WO2022228096A1 - 双电机电动汽车的扭矩控制方法、电动汽车及存储介质 - Google Patents

双电机电动汽车的扭矩控制方法、电动汽车及存储介质 Download PDF

Info

Publication number
WO2022228096A1
WO2022228096A1 PCT/CN2022/086073 CN2022086073W WO2022228096A1 WO 2022228096 A1 WO2022228096 A1 WO 2022228096A1 CN 2022086073 W CN2022086073 W CN 2022086073W WO 2022228096 A1 WO2022228096 A1 WO 2022228096A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
electric vehicle
motor
dual
torque
Prior art date
Application number
PCT/CN2022/086073
Other languages
English (en)
French (fr)
Inventor
张天强
吴爱彬
刘元治
崔金龙
孙起春
周泽慧
赵洋
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022228096A1 publication Critical patent/WO2022228096A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of vehicle drive control, for example, to a torque control method for a dual-motor electric vehicle, an electric vehicle, and a storage medium.
  • the vehicle has better passability.
  • the related art mainly relies on the vehicle state (such as wheel speed, steering wheel angle, yaw acceleration, etc.) to distribute the front and rear axle torque to realize the economic control and traction control of the vehicle; and most control methods do not refer to Vehicle speed estimation, driving conditions and driver's driving intention; at the same time, the acquisition of vehicle status depends on sensors, which are affected by the accuracy and transmission speed of sensor signals, and there is a problem of response lag, which ultimately affects the safety and stability of electric vehicle driving. sex and comfort.
  • the present application provides a torque control method for a dual-motor electric vehicle, an electric vehicle and a storage medium, so as to improve the situation in the related art that the torque control of an electric vehicle does not consider the driving conditions and the driver's intention, and under the condition of satisfying the driver's needs , so that the torque output by the motor meets the driving control requirements and improves the safety, stability and comfort of electric vehicle driving.
  • a torque control method for a dual-motor electric vehicle wherein the dual-motor electric vehicle includes a front motor and a rear motor, and the method includes:
  • the dual-motor electric vehicle is controlled to enter a corresponding working mode; wherein the working mode includes sports mode, economy mode, energy recovery mode and braking mode;
  • controlling the dual-motor electric vehicle In response to determining that the dual-motor electric vehicle is in a steering condition, controlling the dual-motor electric vehicle to enter a corresponding steering assist mode according to the steering wheel angle and the steering wheel steering angular velocity; wherein the steering assist mode includes a cornering mode , curve driving mode and corner exit mode;
  • determining the steering assist mode corresponding to the dual-motor electric vehicle Front motor torque and the rear motor torque In response to determining that the dual-motor electric vehicle is in any one of the corner-entry mode, the curve-driving mode, and the corner-exit mode, determining the steering assist mode corresponding to the dual-motor electric vehicle Front motor torque and the rear motor torque.
  • An electric vehicle comprising:
  • processors one or more processors
  • memory arranged to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement any one of the above torque control methods for a dual-motor electric vehicle.
  • FIG. 1 is a structural diagram of a power system of a dual-motor electric vehicle in an embodiment of the application
  • FIG. 2 is a control flow diagram of a torque control method for a dual-motor electric vehicle in an embodiment of the application
  • FIG. 3 is a flow chart for determining the working mode of the dual-motor electric vehicle in the embodiment of the application.
  • Fig. 4 is the torque control flow chart of the dual-motor electric vehicle in the embodiment of the application.
  • FIG. 5 is a flowchart for determining a steering assist mode of a dual-motor electric vehicle in an embodiment of the present application.
  • This embodiment provides a torque control method for a dual-motor electric vehicle.
  • the structure of the power system of the dual-motor electric vehicle is shown in FIG. 1 .
  • the power system includes a front motor, a rear motor, a power battery and a vehicle controller.
  • the front motor and the rear motor are respectively used to control the front and rear axles to complete the transmission of torque to the wheels.
  • a torque control method for a dual-motor electric vehicle includes the following steps:
  • S200 Control the electric vehicle to enter the corresponding working mode according to the accelerator pedal opening, the brake pedal opening, the vehicle speed and the mode currently selected by the driver; wherein, the working modes include sport mode, economy mode, energy recovery mode and braking mode;
  • S400 When the electric vehicle is in the steering condition, control the electric vehicle to enter the corresponding steering assist mode according to the steering wheel angle and steering wheel steering angular speed; wherein, the steering assist mode includes a corner entry mode, a curve driving mode and a corner exit mode;
  • the torque control method of the dual-motor electric vehicle in this embodiment can intelligently select the working mode of the dual-motor electric vehicle according to the driver's intention and the driving condition of the vehicle; at the same time, it can identify the steering condition to enter the corresponding steering assist mode , and determine the output torque of the front motor and the rear motor in different working modes or steering assist modes to meet the driving requirements of the electric vehicle; that is, the torque control method can meet the driver's requirements under each driving condition. Under the circumstance, the torque output by the motor can meet the driving control requirements, and the safety, stability and comfort of electric vehicle driving are improved.
  • step S200 includes the steps of:
  • the accelerator pedal opening is greater than the first preset opening; or when the accelerator opening is greater than the second preset opening and less than or equal to the first preset opening, and the mode command received by the electric vehicle is an automatic mode command ; or when the accelerator pedal opening is greater than the third preset opening and less than or equal to the second preset opening, the accelerator pedal opening rate of change is greater than the preset rate of change, and the mode command received by the electric vehicle is an automatic mode command; Or when the mode command received by the electric vehicle is a sport mode command, the electric vehicle enters the sport mode;
  • the accelerator pedal opening is greater than 0 and less than or equal to the third preset opening, and the mode command received by the electric vehicle is an automatic mode command; or when the mode command received by the electric vehicle is an economic mode command, the electric vehicle enters the economy mode model;
  • the brake pedal opening When the accelerator pedal opening is 0, the brake pedal opening is 0, the vehicle speed of the electric vehicle is greater than or equal to the preset vehicle speed, and the received mode command is an automatic mode command, the electric vehicle enters the energy recovery mode;
  • the vehicle speed of the electric vehicle is less than the preset vehicle speed, and the received mode command is an automatic mode command; or when the brake pedal opening is greater than 0, the electric vehicle enters the braking mode.
  • step S300 After the working mode of the vehicle is determined in step S200, the torque distribution principle under different working modes needs to be considered, so as to facilitate the torque distribution between the front motor and the rear motor. That is, referring to FIG. 4, in step S300:
  • the torque distribution is performed on the front motor and the rear motor according to the optimal scheme of vehicle power output;
  • the torque distribution is performed on the front motor and the rear motor according to the optimal economic efficiency of the whole vehicle;
  • the torque distribution is performed on the front motor and the rear motor according to the optimal energy recovery efficiency
  • the torque distribution of the front motor and the rear motor is carried out with the optimal braking feeling under the premise of considering the strength of the mechanical braking and the limitation of the braking safety distribution.
  • the most suitable torque distribution principle is used to distribute the torque, which helps to improve the safety, stability and comfort of electric vehicle driving.
  • step S400 includes the following steps:
  • the electric vehicle enters the cornering mode
  • the electric vehicle When the steering angular velocity of the steering wheel is greater than the preset steering angular velocity, and the direction of the steering angular velocity of the steering wheel is opposite to that of the steering wheel, the electric vehicle enters the exit mode;
  • the electric vehicle enters the curve driving mode.
  • the torque control method provided in this embodiment also fully considers the steering conditions of the electric vehicle, and judges specific steering assist modes according to corresponding parameters, thereby enabling different torque distributions according to different steering assist modes.
  • step S500 in step S500:
  • the differential control is fully utilized according to the road friction coefficient to improve the driving stability of the curve.
  • the torque control method further includes the steps:
  • S600 Constrain the required torque of the front motor and the rear motor through the steering stability control strategy to output the torque of the front motor and the rear motor.
  • Steering control strategies include active anti-skid strategy and yaw control strategy; the former is used in all driving conditions of the vehicle, and the latter is used in the steering conditions of the vehicle.
  • the active anti-skid strategy includes: obtaining the reference vehicle speed according to the wheel speed, steering wheel angle and yaw rate of the electric vehicle, and then obtaining the electric The slip rate of the vehicle; the front and rear axle torque of the electric vehicle is corrected according to the acceleration and slip rate of the electric vehicle.
  • the yaw control strategy includes: obtaining the reference speed according to the wheel speed, steering wheel angle and yaw rate
  • the target yaw angular velocity is obtained from the reference vehicle speed and steering wheel angle, and the front and rear axle torques of the electric vehicle are corrected according to the deviation between the target yaw angular velocity and the actual yaw angular velocity.
  • the torque control method provided in this embodiment not only considers the driving intention of the driver, but also recognizes the steering condition, and can also use the steering stability after the working mode (or steering assist mode) is determined.
  • the control strategy performs coordinated control of torque, and finally outputs the required torque of the front motor and rear motor, improving the safety, stability and comfort of electric vehicle driving.
  • Embodiments of the present application also provide an electric vehicle, and components of the electric vehicle may include, but are not limited to: a vehicle body, one or more processors, a memory, and a bus connecting different system components (including the memory and the processor).
  • the memory can be configured to store software programs, computer-executable programs, and modules, such as program instructions corresponding to the torque control method for a dual-motor electric vehicle in the embodiments of the present application.
  • the processor executes various functional applications and data processing of the vehicle by running the software programs, instructions and modules stored in the memory, that is, the above torque control method for the dual-motor electric vehicle is implemented.
  • the memory may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system and an application program required for at least one function; the stored data area may store data created according to the use of the terminal, and the like. Additionally, the memory may include high speed random access memory, and may also include nonvolatile memory, such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device. In some examples, the memory may include memory located remotely from the processor, which may be connected to the vehicle via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored.
  • a torque control method for a dual-motor electric vehicle is implemented.
  • the torque control method includes the following steps:
  • S200 Control the electric vehicle to enter a corresponding working mode according to the accelerator pedal opening, the brake pedal opening, the vehicle speed and the mode currently selected by the driver; wherein, the working modes include a sport mode, an economy mode, an energy recovery mode and a braking mode;
  • S400 When the electric vehicle is in the steering condition, control the electric vehicle to enter the corresponding steering assist mode according to the steering wheel angle and steering wheel steering angular speed; wherein, the steering assist mode includes a corner entry mode, a curve driving mode and a corner exit mode;
  • the computer-executable instructions of the computer-executable instructions are not limited to the above-mentioned method operations, and can also execute the torque control method for a dual-motor electric vehicle provided by any embodiment of the present application. related operations in .
  • the computer-readable storage medium may be a non-transitory computer-readable storage medium.
  • the present application can be implemented by means of software and necessary general-purpose hardware, and certainly can also be implemented by hardware.
  • the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to related technologies, and the computer software products can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) executes the methods described in the various embodiments of the present application.
  • a computer-readable storage medium such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc.
  • the multiple units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized; in addition, the specific names of the multi-functional units are only for the purpose of It is convenient to distinguish from each other and is not used to limit the protection scope of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种双电机电动汽车的扭矩控制方法,包括:检测电动汽车的加速踏板开度、制动踏板开度、方向盘转角、车速和当前驾驶员选择的模式;根据加速踏板开度、制动踏板开度、车速和当前驾驶员选择的模式控制电动汽车进入相应的工作模式;根据电动汽车的当前工作模式确定前电机扭矩和后电机扭矩;当电动汽车处于转向工况时,根据方向盘转角和方向盘转向角速度控制电动汽车进入相应的转向辅助模式;根据电动汽车相应的转向辅助模式确定前电机扭矩和后电机扭矩。一种电动汽车和计算机可读存储介质也被公开。

Description

双电机电动汽车的扭矩控制方法、电动汽车及存储介质
本申请要求在2021年4月28日提交中国专利局、申请号为202110470276.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆驱动控制技术领域,例如涉及一种双电机电动汽车的扭矩控制方法、电动汽车及存储介质。
背景技术
对于配置有双电机的四驱电动汽车来说,由于前后轴都可以做独立的扭矩分配,使得车辆的通过性较好。但是相关技术中主要依赖于车辆状态(如轮速、方向盘转角、横摆加速度等)来进行前后轴扭矩的分配,以实现车辆的经济性控制、牵引性控制等;且多数控制方法并没有参考车速估算、行驶工况和驾驶员的驾驶意图;同时,车辆状态的获取依赖于传感器,受传感器信号的精度和传输速度影响,存在响应滞后的问题,进而最终影响电动汽车驾驶的安全性、稳定性和舒适性。
因此,亟待提供一种双电机电动汽车的扭矩控制方法、电动汽车及存储介质解决上述问题。
发明内容
本申请提供一种双电机电动汽车的扭矩控制方法、电动汽车及存储介质,以改善相关技术中电动汽车的扭矩控制未考虑行驶工况及驾驶员意图的情况,在满足驾驶员需求的情况下,使电机输出的扭矩满足行驶控制需求,提高电动汽车驾驶的安全性、稳定性和舒适性。
本申请以下技术方案:一种双电机电动汽车的扭矩控制方法,所述双电机电动汽车包括前电机和后电机,所述方法包括:
检测所述双电机电动汽车的加速踏板开度、制动踏板开度、方向盘转角、车速和当前驾驶员选择的模式;
根据所述加速踏板开度、所述制动踏板开度、所述车速和所述当前驾驶员选择的模式,控制所述双电机电动汽车进入相应的工作模式;其中,所述工作模式包括运动模式、经济模式、能量回收模式和制动模式;
响应于确定所述双电机电动汽车处于所述运动模式、所述经济模式、所述能量回收模式和所述制动模式中的任一工作模式,根据所述双电机电动汽车的当前工作模式确定前电机扭矩和后电机扭矩;
响应于确定所述双电机电动汽车处于转向工况,根据所述方向盘转角和所述方向盘转向角速度控制所述双电机电动汽车进入相应的转向辅助模式;其中,所述转向辅助模式包括入弯模式、弯路行驶模式和出弯模式;
响应于确定所述双电机电动汽车处于所述入弯模式、所述弯路行驶模式和所述出弯模式中的任一模式,根据所述双电机电动汽车相应的所述转向辅助模式确定所述前电机扭矩和所述后电机扭矩。
一种电动汽车,所述电动汽车包括:
一个或多个处理器;
存储器,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一所述的双电机电动汽车的扭矩控制方法。
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一所述的双电机电动汽车的扭矩控制方法。
附图说明
图1为本申请实施例中一种双电机电动汽车的动力系统的结构架构图;
图2为本申请实施例中一种双电机电动汽车的扭矩控制方法的控制流程图;
图3为本申请实施例中双电机电动汽车的工作模式的判定流程图;
图4为本申请实施例中双电机电动汽车的扭矩控制流程图;
图5为本申请实施例中双电机电动汽车的转向辅助模式的判定流程图。
具体实施方式
本实施例在于提供一种双电机电动汽车的扭矩控制方法,双电机电动汽车的动力系统的结构构架如图1所示,动力系统包括前电机、后电机、动力电池和整车控制器,其中,前电机和后电机分别用于对前后轴进行控制,完成扭矩到车轮的传递。例如,参考图2,双电机电动汽车的扭矩控制方法包括如下步骤:
S100:检测电动汽车的加速踏板开度、制动踏板开度、方向盘转角、车速和当前驾驶员选择的模式;
S200:根据加速踏板开度、制动踏板开度、车速和当前驾驶员选择的模式 控制电动汽车进入相应的工作模式;其中,工作模式包括运动模式、经济模式、能量回收模式和制动模式;
S300:当电动汽车处于运动模式、经济模式、能量回收模式和制动模式中的任一工作模式时,根据电动汽车的当前工作模式确定前电机扭矩和后电机扭矩;
S400:当电动汽车处于转向工况时,根据方向盘转角和方向盘转向角速度控制电动汽车进入相应的转向辅助模式;其中,转向辅助模式包括入弯模式、弯路行驶模式和出弯模式;
S500:当电动汽车处于任一转向辅助模式时,根据电动汽车相应的转向辅助模式确定前电机扭矩和后电机扭矩。
本实施例的双电机电动汽车的扭矩控制方法,能够根据驾驶员意图和车辆行驶工况,进行双电机电动汽车工作模式的智能选择;同时对转向工况进行识别,以进入相应的转向辅助模式,并在不同的工作模式或者转向辅助模式下,确定前电机和后电机的输出扭矩,以满足电动汽车的行驶要求;即该扭矩控制方法在每个行驶工况下,在满足驾驶员需求的情况下,使电机输出的扭矩满足行驶控制需求,提高了电动汽车驾驶的安全性、稳定性和舒适性。
例如,参考图3,步骤S200包括步骤:
当加速踏板开度大于第一预设开度时;或者当加速踏板开度大于第二预设开度且小于等于第一预设开度、且电动汽车接收到的模式指令为自动模式指令时;或者当加速踏板开度大于第三预设开度且小于等于第二预设开度、加速踏板开度变化率大于预设变化率、且电动汽车接收到的模式指令为自动模式指令时;或者当电动汽车接收到的模式指令为运动模式指令时,电动汽车进入运动模式;
当加速踏板开度大于0且小于等于第三预设开度、且电动汽车接收到的模式指令为自动模式指令时;或者当电动汽车接收到的模式指令为经济模式指令时,电动汽车进入经济模式;
当加速踏板开度为0、制动踏板开度为0、电动汽车的车速大于等于预设车速、且接收到的模式指令为自动模式指令时,电动汽车进入能量回收模式;
当加速踏板开度为0、电动汽车的车速小于预设车速、且接收到的模式指令为自动模式指令时;或者当制动踏板开度大于0时,电动汽车进入制动模式。
在步骤S200中确定了车辆的工作模式后,需要考虑不同工作模式下扭矩的分配原则,才能方便进行前电机和后电机的扭矩分配。即参考图4,步骤S300 中:
当电动汽车的当前工作模式为运动模式时,对前电机和后电机按整车动力输出最优方案进行扭矩分配;
当电动汽车的当前工作模式为经济模式时,对前电机和后电机按整车经济效率最优进行扭矩分配;
当电动汽车的当前工作模式为能量回收模式时,对前电机和后电机按能量回收效率最优进行扭矩分配;
当电动汽车的当前工作模式为制动模式时,对前电机和后电机在考虑机械制动的强度、制动安全分配限制的前提下,以制动感觉最优进行扭矩分配。
以上不同的工作模式下,以最合适的扭矩分配原则进行分配,有助于提高电动汽车驾驶的安全性、稳定性和舒适性。
例如,参考图5,步骤S400包括以下步骤:
当方向盘转向角速度大于预设转向角速度、且方向盘转向角速度方向与方向盘转角方向一致时,电动汽车进入入弯模式;
当方向盘转向角速度大于预设转向角速度、且方向盘转向角速度方向与方向盘转角方向相反,电动汽车进入出弯模式;
当方向盘转向角速度小于等于预设转向角速度、且方向盘转角大于预设转角时,电动汽车进入弯路行驶模式。
本实施例所提供的扭矩控制方法还充分考虑了电动汽车的转向工况,并根据相应的参数进行具体转向辅助模式的判断,进而得以根据不同的转向辅助模式进行了不同的扭矩分配。参考图4,步骤S500中:
当电动汽车进入入弯模式时,前电机扭矩向后电机转移,以预防车辆转向不足;
当电动汽车进入出弯模式时,后电机扭矩向前电机转移,以预防车辆过度转向;
当电动汽车进入弯路行驶模式时,根据路面摩擦系数充分利用差速控制,提升弯道行驶稳定性。
例如,为了避免在车辆发生滑转现象,或是发生甩尾现象时,出现安全事故,参考图1,图2和图4,该扭矩控制方法还包括步骤:
S600:通过操稳控制策略对前电机和后电机的需求扭矩进行约束,以输出前电机和后电机的扭矩。
操稳控制策略包括主动防滑策略和横摆控制策略;其中,前者用于车辆所 有的行驶工况中,后者用于汽车的转向工况中。例如,当电动汽车发生滑转时,根据主动防滑策略对前电机和后电机的扭矩进行修正;主动防滑策略包括:根据电动汽车的轮速、方向盘转角和横摆角速度获取参考车速,进而获取电动汽车的滑移率;根据电动汽车的加速度和滑移率对电动汽车的前后轴扭矩进行修正。当电动汽车发生甩尾时,根据横摆控制策略对前电机和后电机的扭矩进行修正;横摆控制策略包括:根据电动汽车的轮速、方向盘转角和横摆角速度获取参考车速,根据电动汽车的参考车速和方向盘转角获取目标横摆角速度,根据目标横摆角速度和实际横摆角速度的偏差对电动汽车的前后轴扭矩进行修正。
综上,本实施例所提供的扭矩控制方法不仅考虑到驾驶员的行驶意图,对转向工况也进行了识别,还能在确定了工作模式(或转向辅助模式)后,能够再利用操稳控制策略进行扭矩的协调控制,最终输出前电机和后电机的需求扭矩,提高电动汽车驾驶的安全性、稳定性和舒适性。
本申请实施例还提供一种电动汽车,电动汽车的组件可以包括但不限于:车辆本体、一个或者多个处理器,存储器,连接不同系统组件(包括存储器和处理器)的总线。
存储器作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的双电机电动汽车的扭矩控制方法对应的程序指令。处理器通过运行存储在存储器中的软件程序、指令以及模块,从而执行车辆的多种功能应用以及数据处理,即实现上述的双电机电动汽车的扭矩控制方法。
存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器可包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至车辆。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现一种双电机电动汽车的扭矩控制方法,该扭矩控制方法包括如下步骤:
S100:检测电动汽车的加速踏板开度、制动踏板开度、方向盘转角、车速和当前驾驶员选择的模式;
S200:根据加速踏板开度、制动踏板开度、车速和当前驾驶员选择的模式控制电动汽车进入相应的工作模式;其中,工作模式包括运动模式、经济模式、能量回收模式和制动模式;
S300:当电动汽车处于运动模式、经济模式、能量回收模式和制动模式中的任一工作模式时,根据电动汽车的当前工作模式确定前电机扭矩和后电机扭矩;
S400:当电动汽车处于转向工况时,根据方向盘转角和方向盘转向角速度控制电动汽车进入相应的转向辅助模式;其中,转向辅助模式包括入弯模式、弯路行驶模式和出弯模式;
S500:当电动汽车处于任一转向辅助模式时,根据电动汽车相应的转向辅助模式确定前电机扭矩和后电机扭矩。
当然,本申请实施例所提供的一种计算机可读存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的双电机电动汽车的扭矩控制方法中的相关操作。计算机可读存储介质可以是非暂态计算机可读存储介质。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请多个实施例所述的方法。
上述实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。

Claims (10)

  1. 一种双电机电动汽车的扭矩控制方法,所述双电机电动汽车包括前电机和后电机,所述方法包括:
    检测所述双电机电动汽车的加速踏板开度、制动踏板开度、方向盘转角、车速和当前驾驶员选择的模式;
    根据所述加速踏板开度、所述制动踏板开度、所述车速和所述当前驾驶员选择的模式,控制所述双电机电动汽车进入相应的工作模式;其中,所述工作模式包括运动模式、经济模式、能量回收模式和制动模式;
    响应于确定所述双电机电动汽车处于所述运动模式、所述经济模式、所述能量回收模式和所述制动模式中的任一工作模式,根据所述双电机电动汽车的当前工作模式确定前电机扭矩和后电机扭矩;
    响应于确定所述双电机电动汽车处于转向工况,根据所述方向盘转角和所述方向盘转向角速度控制所述双电机电动汽车进入相应的转向辅助模式;其中,所述转向辅助模式包括入弯模式、弯路行驶模式和出弯模式;
    响应于确定所述双电机电动汽车处于所述入弯模式、所述弯路行驶模式和所述出弯模式中的任一模式,根据所述双电机电动汽车相应的所述转向辅助模式确定所述前电机扭矩和所述后电机扭矩。
  2. 根据权利要求1所述的扭矩控制方法,其中,所述根据所述加速踏板开度、所述制动踏板开度、所述车速和所述当前驾驶员选择的模式控制所述双电机电动汽车进入相应的工作模式包括:
    响应于确定以下之一的情况,所述双电机电动汽车进入所述运动模式:
    所述加速踏板开度大于第一预设开度;所述加速踏板开度大于第二预设开度且小于或等于所述第一预设开度,所述双电机电动汽车接收到的模式指令为自动模式指令;所述加速踏板开度大于第三预设开度且小于或等于所述第二预设开度,所述加速踏板开度变化率大于预设变化率,所述双电机电动汽车接收到的模式指令为自动模式指令;所述双电机电动汽车接收到的模式指令为运动模式指令;
    响应于确定以下之一的情况,所述双电机电动汽车进入所述经济模式:
    所述加速踏板开度大于0且小于或等于所述第三预设开度,所述双电机电动汽车接收到的模式指令为自动模式指令;所述双电机电动汽车接收到的模式指令为经济模式指令;
    响应于确定所述加速踏板开度为0,所述制动踏板开度为0,所述车速大于或等于预设车速,所述双电机电动汽车接收到的模式指令为自动模式指令,所 述双电机电动汽车进入所述能量回收模式;
    响应于确定以下之一的情况,所述双电机电动汽车进入所述制动模式:
    所述加速踏板开度为0,所述车速小于所述预设车速,所述双电机电动汽车接收到的模式指令为自动模式指令;所述制动踏板开度大于0。
  3. 根据权利要求2所述的扭矩控制方法,其中,所述响应于确定所述双电机电动汽车处于所述运动模式、所述经济模式、所述能量回收模式和所述制动模式中的任一工作模式,根据所述双电机电动汽车的当前工作模式确定前电机扭矩和后电机扭矩包括:
    响应于确定所述双电机电动汽车的当前工作模式为所述运动模式,对所述前电机和所述后电机按整车动力输出最优方案进行扭矩分配;
    响应于确定所述双电机电动汽车的当前工作模式为所述经济模式,对所述前电机和所述后电机按整车经济效率最优进行扭矩分配;
    响应于确定所述双电机电动汽车的当前工作模式为所述能量回收模式,对所述前电机和所述后电机按能量回收效率最优进行扭矩分配;
    响应于确定所述双电机电动汽车的当前工作模式为所述制动模式,对所述前电机和所述后电机按照制动感觉最优进行扭矩分配。
  4. 根据权利要求1所述的扭矩控制方法,其中,所述响应于确定所述双电机电动汽车处于转向工况,根据所述方向盘转角和所述方向盘转向角速度控制所述双电机电动汽车进入相应的转向辅助模式;其中,所述转向辅助模式包括入弯模式、弯路行驶模式和出弯模式包括:
    响应于确定所述方向盘转向角速度大于预设转向角速度、且方向盘转向角速度方向与方向盘转角方向相同,所述双电机电动汽车进入所述入弯模式;
    响应于确定所述方向盘转向角速度大于预设转向角速度、且所述方向盘转向角速度方向与所述方向盘转角方向相反,所述双电机电动汽车进入所述出弯模式;
    响应于确定所述方向盘转向角速度小于或等于所述预设转向角速度、且所述方向盘转角大于预设转角,所述双电机电动汽车进入所述弯路行驶模式。
  5. 根据权利要求1所述的扭矩控制方法,其中,所述响应于确定所述双电机电动汽车处于所述入弯模式、所述弯路行驶模式和所述出弯模式中的任一模式,根据所述双电机电动汽车相应的所述转向辅助模式确定所述前电机扭矩和所述后电机扭矩包括:
    响应于确定所述双电机电动汽车进入所述入弯模式,所述前电机扭矩向所 述后电机转移;
    响应于确定所述双电机电动汽车进入所述出弯模式,所述后电机扭矩向所述前电机转移;
    响应于确定所述双电机电动汽车进入所述弯路行驶模式,根据路面摩擦系数和差速控制原理,对所述前电机扭矩和所述后电机扭矩进行调整。
  6. 根据权利要求1所述的扭矩控制方法,还包括:
    通过操稳控制策略对所述前电机和所述后电机的需求扭矩进行约束,以输出所述前电机扭矩和所述后电机扭矩。
  7. 根据权利要求6所述的扭矩控制方法,其中,所述操稳控制策略包括主动防滑策略,所述通过操稳控制策略对所述前电机和所述后电机的需求扭矩进行约束,以输出所述前电机扭矩和所述后电机扭矩包括:
    响应于确定所述双电机电动汽车发生滑转,根据所述主动防滑策略对所述前电机扭矩和所述后电机扭矩进行修正;其中,所述主动防滑策略包括:根据所述双电机电动汽车的轮速、所述方向盘转角和横摆角速度获取参考车速,以获取所述双电机电动汽车的滑移率;根据所述双电机电动汽车的加速度和所述滑移率对所述前电机扭矩和所述后电机扭矩进行修正。
  8. 根据权利要求6所述的扭矩控制方法,其中,所述操稳控制策略包括横摆控制策略,所述通过操稳控制策略对所述前电机和所述后电机的需求扭矩进行约束,以输出所述前电机扭矩和所述后电机扭矩包括:
    响应于确定所述双电机电动汽车发生甩尾,根据所述横摆控制策略对所述前电机扭矩和所述后电机扭矩进行修正;其中,所述横摆控制策略包括:根据所述双电机电动汽车的轮速、所述方向盘转角和横摆角速度获取参考车速,根据所述参考车速和所述方向盘转角获取目标横摆角速度,根据所述目标横摆角速度和实际横摆角速度的偏差对所述前电机扭矩和所述后电机扭矩进行修正。
  9. 一种电动汽车,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-8中任一所述的双电机电动汽车的扭矩控制方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-8中任一所述的双电机电动汽车的扭矩控制方法。
PCT/CN2022/086073 2021-04-28 2022-04-11 双电机电动汽车的扭矩控制方法、电动汽车及存储介质 WO2022228096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110470276.6A CN113071332B (zh) 2021-04-28 2021-04-28 双电机电动汽车的扭矩控制方法、电动汽车及存储介质
CN202110470276.6 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022228096A1 true WO2022228096A1 (zh) 2022-11-03

Family

ID=76619086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086073 WO2022228096A1 (zh) 2021-04-28 2022-04-11 双电机电动汽车的扭矩控制方法、电动汽车及存储介质

Country Status (2)

Country Link
CN (1) CN113071332B (zh)
WO (1) WO2022228096A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116653634A (zh) * 2023-08-02 2023-08-29 江铃汽车股份有限公司 纯电动汽车电池扭矩控制方法、装置、车辆及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071332B (zh) * 2021-04-28 2023-03-28 中国第一汽车股份有限公司 双电机电动汽车的扭矩控制方法、电动汽车及存储介质
CN113335263B (zh) * 2021-07-19 2022-04-12 中国第一汽车股份有限公司 一种分布式四驱扭矩控制方法
CN113619584A (zh) * 2021-08-27 2021-11-09 中国第一汽车股份有限公司 电控后轮转向方法、装置、电子设备及存储介质
CN113895244A (zh) * 2021-09-30 2022-01-07 岚图汽车科技有限公司 车辆控制方法、装置、电子设备及存储介质
CN114347805B (zh) * 2022-01-27 2022-12-27 奇瑞商用车(安徽)有限公司 电动汽车集成车辆控制的双电机驱动系统及其控制方法
CN115431788A (zh) * 2022-06-08 2022-12-06 北京罗克维尔斯科技有限公司 车辆能量回收扭矩分配方法、装置、电子设备和存储介质
CN115476698A (zh) * 2022-07-27 2022-12-16 中国第一汽车股份有限公司 车辆动力系统的控制方法、装置以及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120199414A1 (en) * 2011-02-09 2012-08-09 Honda Motor Co., Ltd. Electric power steering apparatus
CN106240402A (zh) * 2016-08-12 2016-12-21 北京长城华冠汽车科技股份有限公司 双电机电动汽车的驱动控制方法及装置
CN106696950A (zh) * 2015-07-22 2017-05-24 北汽福田汽车股份有限公司 混合动力汽车的扭矩控制架构及控制系统
CN109484206A (zh) * 2018-11-27 2019-03-19 北京新能源汽车股份有限公司 一种电机输出扭矩的调整方法、装置及电动汽车
JP2019115226A (ja) * 2017-12-26 2019-07-11 日立オートモティブシステムズ株式会社 電動車両の制御装置、制御方法および制御システム
CN111196269A (zh) * 2018-11-19 2020-05-26 广州汽车集团股份有限公司 车辆运行控制方法及装置、计算机可读存储介质
CN111267853A (zh) * 2018-12-03 2020-06-12 广州汽车集团股份有限公司 一种自适应车辆弯道辅助控制方法、装置、计算机设备和存储介质
CN113071332A (zh) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 双电机电动汽车的扭矩控制方法、电动汽车及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034381A1 (de) * 2006-07-25 2008-01-31 Robert Bosch Gmbh Fahrdynamikregler mit einem in der Lenkung angeordneten Drehmomentensensor
CN103182956B (zh) * 2011-12-28 2015-09-02 比亚迪股份有限公司 电动四轮驱动车辆稳定控制方法和控制系统
JP6604894B2 (ja) * 2016-04-12 2019-11-13 日立オートモティブシステムズ株式会社 車両制御装置及び方法
GB2549328A (en) * 2016-04-15 2017-10-18 Jaguar Land Rover Ltd Vehicle steering system
CN107351911B (zh) * 2017-06-29 2019-04-26 浙江合众新能源汽车有限公司 一种电动汽车转向稳定控制方法
CN107830865B (zh) * 2017-10-16 2020-04-17 东软集团股份有限公司 一种车辆目标分类方法、装置、系统及计算机程序产品
CN108909828B (zh) * 2018-05-30 2023-06-09 南京航空航天大学 一种线控转向和制动系统及其控制方法
CN109747632B (zh) * 2018-12-29 2020-05-22 中国第一汽车股份有限公司 一种双动力源驱动车辆扭矩分配方法
DE102019200820A1 (de) * 2019-01-23 2020-07-23 Audi Ag Verfahren zur Verteilung eines von einem Fahrer angeforderten Bremsmoments auf die Vorder- und Hinterachse eines Kraftfahrzeugs
CN110014851B (zh) * 2019-04-10 2021-08-13 中国第一汽车股份有限公司 一种前后双电机四驱车辆轴间扭矩分配方法
CN111196312B (zh) * 2020-01-21 2022-06-07 重庆长安汽车股份有限公司 一种电动汽车转向控制方法、装置、汽车及控制器
CN111959290B (zh) * 2020-08-13 2022-02-11 重庆长安新能源汽车科技有限公司 一种纯电动车辆过弯转向的控制方法
CN111976504B (zh) * 2020-08-26 2023-10-31 合肥工业大学 四电机驱动汽车扭矩分配控制器、控制方法、设备及存储介质
CN111959286B (zh) * 2020-08-31 2021-11-09 东风汽车集团有限公司 一种电动汽车滑行能量回收强度控制方法、装置及介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120199414A1 (en) * 2011-02-09 2012-08-09 Honda Motor Co., Ltd. Electric power steering apparatus
CN106696950A (zh) * 2015-07-22 2017-05-24 北汽福田汽车股份有限公司 混合动力汽车的扭矩控制架构及控制系统
CN106240402A (zh) * 2016-08-12 2016-12-21 北京长城华冠汽车科技股份有限公司 双电机电动汽车的驱动控制方法及装置
JP2019115226A (ja) * 2017-12-26 2019-07-11 日立オートモティブシステムズ株式会社 電動車両の制御装置、制御方法および制御システム
CN111196269A (zh) * 2018-11-19 2020-05-26 广州汽车集团股份有限公司 车辆运行控制方法及装置、计算机可读存储介质
CN109484206A (zh) * 2018-11-27 2019-03-19 北京新能源汽车股份有限公司 一种电机输出扭矩的调整方法、装置及电动汽车
CN111267853A (zh) * 2018-12-03 2020-06-12 广州汽车集团股份有限公司 一种自适应车辆弯道辅助控制方法、装置、计算机设备和存储介质
CN113071332A (zh) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 双电机电动汽车的扭矩控制方法、电动汽车及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116653634A (zh) * 2023-08-02 2023-08-29 江铃汽车股份有限公司 纯电动汽车电池扭矩控制方法、装置、车辆及存储介质
CN116653634B (zh) * 2023-08-02 2023-10-24 江铃汽车股份有限公司 一种纯电动汽车电机扭矩控制方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
CN113071332B (zh) 2023-03-28
CN113071332A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2022228096A1 (zh) 双电机电动汽车的扭矩控制方法、电动汽车及存储介质
CN109747632B (zh) 一种双动力源驱动车辆扭矩分配方法
WO2022048267A1 (zh) 电动汽车的驱动防滑控制方法及双电机四驱电动汽车
CN105799549B (zh) 一种用于电动轮汽车eps与dyc集成控制系统及其方法
JP4045961B2 (ja) 制動制御装置
US9834110B2 (en) Movement control device for vehicle
JP6844500B2 (ja) 車両の挙動制御装置
CN108790940A (zh) 轮边驱动转向差速控制方法、控制装置、设备及汽车
CN107089261A (zh) 一种集成eps的分布式驱动汽车转向控制系统及方法
CN104260725A (zh) 一种含有驾驶员模型的智能驾驶系统
JP2004099029A (ja) 回生制動を持つ車両の制動及び操縦性制御方法及びシステム
JP2017046494A (ja) 車両の制御装置及び車両の制御方法
JP2004104991A (ja) 回生制動を持つ車両の独立制動及び操縦性の制御方法及びシステム
CN103204160A (zh) 用于电力驱动车辆的电子稳定性控制系统
JP5227082B2 (ja) 4輪操舵機構を搭載した車両の操舵制御装置
CN105818811A (zh) 一种车辆紧急转向避撞时esp与eps联合控制方法
US20200384979A1 (en) Vehicle attitude control system
US20080221769A1 (en) Vehicle Driving Assist System
JP6577850B2 (ja) 車両の制御装置及び車両の制御方法
US8267219B2 (en) Vehicle steering system
JP5673296B2 (ja) 車両の駆動力制御装置
WO2024055671A1 (zh) 一种整车控制器、电机控制器以及相关设备
US20200384967A1 (en) Vehicle attitude control system
US20230382367A1 (en) Driving/braking force control apparatus
JP2012196061A (ja) 電動車両の駆動力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794567

Country of ref document: EP

Kind code of ref document: A1