WO2023002752A1 - 排気還流システムの故障診断装置 - Google Patents
排気還流システムの故障診断装置 Download PDFInfo
- Publication number
- WO2023002752A1 WO2023002752A1 PCT/JP2022/021692 JP2022021692W WO2023002752A1 WO 2023002752 A1 WO2023002752 A1 WO 2023002752A1 JP 2022021692 W JP2022021692 W JP 2022021692W WO 2023002752 A1 WO2023002752 A1 WO 2023002752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- failure determination
- exhaust gas
- gas recirculation
- engine
- egr
- Prior art date
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 21
- 230000008859 change Effects 0.000 claims abstract description 32
- 238000001514 detection method Methods 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 5
- 238000010792 warming Methods 0.000 claims description 4
- 230000005856 abnormality Effects 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 12
- 239000003638 chemical reducing agent Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/442—Series-parallel switching type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/50—Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/06—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/45—Sensors specially adapted for EGR systems
- F02M26/46—Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
- F02M26/47—Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/49—Detecting, diagnosing or indicating an abnormal function of the EGR system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to fault diagnosis technology in an exhaust gas recirculation system of an engine.
- EGR exhaust Gas Recirculation
- exhaust gas recirculation system exhaust gas recirculation system
- the EGR system has, for example, an EGR passage (exhaust recirculation passage) for recirculating part of the exhaust gas (EGR gas) from the exhaust passage to the intake passage, and an EGR valve (exhaust recirculation valve) for adjusting the opening area of the EGR passage. It is The opening of the EGR valve is controlled by a control unit or the like based on the operating state of the engine.
- Patent Document 1 discloses a technique for determining whether there is a failure in the EGR system.
- the failure diagnosis device disclosed in Patent Document 1 has a temperature sensor that detects the temperature of EGR gas, and diagnoses the presence or absence of failure of the EGR valve based on the temperature change of the EGR gas accompanying opening and closing of the EGR valve.
- the EGR valve is forcibly controlled to open and close to a predetermined degree of opening, and when the temperature of the EGR gas does not change by a predetermined amount or more at that time, it is determined that the EGR valve is stuck. .
- Patent Document 1 does not determine the detailed failure state of the EGR valve, such as whether it is stuck open or stuck closed.
- engine failure diagnosis is often performed immediately after the engine is started. Failure determination is difficult, and it is required to enable both open failure determination and closed failure determination on many occasions.
- the present invention has been made in view of such problems, and its object is to provide a failure diagnosis apparatus for an exhaust gas recirculation system that enables detailed failure determination of an exhaust gas recirculation valve and secures many determination opportunities. is to provide
- the exhaust gas recirculation system fault diagnosis device of the present invention comprises an exhaust gas recirculation passage that guides part of the exhaust from an exhaust passage of an engine to an intake passage, and an exhaust gas recirculation passage provided in the exhaust gas recirculation passage that can be opened or closed.
- a fault diagnosis device for an exhaust gas recirculation system comprising: an exhaust gas recirculation valve that adjusts the opening area of the exhaust gas recirculation passage by exhaust gas recirculation gas temperature detection means for detecting the temperature of the exhaust gas recirculation gas flowing through the exhaust gas recirculation passage; intake pressure detection means for detecting the intake pressure of the gas taken into the engine through the intake passage; a failure determination unit that controls the opening and closing of the exhaust gas recirculation valve by a recirculation control unit to determine whether or not there is a failure in the exhaust gas recirculation valve, wherein the failure determination unit is configured to operate after the engine is warmed up.
- a first failure determination unit that determines a failure of the exhaust gas recirculation valve based on a change in the intake air pressure when the exhaust gas recirculation valve is opened and closed during a predetermined operation
- a second failure determination unit that closes the exhaust gas recirculation valve during a predetermined operation and determines an open failure of the exhaust gas recirculation valve based on a temperature change of the exhaust gas recirculation gas.
- the failure determination result of the first failure determination unit determines whether the exhaust gas recirculation valve has a closed failure and whether it has an open failure.
- the failure mode of the exhaust gas recirculation valve determines in detail the failure mode of the exhaust gas recirculation valve.
- the second failure determining section performs only open failure determination of the exhaust gas recirculation valve based on the temperature change of the exhaust gas recirculation gas, and does not need to perform closing failure determination.
- the failure determination by the first failure determination unit is performed during a predetermined operation after the engine warm-up is completed, and the second failure determination unit is performed during a predetermined operation before the engine warm-up is completed. and the number of execution opportunities is increased compared to performing both open failure determination and closing failure determination of the exhaust gas recirculation valve based on the temperature change of the exhaust gas recirculation gas in the second failure determination unit. can be done.
- the failure determination section executes the open failure determination by the second failure determination section after the abnormality is determined by the first failure determination section.
- the opening failure determination by the second failure determination unit is not executed until the first failure determination unit determines that there is an abnormality. It is possible to avoid execution of the open failure determination by the part.
- an outside temperature detecting means for detecting an outside temperature is provided, and the failure determination section restricts the open failure determination by the second failure determination section when the outside temperature is equal to or higher than a predetermined temperature.
- the failure determination section restricts the open failure determination by the second failure determination section when the outside temperature is equal to or higher than a predetermined temperature.
- a stop time measurement unit for measuring a stop time of the engine is provided, and the failure determination unit determines an open failure by the second failure determination unit when the engine stop time is less than a predetermined time.
- the open failure determination by the second failure determination unit is regulated.
- the engine is mounted on a vehicle, and the vehicle is driven by a storage battery, a generator driven by the engine to generate power, and electric power supplied from at least one of the generator and the storage battery.
- a first running mode in which the engine is stopped and the motor is driven by electric power supplied from the storage battery to run, and the engine is operated to generate power with the generator.
- a driving mode switching control unit for switching between a second driving mode for driving and a driving mode based on at least a required output required of the vehicle, wherein the engine is switched to the first driving mode in a state in which warming up of the engine is not completed.
- a warm-up operation is performed in which a predetermined low load operation, which is smaller than the load of the engine when generating power in the second running mode, is continued for a predetermined period of time. It is preferable that the failure determination unit executes the open failure determination by the second failure determination unit together with the running drive by the motor while the warm-up operation is continued.
- the failure determination unit is configured such that the required output reaches a value at which the engine is stopped before the second failure determination unit completes the open failure determination during the warm-up operation. Even if requested, the warm-up operation should be continued until the open failure determination is completed.
- the vehicle further includes a power supply unit that supplies power to the outside from the storage battery, and the failure determination unit determines the failure of the first failure determination unit while the engine is operating while power is being supplied to the outside. Regardless of the result, it is preferable to execute the open failure determination by the second failure determination unit.
- both the failure determination by the first failure determination unit and the open failure determination by the second failure determination unit are executed during power supply to the outside, in which a relatively long time can be secured and the engine operation can be arbitrarily set. Then, the detailed failure determination of the exhaust gas recirculation valve can be completed.
- the first failure determination unit determines that the exhaust gas recirculation valve is abnormal when an average value of the amount of change in the intake pressure when the exhaust gas recirculation valve is opened and closed a plurality of times is less than a predetermined threshold value. You can determine that there is It should be noted that failure may be determined when the amount of change in the intake pressure is less than a predetermined threshold for a predetermined number of times (for example, three times).
- the exhaust gas recirculation system fault diagnosis device of the present invention it is possible to determine in detail the failure mode of the exhaust gas recirculation valve, such as whether the exhaust gas recirculation valve is closed or open. It can be used as information in case of failure, and by controlling the operation of the engine according to the failure mode, it is possible to stably continue the operation of the engine. Further, by performing a failure determination by the first failure determination unit during a predetermined operation after the completion of engine warm-up, a failure by the second failure determination unit during a predetermined operation before the completion of engine warm-up is determined. In the judgment, it is possible to increase the number of execution opportunities compared to judging the failure mode of the exhaust gas recirculation valve in detail.
- FIG. 1 is a schematic configuration diagram of a traveling drive system of a vehicle according to one embodiment of the present invention
- FIG. 1 is a configuration diagram of a failure diagnosis device for an engine intake/exhaust system and an EGR system according to the present embodiment
- FIG. 4 is a flow chart showing a procedure of EGR failure determination control in a failure diagnosis device for an EGR system
- FIG. 7 is an example of a time chart showing an example of the operation of the EGR valve and the transition of the intake manifold pressure in the first failure determination control when EGR is normal
- FIG. 5 is an example of a time chart showing changes in the operation of the EGR valve, the intake manifold pressure, and the EGR temperature in the first failure determination control and the second failure determination control when an EGR failure occurs.
- FIG. 1 is a schematic configuration diagram of a plug-in hybrid vehicle (hereinafter referred to as vehicle 1) according to one embodiment of the present invention.
- vehicle 1 equipped with the EGR system fault diagnosis device of the present embodiment can run by driving front wheels 3 with the output of an engine 2, and an electric front motor for driving the front wheels 3. 4 (motor) and an electric rear motor 6 (motor) that drives the rear wheels 5.
- the engine 2 can drive the drive shaft 8 of the front wheels 3 via the speed reducer 7 and drive the motor generator 9 (generator) via the speed reducer 7 to generate power.
- the front motor 4 is driven by being supplied with high-voltage power from an onboard battery 11 (storage battery) mounted on the vehicle 1 and a motor generator 9 via a front inverter 10, and drives the front wheels 3 via a speed reducer 7. drive the shaft 8;
- the speed reducer 7 incorporates a clutch 7a capable of switching power transmission between the output shaft of the engine 2 and the drive shaft 8 of the front wheel 3.
- the rear motor 6 is driven by being supplied with high-voltage power from the vehicle-mounted battery 11 and the motor generator 9 via the rear inverter 12 , and drives the drive shaft 14 of the rear wheel 5 via the speed reducer 13 .
- the electric power generated by the motor generator 9 can charge the onboard battery 11 via the front inverter 10 and can also supply electric power to the front motor 4 and the rear motor 6 .
- the in-vehicle battery 11 is composed of a secondary battery such as a lithium ion battery, and has a battery module (not shown) configured by collectively configuring a plurality of battery cells.
- the on-vehicle battery 11 also includes a monitoring unit 11a that monitors the state of the battery module, such as the voltage, charging rate, and temperature of the battery module, and estimates (detects) the charging rate of the entire on-vehicle battery 11 .
- the front inverter 10 controls the output of the front motor 4 based on the control signal from the hybrid control unit 20 (driving mode switching control section), and controls the output of the motor generator 9 based on the control signal from the hybrid control unit 20. have a function.
- the rear inverter 12 has a function of controlling the output of the rear motor 6 based on the control signal from the hybrid control unit 20.
- the vehicle 1 includes an engine control unit 22 that drives and controls the engine 2, and a charger 23 that charges the vehicle battery 11 with an external power source.
- an external outlet 24 power supply unit for supplying electric power from the vehicle-mounted battery 11 to the outside is provided in the vehicle compartment of the vehicle 1 .
- the hybrid control unit 20 is a comprehensive control device for performing travel control of the vehicle 1, and includes an input/output device, a storage device (ROM (Read Only Memory), RAM (Random Access Memory), nonvolatile RAM, etc.), It includes a central processing unit (CPU), a timer, and the like.
- the engine control unit 22 also includes an input/output device, a storage device (ROM, RAM, non-volatile RAM, etc.), a central processing unit (CPU), a timer, and the like.
- a monitoring unit 11a for the vehicle battery 11 On the input side of the hybrid control unit 20 are a monitoring unit 11a for the vehicle battery 11, a front inverter 10, a rear inverter 12, an engine control unit 22, an accelerator opening sensor 40 for detecting the amount of accelerator operation, and a vehicle 1 running speed.
- a vehicle speed sensor 41 is connected, and detection, operation and operation information from these devices are input.
- a front inverter 10, a rear inverter 12, a reduction gear 7 (clutch 7a), and an engine control unit 22 are connected to the output side of the hybrid control unit 20.
- the hybrid control unit 20 calculates the required output and driving torque required for driving the vehicle 1 based on the various detection amounts and various operation information such as the accelerator opening sensor 40 and the vehicle speed sensor 41, and the engine A control signal is transmitted to the control unit 22, the front inverter 10, the rear inverter 12, and the speed reducer 7 to switch the driving mode ((EV mode: electric vehicle mode), series mode, parallel mode), and to switch the engine 2 and the front motor 4. , the output of the rear motor 6 and the output of the motor generator 9 are controlled.
- EV mode electric vehicle mode
- series mode series mode
- the engine 2 In the EV mode, the engine 2 is stopped, and the front motor 4 and the rear motor 6 are driven by electric power supplied from the vehicle battery 11 to run the vehicle 1.
- the clutch 7a of the speed reducer 7 is disengaged and the engine 2 operates the motor generator 9.
- the electric power generated by the motor generator 9 and the electric power supplied from the vehicle battery 11 are used to drive the front motor 4 and the rear motor 6 to run the vehicle.
- the rotation speed of the engine 2 is set to a predetermined rotation speed, and surplus electric power is supplied to the vehicle battery 11 to charge the vehicle battery 11 .
- the clutch 7a of the speed reducer 7 is connected, and power is mechanically transmitted from the engine 2 through the speed reducer 7 to drive the front wheels 3.
- the front motor 4 and the rear motor 6 are driven by electric power generated by operating the motor generator 9 by the engine 2 and electric power supplied from the onboard battery 11 to drive the vehicle.
- the hybrid control unit 20 sets the running mode to the parallel mode in areas where the engine 2 is efficient, such as high-speed areas. Also, in a region other than the parallel mode, that is, in the middle/low speed region, switching is made between the EV mode and the series mode based on the drive torque of the vehicle 1 and the state of charge SOC (state of charge) of the vehicle battery 11 .
- the EV mode corresponds to the first running mode of the present invention, and the series mode and parallel mode correspond to the second running mode of the present invention.
- FIG. 2 is a configuration diagram of a failure diagnosis device for the intake and exhaust system of the engine 2 and the EGR system 50 (exhaust gas recirculation system).
- the engine 2 is equipped with an EGR system 50.
- the EGR system 50 includes an EGR passage 53 (exhaust recirculation passage) that communicates an intake passage 51 and an exhaust passage 52 of the engine 2, an EGR valve 54 (exhaust recirculation valve) that adjusts the opening area of the EGR passage 53, and an EGR valve 54 and an EGR control unit 55 (exhaust gas recirculation control unit) that controls the opening degree of the exhaust gas recirculation control unit.
- the EGR control section 55 is provided in the engine control unit 22 .
- the EGR control unit 55 controls the opening degree of the EGR valve 54 based on the operating state of the engine 2, for example, the required load based on the amount of accelerator operation, the engine rotation speed, and the like.
- the EGR passage 53 is also provided with an EGR temperature sensor 56 (exhaust recirculated gas temperature detection means) for detecting the temperature of EGR gas (exhaust recirculated gas).
- the EGR temperature sensor 56 is provided closer to the intake passage 51 than the EGR valve 54 , and detects the temperature of EGR gas, which is a part of the exhaust that flows from the exhaust passage 52 through the EGR valve 54 into the intake passage 51 .
- an intake manifold pressure sensor 57 for detecting the pressure of the intake air is provided.
- an EGR failure determination section 60 (failure determination section, a first a failure determination section, a second failure determination section).
- the EGR failure determination unit 60 controls the operation of the EGR valve 54, and detects EGR failure based on changes in intake pressure detected by the intake manifold pressure sensor 57 and changes in EGR gas temperature detected by the EGR temperature sensor 56. Perform judgment control.
- the EGR control unit 55 exhaust gas recirculation control unit
- the EGR temperature sensor 56 the intake manifold pressure sensor 57
- the EGR failure determination unit 60 correspond to the exhaust gas recirculation system failure diagnosis device of the present invention.
- FIG. 3 is a flow chart showing the procedure of EGR failure determination control executed in the EGR failure determination section 60.
- FIG. 4 is an example of a time chart showing the operation of the EGR valve 54 and transition of the intake manifold pressure in the first failure determination control when EGR is normal.
- FIG. 5 is an example of a time chart showing changes in the operation of the EGR valve 54, the intake manifold pressure, the EGR temperature, etc. in the first failure determination control and the second failure determination control when EGR failure occurs.
- the solid line indicates the opening failure of the EGR valve 54
- the dashed line indicates the closing failure.
- the EGR failure determination control is repeatedly executed every predetermined period, for example, while the engine is running.
- step S10 the EGR failure determination unit 60 determines whether or not the first EGR failure determination condition is satisfied (ON).
- the first EGR failure determination condition is a condition for performing failure determination of the EGR valve 54 by the first failure determination control. This is during steady operation (predetermined operation) with constant required load and constant rotation speed. If the first EGR failure determination condition is satisfied (ON) (Yes in step S10), the process proceeds to step S20. If the first EGR failure determination condition is not satisfied (OFF) (No in step S10), this routine ends.
- step S20 the EGR failure determination unit 60 forcibly opens and closes the EGR valve 54. Specifically, the EGR failure determination unit 60 first forcibly fully closes the EGR valve 54 (EGR cut). At this time, the intake pressure is detected by the intake manifold pressure sensor 57 and stored in the storage device. Then, after a predetermined time (for example, several seconds) has passed, the EGR failure determination unit 60 forcibly opens the valve to a predetermined opening (for example, fully open) (EGR forced ON).
- the EGR failure determination unit 60 detects the intake pressure with the intake manifold pressure sensor 57 when a predetermined time (for example, several seconds) elapses for the intake pressure to stabilize in the EGR forced ON state, and detects the intake pressure detected at the start of EGR cut. Calculates the amount of change in intake manifold pressure, which is the difference between .
- the EGR failure determination unit 60 executes the opening/closing control of the EGR valve 54 and the measurement of the amount of change in the intake manifold pressure a predetermined number of times na (for example, three times), and calculates the average value of the amount of change in the intake manifold pressure per time. .
- na for example, three times
- the EGR opening is controlled based on the operating state of the engine (EGR normal introduction). Then, the process proceeds to step S30.
- step S30 the EGR failure determination unit 60 determines whether or not the average value of the amount of change in intake manifold pressure calculated in step S20 is equal to or greater than a predetermined value Pa (predetermined threshold value).
- the predetermined value Pa may be set near the lower limit value of the amount of change in the intake pressure when the EGR valve is opened and closed in a normal state. If the intake manifold pressure change amount (average value) is equal to or greater than the predetermined value Pa (Yes in step S30), the process proceeds to step S40. If the intake manifold pressure change amount (average value) is less than the predetermined value Pa (No in step S30), the process proceeds to step S50.
- step S40 the EGR failure determination section 60 determines that the EGR system 50 is normal. Then, the routine ends.
- step S50 the EGR failure determination section 60 determines that the EGR system 50 is in failure. Then, the process proceeds to step S60.
- the EGR failure determination unit 60 determines whether or not the second EGR failure determination condition is satisfied (ON).
- the second EGR failure determination condition is a condition for performing failure determination of the EGR valve 54 by the second failure determination control, and is a cold state before the engine 2 completes warming up, such as when the engine is started after soaking.
- the hybrid control unit 20 of the vehicle 1 may be provided with a timer (stop time measurement section) for measuring the engine stop time, and when the engine stop state continues for a predetermined time (for example, 6 hours), it may be determined that the engine has been soaked.
- the engine stop time may be, for example, the duration of the power off state of the vehicle.
- the second EGR failure determination condition is satisfied as after the soak.
- the engine 2 is operated at low rotation and low load for a predetermined period of time to increase the temperature of the engine 2 (based on the water temperature or the exhaust temperature, for example) (warm up the engine 2) and stabilize the engine operation. is.
- the pre-operation is operated with a load (predetermined low load) smaller than the load of the engine 2 in the series mode, and is completed when, for example, the exhaust temperature increases to a predetermined temperature or higher, and after that, the hybrid control unit 20 The engine is operated according to the set required load.
- step S60 If the second EGR failure determination condition is satisfied (ON) (Yes in step S60), the process proceeds to step S70. If the second EGR failure determination condition is not satisfied (OFF) (No in step S60), step S60 is repeated.
- step S70 the EGR failure determination unit 60 fully closes the EGR valve 54 (EGR cut).
- the EGR gas temperature is input from the EGR temperature sensor 56 when the EGR valve 54 starts to fully close, and is stored in the storage device of the engine control unit 22 or the like. Then, the process proceeds to step S80.
- step S80 the EGR failure determination unit 60 determines whether the EGR failure determination unit 60 detects the EGR after a predetermined failure determination time ta (for example, about 100 seconds) has elapsed since the start of the fully closed operation of the EGR valve 54 in step S70 (elapsed time after startup).
- the EGR gas temperature is input from the temperature sensor 56, and the EGR temperature change amount (for open failure determination), which is the difference from the EGR gas temperature at the start of the fully closed operation of the EGR valve 54 stored in the storage device (at the time of start) It is determined whether or not the EGR temperature change amount is equal to or greater than a predetermined open failure determination value a.
- the open failure determination value a is, for example, a value near the upper limit value of the temperature change amount of the EGR gas and higher than the upper limit value when the pre-operation with the EGR valve 54 in the fully closed state after the start of the engine 2 is performed for the failure determination time ta.
- the open failure determination value a should be set to As indicated by the solid line in FIG. 5, when the EGR temperature change amount is equal to or greater than the open failure determination value a (Yes in step S80), the process proceeds to step S90. As indicated by the dashed line in FIG. 5, when the EGR temperature change amount is less than the open failure determination value a (No in step S80), the process proceeds to step S100.
- step S90 the EGR failure determination section 60 determines that there is an EGR open failure, that is, a failure state in which the EGR valve 54 is stuck in the open state. Then, the routine ends.
- step S100 the EGR failure determination unit 60 determines that there is an EGR closed failure, that is, a failure state in which the EGR valve 54 is stuck in the closed state. Then, the routine ends.
- the first failure determination control from steps S10 to S50 corresponds to the failure determination by the first failure determination section of the present invention
- the second failure determination control from steps S60 to S100. corresponds to the open failure determination by the second failure determination unit of the present invention.
- the EGR valve 54 is opened and closed, and whether or not the EGR valve 54 is out of order is determined by the first failure determination control based on the amount of change in the intake manifold pressure. Furthermore, when it is determined that the EGR valve 54 is out of order, the second failure determination control based on the EGR gas temperature is used to determine whether the open failure or closed failure has occurred. Therefore, by combining the determination result of the first failure determination control and the determination result of the second failure determination control, it is possible not only to determine whether the EGR valve 54 is in failure, but also to determine whether the EGR valve 54 is in failure.
- the failure modes of the EGR valve 54 such as open failure, can be determined in detail.
- the determination control time in the second failure determination control can be shortened. As a result, it is possible to shorten the forced operation time of the EGR valve 54 for performing EGR failure determination control during pre-operation when the engine is started, and improve the accuracy and responsiveness (drivability) of engine operation control.
- the first EGR failure determination condition for executing the first failure determination control is during steady operation after completion of warm-up. You can secure a lot. Therefore, it is possible to increase the number of failure determination execution opportunities compared to performing both open failure determination and closing failure determination in the second failure determination control. Further, since the failure mode of the EGR valve 54 can be determined in detail such as open failure or closed failure, it can be effectively used as failure information at the time of repair. Alternatively, even if the operation of the engine 2 continues, the operation of the engine 2 can be controlled in response to this failure state. For example, when an open failure occurs, there is a possibility that a large amount of EGR gas always flows into the intake passage 51. Therefore, by increasing the idling speed of the engine 2 in a cold idling state such as immediately after starting, the stability of engine operation can be improved. can be planned.
- the second failure determination control is executed when the second EGR failure determination condition is established after a failure is determined in the first failure determination control. That is, since the second failure determination control is not executed until failure is determined in the first failure determination control, unnecessary execution of the second failure determination control is avoided when the EGR valve 54 is in a normal state. be able to. As a result, when the engine is started after soaking (during pre-operation), the forced EGR cut is suppressed, and the stability of engine operation during pre-operation can be improved.
- step S60 of the EGR failure determination control As a second EGR failure determination condition determined in step S60 of the EGR failure determination control, when the engine is started after soaking, that is, after the engine is stopped for a predetermined time or longer and before the warm-up is completed, the engine 2 is operated. Occasionally, this causes a second EGR failure determination to be made when the engine 2 is running cold. Therefore, in the second EGR failure determination, the EGR temperature change amount can be increased when the EGR valve 54 has an open failure, so it is possible to improve the determination accuracy of the open failure in the second failure determination control.
- the vehicle 1 is provided with an outside air temperature sensor 42 (outside air temperature detection means), and as a second EGR failure determination condition determined in step S60 of the EGR failure determination control, the outside air temperature is a predetermined temperature (for example, 40 degrees Celsius). ) is less than
- the outside air temperature detection means 42 includes the intake air temperature. This is because the temperature of the EGR gas flowing into the intake passage 51 generally does not rise above about 80 degrees Celsius. This is because the temperature is small and it becomes difficult to determine the temperature rise.
- the second EGR failure determination condition includes that the outside air temperature is low, that is, when the outside air temperature is equal to or higher than a predetermined temperature
- the second failure determination control is regulated to achieve the second failure determination. It is possible to further improve the determination accuracy in control.
- the vehicle 1 of the present embodiment is a plug-in hybrid vehicle and is capable of the series mode, so it can be driven regardless of whether the engine is running. Since the second EGR failure determination is executed in the pre-operation immediately after the engine is started after the soak, the engine operation suitable for failure determination of the EGR valve 54 can be performed. This enables quick and accurate failure determination in the second EGR failure determination.
- the vehicle 1 of the present embodiment is a plug-in hybrid vehicle, and can supply electric power to the outside from the large-capacity vehicle-mounted battery 11 through the external outlet 24 . Then, while power is being supplied to the outside, it is preferable to execute the second failure determination control while the engine 2 is in operation, regardless of the failure determination result of the first failure determination control.
- both the first failure determination control and the second failure determination control can be executed to complete the determination of the presence or absence of failure of the EGR valve 54 .
- the first EGR failure determination control the average value of the amount of change in the intake manifold pressure when the EGR valve 54 is opened and closed a plurality of times is calculated. In some cases, it is determined that the EGR valve 54 has failed.
- failure determination accuracy can be improved even if the intake manifold pressure fluctuates in a short period of time.
- the present invention is not limited to the above embodiments.
- the second failure determination control when a failure is determined in the first failure determination control, the second failure determination control is performed. control may be exercised.
- the EGR failure determination section 60 is provided in the engine control unit 22, it may be provided in the hybrid control unit 20 or may be provided independently in the vehicle 1. FIG.
- the vehicle 1 of the above embodiment is a plug-in hybrid vehicle, but the invention can also be applied to the engine of a hybrid vehicle.
- the invention can also be applied to engines of gasoline engine vehicles and diesel engine vehicles.
- the present invention can be applied to an engine equipped with an EGR system other than a vehicle.
- Vehicle battery storage battery
- hybrid control unit driving mode switching control unit
- engine control unit external outlet (power supply unit)
- outside temperature sensor outside temperature detection means
- EGR system exhaust gas recirculation system
- EGR passage exhaust recirculation passage
- EGR valve exhaust recirculation valve
- EGR control unit exhaust gas recirculation control unit
- EGR temperature sensor exhaust recirculated gas temperature detection means
- intake manifold pressure sensor intake pressure detection means
- 60 EGR failure determination unit failure determination unit (failure determination unit, first failure determination unit, second failure determination unit)
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Transportation (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Analytical Chemistry (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
EGRシステムの故障の有無を診断する故障診断装置は、EGRガスの温度を検出するEGR温度センサと、インマニ圧を検出するインマニ圧センサと、EGRシステムの故障の有無を判定するEGR故障判定部と、を備え、EGR故障判定部は、エンジンの定常運転時にEGRバルブを開閉作動制御してインマニ圧の変化に基づいてEGRバルブの故障判定を行い、エンジンの始動後のウォームアップ運転時にEGRバルブを閉作動制御してEGRガスの温度変化に基づいてEGRバルブの開故障判定を行う。
Description
本発明は、エンジンの排気還流システムにおける故障診断技術に関する。
車両に搭載されているエンジンの多くは、排気性能を向上させるためにEGR(Exhaust Gas Recirculation)システム(排気還流システム)を搭載している。EGRシステムは、例えば排気通路から排気の一部(EGRガス)を吸気通路に還流するEGR通路(排気還流路)を有するとともに、EGR通路の開口面積を調節するEGRバルブ(排気還流弁)が備えられている。EGRバルブは、コントロールユニット等によりエンジンの運転状態に基づいて開度が制御される。
特許文献1には、EGRシステムの故障の有無を判断する技術が開示されている。特許文献1に開示された故障診断装置は、EGRガスの温度を検出する温度センサを有し、EGRバルブを開閉に伴うEGRガスの温度変化に基づいて、EGRバルブの故障の有無を診断する。
特許文献1の故障診断装置では、EGRバルブを強制的に所定の開度に開閉制御し、その際にEGRガスの温度が所定以上変化しない場合に、EGRバルブが固着状態であることを判定する。しかしながら、特許文献1では、開固着状態であるか閉固着状態であるかといったようなEGRバルブの詳細の故障状態を判定していない。
また、エンジンの故障診断はエンジン始動直後に行なわれることが多いが、始動直後のようなエンジン冷態状態では、開固着状態である開故障判定は可能であっても、閉固着状態である閉故障判定は困難であり、開故障判定及び閉故障判定の両方を多くの機会で可能にすることが要求されている。
また、エンジンの故障診断はエンジン始動直後に行なわれることが多いが、始動直後のようなエンジン冷態状態では、開固着状態である開故障判定は可能であっても、閉固着状態である閉故障判定は困難であり、開故障判定及び閉故障判定の両方を多くの機会で可能にすることが要求されている。
本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、排気還流弁の詳細な故障判定が可能であるとともに、判定機会を多く確保できる排気還流システムの故障診断装置を提供することにある。
上記の目的を達成するため、本発明の排気還流システムの故障診断装置は、エンジンの排気通路から排気の一部を吸気通路に導く排気還流路と、前記排気還流路に備えられ開又は閉作動することで前記排気還流路の開口面積を調節する排気還流弁と、前記エンジンの運転状態に基づいて前記排気還流弁を作動制御する排気還流制御部と、を有する排気還流システムにおける故障診断装置であって、前記排気還流路を流れる排気還流ガスの温度を検出する排気還流ガス温度検出手段と、前記吸気通路において前記エンジンに吸入される気体の吸気圧を検出する吸気圧検出手段と、前記排気還流制御部により前記排気還流弁を開閉制御して、前記排気還流弁の故障の有無を判定する故障判定部と、を備え、前記故障判定部は、前記エンジンの暖機が完了された以後の所定の運転時に前記排気還流弁を開閉作動させた際の前記吸気圧の変化に基づいて前記排気還流弁の故障判定を行う第1の故障判定部と、前記エンジンの暖機が完了する前の所定の運転時に前記排気還流弁を閉作動させて前記排気還流ガスの温度変化に基づいて前記排気還流弁の開故障判定を行う第2の故障判定部と、を有することを特徴とする。
これにより、第1の故障判定部による故障判定結果と第2の故障判定部による故障判定結果とを組み合わせることで、排気還流弁が閉故障であるか否か、及び開故障であるか否かといった、排気還流弁の故障態様を詳細に判定することができる。
また、第2の故障判定部では、排気還流ガスの温度変化に基づいて排気還流弁の開故障判定のみ行い、閉故障判定を行う必要がない。
また、第2の故障判定部では、排気還流ガスの温度変化に基づいて排気還流弁の開故障判定のみ行い、閉故障判定を行う必要がない。
更に、第1の故障判定部による故障判定はエンジンの暖機が完了された以後の所定の運転時に行われ、エンジンの暖機が完了する前の所定の運転時に行われる第2の故障判定部による故障判定よりも実行機会が多く、第2の故障判定部において排気還流ガスの温度変化に基づいて排気還流弁の開故障判定及び閉故障判定の両方を行うよりも、実行機会を増加させることができる。
好ましくは、前記故障判定部は、前記第1の故障判定部において異常が判定された後に、前記第2の故障判定部による開故障判定を実行するとよい。
これにより、第1の故障判定部において異常が判定されるまでは、第2の故障判定部による開故障判定が実行されないので、排気還流弁が正常状態であるときに不要な第2の故障判定部による開故障判定の実行を回避することができる。
これにより、第1の故障判定部において異常が判定されるまでは、第2の故障判定部による開故障判定が実行されないので、排気還流弁が正常状態であるときに不要な第2の故障判定部による開故障判定の実行を回避することができる。
好ましくは、外気温度を検出する外気温度検出手段を備え、前記故障判定部は、前記外気温度が所定温度以上であるときに、前記第2の故障判定部による開故障判定を規制するとよい。
これにより、第2の故障判定部において排気還流弁を閉作動させたときに、排気還流弁を開故障状態である場合での排気還流ガスの温度変化を大きくすることができ、第2の故障判定部による開故障判定の判定精度を向上させることができる。
これにより、第2の故障判定部において排気還流弁を閉作動させたときに、排気還流弁を開故障状態である場合での排気還流ガスの温度変化を大きくすることができ、第2の故障判定部による開故障判定の判定精度を向上させることができる。
好ましくは、前記エンジンの停止時間を計測する停止時間計測部を備え、前記故障判定部は、前記エンジンの停止時間が所定時間未満である場合には、前記第2の故障判定部による開故障判定を規制するとよい。
これにより、エンジン温度が所定温度以上である可能性の高い状態では、第2の故障判定部による開故障判定が規制されるので、第2の故障判定部による開故障判定において排気還流弁を開閉作動させたときに、排気還流弁を開故障状態である場合での排気還流ガスの温度変化を大きく確保することが可能となり、第2の故障判定部における判定精度を向上させることができる。
これにより、エンジン温度が所定温度以上である可能性の高い状態では、第2の故障判定部による開故障判定が規制されるので、第2の故障判定部による開故障判定において排気還流弁を開閉作動させたときに、排気還流弁を開故障状態である場合での排気還流ガスの温度変化を大きく確保することが可能となり、第2の故障判定部における判定精度を向上させることができる。
好ましくは、前記エンジンは車両に搭載され、前記車両は、蓄電池と、前記エンジンにより駆動されて発電する発電機と、前記発電機及び前記蓄電池の少なくとも一方から供給された電力によって当該車両を走行駆動するモータと、を有するとともに、前記エンジンを停止して前記蓄電池から供給された電力より前記モータを駆動して走行する第1の走行モードと、前記エンジンを作動して前記発電機により発電しつつ走行する第2の走行モードと、を少なくとも前記車両に要求される要求出力に基づいて切り替える走行モード切替制御部を備え、前記エンジンは、前記エンジンの暖機が完了されていない状態で前記第1の走行モードから前記第2の走行モードに切り替わる以前に、前記エンジンに前記第2の走行モードで発電する際の前記エンジンの負荷より小さい所定の低負荷運転を所定時間継続させるウォームアップ運転が実行され、前記故障判定部は、前記ウォームアップ運転が継続されている際における前記モータによる走行駆動とともに、前記第2の故障判定部による開故障判定を実行するとよい。
これにより、第2の故障判定部による開故障判定の実行機会を増加させるとともに、排気還流弁の故障判定に適したエンジン運転にすることが可能であるので、迅速かつ精度のよい第2の故障判定部による開故障判定が可能になる。
好ましくは、前記故障判定部は、前記ウォームアップ運転時に前記第2の故障判定部による開故障判定が完了する前に、前記要求出力が第1の走行モードに切り替わる値になり前記エンジンの停止が要求されたとしても、当該開故障判定が完了するまで前記ウォームアップ運転を継続するとよい。
好ましくは、前記故障判定部は、前記ウォームアップ運転時に前記第2の故障判定部による開故障判定が完了する前に、前記要求出力が第1の走行モードに切り替わる値になり前記エンジンの停止が要求されたとしても、当該開故障判定が完了するまで前記ウォームアップ運転を継続するとよい。
これにより、ウォームアップ運転時に第2の故障判定部による開故障判定の実行中に要求出力が変動してエンジンの停止が要求されたとしても、開故障判定を継続して実行し完了させることができる。
好ましくは、前記車両は、前記蓄電池より外部へ給電する給電部を更に備え、前記故障判定部は、前記外部への給電中において前記エンジンの稼働中では、前記第1の故障判定部の故障判定結果に拘わらず、前記第2の故障判定部による開故障判定を実行するとよい。
好ましくは、前記車両は、前記蓄電池より外部へ給電する給電部を更に備え、前記故障判定部は、前記外部への給電中において前記エンジンの稼働中では、前記第1の故障判定部の故障判定結果に拘わらず、前記第2の故障判定部による開故障判定を実行するとよい。
これにより、比較的時間を長く確保できるとともにエンジン運転を任意に設定できる外部への給電中において、第1の故障判定部による故障判定と第2の故障判定部による開故障判定の両方を実行して、排気還流弁の詳細な故障判定を完了させることができる。
好ましくは、第1の故障判定部は、前記排気還流弁を複数回開閉作動させたときの前記吸気圧の変化量の平均値が所定の閾値未満である場合に、前記排気還流弁が異常であることを判定してもよい。なお、前記吸気圧の変化量が所定の閾値未満を所定回数(例えば3回)である場合に故障と判定してもよい。
好ましくは、第1の故障判定部は、前記排気還流弁を複数回開閉作動させたときの前記吸気圧の変化量の平均値が所定の閾値未満である場合に、前記排気還流弁が異常であることを判定してもよい。なお、前記吸気圧の変化量が所定の閾値未満を所定回数(例えば3回)である場合に故障と判定してもよい。
これにより、第1の故障判定部における故障判定精度を向上させることができる。
本発明の排気還流システムの故障診断装置によれば、排気還流弁が閉故障及び開故障のいずれかであるか否かといったような排気還流弁の故障態様を詳しく判定することができるので、修理の際の情報として活用できるとともに、故障態様に応じてエンジンの作動制御を行うことで、エンジン作動を安定して継続させることが可能になる。
また、エンジンの暖機完了以後の所定の運転時に可能な第1の故障判定部による故障判定を行うことで、エンジンの暖機完了前の所定の運転時に可能な第2の故障判定部による故障判定において詳しく排気還流弁の故障態様を判定するよりも実行機会を増加させることができる。
また、エンジンの暖機完了以後の所定の運転時に可能な第1の故障判定部による故障判定を行うことで、エンジンの暖機完了前の所定の運転時に可能な第2の故障判定部による故障判定において詳しく排気還流弁の故障態様を判定するよりも実行機会を増加させることができる。
以下、図面に基づき本発明の一実施形態について説明する。
図1は、本発明の一実施形態に係るプラグインハイブリッド車(以下、車両1という)の概略構成図である。
図1に示すように、本実施形態のEGRシステムの故障診断装置を備えた車両1は、エンジン2の出力によって前輪3を駆動して走行可能であるとともに、前輪3を駆動する電動のフロントモータ4(モータ)及び後輪5を駆動する電動のリヤモータ6(モータ)を備えた四輪駆動車である。
図1は、本発明の一実施形態に係るプラグインハイブリッド車(以下、車両1という)の概略構成図である。
図1に示すように、本実施形態のEGRシステムの故障診断装置を備えた車両1は、エンジン2の出力によって前輪3を駆動して走行可能であるとともに、前輪3を駆動する電動のフロントモータ4(モータ)及び後輪5を駆動する電動のリヤモータ6(モータ)を備えた四輪駆動車である。
エンジン2は、減速機7を介して前輪3の駆動軸8を駆動可能であるとともに、減速機7を介してモータジェネレータ9(発電機)を駆動して発電させることが可能になっている。
フロントモータ4は、フロントインバータ10を介して、車両1に搭載された車載電池11(蓄電池)及びモータジェネレータ9から高電圧の電力を供給されて駆動し、減速機7を介して前輪3の駆動軸8を駆動する。減速機7には、エンジン2の出力軸と前輪3の駆動軸8との間の動力の伝達を断接切換え可能なクラッチ7aが内蔵されている。
フロントモータ4は、フロントインバータ10を介して、車両1に搭載された車載電池11(蓄電池)及びモータジェネレータ9から高電圧の電力を供給されて駆動し、減速機7を介して前輪3の駆動軸8を駆動する。減速機7には、エンジン2の出力軸と前輪3の駆動軸8との間の動力の伝達を断接切換え可能なクラッチ7aが内蔵されている。
リヤモータ6は、リヤインバータ12を介して車載電池11及びモータジェネレータ9から高電圧の電力を供給されて駆動し、減速機13を介して後輪5の駆動軸14を駆動する。
モータジェネレータ9によって発電された電力は、フロントインバータ10を介して車載電池11を充電可能であるとともに、フロントモータ4及びリヤモータ6に電力を供給可能である。
モータジェネレータ9によって発電された電力は、フロントインバータ10を介して車載電池11を充電可能であるとともに、フロントモータ4及びリヤモータ6に電力を供給可能である。
車載電池11は、リチウムイオン電池等の二次電池で構成され、複数の電池セルをまとめて構成された図示しない電池モジュールを有している。また、車載電池11は、電池モジュールの電圧、充電率、温度等の電池モジュールの状態を監視するとともに、車載電池11全体の充電率を推定(検出)するモニタリングユニット11aを備えている。
フロントインバータ10は、ハイブリッドコントロールユニット20(走行モード切替制御部)からの制御信号に基づきフロントモータ4の出力を制御するとともに、ハイブリッドコントロールユニット20からの制御信号に基づきモータジェネレータ9の出力を制御する機能を有する。
フロントインバータ10は、ハイブリッドコントロールユニット20(走行モード切替制御部)からの制御信号に基づきフロントモータ4の出力を制御するとともに、ハイブリッドコントロールユニット20からの制御信号に基づきモータジェネレータ9の出力を制御する機能を有する。
リヤインバータ12は、ハイブリッドコントロールユニット20からの制御信号に基づきリヤモータ6の出力を制御する機能を有する。
車両1には、エンジン2を駆動制御するエンジンコントロールユニット22と、車載電池11を外部電源によって充電する充電機23が備えられている。
また、車両1の車室内には、車載電池11から外部へ電力を供給するための外部コンセント24(給電部)が備えられている。
また、車両1の車室内には、車載電池11から外部へ電力を供給するための外部コンセント24(給電部)が備えられている。
ハイブリッドコントロールユニット20は、車両1の走行制御を行うための総合的な制御装置であり、入出力装置、記憶装置(ROM(Read Only Memory)、RAM(Random Access Memory)、不揮発性RAM等)、中央処理装置(CPU)、タイマ等を含んで構成されている。また、エンジンコントロールユニット22も、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマ等を含んで構成されている。
ハイブリッドコントロールユニット20の入力側には、車載電池11のモニタリングユニット11a、フロントインバータ10、リヤインバータ12、エンジンコントロールユニット22、アクセル操作量を検出するアクセル開度センサ40、車両1の走行速度を検出する車速センサ41が接続されており、これらの機器からの検出、作動及び操作情報が入力される。
一方、ハイブリッドコントロールユニット20の出力側には、フロントインバータ10、リヤインバータ12、減速機7(クラッチ7a)、エンジンコントロールユニット22が接続されている。
そして、ハイブリッドコントロールユニット20は、アクセル開度センサ40、車速センサ41等の上記各種検出量及び各種操作情報に基づいて、車両1の走行駆動に必要とする要求出力、駆動トルクを演算し、エンジンコントロールユニット22、フロントインバータ10、リヤインバータ12、減速機7に制御信号を送信して、走行モード((EVモード:電気自動車モード)、シリーズモード、パラレルモード)の切換え、エンジン2とフロントモータ4とリヤモータ6の出力、モータジェネレータ9の出力を制御する。
そして、ハイブリッドコントロールユニット20は、アクセル開度センサ40、車速センサ41等の上記各種検出量及び各種操作情報に基づいて、車両1の走行駆動に必要とする要求出力、駆動トルクを演算し、エンジンコントロールユニット22、フロントインバータ10、リヤインバータ12、減速機7に制御信号を送信して、走行モード((EVモード:電気自動車モード)、シリーズモード、パラレルモード)の切換え、エンジン2とフロントモータ4とリヤモータ6の出力、モータジェネレータ9の出力を制御する。
EVモードでは、エンジン2を停止し、車載電池11から供給される電力によりフロントモータ4やリヤモータ6を駆動して車両1を走行させる。
シリーズモードでは、減速機7のクラッチ7aを切断し、エンジン2によりモータジェネレータ9を作動する。そして、モータジェネレータ9により発電された電力及び車載電池11から供給される電力によりフロントモータ4やリヤモータ6を駆動して走行させる。また、シリーズモードでは、エンジン2の回転速度を所定の回転速度に設定し、余剰電力を車載電池11に供給して車載電池11を充電する。
パラレルモードでは、減速機7のクラッチ7aを接続し、エンジン2から減速機7を介して機械的に動力を伝達して前輪3を駆動させる。また、エンジン2によりモータジェネレータ9を作動させて発電した電力及び車載電池11から供給される電力によってフロントモータ4やリヤモータ6を駆動して走行させる。
ハイブリッドコントロールユニット20は、高速領域のように、エンジン2の効率のよい領域では、走行モードをパラレルモードとする。また、パラレルモードを除く領域、即ち中低速領域では、車両1の駆動トルク及び車載電池11の充電率SOC(State Of Charge)に基づいてEVモードとシリーズモードとの間で切換える。
なお、EVモードは本発明における第1の走行モード、シリーズモード及びパラレルモードは、本発明の第2の走行モードに該当する。
図2は、エンジン2の給排気系及びEGRシステム50(排気還流システム)の故障診断装置の構成図である。
図2に示すように、エンジン2にはEGRシステム50が備られている。EGRシステム50はエンジン2の吸気通路51と排気通路52とを連通するEGR通路53(排気還流路)と、EGR通路53の開口面積を調節するEGRバルブ54(排気還流弁)と、EGRバルブ54の開度を制御するEGR制御部55(排気還流制御部)と、を備えている。
EGR制御部55は、エンジンコントロールユニット22に備えられている。EGR制御部55は、エンジン2の運転状態、例えばアクセル操作量等に基づく要求負荷やエンジン回転速度等に基づいて、EGRバルブ54の開度を制御する。
また、EGR通路53には、EGRガス(排気還流ガス)の温度を検出するEGR温度センサ56(排気還流ガス温度検出手段)が備えられている。EGR温度センサ56は、EGRバルブ54よりも吸気通路51側に備えられ、排気通路52からEGRバルブ54を通過して吸気通路51に流入する排気の一部であるEGRガスの温度を検出する。
また、EGR通路53には、EGRガス(排気還流ガス)の温度を検出するEGR温度センサ56(排気還流ガス温度検出手段)が備えられている。EGR温度センサ56は、EGRバルブ54よりも吸気通路51側に備えられ、排気通路52からEGRバルブ54を通過して吸気通路51に流入する排気の一部であるEGRガスの温度を検出する。
また、EGR通路53によりEGRガスが導かれる位置より下流側のエンジン2の吸気通路51には、詳しくはエンジン2のインテークマニホールドには、吸気の圧力を検出するインマニ圧センサ57(吸気圧検出手段)が備えられている。
更に、本実施形態のエンジンコントロールユニット22には、EGRシステム50の作動不良を診断する、詳しくはEGRバルブ54の作動不良(異常)を判定するEGR故障判定部60(故障判定部、第1の故障判定部、第2の故障判定部)が備えられている。
更に、本実施形態のエンジンコントロールユニット22には、EGRシステム50の作動不良を診断する、詳しくはEGRバルブ54の作動不良(異常)を判定するEGR故障判定部60(故障判定部、第1の故障判定部、第2の故障判定部)が備えられている。
EGR故障判定部60は、EGRバルブ54を作動制御し、インマニ圧センサ57によって検出した吸気圧の変化に基づいて、及びEGR温度センサ56によって検出したEGRガスの温度の変化に基づいて、EGR故障判定制御を行う。なお、EGR制御部55(排気還流制御部)、EGR温度センサ56、インマニ圧センサ57、EGR故障判定部60が本発明の排気還流システムの故障診断装置に該当する。
次に、図3~図5を用いて、EGR故障判定制御について説明する。
図3は、EGR故障判定部60において実行されるEGR故障判定制御の手順を示すフローチャートである。図4は、EGR正常時での第1の故障判定制御におけるEGRバルブ54の作動及びインマニ圧の推移を示すタイムチャートの一例である。図5は、EGR故障時での第1の故障判定制御及び第2の故障判定制御におけるEGRバルブ54の作動、インマニ圧及びEGR温度等の推移を示すタイムチャートの一例である。なお、図5において、実線はEGRバルブ54の開故障時であり、破線は閉故障時を示す。
図3は、EGR故障判定部60において実行されるEGR故障判定制御の手順を示すフローチャートである。図4は、EGR正常時での第1の故障判定制御におけるEGRバルブ54の作動及びインマニ圧の推移を示すタイムチャートの一例である。図5は、EGR故障時での第1の故障判定制御及び第2の故障判定制御におけるEGRバルブ54の作動、インマニ圧及びEGR温度等の推移を示すタイムチャートの一例である。なお、図5において、実線はEGRバルブ54の開故障時であり、破線は閉故障時を示す。
EGR故障判定制御は、例えばエンジン稼働時に所定期間毎に繰り返し実行される。
図3に示すように、始めにステップS10では、EGR故障判定部60は、第1のEGR故障判定条件が満たされているか(ONであるか)否かを判別する。第1のEGR故障判定条件は、第1の故障判定制御によるEGRバルブ54の故障判定を行う条件であり、例えばアイドル運転や車両減速時のように、暖機が完了した以降のエンジン稼働状態であり、かつ要求負荷及び回転数が一定の定常運転時(所定の運転時)である。第1のEGR故障判定条件が満たされている(ONである)場合には(ステップS10にてYes)、ステップS20に進む。第1のEGR故障判定条件が満たされていない(OFFである)場合には(ステップS10にてNo)、本ルーチンを終了する。
図3に示すように、始めにステップS10では、EGR故障判定部60は、第1のEGR故障判定条件が満たされているか(ONであるか)否かを判別する。第1のEGR故障判定条件は、第1の故障判定制御によるEGRバルブ54の故障判定を行う条件であり、例えばアイドル運転や車両減速時のように、暖機が完了した以降のエンジン稼働状態であり、かつ要求負荷及び回転数が一定の定常運転時(所定の運転時)である。第1のEGR故障判定条件が満たされている(ONである)場合には(ステップS10にてYes)、ステップS20に進む。第1のEGR故障判定条件が満たされていない(OFFである)場合には(ステップS10にてNo)、本ルーチンを終了する。
ステップS20では、EGR故障判定部60は、EGRバルブ54を強制開閉する。詳しくは、EGR故障判定部60は、まずEGRバルブ54を強制的に全閉作動させる(EGRカット)。このとき、インマニ圧センサ57によって吸気圧を検出して記憶装置に記憶しておく。そして、EGR故障判定部60は、所定時間(例えば数秒)経過後に強制的に所定開度(例えば全開)に開作動させる(EGR強制ON)。そして、EGR故障判定部60は、EGR強制ONの状態で吸気圧が安定する所定時間(例えば数秒)経過したときにインマニ圧センサ57によって吸気圧を検出して、EGRカット開始時に検出した吸気圧との差であるインマニ圧変化量を演算する。
そして、EGR故障判定部60は、このEGRバルブ54の開閉制御とインマニ圧変化量の計測を、所定回数na(例えば3回)実行し、1回あたりのインマニ圧変化量の平均値を演算する。なお、この各インマニ圧変化量の計測の間の所定時間(例えば数秒)では、インマニ圧判定実施条件が不成立となり、エンジンの運転状態に基づくEGR開度に制御される(EGR通常導入)。そして、ステップS30に進む。
ステップS30では、EGR故障判定部60は、ステップS20において演算したインマニ圧変化量の平均値が所定値Pa(所定の閾値)以上であるか否かを判別する。所定値Paは、EGRバルブが正常状態で開閉した際の吸気圧の変化量の下限値付近に設定すればよい。インマニ圧変化量(平均値)が所定値Pa以上である場合には(ステップS30にてYes)、ステップS40に進む。インマニ圧変化量(平均値)が所定値Pa未満である場合には(ステップS30にてNo)、ステップS50に進む。
ステップS40では、EGR故障判定部60は、EGRシステム50が正常であると判定する。そして、本ルーチンを終了する。
ステップS50では、EGR故障判定部60は、EGRシステム50が故障であると判定する。そして、ステップS60に進む。
ステップS50では、EGR故障判定部60は、EGRシステム50が故障であると判定する。そして、ステップS60に進む。
ステップS60では、EGR故障判定部60は、第2のEGR故障判定条件が満たされているか(ONであるか)否かを判別する。第2のEGR故障判定条件は、第2の故障判定制御によるEGRバルブ54の故障判定を行う条件であり、ソーク後のエンジン始動時のようにエンジン2が暖機を完了する前の冷態状態であることを条件とする。例えば車両1のハイブリッドコントロールユニット20にエンジン停止時間を計測するタイマ(停止時間計測部)を備え、エンジン停止状態が所定時間(例えば6時間)継続した状態である場合にソーク後と判定すればよい。なお、エンジン停止時間としては、例えば車両の電源オフ状態の継続時間としてもよいが、車両がEVモードにおいて長時間走行可能である場合には、EVモードが所定時間継続した状態からシリーズモードに移行すべくエンジン2が始動した直後のプレ運転(ウォームアップ運転)時にも、ソーク後として第2のEGR故障判定条件が満たされる。プレ運転は、低回転、低負荷でエンジン2を所定時間運転して、エンジン2の温度(例えば水温や排気温度に基づく)を上昇させ(エンジン2を暖機させ)、エンジン運転を安定させるものである。なお、プレ運転は、シリーズモードでのエンジン2の負荷より小さい負荷(所定の低負荷)で運転され、例えば排気温度が所定温度以上に増加した場合に完了し、その後はハイブリッドコントロールユニット20にて設定した要求負荷に応じたエンジン運転が行われる。
第2のEGR故障判定条件が満たされている(ONである)場合には(ステップS60にてYes)、ステップS70に進む。第2のEGR故障判定条件が満たされていない(OFFである)場合には(ステップS60にてNo)、ステップS60を繰り返す。
ステップS70では、EGR故障判定部60は、EGRバルブ54を全閉作動させる(EGRカット)。なお、EGRバルブ54の全閉作動開始時にEGR温度センサ56よりEGRガス温度を入力し、エンジンコントロールユニット22の記憶装置等に記憶しておく。そして、ステップS80に進む。
ステップS80では、EGR故障判定部60は、ステップS70におけるEGRバルブ54の全閉作動開始からの経過時間(始動後経過時間)が所定の故障判定時間ta(例えば100秒程度)経過した後に、EGR温度センサ56よりEGRガス温度を入力し、記憶装置に記憶しておいたEGRバルブ54の全閉作動開始時(始動時)のEGRガス温度との差であるEGR温度変化量(開故障判定用EGR温度変化量)が、所定の開故障判定値a以上であるか否かを判別する。開故障判定値aは、例えばエンジン2の始動からEGRバルブ54を全閉状態でプレ運転を故障判定時間ta行った際でのEGRガスの温度変化量の上限値付近、かつ上限値より高い値に設定すればよい。図5の実線に示すように、EGR温度変化量が開故障判定値a以上である場合には(ステップS80にてYes)、ステップS90に進む。図5の破線に示すように、EGR温度変化量が開故障判定値a未満である場合には(ステップS80にてNo)、ステップS100に進む。
ステップS90では、EGR故障判定部60は、EGR開故障、即ちEGRバルブ54が開状態で固着した故障状態であると判定する。そして、本ルーチンを終了する。
ステップS100では、EGR故障判定部60は、EGR閉故障、即ちEGRバルブ54が閉状態で固着した故障状態であると判定する。そして、本ルーチンを終了する。
ステップS100では、EGR故障判定部60は、EGR閉故障、即ちEGRバルブ54が閉状態で固着した故障状態であると判定する。そして、本ルーチンを終了する。
なお、本実施形態において、上記のステップS10からS50までの第1の故障判定制御が本発明の第1の故障判定部による故障判定に該当し、ステップS60からS100までの第2の故障判定制御が本発明の第2の故障判定部による開故障判定に該当する。
以上のように、本実施形態では、EGRバルブ54を開閉作動し、インマニ圧の変化量に基づく第1の故障判定制御によってEGRバルブ54が故障であるか否かを判別する。更に、EGRバルブ54が故障であると判定した場合には、EGRガス温度に基づく第2の故障判定制御によって、開故障であるか閉故障であるか判定する。
したがって、第1の故障判定制御による判定結果と第2の故障判定制御による判定結果とを組み合わせることで、EGRバルブ54が故障であるか否かだけでなく、故障である場合には閉故障及び開故障のいずれかといったEGRバルブ54の故障態様を詳細に判定することができる。
したがって、第1の故障判定制御による判定結果と第2の故障判定制御による判定結果とを組み合わせることで、EGRバルブ54が故障であるか否かだけでなく、故障である場合には閉故障及び開故障のいずれかといったEGRバルブ54の故障態様を詳細に判定することができる。
また、第2の故障判定制御では、第1の故障判定制御において故障であると判定されたことを前提として、EGRガスの温度変化に基づいてEGRバルブ54の開故障判定のみ行い、閉故障判定を行う必要がない。したがって、第2の故障判定制御における判定制御時間を短縮させることができる。これにより、エンジン始動時におけるプレ運転時にEGR故障判定制御をするためのEGRバルブ54の強制作動の時間を短縮させて、エンジン運転制御に精度、応答性(ドライバビリティ)を高めることができる。
一方、第1の故障判定制御を実行する第1のEGR故障判定条件は、暖機が完了した以後の定常運転時であるので、アイドル運転や車両減速走行時のように、実行機会を比較的多く確保することができる。したがって、第2の故障判定制御において開故障判定及び閉故障判定の両方を行うよりも故障判定の実行機会を増加させることができる。
そして、EGRバルブ54の故障態様を開故障あるいは閉故障といったように詳しく判定できるので、修理時における故障情報として有効に利用することができる。あるいは、エンジン2の運転が継続されたとしても、この故障状態に対応してエンジン2の作動制御を行うことができる。例えば開故障時には、EGRガスが常時多く吸気通路51に流入する可能性があるので、始動直後のような冷態アイドル状態においてエンジン2のアイドル回転数を上昇させることで、エンジン運転の安定性を図ることができる。
そして、EGRバルブ54の故障態様を開故障あるいは閉故障といったように詳しく判定できるので、修理時における故障情報として有効に利用することができる。あるいは、エンジン2の運転が継続されたとしても、この故障状態に対応してエンジン2の作動制御を行うことができる。例えば開故障時には、EGRガスが常時多く吸気通路51に流入する可能性があるので、始動直後のような冷態アイドル状態においてエンジン2のアイドル回転数を上昇させることで、エンジン運転の安定性を図ることができる。
また、第2の故障判定制御は、第1の故障判定制御において故障判定された場合に、その後に第2のEGR故障判定条件が成立したときに実行される。即ち、第1の故障判定制御において故障判定されるまでは、第2の故障判定制御が実行されないので、EGRバルブ54が正常状態であるときに不要な第2の故障判定制御の実行を回避することができる。これにより、ソーク後のエンジン始動時(プレ運転時)に強制的なEGRカットが抑制され、プレ運転時におけるエンジン運転の安定性を向上させることができる。
なお、上記のEGR故障判定制御のステップS60において判定する第2のEGR故障判定条件として、ソーク後のエンジン始動時、即ち所定時間以上のエンジン停止後から暖機が完了する前のエンジン2の運転時にしているが、これによりエンジン2の冷態運転時に第2のEGR故障判定が行われる。したがって、第2のEGR故障判定において、EGRバルブ54の開故障時にEGR温度変化量を大きくできるので、第2の故障判定制御における開故障の判定精度を向上させることができる。
更に、車両1に外気温度センサ42(外気温度検出手段)を備え、上記のEGR故障判定制御のステップS60において判定する第2のEGR故障判定条件として、更に外気温度が所定温度(例えば摂氏40度)未満であることを含むとよい。なお外気温度検出手段42は、吸気温度を含む。これは、吸気通路51に流入するEGRガス温度は一般的に摂氏80度程度より高くは上昇しないので、外気温度が所定温度以上であると、EGRガスが流入しても吸気温度の上昇量が少なく、温度上昇の判定が困難になるためである。このように第2のEGR故障判定条件に外気温度が低温であることを含む、即ち外気温度が所定温度以上であるときに、第2の故障判定制御を規制することで、第2の故障判定制御における判定精度を更に向上させることができる。
なお、本実施形態の車両1は、プラグインハイブリッド車であり、シリーズモードが可能であるので、エンジン運転に拘わらず走行駆動が可能である。そして、ソーク後におけるエンジン始動直後のプレ運転において、第2のEGR故障判定が実行されるので、EGRバルブ54の故障判定に適したエンジン運転にすることができる。これにより、第2のEGR故障判定において迅速かつ精度のよい故障判定が可能になる。
また、第2のEGR故障判定制御の実行中において、エンジン2の要求出力が低下してEV走行可能出力以下に低下した場合には、EVモードに移行せずにエンジン稼働を継続し、第2のEGR故障判定制御が完了してからEVモードに移行するとよい。これにより、第2のEGR故障判定制御を継続して完了させることができる。
また、本実施形態の車両1はプラグインハイブリッド車であり、大容量の車載電池11から外部コンセント24を介して外部へ電力を供給することが可能である。そして、外部への給電中においては、エンジン2の稼働中に第1の故障判定制御の故障判定結果に拘わらず、第2の故障判定制御を実行するとよい。
また、本実施形態の車両1はプラグインハイブリッド車であり、大容量の車載電池11から外部コンセント24を介して外部へ電力を供給することが可能である。そして、外部への給電中においては、エンジン2の稼働中に第1の故障判定制御の故障判定結果に拘わらず、第2の故障判定制御を実行するとよい。
外部への給電中では、車両停止状態であるとともに、発電するためにエンジン2が稼働していたとしても一定の出力とする定常運転であるため、エンジン運転制御の精度が要求されない。これにより、第1の故障判定制御と第2の故障判定制御の両方を実行して、EGRバルブ54の故障の有無の判定を完了させることができる。
また、第1のEGR故障判定制御においては、EGRバルブ54を複数回開閉作動させたときのインマニ圧の変化量の平均値を演算し、このインマニ圧変化量の平均値が所定値Pa未満である場合に、EGRバルブ54が故障していると判断する。これにより、第1のEGR故障判定制御において、インマニ圧が短時間に変動したとしても、故障判定精度を向上させることができる。
また、第1のEGR故障判定制御においては、EGRバルブ54を複数回開閉作動させたときのインマニ圧の変化量の平均値を演算し、このインマニ圧変化量の平均値が所定値Pa未満である場合に、EGRバルブ54が故障していると判断する。これにより、第1のEGR故障判定制御において、インマニ圧が短時間に変動したとしても、故障判定精度を向上させることができる。
以上で本発明の説明を終了するが、本発明は上記の実施形態に限定するものではない。
例えば、上記の実施形態では、第1の故障判定制御において故障判定された場合に第2の故障判定制御が行われるが、第1の故障判定制御の判定結果に拘わらず、第2の故障判定制御を実行してもよい。
また、EGR故障判定部60がエンジンコントロールユニット22に備えられているが、ハイブリッドコントロールユニット20に備えてもよいし、単独に車両1に備えられていてもよい。
例えば、上記の実施形態では、第1の故障判定制御において故障判定された場合に第2の故障判定制御が行われるが、第1の故障判定制御の判定結果に拘わらず、第2の故障判定制御を実行してもよい。
また、EGR故障判定部60がエンジンコントロールユニット22に備えられているが、ハイブリッドコントロールユニット20に備えてもよいし、単独に車両1に備えられていてもよい。
また、例えば、上記実施形態の車両1はプラグインハイブリッド車であるが、ハイブリッド車のエンジンにも発明を適用できる。また、ガソリンエンジン車やディーゼルエンジン車のエンジンにも、発明を適用することができる。また本発明は、車両以外でも、EGRシステムを備えたエンジンに対して適用することができる。
以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
なお、本出願は、2021年7月19日出願の日本特許出願(特願2021-118852)に基づくものであり、その内容は本出願の中に参照として援用される。
1 車両
2 エンジン
4 フロントモータ(モータ)
6 リヤモータ(モータ)
9 モータジェネレータ(発電機)
11 車載電池(蓄電池)
20 ハイブリッドコントロールユニット(走行モード切替制御部)
22 エンジンコントロールユニット
24 外部コンセント(給電部)
42 外気温度センサ(外気温度検出手段)
50 EGRシステム(排気還流システム)
53 EGR通路(排気還流路)
54 EGRバルブ(排気還流弁)
55 EGR制御部(排気還流制御部)
56 EGR温度センサ(排気還流ガス温度検出手段)
57 インマニ圧センサ(吸気圧検出手段)
60 EGR故障判定部(故障判定部、第1の故障判定部、第2の故障判定部)
2 エンジン
4 フロントモータ(モータ)
6 リヤモータ(モータ)
9 モータジェネレータ(発電機)
11 車載電池(蓄電池)
20 ハイブリッドコントロールユニット(走行モード切替制御部)
22 エンジンコントロールユニット
24 外部コンセント(給電部)
42 外気温度センサ(外気温度検出手段)
50 EGRシステム(排気還流システム)
53 EGR通路(排気還流路)
54 EGRバルブ(排気還流弁)
55 EGR制御部(排気還流制御部)
56 EGR温度センサ(排気還流ガス温度検出手段)
57 インマニ圧センサ(吸気圧検出手段)
60 EGR故障判定部(故障判定部、第1の故障判定部、第2の故障判定部)
Claims (8)
- エンジンの排気通路から排気の一部を吸気通路に導く排気還流路と、前記排気還流路に備えられ開又は閉作動することで前記排気還流路の開口面積を調節する排気還流弁と、前記エンジンの運転状態に基づいて前記排気還流弁を作動制御する排気還流制御部と、を有する排気還流システムにおける故障診断装置であって、
前記排気還流路を流れる排気還流ガスの温度を検出する排気還流ガス温度検出手段と、
前記吸気通路において前記エンジンに吸入される気体の吸気圧を検出する吸気圧検出手段と、
前記排気還流制御部により前記排気還流弁を開閉制御して、前記排気還流弁の故障の有無を判定する故障判定部と、を備え、
前記故障判定部は、前記エンジンの暖機が完了された以後の所定の運転時に前記排気還流弁を開閉作動させた際の前記吸気圧の変化に基づいて前記排気還流弁の故障判定を行う第1の故障判定部と、前記エンジンの暖機が完了する前の所定の運転時に前記排気還流弁を閉作動させて前記排気還流ガスの温度変化に基づいて前記排気還流弁の開故障判定を行う第2の故障判定部と、を有することを特徴とする排気還流システムの故障診断装置。 - 前記故障判定部は、前記第1の故障判定部において異常が判定された後に、前記第2の故障判定部による開故障判定を実行することを特徴とする請求項1に記載の排気還流システムの故障診断装置。
- 外気温度を検出する外気温度検出手段を備え、
前記故障判定部は、前記外気温度が所定温度以上であるときに、前記第2の故障判定部による開故障判定を規制することを特徴とする請求項1または2に記載の排気還流システムの故障診断装置。 - 前記エンジンの停止時間を計測する停止時間計測部を備え、
前記故障判定部は、前記エンジンの停止時間が所定時間未満である場合には、前記第2の故障判定部による開故障判定を規制することを特徴とする請求項1から3のいずれか1項に記載の排気還流システムの故障診断装置。 - 前記エンジンは車両に搭載され、
前記車両は、蓄電池と、前記エンジンにより駆動されて発電する発電機と、前記発電機及び前記蓄電池の少なくとも一方から供給された電力によって当該車両を走行駆動するモータと、を有するとともに、前記エンジンを停止して前記蓄電池から供給された電力より前記モータを駆動して走行する第1の走行モードと、前記エンジンを作動して前記発電機により発電しつつ走行する第2の走行モードと、を少なくとも前記車両に要求される要求出力に基づいて切り替える走行モード切替制御部を備え、
前記エンジンは、前記エンジンの暖機が完了されていない状態で前記第1の走行モードから前記第2の走行モードに切り替わる以前に、前記エンジンに前記第2の走行モードで発電する際の前記エンジンの負荷より小さい所定の低負荷運転を所定時間継続させるウォームアップ運転が実行され、
前記故障判定部は、前記ウォームアップ運転が継続されている際における前記モータによる走行駆動とともに、前記第2の故障判定部による開故障判定を実行することを特徴とする請求項1から3のいずれか1項に記載の排気還流システムの故障診断装置。 - 前記故障判定部は、前記ウォームアップ運転時に前記第2の故障判定部による開故障判定が完了する前に、前記要求出力が第1の走行モードに切り替わる値になり前記エンジンの停止が要求されたとしても、当該開故障判定が完了するまで前記ウォームアップ運転を継続することを特徴とする請求項5に記載の排気還流システムの故障診断装置。
- 前記車両は、前記蓄電池より外部へ給電する給電部を更に備え、
前記故障判定部は、前記外部への給電中において前記エンジンの稼働中では、前記第1の故障判定部における故障判定結果に拘わらず、前記第2の故障判定部による開故障判定を実行することを特徴とする請求項5または6に記載の排気還流システムの故障診断装置。 - 第1の故障判定部は、前記排気還流弁を所定の複数回開閉作動させたときの前記吸気圧の変化量の平均値が所定の閾値未満である場合に、前記排気還流弁が異常であることを判定する請求項1から7のいずれか1項に記載の排気還流システムの故障診断装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023536633A JP7435915B2 (ja) | 2021-07-19 | 2022-05-27 | 排気還流システムの故障診断装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-118852 | 2021-07-19 | ||
JP2021118852 | 2021-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023002752A1 true WO2023002752A1 (ja) | 2023-01-26 |
Family
ID=84979137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021692 WO2023002752A1 (ja) | 2021-07-19 | 2022-05-27 | 排気還流システムの故障診断装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7435915B2 (ja) |
WO (1) | WO2023002752A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63192945A (ja) * | 1987-02-03 | 1988-08-10 | Toyota Motor Corp | 内燃機関の排気ガス再循環装置のダイアグノ−シス装置 |
JPH03267561A (ja) * | 1990-03-19 | 1991-11-28 | Daihatsu Motor Co Ltd | 排気還流制御装置の故障診断方法 |
JPH0618653U (ja) * | 1992-07-31 | 1994-03-11 | 日本電子機器株式会社 | 排気ガス還流装置の故障診断装置 |
JPH0835449A (ja) * | 1994-07-25 | 1996-02-06 | Mitsubishi Electric Corp | 排気ガス還流制御装置の故障検出装置 |
JP2005291055A (ja) * | 2004-03-31 | 2005-10-20 | Mitsubishi Fuso Truck & Bus Corp | 故障診断装置付きegrシステムを備えたエンジン |
JP2014092066A (ja) * | 2012-11-02 | 2014-05-19 | Toyota Motor Corp | Egrバルブ故障検出装置 |
JP2016117314A (ja) * | 2014-12-18 | 2016-06-30 | 三菱自動車工業株式会社 | ハイブリッド車の故障判定装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL109460A (en) | 1993-05-10 | 1998-03-10 | Euro Celtique Sa | Controlled release formulation comprising tramadol |
-
2022
- 2022-05-27 JP JP2023536633A patent/JP7435915B2/ja active Active
- 2022-05-27 WO PCT/JP2022/021692 patent/WO2023002752A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63192945A (ja) * | 1987-02-03 | 1988-08-10 | Toyota Motor Corp | 内燃機関の排気ガス再循環装置のダイアグノ−シス装置 |
JPH03267561A (ja) * | 1990-03-19 | 1991-11-28 | Daihatsu Motor Co Ltd | 排気還流制御装置の故障診断方法 |
JPH0618653U (ja) * | 1992-07-31 | 1994-03-11 | 日本電子機器株式会社 | 排気ガス還流装置の故障診断装置 |
JPH0835449A (ja) * | 1994-07-25 | 1996-02-06 | Mitsubishi Electric Corp | 排気ガス還流制御装置の故障検出装置 |
JP2005291055A (ja) * | 2004-03-31 | 2005-10-20 | Mitsubishi Fuso Truck & Bus Corp | 故障診断装置付きegrシステムを備えたエンジン |
JP2014092066A (ja) * | 2012-11-02 | 2014-05-19 | Toyota Motor Corp | Egrバルブ故障検出装置 |
JP2016117314A (ja) * | 2014-12-18 | 2016-06-30 | 三菱自動車工業株式会社 | ハイブリッド車の故障判定装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023002752A1 (ja) | 2023-01-26 |
JP7435915B2 (ja) | 2024-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9260004B2 (en) | Method and device for verifying a drive torque applied by an electric machine in a hybrid drive of a motor vehicle | |
US7503413B2 (en) | System and method for controlling stopping and starting of a vehicle engine | |
JP5218661B2 (ja) | 内燃機関の制御装置および内燃機関の制御方法 | |
US20140210262A1 (en) | Vehicle Drive Device | |
JP7189693B2 (ja) | 電源システム | |
US20140110081A1 (en) | Heater Core Isolation Valve Position Detection | |
US9046059B2 (en) | Electric vehicle and fault detection method for exhaust gas recirculation system of internal combustion engine | |
JP2016147517A (ja) | ハイブリッド自動車 | |
JP6052498B2 (ja) | ハイブリッド車両の制御装置 | |
US9306477B2 (en) | Control device for hybrid vehicle | |
JP7128661B2 (ja) | バッテリ診断装置 | |
JP2004084484A (ja) | 車両用制御装置 | |
JP2016117316A (ja) | ハイブリッド車の故障判定装置 | |
WO2023002752A1 (ja) | 排気還流システムの故障診断装置 | |
JP4836765B2 (ja) | ハイブリッド車両の制御装置 | |
JP5772555B2 (ja) | 車両 | |
JP6525133B2 (ja) | ハイブリッド車の故障判定装置 | |
WO2023002751A1 (ja) | ハイブリッド車の制御装置 | |
JP2023014724A (ja) | 排気還流システムの故障診断装置 | |
CN116635284A (zh) | 双电机混合动力车辆及其电池故障处理方法和系统 | |
JP6465286B2 (ja) | ハイブリッド車の故障判定装置 | |
JP2020001447A (ja) | 車両 | |
JP7509118B2 (ja) | 組電池の劣化診断装置、及び組電池の劣化診断方法 | |
JP2016118101A (ja) | 車両の故障判定装置 | |
JPWO2023002751A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22845689 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023536633 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22845689 Country of ref document: EP Kind code of ref document: A1 |