WO2023002552A1 - 歯車装置の潤滑方法 - Google Patents

歯車装置の潤滑方法 Download PDF

Info

Publication number
WO2023002552A1
WO2023002552A1 PCT/JP2021/027068 JP2021027068W WO2023002552A1 WO 2023002552 A1 WO2023002552 A1 WO 2023002552A1 JP 2021027068 W JP2021027068 W JP 2021027068W WO 2023002552 A1 WO2023002552 A1 WO 2023002552A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
gear
solid lubricant
storage bag
internal space
Prior art date
Application number
PCT/JP2021/027068
Other languages
English (en)
French (fr)
Inventor
芳秀 清澤
Original Assignee
株式会社ハーモニック・ドライブ・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハーモニック・ドライブ・システムズ filed Critical 株式会社ハーモニック・ドライブ・システムズ
Priority to JP2023536251A priority Critical patent/JPWO2023002552A1/ja
Priority to KR1020237039800A priority patent/KR20230169374A/ko
Priority to PCT/JP2021/027068 priority patent/WO2023002552A1/ja
Priority to CN202180099595.9A priority patent/CN117561389A/zh
Priority to EP21950906.4A priority patent/EP4375538A1/en
Priority to TW111111256A priority patent/TW202305270A/zh
Publication of WO2023002552A1 publication Critical patent/WO2023002552A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/041Coatings or solid lubricants, e.g. antiseize layers or pastes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N19/00Lubricant containers for use in lubricators or lubrication systems

Definitions

  • the present invention relates to gear devices such as strain wave gear devices and planetary gear devices. More specifically, a method for lubricating a gear device in which parts to be lubricated such as meshing parts of gears and bearing parts of gears are lubricated using solid lubricant powder, and a lubrication mechanism for lubricating parts to be lubricated by the lubrication method. It relates to a gear device provided.
  • Solid lubricants such as molybdenum disulfide (MoS 2 ), tungsten disulfide (WS 2 ), polytetrafluoroethylene (PTFE), graphite, carbon nanotubes, and fullerenes are used as lubrication methods for gear devices such as strain wave gearing and planetary gearing.
  • Powder lubrication using agent powders is known. It has been verified that powder lubrication significantly extends lubrication life compared to a lubrication method in which a solid lubricant is simply applied to the surface of the lubrication target portion.
  • the applicant of the present application has proposed a method of lubricating a strain wave gearing using solid lubricant powder in Patent Documents 1 and 2.
  • Patent Document 3 proposes a gear device (mechanical element sealing device for space use) using solid lubricant powder such as molybdenum disulfide.
  • solid lubricant powder such as molybdenum disulfide.
  • solid lubricant powder is enclosed in a sealed casing that houses mechanical elements such as gears.
  • solid lubricant powder floats in the casing and is taken into lubrication target parts such as meshing parts of gears, so that the lubrication target parts are stably lubricated for a long period of time.
  • a member for stirring the solid lubricant powder is attached to the rotating shaft, and the solid lubricant powder is stirred and supplied to the lubrication target part.
  • the solid lubricant powder is enclosed in the casing of the gear device, and when the gear device is driven, the solid lubricant powder accumulated at the bottom of the casing is agitated and scattered due to the vibration generated and the rotation of rotating members such as gears. It is supplied to each lubrication target part. If a large amount of solid lubricant powder enters the parts to be lubricated of rotating members such as gears and bearings at once, the rotational resistance increases, and in the worst case, the rotation may be locked.
  • the object of the present invention is to propose a method for lubricating a gear device, which enables continuous supply of a predetermined amount of solid lubricant powder to the parts to be lubricated of the gear device.
  • Another object of the present invention is to provide a gear device having a lubricating mechanism that supplies solid lubricant powder to lubrication target parts by this new lubrication method.
  • the gear device lubrication method of the present invention includes: storing the solid lubricant powder in a powder storage bag with a powder ejection hole; Arranging the powder storage bag in the internal space of the device where the lubrication target part is located, Using the vibration or force acting on the powder storage bag or the solid lubricant powder as the gear is driven, the solid lubricant powder stored in the powder storage bag is discharged into the internal space of the device through the powder discharge hole. emit, In the internal space of the device, the target lubrication site is lubricated by the solid lubricant powder that has reached the lubrication target site.
  • the gear device equipped with the lubricating mechanism of the present invention is A powder storage bag arranged in the internal space of the device where the lubrication target part is located; a powder release hole formed in the powder storage bag; a solid lubricant powder stored in a powder storage bag; and
  • the solid lubricant powder is characterized by being a powder of a size that can be discharged into the internal space of the device through the powder discharge hole.
  • a powder storage bag containing the solid lubricant powder is arranged in the internal space of the device.
  • the solid lubricant powder is agitated and scattered inside the powder storage bag due to vibration or the like that occurs with the driving of the gear device, and a part of the solid lubricant powder is discharged from the powder discharge hole into the internal space of the device.
  • the portion to be lubricated is lubricated by the solid lubricant powder discharged into the internal space of the device.
  • a predetermined amount of solid lubricant Lubricant powder can be continuously discharged into the interior space of the device, thereby continuously supplying the required amount of solid lubricant powder to the area to be lubricated.
  • the required amount of solid lubricant powder can be continuously supplied to the lubrication target site.
  • a driving member arranged in the inner space of the device vibrates or deforms the powder storage bag so that a predetermined amount of solid lubricant powder can be continuously supplied to the inner space of the device through the powder discharge hole. good too.
  • a powder storage bag By manufacturing a powder storage bag using a sheet material or film material having a porous structure such as a non-woven fabric, a filter material, a net structure or a mesh structure, a large number of fine holes or films extending through the sheet-like material or film-like material are formed.
  • the mesh functions as powder ejection holes.
  • a bag fixing member having a predetermined rigidity made of punching metal or the like When attaching the powder storage bag to a predetermined location in the internal space of the device, it is desirable to use a bag fixing member having a predetermined rigidity made of punching metal or the like. That is, it is desirable to use a bag fixing member having a powder distribution hole in a portion facing the powder discharge hole so as not to hinder discharge of the solid lubricant powder from the powder discharge hole into the internal space of the device.
  • a powder guide member is arranged in the internal space of the device to discharge the solid lubricant powder into the internal space of the device. It is desirable to guide the solid lubricant powder to the lubrication target site by the powder guide member.
  • solid lubricants examples include MoS 2 , WS 2 , PTFE, graphite, carbon nanotubes, fullerene, or boron nitride.
  • the particle size of the solid lubricant powder is, for example, 10 nm to 100 ⁇ m in terms of median diameter. In this case, it is desirable to set the size of the powder discharge hole to a size through which particles having a diameter 5 to 300 times the median diameter can pass.
  • the inside of the powder storage bag is divided into a plurality of powder storage sections so that the solid lubricant powder is not unevenly distributed, and the solid lubricant powder is discharged from each of the powder storage sections into the internal space of the device.
  • a powder discharge hole may be formed in a portion of the bag corresponding to each of the powder storage units.
  • felt can be used as a seal for preventing the solid lubricant powder from leaking outside from the internal space of the device where powder lubrication is performed.
  • FIG. 1 is a schematic longitudinal sectional view showing a strain wave gearing according to Embodiment 1; FIG. It is an explanatory view showing a powder storage bag.
  • FIG. 4 is an explanatory diagram showing how solid lubricant powder is discharged from a powder storage bag due to bending of an external gear;
  • FIG. 10 is an explanatory diagram showing another example of a powder storage bag;
  • FIG. 10 is an explanatory diagram showing Modified Example 1 of the strain wave gear device in which the position of the powder storage bag is changed;
  • FIG. 10 is a schematic vertical cross-sectional view showing Modified Example 2 of the wave gear device in which a powder stirring guide member is arranged.
  • FIG. 10 is an explanatory diagram showing a powder stirring guide member of Modified Example 2;
  • FIG. 10 is a schematic vertical cross-sectional view showing Modified Example 3 in which powder stirring guide members of different shapes are arranged.
  • FIG. 11 is an explanatory diagram showing a powder stirring guide member of Modified Example 3;
  • FIG. 6 is a schematic longitudinal sectional view showing a strain wave gearing according to Embodiment 2;
  • FIG. 10 is a schematic vertical cross-sectional view showing a modified example of the strain wave gearing in which the position of the powder storage bag is changed;
  • FIG. 1A is a schematic longitudinal sectional view showing a cup-type strain wave gearing according to Embodiment 1.
  • FIG. A strain wave gearing 1 includes a rigid ring-shaped internal gear 2, a flexible external gear 3, and a wave generator 4 having an elliptical profile.
  • the external gear 3 is arranged coaxially inside the internal gear 2 .
  • the strain wave gearing 1 is installed in a horizontal posture with the device center axis 1a facing the horizontal direction.
  • the internal gear 2 is fixed to a device housing 5 which is a stationary member
  • the wave generator 4 is connected and fixed to an input shaft 6 such as a motor rotation shaft
  • the external gear 3 is coaxially connected and fixed to an output shaft 7a. be done.
  • the external gear 3 has a cup shape, and external teeth 3b are formed on the outer peripheral surface portion on the open end side of a radially flexible cylindrical body 3a.
  • a diaphragm 3c is formed extending radially inwardly from the opposite end of the cylindrical body 3a.
  • An annular rigid boss 3d is formed on the inner peripheral edge of the diaphragm 3c.
  • a boss 3d is sandwiched between an annular pressing member 7b and an output shaft 7a, and in this state, the three members are coaxially fastened and fixed by a plurality of fastening bolts 7c.
  • the wave generator 4 comprises a rigid plug 4a and a wave generator bearing 4b mounted on the outer peripheral surface of this elliptical contour. The wave generator 4 is mounted inside the portion of the external gear 3 where the external teeth 3b of the cylindrical body 3a are formed.
  • the internal space 9 of the cylindrical body portion 3a of the external gear 3 is surrounded by the wave generator 4 attached to the open end side and the cap 8 attached to the boss 3d side. is part of The internal space 9 incorporates a lubrication mechanism 10 that lubricates each lubrication target portion of the strain wave gearing 1 using solid lubricant powder.
  • the inner contact portion 11 of the wave generator 4 (the contact portion of the components of the wave generator bearing 4b), the contact portion 12 between the wave generator 4 and the external gear 3 (the outer ring outer peripheral surface of the wave generator bearing 4b and the external tooth contact portion with the inner peripheral surface of the cylindrical body portion 3 a of the gear 3 ); These sites are lubricated with a solid lubricant powder.
  • the lubricating mechanism 10 includes a powder storage bag 30 containing solid lubricant powder 20 and a bag fixing plate 40 .
  • the solid lubricant powder 20 is powder of solid lubricant such as MoS 2 , WS 2 , PTFE, graphite, carbon nanotube, fullerene, and boron nitride.
  • MoS2 powder for example, MoS2 powder.
  • the solid lubricant powder 20 is prepared so that its particle size is, for example, 10 nm to 100 ⁇ m in terms of median diameter. The particle size is a value measured by, for example, a photon diffusion method or a laser diffraction/scattering method.
  • FIG. 1B is an explanatory diagram showing the powder storage bag 30 with a part cut away.
  • the powder storage bag 30 is made of a flexible sheet material such as non-woven fabric or the like having a net structure or a mesh structure.
  • the inside of the powder storage bag 30 is partitioned by heat seals 31 or the like at equal angular intervals in the circumferential direction to form a plurality of storage portions 32 .
  • a predetermined amount of the solid lubricant powder 20 is stored in each storage portion 32 so that the solid lubricant powder 20 is not unevenly distributed inside the flexible powder storage bag 30 .
  • the powder storage bag 30 made from a sheet material with a net structure or a mesh structure has a large number of meshes (microholes) formed in a grid pattern that communicate the inside and outside of the bag.
  • the size of these meshes (microholes) is about 5 to 300 times the grain size of the solid lubricant powder 20 contained therein.
  • These meshes (microholes) function as powder discharge holes 33 capable of discharging the contained solid lubricant powder 20 to the outside when vibration or force acts on the powder containing bag 30 .
  • the powder discharge holes 33 are formed over the entire bag. It is also possible to form the powder discharge hole 33 only in a partial area of the powder storage bag 30 .
  • the flexible powder storage bag 30 is arranged between the inner end face 3f of the diaphragm 3c and the bag fixing plate 40 fixed to the boss 3d. That is, the powder storage bag 30 is arranged along the inner end face 3f and attached to the inner end face 3f by an adhesive or the like. Also, in this state, the powder storage bag 30 is held between the inner end surface 3 f and the bag fixing plate 40 .
  • the bag fixing plate 40 is fixed to the boss 3d at its inner peripheral edge side portion 41, and as a whole extends parallel to the inner end surface 3f at regular intervals. The bag fixing plate 40 holds the powder storage bag 30 pressed against the inner end face 3f.
  • the bag fixing plate 40 is made of a plate material with a rigid mesh structure such as punching metal, and a large number of meshes 42 (microholes) passing through the bag fixing plate 40 are formed in a grid pattern.
  • the size of the mesh 42 is about the same as or larger than the powder ejection holes 33 .
  • the solid lubricant powder 20 discharged from the powder discharge holes 33 is discharged into the internal space 9 through the mesh 42.
  • the wave generator 4 rotates and each portion of the cup-shaped external gear 3 is repeatedly bent in the radial direction as shown in FIG. 1C.
  • the portion of the diaphragm 3c of the external gear 3 to which the powder storage bag 30 is attached is also repeatedly flexed back and forth starting from the root portion to the boss 3d.
  • the powder containing bag 30 attached to the diaphragm 3c is repeatedly vibrated or deformed.
  • the solid lubricant powder 20 stored in each storage portion 32 of the powder storage bag 30 is agitated inside the bag and discharged into the internal space 9 through the powder discharge holes 33 .
  • the solid lubricant powder 20 discharged into the internal space 9 is applied to the internal contact portion 11 (the wave generator bearing 4b) and the contact portion 12 (the contact portion between the wave generator 4 and the external gear 3) facing the internal space 9. ) to lubricate these parts. Further, part of the solid lubricant powder 20 supplied to the wave generator bearing 4b moves through the orbital portion of the wave generator bearing 4b. Also, part of the solid lubricant powder 20 supplied between the wave generator 4 and the external gear 3 passes through and moves therebetween. For example, a powder guide 50 rotating at high speed integrally with the wave generator 4 is arranged on the side of the wave generator bearing 4b. The solid lubricant powder 20 is guided to the outer peripheral side by a powder guide 50 that rotates at high speed, is supplied to the tooth flanks 13 of the external teeth and the internal teeth, and lubricates them.
  • the solid lubricant powder 20 is stored in the powder storage bag 30 attached to the diaphragm 3c instead of being enclosed in the internal space 9.
  • the solid lubricant powder 20 stored therein is discharged into the internal space 9 from the powder discharge hole 33 .
  • a portion of the solid lubricant powder 20 discharged into the internal space 9 reaches the internal contact portions 11 and 12, which are the portions to be lubricated, and lubricates these portions.
  • the particle size of the solid lubricant powder 20 and the size of the powder discharge hole 33 of the powder storage bag 30 are appropriately set.
  • the powder storage bag 30 of this example is divided into a plurality of compartments to form a plurality of storage sections 32 .
  • a plurality of powder storage bags can be used instead of the powder storage bag 30 .
  • FIG. 1D is an explanatory view showing four powder storage bags 30(1) to 30(4) arranged concentrically. These powder storage bags 30(1)-30(4) can be placed in place of powder storage bag 30.
  • the number of arranged powder storage bags and the arrangement form are not limited to the example of FIG. 1D.
  • the size and shape of the powder storage bag may be the same, but the shape and size may be different according to the place of arrangement.
  • the powder storage bag 30 is arranged along the inner end face 3f of the diaphragm 3c of the external gear 3. As shown in FIG. The powder storage bag 30 can also be arranged at another location in the internal space 9 of the external gear 3 .
  • FIG. 2 is a schematic longitudinal sectional view showing modification 1 of strain wave gearing 1.
  • the powder storage bag 30A containing the solid lubricant powder 20 has a cylindrical shape and is arranged along the inner peripheral surface portion 3g of the cylindrical body portion 3a of the external gear 3.
  • the bag fixing plate 40A for fixing the powder storage bag 30A to the external gear 3 is connected to the attachment annular plate portion fixed to the boss 3d of the external gear 3 and the outer peripheral edge of the attachment annular plate portion. and a cylindrical plate portion extending through.
  • the cylindrical plate portion is a portion that presses the powder storage bag 30A against the inner peripheral surface portion 3g of the cylindrical body portion 3a.
  • the bag fixing plate 40A is flexible so as to follow the bending of the cylindrical body portion 3a of the external gear 3, and is made of a plate material having a mesh structure such as punching metal.
  • the powder storage bag 30A is formed from a sheet material having a porous structure, a net structure, or a mesh structure made of flexible nonwoven fabric or the like.
  • the cylindrical body portion 3a of the external gear 3 is repeatedly bent in the radial direction as the strain wave gearing device 1 is driven.
  • 40A are repeatedly radially displaced. This movement agitates and scatters the solid lubricant powder 20 contained in the powder containing bag 30A, and discharges it into the internal space 9 through the powder discharge hole and the communicating hole of the bag fixing plate 40A.
  • the portion to be lubricated is lubricated by the solid lubricant powder 20 discharged into the internal space 9 .
  • FIG. 3A is a schematic vertical cross-sectional view showing Modified Example 2 of the strain wave gearing 1
  • FIG. 3B is an explanatory diagram showing its powder stirring guide member.
  • a lubricating mechanism 10B of modified example 2 has a configuration in which a powder stirring guide member 60 is added to the lubricating mechanism 10 shown in FIG. 1A.
  • the powder stirring guide member 60 is coaxially fixed to the end face of the plug 4 a of the wave generator 4 on the inner space 9 side.
  • the powder stirring guide member 60 includes a mounting disk portion 61 fixed to the end surface of the plug 4a and a conical portion narrowing from the outer peripheral edge of the mounting disk portion 61 toward the boss 3d side of the external gear 3. 62.
  • powder circulation holes 63 are formed at equal angular intervals along the circumferential direction at the outer peripheral edge of the mounting disk portion 61 .
  • the wave generator 4 rotates at high speed, and the powder stirring guide member 60 attached thereto also rotates at high speed.
  • the solid lubricant powder 20 released from the powder storage bag 30 into the internal space 9 is stirred in the internal space 9 by the powder stirring guide member 60 rotating at high speed, and guided along the conical portion 62 toward the lubrication target site. be done.
  • the powder is guided to the lubrication target site through the powder circulation hole 63 .
  • the solid lubricant powder 20 discharged into the internal space 9 can be efficiently supplied to the lubrication target site.
  • FIG. 4A is a schematic vertical cross-sectional view showing Modified Example 3 of the strain wave gearing 1
  • FIG. 4B is an explanatory diagram showing its powder stirring guide member.
  • the powder stirring guide member 60A is an annular plate attached to the plug 4a of the wave generator 4, and along the outer peripheral edge of the powder stirring guide member 60A, there are even angular intervals in the circumferential direction.
  • a cut groove 61A is formed. Even when the powder stirring guide member 60A having this shape is used, the solid lubricant powder 20 can be efficiently guided to the lubrication target site.
  • FIG. 5 is a schematic longitudinal sectional view showing a strain wave gearing according to Embodiment 2 to which the present invention is applied.
  • a strain wave gearing 100 according to the second embodiment includes a rigid internal gear 102, a top hat-shaped flexible external gear 103, and a wave generator 104 arranged inside the external gear 103. ing. It also has a hollow input shaft 105, end plates 106 and 107 on both sides, and a bearing 108 that supports the internal gear 102 and the external gear 103 in a relatively rotatable state.
  • a plug 104 a of the wave generator 104 is formed integrally with the outer peripheral surface of the hollow input shaft 105 . Between the hollow input shaft 105, the external gear 103, the wave generator 104 and one of the end plates 106, an internal space 109, which is part of the internal space of the device, is formed.
  • a lubrication mechanism 110 is incorporated in the internal space 109 .
  • the lubricating mechanism 110 includes an annular powder storage bag 130 arranged along the annular end surface 103f of the diaphragm 103c of the external gear 103, and a powder storage bag 130 for holding the powder storage bag 130 along the annular end surface 103f.
  • a bag fixing plate 140 is provided.
  • the powder storage bag 130 is configured similarly to the powder storage bag 30 of the first embodiment, and the bag fixing plate 140 is configured similarly to the bag fixing plate 40 of the first embodiment.
  • the solid lubricant powder 120 stored in the powder storage bag 130 moves through the mesh of the powder storage bag 130 as the wave gear device 100 is driven. (powder discharge hole) into the internal space 109, and the internal contact portion 111 (contact portion of the component of the wave generator bearing) of the wave generator 104, which is the part to be lubricated in the strain wave gearing 100, and the wave generator 104. It is supplied to the contact portion 112 of the external gear 103 (the contact portion between the outer ring outer peripheral surface of the wave generator bearing and the inner peripheral surface of the cylindrical body portion 103a of the external gear 103), etc., and these portions are solid lubricated. Lubricated by agent powder 120 .
  • the powder storage bag 130 can be arranged at another location in the internal space 109 .
  • the powder storage bag 130A is arranged along the inner peripheral surface of the cylindrical body portion 103a of the external gear 103.
  • the powder storage bag 130A is held by a bag fixing plate 140A from the inside in the radial direction, and is maintained in a state of being arranged along the inner peripheral surface of the cylindrical body portion 103a.
  • the cylindrical body 103a of the external gear 103 is repeatedly bent in the radial direction, and is held between the cylindrical body 103a and the bag fixing plate 140A.
  • Each portion of the powder storage bag 130A is repeatedly radially displaced. This movement agitates and scatters the solid lubricant powder 120 contained in the powder containing bag 130A, causing the powder discharge holes (mesh) formed in the powder containing bag 130A and the bag fixing plate 140A to communicate with each other. It is discharged into the internal space 109 through the holes (mesh).
  • a portion of the solid lubricant powder 120 discharged into the internal space 109 is supplied to the internal contact portions 111 and 112, which are the portions to be lubricated, to lubricate these portions.
  • the powder storage bag is vibrated or flexed by the repeatedly flexed external gear.
  • a driving member that vibrates or deforms the powder storage bag may be arranged in the internal space of the device.
  • a member such as a roller that rotates while pressing the powder storage bag may be attached to a high-speed rotating wave generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Retarders (AREA)

Abstract

波動歯車装置(1)の潤滑機構(10)は、外歯歯車(3)の内部空間(9)に配置されており、固体潤滑剤粉末(20)が収納された粉末収納袋(30)を備えている。波動歯車装置(1)の駆動時には外歯歯車(3)のダイヤフラム(3c)が繰り返し撓められる。粉末収納袋(30)には、繰り返し振動あるいは変形が与えられ、固体潤滑剤粉末(20)が、粉末収納袋(30)に形成されている粉末放出穴(33)から内部空間(9)に放出される。内部空間(9)に放出された固体潤滑剤粉末によって、潤滑対象部位が潤滑される。大量の固体潤滑剤粉末が一度に潤滑対象部位に供給されることに起因する弊害を解消でき、継続して必要量の固体潤滑剤粉末を潤滑対象部位に供給できる。

Description

歯車装置の潤滑方法
 本発明は、波動歯車装置、遊星歯車装置等の歯車装置に関する。更に詳しくは、固体潤滑剤粉末を用いて歯車のかみ合い部分、歯車の軸受部分等の潤滑対象部位が潤滑される歯車装置の潤滑方法、および、当該潤滑方法によって潤滑対象部位を潤滑する潤滑機構を備えた歯車装置に関する。
 波動歯車装置、遊星歯車装置等の歯車装置における潤滑方法として、二硫化モリブデン(MoS)、二硫化タングステン(WS)、ポリテトラフルオロエチレン(PTFE)、黒鉛、カーボンナノチューブ、フラーレンなどの固体潤滑剤の粉末を使った粉体潤滑が知られている。粉体潤滑は、固体潤滑剤を潤滑対象部位の表面に施しただけの潤滑方法に比べて、潤滑寿命が大幅に伸びることが検証されている。本願の出願人は、特許文献1、2において、固体潤滑剤粉末を用いた波動歯車装置の潤滑方法を提案している。
 また、特許文献3には、二硫化モリブデン等の固体潤滑剤の粉末を用いた歯車装置(宇宙用機械要素密閉装置)が提案されている。ここに記載の歯車装置では、歯車等の機械要素が収納されている密閉されたケーシングに、固体潤滑剤の粉末が封入される。無重力空間内において、固体潤滑剤の粉末がケーシング内で浮遊して、歯車のかみ合い部分等の潤滑対象部位に取り込まれ、潤滑対象部位が長期間に亘り安定して潤滑される。また、ケーシング内において、回転軸に、固体潤滑剤の粉末を撹拌する部材を取り付け、固体潤滑剤の粉末を攪拌して潤滑対象部位に供給している。
国際公開第2016/084235号 国際公開第2016/113847号 特開平7-205899号公報
 従来の固体潤滑剤粉末を用いた潤滑方法には次のような解決すべき課題がある。固体潤滑剤粉末は歯車装置のケーシング内に封入され、歯車装置を駆動すると、発生する振動、歯車等の回転部材の回転等によってケーシングの底に溜まっている固体潤滑剤粉末が撹拌、飛散し、潤滑対象部位のそれぞれに供給される。大量の固体潤滑剤粉末が一度に歯車、ベアリング等の回転部材の潤滑対象部位に入り込むと、回転抵抗が大きくなり、最悪の場合には、回転がロックすることもある。特に、宇宙用途の歯車装置の潤滑に固体潤滑剤粉末を用いる場合には、ロケットの発射時等に生じる大きな振動、衝撃によって、一度に大量の固体潤滑剤粉末が移動して、ベアリング、歯車のかみ合い部分等に詰まり、歯車装置の適切な動作が阻害されるおそれがある。
 このような弊害を解消するためには、固体潤滑剤粉末を少量ずつ、潤滑対象部位に供給できることが必要である。しかしながら、従来においては、この点については着目されておらず、また、そのための潤滑方法も提案されていない。
 本発明の目的は、この点に鑑みて、歯車装置の潤滑対象部位に、所定量の固体潤滑剤粉末を継続して供給できるようにした歯車装置の潤滑方法を提案することにある。また、本発明の目的は、この新たな潤滑方法により固体潤滑剤粉末を潤滑対象部位に供給する潤滑機構を備えた歯車装置を提供することにある。
 上記の課題を解決するために、本発明の歯車装置の潤滑方法は、
 固体潤滑剤粉末を、粉末放出穴を備えた粉末収納袋に収納し、
 粉末収納袋を、潤滑対象部位が位置している装置内部空間に配置し、
 歯車装置の駆動に伴って粉末収納袋あるいは固体潤滑剤粉末に作用する振動あるいは力を利用して、粉末放出穴を介して、粉末収納袋に収納されている固体潤滑剤粉末を装置内部空間に放出し、
 装置内部空間において、潤滑対象部位に到達した固体潤滑剤粉末によって当該潤滑対象部位を潤滑することを特徴としている。
 また、本発明の潤滑機構を備えた歯車装置は、
 潤滑対象部位が位置している装置内部空間に配置した粉末収納袋と、
 粉末収納袋に形成した粉末放出穴と、
 粉末収納袋に収納された固体潤滑剤粉末と、
を備えており、
 固体潤滑剤粉末は、粉末放出穴を通って装置内部空間に放出可能な大きさの粉末であることを特徴としている。
 本発明では、潤滑対象部位が位置する装置内部空間に固体潤滑剤粉末を封入する代わりに、装置内部空間に、固体潤滑剤粉末が収納された粉末収納袋を配置している。歯車装置の駆動に伴って発生する振動等により、粉末収納袋の内部で固体潤滑剤粉末が撹拌、飛散し、一部の固体潤滑剤粉末が粉末放出穴から装置内部空間に放出される。装置内部空間に放出された固体潤滑剤粉末により潤滑対象部位が潤滑される。
 想定される振動、衝撃等に基づき、粉体放出穴の大きさ、配置密度、固体潤滑剤粉末の粒径等を適切に設定しておくことで、歯車装置の駆動状態において、所定量の固体潤滑剤粉末を継続して装置内部空間に放出でき、これによって、必要量の固体潤滑剤粉末を潤滑対象部位に継続して供給できる。この結果、ベアリング、歯車のかみ合い部分等に一度に大量の固体潤滑剤粉末が送り込まれてしまうことを防止できる。また、継続して必要量の固体潤滑剤粉末を潤滑対象部位に供給することができる。
 継続して所定量の固体潤滑剤粉末を、粉末放出穴を介して、装置内部空間に供給できるように、装置内部空間に配置した駆動部材によって、粉末収納袋に振動あるいは変形を与えるようにしてもよい。
 不織布、フィルタ用素材等の多孔質構造、ネット構造あるいはメッシュ構造のシート素材あるいはフィルム素材を用い粉末収納袋を製作することで、シート状素材あるいはフィルム状素材を貫通して延びる多数の微小穴あるいは網目が、粉末放出穴として機能する。ここで、真空用途では、粉末収納袋を、PTFE、PEEK、ポリイミドまたはポリイミドアミドからなるシート素材あるいはフィルム素材から形成することが望ましい。
 粉末収納袋を、装置内部空間の所定の場所に取り付ける場合には、パンチングメタル等から形成した所定の剛性を備えた袋固定部材を用いることが望ましい。すなわち、粉末放出穴から装置内部空間への固体潤滑剤粉末の放出を阻害することのないように、粉末放出穴に対峙する部分に粉末流通穴を備えた袋固定部材を用いることが望ましい。
 粉末収納袋の粉末放出穴から装置内部空間に放出された固体潤滑剤粉末を、効率よく、潤滑対象部位に導くためには、装置内部空間に粉末案内部材を配置し、装置内部空間に放出された固体潤滑剤の粉末を、粉末案内部材によって潤滑対象部位に案内することが望ましい。
 固体潤滑剤としては、例えば、MoS、WS、PTFE、黒鉛、カーボンナノチューブ、フラーレン、または、窒化ホウ素を用いることができる。
 また、固体潤滑剤の粉末の粒径は、例えば、メジアン径で、10nmから100μmとされる。この場合には、粉末放出穴の大きさを、メジアン径の5倍から300倍の径の粒子が通過可能な大きさに設定しておくことが望ましい。
 さらに、粉末収納袋の内部を、固体潤滑剤の粉末が偏在しないように、複数の粉末収納部に仕切り、粉末収納部のそれぞれから装置内部空間に固体潤滑剤の粉末が放出されるように、粉末収納部のそれぞれに対応する袋の部位に粉末放出穴を形成しておけばよい。
 なお、粉体潤滑が行われる装置内部空間から外部に固体潤滑剤粉末が漏出することを防止するためのシールとして、フェルトを用いることができる。
実施の形態1に係る波動歯車装置を示す概略縦断面図である。 粉末収納袋を示す説明図である。 外歯歯車の撓みに起因して粉末収納袋から固体潤滑剤粉末が放出される様子を示す説明図である。 粉末収納袋の別の例を示す説明図である。 粉末収納袋の位置を変更した波動歯車装置の改変例1を示す説明図である。 粉末撹拌案内部材を配置した波動歯車装置の改変例2を示す概略縦断面図である。 改変例2の粉末撹拌案内部材を示す説明図である。 異なる形状の粉末撹拌案内部材を配置した改変例3を示す概略縦断面図である。 改変例3の粉末撹拌案内部材を示す説明図である。 実施の形態2に係る波動歯車装置を示す概略縦断面図である。 粉末収納袋の位置を変更した波動歯車装置の改変例を示す概略縦断面図である。
 以下に、図面を参照して、本発明を適用した歯車装置の実施の形態を説明する。以下の実施の形態は、本発明を波動歯車装置に適用した場合のものであるが、本発明は、遊星歯車装置、その他の歯車装置にも同様に適用可能である。
[実施の形態1]
 図1Aは実施の形態1に係るカップ型の波動歯車装置を示す概略縦断面図である。波動歯車装置1は、円環状の剛性の内歯歯車2と、可撓性の外歯歯車3と、楕円状輪郭の波動発生器4とを備えている。外歯歯車3は内歯歯車2の内側に同軸に配置されている。波動歯車装置1は、その装置中心軸線1aが水平方向を向く水平姿勢で設置されている。例えば、内歯歯車2は固定側部材である装置ハウジング5に固定され、波動発生器4はモーター回転軸等の入力シャフト6に連結固定され、外歯歯車3は出力軸7aに同軸に連結固定される。
 外歯歯車3はカップ形状をしており、半径方向に撓み可能な円筒状胴部3aの開口端の側の外周面部分に外歯3bが形成されている。円筒状胴部3aの反対側の端からは半径方向の内方に延びるダイヤフラム3cが形成されている。ダイヤフラム3cの内周縁には円環状の剛性のボス3dが形成されている。円環状の押さえ部材7bと出力軸7aの間にボス3dを挟み、この状態で、複数本の締結用ボルト7cによって、三部材が同軸に締結固定されている。波動発生器4は、剛性のプラグ4aと、この楕円状輪郭の外周面に装着された波動発生器軸受け4bとを備えている。波動発生器4は、外歯歯車3における円筒状胴部3aの外歯3bが形成されている部分の内側に装着されている。
 外歯歯車3の円筒状胴部3aの内部空間9は、その開口端の側に装着されている波動発生器4と、ボス3dの側に取り付けたキャップ8とによって囲まれている装置内部空間の一部である。内部空間9には、波動歯車装置1の各潤滑対象部位を、固体潤滑剤粉末を用いて潤滑する潤滑機構10が組み込まれている。
 波動歯車装置1の主要な潤滑対象部位は三ケ所ある。波動発生器4の内部接触部11(波動発生器軸受け4bの構成部品の接触部)、波動発生器4と外歯歯車3の接触部12(波動発生器軸受け4bの外輪外周面と、外歯歯車3の円筒状胴部3aの内周面との接触部)、および、内歯歯車2と外歯歯車3の歯面部13である。これらの部位が、固体潤滑剤粉末によって潤滑される。
 潤滑機構10は、固体潤滑剤粉末20が収納された粉末収納袋30と、袋固定板40とを備えている。固体潤滑剤粉末20は、MoS、WS、PTFE、黒鉛、カーボンナノチューブ、フラーレン、窒化ホウ素などの固体潤滑剤の粉末である。例えば、MoSの粉末である。固体潤滑剤粉末20は、その粒径が、例えば、メジアン径で10nm~100μmとなるように調製されたものである。粒径は、例えば、光子拡散法、レーザ回折/錯乱法により測定した場合の値である。
 図1Bは粉末収納袋30を、一部を切り欠いた状態で示す説明図である。この図も参照して説明すると、粉末収納袋30は、不織布等の撓み性のあるネット構造あるいはメッシュ構造のシート素材から製作され、ダイヤフラム3cの内部空間9の側の円環状の内側端面3fに対応する大きさの円環状の袋である。粉末収納袋30の内部は、本例では、円周方向に等角度間隔でヒートシール31等によって仕切られて、複数の収納部32が形成されている。各収納部32に、所定量の固体潤滑剤粉末20が収納されており、固体潤滑剤粉末20が柔軟な粉末収納袋30の内部において偏在しないようにしてある。
 ネット構造あるいはメッシュ構造のシート素材から製作した粉末収納袋30は、袋内外を連通する多数の網目(微小穴)が格子状に形成されている。これらの網目(微小穴)の大きさは、収納されている固体潤滑剤粉末20の粒径の5倍から300倍程度である。これらの網目(微小穴)は、粉末収納袋30に振動、力が作用すると、収納されている固体潤滑剤粉末20を外部に放出可能な粉末放出穴33として機能する。本例では、ネット構造あるいはメッシュ構造のシート素材によって粉末収納袋30が製作されているので、袋全体に亘って粉末放出穴33が形成されている。粉末放出穴33を、粉末収納袋30の一部の領域にのみ形成することも可能である。
 柔軟な粉末収納袋30は、ダイヤフラム3cの内側端面3fと、ボス3dに固定した袋固定板40との間に配置されている。すなわち、粉末収納袋30は、内側端面3fに沿う状態に配置され、接着剤等によって内側端面3fに取り付けられている。また、この状態で、粉末収納袋30は、内側端面3fと袋固定板40との間に保持されている。袋固定板40は、その内周縁側の部位41がボス3dに固定されており、全体として内側端面3fに対して一定の間隔で平行に延びている。袋固定板40によって、粉末収納袋30は内側端面3fの側に押し付けられた状態に保持される。
 袋固定板40は、パンチングメタル等の剛性のあるメッシュ構造の板材から形成されており、袋固定板40を貫通する多数の網目42(微小穴)が格子状に形成されている。網目42の大きさは、粉末放出穴33と同程度あるいは、それよりも大きい。袋固定板40によって押さえつけられている粉末収納袋30の部位においては、粉末放出穴33から放出された固体潤滑剤粉末20が網目42を通って内部空間9に放出される。
 潤滑機構10を備えた波動歯車装置1の駆動状態においては、波動発生器4が回転して、図1Cに示すようにカップ形状の外歯歯車3の各部分が繰り返し半径方向に撓められる。粉末収納袋30が取り付けられている外歯歯車3のダイヤフラム3cの部分も、ボス3dへの付け根部分を起点として繰り返し前後に撓められる。ダイヤフラム3cに取り付けた粉末収納袋30には繰り返し振動あるいは変形が与えられる。これにより、粉末収納袋30の各収納部32に収納されている固体潤滑剤粉末20が袋内部で撹拌され、粉末放出穴33から内部空間9に放出される。
 内部空間9に放出された固体潤滑剤粉末20は、内部空間9に面している内部接触部11(波動発生器軸受け4b)および接触部12(波動発生器4と外歯歯車3の接触部)に供給され、これらの部分が潤滑される。さらに、波動発生器軸受け4bに供給された固体潤滑剤粉末20の一部は、当該波動発生器軸受け4bの軌道部を通り抜けて移動する。また、波動発生器4と外歯歯車3の間に供給された固体潤滑剤粉末20の一部は、これらの間を通り抜けて移動する。例えば、波動発生器軸受け4bの側方には、波動発生器4と一体となって高速回転している粉体ガイド50が配置されている。固体潤滑剤粉末20は、高速回転する粉体ガイド50によって外周側にガイドされて、潤滑部分である外歯および内歯の歯面部13に供給され、ここを潤滑する。
 このように、本例では、固体潤滑剤粉末20は、内部空間9に封入する代わりに、ダイヤフラム3cに取り付けた粉末収納袋30に収納されている。波動歯車装置1の駆動に伴って粉末収納袋30に振動、変形が与えられると、収納されている固体潤滑剤粉末20が、粉末放出穴33から内部空間9に放出される。内部空間9に放出された固体潤滑剤粉末20の一部が潤滑対象部位である内部接触部11、接触部12に到達して、これらの部位を潤滑する。固体潤滑剤粉末20の粒径および粉末収納袋30の粉末放出穴33の大きさが適切に設定されている。これにより、波動歯車装置1の駆動に伴って、粉末放出穴33から継続して所定量の固体潤滑剤粉末20が内部空間9に放出される。よって、継続して適量の固体潤滑剤粉末20が潤滑対象部位に供給される。多量の固体潤滑剤粉末が一度に潤滑対象部位に供給されて、波動発生器軸受4bの摺動抵抗が増加するなどの弊害を確実に防止できる。
 なお、本例の粉末収納袋30は、複数に区画されて複数の収納部32が形成されている。粉末収納袋30の代わりに、複数の粉末収納袋を用いることもできる。図1Dは、同心状に配列した4枚の粉末収納袋30(1)~30(4)を示す説明図である。これらの粉末収納袋30(1)~30(4)を、粉末収納袋30の代わりに配置することができる。勿論、粉末収納袋の配置枚数、配置形態は図1Dの例に限定されるものではない。また、粉末収納袋の大きさ、形状も、同一であってもよいが、配置場所に応じて異なる形状、大きさにすればよい。さらに、内部が複数に区画された構成の粉末収納袋を複数枚、配置することもできる。
(改変例1)
 上記の例では、粉末収納袋30が、外歯歯車3のダイヤフラム3cの内側端面3fに沿って配置されている。粉末収納袋30は外歯歯車3の内部空間9において別の場所に配置することもできる。
 図2は、波動歯車装置1の改変例1を示す概略縦断面図図である。改変例1の潤滑機構10Aでは、固体潤滑剤粉末20が収納された粉末収納袋30Aが円筒形状をしており、外歯歯車3の円筒状胴部3aの内周面部分3gに沿って配置されている。粉末収納袋30Aを外歯歯車3に固定するための袋固定板40Aは、外歯歯車3のボス3dに固定されている取付け用環状板部分と、この取付け用環状板部分の外周縁に連続して延びている円筒板部分とを備えている。円筒板部分は、粉末収納袋30Aを円筒状胴部3aの内周面部分3gに押し付けている部分である。袋固定板40Aは、外歯歯車3の円筒状胴部3aの撓みに追従して半径方向に撓み可能な撓み性を備えており、パンチングメタル等のメッシュ構造の板材から形成されている。粉末収納袋30Aは柔軟な不織布等からなる多孔質構造、ネット構造あるいはメッシュ構造のシート素材から形成されている。
 この構成の潤滑機構10Aにおいても、波動歯車装置1の駆動に伴って外歯歯車3の円筒状胴部3aが繰り返し半径方向に撓み、これに追従して、円筒状胴部3aと袋固定板40Aとの間に保持されている粉末収納袋30Aの各部分は繰り返し半径方向に変位する。この動きにより、粉末収納袋30Aに収納されている固体潤滑剤粉末20が撹拌されて飛散して、粉末放出穴および袋固定板40Aの連通穴を介して、内部空間9に放出される。内部空間9に放出された固体潤滑剤粉末20によって潤滑対象部位が潤滑される。
(改変例2)
 図3Aは波動歯車装置1の改変例2を示す概略縦断面図であり、図3Bはその粉末撹拌案内部材を示す説明図である。改変例2の潤滑機構10Bは、図1Aに示す潤滑機構10に粉末撹拌案内部材60を追加した構成となっている。粉末撹拌案内部材60は、波動発生器4のプラグ4aにおける内部空間9の側の端面に同軸に固定されている。粉末撹拌案内部材60は、プラグ4aの端面に固定した取付円板部分61と、この取付円板部分61の外周縁から外歯歯車3のボス3dの側に向けて窄まっている円錐状部分62とを備えている。また、取付円板部分61の外周縁の部位には、円周方向に沿って等角度間隔で粉末流通穴63が形成されている。
 波動歯車装置1が駆動されると、波動発生器4が高速回転し、ここに取り付けられている粉末撹拌案内部材60も一緒に高速回転する。粉末収納袋30から内部空間9に放出された固体潤滑剤粉末20は、高速回転する粉末撹拌案内部材60によって内部空間9内において撹拌され、円錐状部分62に沿って潤滑対象部位に向けて案内される。また、粉末流通穴63を通って潤滑対象部位に案内される。内部空間9に放出された固体潤滑剤粉末20を、効率よく、潤滑対象部位に供給できる。
(改変例3)
 なお、粉末撹拌案内部材60として各種の形状のものを用いることができる。例えば、図4Aは波動歯車装置1の改変例3を示す概略縦断面図であり、図4Bはその粉末撹拌案内部材を示す説明図である。これらの図に示すように、粉末撹拌案内部材60Aは、波動発生器4のプラグ4aに取り付けられた環状板であり、粉末撹拌案内部材60Aの外周縁に沿って、円周方向に等角度間隔で形成した切込み溝61Aが形成されている。この形状の粉末撹拌案内部材60Aを用いた場合においても、固体潤滑剤粉末20を効率よく、潤滑対象部位に導くことができる。
[実施の形態2]
 図5は本発明を適用した実施の形態2に係る波動歯車装置を示す概略縦断面図である。実施の形態2の波動歯車装置100は、剛性の内歯歯車102と、シルクハット形状をした可撓性の外歯歯車103と、外歯歯車103の内側に配置した波動発生器104とを備えている。また、中空入力軸105と、両側のエンドプレート106、107と、内歯歯車102および外歯歯車103を相対回転自在の状態で支持している軸受108とを備えている。波動発生器104のプラグ104aは、中空入力軸105の外周面に一体形成されている。中空入力軸105と、外歯歯車103と、波動発生器104と、一方のエンドプレート106との間に、装置内部空間の一部である内部空間109が形成されている。
 内部空間109に潤滑機構110が組み込まれている。潤滑機構110は、外歯歯車103のダイヤフラム103cの円環状端面103fに沿って配置した円環形状の粉末収納袋130と、粉末収納袋130を円環状端面103fに沿った状態に保持するための袋固定板140とを備えている。粉末収納袋130は実施例1の粉末収納袋30と同様に構成されており、袋固定板140は実施の形態1の袋固定板40と同様に構成されている。
 この構成の潤滑機構110においても、実施の形態1の場合と同様に、波動歯車装置100の駆動に伴って、粉末収納袋130に収納されている固体潤滑剤粉末120が粉末収納袋130の網目(粉末放出穴)から内部空間109に放出され、波動歯車装置100の潤滑対象部位である波動発生器104の内部接触部111(波動発生器軸受けの構成部品の接触部)、波動発生器104と外歯歯車103の接触部112(波動発生器軸受けの外輪外周面と、外歯歯車103の円筒状胴部103aの内周面との接触部)等に供給され、これらの部位が、固体潤滑剤粉末120によって潤滑される。
(実施の形態2の改変例)
 シルクハット型の波動歯車装置100においても、内部空間109において、粉末収納袋130を別の部位に配置することができる。例えば、図6に示す潤滑機構110Aでは、粉末収納袋130Aが外歯歯車103の円筒状胴部103aの内周面に沿って配置されている。この粉末収納袋130Aは、半径方向の内側から、袋固定板140Aによって保持され、円筒状胴部103aの内周面に沿って配置された状態が維持されている。波動歯車装置100の駆動に伴って外歯歯車103の円筒状胴部103aが繰り返し半径方向に撓み、これに追従して、円筒状胴部103aと袋固定板140Aとの間に保持されている粉末収納袋130Aの各部分は繰り返し半径方向に変位する。この動きにより、粉末収納袋130Aに収納されている固体潤滑剤粉末120が撹拌されて飛散して、粉末収納袋130Aに形成されている粉末放出穴(網目)および袋固定板140Aの粉体連通穴(網目)を介して、内部空間109に放出される。内部空間109に放出された固体潤滑剤粉末120の一部が潤滑対象部位である内部接触部111、接触部112に供給されて、これらの部位を潤滑する。
[その他の実施の形態]
 上記の各例においては、繰り返し撓められる外歯歯車によって、粉末収納袋に振動あるいは撓みが与えられる。装置内部空間に、粉末収納袋に振動あるいは変形を与える駆動部材を配置することもできる。例えば、波動歯車装置の場合には、高速回転する波動発生器に、粉末収納袋を押し付けながら回転するローラ等の部材を取り付けておいてもよい。

Claims (21)

  1.  固体潤滑剤粉末を、粉末放出穴を備えた粉末収納袋に収納し、
     前記粉末収納袋を、潤滑対象部位が位置している装置内部空間に配置し、
     歯車装置の駆動に伴って前記粉末収納袋あるいは前記固体潤滑剤粉末に作用する振動あるいは力を利用して、前記粉末放出穴を介して、前記粉末収納袋に収納されている前記固体潤滑剤粉末を前記装置内部空間に放出し、
     前記装置内部空間に放出されて前記潤滑対象部位に到達した前記固体潤滑剤粉末によって当該潤滑対象部位が潤滑されることを特徴とする歯車装置の潤滑方法。
  2.  請求項1において、
     前記装置内部空間に、前記歯車装置の駆動に伴って振動あるいは回転する部材を配置し、
     前記部材により、前記粉末収納袋に繰り返し振動を与え、あるいは、前記粉末収納袋に繰り返し変形を与えて、
     前記粉末放出穴からの前記固体潤滑剤粉末の放出を促進させる歯車装置の潤滑方法。
  3.  請求項1において、
     多孔質構造、ネット構造あるいはメッシュ構造のシート素材あるいはフィルム素材を用いて前記粉末収納袋を製作することで、前記シート素材あるいはフィルム素材を貫通して延びている網目を前記粉末放出穴として用いる歯車装置の潤滑方法。
  4.  請求項1において、
     前記粉末収納袋を、PTFE、PEEK、ポリイミドまたはポリイミドアミドからなるシート素材あるいはフィルム素材を用いて形成する歯車装置の潤滑方法。
  5.  請求項1において、
     前記装置内部空間に面している内側表面を備えた前記歯車装置の構成部品に袋固定部材を取り付け、
     前記内側表面と前記袋固定部材との間に前記粉末収納袋を保持する歯車装置の潤滑方法。
  6.  請求項1において、
     前記装置内部空間に粉末撹拌案内部材を配置し、
     前記装置内部空間に放出された前記固体潤滑剤粉末を、前記粉末撹拌案内部材によって撹拌すると共に前記潤滑対象部位に案内する歯車装置の潤滑方法。
  7.  請求項1において、
     前記固体潤滑剤粉末は、MoS、WS、PTFE、黒鉛、カーボンナノチューブ、フラーレン、または、窒化ホウ素の粉末である歯車装置の潤滑方法。
  8.  請求項1において、
     前記固体潤滑剤粉末の粒径は、メジアン径で、10nmから100μmであり、
     前記粉末放出穴の大きさは、前記メジアン径の5倍から300倍の径の粒子が通過可能な大きさである歯車装置の潤滑方法。
  9.  請求項1において、
     前記粉末収納袋の内部を、前記固体潤滑剤粉末が偏在しないように、複数の収納部に仕切り、
     前記収納部のそれぞれから前記装置内部空間に前記固体潤滑剤粉末が放出されるように、前記収納部のそれぞれに対応する部位に前記粉末放出穴を形成する歯車装置の潤滑方法。
  10.  請求項1において、
     前記歯車装置は、剛性の内歯歯車と、可撓性の外歯歯車と、波動発生器とを備えた波動歯車装置であり、
     前記波動発生器は、前記外歯歯車の内側に配置され、前記外歯歯車を半径方向に撓めて前記内歯歯車にかみ合わせ、前記内歯歯車に対する前記外歯歯車のかみ合い位置を円周方向に移動させるようになっており、
     前記装置内部空間は、前記波動発生器が配置されている前記外歯歯車の内側空間あるいは当該内側空間に連通する空間部分であり、
     前記粉末収納袋は、前記外歯歯車における前記波動発生器によって繰り返し撓められる部位に沿って配置され、当該部位によって振動あるいは変形が与えられるようになっている歯車装置の潤滑方法。
  11.  潤滑対象部位が位置している装置内部空間に配置した粉末収納袋と、
     前記粉末収納袋に形成した粉末放出穴と、
     前記粉末収納袋に収納された固体潤滑剤粉末と、
    を備えており、
     前記固体潤滑剤粉末は、前記粉末放出穴を通って前記装置内部空間に放出可能な大きさの粉末である歯車装置。
  12.  請求項11において、
     前記粉末収納袋は、前記歯車装置の駆動に伴って、振動、撓み運動あるいは回転運動を行う構成部品に取り付けられている歯車装置。
  13.  請求項11において、
     前記歯車装置の駆動に伴って前記粉末収納袋に振動あるいは変形を与える駆動部品を備えている歯車装置。
  14.  請求項11において、
     前記粉末収納袋は、多孔質構造、ネット構造あるいはメッシュ構造のシート素材あるいはフィルム素材から製作されており、
     前記シート素材あるいはフィルム素材を貫通して延びている網目が前記粉末放出穴として機能する歯車装置。
  15.  請求項14において、
     前記粉末収納袋は、PTFE、PEEK、ポリイミドまたはポリイミドアミドから形成されている歯車装置。
  16.  請求項11において、
     前記装置内部空間に面している内側表面を備えた前記歯車装置の構成部品に取り付けた袋固定部材を備えており、
     前記内側表面と前記袋固定部材との間に前記粉末収納袋が保持されている歯車装置。
  17.  請求項11において、
     前記装置内部空間には粉末撹拌案内部材が配置されており、
     前記装置内部空間に放出された前記固体潤滑剤粉末が、前記粉末撹拌案内部材によって撹拌されると共に前記潤滑対象部位に案内される歯車装置。
  18.  請求項11において、
     前記固体潤滑剤粉末は、MoS、WS、PTFE、黒鉛、カーボンナノチューブ、フラーレン、または、窒化ホウ素の粉末である歯車装置。
  19.  請求項11において、
     前記固体潤滑剤粉末の粒度は、メジアン径で、10nmから100μmであり、
     前記粉末放出穴の大きさは、前記メジアン径の5倍から300倍の径の粒子が通過可能な大きさである歯車装置。
  20.  請求項11において、
     前記粉末収納袋の内部は複数の収納部に仕切られており、
     前記収納部のそれぞれから前記装置内部空間に前記固体潤滑剤粉末が放出されるように、前記収納部のそれぞれに前記粉末放出穴が形成されている歯車装置。
  21.  請求項11において、
     剛性の内歯歯車と、
     可撓性の外歯歯車と、
     前記外歯歯車の内側に配置され、前記外歯歯車を半径方向に撓めて前記内歯歯車にかみ合わせ、前記内歯歯車に対する前記外歯歯車のかみ合い位置を円周方向に移動させる波動発生器とを備えており、
     前記装置内部空間は、前記波動発生器が配置されている前記外歯歯車の内側空間あるいは当該内側空間に連通する空間部分であり、
     前記粉末収納袋は、前記外歯歯車における前記波動発生器によって繰り返し撓められる部位に沿って配置され、当該部位によって振動あるいは変形が与えられるようになっている歯車装置。
PCT/JP2021/027068 2021-07-20 2021-07-20 歯車装置の潤滑方法 WO2023002552A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023536251A JPWO2023002552A1 (ja) 2021-07-20 2021-07-20
KR1020237039800A KR20230169374A (ko) 2021-07-20 2021-07-20 기어장치의 윤활방법
PCT/JP2021/027068 WO2023002552A1 (ja) 2021-07-20 2021-07-20 歯車装置の潤滑方法
CN202180099595.9A CN117561389A (zh) 2021-07-20 2021-07-20 齿轮装置的润滑方法
EP21950906.4A EP4375538A1 (en) 2021-07-20 2021-07-20 Lubrication method for gear device
TW111111256A TW202305270A (zh) 2021-07-20 2022-03-25 齒輪裝置的潤滑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027068 WO2023002552A1 (ja) 2021-07-20 2021-07-20 歯車装置の潤滑方法

Publications (1)

Publication Number Publication Date
WO2023002552A1 true WO2023002552A1 (ja) 2023-01-26

Family

ID=84979217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027068 WO2023002552A1 (ja) 2021-07-20 2021-07-20 歯車装置の潤滑方法

Country Status (6)

Country Link
EP (1) EP4375538A1 (ja)
JP (1) JPWO2023002552A1 (ja)
KR (1) KR20230169374A (ja)
CN (1) CN117561389A (ja)
TW (1) TW202305270A (ja)
WO (1) WO2023002552A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258555A (ja) * 1991-02-12 1992-09-14 Nippon Seiko Kk 変速機
JPH07205899A (ja) 1994-01-13 1995-08-08 Hitachi Ltd 宇宙用機械要素密封装置
JP2000206722A (ja) * 1999-01-12 2000-07-28 Ricoh Co Ltd 画像形成装置および画像形成装置の像担持体への潤滑剤塗布装置および固形潤滑剤
WO2016084235A1 (ja) 2014-11-28 2016-06-02 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置の潤滑方法
WO2016113847A1 (ja) 2015-01-13 2016-07-21 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102247598B1 (ko) 2015-01-05 2021-05-03 한화테크윈 주식회사 감시 시스템
KR101876760B1 (ko) 2015-03-23 2018-07-13 주식회사 해모 국자 어셈블리
JP7205899B2 (ja) 2019-05-27 2023-01-17 株式会社砂▲崎▼製作所 高速車両用水封装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258555A (ja) * 1991-02-12 1992-09-14 Nippon Seiko Kk 変速機
JPH07205899A (ja) 1994-01-13 1995-08-08 Hitachi Ltd 宇宙用機械要素密封装置
JP2000206722A (ja) * 1999-01-12 2000-07-28 Ricoh Co Ltd 画像形成装置および画像形成装置の像担持体への潤滑剤塗布装置および固形潤滑剤
WO2016084235A1 (ja) 2014-11-28 2016-06-02 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置の潤滑方法
WO2016113847A1 (ja) 2015-01-13 2016-07-21 株式会社ハーモニック・ドライブ・システムズ 波動歯車装置

Also Published As

Publication number Publication date
EP4375538A1 (en) 2024-05-29
CN117561389A (zh) 2024-02-13
KR20230169374A (ko) 2023-12-15
TW202305270A (zh) 2023-02-01
JPWO2023002552A1 (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
JP4404387B2 (ja) 潤滑型アングル駆動装置を備えた動力工具
EP3246596B1 (en) Wave gear device
JP5694552B2 (ja) 波動歯車装置
JP2012057674A (ja) 撓み噛合い式歯車装置
JP2007085514A (ja) 無段変速機
WO2023002552A1 (ja) 歯車装置の潤滑方法
TW201518624A (zh) 中空型諧波齒輪單元
CN102465998A (zh) 减速机构及其谐波齿轮减速机
US20120184404A1 (en) Damping of Plantary Gears with Flex-Pins for Wind Turbines
JP3835709B2 (ja) 撓み噛み合い式歯車装置の潤滑機構
JP6479259B2 (ja) 遊星歯車装置および車輪駆動装置
CN107002857B (zh) 密封装置以及齿轮传动装置
JPH0953707A (ja) 波動歯車装置のグリス供給機構
JP3233524U (ja) ユニットタイプの波動歯車装置
CN105909956A (zh) 润滑结构和变速器
US20230093559A1 (en) Lubricant sealing structure, strain wave gearing, and actuator
JPH09291985A (ja) 撓み噛み合い式歯車装置の潤滑剤封止機構
JP5747781B2 (ja) 動力伝達システムの潤滑油供給装置
CN101318176A (zh) 强制同步三轴椭圆振动器
JP2020118200A (ja) 被駆動装置
CN214256013U (zh) 一种刹车结构及电动园林工具
JP7419193B2 (ja) 撓み噛合い式歯車装置
CN108278356A (zh) 齿轮箱及其轻量化方法和机器人
US20220106984A1 (en) High precision gear box
US350779A (en) Oil-cup

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950906

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023536251

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18560761

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237039800

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039800

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202180099595.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021950906

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021950906

Country of ref document: EP

Effective date: 20240220