WO2023002544A1 - 炭酸ガス隔離装置および炭酸ガス隔離方法 - Google Patents

炭酸ガス隔離装置および炭酸ガス隔離方法 Download PDF

Info

Publication number
WO2023002544A1
WO2023002544A1 PCT/JP2021/027027 JP2021027027W WO2023002544A1 WO 2023002544 A1 WO2023002544 A1 WO 2023002544A1 JP 2021027027 W JP2021027027 W JP 2021027027W WO 2023002544 A1 WO2023002544 A1 WO 2023002544A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
water
gas
unit
concentration
Prior art date
Application number
PCT/JP2021/027027
Other languages
English (en)
French (fr)
Inventor
由之 柴田
崇 松本
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to JP2023536245A priority Critical patent/JPWO2023002544A1/ja
Priority to PCT/JP2021/027027 priority patent/WO2023002544A1/ja
Publication of WO2023002544A1 publication Critical patent/WO2023002544A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Definitions

  • the present disclosure relates to a carbon dioxide sequestration device and a carbon dioxide sequestration method.
  • Patent Literature 1 discloses a technique for dissolving microbubbled carbon dioxide gas in seawater.
  • a carbon dioxide isolation device for isolating carbon dioxide in a body of water.
  • This carbon dioxide isolation device includes a gas introduction section that introduces a gas containing carbon dioxide, a water intake section that takes in water from a water area, and a gas introduced by the gas introduction section into the water taken in by the water intake section.
  • a bubble generating section for generating bubbles and a sedimentation tube for sending the water containing the bubbles into the water area are provided, and the bubble generating section generates, as the bubbles, bubbles having a size that causes Brownian motion.
  • the size of the bubbles containing carbon dioxide is a size that causes Brownian motion, so there is a high possibility that the bubbles will remain in the water area without rising. Therefore, carbon dioxide gas can be isolated in a water area by a simple method.
  • the size of the bubbles is preferably less than 1 ⁇ m in diameter. With such a form, the ratio of the surface area to the volume of the bubbles becomes large, so that the carbon dioxide in the bubbles is easily dissolved in water.
  • the carbon dioxide separation device of the above aspect may further include a cooling unit for cooling the water.
  • the cooling section may be provided in the water intake section. With such a form, it is easy to increase the dissolution amount of carbon dioxide into water.
  • the cooling unit may lower the temperature of the water to the temperature of the water area near the outlet of the sedimentation tube. With such a form, it is easy to increase the dissolution amount of carbon dioxide into water.
  • the carbon dioxide isolation device of the above aspect further includes a flow rate measurement section for measuring the flow rate of the gas introduced by the gas introduction section, and a first concentration measurement section for measuring the concentration of the carbon dioxide gas in the gas. a calculation unit for calculating the amount of the carbon dioxide gas introduced into the bubble generation unit based on the flow rate measured by the flow rate measurement unit and the concentration measured by the first concentration measurement unit; and an output unit that outputs information representing the amount of introduced gas. With such a configuration, the amount of carbon dioxide introduced into the carbon dioxide separator can be checked.
  • the carbon dioxide isolation device of the above aspect further comprises a flow rate measurement section for measuring the flow rate of the gas introduced by the gas introduction section, and a first concentration measurement section for measuring the concentration of the carbon dioxide gas in the gas.
  • the output unit may output the information representing the sequestration amount to the emissions trading server as information representing credits used for carbon dioxide emissions trading.
  • the amount of carbon dioxide isolated in the water area by the carbon dioxide isolation device can be used for carbon dioxide emissions trading.
  • the present disclosure can be realized in the form of a carbon dioxide isolation method, a carbon dioxide isolation system, and the like, in addition to the form of the carbon dioxide isolation device described above.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a carbon dioxide isolation device 100 as a first embodiment of the present disclosure.
  • the carbon dioxide separator 100 is a device for isolating carbon dioxide in the water area 90 .
  • the water area 90 includes, for example, oceans, lakes, rivers, and the like.
  • the carbon dioxide separation device 100 may be placed on the ground, or may be placed on the water by installing it on a ship or floating island.
  • the carbon dioxide isolation device 100 includes a gas introduction section 10 , a water intake section 20 , a bubble generation section 30 , a sedimentation tube 40 and a control section 50 .
  • the gas introduction unit 10 introduces gas containing carbon dioxide into the carbon dioxide isolation device 100 .
  • the gas introduction unit 10 includes, for example, pipes and valves connected to pipelines and tanks for transporting carbon dioxide gas.
  • the gas introduction section 10 is provided with a flow rate measurement section 11 and a first concentration measurement section 12 .
  • the flow measurement unit 11 includes a flow sensor that measures the flow rate of the gas introduced by the gas introduction unit 10 .
  • the first concentration measurement unit 12 includes a carbon dioxide gas sensor that measures the concentration of carbon dioxide in the gas introduced by the gas introduction unit 10 .
  • Information representing the gas flow rate measured by the flow rate measuring section 11 and information representing the carbon dioxide gas concentration measured by the first concentration measuring section 12 are output to the control section 50 .
  • the water intake section 20 takes in water from the water area 90 .
  • the water intake section 20 includes, for example, pipes and pumps for pumping up water from the water area 90 .
  • the water taken in from the water area 90 is sea water or fresh water.
  • the water intake unit 20 may take in water from a water area or a water source different from the water area 90 where the carbon dioxide isolation device 100 is installed, via a pipeline or a tank.
  • the water intake section 20 is provided with a cooling section 21 .
  • the cooling section 21 cools the water taken in by the water intake section 20 .
  • the cooling unit 21 lowers the temperature of the water taken in from the water intake unit 20 to the water temperature at the outlet of the sedimentation tube 40, which will be described later.
  • a chiller can be used as the cooling unit 21 .
  • FIG. 2 it is known that carbon dioxide (CO 2 ) dissolves more in water as the water temperature decreases.
  • the bubble generating section 30 generates bubbles of the gas introduced by the gas introducing section 10 in the water taken in by the water intake section 20 .
  • the air bubble generator 30 generates air bubbles having a size that causes Brownian motion.
  • a bubble of a size that causes Brownian motion stays in water for a long period of several weeks to several months without surfacing while moving irregularly.
  • the size at which Brownian motion occurs is less than 1 ⁇ m in diameter. Bubbles with a diameter of less than 1 ⁇ m are called ultra-fine bubbles. Whether Brownian motion is occurring and the size of the bubble can be analyzed, for example, by the particle trajectory analysis method (PTA method).
  • the bubble generator 30 of the present embodiment is a pressurized dissolution type ultra-fine bubble generator.
  • a high-speed swirling liquid flow type ultra-fine bubble generator can be used as the bubble generator 30 .
  • Ultra-fine bubbles have the property of being less likely to float than microbubbles.
  • the sedimentation pipe 40 is a pipe that feeds water containing bubbles generated by the bubble generation section 30 into the water area 90 .
  • the outlet of the sedimentation tube 40 is arranged, for example, in a shallow water area within a water depth of 200 m.
  • the outlet of the sedimentation tube 40 may be placed in the deep sea exceeding 200 m in depth.
  • a water temperature sensor 41 is provided near the exit of the sedimentation tube 40 . “Near the exit” refers to an area within a radius of 10 m from the exit of the sedimentation tube 40, for example.
  • the water discharged from the sedimentation tube 40 is hereinafter referred to as "carbon dioxide-containing water".
  • the carbon dioxide-containing water may contain carbon dioxide in both a state of being dissolved in water and a state of bubbles.
  • the exit of the sedimentation pipe 40 is provided at a position deeper than the position where the water intake part 20 takes water from the water area 90. It is preferable that
  • the control unit 50 is a device that centrally controls the operation of each unit of the carbon dioxide isolation device 100 described above, such as the bubble generation unit 30 and the cooling unit 21 .
  • the control unit 50 includes a CPU and memory, and functions as a calculation unit 51 and an output unit 52 by executing a predetermined program stored in the memory. Note that the control unit 50, the calculation unit 51, and the output unit 52 may be configured by circuits.
  • the calculation unit 51 acquires the gas flow rate measured by the flow rate measurement unit 11 and the carbon dioxide gas concentration measured by the first concentration measurement unit 12, and based on these, the carbon dioxide gas introduced into the bubble generation unit 30 is measured. Calculate the amount of
  • the output unit 52 outputs information representing the introduction amount of carbon dioxide calculated by the calculation unit 51 .
  • the output unit 52 outputs information representing the introduction amount of carbon dioxide gas to the external server device 200 using a predetermined communication line such as an Internet line.
  • a system including the carbon dioxide isolation device 100 and the server device 200 can be called a "carbon dioxide isolation system.”
  • FIG. 3 is a flowchart of carbon dioxide isolation processing executed by the control unit 50.
  • This processing is executed when a predetermined instruction is received from the administrator of the carbon dioxide isolation device 100, and this processing implements the carbon dioxide isolation method.
  • step S10 the control unit 50 starts the intake of water by the water intake unit 20 and the introduction of gas by the gas introduction unit 10, and drives the bubble generation unit 30 to form ultra-fine bubbles from the sedimentation tube 40. start to discharge carbon dioxide-containing water containing carbon dioxide gas.
  • step S11 the control unit 50 uses the water temperature sensor 41 to measure the water temperature near the exit of the sedimentation tube 40. Then, in step S ⁇ b>12 , the control unit 50 controls the cooling unit 21 to cool the water taken in by the water intake unit 20 so that the water temperature measured by the water temperature sensor 41 drops.
  • “to lower the water temperature to the level measured by the water temperature sensor 41” means to lower the water temperature within an error range of about +0 to -10°C with respect to the water temperature measured by the water temperature sensor 41.
  • step S ⁇ b>13 the calculation unit 51 based on the information representing the gas flow rate acquired from the flow measurement unit 11 and the information representing the carbon dioxide gas concentration acquired from the first concentration measurement unit 12 , the gas introduced into the carbon dioxide isolation device 100 .
  • the calculator 51 calculates the introduction amount of carbon dioxide by time-integrating the product of the gas flow rate and the carbon dioxide concentration for a predetermined period.
  • a predetermined period is, for example, a period of one day, one week, one month, one year, or the like.
  • step S ⁇ b>14 the output unit 52 outputs information representing the introduction amount of carbon dioxide calculated by the calculation unit 51 .
  • the output unit 52 outputs information representing the introduction amount of carbon dioxide gas to the external server device 200 using a predetermined communication line such as an Internet line. Based on the information output from the output unit 52, the server device 200 displays and distributes the introduction amount of the carbon dioxide introduced into the carbon dioxide isolation device 100.
  • step S15 the control unit 50 determines whether or not an instruction to stop the carbon dioxide isolation process has been received from the administrator. If it is determined in step S15 that the stop instruction has been received, the control unit 50 terminates the carbon dioxide isolation process. If it is determined in step S15 that the stop instruction has not been received, the control unit 50 returns the process to step S11 to continue discharging the carbon dioxide-containing water.
  • the carbon dioxide isolation device 100 of the present embodiment described above since the size of the bubbles containing carbon dioxide generated by the bubble generating section 30 is a size that causes Brownian motion, the carbon dioxide released into the water area 90 Gas bubbles are more likely to remain in the water body 90 rather than rise through the water due to Brownian motion. Therefore, it is possible to isolate the carbon dioxide gas in the water area 90 by a simple method without the need to pump the carbon dioxide gas with a large pressure in order to suppress the rising of the bubbles.
  • the cooling unit 21 lowers the temperature of the water containing carbon dioxide gas. As shown in FIG. 2, the lower the water temperature, the more carbon dioxide dissolves in water.
  • the cooling unit 21 is provided in the water intake unit 20, so carbon dioxide gas can be dissolved in water more efficiently than when the cooling unit 21 is provided in another portion. .
  • the amount of carbon dioxide introduced into the carbon dioxide isolation device 100 can be Easy for a third party to check.
  • the output unit 52 outputs information representing the introduction amount of carbon dioxide gas to the server device 200 .
  • the output unit 52 may output and display information indicating the introduction amount of carbon dioxide gas on the display device connected to the control unit 50 .
  • the server device 200 may not be connected to the controller 50 .
  • FIG. 4 is an explanatory diagram showing a schematic configuration of the carbon dioxide isolation device 101 according to the second embodiment.
  • a carbon dioxide isolation device 101 according to the second embodiment differs from the carbon dioxide isolation device 100 according to the first embodiment in that a second concentration measurement unit 60 is provided.
  • the second concentration measuring unit 60 is arranged near the water surface of the water area 90 and measures the concentration of carbon dioxide near the water surface.
  • a plurality of second concentration measurement units 60 are arranged near the water surface and are connected to the control unit 50 respectively.
  • Each second concentration measuring unit 60 is provided, for example, on a buoy floating on the surface of the water.
  • the number and range in which the second concentration measuring units 60 are arranged are determined according to the area of the water surface where bubbles of a specified size or larger are likely to rise when discharged from the sedimentation tube 40 .
  • "near the surface of the water” means, for example, within a range of up to 10 m above the surface of the water.
  • FIG. 5 is a flowchart of carbon dioxide isolation processing executed by the control unit 50 in the second embodiment.
  • the control unit 50 starts the intake of water by the water intake unit 20 and the introduction of gas by the gas introduction unit 10, and drives the bubble generation unit 30 to form ultra-fine bubbles from the sedimentation tube 40. start to discharge carbon dioxide-containing water containing carbon dioxide gas.
  • step S21 the control unit 50 uses the water temperature sensor 41 to measure the water temperature near the exit of the sedimentation tube 40. Then, in step S ⁇ b>22 , the control unit 50 controls the cooling unit 21 to cool the water taken in by the water intake unit 20 so that the water temperature measured by the water temperature sensor 41 drops.
  • step S23 the calculation unit 51 calculates the carbon dioxide concentration introduced into the carbon dioxide isolation device 100 based on the information representing the gas flow rate acquired from the flow measurement unit 11 and the information representing the carbon dioxide concentration acquired from the first concentration measurement unit 12. Calculate the amount of carbon dioxide introduced. Specifically, similarly to the first embodiment, the calculation unit 51 calculates the introduction amount of carbon dioxide by time-integrating the product of the gas flow rate and the carbon dioxide concentration for a predetermined period.
  • step S24 the calculation unit 51 calculates the amount of carbon dioxide isolated in the water area 90 based on the introduction amount of carbon dioxide calculated in step S23 and the increase in concentration of carbon dioxide measured by the second concentration measurement unit 60. Calculate the amount of gas sequestration. Specifically, the calculation unit 51 acquires information representing the carbon dioxide concentration near the water surface from each of the second concentration measurement units 60, and calculates the amount of increase in the carbon dioxide concentration during the period described above and the second concentration measurement. From the product of the volume of space covered by the unit 60, the amount of increase in carbon dioxide gas in the area where each second concentration measuring unit 60 is arranged is obtained.
  • the calculation unit 51 calculates the segregation amount of the carbon dioxide in the water area 90 by subtracting the calculated total increase in carbon dioxide from the introduction amount of carbon dioxide calculated in step S23.
  • step S ⁇ b>25 the output unit 52 outputs information representing the sequestration amount of carbon dioxide calculated by the calculation unit 51 .
  • the output unit 52 outputs information representing the amount of carbon dioxide gas sequestration to the external server device 200 using a predetermined communication line such as the Internet line. Based on the information output from the output unit 52, the server device 200 performs display, distribution, and the like of the sequestered amount of carbon dioxide gas.
  • step S26 the control unit 50 determines whether or not an instruction to stop the carbon dioxide isolation process has been received from the administrator. If it is determined in step S26 that a stop instruction has been received, the control unit 50 terminates the carbon dioxide isolation process. If it is determined in step S26 that the stop instruction has not been received, the control unit 50 returns the process to step S21 to continue discharging the carbon dioxide-containing water.
  • the second concentration measuring unit 60 measures the amount of increase in the carbon dioxide concentration near the water surface, thereby measuring the amount of carbon dioxide isolated in the water area 90.
  • the sequestration volume can be accurately calculated.
  • a plurality of second concentration measurement units 60 are arranged near the water surface, but the number of second concentration measurement units 60 is not limited to a plurality and may be one.
  • the carbon dioxide concentration at a representative position near the water surface of the water area 90 is measured by one second concentration measuring unit 60, and the amount of increase in the carbon dioxide concentration at the representative position and the total area where air bubbles may rise are measured.
  • the carbon dioxide increase amount of the entire area may be estimated.
  • the server device 200 may be an emissions trading server that conducts carbon dioxide emissions trading.
  • the output unit 52 outputs the information representing the carbon dioxide sequestration amount to the server device 200 as information representing the credit used for the carbon dioxide emission transaction.
  • Client devices that perform emissions trading are connected to the server device 200 via a predetermined communication line such as an Internet line. You can get emission allowances.
  • the amount of carbon dioxide sequestered in the water area 90 is calculated instead of the amount of carbon dioxide introduced into the carbon dioxide isolation device 100, so credits used for emissions trading are calculated. can be determined accurately.
  • the cooling section 21 is provided in the water intake section 20 .
  • the cooling part 21 may be provided in the bubble generating part 30 or the sedimentation tube 40 .
  • the cooling unit 21 can be omitted.
  • the water intake unit 20 takes in low-temperature water from the same depth of water where the outlet of the sedimentation tube 40 is provided, thereby easily dissolving carbon dioxide gas in the water.
  • the water intake section 20 preferably takes in water from the upstream side of the outlet of the settling tube 40.
  • the sedimentation pipe 40 is provided at the stern and the water intake section 20 is provided near the bow, so that the water intake section 20 can take in water from the upstream side of the exit of the sedimentation tube 40. can be done.
  • the water temperature sensor 41 is provided in the sedimentation tube 40 , and the control section 50 controls the cooling section 21 according to the water temperature measured by the water temperature sensor 41 .
  • the carbon dioxide isolation device 100 does not have to include the water temperature sensor 41 .
  • the cooling unit 21 lowers the temperature of the water taken in by the water intake unit 20 to the preset water temperature.
  • the water temperature to be set is not limited to the water temperature at the water depth where the outlet of the sedimentation tube 40 is provided, and can be any water temperature as long as the water temperature is lower than the water temperature immediately after the water intake section 20 takes in water.
  • the carbon dioxide gas supplied to the bubble generating section 30 does not have to be high-purity carbon dioxide gas.
  • low-purity carbon dioxide gas discharged in large quantities from stationary sources such as thermal power plants may be used. If such low-purity carbon dioxide gas is used, there is no need to perform pretreatment such as high-purity separation, so a large amount of energy is not consumed, and carbon dioxide gas can be isolated at low cost.
  • the gas introduced by the gas introducing section 10 may be air containing carbon dioxide.
  • the sequestered amount of carbon dioxide is calculated according to the concentration of carbon dioxide in the air, and the sequestered amount is output to the emissions trading server described in the second embodiment, energy for transporting carbon dioxide and Emissions trading can be done at no cost.
  • the present disclosure is not limited to the above-described embodiments, and can be implemented in various configurations without departing from the scope of the present disclosure.
  • the technical features in the embodiments corresponding to the technical features in the respective modes described in the Summary of the Invention column may be used to solve some or all of the above problems, or Substitutions and combinations may be made as appropriate to achieve part or all.
  • the technical features are not described as essential in this specification, they can be deleted as appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Inorganic Chemistry (AREA)
  • Development Economics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

水域に炭酸ガスを隔離する炭酸ガス隔離装置が提供される。この炭酸ガス隔離装置は、炭酸ガスを含むガスを導入するガス導入部と、水域から水を取り込む取水部と、取水部により取り込まれた水に、ガス導入部が導入したガスの気泡を発生させる気泡発生部と、気泡を含む水を、水域中に送り込む沈降管と、を備える。気泡発生部は、気泡として、ブラウン運動が生じるサイズの気泡を発生させる。

Description

炭酸ガス隔離装置および炭酸ガス隔離方法
 本開示は、炭酸ガス隔離装置および炭酸ガス隔離方法に関する。
 大気中への炭酸ガスの排出抑制に向けた様々な取り組みの1つとして、水域への炭酸ガスの隔離が検討されている。特許文献1には、マイクロバブル化した炭酸ガスを海水に溶解させる技術が開示されている。
特開2004-050167号公報
 炭酸ガスをマイクロバブル化したとしても、その気泡が水中から上昇してしまう場合がある。その場合、気泡を含む水を大きな圧力で圧送する必要があり、多くのエネルギーが消費される。また、マイクロバブルではなく、液体二酸化炭素や固体二酸化炭素(ドライアイス)の形態として炭酸ガスを水中に留める手法も考えられるが、液体二酸化炭素や固体二酸化炭素の生成のために大きなエネルギーが消費される。そのため、炭酸ガスの水域への隔離をより簡易な手法で実現可能な技術が求められている。
 本開示は、以下の形態として実現することが可能である。
(1)本開示の第1の形態によれば、水域に炭酸ガスを隔離する炭酸ガス隔離装置が提供される。この炭酸ガス隔離装置は、炭酸ガスを含むガスを導入するガス導入部と、水域から水を取り込む取水部と、前記取水部により取り込まれた前記水に、前記ガス導入部が導入した前記ガスの気泡を発生させる気泡発生部と、前記気泡を含む前記水を、前記水域中に送り込む沈降管と、を備え、前記気泡発生部は、前記気泡として、ブラウン運動が生じるサイズの気泡を発生させる。
 このような形態の炭酸ガス隔離装置によれば、炭酸ガスを含む気泡のサイズが、ブラウン運動が生じるサイズであるため、気泡が上昇せず水域中に留まる可能性が高まる。そのため、簡易な手法によって炭酸ガスを水域に隔離することができる。
(2)上記形態の炭酸ガス隔離装置において、前記気泡のサイズは、直径1μm未満が好ましい。このような形態であれば、気泡の体積に対する表面積の割合が大きくなるので、気泡中の炭酸ガスが水中へ溶解しやすくなる。
(3)上記形態の炭酸ガス隔離装置は、更に、前記水を冷却する冷却部を備えてもよい。このような形態であれば、炭酸ガスの水中への溶け込み量を増加させることができるので、炭酸ガスが溶解した水を重力沈降させやすくなる。
(4)上記形態において、前記冷却部は、前記取水部に備えられてもよい。このような形態であれば、炭酸ガスの水中への溶け込み量を増加させやすい。
(5)上記形態の炭酸ガス隔離装置において、前記冷却部は、前記水の温度を、前記沈降管の出口付近における前記水域の水温まで低下させてもよい。このような形態であれば、炭酸ガスの水中への溶け込み量を増加させやすい。
(6)上記形態の炭酸ガス隔離装置は、更に、前記ガス導入部が導入した前記ガスの流量を測定する流量測定部と、前記ガス中の前記炭酸ガスの濃度を測定する第1濃度測定部と、前記流量測定部が測定した流量と前記第1濃度測定部が測定した濃度とに基づき、前記気泡発生部に導入された前記炭酸ガスの量を算出する算出部と、算出された前記炭酸ガスの導入量を表す情報を出力する出力部と、を備えてもよい。このような形態であれば、炭酸ガス隔離装置に導入された炭酸ガスの量を確認できる。
(7)上記形態の炭酸ガス隔離装置は、更に、前記ガス導入部が導入した前記ガスの流量を測定する流量測定部と、前記ガス中の前記炭酸ガスの濃度を測定する第1濃度測定部と、前記水域の水面付近における炭酸ガスの濃度を測定する第2濃度測定部と、前記流量測定部が測定した流量と前記第1濃度測定部が測定した濃度とに基づき、前記気泡発生部に導入された前記炭酸ガスの量を算出し、算出された前記炭酸ガスの導入量と、前記第2濃度測定部により測定された炭酸ガスの濃度の上昇量とに基づき、前記水域中に隔離された炭酸ガスの隔離量を算出する算出部と、算出された前記隔離量を表す情報を出力する出力部と、を備えてもよい。このような形態であれば、炭酸ガスが水域に隔離された量を確認できる。
(8)上記形態の炭酸ガス隔離装置において、前記出力部は、前記隔離量を表す情報を、炭酸ガスの排出量取引に用いられるクレジットを表す情報として排出量取引サーバに出力してもよい。このような形態であれば、当該炭酸ガス隔離装置によって水域中に隔離した炭酸ガスの量を、炭酸ガスの排出量取引に用いることができる。
 本開示は上述した炭酸ガス隔離装置としての形態以外にも、炭酸ガス隔離方法や炭酸ガス隔離システムなどの形態として実現することができる。
第1実施形態における炭酸ガス隔離装置の概略構成を示す説明図。 水に対する炭酸ガスの溶解特性を示すグラフ。 第1実施形態における炭酸ガス隔離処理のフローチャート。 第2実施形態における炭酸ガス隔離装置の概略構成を示す説明図。 第2実施形態における炭酸ガス隔離処理のフローチャート。
A.第1実施形態:
 図1は、本開示の第1実施形態としての炭酸ガス隔離装置100の概略構成を示す説明図である。炭酸ガス隔離装置100は、炭酸ガスを水域90に隔離するための装置である。水域90には、例えば、海洋、湖沼、河川などが含まれる。炭酸ガス隔離装置100は、地上に配置してもよいし、船舶や浮島に設置することで、水上に配置してもよい。炭酸ガス隔離装置100は、ガス導入部10と、取水部20と、気泡発生部30と、沈降管40と、制御部50と、を備えている。
 ガス導入部10は、炭酸ガスを含むガスを炭酸ガス隔離装置100に導入する。ガス導入部10は、例えば、炭酸ガスを輸送するためのパイプラインやタンクに接続される管や弁を含む。
 ガス導入部10には、流量測定部11と第1濃度測定部12とが備えられている。流量測定部11は、ガス導入部10が導入したガスの流量を測定する流量センサを含む。第1濃度測定部12は、ガス導入部10が導入したガス中の炭酸ガスの濃度を測定する二酸化炭素ガスセンサを含む。流量測定部11によって測定されたガス流量を表す情報と、第1濃度測定部12によって測定された炭酸ガス濃度を表す情報とは、制御部50に出力される。
 取水部20は、水域90から水を取り込む。取水部20は、例えば、水域90から水を汲み上げるための管やポンプを含む。水域90から取り込まれる水は、海水または淡水である。なお、取水部20は、炭酸ガス隔離装置100が設置された水域90とは異なる水域あるいは水源から取り込まれた水をパイプラインやタンクを介して取り込んでもよい。
 取水部20には、冷却部21が備えられている。冷却部21は、取水部20によって取り込まれた水を冷却する。本実施形態において、冷却部21は、後述する沈降管40の出口における水温まで、取水部20から取り込まれた水の温度を低下させる。冷却部21としては、例えば、チラーを用いることができる。図2に示すように、炭酸ガス(CO2)は、水温が低いほど水に多く溶解することが知られている。
 気泡発生部30は、取水部20により取り込まれた水に、ガス導入部10が導入したガスの気泡を発生させる。気泡発生部30は、ブラウン運動が生じるサイズの気泡を発生させる。ブラウン運動が生じるサイズの気泡は、不規則な運動をしながら数週間から数ヶ月の長期に亘って浮上することなく水中に滞在する。ブラウン運動が生じるサイズとは、直径1μm未満である。直径1μm未満の気泡のことを、ウルトラファインバブルという。ブラウン運動が生じているか否か、および、気泡の大きさは、例えば、粒子軌跡解析法(PTA法)によって解析することができる。本実施形態の気泡発生部30は、加圧溶解式のウルトラファインバブル発生装置である。気泡発生部30としては、その他に、高速旋回液流式のウルトラファインバブル発生装置を用いることができる。なお、ウルトラファインバブルよりも直径の大きい、直径1μm以上100μm未満の気泡のことを、マイクロバブルという。ウルトラファインバブルは、マイクロバブルよりも浮上しにくい性質を有する。
 沈降管40は、気泡発生部30によって生成された気泡を含む水を水域90中へ送り込む管である。沈降管40の出口は、例えば、水深200m以内の浅海域に配置される。なお、沈降管40の出口は、水深200mを超える深海に配置されてもよい。沈降管40の出口付近には、水温センサ41が設けられている。「出口付近」とは、例えば、沈降管40の出口から半径10m以内のエリアをいう。以下では、沈降管40から排出される水のことを、「炭酸ガス含有水」という。炭酸ガス含有水には、炭酸ガスが、水に溶解した状態と、気泡の状態との両方の状態で含まれ得る。沈降管40から排出された炭酸ガス含有水が取水部20によって取水されることを抑制するため、沈降管40の出口は、取水部20が水域90から水を取水する位置よりも深い位置に設けられていることが好ましい。
 制御部50は、気泡発生部30や冷却部21など、上述した炭酸ガス隔離装置100の各部の動作を統括して制御する装置である。制御部50は、CPUおよびメモリを備えており、メモリに記憶された所定のプログラムを実行することで、算出部51および出力部52として機能する。なお、制御部50、算出部51、出力部52は、回路によって構成されてもよい。
 算出部51は、流量測定部11によって測定されたガスの流量と、第1濃度測定部12によって測定された炭酸ガス濃度とを取得し、これらに基づき、気泡発生部30に導入された炭酸ガスの量を算出する。
 出力部52は、算出部51によって算出された炭酸ガスの導入量を表す情報を出力する。本実施形態では、出力部52は、インターネット回線などの所定の通信回線を用いて、炭酸ガスの導入量を表す情報を外部のサーバ装置200に出力する。なお、炭酸ガス隔離装置100とサーバ装置200とを含むシステムのことを、「炭酸ガス隔離システム」と呼ぶことができる。
 図3は、制御部50が実行する炭酸ガス隔離処理のフローチャートである。この処理は、炭酸ガス隔離装置100の管理者から所定の指示を受け付けた場合に実行される処理であり、この処理により炭酸ガス隔離方法が実現される。
 ステップS10において、制御部50は、取水部20による水の取水と、ガス導入部10によるガスの導入とを開始するとともに、気泡発生部30を駆動させ、沈降管40から、ウルトラファインバブル化させた炭酸ガスを含む炭酸ガス含有水の排出を開始する。
 ステップS11において、制御部50は、水温センサ41を用いて、沈降管40の出口付近における水温を測定する。そして、制御部50は、ステップS12において、冷却部21を制御して、取水部20によって取り込まれる水が、水温センサ41によって測定された水温まで低下するように、水を冷却する。本明細書において、「水温センサ41によって測定された水温まで低下させる」とは、水温センサ41によって測定された水温に対して+0~-10℃程度の誤差の範囲で水の温度を低下させることを意味する。
 ステップS13において、算出部51は、流量測定部11から取得したガス流量を表す情報と、第1濃度測定部12から取得した炭酸ガス濃度を表す情報とに基づき、炭酸ガス隔離装置100に導入された炭酸ガスの導入量を算出する。具体的には、算出部51は、ガス流量と炭酸ガス濃度の積を予め定められた期間分、時間積分することで、炭酸ガスの導入量を算出する。予め定められた期間とは、例えば、1日、1週間、1月、1年などの期間である。
 ステップS14において、出力部52は、算出部51によって算出された炭酸ガスの導入量を表す情報を出力する。本実施形態では、出力部52は、インターネット回線などの所定の通信回線を用いて、炭酸ガスの導入量を表す情報を外部のサーバ装置200に出力する。サーバ装置200は、出力部52から出力された情報に基づき、炭酸ガス隔離装置100に導入された炭酸ガスの導入量の表示や配信等を行う。
 ステップS15において、制御部50は、管理者から炭酸ガス隔離処理の停止指示を受けたか否かを判断する。ステップS15において、停止指示を受けたと判断された場合、制御部50は、当該炭酸ガス隔離処理を終了させる。ステップS15において、停止指示を受け付けたと判断されなかった場合、制御部50は、処理をステップS11に戻して、引き続き、炭酸ガス含有水の排出を継続させる。
 以上で説明した本実施形態の炭酸ガス隔離装置100によれば、気泡発生部30によって生成される炭酸ガスを含む気泡のサイズが、ブラウン運動が生じるサイズであるため、水域90に放出された炭酸ガスの気泡は、ブラウン運動によって水中を上昇せず、水域90中に留まる可能性が高まる。そのため、気泡の上昇を抑制するために、大きな圧力で圧送を行う必要がなく、簡易な手法によって炭酸ガスを水域90に隔離することができる。
 また、本実施形態では、気泡として、直径が1μmにも満たない小径なウルトラファインバブルを生成するため、気泡の体積に対する表面積の割合が大きくなる。そのため、気泡中の炭酸ガスが水中に溶解しやすくなり、沈降管40の出口から排出される炭酸ガス含有水は、周囲に存在する水よりも重くなる。この結果、炭酸ガス含有水を無動力で水域90の深いエリアへ送り込むことができ、炭酸ガス隔離に要するエネルギーを小さくすることができる。特に、本実施形態では、冷却部21によって、炭酸ガスを含有させる水の温度を低下させる。図2に示したように、炭酸ガスは、水温が低いほど水に多く溶解する。そのため、冷却部21によって、水の温度を、沈降管40の出口付近の水温まで低下させることで、多くの炭酸ガスを水に溶け込ませることができ、これにより、炭酸ガス含有水の比重を大きくすることができる。そうすると、炭酸ガス含有水を重力沈降させやすくなるので、効率的に炭酸ガスを水域90中に隔離することができる。また、本実施形態では、冷却部21は、取水部20に設けられているので、冷却部21が他の部分に設けられているよりも、効率的に炭酸ガスを水に溶解させることができる。
 また、本実施形態では、気泡発生部30に供給された炭酸ガスの量を表す情報を外部のサーバ装置200に出力するため、炭酸ガス隔離装置100に導入された炭酸ガスの量を管理者や第三者が確認しやすい。
 なお、本実施形態では、出力部52は、サーバ装置200に対して、炭酸ガスの導入量を表す情報を出力している。これに対して、出力部52は、制御部50に接続された表示装置に、炭酸ガスの導入量を表す情報を出力して表示させてもよい。この場合、制御部50には、サーバ装置200が接続されていなくてもよい。
B.第2実施形態:
 図4は、第2実施形態における炭酸ガス隔離装置101の概略構成を示す説明図である。第2実施形態における炭酸ガス隔離装置101は、第2濃度測定部60を備える点で、第1実施形態の炭酸ガス隔離装置100と異なる。
 第2実施形態において、第2濃度測定部60は、水域90の水面付近に配置されており、水面付近における炭酸ガスの濃度を測定する。水面付近には、複数の第2濃度測定部60が配置されており、それぞれ、制御部50に接続される。各第2濃度測定部60は、例えば、水面に浮かべたブイに設けられる。第2濃度測定部60が配置される数や範囲は、沈降管40から規定サイズ以上の気泡が排出された場合に、その気泡が上昇する可能性のある水面のエリアに応じて定められる。なお、「水面付近」とは、例えば、水面から上空へ10mまでの範囲内のことをいう。
 図5は、第2実施形態において制御部50が実行する炭酸ガス隔離処理のフローチャートである。ステップS20において、制御部50は、取水部20による水の取水と、ガス導入部10によるガスの導入とを開始するとともに、気泡発生部30を駆動させ、沈降管40から、ウルトラファインバブル化させた炭酸ガスを含む炭酸ガス含有水の排出を開始する。
 ステップS21において、制御部50は、水温センサ41を用いて、沈降管40の出口付近における水温を測定する。そして、制御部50は、ステップS22において、冷却部21を制御して、取水部20によって取り込まれる水が、水温センサ41によって測定された水温まで低下するように、水を冷却する。
 ステップS23において、算出部51は、流量測定部11から取得したガス流量を表す情報と、第1濃度測定部12から取得した炭酸ガス濃度を表す情報とに基づき、炭酸ガス隔離装置100に導入された炭酸ガスの導入量を算出する。具体的には、第1実施形態と同様に、算出部51は、ガス流量と炭酸ガス濃度の積を予め定められた期間分、時間積分することで、炭酸ガスの導入量を算出する。
 ステップS24において、算出部51は、ステップS23において算出された炭酸ガス導入量と、第2濃度測定部60により測定された炭酸ガスの濃度の上昇量とに基づき、水域90中に隔離された炭酸ガスの隔離量を算出する。具体的には、算出部51は、各第2濃度測定部60から、水面付近における炭酸ガス濃度を表す情報を取得して、上述した期間における炭酸ガス濃度の上昇量と、その第2濃度測定部60がカバーする空間体積との積から、それぞれの第2濃度測定部60が配置されたエリアにおける炭酸ガス増加量を求める。そして、それぞれの第2濃度測定部60について算出された炭酸ガス増加量を合計することで、複数の第2濃度測定部60が配置されたエリア全体の炭酸ガス増加量を算出する。算出部51は、こうして算出した全体の炭酸ガス増加量を、ステップS23で算出された炭酸ガス導入量から差し引くことで、炭酸ガスが水域90中に隔離された隔離量を算出する。
 ステップS25において、出力部52は、算出部51によって算出された炭酸ガスの隔離量を表す情報を出力する。本実施形態では、出力部52は、インターネット回線などの所定の通信回線を用いて、炭酸ガスの隔離量を表す情報を外部のサーバ装置200に出力する。サーバ装置200は、出力部52から出力された情報に基づき、炭酸ガスの隔離量の表示や配信等を行う。
 ステップS26において、制御部50は、管理者から炭酸ガス隔離処理の停止指示を受けたか否かを判断する。ステップS26において、停止指示を受けたと判断された場合、制御部50は、当該炭酸ガス隔離処理を終了させる。ステップS26において、停止指示を受け付けたと判断されなかった場合、制御部50は、処理をステップS21に戻して、引き続き、炭酸ガス含有水の排出を継続させる。
 以上で説明した第2実施形態の炭酸ガス隔離装置100によれば、水面付近における炭酸ガスの濃度上昇量を第2濃度測定部60によって測定することにより、水域90内に隔離された炭酸ガスの隔離量を正確に算出することができる。
 なお、本実施形態では、水面付近に複数の第2濃度測定部60を配置したが、第2濃度測定部60の数は複数に限らず1つでもよい。例えば、水域90の水面付近の代表位置における炭酸ガス濃度を1つの第2濃度測定部60によって測定し、その代表位置における炭酸ガス濃度の上昇量と、気泡が上昇する可能性のあるエリア全体の炭酸ガス増加量との関係を表す関数やマップを用いることで、そのエリア全体の炭酸ガスの増加量を推測してもよい。
 第2実施形態において、サーバ装置200は、炭酸ガスの排出量取引を行う排出量取引サーバであってもよい。この場合、出力部52は、炭酸ガスの隔離量を表す情報を、炭酸ガス排出取引に用いられるクレジットを表す情報として、サーバ装置200に出力する。サーバ装置200には、排出量取引を行うクライアント装置がインターネット回線などの所定の通信回線によって接続されており、各クライアント装置は、サーバ装置200にアクセスしてクレジットを購入することで、炭酸ガスの排出枠を獲得することができる。第2実施形態では、炭酸ガスが炭酸ガス隔離装置100に導入された炭酸ガス導入量ではなく、炭酸ガスが水域90に隔離された炭酸ガス隔離量を算出するため、排出量取引に用いるクレジットを正確に求めることができる。
C.他の実施形態:
(C-1)上記実施形態では、冷却部21が取水部20に備えられている。これに対して、冷却部21は、気泡発生部30や沈降管40に備えられてもよい。また、冷却部21は省略することも可能である。冷却部21を省略する場合、取水部20は、沈降管40の出口が設けられた水深と同程度の水深から水温の低い水を取水することで、炭酸ガスを水に溶解させやすくなる。なお、取水部20が、沈降管40の出口の水深と同程度の水深から水を取水する場合には、取水部20は、沈降管40の出口よりも上流から水を取水することが好ましい。沈降管40の出口よりも下流から水を取水した場合、その水に既に炭酸ガスが溶け込んでいる可能性が高いからである。炭酸ガス隔離装置100が船舶に設置される場合、沈降管40を船尾、取水部20を船首付近に設けることで、取水部20は、沈降管40の出口よりも上流側から水を取水することができる。
(C-2)上記実施形態では、水温センサ41が沈降管40に備えられており、制御部50は、水温センサ41によって測定された水温に応じて、冷却部21を制御している。これに対して、炭酸ガス隔離装置100は水温センサ41を備えていなくてもよい。この場合、冷却部21は、予め設定された水温まで、取水部20によって取り入れられた水の温度を低下させる。設定する水温は、沈降管40の出口が設けられた水深における水温に限らず、取水部20が取水した直後の水温よりも低い水温であれば任意の水温とすることができる。
(C-3)上記実施形態において、気泡発生部30に供給する炭酸ガスは、高純度な炭酸ガスでなくてもよい。例えば、火力発電所等の固定発生源から大量に排出される低純度の二酸化炭素ガスでもよい。このような低純度の炭酸ガスを用いれば、高純度分離などの事前処理を行う必要がないため、多くのエネルギーを消費せず、炭酸ガスの隔離を低コストで実現できる。
(C-4)上記実施形態において、ガス導入部10が導入する気体は、二酸化炭素を含有する空気でもよい。この場合、空気中の二酸化炭素濃度に応じて炭酸ガスの隔離量を算出し、その隔離量を第2実施形態で説明した排出量取引サーバに出力すれば、炭酸ガスを輸送するためのエネルギーやコストをかけることなく、排出量取引を行うことができる。
(C-5)上記実施形態において、ガス導入部10によって導入されるガスにメタンが含まれる場合、メタンの濃度を測定し、ガスの流量からメタンの隔離量を算出してもよい。メタンは、炭酸ガスに比べて、温室効果が高く、地球温暖化係数は、二酸化炭素が「1」であるのに対してメタンは「25」となっている。そのため、メタンの隔離量に地球温暖化係数を掛けて炭酸ガスの隔離量に換算し、上述した排出量取引を行ってもよい。
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…ガス導入部、11…流量測定部、12…第1濃度測定部、20…取水部、21…冷却部、30…気泡発生部、40…沈降管、41…水温センサ、50…制御部、51…算出部、52…出力部、60…第2濃度測定部、90…水域、100,101…炭酸ガス隔離装置、200…サーバ装置

Claims (9)

  1.  水域に炭酸ガスを隔離する炭酸ガス隔離装置であって、
     炭酸ガスを含むガスを導入するガス導入部と、
     水域から水を取り込む取水部と、
     前記取水部により取り込まれた前記水に、前記ガス導入部が導入した前記ガスの気泡を発生させる気泡発生部と、
     前記気泡を含む前記水を、前記水域中に送り込む沈降管と、を備え、
     前記気泡発生部は、前記気泡として、ブラウン運動が生じるサイズの気泡を発生させる、炭酸ガス隔離装置。
  2.  請求項1に記載の炭酸ガス隔離装置であって、
     前記気泡のサイズは、直径1μm未満である、炭酸ガス隔離装置。
  3.  請求項1または請求項2に記載の炭酸ガス隔離装置であって、更に、
     前記水を冷却する冷却部を備える、炭酸ガス隔離装置。
  4.  請求項3に記載の炭酸ガス隔離装置であって、
     前記冷却部は、前記取水部に備えられている、炭酸ガス隔離装置。
  5.  請求項3または請求項4に記載の炭酸ガス隔離装置であって、
     前記冷却部は、前記水の温度を、前記沈降管の出口付近における前記水域の水温まで低下させる、炭酸ガス隔離装置。
  6.  請求項1から請求項5までのいずれか一項に記載の炭酸ガス隔離装置であって、更に、
     前記ガス導入部が導入した前記ガスの流量を測定する流量測定部と、
     前記ガス中の前記炭酸ガスの濃度を測定する第1濃度測定部と、
     前記流量測定部が測定した流量と前記第1濃度測定部が測定した濃度とに基づき、前記気泡発生部に導入された前記炭酸ガスの量を算出する算出部と、
     算出された前記炭酸ガスの導入量を表す情報を出力する出力部と、
     を備える炭酸ガス隔離装置。
  7.  請求項1から請求項5までのいずれか一項に記載の炭酸ガス隔離装置であって、更に、
     前記ガス導入部が導入した前記ガスの流量を測定する流量測定部と、
     前記ガス中の前記炭酸ガスの濃度を測定する第1濃度測定部と、
     前記水域の水面付近における炭酸ガスの濃度を測定する第2濃度測定部と、
     前記流量測定部が測定した流量と前記第1濃度測定部が測定した濃度とに基づき、前記気泡発生部に導入された前記炭酸ガスの量を算出し、算出された前記炭酸ガスの導入量と、前記第2濃度測定部により測定された炭酸ガスの濃度の上昇量とに基づき、前記水域中に隔離された炭酸ガスの隔離量を算出する算出部と、
     算出された前記隔離量を表す情報を出力する出力部と、
     を備える炭酸ガス隔離装置。
  8.  請求項7に記載の炭酸ガス隔離装置であって、
     前記出力部は、前記隔離量を表す情報を、炭酸ガスの排出量取引に用いられるクレジットを表す情報として排出量取引サーバに出力する、炭酸ガス隔離装置。
  9.  水域に炭酸ガスを隔離する炭酸ガス隔離方法であって、
     ガス導入部により炭酸ガスを含むガスを導入し、
     取水部により水域から水を取り込み、
     気泡発生部が、前記取水部により取り込まれた前記水に、前記ガス導入部が導入した前記ガスの気泡を発生させ、
     前記気泡を含む前記水を、沈降管により前記水域中に送り込み、
     前記気泡発生部は、前記気泡として、ブラウン運動が生じるサイズの気泡を発生させる、炭酸ガス隔離方法。
PCT/JP2021/027027 2021-07-19 2021-07-19 炭酸ガス隔離装置および炭酸ガス隔離方法 WO2023002544A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023536245A JPWO2023002544A1 (ja) 2021-07-19 2021-07-19
PCT/JP2021/027027 WO2023002544A1 (ja) 2021-07-19 2021-07-19 炭酸ガス隔離装置および炭酸ガス隔離方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027027 WO2023002544A1 (ja) 2021-07-19 2021-07-19 炭酸ガス隔離装置および炭酸ガス隔離方法

Publications (1)

Publication Number Publication Date
WO2023002544A1 true WO2023002544A1 (ja) 2023-01-26

Family

ID=84979005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027027 WO2023002544A1 (ja) 2021-07-19 2021-07-19 炭酸ガス隔離装置および炭酸ガス隔離方法

Country Status (2)

Country Link
JP (1) JPWO2023002544A1 (ja)
WO (1) WO2023002544A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262888A (ja) * 1999-03-16 2000-09-26 Matsushita Electric Ind Co Ltd Co2固定システム、co2固定量算出方法、co2固定量算出システム、養魚システムおよびプログラム記録媒体
JP2001149945A (ja) * 1999-11-30 2001-06-05 Mitsubishi Heavy Ind Ltd 藻類制御装置
JP2005129088A (ja) * 2005-02-18 2005-05-19 Eco Purekkusu:Kk 二酸化炭素排出権取引システム用管理装置
JP2008161782A (ja) * 2006-12-27 2008-07-17 Toshiba Corp pH調整システム
US20180161719A1 (en) * 2016-06-11 2018-06-14 Sigan Peng Process and apparatus of ocean carbon capture and storage
JP2021041350A (ja) * 2019-09-12 2021-03-18 東洋建設株式会社 二酸化炭素固定化工法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262888A (ja) * 1999-03-16 2000-09-26 Matsushita Electric Ind Co Ltd Co2固定システム、co2固定量算出方法、co2固定量算出システム、養魚システムおよびプログラム記録媒体
JP2001149945A (ja) * 1999-11-30 2001-06-05 Mitsubishi Heavy Ind Ltd 藻類制御装置
JP2005129088A (ja) * 2005-02-18 2005-05-19 Eco Purekkusu:Kk 二酸化炭素排出権取引システム用管理装置
JP2008161782A (ja) * 2006-12-27 2008-07-17 Toshiba Corp pH調整システム
US20180161719A1 (en) * 2016-06-11 2018-06-14 Sigan Peng Process and apparatus of ocean carbon capture and storage
JP2021041350A (ja) * 2019-09-12 2021-03-18 東洋建設株式会社 二酸化炭素固定化工法

Also Published As

Publication number Publication date
JPWO2023002544A1 (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
Jang et al. Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship
Kawahara et al. Prediction of micro-bubble dissolution characteristics in water and seawater
JP2012512012A (ja) 流体の酸素化における改良
Yamasaki et al. A new ocean disposal scenario for anthropogenic CO2: CO2 hydrate formation in a submerged crystallizer and its disposal
WO2023002544A1 (ja) 炭酸ガス隔離装置および炭酸ガス隔離方法
US11919785B2 (en) Ocean alkalinity system and method for capturing atmospheric carbon dioxide
Lee et al. Combined heat and mass transfer performance enhancement by nanoemulsion absorbents during the CO2 absorption and regeneration processes
Brewer et al. Deep ocean experiments with fossil fuel carbon dioxide: creation and sensing of a controlled plume at 4 km depth
CA2908008C (fr) Procede et installation d'epuration des gaz d'echappement d'un moteur d'un navire marin
JP4843339B2 (ja) オゾン水供給装置
CN202446991U (zh) 水蒸汽氧化试验给水加氧装置
JP2012024719A (ja) 微細バブル含有液供給装置
US20030070435A1 (en) Method and apparatus for efficient injection of CO2 in oceans
JP2003284940A (ja) ガスハイドレートの海中生成方法、ガスハイドレート生成装置、および二酸化炭素の海中貯蔵システム
Inukai et al. Energy-saving principle of the IHIMU semicircular duct and its application to the flow field around full scale ships
JPWO2010023977A1 (ja) 気体溶解装置
CN104002943A (zh) 一种潜艇上浮装置
JP2010269287A (ja) 液体中の溶存酸素除去方法及び液体中の溶存酸素除去装置
CN111819156B (zh) 使用反渗透膜系统产生淡水的方法和系统
JP3587715B2 (ja) Co2固定システム、co2固定量算出方法、co2固定量算出システム
JP5113552B2 (ja) 水質浄化装置
Saito et al. Deep ocean CO2 sequestration via GLAD (gas-lift advanced dissolution) system
JP2007069063A (ja) 気体溶解水供給システム
JP5376821B2 (ja) ガス発生装置及び希釈ガスの発生方法
Kikuchi et al. Conceptual schematic for capture of biomethane released from hydroelectric power facilities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950371

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023536245

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE