WO2023001148A1 - 打桩设备及打桩方法 - Google Patents

打桩设备及打桩方法 Download PDF

Info

Publication number
WO2023001148A1
WO2023001148A1 PCT/CN2022/106512 CN2022106512W WO2023001148A1 WO 2023001148 A1 WO2023001148 A1 WO 2023001148A1 CN 2022106512 W CN2022106512 W CN 2022106512W WO 2023001148 A1 WO2023001148 A1 WO 2023001148A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
pile body
guide
guide tube
pipe
Prior art date
Application number
PCT/CN2022/106512
Other languages
English (en)
French (fr)
Inventor
徐梓辰
Original Assignee
万晓跃
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万晓跃 filed Critical 万晓跃
Publication of WO2023001148A1 publication Critical patent/WO2023001148A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/04Guide devices; Guide frames
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • E02D7/06Power-driven drivers

Definitions

  • the invention relates to the technical field of directional piling, in particular to a piling device and a piling method.
  • pile insertion (or piling) mostly adopts hammering insertion, static pressure insertion or dynamic load insertion, among which the pile or pile body can be a permanent foundation, or it can be placed in a soft or rheological formation.
  • the existing technology cannot realize the trajectory control during the pile insertion process, and the slender pile body is prone to skewing during the process of being hammered into the ground. motion track), but in this way, the guide frame can only be set on the ground or in the piling ship, and it is difficult to control the relatively slender piles.
  • some engineering pile guide devices are used in some piling constructions. Through the setting of the positioning cylinder, the engineering pile is inserted into the underwater soil from the positioning cylinder to achieve the purpose of improving the stability of the piling. However, this method still cannot solve the above problems.
  • the guide problem of relatively slender pile body the pile body with the ratio of length and diameter greater than 10
  • the purpose of the present invention is to provide a pile driving device and a pile driving method, which can control and adjust the movement trajectory of the pile body during the pile insertion process, so as to realize the controllable deflection of the pile body in the shallow layer and improve the stability of pile driving sex.
  • Object of the present invention can adopt following technical scheme to realize:
  • the present invention provides a pile driving device, which includes a pile body, a guide pipe for changing the movement trajectory of the pile body inserted into the formation, and a driving device for providing power for the pile body inserted into the formation, wherein:
  • the driving device is connected to the pile body, and the guide tube is rotatably connected to the bottom of the pile body; a guiding direction for regulating the swing direction of the guide tube is set between the pile body and the guide tube control device.
  • the invention provides a piling method, which comprises the following steps:
  • Step S1 Continuously provide power for the pile body to enter the formation through the driving device
  • Step S2 When it is necessary to change the movement trajectory of the pile body, control the guide tube to swing through the guiding direction control device and form a preset angle with the pile body;
  • Step S3 driving the pile body into the ground to a preset position, and the guided piling ends.
  • the piling equipment can controllably hammer the relatively slender pile into the ground, so that the deflection of the pile can be controlled in the shallow layer, and the stability of the pile can be improved. layer to realize build-up.
  • the piling equipment can effectively solve the problem that offshore piling and seabed piling are prone to skewing.
  • it can keep the conduits away from each other with a certain curvature, thereby greatly expanding the number of conduits carried by the wellhead groove, and further Contribute to the increase of well positions.
  • Fig. 1 is one of structural representations of piling equipment of the present invention.
  • Fig. 2 is the second structural diagram of the piling equipment of the present invention.
  • Fig. 3 is a perspective view of the connection structure between the pile body and the guide tube in Fig. 2 .
  • Fig. 4 It is the front view of the connection structure between the pile body and the guide pipe in Fig. 2.
  • Fig. 5 is the third structural diagram of the piling equipment of the present invention.
  • Figure 6 A partial enlarged view of position A in Figure 5.
  • the present invention provides a kind of piling equipment, and this piling equipment comprises pile body 1, guiding pipe 2 and driving device 3, and guiding pipe 2 is used for changing the trajectory of pile body 1 insertion formation, and driving The device 3 is used to provide power for the pile body 1 to be inserted into the formation, wherein: the driving device 3 is connected to the top of the pile body 1, and the guide pipe 2 is rotatably connected to the bottom of the pile body 1; There is a guide direction control device 4, through which the swing direction of the guide tube 2 can be regulated.
  • the rotatable connection includes two forms of rotatable connection realized by bearing or swingable connection realized by joint structure;
  • the guide pipe can include curved pipe, obliquely cut round pipe or straight pipe, and obliquely cut round pipe is obliquely cut cylinder Shaped tube body, that is, a special cylindrical tube body whose longitudinal section is trapezoidal after being cut along its own axis.
  • a guide tube 2 is rotatably connected to the bottom of the pile body 1, and a guiding direction control device 4 is arranged between the pile body 1 and the guide tube 2.
  • the swing direction of the guide tube 2 can be regulated by the guide direction control device 4 to change the movement track of the pile body 1 inserted into the formation, and the relatively slender pile body 1 can be controllably inserted into the formation, so that the pile body 1 can be inserted into the formation in a shallow area.
  • the present invention can also solve the problem that offshore piling and seabed piling are easily skewed, and for slave wells with relatively dense spud cans 205, the conduits can be kept away from each other with a certain curvature, thereby greatly expanding the number of conduits carried by the wellhead groove , which in turn contributes to the increase of well positions, and is suitable for wide-scale popularization and use.
  • the driving device 3 can be a pile driver or a pile driver, and the driving device 3 can be arranged inside the top of the pile body 1 or above the pile body 1 .
  • the driving device 3 can also be other power mechanisms, which can provide power for the pile body 1 to be inserted into the formation, and only need to hammer the pile body 1 into the formation.
  • the formation includes mud layer, quicksand, soil layer and rock layer.
  • the pile body 1 may be but not limited to a circular tubular structure.
  • the pile body 1 may adopt but is not limited to a slotted pipe, and the slots on the slotted pipe can increase the flexibility of the pile body 1 itself, thereby making the pile body 1 easier to bend.
  • the guide tube 2 includes a rotating tube 201 and a guiding tube 202 , and at least one of the rotating tube 201 and the guiding tube 202 is an obliquely truncated circular tube.
  • the preferred rotating tube 201 and the guiding tube 202 are obliquely cut circular tubes (that is, the top of the guiding tube 202 and the bottom of the rotating tube 201 are oblique sections, and the oblique sections are the inclined surfaces as shown in Fig. 2 and Fig. 4).
  • the rotating tube 201 is coaxially connected with the pile body 1, the top of the rotating tube 201 is rotatably connected with the bottom of the pile body 1, the bottom of the rotating tube 201 is rotatably connected with the top of the guide tube 202, and the axis of the guide tube 202 is connected with the pile body.
  • the axis of body 1 forms an included angle.
  • a first connecting bearing 8 is provided between the rotating tube 201 and the pile body 1
  • a second connecting bearing 203 is provided between the rotating tube 201 and the guide tube 202 .
  • the guide direction control device 4 includes a plurality of hydraulic cylinders 401, and an articulation ring 402 is arranged between the pile body 1 and the guide pipe 2, and the articulation ring 402
  • the outer wall of the pile body 1 is fixedly connected with the bottom inner wall of the pile body 1
  • the hinge ring 402 is sleeved on the top outer wall of the guide tube 2
  • the top outer wall of the guide tube 2 is formed with a convex step 204 with an arc-shaped cross section, and the inner wall of the hinge ring 402
  • a groove matching the convex step 204 is formed on the top, and the convex step 204 can be movably embedded in the groove, and each hydraulic cylinder is connected between the pile body 1 and the guide pipe 2 .
  • each hydraulic cylinder 401 By controlling the working state of each hydraulic cylinder 401, the piston rod part of each hydraulic cylinder 401 is extended or shortened as required, so that a certain angle is generated between the guide pipe 2 and the pile body 1 to reach the control guide pipe. 2 The purpose of changing the direction of deflection during piling.
  • each hydraulic cylinder 401 is distributed evenly and at intervals along the circumferential direction of the pile body 1, and the main parts of each hydraulic cylinder 401 are respectively fixedly connected with the bottom inner wall of the pile body 1, and the piston rods of each hydraulic cylinder 401 Parts protrude from the main body of the corresponding hydraulic cylinder 401 and are fixedly connected with the top inner wall of the guide pipe 2 .
  • the steering direction control device 4 further includes a hydraulic power source 403, the hydraulic power source 403 is arranged outside the guide pipe 2, and the hydraulic power source 403 passes through a hydraulic pipeline 404 They are respectively connected with the hydraulic cylinders 401 , and provide hydraulic power for the hydraulic cylinders 401 through the hydraulic power source 403 , so as to control the expansion and contraction of the hydraulic cylinders 401 .
  • a guide angle control device 5 is provided between the rotating tube 201 and the guide tube 202, and the guide angle control device 5 is used to regulate the swing angle of the guide tube 202.
  • Both the angle control device 5 and the steering direction control device 4 are connected to the signal processing device 7 outside the guide tube 2 through cables 6 .
  • the steering angle control device 5 and the steering direction control device 4 can receive control signals from the signal processing device 7 to control the deflection direction and angle of the guide pipe 2 .
  • the guide angle control device 5 is used to control the strength of the guide, that is, to control the curvature of the pile insertion trajectory; and the guide direction control device 4 is used to control the direction of the guide, that is, to control the azimuth of the pile body advancing.
  • the guiding direction control device 4 is fixedly connected with the pile body, as shown in Figure 2 , the motor in the guiding direction controlling device 4 is driven by an external gear 10 to be arranged in a rotating position.
  • the internal gear 11 inside the pipe 201 rotates, further driving the rotating pipe 201 to rotate relative to the pile body.
  • the guide angle control device 5 is fixedly connected with the rotating tube 201, and the motor in the guide angle control device 5 drives the internal gear 11 arranged on the inner side of the top of the guide tube 202 to rotate through the external gear 10, and further drives the guide tube 202 to rotate relative to the rotating tube 201.
  • the tube 202 and the rotating tube 201 are oblique circular tubes, and the connecting surface of the guiding tube 202 and the rotating tube 201 is an oblique section, so when the guiding tube 202 and the rotating tube 201 rotate relative to each other, the axis between the guiding tube 202 and the rotating tube 201 The angle changes immediately.
  • the slope angle at the top of the guide tube 202 is consistent with the slope angle at the bottom of the rotating tube 201 , so that an angle can always be satisfied so that the guiding tube 202 and the rotating tube 201 are coaxial.
  • the connection principle and specific mechanical theory of the aforementioned method are consistent with the theory of rotating and deflecting circular pipes with oblique sections used in other fields. This method of rotating and deflecting is more common in the tail of the aircraft engine and other types of exhaust pipes. It is not mentioned here Let me repeat.
  • the piling equipment further includes a spud can 205, and the spud can 205 is arranged at the bottom of the guide pipe 2, on the guide pipe 2 and close to the spud can 205.
  • An attitude measurement device 9 is provided, and the attitude measurement device 9 is connected to the signal processing device 7 outside the guide pipe 2 through the cable 6, and the attitude information of the position of the guide pipe 2 close to the spud can is collected in real time through the attitude measurement device 9, and transmitted to the signal processing device 7, so that ground personnel can monitor the attitude of the position of the spud can on the guide tube 2 through the signal processing device 7.
  • the attitude measuring device 9 includes electronic measuring devices or mechanical measuring devices; wherein, the electronic measuring devices include accelerometers, magnetometers and/or gyroscopes; the mechanical measuring devices include mechanical measuring mechanisms and recording mechanisms.
  • the mechanical measuring mechanism includes a spirit level, a plumb weight and/or a side tilt pendulum; the recording mechanism includes a video recorder, through which the level ruler installed at the position of the spud can can be monitored in real time, thereby judging the bottom of the pile body 1 (that is, the pile Boot position).
  • the piling equipment can controllably hammer the relatively slender pile body 1 into the ground, so that the pile body 1 can be controlled to deflect in the shallow layer, and the stability of pile driving is improved.
  • it can be The shallower layer realizes deflection
  • the piling equipment can effectively solve the problem that offshore piling and seabed piling are easily skewed, and for slave wells with relatively dense spud cans 205, it can keep the conduits away from each other with a certain curvature, thereby greatly expanding the number of conduits carried by the wellhead groove. This in turn contributes to the increase of well positions.
  • the invention provides a piling method, which comprises the following steps:
  • Step S1 Continuously provide power for the pile body 1 to enter the formation through the driving device 3;
  • the pile driver is used to continuously provide power for the pile body 1 to enter the formation, and during the piling process, the attitude information of the guide pipe 2 near the spud can is collected in real time through the attitude measurement device 9, and is transmitted to the signal processing device 7, so that The personnel on the ground monitor the attitude of the position of the spud can on the guide tube 2 through the signal processing device 7 .
  • Step S2 When it is necessary to change the movement trajectory of the pile body 1, control the guide tube 2 to swing through the guiding direction control device 4 and form a preset angle with the pile body 1;
  • step S2 includes, step S201: control the working state of each corresponding hydraulic cylinder 401 through the hydraulic power source 403, so that the piston rod part of the hydraulic cylinder 401 that is away from the pre-deflection direction of the guide pipe 2 protrudes outward, and/or Retracting the piston rod part of the hydraulic cylinder 401 close to the pre-deflection direction of the guide tube 2 inwards, thereby realizing the control of the deflection direction of the guide tube 2;
  • Step S202 Under the hammering action of the pile driver, make the spud can 205 hammer the formation.
  • the formation applies pressure to the guide pipe 2 in the direction of the pre-deflection of the guide pipe 2 (which is The component force generated in the pre-deflection direction of the guide pipe 2 when the formation exerts pressure on the guide pipe 2), so that the pile body 1 deflects in the required deflection direction during the piling process.
  • Step S3 Drive the pile body 1 into the ground to a preset position, and the guided piling ends.
  • a step S4 is further included: recovering the attitude measurement device 9 and the hydraulic pipeline 404 to the ground through the cable 6 .
  • the piling method is simple in operation and strong in applicability, and can controllably hammer the slender pile body 1 into the ground, so that the controllable deflection of the pile body 1 can be realized in the shallow layer, and the stability of pile driving is improved.
  • deflection can be realized at a shallower layer; during the piling process, the staff can control the deflection direction of the pile body 1 on the ground, and the degree of automation is greatly improved.
  • this piling method can effectively solve the problem that offshore piling and subsea piling are easily skewed, and for a slave well with relatively dense spud cans 205, it can make the conduits far away from each other with a certain curvature, thereby greatly expanding the capacity of the wellhead groove to carry the conduits. quantity, which in turn contributes to the increase of well locations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

本发明为一种打桩设备及打桩方法,该打桩设备包括桩体(1)、改变桩体(1)插入地层的运动轨迹的引导管(2)和为桩体(1)插入地层提供动力的驱动装置(3),驱动装置(3)与桩体(1)连接,引导管(2)能转动地连接于桩体(1)的底部;桩体(1)与引导管(2)之间设置有调控引导管(2)摆动方向的导向方向控制装置(4)。本发明解决了无法实现插桩过程的轨迹控制的技术问题。通过本发明,解决了无法实现插桩过程的轨迹控制的技术问题。

Description

打桩设备及打桩方法
相关申请
本申请要求专利申请号为202110813999.1、申请日为2021.07.19、发明创造名称为“打桩设备及打桩方法”的中国发明专利的优先权。
技术领域
本发明涉及定向打桩技术领域,尤其涉及一种打桩设备及打桩方法。
背景技术
现阶段,插桩(或打桩)多采用锤击插入、静压插入或者动载荷插入等方式,其中,桩或者桩体可以是永久性的基础,也可以是以在软地层或者流变性地层中打孔为目的临时插入的桩或桩体。
在打桩过程中,现有技术无法实现桩体插入过程中的轨迹控制,细长的桩体在被锤入地层的过程中容易发生歪斜,目前有采用打桩导向的方式(通过导向架引导桩的运动轨迹),但该方式中导向架只能设置于地面或者打桩船中,对于较为细长的桩体均均在控制困难等问题。另外,在有些打桩施工中采用工程桩导向装置,其通过定位筒的设置,使工程桩从定位筒中插入水下的泥土中,以达到提高打桩稳定性的目的,但该种方法依然无法解决上述较为细长的桩体(长度与直径的比大于10的桩体)的导向问题,且通过高昂的成本获得微弱的效果,得不偿失。
在海底施工的应用中,海上打桩及海底打桩存在海底土质松软,且桩管受到海水、船舶等不确定性影响大,容易导致桩管歪斜。而丛式钻井工艺流程中也需要先打桩,桩的密度增高会增加自身以及后续钻井过程中发生碰撞风险。因此,当需要桩体以弯曲轨迹插入地层时,现有技术根本无法实现插桩过程的轨迹控制,限制了浅层资源的开发,尤其是限制了海底浅层资源的开发。
针对相关技术中无法实现插桩过程的轨迹控制的问题,目前尚未给出有效的解决方案。
发明内容
本发明的目的在于提供一种打桩设备及打桩方法,其可对插桩过程中桩体的运动轨迹进行控制和调节,从而能够在浅层实现桩体的可控偏斜,提高了打桩的稳定性。
本发明的目的可采用下列技术方案来实现:
本发明提供了一种打桩设备,所述打桩设备包括桩体、改变所述桩体插入地层的运动轨迹的引导管和为所述桩体插入地层提供动力的驱动装置,其中:
所述驱动装置与所述桩体连接,所述引导管能转动地连接于所述桩体的底部;所述桩体与所述引导管之间设置有调控所述引导管摆动方向的导向方向控制装置。
本发明提供了一种打桩方法,所述打桩方法包括如下步骤:
步骤S1:通过驱动装置持续为桩体进入地层提供动力;
步骤S2:当需要改变所述桩体的运动轨迹时,通过导向方向控制装置控制引导管摆动并与所述桩体之间成预设夹角;
步骤S3:将所述桩体打入地层至预设位置,导向打桩结束。
本发明的有益效果是:
该打桩设备能够将较为细长的桩体可控地锤入地层,从而可以在浅层实现桩体的可控偏斜,提高了打桩的稳定性,在开发浅层矿物时,可以在更浅的层位实现造斜。
该打桩设备能够有效解决海上打桩和海底打桩容易歪斜的问题,而对于桩靴较为密集的从式井,能够让各导管之间以一定曲率相互远离,从而大大扩展井口槽承载导管的数量,进而有助于井位的增加。
附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:
图1:为本发明打桩设备的结构示意图之一。
图2:为本发明打桩设备的结构示意图之二。
图3:为图2中桩体与引导管连接结构的立体图。
图4:为图2中桩体与引导管连接结构的正视图。
图5:为本发明打桩设备的结构示意图之三。
图6:为图5中A位置的局部放大图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明 的具体实施方式。
实施方式一
如图1至图5所示,本发明提供了一种打桩设备,该打桩设备包括桩体1、引导管2和驱动装置3,引导管2用于改变桩体1插入地层的运动轨迹,驱动装置3用于为桩体1插入地层提供动力,其中:驱动装置3与桩体1的顶部连接,引导管2能转动地连接于桩体1的底部;桩体1与引导管2之间设置有导向方向控制装置4,通过导向方向控制装置4可对引导管2的摆动方向进行调控。其中,能转动的连接包括采用轴承实现的可旋转连接或采用关节结构实现的可摆动连接两种形式;引导管可包括弯曲管、斜截圆管或直管,斜截圆管为斜截圆柱状管体,即沿自身轴线剖开后形成的纵剖面为梯形的特殊圆柱状管体。
本发明在桩体1的底部能转动地连接有引导管2,并在桩体1与引导管2之间设置有导向方向控制装置4,在驱动装置3为桩体1插入地层提供动力时,可通过导向方向控制装置4调控引导管2的摆动方向,以改变桩体1插入地层的运动轨迹,可以将较为细长的桩体1可控地插入地层内,从而可以在地层的浅层区域实现桩体1的可控偏斜,能够有效提高打桩的稳定性,开发浅层矿物的同时,能够在更浅的层位实现桩体的造斜,具有更好的适用性。另外,本发明还能够解决海上打桩和海底打桩容易歪斜的问题,而对于桩靴205较为密集的从式井,能够让各导管之间以一定曲率相互远离,从而大大扩展井口槽承载导管的数量,进而有助于井位的增加,适于大范围推广使用。
进一步的,驱动装置3可为打桩机或者插桩机,驱动装置3可设置于桩体1顶部的内侧或者桩体1的上方。当然,驱动装置3还可以为其他动力机构,能够为桩体1插入地层提供动力,并将桩体1锤入地层即可。其中,地层包括泥层、流沙、土层和岩层。
进一步的,桩体1可为但不限于圆管状结构。
进一步的,桩体1可采用但不限于割缝管,割缝管上的缝隙能够增加桩体1自身的柔性,从而使桩体1更容易弯曲。
在本发明的一个可选实施例中,如图2至图4所示,引导管2包括旋转管201和导向管202,旋转管201与导向管202中至少其一为斜截圆管。其中,优选旋转管201和导向管202均为斜截圆管(即:导向管202顶部和旋转管201底部均为斜截面,斜截面即为如图2、图4中的倾斜面)。旋转管201与桩体1同轴连接,旋转管201的顶部与桩体1的底部能转动地连接,旋转管201的底部与导向管202的顶部能转动地连接,导向管202的轴线与桩体1的轴线呈一夹角。通过对旋转管201偏斜方向的控制,可调控桩 体1在插入地层过程中的运动轨迹,从而使桩体1沿预期轨迹进入地层;通过导向管202对桩体1插入地层起到导向的作用。
进一步的,如图2所示,旋转管201与桩体1之间设置有第一连接轴承8,旋转管201与导向管202之间设置有第二连接轴承203。
在本发明的一个可选实施例中,如图5、图6所示,导向方向控制装置4包括多个液压缸401,桩体1与引导管2之间设置有铰接环402,铰接环402的外壁与桩体1的底部内壁固定连接,铰接环402套设于引导管2的顶部外壁上,引导管2的顶部外壁上形成有横截面呈弧形的凸阶204,铰接环402的内壁上形成与凸阶204相配合的凹槽,凸阶204能活动地嵌设于凹槽内,各液压缸连接于桩体1与引导管2之间。通过对各液压缸401工作状态的控制,使各液压缸401的活塞杆部分根据需要进行伸长或者缩短,从而使引导管2与桩体1之间产生一定的夹角,以到达控制引导管2在打桩过程中改变偏斜方向的目的。
进一步的,如图5所示,各液压缸401沿桩体1的周向均匀且间隔分布,各液压缸401的主体部分分别与桩体1的底部内壁固定连接,各液压缸401的活塞杆部分从对应的液压缸401的主体部分伸出并与引导管2的顶部内壁固定连接。
在本发明的一个可选实施例中,如图5所示,导向方向控制装置4还包括液压动力源403,液压动力源403设置于引导管2的外部,且液压动力源403通过液压管线404分别与各液压缸401连接,通过液压动力源403为各液压缸401提供液压动力,从而控制各液压缸401的伸缩动作。
在本发明的一个可选实施例中,如图2所示,旋转管201与导向管202之间设置有导向角度控制装置5,导向角度控制装置5用于调控导向管202的摆动角度,导向角度控制装置5和导向方向控制装置4均通过电缆6与引导管2外部的信号处理装置7连接。在打桩过程中,通过导向角度控制装置5和导向方向控制装置4可接收信号处理装置7发出的控制信号,从而对引导管2的偏斜方向和角度进行控制。
其中,导向角度控制装置5用于控制导向的强度,即控制插桩轨迹的曲率;而导向方向控制装置4用于控制导向的方向,即控制桩体前进的方位角。在旋转管201和导向管202之间角度不变的情况下,导向方向控制装置4与桩体固定连接,如图2所示,导向方向控制装置4中的电动机通过外齿轮10驱动设置于旋转管201内侧的内齿轮11旋转,进一步带动旋转管201相对桩体旋转。导向角度控制装置5与旋转管201固定连接,导向角度控制装置5中的电动机通过外齿轮10驱动导向管202顶部内侧设置的内齿轮11旋转,进 一步带动导向管202相对旋转管201旋转,由于导向管202和旋转管201为斜截圆管,且导向管202和旋转管201的连接面为斜截面,因此当导向管202和旋转管201相对旋转时导向管202和旋转管201之间的轴线角度随即发生变化。本实施例中,导向管202顶部的斜面角度与旋转管201底部的斜面角度一致,这样总能满足一个角度使导向管202和旋转管201同轴。前述方式的连接原理以及具体机械理论与其他领域应用的斜截面圆管实现旋转偏折的理论一致,该旋转偏折方式在飞机的发动机尾部一起其他类型的排气管中较为常见,此处不再赘述。
在本发明的一个可选实施例中,如图1至图5所示,打桩设备还包括桩靴205,桩靴205设置于引导管2的底部,引导管2上且靠近桩靴205的位置设置有姿态测量装置9,姿态测量装置9通过电缆6与引导管2外部的信号处理装置7连接,通过姿态测量装置9实时采集引导管2靠近桩靴位置的姿态信息,并传输至信号处理装置7,以使地面人员通过所述信号处理装置7监测所述引导管2上桩靴位置所处姿态。
进一步的,姿态测量装置9包括电子测量器件或者机械测量器件;其中,电子测量器件包括加速度计、磁力计和/或陀螺仪;机械测量器件包括机械测量机构和记录机构。
进一步的,机械测量机构包括水平尺、铅锤和/侧斜摆锤;记录机构包括录像机,通过录像机构能够实时监控装设于桩靴位置的水平尺,从而判断桩体1底部(即:桩靴位置)所处的姿态。
该打桩设备能够将较为细长的桩体1可控地锤入地层,从而可以在浅层实现桩体1的可控偏斜,提高了打桩的稳定性,在开发浅层矿物时,可以在更浅的层位实现造斜,
该打桩设备能够有效解决海上打桩和海底打桩容易歪斜的问题,而对于桩靴205较为密集的从式井,能够让各导管之间以一定曲率相互远离,从而大大扩展井口槽承载导管的数量,进而有助于井位的增加。
实施方式二
本发明提供了一种打桩方法,该打桩方法包括如下步骤:
步骤S1:通过驱动装置3持续为桩体1进入地层提供动力;
具体的,利用打桩机持续为桩体1进入地层提供动力,且在打桩过程中,通过姿态测量装置9实时采集引导管2靠近桩靴位置的姿态信息,并传输至信号处理装置7,以使地面人员通过所述信号处理装置7监测所述引导管2上所述桩靴位置所处姿态。
步骤S2:当需要改变桩体1的运动轨迹时,通过导向方向控制装置4控制引导管2 摆动并与桩体1之间成预设夹角;
进一步的,步骤S2包括,步骤S201:通过液压动力源403控制对应各液压缸401的工作状态,使远离引导管2预偏斜方向的液压缸401的活塞杆部分向外伸出,和/或使靠近引导管2预偏斜方向的液压缸401的活塞杆部分向内缩回,从而实现对引导管2的偏斜方向的控制;
步骤S202:在打桩机的锤击作用下使桩靴205锤击地层,在锤击过程中,桩体1进入地层的同时,地层向引导管2预偏斜方向给予引导管2压力(其为地层对引导管2施压状态下向引导管2预偏斜方向所产生的分力),以使桩体1在打桩过程中向所需偏斜的方向偏斜。
步骤S3:将桩体1打入地层至预设位置,导向打桩结束。
在本发明的一个可选实施例中,在步骤S3之后,还包括步骤S4:通过电缆6将姿态测量装置9和液压管线404回收至地面。
该打桩方法操作简单,适用性强,能够将较为细长的桩体1可控地锤入地层,从而可以在浅层实现桩体1的可控偏斜,提高了打桩的稳定性,在开发浅层矿物时,可以在更浅的层位实现造斜;在打桩过程中,工作人员在地面即可对桩体1的偏斜方向进行调控,自动化程度大大提高。另外,该打桩方法能够有效解决海上打桩和海底打桩容易歪斜的问题,而对于桩靴205较为密集的从式井,能够让各导管之间以一定曲率相互远离,从而大大扩展井口槽承载导管的数量,进而有助于井位的增加。
以上所述仅为本发明示意性的具体实施方式,并非用以限定本发明的范围。任何本领域的技术人员,在不脱离本发明的构思和原则的前提下所作的等同变化与修改,均应属于本发明保护的范围。

Claims (15)

  1. 一种打桩设备,其中,所述打桩设备包括桩体、改变所述桩体插入地层的运动轨迹的引导管和为所述桩体插入地层提供动力的驱动装置,其中:
    所述驱动装置与所述桩体连接,所述引导管能转动地连接于所述桩体的底部;所述桩体与所述引导管之间设置有调控所述引导管摆动方向的导向方向控制装置。
  2. 如权利要求1所述的打桩设备,其中,所述引导管包括旋转管和导向管,所述旋转管和所述导向管中至少其一为斜截圆管,所述旋转管与所述桩体同轴连接,所述旋转管的顶部与所述桩体的底部能转动地连接,所述旋转管的底部与所述导向管的顶部能转动地连接,所述导向管的轴线与所述桩体的轴线呈一夹角。
  3. 如权利要求2所述的打桩设备,其中,所述旋转管与所述桩体之间设置有第一连接轴承,所述旋转管与所述导向管之间设置有第二连接轴承。
  4. 如权利要求2所述的打桩设备,其中,所述旋转管与所述导向管之间设置有调控所述导向管摆动角度的导向角度控制装置,所述导向角度控制装置和所述导向方向控制装置均通过电缆与所述引导管外部的信号处理装置连接。
  5. 如权利要求1所述的打桩设备,其中,所述导向方向控制装置包括多个液压缸,所述桩体与所述引导管之间设置有铰接环,所述铰接环的外壁与所述桩体的底部内壁固定连接,所述铰接环套设于所述引导管的顶部外壁上,所述引导管的顶部外壁上形成有横截面呈弧形的凸阶,所述铰接环的内壁上形成与所述凸阶相配合的凹槽,所述凸阶能活动地嵌设于所述凹槽内,各所述液压缸连接于所述桩体与所述引导管之间。
  6. 如权利要求5所述的打桩设备,其中,各所述液压缸沿所述桩体的周向均匀且间隔分布,各所述液压缸的主体部分分别与所述桩体的底部内壁连接,各所述液压缸的活塞杆部分分别与所述引导管的顶部内壁连接。
  7. 如权利要求5所述的打桩设备,其中,所述导向方向控制装置还包括液压动力源,所述液压动力源设置于所述引导管的外部,且所述液压动力源通过液压管线分别与各所述液压缸连接。
  8. 如权利要求1所述的打桩设备,其中,所述打桩设备还包括桩靴,所述桩靴设置于所述引导管的底部,所述引导管上且靠近所述桩靴的位置设置有姿态测量装置,所述 姿态测量装置通过电缆与所述引导管外部的信号处理装置连接。
  9. 如权利要求8所述的打桩设备,其中,所述姿态测量装置包括电子测量器件或者机械测量器件;
    所述电子测量器件包括加速度计、磁力计和/或陀螺仪;
    所述机械测量器件包括机械测量机构和记录机构,所述机械测量机构包括水平尺、铅锤和/侧斜摆锤;所述记录机构包括录像机。
  10. 如权利要求1所述的打桩设备,其中,所述驱动装置为打桩机或者插桩机,所述驱动装置位于所述桩体的内侧或者所述桩体的上方。
  11. 如权利要求1所述的打桩设备,其中,所述桩体为割缝管。
  12. 一种打桩方法,其中,所述打桩方法包括如下步骤:
    步骤S1:通过驱动装置持续为桩体进入地层提供动力;
    步骤S2:当需要改变所述桩体的运动轨迹时,通过导向方向控制装置控制引导管摆动并与所述桩体之间成预设夹角;
    步骤S3:将所述桩体打入地层至预设位置,导向打桩结束。
  13. 如权利要求12所述的打桩方法,其中,所述步骤S1中,通过姿态测量装置实时采集引导管靠近桩靴位置的姿态信息,并传输至信号处理装置,以使地面人员通过所述信号处理装置监测所述引导管上所述桩靴位置所处姿态。
  14. 如权利要求13所述的打桩方法,其中,所述步骤S3之后,还包括步骤S4:通过电缆将所述姿态测量装置和液压管线回收至地面。
  15. 如权利要求12所述的打桩方法,其中,所述步骤S2包括,
    步骤S201:通过液压动力源控制对应各液压缸的工作状态,使远离所述引导管预偏斜方向的所述液压缸的活塞杆部分向外伸出,和/或使靠近所述引导管预偏斜方向的所述液压缸的活塞杆部分向内缩回;
    步骤S202:所述桩体进入地层的同时,地层向所述引导管预偏斜方向给予所述引导管压力,以使所述桩体在打桩过程中发生偏斜。
PCT/CN2022/106512 2021-07-19 2022-07-19 打桩设备及打桩方法 WO2023001148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110813999.1 2021-07-19
CN202110813999.1A CN115637699A (zh) 2021-07-19 2021-07-19 打桩设备及打桩方法

Publications (1)

Publication Number Publication Date
WO2023001148A1 true WO2023001148A1 (zh) 2023-01-26

Family

ID=84939660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106512 WO2023001148A1 (zh) 2021-07-19 2022-07-19 打桩设备及打桩方法

Country Status (2)

Country Link
CN (1) CN115637699A (zh)
WO (1) WO2023001148A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8605652D0 (en) * 1986-03-07 1986-04-16 Lam H B Pile driving
JP2008274723A (ja) * 2007-05-01 2008-11-13 Chowa Kogyo Kk オーガ併用鋼管杭打機および鋼管杭打方法
CN202865839U (zh) * 2012-05-10 2013-04-10 湖南大学 一种加固软弱地基的沉管筋箍碎石桩施工用桩管
CN103403261A (zh) * 2011-08-22 2013-11-20 王志财 采用推拉方法的可调节倾斜的打桩机
CN112031653A (zh) * 2019-06-06 2020-12-04 万晓跃 一种易造斜混合式旋转导向钻井系统
CN112663610A (zh) * 2020-12-15 2021-04-16 大连理工大学 用于破碎带微型桩高效施工的振动冲压设备的施工方法
CN113047278A (zh) * 2021-04-09 2021-06-29 安徽恒坤地基基础工程有限公司 一种倾斜打桩的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8605652D0 (en) * 1986-03-07 1986-04-16 Lam H B Pile driving
JP2008274723A (ja) * 2007-05-01 2008-11-13 Chowa Kogyo Kk オーガ併用鋼管杭打機および鋼管杭打方法
CN103403261A (zh) * 2011-08-22 2013-11-20 王志财 采用推拉方法的可调节倾斜的打桩机
CN202865839U (zh) * 2012-05-10 2013-04-10 湖南大学 一种加固软弱地基的沉管筋箍碎石桩施工用桩管
CN112031653A (zh) * 2019-06-06 2020-12-04 万晓跃 一种易造斜混合式旋转导向钻井系统
CN112663610A (zh) * 2020-12-15 2021-04-16 大连理工大学 用于破碎带微型桩高效施工的振动冲压设备的施工方法
CN113047278A (zh) * 2021-04-09 2021-06-29 安徽恒坤地基基础工程有限公司 一种倾斜打桩的方法

Also Published As

Publication number Publication date
CN115637699A (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
RU2392390C2 (ru) Способ бестраншейной прокладки труб
US4726711A (en) Process and apparatus to form an underground passage or space
CN109356527B (zh) 一种在海洋石油工程施工过程中海底管道的登陆方法
US9303457B2 (en) Directional drilling using magnetic biasing
WO2023001148A1 (zh) 打桩设备及打桩方法
WO2022156821A1 (zh) 一种打桩设备及打桩方法
JP2020122288A (ja) 洋上風力発電用基礎の下部構造および洋上風力発電用基礎の下部構造の施工方法
AU2011322539A1 (en) Method for the underground installation of a pipe.
KR102187626B1 (ko) 드릴장치
WO2023109014A1 (zh) 一种裸岩河床钢管桩施工设备及施工方法
RU2382927C1 (ru) Способ прокладки трубопровода под водным препятствием
JPS63165699A (ja) 片押し方式による管推進工法
CN212001091U (zh) 一种大直径超深灌注桩的超长钢护筒沉入系统
CN118187045A (zh) 一种搅拌桩施工装置及施工方法
JP4392307B2 (ja) 地中管路設置方法
JP7229598B1 (ja) ソイルセメント連続壁の施工法
WO2005061837A1 (en) Closed end directional driving shoe
JPS63210396A (ja) ウオ−タジエツト推進工法及びその装置
JPS61252988A (ja) 小径管の推進工法
JPH10115168A (ja) 鋼管配設孔形成装置及び鋼管矢板形成方法
JPH07150890A (ja) 曲線管路の推進工法
JP3076927B2 (ja) 先打ち補強構造及び地下空間の施工方法
JP4197473B2 (ja) 多軸掘削における軸曲がりの解消方法
JP2001329786A (ja) 掘削体及び掘削方法
CN111305209A (zh) 一种大直径超深灌注桩超长钢护筒沉入方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE