inspection unit 3 is placed at the reference position RP is such that the subject 100 moves the inspection unit 3 in the X-axis direction against the magnetic force. It is preferably smaller than the pushing force.
  • the pair of magnets 51F and 52F are arranged on one side in the X-axis direction with respect to the main body portion (the portion including the transmitting section 11 and the receiving section 12) of the inspection unit 3 arranged at the reference position RP.
  • the base-side magnet 51F is fixed to a portion of the base 2 located on the X-axis positive direction side (right side) of the main body portion of the inspection unit 3 arranged at the reference position RP.
  • the unit-side magnet 52 ⁇ /b>F is fixed to a portion of the fixed portion 13 of the inspection unit 3 that extends in the positive direction of the X-axis from the receiving portion 12 .
  • the reference position RP of the inspection unit 3 in FIG. 8 is the end position of the movement range of the inspection unit 3 by the movable unit 5 .
  • the inspection unit 3 when the inspection unit 3 is arranged at the reference position RP as shown in FIG. It is held at position RP. However, if the position of the subject 100 in the X-axis direction changes when the subject 100 passes between the transmitting section 11 and the receiving section 12 of the inspection unit 3, the inspection unit 3 is moved by the subject 100 in the X-axis direction. It moves in the X-axis direction with respect to the base 2 so as to follow the position change of the subject 100 when pushed.
  • the ultrasonic inspection apparatus 1F of the fourth embodiment includes a holding section 7F that holds the inspection unit 3 at the reference position RP in the arrangement direction (X-axis direction) of the transmitting section 11 and the receiving section 12.
  • FIG. 7F This can prevent the inspection unit 3 from being displaced from the reference position RP due to an unexpected external force (for example, vibration).
  • an unexpected external force for example, vibration
  • the holding section may be configured to hold the inspection unit 3 at each of a plurality of reference positions.
  • the holding section 7G is configured to hold the inspection unit 3 at two reference positions separated from each other in the X-axis direction (arrangement direction).
  • the holding portion 7G illustrated in FIG. 9 includes two sets of magnet units 50G1 and 50G2 each composed of a pair of magnets 51F and 52F.
  • the pair of magnet units 50G1 and 50G2 are a first magnet unit 50G1 and a second magnet unit 50G2.
  • the two sets of magnet units 50G1 and 50G2 are provided on both sides of the inspection unit 3 in the X-axis direction.
  • the pair of magnets 51F and 52F that constitute the first magnet unit 50G1 are positioned closest to each other when the inspection unit 3 is placed at the first reference position RP1 of the two reference positions.
  • the magnetic force (attractive force) acting between the pair of magnets 51F and 52F of the first magnet unit 50G1 moves the inspection unit 3 to the first reference position. It is held in RP1.
  • the pair of magnets 51F and 52F that constitute the second magnet unit 50G2 are positioned apart from each other in the X-axis direction. Therefore, the magnetic force (attractive force) acting between the pair of magnets 51F and 52F of the second magnet unit 50G2 does not move the inspection unit 3 from the first reference position RP1.
  • the pair of magnets 51F and 52F of the second magnet unit 50G2 are positioned closest to each other.
  • the magnetic force (attractive force) acting between the pair of magnets 51F and 52F of the second magnet unit 50G2 moves the inspection unit 3 to the second reference position. retained.
  • the magnetic force (attractive force) acting between the pair of magnets 51F and 52F of the first magnet unit 50G1 prevents the inspection unit 3 from moving from the second reference position. Absent.
  • the ultrasonic inspection apparatus of the fourth embodiment may include, for example, return units 6D and 6E similar to those of the second and third embodiments.
  • the reference position of the inspection unit 3 by the return portions 6D and 6E and the reference position of the inspection unit 3 by the holding portions 7F and 7G may coincide with each other, for example. can be different.
  • the ultrasonic inspection apparatus 1H illustrated in FIG. 10 includes the return portion 6D (inclined rail 31) of the second embodiment illustrated in FIG. 6, and the holding portion 7F (a pair of magnets 51F, 52F).
  • the reference position RP1 (first reference position RP1) of the inspection unit 3 by the return section 6D is the lowest position (Z-axis negative direction) in the movement range of the inspection unit 3 .
  • the reference position (second reference position) of the inspection unit 3 by the holding portion 7F is a position above (in the Z-axis positive direction) the first reference position RP1.
  • the holding parts 7F, 7G are not limited to being composed of the pair of magnets 51F, 52F.
  • the holding parts 7F and 7G may be configured by, for example, a magnet provided on one of the base 2 and the inspection unit 3 and a magnetic material (such as iron) provided on the other.
  • the transmission surface 11a of the transmission unit 11 converges, for example, in a line extending in the Z-axis direction so that the ultrasonic waves W transmitted from the transmission surface 11a converge only in the Y-axis direction.
  • the transmission surface 11a of the transmission unit 11 may be formed so that the ultrasonic waves W transmitted from the transmission surface 11a do not converge.
  • the transmitting surface 11a of the transmitting unit 11 and the receiving surface 12a of the receiving unit 12 may be formed flat as shown in FIG. 11, for example.
  • the guide portions 21 and 22 do not have to serve as the restriction portions 25 and 26, for example.
  • the guide units 21 and 22 are provided behind the transmission unit 11 and the reception unit 12 in the passage direction of the subject 100 (Y-axis negative direction side). good.
  • Guiding units 21 and 22 illustrated in FIG. 11 are provided in both the transmitting unit 11 and the receiving unit 12 .
  • These two guide portions 21 and 22 have guide surfaces 21a and 22a facing in the Y-axis negative direction.
  • These two guide surfaces 21a and 22a are formed such that the distance between them widens in the negative Y-axis direction.
  • the contact portion 15 of the inspection unit 3 may be the transmitting portion 11 and the receiving portion 12, for example. That is, when the subject 100 contacts the transmitting section 11 or the receiving section 12 functioning as the contact section 15, force may be applied to the inspection units 3 in the arrangement direction.
  • the movable unit 5 and the contact portion 15 functioning as a follow-up mechanism are arranged in a direction (for example, the Y-axis direction) through which the subject 100 passes with respect to the inspection unit 3 (inspection portion).
  • the inspection unit 3 may be configured to move in the orthogonal direction according to the positional change of the subject 100 in the orthogonal direction.
  • the movable unit 5 and the contact portion 15 move in the direction in which the subject 100 passes (for example, the Y-axis direction) and the transmission section 11 according to the position change of the subject 100, for example.
  • the inspection unit 3 may be moved in a direction (eg, Z-axis direction) orthogonal to the arrangement direction (eg, X-axis direction) of the receivers 12 .
  • the object to be transported between the transmitting unit 11 and the receiving unit 12 is not limited to the subject 100, but may be transported together with the subject 100 by a transport device, for example.
  • a transport device for example.
  • Things that are transported together with the subject 100 may be, for example, instruments that hold the subject 100, components of a mechanism for transporting the subject 100, and the like.
  • An object of the present disclosure is to provide an ultrasonic inspection apparatus capable of suppressing the generation of diffracted waves regardless of the manner in which a carrier such as a subject is transported between a transmitter and a receiver.
  • ⁇ effect ⁇ According to the present disclosure, it is possible to suppress the generation of diffracted waves regardless of how the carrier is transported between the transmitter and the receiver.
  • the ultrasonic inspection apparatus 1J of the fifth embodiment inspects the internal state (internal defect) of the subject 100 by passing the subject 100 as in the first embodiment.
  • a unit 3 (inspection section) and a tracking mechanism 9J that causes the inspection unit 3 to follow the locus of movement of the subject 100 are provided.
  • the configuration of the inspection unit 3 is the same as that of the first embodiment.
  • the configuration of the inspection unit 3 is not limited to, for example, the configuration similar to that of the first embodiment, and may be similar to the configuration illustrated in FIG. 11 and the like.
  • the following mechanism 9J of the fifth embodiment is configured to cause the inspection unit 3 to follow the movement locus of the inspection target site inspected by the inspection unit 3 of the subject 100, as in the first embodiment.
  • the tracking mechanism 9J of the fifth embodiment passively follows the movement trajectory (change in position) of the subject 100 when the inspection unit 3 is pushed by the subject 100. It is configured to actively follow the movement trajectory of the subject 100 .
  • the follow-up mechanism 9J is configured to move the inspection unit 3 in the orthogonal direction according to the positional change of the object 100 in the orthogonal direction orthogonal to the direction in which the object 100 passes (for example, the Y-axis positive direction).
  • the orthogonal direction is, for example, the X-axis direction or the Z-axis direction.
  • the following mechanism 9J moves the inspection unit 3 in both the X-axis direction and the Z-axis direction.
  • the Z-axis positive direction is one direction in which the subject 100 passing through the inspection unit 3 extends.
  • the edge portion 103 which is the tip portion of the subject 100 in the extending direction (positive direction of the Z-axis), is the inspection target portion of the subject 100 in this embodiment.
  • the tracking mechanism 9J moves the inspection unit 3 in the Z-axis direction, so that the inspection unit 3 can follow the position change of the edge 103 (inspection target site) of the subject 100 in the Z-axis direction.
  • the follow-up mechanism 9J of this embodiment includes a driving section 91J that drives the inspection unit 3 in orthogonal directions (X-axis direction and Z-axis direction).
  • the driving section 91J may be configured to reciprocate the inspection unit 3 in the orthogonal direction within a predetermined range.
  • the drive unit 91J of this embodiment is a servo system using a ball screw, a linear motor, or the like. Since the driving section 91J is a servo system, the inspection unit 3 can be moved accurately.
  • the follow-up mechanism 9J of this embodiment further includes a position detection sensor 92J that detects the position of the subject 100 in orthogonal directions (X-axis direction and Z-axis direction). Specifically, the position detection sensor 92J detects the position of the edge 103 (inspection target site) of the subject 100 .
  • the position detection sensor 92J is positioned on the rear side of the inspection unit 3 (the side where the subject 100 approaches the inspection unit 3), with the main direction in which the subject 100 passes through the inspection unit 3 (positive Y-axis direction) as the front side. , the position of the subject 100 before reaching the inspection unit 3 is detected.
  • the position detection sensor 92J includes an X-axis position detection sensor 92J1 and a Z-axis position detection sensor 92J2.
  • the X-axis position detection sensor 92J1 detects the position of the subject 100 in the X-axis direction.
  • the Z-axis position detection sensor 92J2 detects the position of the subject 100 in the Z-axis direction.
  • the drive section 91J drives the inspection unit 3 in the X-axis direction and the Z-axis direction according to the position of the subject 100 detected by the position detection sensor 92J. For example, when the X-axis position detection sensor 92J1 detects that the subject 100 is located on the X-axis positive direction side of the reference position in the X-axis direction, the drive unit 91J moves the inspection unit 3 in the X-axis positive direction. to a predetermined position on the positive side of the X-axis from the reference position.
  • the driving section 91J moves the inspection unit 3 to the Z It is driven in the positive direction of the axis and moved to a predetermined position on the positive side of the Z axis from the reference position.
  • the ultrasonic inspection apparatus 1J of the fifth embodiment inspects a subject 100 transported by a rotary transport apparatus 200, as shown in FIG.
  • the rotary conveying apparatus 200 is, for example, a rotary filling machine that fills the contents into the subject 100 while conveying the subject 100, which is a packaging container, and joins the edge 103 of the subject 100 to seal the contents.
  • the rotary transfer device 200 has a rotary transfer table 201 that rotates around a rotation axis O1 extending in the Z-axis direction.
  • the rotary carriage 201 rotates, for example, in the direction of arrow D1 shown in FIG.
  • the edge 103 (inspection target site) of the subject 100 transported by the rotary transport device 200 extends linearly when viewed from the Z-axis direction.
  • the subject 100 is clamped by a clamper 203 (see FIGS. 14 and 15) or the like so that the edge 103 of the subject 100 extends in the tangential direction of a circular rotational orbit 202 centered on the rotational axis O1 on the rotary carriage 201.
  • the subject 100 may be attached to the rotating carriage 201 so that the longitudinal middle portion of the edge 103 is in contact with the rotating track 202 .
  • the subject 100 is attached to the rotary carriage 201 so that the longitudinal end of the edge 103 is in contact with the rotary track 202 .
  • a plurality of subjects 100 are attached so as to line up in the circumferential direction of the rotating carriage 201 .
  • the method of attaching the subject 100 to the rotating carriage 201 may be the same or different among the plurality of subjects 100 .
  • the two test objects 100 are arranged so that the edges 103 of the two test objects 100 adjacent in the circumferential direction of the rotary carriage 201 extend in opposite directions in the circumferential direction from the point of contact with the rotation track 202 . are attached to the rotating carriage 201 .
  • the method of mounting the subject 100 on the rotating carriage 201 differs between the two subjects 100 . Therefore, the movement trajectory of the edge portion 103 of the subject 100 passing through the inspection unit 3 differs between the two subjects 100 .
  • a plurality of subjects 100 are arranged on the rotating carriage 201 such that the edges 103 of the plurality of subjects 100 aligned in the circumferential direction of the rotatable carriage 201 extend in the same direction (for example, the direction of arrow D1) from the point of contact with the rotating track 202. may be attached to the In this case, the method of attaching the subject 100 to the rotating carriage 201 is the same for the plurality of subjects 100 . Therefore, the movement trajectory of the edge portion 103 of the subject 100 passing through the inspection unit 3 is the same among the plurality of subjects 100 .
  • the ultrasonic inspection apparatus 1J inspects the edge 103 (inspection target part) of the subject 100 transported by the rotary transport apparatus 200.
  • the inspection unit 3 is arranged so that the edge portion 103 of the subject 100 moving in the circumferential direction of the rotating carriage 201 passes therethrough.
  • the Y-axis direction (linear direction) in FIG. 13 indicates the direction when the edge 103 of the subject 100 passes through the inspection unit 3 .
  • the X-axis direction corresponds to the radial direction of the rotation track 202 of the rotary carriage 201
  • the Z-axis direction corresponds to the direction in which the rotation axis O1 of the rotary carriage 201 extends.
  • the position through which the end of the subject 100 passes in the inspection unit 3 changes in the radial direction (X-axis direction).
  • the X-axis position detection sensor 92J1 detects the position change of the edge 103 of the subject 100 in the X-axis direction.
  • the drive unit 91J moves the inspection unit 3 in the X-axis direction according to the position of the edge 103 of the object 100 detected by the X-axis position detection sensor 92J1.
  • the moving locus of the unit 103 is followed.
  • the edge 103 of the subject 100 can be correctly passed through the inspection unit 3 and inspected by the inspection unit 3 correctly.
  • the Z-axis position detection sensor 92J2 detects the position change of the edge 103 of the subject 100 in the Z-axis direction. Then, the drive unit 91J moves the inspection unit 3 in the Z-axis positive direction according to the position of the edge 103 of the object 100 detected by the Z-axis position detection sensor 92J2. The moving locus of the edge 103 is followed. As a result, the edge 103 of the subject 100 can be correctly passed through the inspection unit 3 and inspected by the inspection unit 3 correctly. Incidentally, even when the subject 100 moves in the Z-axis negative direction as well, the inspection unit 3 can be made to follow the movement trajectory of the edge portion 103 of the subject 100 in the same manner.
  • the Z-axis position The detection sensor 92J2 and the driving section 91J can cause the inspection unit 3 to follow the movement locus of the edge portion 103 of the subject 100.
  • FIG. 15 the edge 103 of the subject 100, which is the part to be inspected, is inclined with respect to the Y-axis direction (transport direction of the subject 100 by the rotary transport device 200). That is, in FIG. 15, when the subject 100 passes through the inspection unit 3 in the positive Y-axis direction, the inspection unit 3 gradually moves in the positive Z-axis direction to follow the movement locus of the inclined edge portion 103. .
  • the same effects as those of the first embodiment are obtained. That is, since the inspection unit 3 follows the movement trajectory of the subject 100 by the tracking mechanism 9J, positional change of the subject 100 with respect to the inspection unit 3 can be suppressed. Therefore, it is possible to correctly inspect the internal state of the subject 100 by the inspection unit 3 . Further, the tracking mechanism 9J moves the inspection unit 3 in the orthogonal direction according to the positional change of the object 100 in the orthogonal direction (X-axis direction, Z-axis direction). It can follow the trajectory.
  • the follow-up mechanism 9J has a drive section 91J that drives the inspection unit 3 in the orthogonal direction. This allows the inspection unit 3 to follow the movement trajectory of the subject 100 without touching the subject 100 as in the first to fourth embodiments.
  • the follow-up mechanism 9J has a position detection sensor 92J that detects the position of the subject 100 in the orthogonal direction. Then, the drive section 91J drives the inspection unit 3 in the orthogonal direction according to the position of the subject 100 detected by the position detection sensor 92J. As a result, even if there is no reproducibility in the movement trajectory of the subject 100 (even if the movement trajectory of the subject 100 differs among a plurality of subjects 100), the inspection unit 3 can detect the movement trajectory of the subject 100 can be followed.
  • the follow-up mechanism 9J may not include the position detection sensor 92J, for example. “Reproducibility of the movement trajectory of the subject 100” means that the movement trajectory (positional change) of the subject 100 passing through the inspection unit 3 is the same among the plurality of subjects 100 . Further, when the movement locus of the subject 100 is reproducible, a cam mechanism or a link mechanism, for example, may be adopted as the drive unit 91J of the follow-up mechanism 9J. Cam mechanisms and link mechanisms are advantageous in that they can be constructed at a lower cost than servo systems.
  • the drive unit 91J may detect the movement of the subject 100 output from, for example, a carrier that transports the subject 100 (for example, the rotary carrier 200 shown in FIG. 13).
  • the inspection unit 3 may be moved based on trajectory information (information such as the timing at which the subject 100 passes through the inspection unit 3).
  • the following mechanism 9J may move the inspection unit 3 only in one of the X-axis direction and the Z-axis direction, for example.
  • the subject 100 is not limited to passing through the inspection unit 3 by moving in the Y-axis positive direction with respect to the inspection unit 3 .
  • the subject 100 may pass through the inspection unit 3 by causing the driving section 91J to move the inspection unit 3 in the Y-axis direction (that is, the direction in which the subject 100 passes).
  • the configuration in which the driving section 91J moves the inspection unit 3 in the Y-axis direction may be applied to the first to fourth embodiments, for example.
  • the ultrasonic inspection apparatus 1J of the fifth embodiment is applied not only to the rotary conveying apparatus 200, but also to the conveyor type conveying machine 300 illustrated in FIGS. 16 and 17, and the pillow packaging machine 400 illustrated in FIG. good too.
  • the conveyor-type transfer machine 300 conveys the subject 100, such as a packaging container, placed on the belt conveyor 301 in the linear direction (Y-axis positive direction).
  • the conveyer-type carrier 300 conveys the subject 100 such that the longitudinal direction of the edge 103 (inspection target site) of the subject 100 is along the transport direction of the subject 100 .
  • the ultrasonic inspection apparatus 1J is arranged at the end of the belt conveyor 301 of the conveyor type transfer machine 300 in the width direction (Z-axis direction).
  • the ultrasonic inspection apparatus 1J measures the internal state of the edge 103 (inspection target part) of the object 100 that protrudes from the end in the width direction of the belt conveyor 301 among the objects 100 conveyed by the conveyer-type carrier 300. to inspect.
  • the ultrasonic inspection apparatus 1J by moving the inspection unit 3 in the vertical direction (X-axis direction) and the width direction (Z-axis direction) perpendicular to the conveying direction of the object 100, the object 100 (especially the edge 103 ) to follow the movement trajectory. As a result, the internal state of the edge portion 103 of the subject 100 can be correctly inspected while the subject 100 is being transported by the conveyer-type transporter 300 .
  • a pillow packaging machine 400 exemplified in FIG. 18 continuously manufactures a plurality of subjects 100 to be packaging containers from strip-shaped sheets 105 .
  • both widthwise end portions of the belt-shaped sheet 105 are continuously joined at the sealing portion 401 .
  • the subject 100 is the strip sheet 105 joined at both ends in the width direction.
  • the ultrasonic inspection device 1J is arranged immediately after the seal portion 401 in the transfer direction (Y-axis positive direction) of the strip-shaped sheet 105 .
  • the ultrasonic inspection apparatus 1J inspects the internal state of the joint portion 107 (inspection target portion) of the strip-shaped sheet 105 joined by the seal portion 401 of the subject 100.
  • the ultrasonic inspection apparatus 1J by moving the inspection unit 3 in the width direction (X-axis direction) or the vertical direction (Z-axis direction) orthogonal to the transfer direction of the subject 100 (band-shaped sheet 105), the subject 100 It is caused to follow the movement trajectory of (especially the joint portion 107). As a result, the internal state of the joint portion 107 of the subject 100 can be correctly inspected while the subject 100 is transferred (conveyed) by the pillow packaging machine 400 .
  • the ultrasonic inspection apparatus of the first to fourth embodiments may be applied to the rotary conveying device 200, conveyor type conveying machine 300, and pillow packaging machine 400 described above.
  • the object to be transported through the inspection unit 3 is not limited to the subject 100, and may be transported together with the subject 100 by a transport device, for example.
  • Things that are transported together with the subject 100 may be, for example, instruments that hold the subject 100, components of a mechanism for transporting the subject 100, and the like.
  • the present disclosure is not limited to the ultrasonic inspection apparatus as exemplified in the first to fifth embodiments, and any inspection that inspects the appearance and internal state of the subject by the inspection unit as the subject 100 passes through the inspection unit. applicable to the device. That is, in the inspection apparatus of the present disclosure, the inspection section is not limited to inspecting the subject 100 using ultrasonic waves as shown in the first to fifth embodiments.
  • the inspection unit may inspect the subject 100 using, for example, X-rays. In this case, the inspection unit can inspect the internal state of the subject 100 by acquiring X-rays reflected or transmitted by the subject 100, for example. Further, in the inspection apparatus of the present disclosure, the inspection unit may inspect the subject 100 using, for example, infrared rays or near-infrared rays. In this case, the inspection unit can inspect the internal state of the subject 100 by acquiring infrared rays or near-infrared rays reflected or transmitted by the subject 100, for example.
  • the inspection unit may inspect the subject 100 by acquiring an image of the subject 100, for example.
  • the inspection unit may inspect the subject 100 by, for example, performing various types of processing on the acquired image.
  • the inspection unit can inspect the appearance of the subject 100 using the acquired image.
  • the examination section may examine the subject 100 using, for example, magnetic resonance.
  • the examination unit may examine the subject 100 by analyzing a magnetic resonance image (MRI) acquired from the subject 100, for example. In this case, the inspection unit can inspect the internal state of the subject 100 using magnetic resonance.
  • MRI magnetic resonance image
  • the present disclosure may be applied to ultrasonic inspection devices and inspection devices.

Abstract

This ultrasonic inspection device comprises: a base; an inspection unit comprising a transmission unit that emits ultrasound and a reception unit that receives the ultrasound and is positioned such that there is a gap between the same and the transmission unit; and a mobile unit that is provided between the base and inspection unit and makes it possible to move the inspection unit in relation to the base in the direction in which the transmission unit and reception unit are aligned. The inspection unit additionally comprises a touching part that applies force to the inspection unit in the alignment direction as a result of touching a conveyance body that passes between the transmission unit and reception unit.

Description

超音波検査装置及び検査装置Ultrasonic inspection device and inspection device
 本開示は、超音波検査装置及び検査装置に関する。
 この出願は、2021年7月20日に出願された日本国特願2021-119754号および2021年10月7日に出願された日本国特願2021-165471号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
The present disclosure relates to an ultrasonic inspection device and an inspection device.
This application claims priority based on Japanese Patent Application No. 2021-119754 filed on July 20, 2021 and Japanese Patent Application No. 2021-165471 filed on October 7, 2021. , the disclosure of which is hereby incorporated in its entirety.
 従来、被検体に向けて超音波を送信する送信部、及び、被検体を透過した超音波を受信する受信部を有し、受信部に対する超音波の受信状況を解析することで、被検体内部の欠陥を検出する超音波検査装置がある(例えば特許文献1参照)。また、超音波検査装置に限らず、被検体が検査部(例えば画像センサやX線センサなど)を通ることで、検査部によって被検体の外観や内部の状態を検査する検査装置がある。 Conventionally, it has a transmitting unit that transmits ultrasonic waves toward the subject and a receiving unit that receives the ultrasonic waves that have passed through the subject, and by analyzing the reception status of the ultrasonic waves with respect to the receiving unit, the inside of the subject There is an ultrasonic inspection apparatus for detecting defects in (see, for example, Patent Document 1). In addition to ultrasonic inspection apparatuses, there are inspection apparatuses that inspect the appearance and internal state of a subject by an inspection section (for example, an image sensor, an X-ray sensor, or the like) as the subject passes through.
日本国特開2020-027011号公報Japanese Patent Application Laid-Open No. 2020-027011
 この種の超音波検査装置では、送信部と受信部との間において、送信部及び受信部が並ぶ方向(配列方向)に対して交差する方向に被検体を搬送しながら、被検体内部の欠陥を検出することがある。また、被検体の搬送の方法によっては、送信部と受信部との間を通る被検体の搬送の軌跡が、直線状ではなく曲線状となったり、送信部及び受信部の配列方向に対して直交せずに傾斜したりする。このため、被検体が送信部と受信部との間を通過する際に、送信部及び受信部の配列方向における被検体の位置が変化してしまう。 In this type of ultrasonic inspection apparatus, between the transmitting unit and the receiving unit, defects inside the object are detected while conveying the object in a direction that intersects the direction in which the transmitting units and the receiving units are arranged (arrangement direction). may be detected. In addition, depending on the method of transporting the subject, the trajectory of transporting the subject passing between the transmitter and the receiver may be curved instead of straight, or may be curved with respect to the arrangement direction of the transmitter and the receiver. It is tilted without being orthogonal. Therefore, when the subject passes between the transmitting section and the receiving section, the position of the subject in the arrangement direction of the transmitting section and the receiving section changes.
 上記配列方向における被検体の位置の変化を許容するためには、例えば、送信部と受信部との間隔を広げることが考えられる。しかしながら、送信部と受信部との間隔が広がると、送信部から送信された超音波が被検体の縁部の外側を回り込んで受信部に到達する回折波が生じやすくなる。受信部が被検体を透過しない回折波を受信すると、被検体内部の欠陥を正しく検出できないことがあるため、回折波の発生は好ましくない。
 超音波検査装置に限らず、被検体が検査部を通ることで検査部によって被検体の外観や内部状態を検査する検査装置では、検査部に対する被検体の位置が変化してしまうと、被検体を正しく検査することができないことがあるため、好ましくない。
In order to allow the change in the position of the subject in the arrangement direction, for example, it is conceivable to widen the distance between the transmitter and the receiver. However, when the distance between the transmitter and the receiver increases, the ultrasonic waves transmitted from the transmitter tend to circulate around the edge of the subject and reach the receiver, resulting in diffracted waves. If the receiver receives diffracted waves that do not pass through the object, it may not be possible to correctly detect defects inside the object, so generation of diffracted waves is not desirable.
Not limited to ultrasonic inspection equipment, in inspection equipment that inspects the appearance and internal state of the object by the inspection unit as the object passes through the inspection unit, if the position of the object with respect to the inspection unit changes, the object may is not preferred because it may not be possible to correctly inspect the
 本開示は、上述した事情に鑑みてなされた。本開示の目的の一例は、被検体(搬送体)の搬送の態様に関わらず検査部に対する被検体(搬送体)の位置変化を抑制できる超音波検査装置及び検査装置を提供することである。 This disclosure was made in view of the circumstances described above. An object of the present disclosure is to provide an ultrasonic inspection apparatus and an inspection apparatus capable of suppressing a change in the position of a subject (carrier) with respect to an inspection unit regardless of how the subject (carrier) is transported.
 本開示の第一の態様は、ベースと、超音波を照射する送信部、及び、前記送信部に対して間隔をあけて位置し、前記超音波を受信する受信部、を有する検査ユニットと、前記ベースと前記検査ユニットとの間に設けられ、前記検査ユニットを前記ベースに対して前記送信部及び受信部の配列方向に移動可能とする可動ユニットと、を備え、前記検査ユニットは、前記送信部と前記受信部との間を通る搬送体に接触することで前記検査ユニットに前記配列方向への力を与える接触部をさらに有する超音波検査装置である。 A first aspect of the present disclosure is an inspection unit having a base, a transmitting section that emits ultrasonic waves, and a receiving section that is spaced from the transmitting section and receives the ultrasonic waves, a movable unit provided between the base and the inspection unit and capable of moving the inspection unit relative to the base in a direction in which the transmitter and the receiver are arranged; The ultrasonic inspection apparatus further includes a contact portion that applies a force in the arrangement direction to the inspection unit by contacting a conveying body passing between the portion and the receiving portion.
 本開示の第二の態様は、被検体が通ることで、前記被検体の外観及び内部状態の少なくとも一方を検査する検査部と、前記検査部を前記被検体の移動軌跡に追従させる追従機構と、を備える検査装置である。 A second aspect of the present disclosure includes an inspection unit that inspects at least one of the external appearance and internal state of the object through which the object passes, and a tracking mechanism that causes the inspection unit to follow the movement trajectory of the object. is an inspection device comprising:
 本開示によれば、被検体(搬送体)の搬送の態様に関わらず検査部(検査ユニット)に対する被検体(搬送体)の位置変化を抑制することができる。 According to the present disclosure, it is possible to suppress a change in the position of the subject (transport body) with respect to the inspection section (inspection unit) regardless of the manner in which the subject (transport body) is transported.
第一実施形態に係る超音波検査装置を模式的に示す正面図である。1 is a front view schematically showing an ultrasonic inspection apparatus according to a first embodiment; FIG. 図1の超音波検査装置において、検査ユニットを示す断面図である。FIG. 2 is a cross-sectional view showing an inspection unit in the ultrasonic inspection apparatus of FIG. 1; 図1の超音波検査装置において、検査ユニットの要部を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a main part of an inspection unit in the ultrasonic inspection apparatus of FIG. 1; 図1の超音波検査装置において、検査ユニット及び可動ユニットを示す断面図である。FIG. 2 is a cross-sectional view showing an inspection unit and a movable unit in the ultrasonic inspection apparatus of FIG. 1; 送信部と受信部との間を通る被検体の搬送の軌跡、及び、被検体の搬送に応じた検査ユニットの移動を示す図である。FIG. 4 is a diagram showing a trajectory of transport of a subject passing between a transmitter and a receiver, and movement of an inspection unit according to the transport of the subject; 第二実施形態に係る超音波検査装置を模式的に示す正面図である。It is a front view which shows typically the ultrasonic inspection apparatus which concerns on 2nd embodiment. 第三実施形態に係る超音波検査装置を模式的に示す正面図である。It is a front view which shows typically the ultrasonic inspection apparatus which concerns on 3rd embodiment. 第四実施形態に係る超音波検査装置を模式的に示す正面図である。It is a front view which shows typically the ultrasonic inspection apparatus which concerns on 4th embodiment. 第四実施形態の第一変形例を模式的に示す正面図である。It is a front view which shows typically the 1st modification of 4th embodiment. 第四実施形態の第二変形例を模式的に示す正面図である。It is a front view which shows typically the 2nd modification of 4th embodiment. 第一~第四実施形態に係る超音波検査装置の検査ユニットの変形例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a modification of the inspection unit of the ultrasonic inspection apparatus according to the first to fourth embodiments; 第五実施形態に係る超音波検査装置を模式的に示す正面図である。It is a front view which shows typically the ultrasonic inspection apparatus which concerns on 5th embodiment. 図12の超音波検査装置及び被検体を搬送するロータリー搬送装置を上方から見た図である。FIG. 13 is a top view of the ultrasonic inspection apparatus of FIG. 12 and a rotary transport device that transports a subject; 図12,13の超音波検査装置を側方から見た被検体の移動軌跡の第一例を示す図である。FIG. 14 is a diagram showing a first example of a movement trajectory of a subject when the ultrasonic inspection apparatus of FIGS. 12 and 13 is viewed from the side; 図12,13の超音波検査装置を側方から見た被検体の移動軌跡の第二例を示す図である。FIG. 14 is a diagram showing a second example of the movement trajectory of the subject when the ultrasonic inspection apparatus of FIGS. 12 and 13 is viewed from the side; 第五実施形態の超音波検査装置をコンベア型の搬送機に適用した様子を模式的に示す側面図である。It is a side view which shows typically a mode that the ultrasonic inspection apparatus of 5th embodiment was applied to the conveyer type|mold transfer machine. 図16のXVII方向から見た正面図である。FIG. 17 is a front view seen from the XVII direction of FIG. 16; 第五実施形態の超音波検査装置をピロー包装機に適用した様子を模式的に示す斜視図である。It is a perspective view which shows typically a mode that the ultrasonic inspection apparatus of 5th embodiment was applied to the pillow packaging machine. 図18のピロー包装機において製造される被検体と当該被検体を検査する第五実施形態の超音波検査装置とを模式的に示す断面図である。FIG. 19 is a cross-sectional view schematically showing a subject manufactured by the pillow packaging machine of FIG. 18 and an ultrasonic inspection apparatus of a fifth embodiment for inspecting the subject;
 〔第一実施形態〕
 以下、図1~5を参照して本開示の第一実施形態について説明する。
 図1,2に示すように、本実施形態の超音波検査装置1は、超音波Wを用いて被検体100(搬送体)における欠陥の検査を行う。本実施形態の被検体100は、二つの部材101を重ねて接合したものであり、例えば包装容器などを構成する。被検体100における欠陥は、例えば接合された二つの部材101の剥離部分である。
 図1に示すように、超音波検査装置1は、ベース2と、検査ユニット3と、可動ユニット5と、を備える。
[First embodiment]
A first embodiment of the present disclosure will be described below with reference to FIGS.
As shown in FIGS. 1 and 2, the ultrasonic inspection apparatus 1 of this embodiment uses ultrasonic waves W to inspect defects in a subject 100 (carrier). The subject 100 of this embodiment is formed by overlapping and joining two members 101, and constitutes, for example, a packaging container. A defect in the object 100 is, for example, a peeled portion of the two members 101 that are joined together.
As shown in FIG. 1 , an ultrasonic inspection apparatus 1 includes a base 2 , an inspection unit 3 and a movable unit 5 .
 検査ユニット3は、被検体100が通ることで、被検体100における内部の欠陥(内部状態)を検査する検査部として機能する。検査ユニット3は、後述する可動ユニット5を介してベース2に取り付けられる。検査ユニット3は、送信部(トランスミッタ、エミッタ)11と、受信部(レシーバ)12と、を備える。送信部11及び受信部12は、互いに間隔をあけて位置する。送信部11及び受信部12は、同一の固定部13に固定されている。これにより、送信部11と受信部12との間隔が保持されている。
 図2に示すように、送信部11は、受信部12に向けて超音波Wを送信する(照射する)。超音波Wは、送信部11の送信面(照射面)11aから送信される。本実施形態の送信面11aは、その周縁から中心に向けて窪む凹状に形成されている。これにより、送信面11aから送信された超音波Wは点状に収束(フォーカス)される。本実施形態の送信面11aは、図3に例示するように送信部11及び受信部12の配列方向(X軸方向)から見て矩形状に形成されている。しなしながら、送信面11aの形状はこれに限ることはない。
The inspection unit 3 functions as an inspection unit that inspects internal defects (internal state) of the object 100 through which the object 100 passes. The inspection unit 3 is attached to the base 2 via a movable unit 5 which will be described later. The inspection unit 3 includes a transmitter (transmitter, emitter) 11 and a receiver (receiver) 12 . The transmitting section 11 and the receiving section 12 are positioned at a distance from each other. The transmitting section 11 and the receiving section 12 are fixed to the same fixed section 13 . As a result, the distance between the transmitter 11 and the receiver 12 is maintained.
As shown in FIG. 2 , the transmitter 11 transmits (irradiates) an ultrasonic wave W toward the receiver 12 . Ultrasonic waves W are transmitted from a transmission surface (irradiation surface) 11 a of the transmission unit 11 . The transmission surface 11a of this embodiment is formed in a concave shape that is recessed from the periphery toward the center. As a result, the ultrasonic waves W transmitted from the transmission surface 11a are converged (focused) into a point. The transmission surface 11a of the present embodiment is formed in a rectangular shape when viewed from the arrangement direction (X-axis direction) of the transmission units 11 and the reception units 12 as illustrated in FIG. However, the shape of the transmission surface 11a is not limited to this.
 図2に示すように、受信部12は、送信部11に対して間隔をあけて位置し、送信部11から送信された超音波Wを受信する。受信部12は、送信部11の送信面11aに対向し、超音波Wを受信する受信面12aを有する。本実施形態の受信面12aは、送信面11aと同様に、受信面12aの周縁から中心に向けて窪む凹状に形成されている。これにより、送信面11aから送信されて収束した後に球面状に広がった超音波Wを受信することができる。なお、受信面12aは、例えば収束した超音波Wを受信するように形成されてもよい。図3において、受信面12aは、送信部11及び受信部12の配列方向(X軸方向)から見て矩形状に形成されている。しかしながら、受信面12aの形状はこれに限ることはない。 As shown in FIG. 2 , the receiving section 12 is positioned apart from the transmitting section 11 and receives the ultrasonic waves W transmitted from the transmitting section 11 . The receiving section 12 has a receiving surface 12a that receives the ultrasonic wave W and faces the transmitting surface 11a of the transmitting section 11 . The receiving surface 12a of this embodiment is formed in a concave shape that is recessed from the peripheral edge of the receiving surface 12a toward the center, similarly to the transmitting surface 11a. This makes it possible to receive the ultrasonic waves W that are transmitted from the transmission surface 11a and spread spherically after being converged. The receiving surface 12a may be formed so as to receive the converged ultrasonic waves W, for example. In FIG. 3, the receiving surface 12a is formed in a rectangular shape when viewed from the direction in which the transmitting units 11 and the receiving units 12 are arranged (the X-axis direction). However, the shape of the receiving surface 12a is not limited to this.
 図面では、送信部11及び受信部12の配列方向をX軸方向で示している。X軸正方向は、超音波Wの主な送信方向を示している。また、送信部11及び受信部12の配列方向に直交し、被検体100が送信部11と受信部12との間を通る主な方向をY軸正方向で示し、その逆方向をY軸負方向で示している。また、これらX軸方向及びY軸方向に直交する方向をZ軸方向で示している。 In the drawing, the arrangement direction of the transmitter 11 and the receiver 12 is indicated by the X-axis direction. The positive direction of the X-axis indicates the main transmission direction of the ultrasonic wave W. FIG. In addition, the main direction in which the subject 100 passes between the transmitting unit 11 and the receiving unit 12 is orthogonal to the arrangement direction of the transmitting unit 11 and the receiving unit 12, and the opposite direction is the negative Y-axis direction. direction. A direction orthogonal to the X-axis direction and the Y-axis direction is indicated by the Z-axis direction.
 図2に示すように、被検体100が送信部11と受信部12との間を通る際、被検体100を構成する二つの部材101は主に送信部11及び受信部12の配列方向(X軸方向)に並ぶ。これにより、送信部11から送信された超音波Wを、二つの部材101が重なる方向において被検体100に透過させた上で、受信部12において受信させることができる。 As shown in FIG. 2, when the subject 100 passes between the transmitting section 11 and the receiving section 12, the two members 101 constituting the subject 100 mainly move in the arrangement direction (X axial direction). Accordingly, the ultrasonic wave W transmitted from the transmitting unit 11 can be transmitted through the subject 100 in the direction in which the two members 101 overlap, and then received by the receiving unit 12 .
 図1に示すように、可動ユニット5は、ベース2と検査ユニット3との間に設けられている。可動ユニット5は、検査ユニット3をベース2に対してX軸方向に移動可能とする。具体的に、可動ユニット5は、レール31と、レール31に対して直線方向に摺動可能に取り付けられたブロック32と、を有する。レール31は、直線状に延びており、検査ユニット3に固定されている。ブロック32は、ベース2に固定され、所定の範囲内でレール31に対してその長手方向に移動可能となっている。なお、レール31がベース2に固定され、ブロック32が検査ユニット3に固定されてもよい。
 上記のように構成された可動ユニット5により、検査ユニット3がベース2に対してX軸方向に直線状に移動可能となっている。可動ユニット5は、例えばブロック32がレール31に対してガタつくことなく直線方向に滑らかに移動できるリニアガイドであってよい。また、可動ユニット5は、例えばレール31に対するブロック32のガタつきを許容するように構成されてもよい。
As shown in FIG. 1, the movable unit 5 is provided between the base 2 and the inspection unit 3. As shown in FIG. The movable unit 5 enables the inspection unit 3 to move in the X-axis direction with respect to the base 2 . Specifically, the movable unit 5 has a rail 31 and a block 32 attached to the rail 31 so as to be slidable in a linear direction. The rail 31 extends linearly and is fixed to the inspection unit 3 . The block 32 is fixed to the base 2 and is movable in its longitudinal direction with respect to the rail 31 within a predetermined range. Note that the rail 31 may be fixed to the base 2 and the block 32 may be fixed to the inspection unit 3 .
The movable unit 5 configured as described above allows the inspection unit 3 to move linearly in the X-axis direction with respect to the base 2 . The movable unit 5 may be, for example, a linear guide that allows the blocks 32 to move smoothly in a straight line direction without rattling with respect to the rails 31 . Also, the movable unit 5 may be configured to allow the blocks 32 to rattle with respect to the rails 31, for example.
 図1~4に示すように、検査ユニット3は、接触部(接触部材)15をさらに備える。接触部15は、送信部11と受信部12との間を通る被検体100に接触することで検査ユニット3にX軸方向(配列方向)への力を与える。接触部15に被検体100が接触することで、検査ユニット3にX軸方向への力が付与され、検査ユニット3がベース2に対してX軸方向に移動する。 As shown in FIGS. 1 to 4, the inspection unit 3 further includes a contact portion (contact member) 15. The contact section 15 applies force in the X-axis direction (arrangement direction) to the inspection unit 3 by contacting the subject 100 passing between the transmission section 11 and the reception section 12 . When the subject 100 contacts the contact portion 15 , a force in the X-axis direction is applied to the inspection unit 3 , and the inspection unit 3 moves in the X-axis direction with respect to the base 2 .
 本実施形態の接触部15は、送信部11と受信部12との間(の空間)に向けて被検体100を案内する案内部(案内部材)21,22である。案内部21,22は、少なくとも送信部11及び受信部12の少なくとも一方に設けられてよい。本実施形態では、案内部21,22が送信部11及び受信部12の両方に設けられている。送信部11及び受信部12に設けられた二つの案内部21,22は、X軸方向において互いに間隔をあけて位置する。本実施形態において、二つの案内部21,22の間隔は送信部11と受信部12との間隔よりも小さい。 The contact portion 15 of the present embodiment is guide portions (guide members) 21 and 22 that guide the subject 100 toward (the space between) the transmission portion 11 and the reception portion 12 . The guiding units 21 and 22 may be provided in at least one of the transmitting unit 11 and the receiving unit 12 . In this embodiment, the guides 21 and 22 are provided in both the transmitter 11 and the receiver 12 . The two guide portions 21 and 22 provided in the transmitting portion 11 and the receiving portion 12 are positioned apart from each other in the X-axis direction. In this embodiment, the distance between the two guides 21 and 22 is smaller than the distance between the transmitter 11 and receiver 12 .
 図2~4に示すように、送信部11に設けられた第一案内部21は、Y軸負方向側に位置する送信面11aの縁に設けられている。第一案内部21は、Y軸負方向側に向く案内面21aを有する。第一案内部21の案内面21aは、X軸正方向側(受信部12側)に向かうにしたがってY軸正方向に向かうように傾斜している。受信部12に設けられた第二案内部22は、Y軸負方向側に位置する受信面12aの縁に設けられている。第二案内部22は、Y軸負方向側に向く案内面22aを有する。第二案内部22の案内面22aは、X軸負方向側(送信部11側)に向かうにしたがってY軸正方向に向かうように傾斜している。これにより、X軸方向における第一、第二案内部21,22の案内面21a,22aの間隔は、Y軸正方向に向かうにしたがって小さくなっている。 As shown in FIGS. 2 to 4, the first guide section 21 provided in the transmission section 11 is provided at the edge of the transmission surface 11a located on the Y-axis negative direction side. The first guide portion 21 has a guide surface 21a facing in the Y-axis negative direction. The guide surface 21a of the first guide portion 21 is inclined in the positive direction of the Y-axis toward the positive direction of the X-axis (the side of the receiving portion 12). The second guide portion 22 provided in the receiving portion 12 is provided at the edge of the receiving surface 12a located on the Y-axis negative direction side. The second guide portion 22 has a guide surface 22a facing in the Y-axis negative direction. The guide surface 22a of the second guide portion 22 is inclined in the positive direction of the Y-axis toward the negative direction of the X-axis (transmission portion 11 side). As a result, the distance between the guide surfaces 21a and 22a of the first and second guide portions 21 and 22 in the X-axis direction decreases toward the positive Y-axis direction.
 上記のように案内部21,22が構成されていることで、送信部11と受信部12との間に進入する被検体100が二つの案内部21,22の間の隙間に対してX軸方向にずれて位置していても、被検体100が案内部21,22の案内面21a,22aに接触することで、案内部21,22の案内面21a,22aによって二つの案内部21,22の間(送信部11と受信部12との間)に案内することができる。
 ここで、前述したように検査ユニット3は可動ユニット5によってベース2に対してX軸方向に移動可能となっている。このため、被検体100が案内部21,22の案内面21a,22aに接触した際には、検査ユニット3にX軸方向への力を付与される。そして、検査ユニット3がベース2及び被検体100に対してX軸方向に移動することで、被検体100が二つの案内部21,22の間に案内される。
Since the guides 21 and 22 are configured as described above, the subject 100 entering between the transmitter 11 and the receiver 12 moves along the X axis with respect to the gap between the two guides 21 and 22 . Even if the subject 100 is shifted in the direction, the two guide portions 21 and 22 are moved by the guide surfaces 21a and 22a of the guide portions 21 and 22 when the subject 100 contacts the guide surfaces 21a and 22a of the guide portions 21 and 22. (between the transmitter 11 and the receiver 12).
Here, as described above, the inspection unit 3 can be moved in the X-axis direction with respect to the base 2 by the movable unit 5 . Therefore, when the subject 100 comes into contact with the guide surfaces 21a and 22a of the guide portions 21 and 22, force is applied to the inspection unit 3 in the X-axis direction. By moving the inspection unit 3 in the X-axis direction with respect to the base 2 and the subject 100 , the subject 100 is guided between the two guides 21 and 22 .
 本実施形態の案内部21,22は、規制部(遮蔽部)25,26を兼用する。規制部25,26は、被検体100が送信部11と受信部12との間を通るときに、図4に示すように、送信部11から送信された超音波Wが被検体100を透過せずに受信部12に到達することを規制する(妨げる)。送信部11から被検体100を透過せずに受信部12に到達しようとする超音波Wには、図4に例示するように、被検体100の縁部103の外側を回り込もうとする超音波W2(すなわち回折波)がある。規制部25,26は、送信部11から被検体100を透過した超音波W1(すなわち透過波)が受信部12に到達することを規制しない。
 言い換えれば、規制部25,26は、被検体100を透過して受信部12に到達する超音波W1の第一伝搬経路と異なる超音波W2の第二伝搬経路を規制する。超音波W2の第二伝搬経路は、図4に例示した回折波(被検体100の縁部103の外側を回り込もうとする超音波W2)の伝搬経路である。
The guiding portions 21 and 22 of this embodiment also serve as the restricting portions (shielding portions) 25 and 26 . The regulating units 25 and 26 prevent the ultrasonic wave W transmitted from the transmitting unit 11 from passing through the object 100 when the object 100 passes between the transmitting unit 11 and the receiving unit 12, as shown in FIG. It restricts (prevents) the arrival of the receiving unit 12 without Ultrasonic waves W from the transmitting unit 11 that try to reach the receiving unit 12 without passing through the subject 100 include ultrasonic waves that try to go around the edge 103 of the subject 100 as illustrated in FIG. There is a sound wave W2 (ie, a diffracted wave). The regulating units 25 and 26 do not regulate the ultrasonic wave W<b>1 (that is, transmitted wave) transmitted from the transmitting unit 11 through the subject 100 from reaching the receiving unit 12 .
In other words, the regulating units 25 and 26 regulate the second propagation path of the ultrasonic wave W2 that is different from the first propagation path of the ultrasonic wave W1 that passes through the subject 100 and reaches the receiver 12 . The second propagation path of the ultrasonic wave W2 is the propagation path of the diffracted wave (the ultrasonic wave W2 trying to go around the edge 103 of the subject 100) illustrated in FIG.
 規制部25,26は、少なくとも送信部11及び受信部12の少なくとも一方に設けられてよい。本実施形態では、図2~4に示すように規制部25,26が送信部11及び受信部12の両方に設けられている。
 送信部11に設けられた第一規制部25は、X軸方向(配列方向)において送信面11aに対向して配置され、送信面11aの一部を覆う。第一規制部25は、送信面11aからX軸正方向(受信部12側)に向かうにしたがって内側の断面積が小さくなる筒状に形成されている。第一規制部25は、例えば円錐型の筒状に形成されてよい。第一規制部25は、本実施形態では図3に示すように四角錐型の筒状に形成されている。筒状の第一規制部25の両端の開口のうち内側の断面積が大きい側の開口は、送信面11aの周縁に接続されている。錐型に形成された第一規制部25の外面のうちY軸負方向側に向く面が、前述した第一案内部21の案内面21aとして機能している。
The regulating units 25 and 26 may be provided in at least one of the transmitting unit 11 and the receiving unit 12 . In this embodiment, as shown in FIGS. 2 to 4, regulation sections 25 and 26 are provided in both the transmission section 11 and the reception section 12. FIG.
The first restricting portion 25 provided in the transmitting portion 11 is arranged to face the transmitting surface 11a in the X-axis direction (arrangement direction) and covers a part of the transmitting surface 11a. The first restricting portion 25 is formed in a cylindrical shape, the inner cross-sectional area of which decreases in the positive direction of the X axis (toward the receiving portion 12) from the transmitting surface 11a. The first restricting portion 25 may be formed in a conical tubular shape, for example. In this embodiment, the first restricting portion 25 is formed in a quadrangular-pyramidal tubular shape as shown in FIG. Of the openings at both ends of the cylindrical first restricting portion 25, the opening having the larger inner cross-sectional area is connected to the peripheral edge of the transmission surface 11a. Of the outer surface of the conical first restricting portion 25, the surface facing the Y-axis negative direction functions as the guide surface 21a of the first guide portion 21 described above.
 図2~4に示すように、受信部12に設けられた第二規制部26は、X軸方向(配列方向)において受信面12aに対向して配置され、受信面12aの一部を覆う。第二規制部26は、受信面12aからX軸負方向(送信側)に向かうにしたがって内側の断面積が小さくなる筒状に形成されている。第二規制部26は、例えば円錐型の筒状に形成されてよい。第二規制部26は、本実施形態では図3に示すように四角錐型の筒状に形成されている。筒状の第二規制部26の両端の開口のうち内側の断面積が大きい側の開口は、受信面12aの周縁に接続されている。錐型に形成された第二規制部26の外面のうちY軸負方向側に向く面が、前述した第二案内部22の案内面22aとして機能している。 As shown in FIGS. 2 to 4, the second restricting section 26 provided in the receiving section 12 is arranged to face the receiving surface 12a in the X-axis direction (arrangement direction) and covers a part of the receiving surface 12a. The second restricting portion 26 is formed in a cylindrical shape, the inner cross-sectional area of which decreases in the X-axis negative direction (transmitting side) from the receiving surface 12a. The second restricting portion 26 may be formed in a conical tubular shape, for example. In this embodiment, the second restricting portion 26 is formed in a quadrangular-pyramidal tubular shape as shown in FIG. Of the openings at both ends of the tubular second restricting portion 26, the opening having the larger inner cross-sectional area is connected to the peripheral edge of the receiving surface 12a. Of the outer surface of the conical second restricting portion 26 , the surface facing the Y-axis negative direction functions as the guide surface 22 a of the second guide portion 22 described above.
 図2,3に示すように錐型の筒状に形成された第一、第二規制部25,26は、送信部11から送信されて点状に収束した後に球面状に広がった上で受信部12に到達する超音波Wの態様に適している。すなわち、送信部11の送信面11aから送信されて収束しながら伝搬する超音波Wは、錐型の筒状の第一規制部25のうち断面積が小さい側の開口25a(送信側開口25a)から、第一規制部25の外側に出ることができる。また、送信側開口25aから出た超音波Wは、錐型の筒状の第二規制部26のうち断面積が小さい側の開口26a(受信側開口26a)から第二規制部26の内側に入ると共に球面状に広がった上で受信部12の受信面12aに到達することができる。 As shown in FIGS. 2 and 3, the first and second restricting portions 25 and 26, which are formed in conical cylindrical shapes, are transmitted from the transmitting portion 11, converge into a point shape, and then spread into a spherical shape before receiving. It is suitable for the aspect of the ultrasonic wave W reaching the part 12 . That is, the ultrasonic waves W transmitted from the transmission surface 11a of the transmission unit 11 and propagating while converging pass through the opening 25a (the transmission side opening 25a) of the cone-shaped cylindrical first restricting portion 25 on the side with the smaller cross-sectional area. , it is possible to go outside the first restricting portion 25 . In addition, the ultrasonic wave W emitted from the transmitting side opening 25a is transmitted inside the second restricting portion 26 from the opening 26a (receiving side opening 26a) of the conical cylindrical second restricting portion 26 with a smaller cross-sectional area. As it enters, it can reach the receiving surface 12 a of the receiving section 12 after expanding in a spherical shape.
 本実施形態では、第一、第二規制部25,26の送信側開口25aと受信側開口26aとの間隔(以下二つの規制部25,26の間隔と呼ぶ)が、送信部11と受信部12との実質的な間隔に対応している。二つの規制部25,26の間隔は、これらの間に被検体100を通すことが可能な範囲で、できるだけ小さくすることが好ましい。例えば、二つの規制部25,26の間に被検体100が位置した状態で、規制部25,26と被検体100との間隔が超音波Wの波長以下となることが好ましい。この場合、送信部11から被検体100を透過せずに受信部12に到達しようとする超音波W2(回折波)をより効果的に規制することができる。 In this embodiment, the distance between the transmitting side opening 25a and the receiving side opening 26a of the first and second restricting portions 25 and 26 (hereinafter referred to as the distance between the two restricting portions 25 and 26) is the distance between the transmitting portion 11 and the receiving portion. corresponds to a substantial spacing of 12. It is preferable that the distance between the two restricting portions 25 and 26 be as small as possible within the range where the subject 100 can be passed between them. For example, in a state where the subject 100 is positioned between the two restricting sections 25 and 26, it is preferable that the distance between the restricting sections 25 and 26 and the subject 100 is equal to or less than the wavelength of the ultrasonic waves W. FIG. In this case, the ultrasonic waves W2 (diffracted waves) that attempt to reach the receiving section 12 from the transmitting section 11 without passing through the subject 100 can be more effectively restricted.
 本実施形態の可動ユニット5及び接触部15は、検査ユニット3を被検体100の移動軌跡に追従させる追従機構として機能する。追従機構をなす可動ユニット5及び接触部15は、検査ユニット3を被検体100のうち検査ユニット3によって検査される検査対象部位の移動軌跡に追従させる。被検体100の検査対象部位は、例えば被検体100において接合された二つの部材101の接合部分である。 The movable unit 5 and the contact portion 15 of this embodiment function as a tracking mechanism that causes the inspection unit 3 to follow the movement locus of the subject 100 . The movable unit 5 and the contact part 15 forming a follow-up mechanism cause the inspection unit 3 to follow the movement locus of the inspection target site inspected by the inspection unit 3 of the subject 100 . A site to be inspected of the subject 100 is, for example, a joint portion of two members 101 that are joined together in the subject 100 .
 以上説明したように、第一実施形態の超音波検査装置1によれば、送信部11及び受信部12を含む検査ユニット3が、可動ユニット5によってベース2に対して送信部11及び受信部12の配列方向(X軸方向)に移動可能とされている。また、検査ユニット3は、送信部11と受信部12との間を通る被検体100に接触することで検査ユニット3に配列方向への力を与える接触部15を有する。
 このため、被検体100が送信部11と受信部12との間を通る際に、配列方向における被検体100の位置が変化すると、被検体100が検査ユニット3の接触部15に接触することで検査ユニット3を配列方向に押す。これにより、検査ユニット3が可動ユニット5によって被検体100の位置の変化に追従するように配列方向に移動する。その結果として、送信部11と受信部12との間隔を実質的に狭くしても、配列方向における被検体100の位置の変化を許容しながら、被検体100を送信部11と受信部12との間に通過させることができる。すなわち、送信部11と受信部12との間隔を実質的に狭くして、回折波の発生を抑制することができる。したがって、送信部11と受信部12との間における被検体100の搬送の態様に関わらず、回折波の発生を抑制することができる。
As described above, according to the ultrasonic inspection apparatus 1 of the first embodiment, the inspection unit 3 including the transmitter 11 and the receiver 12 moves the transmitter 11 and the receiver 12 to the base 2 by the movable unit 5. are movable in the arrangement direction (X-axis direction). The inspection unit 3 also has a contact portion 15 that applies a force in the arrangement direction to the inspection unit 3 by contacting the subject 100 passing between the transmitter 11 and the receiver 12 .
Therefore, if the position of the subject 100 in the arrangement direction changes when the subject 100 passes between the transmitter 11 and the receiver 12 , the subject 100 contacts the contact portion 15 of the inspection unit 3 . The inspection unit 3 is pushed in the arrangement direction. As a result, the inspection unit 3 is moved in the arrangement direction by the movable unit 5 so as to follow the change in the position of the subject 100 . As a result, even if the distance between the transmitter 11 and the receiver 12 is substantially narrowed, the subject 100 can be moved between the transmitter 11 and the receiver 12 while allowing the position of the subject 100 to change in the arrangement direction. can pass between In other words, it is possible to substantially reduce the distance between the transmitting section 11 and the receiving section 12 and suppress the generation of diffracted waves. Therefore, regardless of how the subject 100 is transported between the transmitter 11 and the receiver 12, the generation of diffracted waves can be suppressed.
 ここで、送信部11と受信部12との間における被検体100の搬送の態様の例について、図5を参照して説明する。
 被検体100は、例えば図5に示すように、Z軸方向から見て、送信部11と受信部12との間を通る被検体100の搬送の軌跡T1が円弧状となるように搬送されることがある。例えば、被検体100がZ軸方向を中心軸として回転する搬送装置(ロータリー搬送装置)によって搬送される場合に、被検体100の搬送の軌跡T1が図5に示したような円弧状となることがある。この場合には、被検体100が検査ユニット3を通過する過程において、配列方向(X軸方向)における被検体100(特に被検体100の検査対象部位)の位置が変化する。
Here, an example of a mode of transportation of the subject 100 between the transmitter 11 and the receiver 12 will be described with reference to FIG.
For example, as shown in FIG. 5, the subject 100 is transported such that the trajectory T1 of the transportation of the subject 100 passing between the transmitting unit 11 and the receiving unit 12 is an arc when viewed from the Z-axis direction. Sometimes. For example, when the subject 100 is transported by a transport device (rotary transport device) that rotates about the Z-axis direction, the trajectory T1 of the transport of the subject 100 becomes an arc as shown in FIG. There is In this case, the position of the subject 100 (in particular, the inspection target portion of the subject 100) in the array direction (X-axis direction) changes while the subject 100 passes through the inspection unit 3 .
 これに対し、第一実施形態の超音波検査装置1では、可動ユニット5によって被検体100の位置の変化(すなわち被検体100の移動軌跡)に追従するように検査ユニット3を配列方向に移動させることができる。本実施形態において、被検体100の位置変化に対する検査ユニット3の追従は、被検体100の位置変化に応じて、被検体100が配列方向において案内部21,22の案内面21a,22aに押し付けられて検査ユニット3に配列方向への力が付与されることで行われる。被検体100が図5に示した軌跡T1のように搬送されて被検体100の位置がX軸負方向に変化する場合には、二点鎖線で示した検査ユニット3の送信部11及び受信部12の位置が、実線で示した送信部11及び受信部12の位置になるようにX軸負方向に変化する。 In contrast, in the ultrasonic inspection apparatus 1 of the first embodiment, the movable unit 5 moves the inspection unit 3 in the arrangement direction so as to follow the change in the position of the subject 100 (that is, the movement locus of the subject 100). be able to. In this embodiment, the inspection unit 3 follows the positional change of the subject 100 by pressing the subject 100 against the guide surfaces 21a and 22a of the guide sections 21 and 22 in the arrangement direction in accordance with the positional change of the subject 100. This is performed by applying a force in the arrangement direction to the inspection unit 3. When the subject 100 is transported along the trajectory T1 shown in FIG. 5 and the position of the subject 100 changes in the negative direction of the X-axis, the transmitter 11 and the receiver of the inspection unit 3 indicated by two-dot chain lines 12 changes in the negative direction of the X-axis so as to become the positions of the transmitter 11 and the receiver 12 indicated by solid lines.
 また、第一実施形態の超音波検査装置1では、二つの案内部21,22の間隔が送信部11と受信部12との間隔よりも小さい。このため、送信部11及び受信部12の配列方向において送信部11と受信部12との間を通る被検体100の位置にバラツキが生じることを抑制することができる。これにより、被検体100を透過して受信部12が受信する超音波Wの強度(受信信号強度)にバラツキが生じることを抑制できる。したがって、被検体100を高い精度で検査することが可能となる。 Also, in the ultrasonic inspection apparatus 1 of the first embodiment, the distance between the two guides 21 and 22 is smaller than the distance between the transmitter 11 and the receiver 12 . Therefore, it is possible to suppress variation in the position of the subject 100 passing between the transmitter 11 and the receiver 12 in the arrangement direction of the transmitter 11 and the receiver 12 . As a result, it is possible to suppress variations in the intensity of the ultrasonic wave W transmitted through the subject 100 and received by the receiving unit 12 (received signal intensity). Therefore, it is possible to inspect the subject 100 with high accuracy.
 また、第一実施形態の超音波検査装置1では、送信部11と受信部12との間に向けて被検体100を案内する案内部21,22が、被検体100が送信部11と受信部12との間を通るときに、送信部11から送信された超音波Wが被検体100を透過せずに受信部12に到達することを規制する規制部25,26を兼用している。これにより、超音波検査装置1の構成部品点数を増やすことなく、被検体100を透過しない超音波W2(例えば回折波)が受信部12に到達することを抑制して、被検体100の欠陥をより正しく検出することができる。 In addition, in the ultrasonic examination apparatus 1 of the first embodiment, the guide units 21 and 22 for guiding the subject 100 between the transmitter 11 and the receiver 12 are arranged such that the subject 100 is positioned between the transmitter 11 and the receiver 12. 12 , the ultrasonic wave W transmitted from the transmitting unit 11 does not pass through the subject 100 and reaches the receiving unit 12 . As a result, ultrasonic waves W2 (for example, diffracted waves) that do not pass through the object 100 are suppressed from reaching the receiving unit 12 without increasing the number of component parts of the ultrasonic inspection apparatus 1, thereby detecting defects in the object 100. can be detected more correctly.
 上記したように、第一実施形態の超音波検査装置1では、可動ユニット5および接触部15からなる追従機構によって、検査ユニット3(検査部)に対して被検体100が通る方向(Y軸方向)に直交する直交方向(配列方向、X軸方向)における被検体100の位置変化に応じて、検査ユニット3をその直交方向に移動させる。これにより、検査ユニット3が追従機構によって被検体100の移動軌跡に追従する。このため、被検体100が検査ユニット3を通る際に、検査ユニット3に対する被検体100の位置変化を抑制することができる。したがって、検査ユニット3によって被検体100の内部状態を正しく検査することができる。 As described above, in the ultrasonic inspection apparatus 1 of the first embodiment, the tracking mechanism including the movable unit 5 and the contact portion 15 causes the inspection unit 3 (inspection portion) to move in the direction in which the subject 100 passes (the Y-axis direction). ), the inspection unit 3 is moved in the orthogonal direction (arrangement direction, X-axis direction). As a result, the inspection unit 3 follows the movement trajectory of the subject 100 by the tracking mechanism. Therefore, when the subject 100 passes through the inspection unit 3 , positional change of the subject 100 with respect to the inspection unit 3 can be suppressed. Therefore, the internal state of the subject 100 can be correctly inspected by the inspection unit 3 .
 〔第二実施形態〕
 次に、図6を参照して本開示の第二実施形態について説明する。第二実施形態においては、第一実施形態と同様の構成要素について同一符号を付す等して、その説明を省略する。
[Second embodiment]
Next, a second embodiment of the present disclosure will be described with reference to FIG. In the second embodiment, the same components as in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図6に示すように、第二実施形態の超音波検査装置1Dは、第一実施形態と同様に、ベース2と、検査ユニット3と、可動ユニット5と、を備える。本実施形態の超音波検査装置1Dは、復帰部6Dをさらに備える。復帰部6Dは、検査ユニット3をX軸方向(配列方向)における基準位置RPに復帰させる。 As shown in FIG. 6, an ultrasonic inspection apparatus 1D of the second embodiment includes a base 2, an inspection unit 3, and a movable unit 5, as in the first embodiment. The ultrasonic inspection apparatus 1D of this embodiment further includes a return section 6D. The return section 6D returns the inspection unit 3 to the reference position RP in the X-axis direction (arrangement direction).
 本実施形態の復帰部6Dは、重力によって検査ユニット3を基準位置RPに復帰させる。具体的に、復帰部6Dは、長手方向が水平方向に対して傾斜するように配置された可動ユニット5のレール31である。図6においては、X軸方向が水平方向を示している。また、Z軸方向が鉛直方向を示しており、Z軸正方向側が鉛直方向の上側を示している。
 図6において、レール31は、X軸正方向に向かうにしたがってZ軸負方向側(すなわち鉛直方向の下側)に向かうように延びている。これにより、検査ユニット3には、自重によってX軸正方向に向かう力(重力)が作用する。検査ユニット3に作用する重力(復帰部6Dの力)の大きさは、被検体100がその重力に抗って検査ユニット3をX軸方向(図6ではX軸負方向)に押す力よりも小さいことが好ましい。
 図6における検査ユニット3の基準位置RPは、可動ユニット5による検査ユニット3の移動範囲における端の位置であり、検査ユニット3の移動範囲において最も下方の位置である。
The return section 6D of the present embodiment returns the inspection unit 3 to the reference position RP by gravity. Specifically, the return portion 6D is the rail 31 of the movable unit 5 arranged such that its longitudinal direction is inclined with respect to the horizontal direction. In FIG. 6, the X-axis direction indicates the horizontal direction. Also, the Z-axis direction indicates the vertical direction, and the Z-axis positive direction side indicates the upper side in the vertical direction.
In FIG. 6, the rail 31 extends in the negative direction of the Z-axis (that is, downward in the vertical direction) as it extends in the positive direction of the X-axis. As a result, a force (gravity) acting in the positive direction of the X-axis acts on the inspection unit 3 due to its own weight. The magnitude of the gravitational force acting on the inspection unit 3 (the force of the return portion 6D) is greater than the force of the subject 100 pushing the inspection unit 3 in the X-axis direction (X-axis negative direction in FIG. 6) against the gravity. Small is preferred.
The reference position RP of the inspection unit 3 in FIG. 6 is the end position in the movement range of the inspection unit 3 by the movable unit 5 and the lowest position in the movement range of the inspection unit 3 .
 第二実施形態の超音波検査装置1Dでは、第一実施形態と同様に、被検体100が検査ユニット3の送信部11と受信部12との間を通る際に、X軸方向における被検体100の位置変化に追従するように検査ユニット3がベース2に対してX軸方向に移動する。その後、被検体100が送信部11と受信部12との間を通り抜けたときに、検査ユニット3が基準位置RPから離れて位置する場合には、検査ユニット3が自重によって基準位置RPに復帰する。 In the ultrasonic inspection apparatus 1D of the second embodiment, as in the first embodiment, when the subject 100 passes between the transmitter 11 and the receiver 12 of the inspection unit 3, the subject 100 in the X-axis direction The inspection unit 3 moves in the X-axis direction with respect to the base 2 so as to follow the position change of . Thereafter, when the subject 100 passes through between the transmitter 11 and the receiver 12 and the inspection unit 3 is positioned away from the reference position RP, the inspection unit 3 returns to the reference position RP by its own weight. .
 第二実施形態の超音波検査装置1Dによれば、第一実施形態と同様の効果を奏する。
 また、第二実施形態の超音波検査装置1Dは、検査ユニット3を送信部11及び受信部12の配列方向(X軸方向)における基準位置RPに復帰させる復帰部6Dを備える。このため、所定の被検体100が送信部11と受信部12との間を通り抜けたときに、検査ユニット3が基準位置RPから離れて位置しても、検査ユニット3を復帰部6Dによって基準位置RPに復帰させることができる。これにより、後続の被検体100を基準位置RPに配置された検査ユニット3の送信部11と受信部12との間に進入させることができる。したがって、被検体100が通り抜けたときの検査ユニット3の位置が基準位置RPからずれていても、複数の被検体100を連続して検査ユニット3に通すことができる。
According to the ultrasonic inspection apparatus 1D of the second embodiment, the same effects as those of the first embodiment are obtained.
The ultrasonic inspection apparatus 1D of the second embodiment also includes a return section 6D that returns the inspection unit 3 to the reference position RP in the arrangement direction (X-axis direction) of the transmission section 11 and the reception section 12. FIG. Therefore, even if the inspection unit 3 is positioned away from the reference position RP when the predetermined subject 100 passes through between the transmission unit 11 and the reception unit 12, the inspection unit 3 is returned to the reference position by the return unit 6D. It can be returned to RP. This allows the subsequent subject 100 to enter between the transmitter 11 and receiver 12 of the inspection unit 3 placed at the reference position RP. Therefore, even if the position of the inspection unit 3 when the subject 100 passes through is deviated from the reference position RP, a plurality of subjects 100 can be continuously passed through the inspection unit 3 .
 〔第三実施形態〕
 次に、図7を参照して本開示の第三実施形態について説明する。第三実施形態においては、第一、第二実施形態と同様の構成要素について同一符号を付す等して、その説明を省略する。
[Third embodiment]
Next, a third embodiment of the present disclosure will be described with reference to FIG. In the third embodiment, the same components as in the first and second embodiments are denoted by the same reference numerals, and descriptions thereof are omitted.
 図7に示すように、第三実施形態の超音波検査装置1Eは、第一実施形態と同様に、ベース2と、検査ユニット3と、可動ユニット5と、を備える。また、第三実施形態の超音波検査装置1Eは、第二実施形態と同様に、検査ユニット3をX軸方向(配列方向)における基準位置RPに復帰させる復帰部6Eをさらに備える。 As shown in FIG. 7, an ultrasonic inspection apparatus 1E of the third embodiment includes a base 2, an inspection unit 3, and a movable unit 5, as in the first embodiment. Further, similarly to the second embodiment, the ultrasonic inspection apparatus 1E of the third embodiment further includes a return section 6E that returns the inspection unit 3 to the reference position RP in the X-axis direction (arrangement direction).
 ただし、第三実施形態の復帰部6Eは、ベース2と検査ユニット3との間に設けられた弾性体41Eである。弾性体41Eは、ベース2に対する検査ユニット3のX軸方向への移動に応じて弾性的に伸縮する。検査ユニット3に作用する弾性体41Eの弾性力(復帰部6Eの力)の大きさは、被検体100がその弾性力に抗って検査ユニット3をX軸方向に押す力よりも小さいことが好ましい。図7に例示する弾性体41Eは、ばねであるが、例えばゴムなどであってもよい。図7に例示するように復帰部6Eを構成する弾性体41Eが一つである場合、検査ユニット3が基準位置RPに配置された状態では、検査ユニット3には弾性体41Eの弾性力が作用しない。図7における検査ユニット3の基準位置RPは、可動ユニット5による検査ユニット3の移動範囲の端の位置である。しかしながら、基準位置RPは、図7に示す例に限定されず、例えば検査ユニット3の移動範囲の中間であってもよい。 However, the return part 6E of the third embodiment is an elastic body 41E provided between the base 2 and the inspection unit 3. The elastic body 41E elastically expands and contracts according to the movement of the inspection unit 3 with respect to the base 2 in the X-axis direction. The magnitude of the elastic force of the elastic body 41E (the force of the return portion 6E) acting on the inspection unit 3 is smaller than the force of the subject 100 pushing the inspection unit 3 in the X-axis direction against the elastic force. preferable. The elastic body 41E illustrated in FIG. 7 is a spring, but may be, for example, rubber. In the case where there is one elastic body 41E that constitutes the return portion 6E as illustrated in FIG. do not do. The reference position RP of the inspection unit 3 in FIG. 7 is the end position of the movement range of the inspection unit 3 by the movable unit 5 . However, the reference position RP is not limited to the example shown in FIG. 7, and may be in the middle of the movement range of the inspection unit 3, for example.
 第三実施形態の超音波検査装置1Eでは、第一実施形態と同様に、被検体100が検査ユニット3の送信部11と受信部12との間を通る際に、X軸方向における被検体100の位置変化に追従するように検査ユニット3がベース2に対してX軸方向に移動する。その後、被検体100が送信部11と受信部12との間を通り抜けたときに、検査ユニット3が基準位置RPから離れて位置する場合には、検査ユニット3が弾性体41Eの弾性力によって基準位置RPに復帰する。 In the ultrasonic inspection apparatus 1E of the third embodiment, as in the first embodiment, when the subject 100 passes between the transmitter 11 and the receiver 12 of the inspection unit 3, the subject 100 in the X-axis direction The inspection unit 3 moves in the X-axis direction with respect to the base 2 so as to follow the position change of . After that, when the subject 100 passes through between the transmitter 11 and the receiver 12, if the inspection unit 3 is positioned away from the reference position RP, the inspection unit 3 moves toward the reference position due to the elastic force of the elastic body 41E. Return to position RP.
 第三実施形態の超音波検査装置1Eによれば、第二実施形態と同様の効果を奏する。 According to the ultrasonic inspection apparatus 1E of the third embodiment, the same effects as those of the second embodiment are obtained.
 〔第四実施形態〕
 次に、図8を参照して本開示の第四実施形態について説明する。第四実施形態においては、第一実施形態と同様の構成要素について同一符号を付す等して、その説明を省略する。
[Fourth embodiment]
Next, a fourth embodiment of the present disclosure will be described with reference to FIG. In the fourth embodiment, the same components as in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図8に示すように、第四実施形態の超音波検査装置1Fは、第一実施形態と同様に、ベース2と、検査ユニット3と、可動ユニット5と、を備える。第四実施形態の超音波検査装置1Fは、保持部7Fをさらに備える。保持部7Fは、検査ユニット3をX軸方向(配列方向)における基準位置RPに保持する。 As shown in FIG. 8, an ultrasonic inspection apparatus 1F of the fourth embodiment includes a base 2, an inspection unit 3, and a movable unit 5, as in the first embodiment. The ultrasonic inspection apparatus 1F of the fourth embodiment further includes a holding section 7F. The holding part 7F holds the inspection unit 3 at the reference position RP in the X-axis direction (arrangement direction).
 本実施形態の保持部7Fは、ベース2及び検査ユニット3に設けられた一対の磁石51F,52Fによって構成されている。一対の磁石51F,52Fには、ベース2に固定されたベース側磁石51Fと、検査ユニット3に固定されたユニット側磁石52Fとがある。
 一対の磁石51F,52Fは、検査ユニット3が基準位置RPに配置された状態において、互いに最も近くに位置するように、すなわち一対の磁石51F,52Fの間に作用する磁力(引力)が最も大きくなるように配置されている。検査ユニット3が基準位置RPに配置されたときに一対の磁石51F,52Fの間に作用する磁力(引力)の大きさは、被検体100がその磁力に抗って検査ユニット3をX軸方向に押す力よりも小さいことが好ましい。
The holding part 7F of this embodiment is composed of a pair of magnets 51F and 52F provided on the base 2 and the inspection unit 3. As shown in FIG. The pair of magnets 51F and 52F includes a base-side magnet 51F fixed to the base 2 and a unit-side magnet 52F fixed to the inspection unit 3 .
The pair of magnets 51F and 52F are located closest to each other when the inspection unit 3 is placed at the reference position RP. are arranged so that The magnitude of the magnetic force (attractive force) acting between the pair of magnets 51F and 52F when the inspection unit 3 is placed at the reference position RP is such that the subject 100 moves the inspection unit 3 in the X-axis direction against the magnetic force. It is preferably smaller than the pushing force.
 一対の磁石51F,52Fは、基準位置RPに配置された検査ユニット3の本体部分(送信部11及び受信部12を含む部分)に対してX軸方向の一方側に配置されている。具体的に、ベース側磁石51Fは、ベース2のうち基準位置RPに配置された検査ユニット3の本体部分のX軸正方向側(右側)に位置する部分に固定されている。ユニット側磁石52Fは、検査ユニット3の固定部13のうち受信部12よりもX軸正方向側に延びる部分に固定されている。
 図8における検査ユニット3の基準位置RPは、可動ユニット5による検査ユニット3の移動範囲の端の位置である。
The pair of magnets 51F and 52F are arranged on one side in the X-axis direction with respect to the main body portion (the portion including the transmitting section 11 and the receiving section 12) of the inspection unit 3 arranged at the reference position RP. Specifically, the base-side magnet 51F is fixed to a portion of the base 2 located on the X-axis positive direction side (right side) of the main body portion of the inspection unit 3 arranged at the reference position RP. The unit-side magnet 52</b>F is fixed to a portion of the fixed portion 13 of the inspection unit 3 that extends in the positive direction of the X-axis from the receiving portion 12 .
The reference position RP of the inspection unit 3 in FIG. 8 is the end position of the movement range of the inspection unit 3 by the movable unit 5 .
 第四実施形態の超音波検査装置1Fにおいて、図8に示すように検査ユニット3が基準位置RPに配置された状態では、一対の磁石51F,52Fの間に作用する磁力によって検査ユニット3が基準位置RPに保持される。ただし、被検体100が検査ユニット3の送信部11と受信部12との間を通る際にX軸方向における被検体100の位置が変化すると、検査ユニット3は、被検体100によってX軸方向に押されて被検体100の位置変化に追従するようにベース2に対してX軸方向に移動する。 In the ultrasonic inspection apparatus 1F of the fourth embodiment, when the inspection unit 3 is arranged at the reference position RP as shown in FIG. It is held at position RP. However, if the position of the subject 100 in the X-axis direction changes when the subject 100 passes between the transmitting section 11 and the receiving section 12 of the inspection unit 3, the inspection unit 3 is moved by the subject 100 in the X-axis direction. It moves in the X-axis direction with respect to the base 2 so as to follow the position change of the subject 100 when pushed.
 第四実施形態の超音波検査装置1Fによれば、第一実施形態と同様の効果を奏する。
 また、第四実施形態の超音波検査装置1Fは、検査ユニット3を送信部11及び受信部12の配列方向(X軸方向)における基準位置RPに保持する保持部7Fを備える。これにより、予期せぬ外力(例えば振動)によって検査ユニット3が基準位置RPからずれてしまうことを抑制できる。これにより、検査ユニット3の意図しない位置ずれに起因して、被検体100が送信部11と受信部12との間に進入できなくなることを、抑制することができる。
According to the ultrasonic inspection apparatus 1F of the fourth embodiment, the same effects as those of the first embodiment are obtained.
Further, the ultrasonic inspection apparatus 1F of the fourth embodiment includes a holding section 7F that holds the inspection unit 3 at the reference position RP in the arrangement direction (X-axis direction) of the transmitting section 11 and the receiving section 12. FIG. This can prevent the inspection unit 3 from being displaced from the reference position RP due to an unexpected external force (for example, vibration). As a result, it is possible to prevent the subject 100 from entering between the transmitter 11 and the receiver 12 due to unintended displacement of the inspection unit 3 .
 第四実施形態においては、例えば、保持部が複数の基準位置のそれぞれにおいて検査ユニット3を保持するように構成されてもよい。図9に例示する超音波検査装置1Gにおいて、保持部7Gは、X軸方向(配列方向)において互いに離れて位置する二つの基準位置において検査ユニット3を保持するように構成されている。図9に例示する保持部7Gは、一対の磁石51F,52Fからなる磁石ユニット50G1,50G2を二組備えている。一対の磁石ユニット50G1,50G2は、第一磁石ユニット50G1と第二磁石ユニット50G2である。二組の磁石ユニット50G1,50G2は、X軸方向において検査ユニット3の両側に設けられている。 In the fourth embodiment, for example, the holding section may be configured to hold the inspection unit 3 at each of a plurality of reference positions. In the ultrasonic inspection apparatus 1G illustrated in FIG. 9, the holding section 7G is configured to hold the inspection unit 3 at two reference positions separated from each other in the X-axis direction (arrangement direction). The holding portion 7G illustrated in FIG. 9 includes two sets of magnet units 50G1 and 50G2 each composed of a pair of magnets 51F and 52F. The pair of magnet units 50G1 and 50G2 are a first magnet unit 50G1 and a second magnet unit 50G2. The two sets of magnet units 50G1 and 50G2 are provided on both sides of the inspection unit 3 in the X-axis direction.
 第一磁石ユニット50G1を構成する一対の磁石51F,52Fは、検査ユニット3が二つの基準位置のうち第一基準位置RP1に配置された状態で、互いに最も近くに位置する。これにより、検査ユニット3が第一基準位置RP1に配置された状態では、第一磁石ユニット50G1の一対の磁石51F,52Fの間に作用する磁力(引力)によって、検査ユニット3が第一基準位置RP1に保持される。検査ユニット3が第一基準位置RP1に配置された状態において、第二磁石ユニット50G2を構成する一対の磁石51F,52Fは、X軸方向において互いに離れて位置する。このため、第二磁石ユニット50G2の一対の磁石51F,52Fの間に作用する磁力(引力)によって、検査ユニット3が第一基準位置RP1から動くことはない。 The pair of magnets 51F and 52F that constitute the first magnet unit 50G1 are positioned closest to each other when the inspection unit 3 is placed at the first reference position RP1 of the two reference positions. As a result, when the inspection unit 3 is arranged at the first reference position RP1, the magnetic force (attractive force) acting between the pair of magnets 51F and 52F of the first magnet unit 50G1 moves the inspection unit 3 to the first reference position. It is held in RP1. In a state where the inspection unit 3 is arranged at the first reference position RP1, the pair of magnets 51F and 52F that constitute the second magnet unit 50G2 are positioned apart from each other in the X-axis direction. Therefore, the magnetic force (attractive force) acting between the pair of magnets 51F and 52F of the second magnet unit 50G2 does not move the inspection unit 3 from the first reference position RP1.
 検査ユニット3が第二基準位置に配置された状態では、第二磁石ユニット50G2の一対の磁石51F,52Fが互いに最も近くに位置する。これにより、検査ユニット3が第二基準位置に配置された状態では、第二磁石ユニット50G2の一対の磁石51F,52Fの間に作用する磁力(引力)によって、検査ユニット3が第二基準位置に保持される。検査ユニット3が第二基準位置に配置された状態では、第一磁石ユニット50G1の一対の磁石51F,52Fの間に作用する磁力(引力)によって、検査ユニット3が第二基準位置から動くことはない。 When the inspection unit 3 is placed at the second reference position, the pair of magnets 51F and 52F of the second magnet unit 50G2 are positioned closest to each other. As a result, when the inspection unit 3 is arranged at the second reference position, the magnetic force (attractive force) acting between the pair of magnets 51F and 52F of the second magnet unit 50G2 moves the inspection unit 3 to the second reference position. retained. When the inspection unit 3 is arranged at the second reference position, the magnetic force (attractive force) acting between the pair of magnets 51F and 52F of the first magnet unit 50G1 prevents the inspection unit 3 from moving from the second reference position. Absent.
 第四実施形態の超音波検査装置は、例えば第二、第三実施形態と同様の復帰部6D,6Eを備えてもよい。この場合、復帰部6D,6Eによる検査ユニット3の基準位置と、保持部7F,7Gによる検査ユニット3の基準位置とは、例えば互いに一致していてもよいし、図10に例示するように互いに異なっていてもよい。
 図10に例示する超音波検査装置1Hは、図6に例示した第二実施形態の復帰部6D(傾斜したレール31)、及び、図8に例示した第四実施形態の保持部7F(一対の磁石51F,52F)、を備えている。復帰部6Dによる検査ユニット3の基準位置RP1(第一基準位置RP1)は、検査ユニット3の移動範囲において最も下方(Z軸負方向)の位置である。保持部7Fによる検査ユニット3の基準位置(第二基準位置)は、第一基準位置RP1よりも上方(Z軸正方向)の位置である。
The ultrasonic inspection apparatus of the fourth embodiment may include, for example, return units 6D and 6E similar to those of the second and third embodiments. In this case, the reference position of the inspection unit 3 by the return portions 6D and 6E and the reference position of the inspection unit 3 by the holding portions 7F and 7G may coincide with each other, for example. can be different.
The ultrasonic inspection apparatus 1H illustrated in FIG. 10 includes the return portion 6D (inclined rail 31) of the second embodiment illustrated in FIG. 6, and the holding portion 7F (a pair of magnets 51F, 52F). The reference position RP1 (first reference position RP1) of the inspection unit 3 by the return section 6D is the lowest position (Z-axis negative direction) in the movement range of the inspection unit 3 . The reference position (second reference position) of the inspection unit 3 by the holding portion 7F is a position above (in the Z-axis positive direction) the first reference position RP1.
 第四実施形態において、保持部7F,7Gは、一対の磁石51F,52Fで構成されることに限られない。保持部7F,7Gは、例えばベース2及び検査ユニット3の一方に設けられた磁石と、他方に設けられた磁性体(例えば鉄など)と、によって構成されてもよい。 In the fourth embodiment, the holding parts 7F, 7G are not limited to being composed of the pair of magnets 51F, 52F. The holding parts 7F and 7G may be configured by, for example, a magnet provided on one of the base 2 and the inspection unit 3 and a magnetic material (such as iron) provided on the other.
 第一~第四実施形態において、送信部11の送信面11aは、例えば送信面11aから送信された超音波WがY軸方向においてのみ収束するように、すなわちZ軸方向に延びる線状に収束するように形成されてもよい。
 また、送信部11の送信面11aは、送信面11aから送信された超音波Wが収束しないように形成されてもよい。この場合、送信部11の送信面11aや受信部12の受信面12aは、例えば図11に示すように平坦面に形成されてよい。
In the first to fourth embodiments, the transmission surface 11a of the transmission unit 11 converges, for example, in a line extending in the Z-axis direction so that the ultrasonic waves W transmitted from the transmission surface 11a converge only in the Y-axis direction. may be configured to
Further, the transmission surface 11a of the transmission unit 11 may be formed so that the ultrasonic waves W transmitted from the transmission surface 11a do not converge. In this case, the transmitting surface 11a of the transmitting unit 11 and the receiving surface 12a of the receiving unit 12 may be formed flat as shown in FIG. 11, for example.
 第一~第四実施形態において、案内部21,22は、例えば規制部25,26を兼用しなくてもよい。この場合には、例えば図11に示すように、案内部21,22が送信部11や受信部12に対して被検体100の通過方向の後側(Y軸負方向側)に設けられてもよい。図11に例示する案内部21,22は、送信部11及び受信部12の両方に設けられている。これら二つの案内部21,22は、Y軸負方向側に向く案内面21a,22aを有している。これら二つの案内面21a,22aは、これらの間隔がY軸負方向側に向かうにしたがって広がるように形成されている。 In the first to fourth embodiments, the guide portions 21 and 22 do not have to serve as the restriction portions 25 and 26, for example. In this case, for example, as shown in FIG. 11, even if the guide units 21 and 22 are provided behind the transmission unit 11 and the reception unit 12 in the passage direction of the subject 100 (Y-axis negative direction side). good. Guiding units 21 and 22 illustrated in FIG. 11 are provided in both the transmitting unit 11 and the receiving unit 12 . These two guide portions 21 and 22 have guide surfaces 21a and 22a facing in the Y-axis negative direction. These two guide surfaces 21a and 22a are formed such that the distance between them widens in the negative Y-axis direction.
 第一~第四実施形態において、検査ユニット3の接触部15は、例えば送信部11及び受信部12であってもよい。すなわち、被検体100が接触部15として機能する送信部11や受信部12に接触することで、検査ユニット3に配列方向への力が付与されてもよい。 In the first to fourth embodiments, the contact portion 15 of the inspection unit 3 may be the transmitting portion 11 and the receiving portion 12, for example. That is, when the subject 100 contacts the transmitting section 11 or the receiving section 12 functioning as the contact section 15, force may be applied to the inspection units 3 in the arrangement direction.
 第一~第四実施形態において、追従機構として機能する可動ユニット5及び接触部15(追従機構)は、検査ユニット3(検査部)に対して被検体100が通る方向(例えばY軸方向)に直交する直交方向における被検体100の位置変化に応じて、検査ユニット3をその直交方向に移動させるように構成されてよい。すなわち、第一~第四実施形態において、可動ユニット5及び接触部15は、例えば、上記した被検体100の位置変化に応じて、被検体100が通る方向(例えばY軸方向)及び送信部11及び受信部12の配列方向(例えばX軸方向)に直交する方向(例えばZ軸方向)に、検査ユニット3を移動させるように構成されてもよい。 In the first to fourth embodiments, the movable unit 5 and the contact portion 15 (following mechanism) functioning as a follow-up mechanism are arranged in a direction (for example, the Y-axis direction) through which the subject 100 passes with respect to the inspection unit 3 (inspection portion). The inspection unit 3 may be configured to move in the orthogonal direction according to the positional change of the subject 100 in the orthogonal direction. In other words, in the first to fourth embodiments, the movable unit 5 and the contact portion 15 move in the direction in which the subject 100 passes (for example, the Y-axis direction) and the transmission section 11 according to the position change of the subject 100, for example. Also, the inspection unit 3 may be moved in a direction (eg, Z-axis direction) orthogonal to the arrangement direction (eg, X-axis direction) of the receivers 12 .
 第一~第四実施形態において、送信部11と受信部12との間(検査部)を通る搬送体は、被検体100に限らず、例えば搬送装置によって被検体100と一緒に搬送されるものであってもよい。被検体100と一緒に搬送されるものは、例えば被検体100を保持する器具、被検体100を搬送するための機構の構成部品などであってよい。 In the first to fourth embodiments, the object to be transported between the transmitting unit 11 and the receiving unit 12 (inspection unit) is not limited to the subject 100, but may be transported together with the subject 100 by a transport device, for example. may be Things that are transported together with the subject 100 may be, for example, instruments that hold the subject 100, components of a mechanism for transporting the subject 100, and the like.
 〔課題〕
 本開示は、送信部と受信部との間における被検体などの搬送体の搬送の態様に関わらず、回折波の発生を抑制できる超音波検査装置を提供することを目的とする。
〔Task〕
An object of the present disclosure is to provide an ultrasonic inspection apparatus capable of suppressing the generation of diffracted waves regardless of the manner in which a carrier such as a subject is transported between a transmitter and a receiver.
 〔効果〕
 本開示によれば、送信部と受信部との間における搬送体の搬送の態様に関わらず、回折波の発生を抑制することができる。
〔effect〕
According to the present disclosure, it is possible to suppress the generation of diffracted waves regardless of how the carrier is transported between the transmitter and the receiver.
 〔第五実施形態〕
 次に、図12~15を参照して本開示の第五実施形態について説明する。第五実施形態においては、第一実施形態と同様の構成要素について同一符号を付す等して、その説明を省略する。
[Fifth embodiment]
Next, a fifth embodiment of the present disclosure will be described with reference to FIGS. 12-15. In the fifth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 図12に示すように、第五実施形態の超音波検査装置1Jは、第一実施形態と同様に、被検体100が通ることで、被検体100の内部状態(内部の欠陥)を検査する検査ユニット3(検査部)と、検査ユニット3を被検体100の移動軌跡に追従させる追従機構9Jと、を備える。検査ユニット3の構成は第一実施形態と同様である。なお、検査ユニット3の構成は、例えば第一実施形態の構成と同様の構成であることに限らず、図11等で例示した構成と同様の構成であってもよい。 As shown in FIG. 12 , the ultrasonic inspection apparatus 1J of the fifth embodiment inspects the internal state (internal defect) of the subject 100 by passing the subject 100 as in the first embodiment. A unit 3 (inspection section) and a tracking mechanism 9J that causes the inspection unit 3 to follow the locus of movement of the subject 100 are provided. The configuration of the inspection unit 3 is the same as that of the first embodiment. The configuration of the inspection unit 3 is not limited to, for example, the configuration similar to that of the first embodiment, and may be similar to the configuration illustrated in FIG. 11 and the like.
 第五実施形態の追従機構9Jは、第一実施形態と同様に、検査ユニット3を被検体100のうち検査ユニット3によって検査される検査対象部位の移動軌跡に追従させるように構成されている。第五実施形態の追従機構9Jは、検査ユニット3が被検体100によって押されることで被検体100の移動軌跡(位置変化)に対して受動的に追従する第一~第四実施形態と異なり、被検体100の移動軌跡に対して能動的に追従するように構成されている。 The following mechanism 9J of the fifth embodiment is configured to cause the inspection unit 3 to follow the movement locus of the inspection target site inspected by the inspection unit 3 of the subject 100, as in the first embodiment. Unlike the first to fourth embodiments, the tracking mechanism 9J of the fifth embodiment passively follows the movement trajectory (change in position) of the subject 100 when the inspection unit 3 is pushed by the subject 100. It is configured to actively follow the movement trajectory of the subject 100 .
 追従機構9Jは、被検体100が通る方向(例えばY軸正方向)に直交する直交方向における被検体100の位置変化に応じて、検査ユニット3をその直交方向に移動させるように構成されている。ここで、直交方向とは、例えばX軸方向やZ軸方向である。本実施形態において、追従機構9Jは、検査ユニット3をX軸方向及びZ軸方向の両方に移動させる。Z軸正方向は、検査ユニット3を通る被検体100が延びる一つの方向である。この被検体100の延長方向(Z軸正方向)の先端部分である縁部103が、本実施形態における被検体100の検査対象部位である。追従機構9Jが検査ユニット3をZ軸方向に移動させることで、検査ユニット3をZ軸方向における被検体100の縁部103(検査対象部位)の位置変化に追従させることができる。 The follow-up mechanism 9J is configured to move the inspection unit 3 in the orthogonal direction according to the positional change of the object 100 in the orthogonal direction orthogonal to the direction in which the object 100 passes (for example, the Y-axis positive direction). . Here, the orthogonal direction is, for example, the X-axis direction or the Z-axis direction. In this embodiment, the following mechanism 9J moves the inspection unit 3 in both the X-axis direction and the Z-axis direction. The Z-axis positive direction is one direction in which the subject 100 passing through the inspection unit 3 extends. The edge portion 103, which is the tip portion of the subject 100 in the extending direction (positive direction of the Z-axis), is the inspection target portion of the subject 100 in this embodiment. The tracking mechanism 9J moves the inspection unit 3 in the Z-axis direction, so that the inspection unit 3 can follow the position change of the edge 103 (inspection target site) of the subject 100 in the Z-axis direction.
 本実施形態の追従機構9Jは、検査ユニット3を直交方向(X軸方向及びZ軸方向)に駆動する駆動部91Jを備える。駆動部91Jは、検査ユニット3を直交方向に所定の範囲で往復動させる構成であってよい。本実施形態の駆動部91Jは、ボールねじやリニアモータなどを使ったサーボシステムである。駆動部91Jがサーボシステムであることで、検査ユニット3を正確に移動させることができる。 The follow-up mechanism 9J of this embodiment includes a driving section 91J that drives the inspection unit 3 in orthogonal directions (X-axis direction and Z-axis direction). The driving section 91J may be configured to reciprocate the inspection unit 3 in the orthogonal direction within a predetermined range. The drive unit 91J of this embodiment is a servo system using a ball screw, a linear motor, or the like. Since the driving section 91J is a servo system, the inspection unit 3 can be moved accurately.
 図13~15に示すように、本実施形態の追従機構9Jは、直交方向(X軸方向及びZ軸方向)における被検体100の位置を検出する位置検出センサ92Jをさらに備える。具体的に、位置検出センサ92Jは、被検体100の縁部103(検査対象部位)の位置を検出する。
 位置検出センサ92Jは、被検体100が検査ユニット3を通る主な方向(Y軸正方向)を前側として、検査ユニット3の後側(検査ユニット3に対して被検体100が近づいてくる側)に配置されていることで、検査ユニット3に到達する前の被検体100の位置を検出する。位置検出センサ92Jに、X軸位置検出センサ92J1と、Z軸位置検出センサ92J2とを含む。X軸位置検出センサ92J1は、X軸方向における被検体100の位置を検出する。Z軸位置検出センサ92J2は、Z軸方向における被検体100の位置を検出する。
As shown in FIGS. 13 to 15, the follow-up mechanism 9J of this embodiment further includes a position detection sensor 92J that detects the position of the subject 100 in orthogonal directions (X-axis direction and Z-axis direction). Specifically, the position detection sensor 92J detects the position of the edge 103 (inspection target site) of the subject 100 .
The position detection sensor 92J is positioned on the rear side of the inspection unit 3 (the side where the subject 100 approaches the inspection unit 3), with the main direction in which the subject 100 passes through the inspection unit 3 (positive Y-axis direction) as the front side. , the position of the subject 100 before reaching the inspection unit 3 is detected. The position detection sensor 92J includes an X-axis position detection sensor 92J1 and a Z-axis position detection sensor 92J2. The X-axis position detection sensor 92J1 detects the position of the subject 100 in the X-axis direction. The Z-axis position detection sensor 92J2 detects the position of the subject 100 in the Z-axis direction.
 駆動部91Jは、位置検出センサ92Jによって検出された被検体100の位置に応じて検査ユニット3をX軸方向及びZ軸方向に駆動する。例えば、被検体100がX軸方向における基準位置よりもX軸正方向側の位置していることを、X軸位置検出センサ92J1が検出した場合、駆動部91Jは検査ユニット3をX軸正方向に駆動して、基準位置よりもX軸正方向側の所定位置まで移動させる。同様に、例えば、被検体100がZ軸方向における基準位置よりもZ軸正方向側の位置していることを、Z軸位置検出センサ92J2が検出した場合、駆動部91Jは検査ユニット3をZ軸正方向に駆動して、基準位置よりもZ軸正方向側の所定位置まで移動させる。 The drive section 91J drives the inspection unit 3 in the X-axis direction and the Z-axis direction according to the position of the subject 100 detected by the position detection sensor 92J. For example, when the X-axis position detection sensor 92J1 detects that the subject 100 is located on the X-axis positive direction side of the reference position in the X-axis direction, the drive unit 91J moves the inspection unit 3 in the X-axis positive direction. to a predetermined position on the positive side of the X-axis from the reference position. Similarly, for example, when the Z-axis position detection sensor 92J2 detects that the subject 100 is positioned on the Z-axis positive direction side of the reference position in the Z-axis direction, the driving section 91J moves the inspection unit 3 to the Z It is driven in the positive direction of the axis and moved to a predetermined position on the positive side of the Z axis from the reference position.
 第五実施形態の超音波検査装置1Jは、図13に示すように、ロータリー搬送装置200によって搬送される被検体100を検査する。ロータリー搬送装置200は、例えば、包装容器である被検体100を搬送しながら、被検体100内に内容物を充填し、被検体100の縁部103を接合して内容物を密封するロータリー充填機である。ロータリー搬送装置200は、Z軸方向に延びる回転軸線O1を中心に回転する回転搬送台201を有する。回転搬送台201は、例えば図13に示す矢印D1の方向に回転する。 The ultrasonic inspection apparatus 1J of the fifth embodiment inspects a subject 100 transported by a rotary transport apparatus 200, as shown in FIG. The rotary conveying apparatus 200 is, for example, a rotary filling machine that fills the contents into the subject 100 while conveying the subject 100, which is a packaging container, and joins the edge 103 of the subject 100 to seal the contents. is. The rotary transfer device 200 has a rotary transfer table 201 that rotates around a rotation axis O1 extending in the Z-axis direction. The rotary carriage 201 rotates, for example, in the direction of arrow D1 shown in FIG.
 ロータリー搬送装置200によって搬送される被検体100の縁部103(検査対象部位)は、Z軸方向から見て直線状に延びている。この被検体100は、その縁部103が回転搬送台201において回転軸線O1を中心とする円形の回転軌道202の接線方向に延びるように、クランパ203(図14,15参照)等によって回転搬送台201に取り付けられる。被検体100は、縁部103の長手方向の中間部分が回転軌道202に接するように回転搬送台201に取り付けられてもよい。本実施形態において、被検体100は、縁部103の長手方向の端部が回転軌道202に接するように回転搬送台201に取り付けられる。 The edge 103 (inspection target site) of the subject 100 transported by the rotary transport device 200 extends linearly when viewed from the Z-axis direction. The subject 100 is clamped by a clamper 203 (see FIGS. 14 and 15) or the like so that the edge 103 of the subject 100 extends in the tangential direction of a circular rotational orbit 202 centered on the rotational axis O1 on the rotary carriage 201. 201. The subject 100 may be attached to the rotating carriage 201 so that the longitudinal middle portion of the edge 103 is in contact with the rotating track 202 . In this embodiment, the subject 100 is attached to the rotary carriage 201 so that the longitudinal end of the edge 103 is in contact with the rotary track 202 .
 回転搬送台201には、一つの被検体100だけが取り付けられてよいが、本実施形態では複数の被検体100が回転搬送台201の周方向に並ぶように取り付けられる。回転搬送台201に対する被検体100の取り付け方は、複数の被検体100の間で同じであってもよいし、異なっていてもよい。 Although only one subject 100 may be attached to the rotating carriage 201 , in this embodiment, a plurality of subjects 100 are attached so as to line up in the circumferential direction of the rotating carriage 201 . The method of attaching the subject 100 to the rotating carriage 201 may be the same or different among the plurality of subjects 100 .
 図13に示す例では、回転搬送台201の周方向に隣り合う二つの被検体100の縁部103が回転軌道202との接点から周方向において互いに逆向きに延びるように、二つの被検体100が回転搬送台201に取り付けられている。この場合には、回転搬送台201に対する被検体100の取り付け方が、二つの被検体100の間で互いに異なる。このため、検査ユニット3を通る被検体100の縁部103の移動軌跡が二つの被検体100の間で異なる。 In the example shown in FIG. 13 , the two test objects 100 are arranged so that the edges 103 of the two test objects 100 adjacent in the circumferential direction of the rotary carriage 201 extend in opposite directions in the circumferential direction from the point of contact with the rotation track 202 . are attached to the rotating carriage 201 . In this case, the method of mounting the subject 100 on the rotating carriage 201 differs between the two subjects 100 . Therefore, the movement trajectory of the edge portion 103 of the subject 100 passing through the inspection unit 3 differs between the two subjects 100 .
 回転搬送台201の周方向に並ぶ複数の被検体100の縁部103が回転軌道202との接点から同じ方向(例えば矢印D1の方向)に延びるように、複数の被検体100が回転搬送台201に取り付けられてもよい。この場合には、回転搬送台201に対する被検体100の取り付け方が、複数の被検体100の間で同じとなる。このため、検査ユニット3を通る被検体100の縁部103の移動軌跡が複数の被検体100の間で同じとなる。 A plurality of subjects 100 are arranged on the rotating carriage 201 such that the edges 103 of the plurality of subjects 100 aligned in the circumferential direction of the rotatable carriage 201 extend in the same direction (for example, the direction of arrow D1) from the point of contact with the rotating track 202. may be attached to the In this case, the method of attaching the subject 100 to the rotating carriage 201 is the same for the plurality of subjects 100 . Therefore, the movement trajectory of the edge portion 103 of the subject 100 passing through the inspection unit 3 is the same among the plurality of subjects 100 .
 超音波検査装置1Jは、ロータリー搬送装置200によって搬送される被検体100の縁部103(検査対象部位)を検査する。検査ユニット3は、回転搬送台201の周方向に移動する被検体100の縁部103が通るように配置される。図13におけるY軸方向(直線方向)は、被検体100の縁部103が検査ユニット3を通るときの方向を示している。また、X軸方向は回転搬送台201の回転軌道202の径方向に対応し、Z軸方向は回転搬送台201の回転軸線O1が延びる方向に対応している。 The ultrasonic inspection apparatus 1J inspects the edge 103 (inspection target part) of the subject 100 transported by the rotary transport apparatus 200. The inspection unit 3 is arranged so that the edge portion 103 of the subject 100 moving in the circumferential direction of the rotating carriage 201 passes therethrough. The Y-axis direction (linear direction) in FIG. 13 indicates the direction when the edge 103 of the subject 100 passes through the inspection unit 3 . The X-axis direction corresponds to the radial direction of the rotation track 202 of the rotary carriage 201, and the Z-axis direction corresponds to the direction in which the rotation axis O1 of the rotary carriage 201 extends.
 上記した状態で、被検体100をロータリー搬送装置200によって搬送させると、被検体100の端部が検査ユニット3において通る位置が径方向(X軸方向)に変化する。本実施形態の超音波検査装置1Jでは、X軸位置検出センサ92J1によって被検体100の縁部103のX軸方向の位置変化を検出する。そして、駆動部91JがX軸位置検出センサ92J1によって検出された被検体100の縁部103の位置に応じて検査ユニット3をX軸方向に移動させることで、検査ユニット3を被検体100の縁部103の移動軌跡に追従させる。これにより、被検体100の縁部103を検査ユニット3に対して正しく通して、検査ユニット3によって正しく検査することができる。 When the subject 100 is transported by the rotary transport device 200 in the above state, the position through which the end of the subject 100 passes in the inspection unit 3 changes in the radial direction (X-axis direction). In the ultrasonic inspection apparatus 1J of this embodiment, the X-axis position detection sensor 92J1 detects the position change of the edge 103 of the subject 100 in the X-axis direction. Then, the drive unit 91J moves the inspection unit 3 in the X-axis direction according to the position of the edge 103 of the object 100 detected by the X-axis position detection sensor 92J1. The moving locus of the unit 103 is followed. As a result, the edge 103 of the subject 100 can be correctly passed through the inspection unit 3 and inspected by the inspection unit 3 correctly.
 また、被検体100をロータリー搬送装置200によって搬送させて主にY軸方向に検査ユニット3に通す際に、例えば図14に示すように被検体100がZ軸正方向にも移動する場合、超音波検査装置1Jでは、Z軸位置検出センサ92J2によって被検体100の縁部103のZ軸方向の位置変化を検出する。そして、駆動部91JがZ軸位置検出センサ92J2によって検出された被検体100の縁部103の位置に応じて検査ユニット3をZ軸正方向に移動させることで、検査ユニット3を被検体100の縁部103の移動軌跡に追従させる。これにより、被検体100の縁部103を検査ユニット3に対して正しく通して、検査ユニット3によって正しく検査することができる。なお、被検体100がZ軸負方向にも移動する場合にも、同様に検査ユニット3を被検体100の縁部103の移動軌跡に追従させることができる。 Further, when the subject 100 is transported by the rotary transport device 200 and passes through the inspection unit 3 mainly in the Y-axis direction, for example, as shown in FIG. In the ultrasonic inspection apparatus 1J, the Z-axis position detection sensor 92J2 detects the position change of the edge 103 of the subject 100 in the Z-axis direction. Then, the drive unit 91J moves the inspection unit 3 in the Z-axis positive direction according to the position of the edge 103 of the object 100 detected by the Z-axis position detection sensor 92J2. The moving locus of the edge 103 is followed. As a result, the edge 103 of the subject 100 can be correctly passed through the inspection unit 3 and inspected by the inspection unit 3 correctly. Incidentally, even when the subject 100 moves in the Z-axis negative direction as well, the inspection unit 3 can be made to follow the movement trajectory of the edge portion 103 of the subject 100 in the same manner.
 また、図15に例示するように被検体100の姿勢が正しくない状態で、被検体100をロータリー搬送装置200によって搬送させて主にY軸方向に検査ユニット3に通す際にも、Z軸位置検出センサ92J2及び駆動部91Jによって、検査ユニット3を被検体100の縁部103の移動軌跡に追従させることができる。図15においては、検査対象部位である被検体100の縁部103がY軸方向(ロータリー搬送装置200による被検体100の搬送方向)に対して傾斜している。つまり、図15において、検査ユニット3は、被検体100がY軸正方向に検査ユニット3を通る際に、徐々にZ軸正方向に移動することで傾斜する縁部103の移動軌跡に追従する。 15, when the posture of the subject 100 is not correct and the subject 100 is transported by the rotary transport device 200 and passed through the inspection unit 3 mainly in the Y-axis direction, the Z-axis position The detection sensor 92J2 and the driving section 91J can cause the inspection unit 3 to follow the movement locus of the edge portion 103 of the subject 100. FIG. In FIG. 15, the edge 103 of the subject 100, which is the part to be inspected, is inclined with respect to the Y-axis direction (transport direction of the subject 100 by the rotary transport device 200). That is, in FIG. 15, when the subject 100 passes through the inspection unit 3 in the positive Y-axis direction, the inspection unit 3 gradually moves in the positive Z-axis direction to follow the movement locus of the inclined edge portion 103. .
 第五実施形態の超音波検査装置1Jによれば、第一実施形態と同様の効果を奏する。
 すなわち、検査ユニット3が追従機構9Jによって被検体100の移動軌跡に追従するため、検査ユニット3に対する被検体100の位置変化を抑制することができる。したがって、検査ユニット3によって被検体100の内部状態を正しく検査することが可能となる。また、追従機構9Jが、被検体100の直交方向(X軸方向、Z軸方向)への位置変化に応じて検査ユニット3を直交方向に移動させることで、検査ユニット3を被検体100の移動軌跡に追従させることができる。
According to the ultrasonic inspection apparatus 1J of the fifth embodiment, the same effects as those of the first embodiment are obtained.
That is, since the inspection unit 3 follows the movement trajectory of the subject 100 by the tracking mechanism 9J, positional change of the subject 100 with respect to the inspection unit 3 can be suppressed. Therefore, it is possible to correctly inspect the internal state of the subject 100 by the inspection unit 3 . Further, the tracking mechanism 9J moves the inspection unit 3 in the orthogonal direction according to the positional change of the object 100 in the orthogonal direction (X-axis direction, Z-axis direction). It can follow the trajectory.
 また、第五実施形態の超音波検査装置1Jでは、追従機構9Jが検査ユニット3を直交方向に駆動する駆動部91Jを有する。これにより、検査ユニット3が第一~第四実施形態のように被検体100に触れなくても、検査ユニット3を被検体100の移動軌跡に追従させることができる。 Further, in the ultrasonic inspection apparatus 1J of the fifth embodiment, the follow-up mechanism 9J has a drive section 91J that drives the inspection unit 3 in the orthogonal direction. This allows the inspection unit 3 to follow the movement trajectory of the subject 100 without touching the subject 100 as in the first to fourth embodiments.
 また、第五実施形態の超音波検査装置1Jでは、追従機構9Jが、直交方向における被検体100の位置を検出する位置検出センサ92Jを有する。そして、駆動部91Jは、位置検出センサ92Jによって検出された被検体100の位置に応じて検査ユニット3を直交方向に駆動する。これにより、被検体100の移動軌跡に再現性が無くても(被検体100の移動軌跡が複数の被検体100の間で異なる場合であっても)、検査ユニット3を被検体100の移動軌跡に追従させることができる。 Also, in the ultrasonic inspection apparatus 1J of the fifth embodiment, the follow-up mechanism 9J has a position detection sensor 92J that detects the position of the subject 100 in the orthogonal direction. Then, the drive section 91J drives the inspection unit 3 in the orthogonal direction according to the position of the subject 100 detected by the position detection sensor 92J. As a result, even if there is no reproducibility in the movement trajectory of the subject 100 (even if the movement trajectory of the subject 100 differs among a plurality of subjects 100), the inspection unit 3 can detect the movement trajectory of the subject 100 can be followed.
 第五実施形態において、被検体100の移動軌跡に再現性がある場合、追従機構9Jは、例えば位置検出センサ92Jを備えなくてもよい。「被検体100の移動軌跡の再現性がある」ことは、被検体100が検査ユニット3を通る移動軌跡(位置変化)が、複数の被検体100の間で同じであることを意味する。
 また、被検体100の移動軌跡に再現性がある場合には、追従機構9Jの駆動部91Jとして例えばカム機構やリンク機構が採用されてもよい。カム機構やリンク機構は、サーボシステムと比較して安価に構成できる点で有利である。
 また、被検体100の移動軌跡に再現性がある場合、駆動部91Jは、例えば被検体100を搬送する搬送機(例えば図13に示したロータリー搬送装置200)から出力される被検体100の移動軌跡の情報(被検体100が検査ユニット3を通過するタイミングなどの情報)に基づいて、検査ユニット3を移動させてもよい。
In the fifth embodiment, if the movement trajectory of the subject 100 is reproducible, the follow-up mechanism 9J may not include the position detection sensor 92J, for example. “Reproducibility of the movement trajectory of the subject 100” means that the movement trajectory (positional change) of the subject 100 passing through the inspection unit 3 is the same among the plurality of subjects 100 .
Further, when the movement locus of the subject 100 is reproducible, a cam mechanism or a link mechanism, for example, may be adopted as the drive unit 91J of the follow-up mechanism 9J. Cam mechanisms and link mechanisms are advantageous in that they can be constructed at a lower cost than servo systems.
Further, when the movement trajectory of the subject 100 is reproducible, the drive unit 91J may detect the movement of the subject 100 output from, for example, a carrier that transports the subject 100 (for example, the rotary carrier 200 shown in FIG. 13). The inspection unit 3 may be moved based on trajectory information (information such as the timing at which the subject 100 passes through the inspection unit 3).
 第五実施形態において、追従機構9Jは、例えば検査ユニット3をX軸方向及びZ軸方向の一方のみに移動させてもよい。 In the fifth embodiment, the following mechanism 9J may move the inspection unit 3 only in one of the X-axis direction and the Z-axis direction, for example.
 第五実施形態においては、被検体100が検査ユニット3に対してY軸正方向に移動することで検査ユニット3を通ることに限らない。例えば、駆動部91Jが検査ユニット3をY軸方向(すなわち被検体100が通る方向)に移動させることで、被検体100が検査ユニット3を通ってもよい。駆動部91Jが検査ユニット3をY軸方向に移動させる構成は、例えば第一~第四実施形態に適用されてもよい。 In the fifth embodiment, the subject 100 is not limited to passing through the inspection unit 3 by moving in the Y-axis positive direction with respect to the inspection unit 3 . For example, the subject 100 may pass through the inspection unit 3 by causing the driving section 91J to move the inspection unit 3 in the Y-axis direction (that is, the direction in which the subject 100 passes). The configuration in which the driving section 91J moves the inspection unit 3 in the Y-axis direction may be applied to the first to fourth embodiments, for example.
 第五実施形態の超音波検査装置1Jは、例えばロータリー搬送装置200に限らず、例えば図16,17に例示するコンベア型の搬送機300や、図18に例示するピロー包装機400に適用されてもよい。 The ultrasonic inspection apparatus 1J of the fifth embodiment is applied not only to the rotary conveying apparatus 200, but also to the conveyor type conveying machine 300 illustrated in FIGS. 16 and 17, and the pillow packaging machine 400 illustrated in FIG. good too.
 図16,17に例示するコンベア型の搬送機300では、包装容器等の被検体100をベルトコンベア301に載せた状態で直線方向(Y軸正方向)に搬送する。コンベア型の搬送機300は、被検体100の縁部103(検査対象部位)の長手方向が被検体100の搬送方向に沿うように被検体100を搬送する。
 超音波検査装置1Jは、このコンベア型の搬送機300のベルトコンベア301の幅方向(Z軸方向)の端部に配置される。超音波検査装置1Jは、コンベア型の搬送機300によって搬送される被検体100のうち、ベルトコンベア301の幅方向の端部から張り出した被検体100の縁部103(検査対象部位)の内部状態を検査する。超音波検査装置1Jでは、検査ユニット3を、被検体100の搬送方向に直交する上下方向(X軸方向)や幅方向(Z軸方向)に移動させることで、被検体100(特に縁部103)の移動軌跡に追従させる。これにより、コンベア型の搬送機300で被検体100を搬送しながら、被検体100の縁部103の内部状態を正しく検査することができる。
16 and 17, the conveyor-type transfer machine 300 conveys the subject 100, such as a packaging container, placed on the belt conveyor 301 in the linear direction (Y-axis positive direction). The conveyer-type carrier 300 conveys the subject 100 such that the longitudinal direction of the edge 103 (inspection target site) of the subject 100 is along the transport direction of the subject 100 .
The ultrasonic inspection apparatus 1J is arranged at the end of the belt conveyor 301 of the conveyor type transfer machine 300 in the width direction (Z-axis direction). The ultrasonic inspection apparatus 1J measures the internal state of the edge 103 (inspection target part) of the object 100 that protrudes from the end in the width direction of the belt conveyor 301 among the objects 100 conveyed by the conveyer-type carrier 300. to inspect. In the ultrasonic inspection apparatus 1J, by moving the inspection unit 3 in the vertical direction (X-axis direction) and the width direction (Z-axis direction) perpendicular to the conveying direction of the object 100, the object 100 (especially the edge 103 ) to follow the movement trajectory. As a result, the internal state of the edge portion 103 of the subject 100 can be correctly inspected while the subject 100 is being transported by the conveyer-type transporter 300 .
 図18に例示するピロー包装機400は、帯状シート105により複数の包装容器となる被検体100を連続して製造する。ピロー包装機400では、シール部401において帯状シート105の幅方向の両端部を連続的に接合する。以下の説明では、帯状シート105の幅方向の両端部が接合されたものを被検体100とする。
 超音波検査装置1Jは、帯状シート105の移送方向(Y軸正方向)においてシール部401の直後に配置される。図18,19に示すように、超音波検査装置1Jは、被検体100のうちシール部401によって接合された帯状シート105の接合部分107(検査対象部位)の内部状態を検査する。超音波検査装置1Jでは、検査ユニット3を、被検体100(帯状シート105)の移送方向に直交する幅方向(X軸方向)や上下方向(Z軸方向)に移動させることで、被検体100(特に接合部分107)の移動軌跡に追従させる。これにより、ピロー包装機400で被検体100を移送(搬送)しながら、被検体100の接合部分107の内部状態を正しく検査することができる。
A pillow packaging machine 400 exemplified in FIG. 18 continuously manufactures a plurality of subjects 100 to be packaging containers from strip-shaped sheets 105 . In the pillow packaging machine 400 , both widthwise end portions of the belt-shaped sheet 105 are continuously joined at the sealing portion 401 . In the following description, the subject 100 is the strip sheet 105 joined at both ends in the width direction.
The ultrasonic inspection device 1J is arranged immediately after the seal portion 401 in the transfer direction (Y-axis positive direction) of the strip-shaped sheet 105 . As shown in FIGS. 18 and 19, the ultrasonic inspection apparatus 1J inspects the internal state of the joint portion 107 (inspection target portion) of the strip-shaped sheet 105 joined by the seal portion 401 of the subject 100. FIG. In the ultrasonic inspection apparatus 1J, by moving the inspection unit 3 in the width direction (X-axis direction) or the vertical direction (Z-axis direction) orthogonal to the transfer direction of the subject 100 (band-shaped sheet 105), the subject 100 It is caused to follow the movement trajectory of (especially the joint portion 107). As a result, the internal state of the joint portion 107 of the subject 100 can be correctly inspected while the subject 100 is transferred (conveyed) by the pillow packaging machine 400 .
 上記したロータリー搬送装置200、コンベア型の搬送機300、ピロー包装機400には、例えば第一~第四実施形態の超音波検査装置が適用されてもよい。 For example, the ultrasonic inspection apparatus of the first to fourth embodiments may be applied to the rotary conveying device 200, conveyor type conveying machine 300, and pillow packaging machine 400 described above.
 第五実施形態において、検査ユニット3(検査部)を通る搬送体は、被検体100に限らず、例えば搬送装置によって被検体100と一緒に搬送されるものであってもよい。被検体100と一緒に搬送されるものは、例えば被検体100を保持する器具、被検体100を搬送するための機構の構成部品などであってよい。 In the fifth embodiment, the object to be transported through the inspection unit 3 (inspection section) is not limited to the subject 100, and may be transported together with the subject 100 by a transport device, for example. Things that are transported together with the subject 100 may be, for example, instruments that hold the subject 100, components of a mechanism for transporting the subject 100, and the like.
 以上、本開示について詳細に説明したが、本開示は上記実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Although the present disclosure has been described in detail above, the present disclosure is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present disclosure.
 本開示は、第一~第五実施形態に例示したような超音波検査装置に限らず、被検体100が検査部を通ることで検査部によって被検体の外観や内部状態を検査する任意の検査装置に適用可能である。すなわち、本開示の検査装置において、検査部は、第一~第五実施形態に示したように超音波を用いて被検体100を検査することに限らない。 The present disclosure is not limited to the ultrasonic inspection apparatus as exemplified in the first to fifth embodiments, and any inspection that inspects the appearance and internal state of the subject by the inspection unit as the subject 100 passes through the inspection unit. applicable to the device. That is, in the inspection apparatus of the present disclosure, the inspection section is not limited to inspecting the subject 100 using ultrasonic waves as shown in the first to fifth embodiments.
 本開示の検査装置において、検査部は、例えばX線を用いて被検体100を検査してもよい。この場合、検査部は、例えば被検体100において反射あるいは透過したX線を取得することで被検体100の内部状態を検査することができる。
 また、本開示の検査装置において、検査部は、例えば赤外線や近赤外線を用いて被検体100を検査してもよい。この場合、検査部は、例えば被検体100において反射あるいは透過した赤外線または近赤外線を取得することで被検体100の内部状態を検査することができる。
In the inspection apparatus of the present disclosure, the inspection unit may inspect the subject 100 using, for example, X-rays. In this case, the inspection unit can inspect the internal state of the subject 100 by acquiring X-rays reflected or transmitted by the subject 100, for example.
Further, in the inspection apparatus of the present disclosure, the inspection unit may inspect the subject 100 using, for example, infrared rays or near-infrared rays. In this case, the inspection unit can inspect the internal state of the subject 100 by acquiring infrared rays or near-infrared rays reflected or transmitted by the subject 100, for example.
 また、本開示の検査装置において、検査部は、例えば被検体100の画像を取得することで被検体100を検査してもよい。この場合、検査部は例えば取得した画像に各種の処理を施すことで被検体100を検査してもよい。このような構成では、検査部は取得した画像によって被検体100の外観を検査することができる。
 また、本開示の検査装置において、検査部は、例えば磁気共鳴を用いて被検体100を検査してもよい。具体的に、検査部は、例えば被検体100から取得した磁気共鳴画像(MRI)を分析することで被検体100を検査してよい。この場合、検査部は磁気共鳴を用いて被検体100の内部状態を検査することができる。
Further, in the inspection apparatus of the present disclosure, the inspection unit may inspect the subject 100 by acquiring an image of the subject 100, for example. In this case, the inspection unit may inspect the subject 100 by, for example, performing various types of processing on the acquired image. With such a configuration, the inspection unit can inspect the appearance of the subject 100 using the acquired image.
In addition, in the examination apparatus of the present disclosure, the examination section may examine the subject 100 using, for example, magnetic resonance. Specifically, the examination unit may examine the subject 100 by analyzing a magnetic resonance image (MRI) acquired from the subject 100, for example. In this case, the inspection unit can inspect the internal state of the subject 100 using magnetic resonance.
 本開示は、超音波検査装置及び検査装置に適用してもよい。 The present disclosure may be applied to ultrasonic inspection devices and inspection devices.
1,1D,1E,1F,1G,1H,1J…超音波検査装置
2…ベース
3…検査ユニット(検査部)
5…可動ユニット
6D,6E…復帰部
7F,7G…保持部
9J…追従機構
11…送信部
12…受信部
15…接触部
21,22…案内部
25,26…規制部
91J…駆動部
92J…位置検出センサ
100…被検体(搬送体)
103…縁部(検査対象部位)
107…接合部分(検査対象部位)
RP,RP1…基準位置
W…超音波
1, 1D, 1E, 1F, 1G, 1H, 1J...Ultrasonic inspection device 2...Base 3...Inspection unit (inspection part)
5 Movable units 6D, 6E Returning parts 7F, 7G Holding part 9J Following mechanism 11 Transmitting part 12 Receiving part 15 Contacting parts 21, 22 Guiding parts 25, 26 Regulating part 91J Driving part 92J Position detection sensor 100 ... object (conveyor)
103 ... Edge (site to be inspected)
107 ... Joint part (part to be inspected)
RP, RP1...reference position W...ultrasonic wave

Claims (16)

  1.  ベースと、
     超音波を照射する送信部、及び、前記送信部に対して間隔をあけて位置し、前記超音波を受信する受信部、を有する検査ユニットと、
     前記ベースと前記検査ユニットとの間に設けられ、前記検査ユニットを前記ベースに対して前記送信部及び受信部の配列方向に移動可能とする可動ユニットと、を備え、
     前記検査ユニットは、前記送信部と前記受信部との間を通る搬送体に接触することで前記検査ユニットに前記配列方向への力を与える接触部をさらに有する超音波検査装置。
    a base;
    an inspection unit having a transmitting section that emits ultrasonic waves and a receiving section that is positioned at a distance from the transmitting section and receives the ultrasonic waves;
    a movable unit provided between the base and the inspection unit and capable of moving the inspection unit with respect to the base in the arrangement direction of the transmitter and the receiver;
    The ultrasonic inspection apparatus, wherein the inspection unit further includes a contact portion that applies a force in the arrangement direction to the inspection unit by contacting a carrier that passes between the transmission portion and the reception portion.
  2.  前記接触部は、前記搬送体が前記送信部と前記受信部との間に位置するように前記搬送体を案内する案内部を有する請求項1に記載の超音波検査装置。 The ultrasonic inspection apparatus according to claim 1, wherein the contact portion has a guide portion that guides the carrier so that the carrier is positioned between the transmitter and the receiver.
  3.  前記案内部は、前記搬送体が前記送信部と前記受信部との間を通るときに、前記送信部から送信された超音波が前記搬送体を透過せずに受信部に到達することを妨げる請求項2に記載の超音波検査装置。 When the carrier passes between the transmitter and the receiver, the guide prevents the ultrasonic waves transmitted from the transmitter from reaching the receiver without passing through the carrier. The ultrasonic inspection apparatus according to claim 2.
  4.  前記検査ユニットを前記配列方向における基準位置に復帰させる復帰部をさらに備える請求項1から請求項3のいずれか一項に記載の超音波検査装置。 The ultrasonic inspection apparatus according to any one of claims 1 to 3, further comprising a return section for returning the inspection unit to the reference position in the arrangement direction.
  5.  前記検査ユニットを前記配列方向における基準位置に保持する保持部をさらに備える請求項1から請求項4のいずれか一項に記載の超音波検査装置。 The ultrasonic inspection apparatus according to any one of claims 1 to 4, further comprising a holding section that holds the inspection unit at a reference position in the arrangement direction.
  6.  被検体が通ることで、前記被検体の外観及び内部状態の少なくとも一方を検査する検査部と、
     前記検査部を前記被検体の移動軌跡に追従させる追従機構と、
     を備える検査装置。
    an inspection unit that inspects at least one of an external appearance and an internal state of the subject through which the subject passes;
    a tracking mechanism that causes the inspection unit to follow the locus of movement of the subject;
    inspection device.
  7.  前記追従機構は、前記検査部に対して前記被検体が通る方向に直交する直交方向における前記被検体の位置変化に応じて、前記検査部を前記直交方向に移動させる請求項6に記載の検査装置。 7. The inspection according to claim 6, wherein the follow-up mechanism moves the inspection unit in the orthogonal direction according to a positional change of the subject in the orthogonal direction perpendicular to the direction in which the subject passes with respect to the inspection unit. Device.
  8.  前記追従機構は、前記検査部を前記直交方向に駆動する駆動部を有する請求項7に記載の検査装置。 The inspection apparatus according to claim 7, wherein the follow-up mechanism has a driving section that drives the inspection section in the orthogonal direction.
  9.  前記追従機構は、前記直交方向における前記被検体の位置を検出する位置検出センサをさらに有し、
     前記駆動部は、前記位置検出センサによって検出された前記被検体の位置に応じて前記検査部を前記直交方向に駆動する請求項8に記載の検査装置。
    The tracking mechanism further has a position detection sensor that detects the position of the subject in the orthogonal direction,
    The inspection apparatus according to claim 8, wherein the drive section drives the inspection section in the orthogonal direction according to the position of the subject detected by the position detection sensor.
  10.  前記追従機構は、前記検査部を前記被検体の検査対象部位の移動軌跡に追従させる請求項6から請求項9のいずれか一項に記載の検査装置。 The inspection apparatus according to any one of claims 6 to 9, wherein the tracking mechanism causes the inspection unit to follow the locus of movement of the inspection target site of the subject.
  11.  前記検査部は、X線を用いて前記被検体を検査する請求項6から請求項10のいずれか一項に記載の検査装置。 The inspection apparatus according to any one of claims 6 to 10, wherein the inspection unit inspects the subject using X-rays.
  12.  前記検査部は、超音波を用いて前記被検体を検査する請求項6から請求項10のいずれか一項に記載の検査装置。 The inspection apparatus according to any one of claims 6 to 10, wherein the inspection unit inspects the subject using ultrasonic waves.
  13.  前記検査部は、赤外線を用いて前記被検体を検査する請求項6から請求項10のいずれか一項に記載の検査装置。 The inspection apparatus according to any one of claims 6 to 10, wherein the inspection unit inspects the subject using infrared rays.
  14.  前記検査部は、近赤外線を用いて前記被検体を検査する請求項6から請求項10のいずれか一項に記載の検査装置。 The inspection apparatus according to any one of claims 6 to 10, wherein the inspection unit inspects the subject using near infrared rays.
  15.  前記検査部は、前記被検体の画像を取得することで前記被検体を検査する請求項6から請求項10のいずれか一項に記載の検査装置。 The inspection apparatus according to any one of claims 6 to 10, wherein the inspection unit inspects the subject by acquiring an image of the subject.
  16.  前記検査部は、磁気共鳴を用いて前記被検体を検査する請求項6から請求項10のいずれか一項に記載の検査装置。 The examination apparatus according to any one of claims 6 to 10, wherein the examination unit examines the subject using magnetic resonance.
PCT/JP2022/026966 2021-07-20 2022-07-07 Ultrasonic inspection device and inspection device WO2023002856A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237043814A KR20240010028A (en) 2021-07-20 2022-07-07 Ultrasonic inspection devices and inspection devices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021119754 2021-07-20
JP2021-119754 2021-07-20
JP2021-165471 2021-10-07
JP2021165471A JP2023015965A (en) 2021-07-20 2021-10-07 Ultrasonic inspection device and inspection device

Publications (1)

Publication Number Publication Date
WO2023002856A1 true WO2023002856A1 (en) 2023-01-26

Family

ID=84940486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026966 WO2023002856A1 (en) 2021-07-20 2022-07-07 Ultrasonic inspection device and inspection device

Country Status (3)

Country Link
KR (1) KR20240010028A (en)
CN (2) CN115639275A (en)
WO (1) WO2023002856A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384884A (en) * 1986-09-29 1988-04-15 新明和工業株式会社 Scanning control method of robot
JPS6394152A (en) * 1986-10-07 1988-04-25 Shin Meiwa Ind Co Ltd Control method for scanning of robot
JPH02201155A (en) * 1989-01-30 1990-08-09 Motokama Yoshiyuki Non-destructive inspection method and device for agricultural product internal condition
JPH0650944A (en) * 1992-07-31 1994-02-25 Nkk Corp Inspecting apparatus for lap-joint welding part
JP2005505765A (en) * 2001-10-10 2005-02-24 エイビービー インコーポレイテッド Non-contact sheet detection system and method
JP2007170901A (en) * 2005-12-20 2007-07-05 Jfe Steel Kk Water-column type ultrasonic flaw detector and water-column type ultrasonic flaw detection method
JP2008232825A (en) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd Ultrasonic inspection system
US20190079031A1 (en) * 2017-09-11 2019-03-14 The Boeing Company X-Ray Inspection System for Pipes
JP2020027011A (en) * 2018-08-10 2020-02-20 ヤマハファインテック株式会社 Ultrasonic inspection device
CN111855806A (en) * 2020-08-03 2020-10-30 中国大唐集团科学技术研究院有限公司华中电力试验研究院 Ultrasonic detection method for generator bridging strand brazing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384884A (en) * 1986-09-29 1988-04-15 新明和工業株式会社 Scanning control method of robot
JPS6394152A (en) * 1986-10-07 1988-04-25 Shin Meiwa Ind Co Ltd Control method for scanning of robot
JPH02201155A (en) * 1989-01-30 1990-08-09 Motokama Yoshiyuki Non-destructive inspection method and device for agricultural product internal condition
JPH0650944A (en) * 1992-07-31 1994-02-25 Nkk Corp Inspecting apparatus for lap-joint welding part
JP2005505765A (en) * 2001-10-10 2005-02-24 エイビービー インコーポレイテッド Non-contact sheet detection system and method
JP2007170901A (en) * 2005-12-20 2007-07-05 Jfe Steel Kk Water-column type ultrasonic flaw detector and water-column type ultrasonic flaw detection method
JP2008232825A (en) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd Ultrasonic inspection system
US20190079031A1 (en) * 2017-09-11 2019-03-14 The Boeing Company X-Ray Inspection System for Pipes
JP2020027011A (en) * 2018-08-10 2020-02-20 ヤマハファインテック株式会社 Ultrasonic inspection device
CN111855806A (en) * 2020-08-03 2020-10-30 中国大唐集团科学技术研究院有限公司华中电力试验研究院 Ultrasonic detection method for generator bridging strand brazing

Also Published As

Publication number Publication date
CN115639275A (en) 2023-01-24
CN218629654U (en) 2023-03-14
KR20240010028A (en) 2024-01-23

Similar Documents

Publication Publication Date Title
JP4092704B2 (en) Ultrasonic test method and ultrasonic test apparatus using the same
US20060055400A1 (en) Real-time X-ray scanner and remote crawler apparatus and method
US20060056585A1 (en) X-ray laminography inspection system and method
US20110000302A1 (en) Method for ultrasonic inspecting a substantially circumferential weld and an apparatus for carrying out such method
KR101215049B1 (en) X-ray INSPECTION APPARATUS WITH SHIELDING MEANS AND FOR CNANGING X-ray RADIATION POSITION
US9448208B2 (en) System and apparatus for dual transducer ultrasonic testing of package seals
KR101654818B1 (en) Tray Module for X-Ray Instigation and Apparatus for Investigating Object with X-ray by Lateral Direction Emission
KR20210049757A (en) Ultrasonic inspection apparatus
WO2023002856A1 (en) Ultrasonic inspection device and inspection device
JP2023015965A (en) Ultrasonic inspection device and inspection device
US10996162B2 (en) Apparatus, systems, and methods for inspecting a part
KR101694114B1 (en) Non-contact ultrasonic inspection instrument
KR20200018268A (en) Ultrasonic inspection apparatus and ultrasonic inspection method
US6670627B2 (en) Apparatus and method for continuous surface examination comprising a light shielding member at outer ends of the examined surface
JP5853781B2 (en) X-ray inspection apparatus and imaging method for X-ray inspection
WO2022255164A1 (en) Ultrasonic inspection device
JP2004340606A (en) X-ray foreign matter position detection device and method
WO2023002867A1 (en) Ultrasonic inspection device
JPH0495871A (en) Ultrasonic wave detecting device
JP2022136511A (en) Radiation inspection device
JP2024048926A (en) In-line X-ray CT scanner
JP2021139755A (en) Length measurement device, length measurement method, and program
KR20190056516A (en) Apparatus and method for detecting defect in object using terahertz waves
JP2009236632A (en) X-ray foreign matter inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237043814

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237043814

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE