WO2023001100A1 - 分布式四驱扭矩控制方法 - Google Patents

分布式四驱扭矩控制方法 Download PDF

Info

Publication number
WO2023001100A1
WO2023001100A1 PCT/CN2022/106240 CN2022106240W WO2023001100A1 WO 2023001100 A1 WO2023001100 A1 WO 2023001100A1 CN 2022106240 W CN2022106240 W CN 2022106240W WO 2023001100 A1 WO2023001100 A1 WO 2023001100A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
axle
torque
rear axle
speed
Prior art date
Application number
PCT/CN2022/106240
Other languages
English (en)
French (fr)
Inventor
王德平
吴爱彬
刘元治
杨钫
崔金龙
周泽慧
赵洋
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023001100A1 publication Critical patent/WO2023001100A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/064Degree of grip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of drive control of electric vehicles, for example, to a distributed four-wheel drive torque control method.
  • Electric vehicles mainly rely on front and rear axle torque distribution according to the vehicle state (such as wheel speed, steering wheel angle, yaw acceleration, etc.) to realize functions such as economical control and traction control of four-wheel drive.
  • Most of the controls do not fully consider the identification of driving intentions, and the acquisition of the vehicle state depends on the sensor. Affected by the accuracy of the sensor signal and the transmission speed, there is a problem of response lag in the transmission of the vehicle state; at the same time, the control method of the steering condition is mainly carried out by braking.
  • the closed-loop control based on yaw feedback control also has the problem of time delay and lag, and the control method is single, which makes it difficult to realize commercialization.
  • the present application provides a distributed four-wheel drive torque control method to solve the problems of time lag and failure to consider driving intentions existing in the distributed four-wheel drive torque control.
  • the present application provides a distributed four-wheel drive torque control method, including:
  • the current parameters of the vehicle include vehicle longitudinal acceleration, vehicle lateral acceleration, accelerator pedal opening, brake pedal opening, steering wheel angle, yaw rate, wheel speed and the vehicle operation mode currently selected by the driver;
  • the vehicle working mode is divided into three types, which are respectively a sports working mode, an economical working mode and a braking working mode;
  • the calculation of the torque of the four motors includes:
  • axle load calculation formula of the front and rear axles of the vehicle is as follows:
  • F zf , F zr the vertical force of the front and rear axles
  • m the mass of the vehicle
  • g the acceleration of gravity
  • h g the height of the center of mass of the vehicle
  • a x the longitudinal acceleration of the vehicle
  • the slope angle
  • a - the distance from the front axle to the center of mass of the vehicle
  • b the distance from the rear axle to the center of mass of the vehicle
  • ⁇ f and ⁇ r are the road adhesion coefficients of the front axle and rear axle respectively, F xf is the longitudinal tire force of the front axle, and F xr is the longitudinal tire force of the rear axle;
  • r f tire radius of front axle
  • r r tire radius of rear axle
  • J f moment of inertia of front axle
  • J r moment of inertia of rear axle
  • the acceleration of the front axle — the acceleration of the rear axle;
  • the inter - axle torque distribution coefficient ⁇ 1 is calculated by the following formula:
  • the inter-axle torque distribution coefficient ⁇ 1 is obtained through the road gradient i and the vehicle longitudinal acceleration a x , and the coaxial left and right motors are evenly distributed according to the inter-axle torque distribution coefficient ⁇ 1 ;
  • T a represents the driver's demand torque
  • T f represents the motor driving torque of the front axle
  • T r represents the motor driving torque of the rear axle
  • ⁇ 2 represents the inter-axle torque distribution coefficient in the economical working mode
  • n represents the motor speed
  • ⁇ f , ⁇ r represent the working efficiency of the front axle motor and the rear axle motor respectively
  • P f , P r represent the output power of the front axle motor and the output power of the rear axle motor respectively
  • P all represent the total output power of the front and rear axle motors Output power
  • the optimal control equation of the total output power of the front and rear axle motors is as follows:
  • T max r represents the total available torque of the rear axle motor
  • T max f represents the total available torque of the front axle motor
  • the torque distribution table for the optimal total output power of the front and rear axle motors is calculated offline, so that the total output power loss of the current front and rear axle motors of the vehicle is minimized. Then, the optimal inter-axle torque distribution coefficient is calculated under different reference vehicle speeds and front and rear axle motor drive torque states;
  • ⁇ rear min(0.5, ⁇ 2 ).
  • ⁇ 2 represents the inter-axle torque distribution coefficient in the economical working mode
  • the torque of the coaxial left and right motors is evenly distributed according to the inter-shaft torque distribution coefficient ⁇ rear .
  • the application also provides a vehicle, comprising:
  • a memory configured to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements the distributed four-wheel drive torque control method described in any embodiment.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the distributed four-wheel drive torque control method described in any embodiment is implemented.
  • Fig. 1 is a schematic diagram of the distribution of four motors of a distributed four-wheel drive electric vehicle
  • Fig. 2 is a flow chart of a distributed four-wheel drive torque control method provided by the present application
  • Fig. 3 is a schematic diagram of division of three vehicle operating modes in a distributed four-wheel drive torque control method provided by the present application;
  • FIG. 4 is a schematic diagram of torque control under steering conditions in a distributed four-wheel drive torque control method provided by the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being "on” or “under” a second feature may include direct contact between the first feature and the second feature, and may also include the first feature and the second feature.
  • the features are not in direct contact but through another feature between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the present application provides a distributed four-wheel drive torque control method.
  • the distributed four-wheel drive electric vehicle includes four motors, as shown in FIG.
  • the left front wheel, left rear wheel, right front wheel, and right rear wheel, the four motors are uniformly controlled by the vehicle control unit (VCU), and perform operations including steering and torque distribution, which solves the control problems in related technologies
  • VCU vehicle control unit
  • the method has a time lag and does not take into account the driver's intentions.
  • x indicates the longitudinal direction of the vehicle
  • y indicates the lateral direction
  • z indicates the vertical or vertical direction
  • f indicates the front, such as the front wheel or the front axle
  • r means rear, such as rear wheels or rear axle.
  • a distributed four-wheel drive torque control method includes the following steps:
  • the current parameters of the vehicle include vehicle longitudinal acceleration, vehicle lateral acceleration, accelerator pedal opening, brake pedal opening, steering wheel angle, yaw rate, wheel speed, and the vehicle operating mode selected by the current driver.
  • vehicle operating mode includes the comfort operating mode (also known as AUTO mode), economical operation mode (also known as ECO mode) and sports operation mode (also known as SPORT mode).
  • the vehicle operation mode is selected by the driver.
  • There are three working modes of the vehicle which are sports working mode, economical working mode and braking working mode.
  • the selection of the vehicle working mode is the result of the re-judgment of the current working state of the vehicle by the vehicle controller, so as to obtain more accurate motor torque.
  • the driver's intention recognition is considered in the current parameters of the vehicle, and the current running state of the vehicle in the vehicle operation mode is re-judged.
  • the discriminant results calculate the torques of the four motors in the current vehicle working mode, and realize the distributed four-wheel drive torque control.
  • the output torques of the four motors take into account the safety, power and economy of the vehicle at the same time, which is conducive to improving the steering performance of the vehicle, thereby Realize the driving assistance of distributed four-wheel drive control.
  • the reference vehicle speed v ref_veh in step S2 is calculated according to wheel speed, yaw rate and steering wheel angle.
  • the wheel speeds of multiple wheels are normalized at the center of the rear axle, and the normalization formula is as follows:
  • v fl is the longitudinal speed of the left front wheel (m/s)
  • v fr is the longitudinal speed of the right front wheel (m/s)
  • v rl is the longitudinal speed of the left rear wheel (m/s)
  • v rr is the longitudinal speed of the right rear wheel wheel longitudinal speed (m/s)
  • v fl_x is the longitudinal speed of the left front wheel at the center of the rear axle (m/s)
  • v fr_x is the longitudinal speed of the right front wheel at the center of the rear axle (m/s)
  • v rl_x is The longitudinal speed of the left rear wheel at the center of the rear axle (m/s)
  • v rr_x is the longitudinal speed of the right rear wheel at the center of the rear axle (m/s)
  • L is the vehicle wheelbase (m)
  • b is the wheel moment (m )
  • is the front wheel rotation angle (rad)
  • yaw rate is the yaw rate (rad/
  • v ref_veh min(v fl_x ,v fr_x ,v rl_x ,v rr_x )
  • the vehicle acceleration a act can be calculated:
  • the current vehicle acceleration is used as the current road surface adhesion coefficient:
  • the current road surface adhesion coefficient is the maximum value between the current vehicle acceleration and the road surface adhesion coefficient at the previous moment:
  • v ref_veh is the reference vehicle speed
  • is the road surface adhesion coefficient
  • a act is the vehicle acceleration
  • the sine value of the road slope i is the ratio of the difference between the measured value of the longitudinal acceleration sensor and the differential value of the longitudinal vehicle speed to the acceleration of gravity:
  • i represents the road gradient
  • a x represents the longitudinal acceleration measured by the sensor
  • g represents the gravitational acceleration in m/s 2
  • v x represents the longitudinal speed of the vehicle.
  • step S3 the driving stability factor ⁇ is determined by the current vehicle acceleration a act and the road surface adhesion coefficient ⁇ , and is corrected by the reference vehicle speed v ref_veh and the steering wheel angle steerAngle.
  • is the driving stability factor, and the value is between 0 and 1.
  • step S4 According to the current vehicle parameters in steps S1-S3, combined with Figure 3, the three vehicle operating modes in step S4 are divided in the following manner:
  • the accelerator pedal opening is greater than the first preset opening
  • the accelerator pedal opening is greater than the second preset opening and smaller than the first preset opening, and the change rate of the accelerator pedal opening is greater than the first preset value, and the received mode instruction is a comfortable operation mode instruction;
  • the driving stability factor is greater than the set value, and the received mode command is a comfortable operation mode command
  • the road surface adhesion coefficient is less than the set value, and the received mode instruction is a comfortable operation mode instruction;
  • the received mode command is a motion operation mode command.
  • the opening degree of the accelerator pedal is greater than 0 and less than or equal to the second preset opening degree, and the received mode instruction is a comfortable operation mode instruction;
  • the received vehicle operation mode instruction is an economic operation mode instruction.
  • step S5 four motor torques are calculated in three vehicle operating modes, including the following steps:
  • axle load calculation formula of the front and rear axles can be simplified as:
  • F zf , F zr the vertical force of the front and rear axles
  • m the mass of the vehicle
  • g the acceleration of gravity
  • h g the height of the center of mass of the vehicle
  • a x the longitudinal acceleration of the vehicle
  • the slope angle
  • a - the distance from the front axle to the center of mass of the vehicle
  • b the distance from the rear axle to the center of mass of the vehicle
  • the road adhesion coefficients of the front axle and the rear axle are respectively:
  • ⁇ f and ⁇ r are the road adhesion coefficients of the front axle and rear axle respectively, F xf is the longitudinal tire force of the front axle, and F xr is the longitudinal tire force of the rear axle.
  • the road surface utilization adhesion coefficient is smaller than the road surface adhesion coefficient, which refers to the utilization rate of the road surface adhesion coefficient.
  • the road surface adhesion coefficients of the front axle and the rear axle should be as equal as possible to reduce the total road surface adhesion coefficient of the driving wheels and prevent the driving wheels from slipping prematurely, namely:
  • r f tire radius of front axle
  • r r tire radius of rear axle
  • J f moment of inertia of front axle
  • J r moment of inertia of rear axle
  • the acceleration of the front axle - Acceleration of the rear axle.
  • inter - axle torque distribution coefficient ⁇ 1 can be expressed as:
  • the inter-axle torque distribution coefficient ⁇ 1 can be obtained through the road gradient i and the vehicle longitudinal acceleration a x , and the torque of the coaxial left and right motors can be evenly distributed according to the inter-axle torque distribution coefficient ⁇ 1 .
  • T a represents the driver's demand torque
  • T f represents the driving torque of the front axle motor
  • T r represents the driving torque of the rear axle motor
  • ⁇ 2 represents the inter-axle torque distribution coefficient in the economical working mode
  • n represents the motor speed (in this paper Assuming that the speeds of the four motors are the same), ⁇ f and ⁇ r respectively represent the working efficiency of the front and rear axle motors, P f and P r respectively represent the output power of the front and rear axle motors, and Pa all represent the total output power of the front and rear axle motors.
  • the optimal control equation of the real-time power of the drive system is obtained as follows:
  • T max r represents the total available torque of the rear axle motor
  • T max f represents the total available torque of the front axle motor
  • the torque distribution table that optimizes the real-time power of the drive system can be calculated offline, so that the power loss of the current drive system of the vehicle is minimized, and then the calculation results are different.
  • the value range of the inter - axle torque distribution coefficient ⁇ can be obtained, and according to Obtain the total output power of the front and rear axle motors corresponding to the multiple inter-axle torque distribution coefficients within the value range, and the smallest front and rear axle motor among the total output power of the multiple front and rear axle motors corresponding to the multiple inter-axle torque distribution coefficients
  • the inter-axle torque distribution coefficient corresponding to the total output power is used as the optimal inter-axle torque distribution coefficient.
  • the value range of ⁇ 2 is 0-0.5, then it can be based on Get multiple P all when ⁇ 2 is 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5, and obtain all inter-axle torque distribution coefficients within the value range of ⁇ 2 through interpolation
  • the total output power of the corresponding multiple front and rear axle motors, so that the inter-axle torque distribution coefficient corresponding to the smallest total output power of the front and rear axle motors among the total output power of all front and rear axle motors is used as the optimal inter-axle torque distribution coefficient.
  • the correspondence table between different reference vehicle speeds and different driver demand torques and the optimal torque distribution coefficient between the shafts can be established , that is, the torque distribution table with the optimal real-time power of the drive system, and then, in the case of obtaining the current driver’s demand torque and the current vehicle speed, the current driver’s demand torque and the current The optimal inter-axle torque distribution coefficient under the condition of vehicle speed.
  • the optimal inter-axle torque distribution coefficient corresponding to the driver demand torque and the reference vehicle speed closest to the current driver demand torque and the current vehicle speed can be searched in the real-time power optimal torque distribution table of the drive system.
  • the above-mentioned multiple inter-axle torque distribution coefficients are a plurality of inter-axle torque distribution coefficients at preset intervals within the value range of ⁇ 2 determined according to the above - mentioned restrictions, for example, the determined value range of ⁇ 2 is 0-0.5, and the above multiple inter-axle torque distribution coefficients can be 0, 0.1, 0.2, 0.3, 0.4 and 0.5.
  • the sum of the work efficiency of the front axle motor and the work efficiency of the rear axle motor of the multiple different driver demand torques under multiple inter-axle torque distribution coefficients can be obtained in the following manner :
  • a relational table is established, which indicates that the multiple different driver demand torques are 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 at ⁇
  • the sum of the working efficiency of the front axle motor and the working efficiency of the rear axle motor, and then after determining the value range of ⁇ 2 according to the above - mentioned restrictions, the multiple different values can be obtained from the relationship table established for each reference vehicle speed.
  • the sum of the working efficiency of the front axle motor and the working efficiency of the rear axle motor of the driver's demand torque under multiple inter-axle torque distribution coefficients is 0, 0.1, 0.2, 0.3, 0.4 and 0.5.
  • the front axle motor drive torque T f and the rear axle motor drive torque T r can be obtained according to the optimal inter-axle torque distribution coefficient and the current driver's demand torque, and then the front and rear axle torques can be completed distribute.
  • the driver's demanded torque is a physical quantity related to the opening of the accelerator pedal and the reference vehicle speed.
  • the calculation method in the related art is used to obtain the driver's demanded torque, so the specific calculation process of the driver's demanded torque is no longer carried out.
  • the driver demand torque including drive demand torque and brake demand torque
  • the power of the drive system is the total output power of the front and rear axle motors.
  • tolerance tolerance is as follows:
  • P all_best represents the total output power of the front and rear axle motors corresponding to the optimal inter-axle torque distribution coefficient at a working point
  • P all_T represents the total output power of the front and rear axle motors under the tolerance constraints. That is, the inter-axle distribution coefficient corresponding to the total output power P all_best of the motor on the front and rear axles when the total output power P all_best meets a certain tolerance is considered to be the final inter-axle torque distribution coefficient. It can be understood that a tolerance of 0 means that the deviation of the total output power is 0.
  • the tolerance is set to 0.5 to obtain an inter-axle torque distribution coefficient that meets the accuracy requirements.
  • the optimal inter-axle distribution coefficient corresponding to each driver's demanded torque for each reference vehicle speed, select the shaft that makes the total output power of the front and rear axle motors corresponding to different driver's demanded torques smoother under each driver's demanded torque.
  • the inter-axle torque distribution coefficient and the total output power of the front and rear axle motors corresponding to the selected inter-axle torque distribution coefficient are within the tolerance range of the total output power of the front and rear axle motors corresponding to the obtained optimal inter-axle torque distribution coefficient.
  • the inter-axle distribution coefficient is used as the final optimal inter-axle torque distribution coefficient corresponding to the driver's demand torque at the reference vehicle speed.
  • ⁇ rear min(0.5, ⁇ 2 ).
  • a distributed four-wheel drive torque control method provided by the present application further includes judging whether the electric vehicle, that is, the current vehicle is in the steering state, according to the accelerator pedal opening, the reference vehicle speed, the steering wheel angle, and the steering wheel angular velocity. In the case of cornering conditions, the steering stability of the vehicle is improved through dynamic axle load transfer.
  • the following parameters need to be considered in the discrimination of steering conditions: accelerator pedal opening, reference vehicle speed, steering wheel angle, and steering wheel angular velocity.
  • the current vehicle can be determined to enter the steering condition.
  • the discriminant conditions for steering conditions are:
  • the steering wheel angle is greater than the set value C, or the steering wheel angle is greater than the set value D (D is less than C), and the steering wheel angular velocity is greater than the set value E.
  • the vehicle executes the axle load forward control method to move the vehicle axle load forward.
  • the axle load forward control method is as follows Said: when the steering working conditions are met, the front axle will reduce the torque for a duration of t1, and then resume the torque reduction for a duration of t1-t2; the front axle will reduce the torque again for a duration of t2-t3, Then the torque reduction is restored and the duration is t3-t4, ..., and so on, and so on, through a plurality of intermittent torque reduction recovery periods (the time period when the front axle torque is 0) to reduce the driving torque of the front axle of the vehicle, so that the front axle load of the vehicle shift, so as to achieve the purpose of improving the vehicle's cornering performance.
  • the duration of the front axle torque of 1 has an equal duration t1
  • the duration of the front axle torque of 0 has an equal duration of (t2-t1).
  • the required torques of the multiple electric motors are constrained through the stability control strategy and the active anti-skid control strategy to output the required torques of the electric motors.
  • the driving torque of multiple motors is corrected according to the yaw control strategy.
  • the target yaw rate is obtained according to the reference speed of the vehicle and the steering wheel angle
  • the target yaw rate is obtained according to the target yaw rate.
  • the deviation of the current actual yaw rate of the vehicle corrects the driving torque of the four motors on the front and rear axles of the vehicle, and the vehicle proportional-integral-derivative (Proportion Integration Differentiation, PID) controller performs closed-loop control according to the deviation of the yaw rate and dynamically adjusts Torque distribution to multiple wheels.
  • PID Proportion Integration Differentiation
  • a distributed four-wheel drive torque control method of the present application under the condition of considering the driving intention, combined with the current parameters of the vehicle, the driver's demand torque and the current vehicle operation mode, re-judgments the current working state of the vehicle, and obtains three kinds of vehicle working conditions: In this mode, the torques of the four motors are calculated separately, and the calculation results are more accurate, which solves the delay lag problem of the distributed four-wheel drive torque closed-loop control based on the vehicle stability state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种分布式四驱扭矩控制方法,包括:获取车辆当前参数;计算参考车速、车辆加速度、路面利用附着系数和道路坡度;计算行驶稳定因子,选择车辆工作模式,并计算四个电机扭矩。该分布式四驱扭矩控制方法解决扭矩控制中存在的延时滞后和未考虑驾驶意图的问题。

Description

分布式四驱扭矩控制方法
本申请要求在2021年07月19日提交中国专利局、申请号为202110814949.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车驱动控制技术领域,例如涉及一种分布式四驱扭矩控制方法。
背景技术
电动汽车主要依赖于根据车辆状态(如轮速、方向盘转角、横摆加速度等)进行前后轴扭矩分配,实现对四驱的经济性控制和牵引性控制等功能。多数控制没有充分考虑驾驶意图的识别,且车辆状态获取依赖于传感器,受传感器信号的精度和传输速度的影响,车辆状态的传输存在响应滞后问题;同时转向工况的控制方法主要通过制动进行以横摆反馈控制为主的闭环控制,也存在延时滞后的问题,而且控制方法单一,产品化实现困难。
发明内容
本申请提供了一种分布式四驱扭矩控制方法,以解决分布式四驱扭矩控制存在的延时滞后和未考虑驾驶意图的问题。
本申请采用以下技术方案:
本申请提供一种分布式四驱扭矩控制方法,包括:
获取车辆当前参数;
所述车辆当前参数包括车辆纵向加速度、车辆侧向加速度、加速踏板开度、制动踏板开度、方向盘转角、横摆角速度、轮速和当前驾驶员选择的车辆操作模式;
根据所述车辆纵向加速度、所述车辆侧向加速度、所述方向盘转角、所述横摆角速度和所述轮速,计算参考车速、车辆加速度、路面附着系数和道路坡度;
根据所述路面附着系数、所述车辆加速度、所述参考车速和所述方向盘转角,计算行驶稳定因子;
根据所述加速踏板开度、所述制动踏板开度、所述参考车速、所述方向盘转角、所述行驶稳定因子和所述车辆操作模式选择车辆工作模式;
其中,所述车辆工作模式分为三种,分别为运动工作模式、经济工作模式和制动工作模式;
当车辆处于所述运动工作模式、所述经济工作模式和所述制动工作模式的任一所述车辆工作模式时,计算四个电机的扭矩;
其中,所述计算四个电机的扭矩包括:
当车辆的所述车辆工作模式为运动工作模式时,车辆前后轴的轴荷计算公式如下:
Figure PCTCN2022106240-appb-000001
Figure PCTCN2022106240-appb-000002
式中,F zf,F zr—前轴和后轴的垂向力,m—整车质量,g—重力加速度,h g—车辆质心高度,a x—车辆纵向加速度,θ—坡度角,a—前轴到车辆质心距离,b—后轴到车辆质心距离,L=a+b表示车辆的轴距;
前轴和后轴的路面利用附着系数的计算公式如下:
Figure PCTCN2022106240-appb-000003
Figure PCTCN2022106240-appb-000004
式中,μ f和μ r分别为前轴和后轴的路面利用附着系数,F xf为前轴的纵向轮胎力,F xr为后轴的纵向轮胎力;
设前轴和后轴的路面利用附着系数相等,公式如下:
Figure PCTCN2022106240-appb-000005
所述运动工作模式下的轴间扭矩分配系数λ 1的计算公式如下:
Figure PCTCN2022106240-appb-000006
前轴和后轴的电机驱动扭矩T f、T r,与前轴和后轴的纵向轮胎力F xf、F xr的关系如下所示:
Figure PCTCN2022106240-appb-000007
Figure PCTCN2022106240-appb-000008
式中,r f—前轴的轮胎半径,r r—后轴的轮胎半径,J f—前轴的转动惯量,J r—后轴的转动惯量,
Figure PCTCN2022106240-appb-000009
—前轴的加速度,
Figure PCTCN2022106240-appb-000010
—后轴的加速度;
在车辆处于匀速或加速稳定状态的情况下,前轴和后轴的电机驱动扭矩T f、T r,与前轴和后轴的纵向轮胎力F xf、F xr的关系如下所示:
T r=r rF xr
T f=r fF xf
轴间扭矩分配系数λ 1通过如下公式计算:
Figure PCTCN2022106240-appb-000011
令tanθ=i,cosθ=1,则λ 1的计算公式如下:
Figure PCTCN2022106240-appb-000012
根据上述公式,通过道路坡度i和车辆纵向加速度a x,获取轴间扭矩分配系数λ 1,根据轴间扭矩分配系数λ 1对同轴的左右电机进行平均分配;
当车辆的所述车辆工作模式为经济工作模式时,前后轴电机总的输出功率计算过程如下所示:
T r=λ 2·T a
T f=(1-λ 2)·T a
Figure PCTCN2022106240-appb-000013
Figure PCTCN2022106240-appb-000014
P all=P f+P r
式中,T a表示驾驶员需求扭矩,T f表示前轴的电机驱动扭矩,T r表示后轴的电机驱动扭矩,λ 2表示经济工作模式下的轴间扭矩分配系数,n表示电机转速,η f、η r分别表示前轴电机的工作效率和后轴电机的工作效率,P f,P r分别表示前轴电机的输出功率和后轴电机的输出功率,P all表示前后轴电机总的输出功率,前后轴电机总的输出功率的最优控制方程如下:
Figure PCTCN2022106240-appb-000015
同时前后轴的分配扭矩受到总成可用能力的限制,所述限制条件通过如下公式表示:
λ 2·T a≤T max r
(1-λ 2)·T a≤T max f
式中,T max r表示后轴电机总可用扭矩,T max f表示前轴电机总可用扭矩;
根据车辆当前的驾驶员需求扭矩和参考车速,结合前后轴电机的工作效率,离线计算前后轴电机总的输出功率最优的扭矩分配表,使整车当前前后轴电机总的输出功率损失最小,进而计算得到不同参考车速和前后轴电机驱动扭矩状态下的最优轴间扭矩分配系数;
当车辆的所述车辆工作模式为制动工作模式时,所述制动工作模式下的轴间扭矩分配系数λ rear受的计算公式如下:
λ rear=min(0.5,λ 2)。
式中,λ 2表示经济工作模式下的轴间扭矩分配系数;
根据轴间扭矩分配系数λ rear对同轴的左右电机的扭矩进行平均分配。
本申请还提供了一种车辆,包括:
至少一个处理器;
存储器,设置为存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行时,所述至少一个处理器实现任一实施例所述的分布式四驱扭矩控制方法。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现任一实施例所述的分布式四驱扭矩控制方法。
附图说明
图1是一种分布式四驱电动汽车的四个电机分布示意图;
图2是本申请提供的一种分布式四驱扭矩控制方法流程图;
图3是本申请提供的一种分布式四驱扭矩控制方法中三种车辆工作模式的划分示意图;
图4是本申请提供的一种分布式四驱扭矩控制方法中转向工况下的扭矩控制示意图。
具体实施方式
下面结合附图和实施例对本申请作说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一特征和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
本申请提供一种分布式四驱扭矩控制方法,分布式四驱电动汽车包括四个电机,如图1所示,分别为左前电机、左后电机、右前电机和右后电机,分别用于驱动左前轮、左后轮、右前轮和右后轮,四个电机统一由整车控制器(vehicle Control Unit,VCU)控制,执行包括转向和扭矩分配等操作,解决了相关技术中的控制方法存在的延时滞后以及未考虑驾驶员意图的问题。
首先需要说明的是,本申请中涉及到的字母参数中,下脚标x表示车辆纵向方向,y表示侧向方向,z表示竖向或垂向方向,f表示前方,如前轮或前轴,r表示后方,如后轮或后轴。
如图2所示流程,本申请提供的一种分布式四驱扭矩控制方法包括如下步骤:
S1,获取车辆当前参数。
车辆当前参数包括车辆纵向加速度、车辆侧向加速度、加速踏板开度、制动踏板开度、方向盘转角、横摆角速度、轮速和当前驾驶员选择的车辆操作模式,车辆操作模式包括舒适操作模式(也称AUTO模式)、经济操作模式(也称ECO模式)和运动操作模式(也称SPORT模式)。
S2,根据车辆纵向加速度、车辆侧向加速度、方向盘转角、横摆角速度和轮速,计算参考车速、车辆加速度、路面附着系数和道路坡度。
S3,根据路面附着系数、车辆加速度、参考车速和方向盘转角,计算行驶稳定因子。
S4,根据加速踏板开度、制动踏板开度、参考车速、方向盘转角、行驶稳定因子和车辆操作模式选择车辆工作模式。
其中,车辆操作模式由驾驶员选择。车辆工作模式分为三种,分别为运动工作模式、经济工作模式和制动工作模式。车辆工作模式的选择是整车控制器对车辆当前工作状态的再判断的结果,便于得到更加准确的电机扭矩。
S5,当电动汽车处于运动工作模式、经济工作模式和制动工作模式的任一工作模式时,计算四个电机的扭矩。
上述分布式四驱扭矩控制方法中,车辆当前参数中考虑了驾驶员意图识别,对车辆操作模式下的车辆当前运行状态进行再判断,新的判别机制包括三种车辆工作模式的判别,并根据判别结果计算在当前车辆工作模式下的四个电机扭矩,实现了分布式四驱扭矩控制,四个电机的输出扭矩同时兼顾车辆的安全性、动力性和经济性,利于提高车辆转向性能,从而实现分布式四驱控制的驾驶辅助。
可选地,步骤S2中参考车速v ref_veh,根据轮速、横摆角速度和方向盘转角计算得到。
根据轮速、横摆角速度和方向盘转角计算参考车速v ref_veh,包括:
将多个车轮的轮速在后轴中心进行归一化处理,归一化公式如下所示:
Figure PCTCN2022106240-appb-000016
Figure PCTCN2022106240-appb-000017
Figure PCTCN2022106240-appb-000018
Figure PCTCN2022106240-appb-000019
式中,v fl为左前轮纵向车速(m/s),v fr为右前轮纵向车速(m/s);v rl为左后轮纵向车速(m/s),v rr为右后轮纵向车速(m/s);v fl_x为左前轮在后轴中心的纵向车速(m/s),v fr_x为右前轮在后轴中心的纵向车速(m/s);v rl_x为左后轮在后轴中心的纵向车速(m/s),v rr_x为右后轮在后轴中心的纵向车速(m/s);L为车辆轴距(m),b为轮矩(m),δ为前轮转角(rad),
Figure PCTCN2022106240-appb-000020
为横摆角速度(rad/s)。
选择最小的归一化轮速作为参考车速,即:
v ref_veh=min(v fl_x,v fr_x,v rl_x,v rr_x)
根据参考车速v ref_veh,可以计算车辆加速度a act
Figure PCTCN2022106240-appb-000021
Figure PCTCN2022106240-appb-000022
为参考车速v ref_veh的微分。
如果驱动防滑功能被触发,则将当前车辆加速度作为当前的路面附着系数:
μ=a act
如果驱动防滑功能未被触发,则当前的路面附着系数为当前车辆加速度与上一时刻路面附着系数中的最大值:
μ=max(a act,μ)
式中,v ref_veh为参考车速,μ为路面附着系数,a act为车辆加速度。
当车辆在坡路上行驶时,道路坡度i的正弦值即为纵向加速度传感器测量值与纵向车速微分值的差值与重力加速度的比:
Figure PCTCN2022106240-appb-000023
其中,i表示道路坡度;a x表示传感器测量的纵向加速度,g表示重力加速度,单位为m/s 2,v x表示车辆的纵向车速。
可选地,步骤S3中,行驶稳定因子γ由当前车辆加速度a act和路面附着系数μ确定,并由参考车速v ref_veh和方向盘转角steerAngle进行修正。
Figure PCTCN2022106240-appb-000024
式中,γ为行驶稳定因子,该值在0与1之间,该值越大,表征路面利用越充分,越接近路面附着极限;fac1和fac2分别为与参考车速和方向盘转角有关的因子,取值在0-1之间。
根据步骤S1-S3中的当前车辆参数,结合图3,步骤S4中的三种车辆工作模式通过如下方式进行划分:
(1)运动工作模式,在如下任意一种情况下,车辆进入运动工作模式:
(1.1)加速踏板开度大于第一预设开度;
(1.2)加速踏板开度大于第二预设开度且小于第一预设开度、且加速踏板开度变化率大于第一预设值、且接收到的模式指令为舒适操作模式指令;
(1.3)行驶稳定因子大于设定值、且接收到的模式指令为舒适操作模式指令;
(1.4)路面附着系数小于设定值、且接收到的模式指令为舒适操作模式指令;
(1.5)道路坡度大于设定值、且接收到的模式指令为舒适操作模式指令;
(1.6)接收到的模式指令为运动操作模式指令。
(2)经济工作模式,在如下任一种情况下,车辆进入经济工作模式:
(2.1)加速踏板的开度大于0且小于等于第二预设开度、且接收到的模式指令为舒适操作模式指令;
(2.2)接收到的车辆操作模式指令为经济操作模式指令。
(3)制动工作模式,在以下任意一种情况下,车辆进入制动工作模式:
(3.1)加速踏板的开度为0、且接收到的车辆操作模式指令为自动(或舒适)操作模式指令;
(3.2)制动踏板的开度信号大于0。
步骤S5中,三种车辆工作模式下计算四个电机扭矩,包括如下步骤:
(S51)本实施例中,当车辆的当前车辆工作模式为运动工作模式时,对多个电机的扭矩按整车动力输出最优方案进行扭矩分配,基于车辆轴荷分配实现路面附着系数的充分利用,提升动力性。
对车辆前后轴荷进行动力学分析,考虑车辆加速阻力和坡度阻力,忽略掉空气阻力、轮胎滚动阻力偶矩、旋转惯量等因素,前后轴的轴荷计算公式可简化为:
Figure PCTCN2022106240-appb-000025
Figure PCTCN2022106240-appb-000026
式中,F zf,F zr—前轴和后轴的垂向力,m—整车质量,g—重力加速度,h g—车辆质心高度,a x—车辆纵向加速度,θ—坡度角,a—前轴到车辆质心距离,b—后轴到车辆质心距离,L=a+b表示车辆的轴距。
前轴和后轴的路面利用附着系数分别为:
Figure PCTCN2022106240-appb-000027
Figure PCTCN2022106240-appb-000028
式中,μ f和μ r分别为前轴和后轴的路面利用附着系数,F xf为前轴的纵向轮胎力,F xr为后轴的纵向轮胎力。
路面利用附着系数小于路面附着系数,是指路面附着系数的利用率。
为提升车辆纵向驱动稳定性,前轴和后轴的路面利用附着系数应尽量相等,以降低驱动轮的总路面附着系数,防止驱动轮过早出现打滑现象,即:
Figure PCTCN2022106240-appb-000029
假设运动工作模式下的轴间扭矩分配系数λ 1为:
Figure PCTCN2022106240-appb-000030
忽略车轮滚动阻力偶矩,前轴和后轴的电机驱动扭矩T f、T r,与前轴和后轴的纵向载荷(纵向轮胎力)F xf、F xr的关系为:
Figure PCTCN2022106240-appb-000031
Figure PCTCN2022106240-appb-000032
式中,r f—前轴的轮胎半径,r r—后轴的轮胎半径,J f—前轴的转动惯量,J r—后轴的转动惯量,
Figure PCTCN2022106240-appb-000033
—前轴的加速度,
Figure PCTCN2022106240-appb-000034
—后轴的加速度。
假设车辆处于匀速或加速等稳定状态,前轴和后轴(也简称为前后轴)加速度较小,忽略前后轴转动惯量所产生的惯性力,则有:
T r=r rF xr
T f=r fF xf
由此,轴间扭矩分配系数λ 1可表示为:
Figure PCTCN2022106240-appb-000035
令tanθ=i,cosθ=1,则有:
Figure PCTCN2022106240-appb-000036
根据上述公式,通过道路坡度i和车辆纵向加速度a x,可获取轴间扭矩分配系数λ 1,根据轴间扭矩分配系数λ 1对同轴的左右电机的扭矩进行平均分配。
(S52)当车辆的当前工作模式为经济工作模式时,对多个电机的扭矩按整车经济效率最优进行分配。在保证满足需求扭矩的情况下,调节前后轴上电机 工作负荷,使得前后轴上电机工作点尽可能落在电机工作的高效区域,以提高电机的工作效率,保证车辆的经济性。
驱动系统实时功率的计算过程如下所示:
T r=λ 2·T a
T f=(1-λ 2)·T a
Figure PCTCN2022106240-appb-000037
Figure PCTCN2022106240-appb-000038
P all=P f+P r
式中,T a表示驾驶员需求扭矩,T f表示前轴电机驱动扭矩,T r表示后轴电机驱动扭矩,λ 2表示经济工作模式下的轴间扭矩分配系数,n表示电机转速(本文中假设四个电机的转速相同),η f、η r分别表示前后轴电机的工作效率,P f,P r分别表示前后轴电机的输出功率,P all表示前后轴电机总的输出功率。根据上式得到驱动系统实时功率的最优控制方程如下:
Figure PCTCN2022106240-appb-000039
同时前后轴的分配扭矩需要受到总成可用能力的限制,所述限制通过如下公式表示:
λ 2·T a≤T max r
(1-λ 2)·T a≤T max f
式中,T max r表示后轴电机总可用扭矩,T max f表示前轴电机总可用扭矩。
根据车辆当前的驾驶员需求扭矩和参考车速,结合前后轴电机的工作效率,可离线计算使驱动系统实时功率最优的扭矩分配表,使整车当前驱动系统的功率损失最小,进而计算得到不同参考车速和前后轴电机驱动扭矩状态下的最优轴间扭矩分配系数。
示例性的,根据上述限制,可以得到轴间扭矩分配系数λ 2的取值范围,并根据
Figure PCTCN2022106240-appb-000040
得到该取值范围内的多个轴间扭矩分配系数对应的前后轴电机总的输出功率,将该多个轴间扭矩分配系数对应的多个前后轴电机总的输出功率中的最小前后轴电机总的输出功率对应的轴间扭矩分配系数作为最优轴间扭矩分配系数。
示例性的,λ 2的取值范围为0-0.5,则可以根据
Figure PCTCN2022106240-appb-000041
得到λ 2为0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45和0.5时的多个P all, 并通过插值得到λ 2的取值范围内的所有轴间扭矩分配系数对应的多个前后轴电机总的输出功率,从而将所有前后轴电机总的输出功率中最小的前后轴电机总的输出功率对应的轴间扭矩分配系数作为最优轴间扭矩分配系数。
示例性的,根据上述最优控制方程可知,前轴电机的工作效率和后轴电机的工作效率越大,前后轴电机总的输出功率越小,因此可设定多个不同驾驶员需求扭矩和多个不同参考车速,针对每一参考车速,获取所述多个不同的驾驶员需求扭矩在多个轴间扭矩分配系数下的前轴电机的工作效率和后轴电机的工作效率之和,并将该参考车速下,每个驾驶员需求扭矩对应的最大前轴电机的工作效率和后轴电机的工作效率之和对应的轴间扭矩分配系数作为该参考车速下,该驾驶员需求扭矩对应的最优轴间扭矩分配系数。
在针对每一参考车速,获取每一驾驶员需求扭矩对应的最优扭矩轴间分配系数后,可以建立不同参考车速和不同驾驶员需求扭矩与最优轴间扭矩分配系数之间的对应关系表,即驱动系统实时功率最优的扭矩分配表,进而,在获取当前驾驶员需求扭矩和当前车速的情况下,可以在驱动系统实时功率最优的扭矩分配表中查找当前驾驶员需求扭矩和当前车速的情况下的最优轴间扭矩分配系数。
示例性的,可以在驱动系统实时功率最优的扭矩分配表中查找与当前驾驶员需求扭矩和当前车速最接近的驾驶员需求扭矩和参考车速所对应的最优轴间扭矩分配系数。
示例性的,上述多个轴间扭矩分配系数为根据上述限制确定的λ 2的取值范围内的间隔预设设间隔的多个轴间扭矩分配系数,例如,确定的λ 2的取值范围为0-0.5,上述多个轴间扭矩分配系数可以为0,0.1,0.2,0.3,0.4和0.5。
示例性的,可以通过如下方式针对每一参考车速,获取所述多个不同的驾驶员需求扭矩在多个轴间扭矩分配系数下的前轴电机的工作效率和后轴电机的工作效率之和:针对每一参考车速,建立一个关系表,该表指示所述多个不同的驾驶员需求扭矩在λ 2为0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1时的前轴电机的工作效率和后轴电机的工作效率之和,进而在根据上述限制确定λ 2的取值范围后,可以从针对每一参考车速建立的关系表中获取所述多个不同的驾驶员需求扭矩在多个轴间扭矩分配系数下的前轴电机的工作效率和后轴电机的工作效率之和,例如上述多个λ 2为0,0.1,0.2,0.3,0.4和0.5。
在获取最优的轴间扭矩分配系数后,可以根据最优的轴间扭矩分配系数和当前驾驶员需求扭矩得到前轴电机驱动扭矩T f和后轴电机驱动扭矩T r,进而完成前后轴扭矩分配。
驾驶员需求扭矩是与加速踏板开度和参考车速有关的物理量,本申请的实 施例中采用相关技术中的计算方法来得到驾驶员需求扭矩,因此不再展开驾驶员需求扭矩的具体计算过程。考虑驾驶员需求扭矩(包括驱动需求扭矩和制动需求扭矩),便于在相关车辆操作模式下划分车辆工作模式,以提供更好的扭矩分配方法。
本实施例中,驱动系统的功率为前后轴电机总的输出功率。
在同一种参考车速和前后轴电机驱动扭矩状态下,存在多种扭矩分配方案使当前驱动系统的功率损失最小,且在参考车速或前后轴电机驱动扭矩有波动时,轴间扭矩分配系数会存在较大波动,不利于实现对四驱的控制。因此,本申请在寻优过程中,引入了容忍度的约束条件,对所得到的最优轴间扭矩分配系数进行二次寻优。
容忍度tolerance的定义如下所示:
Figure PCTCN2022106240-appb-000042
式中,P all_best表示在一工作点下最优轴间扭矩分配系数所对应的前后轴电机总的输出功率,P all_T表示在满足容忍度约束条件下的前后轴电机总的输出功率。即在前后轴上电机总的输出功率P all_best在满足一定容忍度tolerance的情况下的总的输出功率P all_T对应的轴间分配系数,认为是最终的轴间扭矩分配系数。可以理解的是,容忍度tolerance为0表示总的输出功率的偏差为0。
本实施中容忍度tolerance设置为0.5,以得到满足精度要求的轴间扭矩分配系数。
为了使得每一参考车速下,不同的驾驶员需求扭矩对应的最优轴间扭矩分配系数对应的前后轴电机总的输出功率更加平滑,即差值较小,可以在针对每一参考车速,获取每一驾驶员需求扭矩对应的最优轴间分配系数后,针对每一参考车速,选择每一驾驶员需求扭矩下使得不同的驾驶员需求扭矩对应的前后轴电机总的输出功率更加平滑的轴间扭矩分配系数且选择的轴间扭矩分配系数对应的前后轴上电机总的输出功率在所获取的最优轴间分配系数对应的前后轴电机总的输出功率的容忍度范围内,将选择的轴间分配系数作为该参考车速下,该驾驶员需求扭矩对应的最终的最优轴间扭矩分配系数。
(S53)当车辆的当前工作模式为制动工作模式时,对前轴上的电机和后轴上的电机的扭矩分配需要进行能量回收效率最优分配。制动工作模式下的轴间扭矩分配系数的计算方法同经济工作模式下的轴间扭矩分配系数λ 2的计算方法,同时为保证制动安全,制动工作模式下的轴间扭矩分配系数λ rear受下式限制, 实现了将制动力主要分配在前轴:
λ rear=min(0.5,λ 2)。
可选地,本申请提供的一种分布式四驱扭矩控制方法,还包括根据加速踏板开度、参考车速、方向盘转角和方向盘转向角速度,判断电动汽车即当前车辆是否处于转向工况,在处于转向工况的情况下,通过动态轴荷转移改善车辆的转向稳定性。
首先,转向工况的判别需要考虑如下参数:加速踏板开度、参考车速、方向盘转角、方向盘转向角速度,当满足转向工况的所有判别条件时,可确定当前车辆进入转向工况。
转向工况的判别条件为:
(1)加速踏板开度大于设定值A;
(2)参考车速大于设定值B;
(3)方向盘转角大于设定值C,或方向盘转角大于设定值D(D小于C),且方向盘转向角速度大于设定值E。
以上三个条件同时满足时判定当前车辆进入转向工况,在转向工况下,车辆执行轴荷前移的控制方法使车辆轴荷前移,结合图4,轴荷前移的控制方法如下所述:当转向工况条件满足时,所述前轴进行降扭且持续时间为t1,然后降扭恢复且持续时间为t1-t2;所述前轴再次降扭且持续时间为t2-t3,然后降扭恢复且持续时间为t3-t4,……,如此重复,通过多个间隔性的降扭恢复段(前轴扭矩为0的时间段)减少车辆前轴驱动扭矩,使车辆轴荷前移,从而达到提升车辆入弯性能的目的。可选地,前轴扭矩为1的持续时间段具有相等的持续时间t1,前轴扭矩为0的持续时间段具有相等的持续时间(t2-t1)。当车辆处于转向工况时,通过主动轴荷转移可以提升车辆的转向性能。
可选地,通过操稳控制策略和主动防滑控制策略对多个电机的需求扭矩进行约束以输出电机需求扭矩。
1)当车辆发生侧滑甩尾时,根据横摆控制策略对多个电机的驱动扭矩进行修正,例如:根据车辆的参考车速和方向盘转角获取目标横摆角速度,根据目标横摆角速度与获取的车辆当前的实际横摆角速度的偏差,对车辆的前后轴上四个电机驱动扭矩进行修正,车辆比例-积分-微分(Proportion Integration Differentiation,PID)控制器根据横摆角速度偏差进行闭环控制,动态调整多个车轮的扭矩分配。
2)当车辆发生滑转时,根据主动防滑策略对多个电机的驱动扭矩进行修正, 例如:根据车辆的轮速、方向盘转角和横摆角速度获取参考车速,进而计算车辆的滑移率;根据车辆加速度和滑移率对车辆上的电机驱动扭矩进行修正,当滑移率超过阈值时,通过车辆PID控制器进行轮速偏差的闭环控制,预防和限制车轮的打滑。
本申请的一种分布式四驱扭矩控制方法,在考虑驾驶意图的条件下,结合车辆当前参数,驾驶员需求扭矩和当前车辆操作模式,对车辆当前工作状态进行再判断,得到三种车辆工作模式,分别计算四个电机扭矩,计算结果更加准确,解决了分布式四驱基于车辆操稳状态进行扭矩闭环控制的延时滞后问题。

Claims (12)

  1. 一种分布式四驱扭矩控制方法,包括:
    获取车辆当前参数;
    所述车辆当前参数包括车辆纵向加速度、车辆侧向加速度、加速踏板开度、制动踏板开度、方向盘转角、横摆角速度、轮速和当前驾驶员选择的车辆操作模式;
    根据所述车辆纵向加速度、所述车辆侧向加速度、所述方向盘转角、所述横摆角速度和所述轮速,计算参考车速、车辆加速度、路面附着系数和道路坡度;
    根据所述路面附着系数、所述车辆加速度、所述参考车速和所述方向盘转角,计算行驶稳定因子;
    根据所述加速踏板开度、所述制动踏板开度、所述参考车速、所述方向盘转角、所述行驶稳定因子和所述车辆操作模式选择车辆工作模式;其中,所述车辆工作模式分为三种,分别为运动工作模式、经济工作模式和制动工作模式;
    在车辆处于所述运动工作模式、所述经济工作模式和所述制动工作模式的任一所述车辆工作模式的情况下,计算四个电机的扭矩;
    其中,所述计算四个电机的扭矩包括:在车辆的所述车辆工作模式为运动工作模式的情况下,车辆前后轴的轴荷计算公式如下:
    Figure PCTCN2022106240-appb-100001
    Figure PCTCN2022106240-appb-100002
    式中,F zf,F zr—前轴和后轴的垂向力,m—整车质量,g—重力加速度,h g—车辆质心高度,a x—车辆纵向加速度,θ—坡度角,a—前轴到车辆质心距离,b—后轴到车辆质心距离,L=a+b表示车辆的轴距;
    前轴和后轴的路面利用附着系数计算公式如下:
    Figure PCTCN2022106240-appb-100003
    Figure PCTCN2022106240-appb-100004
    式中,μ f和μ r分别为前轴和后轴的路面利用附着系数,F xf为前轴的纵向轮胎力,F xr为后轴的纵向轮胎力;
    设前轴和后轴的路面利用附着系数相等,公式如下:
    Figure PCTCN2022106240-appb-100005
    所述运动工作模式下的轴间扭矩分配系数λ 1的计算公式如下:
    Figure PCTCN2022106240-appb-100006
    前轴和后轴的电机驱动扭矩T f、T r,与前轴和后轴的纵向轮胎力F xf、F xr的关系如下所示:
    Figure PCTCN2022106240-appb-100007
    Figure PCTCN2022106240-appb-100008
    式中,r f—前轴的轮胎半径,r r—后轴的轮胎半径,J f—前轴的转动惯量,J r—后轴的转动惯量,
    Figure PCTCN2022106240-appb-100009
    —前轴的加速度,
    Figure PCTCN2022106240-appb-100010
    —后轴的加速度;
    在车辆处于匀速或加速稳定状态的情况下,前轴和后轴的电机驱动扭矩T f、T r,与前轴和后轴的纵向轮胎力F xf、F xr的关系如下所示:
    T r=r rF xr
    T f=r fF xf
    轴间扭矩分配系数λ 1通过如下公式计算:
    Figure PCTCN2022106240-appb-100011
    令tanθ=i,cosθ=1,则λ 1的计算公式如下:
    Figure PCTCN2022106240-appb-100012
    根据上述公式,通过道路坡度i和车辆纵向加速度a x,获取轴间扭矩分配系数λ 1,根据轴间扭矩分配系数λ 1对同轴的左右电机进行平均分配;
    在车辆的所述车辆工作模式为经济工作模式的情况下,前后轴电机总的输出功率的计算过程如下所示:
    T r=λ 2·T a
    T f=(1-λ 2)·T a
    Figure PCTCN2022106240-appb-100013
    Figure PCTCN2022106240-appb-100014
    P all=P f+P r
    式中,T a表示驾驶员需求扭矩,T f表示前轴的电机驱动扭矩,T r表示后轴的电机驱动扭矩,λ 2表示经济工作模式下的轴间扭矩分配系数,n表示电机转速,η f、η r分别表示前轴电机的工作效率和后轴电机的工作效率,P f,P r分别表示前轴电机的输出功率和后轴电机的输出功率,P all表示前后轴电机总的输出功率,前后轴电机总的输出功率的最优控制方程如下:
    Figure PCTCN2022106240-appb-100015
    同时前后轴的分配扭矩受到总成可用能力的限制,所述限制通过如下公式表示:
    λ 2·T a≤T max r
    (1-λ 2)·T a≤T max f
    式中,T max r表示后轴电机总可用扭矩,T max f表示前轴电机总可用扭矩;
    根据车辆当前的驾驶员需求扭矩和参考车速,结合前后轴电机的工作效率,离线计算前后轴电机总的输出功率最优的扭矩分配表,使整车当前前后轴电机总的输出功率损失最小,进而计算得到不同参考车速和前后轴电机驱动扭矩状态下的最优轴间扭矩分配系数;
    在车辆的所述车辆工作模式为制动工作模式的情况下,所述制动工作模式下的轴间扭矩分配系数λ rear计算公式如下:
    λ rear=min(0.5,λ 2)
    式中,λ 2表示经济工作模式下的轴间扭矩分配系数。
  2. 根据权利要求1所述的分布式四驱扭矩控制方法,其中,所述车辆操作模式包括舒适操作模式、经济操作模式和运动操作模式。
  3. 根据权利要求1所述的分布式四驱扭矩控制方法,其中,所述参考车速通过如下方式得到:
    将多个车轮的轮速在后轴中心进行归一化处理;
    Figure PCTCN2022106240-appb-100016
    Figure PCTCN2022106240-appb-100017
    Figure PCTCN2022106240-appb-100018
    Figure PCTCN2022106240-appb-100019
    式中,v fl为左前轮纵向车速,v fr为右前轮纵向车速,v rl为左后轮纵向车速,v rr为右后轮纵向车速,v fl_x为左前轮在后轴中心的纵向车速,v fr_x为右前轮在后 轴中心的纵向车速,v rl_x为左后轮在后轴中心的纵向车速,v rr_x为右后轮在后轴中心的纵向车速,L为车辆轴距,b为轮矩,δ为前轮转角,
    Figure PCTCN2022106240-appb-100020
    为横摆角速度;
    选择最小的归一化轮速作为参考车速,即:
    v ref_veh=min(v fl_x,v fr_x,v rl_x,v rr_x)。
  4. 根据权利要求3所述的分布式四驱扭矩控制方法,其中,所述车辆加速度a act通过如下公式计算得到:
    Figure PCTCN2022106240-appb-100021
    其中,
    Figure PCTCN2022106240-appb-100022
    为参考车速v ref_veh的导数。
  5. 根据权利要求4所述的分布式四驱扭矩控制方法,其中,所述路面附着系数分如下两种情况进行计算:
    在驱动防滑功能被触发的情况下,将当前车辆加速度作为当前的路面附着系数:
    μ=a act
    在驱动防滑功能未被触发的情况下,当前的路面附着系数为当前车辆加速度与上一时刻路面附着系数中的最大值:
    μ=max(a act,μ)
    式中,v ref_veh为参考车速,μ为路面附着系数,a act为车辆加速度。
  6. 根据权利要求1所述的分布式四驱扭矩控制方法,其中,所述道路坡度i通过如下公式计算得到:
    Figure PCTCN2022106240-appb-100023
    其中,i表示道路坡度;a x表示传感器测量的纵向加速度,g表示重力加速度,v x表示车辆的纵向车速。
  7. 根据权利要求4所述的分布式四驱扭矩控制方法,其中,所述行驶稳定因子γ通过如下公式计算:
    Figure PCTCN2022106240-appb-100024
    式中,γ为行驶稳定因子,fac1和fac2分别为与参考车速和方向盘转角有关的因子,取值在0-1之间。
  8. 根据权利要求2所述的分布式四驱扭矩控制方法,其中,所述车辆工作模式通过如下方式进行划分:
    在如下的任意一种情况下,车辆进入所述运动工作模式:所述加速踏板开度大于第一预设开度;所述加速踏板开度大于第二预设开度且小于第一预设开度、且所述加速踏板开度的变化率大于第一预设值、且接收到的模式指令为舒适操作模式指令;所述行驶稳定因子大于设定值、且接收到的所述模式指令为所述舒适操作模式指令;所述路面附着系数小于设定值、且接收到的所述模式指令为所述舒适操作模式指令;所述道路坡度大于设定值、且接收到的所述模式指令为所述舒适操作模式指令;接收到的所述模式指令为所述运动操作模式指令;
    在如下任意一种情况下,车辆进入所述经济工作模式:所述加速踏板开度大于0且小于等于第二预设开度、且接收到的所述模式指令为所述舒适操作模式指令;接收到的所述模式指令为所述经济操作模式指令;
    在以下任意一种情况下,车辆进入所述制动工作模式:
    所述加速踏板开度为0、且接收到的所述模式指令为所述舒适操作模式指令;所述制动踏板开度信号大于0。
  9. 根据权利要求1所述的分布式四驱扭矩控制方法,还包括对所述最优轴间 扭矩分配系数进行二次寻优,其中,对所述最优轴间扭矩分配系数进行二次寻优包括:容忍度tolerance的定义如下所示:
    Figure PCTCN2022106240-appb-100025
    式中,P all_best表示在一工作点下最优轴间扭矩分配系数所对应的前后轴电机总的输出功率,P all_T表示在满足容忍度约束条件下的前后轴电机总的输出功率。
  10. 根据权利要求1所述的分布式四驱扭矩控制方法,还包括判断车辆当前是否处于转向工况,在车辆处于转向工况的情况下,执行轴荷前移的控制方法,使车辆轴荷前移;
    其中,所述转向工况的判别条件为:
    所述加速踏板开度大于设定值A;
    所述参考车速大于设定值B;
    所述方向盘转角大于设定值C;或所述方向盘转角大于设定值D且方向盘转向角速度大于设定值E,其中,设定值D小于设定值C;
    在以上三个条件同时满足的情况下,确定车辆进入转向工况;
    执行轴荷前移的控制方法使车辆轴荷前移,包括:
    所述前轴进行降扭且持续时间为t1,然后降扭恢复且持续时间为t1-t2;所述前轴再次降扭且持续时间为t2-t3,然后降扭恢复且持续时间为t3-t4,……,如此重复,通过多个间隔性的前轴降扭,使车辆轴荷前移。
  11. 一种车辆,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行时,所述至少一个处理器实现如权利要求1-10中任一所述的分布式四驱扭矩控制方法。
  12. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-10中任一所述的分布式四驱扭矩控制方法。
PCT/CN2022/106240 2021-07-19 2022-07-18 分布式四驱扭矩控制方法 WO2023001100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110814949.5 2021-07-19
CN202110814949.5A CN113335263B (zh) 2021-07-19 2021-07-19 一种分布式四驱扭矩控制方法

Publications (1)

Publication Number Publication Date
WO2023001100A1 true WO2023001100A1 (zh) 2023-01-26

Family

ID=77479990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106240 WO2023001100A1 (zh) 2021-07-19 2022-07-18 分布式四驱扭矩控制方法

Country Status (2)

Country Link
CN (1) CN113335263B (zh)
WO (1) WO2023001100A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116278803A (zh) * 2023-03-30 2023-06-23 吉林大学 四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法
CN116638950A (zh) * 2023-06-15 2023-08-25 中国第一汽车股份有限公司 四驱动力系统、车辆及车辆的控制方法
CN117104021A (zh) * 2023-08-31 2023-11-24 赛力斯汽车有限公司 一种车辆扭矩控制方法、装置、系统及车辆
CN117485325A (zh) * 2024-01-02 2024-02-02 中国重汽集团济南动力有限公司 一种多轴分布式电驱车辆转向控制方法及车辆

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113815618B (zh) * 2021-10-26 2023-03-28 中国第一汽车股份有限公司 一种保持车辆驱动的控制方法
CN114212091B (zh) * 2021-12-30 2023-05-23 重庆长安新能源汽车科技有限公司 一种电动汽车动力传动装置控制方法、车辆及计算机可读存储介质
CN114228496A (zh) * 2021-12-31 2022-03-25 优跑汽车技术(上海)有限公司 驱动控制方法、装置、车辆底盘和电动车辆
CN114435377B (zh) * 2022-02-25 2024-05-24 广汽埃安新能源汽车有限公司 一种参考车速的获取方法、装置、电子设备和存储介质
CN114954034A (zh) * 2022-05-25 2022-08-30 中国第一汽车股份有限公司 车辆的扭矩分配方法、装置及车辆
CN115139815B (zh) * 2022-06-27 2024-04-09 重庆金康赛力斯新能源汽车设计院有限公司 扭矩分配方法、装置、设备和存储介质
CN117622130A (zh) * 2022-08-10 2024-03-01 罗伯特·博世有限公司 多轴车辆电驱桥轴间扭矩防滑控制方法及设备
CN115384469B (zh) * 2022-08-24 2024-01-09 西安主函数智能科技有限公司 基于新能源工程车的气制动和电制动的动态扭矩分配方法
CN117183750A (zh) * 2023-11-01 2023-12-08 小米汽车科技有限公司 车辆能量回收中的扭矩控制方法及相关产品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043683A1 (ja) * 2010-09-28 2012-04-05 日立オートモティブシステムズ株式会社 車両の運動制御装置
CN108357494A (zh) * 2018-02-11 2018-08-03 重庆长安汽车股份有限公司 一种电控适时四驱控制方法
CN110014851A (zh) * 2019-04-10 2019-07-16 中国第一汽车股份有限公司 一种前后双电机四驱车辆轴间扭矩分配方法
CN111845710A (zh) * 2020-08-03 2020-10-30 北京理工大学 基于路面附着系数识别的整车动态性能控制方法及系统
CN112026775A (zh) * 2020-09-09 2020-12-04 东风汽车有限公司 一种车辆四驱控制方法及电子设备
CN112026536A (zh) * 2020-09-07 2020-12-04 中国第一汽车股份有限公司 一种电动汽车的驱动防滑控制方法及双电机四驱电动汽车
CN113071332A (zh) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 双电机电动汽车的扭矩控制方法、电动汽车及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120049279A (ko) * 2009-08-18 2012-05-16 도요타 지도샤(주) 차량 제어 시스템
IN2012DN01026A (zh) * 2009-08-18 2015-04-10 Toyota Motor Co Ltd
JP4965751B1 (ja) * 2011-04-21 2012-07-04 パイオニア株式会社 トルク配分装置、トルク配分方法、トルク配分値生成方法およびプログラム
CN110606075B (zh) * 2019-08-28 2021-03-09 中国第一汽车股份有限公司 分布式四驱电动车的扭矩分配控制方法、系统和车辆
CN111845775B (zh) * 2020-07-20 2022-01-07 上海大学 一种分布式驱动电动汽车行驶状态与惯性参数联合估计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043683A1 (ja) * 2010-09-28 2012-04-05 日立オートモティブシステムズ株式会社 車両の運動制御装置
CN108357494A (zh) * 2018-02-11 2018-08-03 重庆长安汽车股份有限公司 一种电控适时四驱控制方法
CN110014851A (zh) * 2019-04-10 2019-07-16 中国第一汽车股份有限公司 一种前后双电机四驱车辆轴间扭矩分配方法
CN111845710A (zh) * 2020-08-03 2020-10-30 北京理工大学 基于路面附着系数识别的整车动态性能控制方法及系统
CN112026536A (zh) * 2020-09-07 2020-12-04 中国第一汽车股份有限公司 一种电动汽车的驱动防滑控制方法及双电机四驱电动汽车
CN112026775A (zh) * 2020-09-09 2020-12-04 东风汽车有限公司 一种车辆四驱控制方法及电子设备
CN113071332A (zh) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 双电机电动汽车的扭矩控制方法、电动汽车及存储介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116278803A (zh) * 2023-03-30 2023-06-23 吉林大学 四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法
CN116278803B (zh) * 2023-03-30 2024-03-08 吉林大学 四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法
CN116638950A (zh) * 2023-06-15 2023-08-25 中国第一汽车股份有限公司 四驱动力系统、车辆及车辆的控制方法
CN117104021A (zh) * 2023-08-31 2023-11-24 赛力斯汽车有限公司 一种车辆扭矩控制方法、装置、系统及车辆
CN117485325A (zh) * 2024-01-02 2024-02-02 中国重汽集团济南动力有限公司 一种多轴分布式电驱车辆转向控制方法及车辆
CN117485325B (zh) * 2024-01-02 2024-03-19 中国重汽集团济南动力有限公司 一种多轴分布式电驱车辆转向控制方法及车辆

Also Published As

Publication number Publication date
CN113335263B (zh) 2022-04-12
CN113335263A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2023001100A1 (zh) 分布式四驱扭矩控制方法
CN108944910B (zh) 一种车辆稳态智能控制方法及装置
CN108237950B (zh) 车辆的控制方法、系统及车辆
CN104175902B (zh) 电动轮汽车轮毂电机转矩分配系统的转矩分配控制方法
US6691013B1 (en) Braking and controllability control method and system for a vehicle with regenerative braking
CN109747632B (zh) 一种双动力源驱动车辆扭矩分配方法
EP1698507B1 (en) Vehicle regenerative braking control apparatus and method
CN110254405B (zh) 一种面向自动驾驶与智能辅助驾驶的汽车线控制动控制系统及其控制方法
US7591339B2 (en) Driving-force control apparatus and method for vehicle
US7104617B2 (en) Independent braking and controllability control method and system for a vehicle with regenerative braking
US8700241B2 (en) Drive control device for standby four-wheel drive vehicle
US11584225B2 (en) One-pedal speed control for off-road driving
US20160159225A1 (en) Braking force control apparatus for a vehicle
CN108394313B (zh) 一种基于滑移率的四驱电动汽车转矩控制分配方法
CN107953801A (zh) 一种全轮毂电机驱动车辆的驱动力控制方法
CN105691381A (zh) 一种四轮独立驱动电动汽车稳定性控制方法及系统
WO2022228096A1 (zh) 双电机电动汽车的扭矩控制方法、电动汽车及存储介质
CN104114837B (zh) 车体减振控制装置
JP2009278840A (ja) 電動車両の回生制動制御装置
JP2007131062A (ja) 車両挙動制御装置
CN108297736A (zh) 一种双电机分布式驱动电动汽车及电机控制策略
CN105555627A (zh) 车辆控制系统及方法
CN113002324B (zh) 一种四轮独立驱动和独立转向电动汽车电子差速系统
CN210337596U (zh) 电动汽车分布式驱动电子差速控制装置及电动汽车
CN114559925A (zh) 一种多电机插电混合动力汽车的四驱控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE