CN116278803B - 四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法 - Google Patents

四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法 Download PDF

Info

Publication number
CN116278803B
CN116278803B CN202310330960.3A CN202310330960A CN116278803B CN 116278803 B CN116278803 B CN 116278803B CN 202310330960 A CN202310330960 A CN 202310330960A CN 116278803 B CN116278803 B CN 116278803B
Authority
CN
China
Prior art keywords
torque
wheel
braking
hub motor
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310330960.3A
Other languages
English (en)
Other versions
CN116278803A (zh
Inventor
肖峰
彭金鑫
张旭
陈科佳
李建华
安昱绮
梅磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202310330960.3A priority Critical patent/CN116278803B/zh
Publication of CN116278803A publication Critical patent/CN116278803A/zh
Application granted granted Critical
Publication of CN116278803B publication Critical patent/CN116278803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法,该四轮毂电机驱动电动汽车节能转矩分配系统包括:整车控制器VCU、两个EBS控制器、四个电机控制器MCU,整车控制器VCU分别与EBS控制器、电机控制器MCU连接,每个电机控制器MCU连接一个轮毂电机,轮毂电机设置于轮毂上,从而将电动汽车总转矩优化分配至各个车轮;每个EBS控制器分别连接两个液压制动模块,通过EBS控制器和控制器MCU输出制动力矩给液压制动模块,实现各个车轮的制动。本发明四轮毂电机驱动电动汽车节能转矩分配系统能够减少能量消耗,提高电动汽车的续航里程。

Description

四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法
技术领域
本发明涉及车辆控制技术领域,具体地,涉及一种四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法。
背景技术
目前,全球汽车正在进行电动化转型,电动汽车构型众多,分布式驱动电动汽车通过四个电机获取动力,包括:轮毂电机,轮边电机等形式。轮毂电机驱动的电动汽车减少了汽车的传动机构,直接驱动车轮运动,结构紧凑,传动效率高,电机既是信息单元又是执行单元,通过扭矩矢量分配技术,使电机工作在高效区间,既可以提高操纵稳定性,又可以降低能效。
电动汽车制动时,车轮带动电机旋转产生反电动势,在回路中产生电流,从而轮毂电机产生制动力矩,电流流向电池后实现对电池的充电,通过对再生制动力矩合理分配,可实现对制动能量的高效回收。
因此设计合理高效的控制策略,使电动汽车在驱动和制动过程中节约能量,延长续航里程,对电动汽车的产业化具有重要意义。
发明内容
鉴于此,本发明提供了一种四轮毂电机驱动电动汽车节能系统及其转矩控制方法,能够减少能量消耗,提高电动汽车的续航里程。
为实现上述技术目的,本发明提供如下技术方案:一种四轮毂电机驱动电动汽车节能转矩分配系统,其特征在于,包括:整车控制器VCU、两个EBS控制器、四个电机控制器MCU,所述整车控制器VCU分别与EBS控制器、电机控制器MCU连接,每个电机控制器MCU连接一个轮毂电机,所述轮毂电机设置于轮毂上;每个EBS控制器分别连接两个液压制动模块,液压制动模块用于各个车轮的制动。
进一步地,所述整车控制器VCU分别与电机控制器MCU、EBS控制器通过CAN总线连接。
进一步地,本发明还提供了一种所述的四轮毂电机驱动电动汽车节能转矩分配系统的控制方法,具体包括如下步骤:
步骤1、当接收到驾驶员需求时,对行驶工况进行判断,若为驱动信号,则进入驱动行驶状态,根据电动汽车速度以及驾驶员所需求的扭矩查表得到四个轮毂电机的最优转矩分配系数;否则,执行步骤3;
步骤2、整车控制器VCU将查询到的四个轮毂电机的最优转矩分配系数发送到各自的电机控制器MCU,电机控制器MCU控制轮毂电机的输出驱动转矩,分配至各个车轮;
步骤3、若为制动信号,进入制动行驶状态,根据电动汽车速度以及驾驶员需求的制动力矩查表得到最优制动器制动力分配系数β,β为前制动器制动力占汽车总制动器制动力的比例;
步骤4、根据最优制动器制动力分配系数β以及驾驶员需求的制动力矩获得前轴制动力矩,将驾驶员需求的制动力矩结合1-β获得后轴制动力矩,将前轴制动力矩平均分配到前轴车轮中,将后轴制动力矩平均分配到后车轮中,得到各个车轮所需的制动力矩;
步骤5、若电动汽车的电池SOC值在90%以下,整车控制器VCU判断各个车轮所需要的制动力矩是否小于MCU控制器产生的轮毂电机的再生制动力矩,若小于,则各个车轮所需的制动力矩全部由轮毂电机的再生制动力矩提供,否则,各个车轮所需的制动力矩由轮毂电机的最大再生制动力矩和EBS控制器产生的摩擦制动力矩叠加提供;若电动汽车的电池SOC值大于90%,各个车轮所需的制动力矩全部由EBS控制产生的摩擦制动力矩提供;
步骤6、当电动汽车速度变化时,整车控制器VCU根据电动汽车速度以及驾驶员需求的制动力矩查表更新最优制动器制动力分配系数β,重复步骤4-5,直至制动结束。
进一步地,四电机的最优转矩矢量分配系数的获取过程为:以最小化四个轮毂电机功率损失为优化目标,基于电机效率图通过遗传-粒子群优化算法离线优化,得到不同期望转矩和电动汽车速度下四轮毂电机的最优转矩矢量分配系数。
进一步地,所述四轮毂电机的最优转矩矢量分配系数的获取过程具体为:
步骤1.1、在电机效率图上根据每个车轮转速和车轮分配的转矩系数分配的转矩,查询轮毂电机的工作效率,结合车轮转速、车轮分配的转矩系数以及驾驶员所需求转矩,计算轮毂电机的输出功率Pi
其中,i=1,2,3,4表示车轮索引,1表示左前轮,2表示右前轮,3表示左后轮,4表示右后轮,ni为第i个车轮转速,pi表示第i个车轮所分配的转矩系数,Td表示驾驶员所需求转矩,ηi表示第i个轮毂电机工作效率;
步骤1.2、将某一电动汽车速度及某一驾驶员所需求转矩下的四个车轮所分配的转矩系数组成的四维向量作为粒子{pi},设置某一电动汽车速度及某一驾驶员所需求转矩下的粒子群规模、粒子的最大迭代次数,将四个轮毂电机的输出功率总和作为粒子适应度值;
步骤1.3、将适应度值最小的粒子作为领导者粒子,并保留领导者粒子及其适应度值;
步骤1.4、将所有粒子在下一次迭代过程中进行交叉,得到交叉后的粒子p′i(t+1):
其中,r为区间[0,1]间的随机数,pab(t)为第a个粒子中的第b个车轮在第t次迭代中的转矩系数,pcd(t)为第c个粒子中的第d个车轮在第t次迭代中的转矩系数;
步骤1.5、将交叉粒子p′i(t+1)进行随机变异,得到更新粒子:
其中,p′i-Max(t+1)为p′i(t+1)中的基因上限,p′i-low(t+1)为p′i(t+1)中的基因下限,N为最大迭代次数;
步骤1.6、再次计算更新粒子的适应度值,并将更新粒子的适应度值与领导者粒子的适应度值进行比较,将适应度值最小的粒子作为新的领导者粒子;
步骤1.7、重复步骤1.4-1.6,直至达到最大迭代次数,得到该电动汽车速度及该驾驶员所需求转矩下四轮毂电机的最优转矩矢量分配系数;
步骤1.8、将每个电动汽车速度及每个驾驶员所需求转矩下的四个车轮所分配的转矩系数按照步骤1.1-1.7的过程,得到所有电动汽车速度及所有驾驶员所需求转矩下四轮毂电机的最优转矩矢量分配系数。
进一步地,步骤1.2中四个车轮所分配的转矩系数满足:分配的转矩系数后轮毂电机的转矩不大于轮毂电机的最大转矩,分配的转矩系数后轮毂电机的转速不大于轮毂电机的最大转速。
进一步地,最优制动器制动力分配系数β的获取过程为:在保证制动安全的前提下,以最大化回收制动能量为优化目标,根据期望的制动力矩和电动汽车速度通过遗传-粒子群优化算法离线优化,得到最大化回收制动能量所对应的最优制动器制动力分配系数β。
进一步地,最优制动器制动力分配系数β的获取过程具体为:
步骤3.1、根据制动器制动力分配系数β得到各个车轮所需的制动力矩,从而求取轮毂电机的再生制动功率:
Pui=Fuiiδ i=1,2,3,4
其中,Pui为第i个轮毂电机的再生制动功率,i=1,2,3,4表示车轮索引,1表示左前轮,2表示右前轮,3表示左后轮,4表示右后轮,R为车轮滚动半径,wi为各个车轮电机角速度,δ为发电效率,Fui为第i个车轮所需的制动力矩,Fu1=Fu2=βFu/2,Fu为驾驶员需求的制动力矩,Fu3=Fu4=(1-β)Fu/2;
步骤3.2、将某一电动汽车速度及某一驾驶员需求的制动力矩下的制动器制动力分配系数作为粒子,设置某一电动汽车速度及某一驾驶员需求的制动力矩下的粒子群规模、粒子的最大迭代次数,将四个轮毂电机的再生制动功率总和作为粒子适应度值;
步骤3.3、将适应度值最大的粒子作为领导者粒子,并保留领导者粒子及其适应度值;
步骤3.4、将所有粒子在下一次迭代过程中进行交叉,得到交叉后的粒子β′(t+1):
其中,r为区间[0,1]间的随机数,βx(t)为第x个粒子在第t次迭代中的制动器制动力分配系数,βy(t)为第y个粒子在第t次迭代中的制动器制动力分配系数;
步骤3.5、将交叉后的粒子β′(t+1)进行随机变异,得到更新粒子:
其中,β′max(t+1)为β′(t+1)中的基因上限,β′low(t+1)为β′(t+1)中的基因下限,N为最大迭代次数;
步骤3.6、再次计算更新粒子的适应度值,并将更新粒子的适应度值与领导者粒子的适应度值进行比较,将适应度值最大的粒子作为新的领导者粒子;
步骤3.7、重复步骤3.4-3.6,直至达到最大迭代次数,得到该电动汽车速度及该驾驶员需求的制动力矩下四轮毂电机的最优制动器制动力分配系数β;
步骤3.8、将每个电动汽车速度及每个驾驶员需求的制动力矩下的制动器制动力分配系数按照步骤3.1-3.7的过程,得到所有电动汽车速度及所有驾驶员需求的制动力矩下最优制动器制动力分配系数。
进一步地,轮毂电机的再生制动功率不超过轮毂电机的额定功率;轮毂电机的转速小于最小转速后,轮毂电机的再生制动功率为0。
与现有技术相比,本发明具有如下有益效果:本发明四轮毂电机驱动电动汽车节能转矩分配系统,整车控制器VCU与电机控制器MCU、EBS控制器通过CAN通信,通过四个电机控制器MCU分别控制轮毂电机,实现了四轮毂电机驱动电动汽车的转矩矢量分配;通过两个EBS控制器控制前后轴制动器制动力,实现四轮毂电机驱动电动汽车的制动力矩分配;通过四轮毂电机驱动电动汽车的转矩矢量分配和制动力矩分配可以提高能量利用效率,改善电动汽车的操纵稳定性;本发明还通过遗传-粒子群优化算法离线优化,得到的四轮毂电机的最优转矩矢量分配系数和最优制动器制动力分配系数,使得电动汽车在驱动和制动过程中根据车辆状态在线选取最优转矩矢量分配系数和最优制动器制动力分配系数,计算量少,合理利用轮毂电机高效率工作区间,最大化的回收制动能量,减少能量消耗,提高续航里程。
附图说明
图1为本发明四轮毂电机驱动电动汽车节能转矩分配系统的原理示意图;
图2为本发明四轮毂电机驱动电动汽车节能转矩分配系统的控制流程图。
具体实施方式
下面将结合附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分,而不是全部。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1为本发明四轮毂电机驱动电动汽车节能转矩分配系统的原理示意图,该四轮毂电机驱动电动汽车节能转矩分配系统包括:整车控制器VCU、两个EBS控制器、四个电机控制器MCU,整车控制器VCU分别与EBS控制器、电机控制器MCU连接,每个电机控制器MCU连接一个轮毂电机,轮毂电机设置于轮毂上,整车控制器VCU与电机控制器MCU通过CAN总线连接,整车控制器VCU将转矩分配系数发送到MCU控制器,MCU控制器控制轮毂电机输出驱动转矩,从而将电动汽车总转矩优化分配至各个车轮,实现了四轮毂电机驱动电动汽车的转矩矢量分配;整车控制器VCU与EBS控制器通过CAN总线连接,每个EBS控制器分别连接两个液压制动模块,整车控制器VCU将前后轴制动力矩分配系数分配前后轴制动力矩,然后通过EBS控制器和控制器MCU输出制动力矩给液压制动模块,实现各个车轮的制动。本发明四轮毂电机驱动电动汽车节能转矩分配系统能够减少能量消耗,提高电动汽车的续航里程。
如图2为本发明四轮毂电机驱动电动汽车节能转矩分配系统的控制流程图,该控制方法具体包括如下步骤:
步骤1、当接收到驾驶员需求时,对行驶工况进行判断,若为驱动信号,则进入驱动行驶状态,根据电动汽车速度以及驾驶员所需求的扭矩查表得到四个轮毂电机的最优转矩分配系数;否则,执行步骤3;
本发明中四电机的最优转矩矢量分配系数的获取过程为:以最小化四个轮毂电机功率损失为优化目标,基于电机效率图通过遗传-粒子群优化算法离线优化,得到不同期望转矩和电动汽车速度下四轮毂电机的最优转矩矢量分配系数,遗传-粒子群优化算法可以充分发挥粒子群算法记忆当前最优解和遗传算法全局搜索的功能,收敛速度快,产生高质量粒子,避免局部最优解,在优化过程中将转矩适量分配系数粒子的适应度值取最小值,利用粒子群优化算法的优点,保留功率最小化的父代信息,并利用遗传算法进行交叉和变异得到新的粒子,避免陷入局部最小功率粒子,确保最后得到的粒子可以让整车功率最小化,提高整车能量利用效率,优化车辆的经济性和动力性能,提高续航里程。具体地,
步骤1.1、在电机效率图上根据每个车轮转速和车轮分配的转矩系数分配的转矩,查询轮毂电机的工作效率,结合车轮转速、车轮分配的转矩系数以及驾驶员所需求转矩,计算轮毂电机的输出功率Pi
其中,i=1,2,3,4表示车轮索引,1表示左前轮,2表示右前轮,3表示左后轮,4表示右后轮,ni为第i个车轮转速,pi表示第i个车轮所分配的转矩系数,Td表示驾驶员所需求转矩,ηi表示轮毂电机工作效率;
步骤1.2、将某一电动汽车速度及某一驾驶员所需求转矩下的四个车轮所分配的转矩系数组成的四维向量作为粒子{pi},设置某一电动汽车速度及某一驾驶员所需求转矩下的粒子群规模、粒子的最大迭代次数,将四个轮毂电机的输出功率总和作为粒子适应度值;此外,四个车轮所分配的转矩系数满足:分配的转矩系数后轮毂电机的转矩不大于轮毂电机的最大转矩,分配的转矩系数后轮毂电机的转速不大于轮毂电机的最大转速;
步骤1.3、将适应度值最小的粒子作为领导者粒子,并保留领导者粒子及其适应度值;
步骤1.4、将所有粒子在下一次迭代过程中进行交叉,得到交叉后的粒子p′i(t+1):
其中,r为区间[0,1]间的随机数,pab(t)为第a个粒子中的第b个车轮在第t次迭代中的转矩系数,pcd(t)为第c个粒子中的第d个车轮在第t次迭代中的转矩系数;
步骤1.5、将交叉粒子p′i(t+1)进行随机变异,得到更新粒子:
其中,p′i-Max(t+1)为p′i(t+1)中的基因上限,p′i-Low(t+1)为p′i(t+1)中的基因下限,N为最大迭代次数;
步骤1.6、再次计算更新粒子的适应度值,并将更新粒子的适应度值与领导者粒子的适应度值进行比较,将适应度值最小的粒子作为新的领导者粒子;
步骤1.7、重复步骤1.4-1.6,直至达到最大迭代次数,得到该电动汽车速度及该驾驶员所需求转矩下四轮毂电机的最优转矩矢量分配系数;
步骤1.8、将每个电动汽车速度及每个驾驶员所需求转矩下的四个车轮所分配的转矩系数按照步骤1.1-1.7的过程,得到所有电动汽车速度及所有驾驶员所需求转矩下四轮毂电机的最优转矩矢量分配系数。
步骤2、整车控制器VCU将查询到的四个轮毂电机的最优转矩分配系数发送到各自的电机控制器MCU,电机控制器MCU控制轮毂电机的输出驱动转矩,分配至各个车轮,使轮毂电机利用其高效率工作区间,使其输出功率最大化,既可以提高能量利用效率,提高续航能力,同时使电机的输出转矩更加灵活,在不同车速和负载下输出不同的转矩,实现更加精确的控制,提供附加横摆力矩,使汽车具有良好的操纵稳定性;
步骤3、若为制动信号,进入制动行驶状态,根据电动汽车速度以及驾驶员需求的制动力矩查表得到最优制动器制动力分配系数β,β为前制动器制动力占汽车总制动器制动力的比例;
本发明中最优制动器制动力分配系数β的获取过程为:在保证制动安全的前提下,以最大化回收制动能量为优化目标,根据期望的制动力矩和电动汽车速度通过遗传-粒子群优化算法离线优化,得到最大化回收制动能量所对应的最优制动器制动力分配系数β,通过不断迭代最优制动器制动力分配系数β,找出适应度最大的粒子,使车辆始终工作在安全区间,遗传-粒子群优化算法可以充分发挥粒子群算法记忆当前最优解和遗传算法全局搜索的功能,收敛速度快,产生高质量粒子,避免局部最优解,在优化过程中将制动器制动力粒子的适应度值取最大值,利用粒子群优化算法的优点,保留制动能量回收最大化的父代信息,并利用遗传算法进行交叉和变异得到新的粒子,避免陷入局部制动能量回收最大化的粒子,确保最后得到的粒子可以让制动能量回收最大化,提高轮毂电机的再生制动能量回收效率,提高续航里程,避免汽车在制动时跑偏和甩尾,同时最大化再生制动能量回收;具体地,
步骤3.1、根据制动器制动力分配系数β得到各个车轮所需的制动力矩,从而求取轮毂电机的再生制动功率:
Pui=Fuiiδ i=1,2,3,4
其中,Pui为第i个轮毂电机的再生制动功率,i=1,2,3,4表示车轮索引,1表示左前轮,2表示右前轮,3表示左后轮,4表示右后轮,R为车轮滚动半径,wi为各个车轮电机角速度,δ为发电效率,Fui为第i个车轮所需的制动力矩,Fu1=Fu2=βFu/2,Fu为驾驶员需求的制动力矩,Fu3=Fu4=(1-β)Fu/2;
步骤3.2、将某一电动汽车速度及某一驾驶员需求的制动力矩下的制动器制动力分配系数作为粒子,设置某一电动汽车速度及某一驾驶员需求的制动力矩下的粒子群规模、粒子的最大迭代次数,将四个轮毂电机的再生制动功率总和作为粒子适应度值;此外,轮毂电机的再生制动功率不超过轮毂电机的额定功率;轮毂电机的转速小于最小转速后,轮毂电机的再生制动功率为0;
步骤3.3、将适应度值最大的粒子作为领导者粒子,并保留领导者粒子及其适应度值;
步骤3.4、将所有粒子在下一次迭代过程中进行交叉,得到交叉后的粒子β′(t+1):
其中,r为区间[0,1]间的随机数,βx(t)为第x个粒子在第t次迭代中的制动器制动力分配系数,βy(t)为第y个粒子在第t次迭代中的制动器制动力分配系数;
步骤3.5、将交叉后的粒子β′(t+1)进行随机变异,得到更新粒子:
其中,β′max(t+1)为β′(t+1)中的基因上限,β′low(t+1)为β′(t+1)中的基因下限,N为最大迭代次数;
步骤3.6、再次计算更新粒子的适应度值,并将更新粒子的适应度值与领导者粒子的适应度值进行比较,将适应度值最大的粒子作为新的领导者粒子;
步骤3.7、重复步骤3.4-3.6,直至达到最大迭代次数,得到该电动汽车速度及该驾驶员需求的制动力矩下四轮毂电机的最优制动器制动力分配系数β;
步骤3.8、将每个电动汽车速度及每个驾驶员需求的制动力矩下的制动器制动力分配系数按照步骤3.1-3.7的过程,得到所有电动汽车速度及所有驾驶员需求的制动力矩下最优制动器制动力分配系数。
步骤4、根据最优制动器制动力分配系数β以及驾驶员需求的制动力矩获得前轴制动力矩,将驾驶员需求的制动力矩结合1-β获得后轴制动力矩,将前轴制动力矩平均分配到前轴车轮中,将后轴制动力矩平均分配到后车轮中,得到各个车轮所需的制动力矩,提高车辆的平稳性和舒适性,并增强车辆的制动稳定性,避免汽车在制动时失控;
步骤5、若电动汽车的电池SOC值在90%以下,整车控制器VCU判断各个车轮所需要的制动力矩是否小于MCU控制器产生的轮毂电机的再生制动力矩,若小于,则各个车轮所需的制动力矩全部由轮毂电机的再生制动力矩提供,否则,各个车轮所需的制动力矩由轮毂电机的最大再生制动力矩和EBS控制器产生的摩擦制动力矩叠加提供;若电动汽车的电池SOC值大于90%,各个车轮所需的制动力矩全部由EBS控制产生的摩擦制动力矩提供。通过以上步骤,使电机再生制动能量回收最大化,同时防止电池过充,提高电池寿命,同时保证制动安全;
步骤6、当电动汽车速度变化时,整车控制器VCU根据电动汽车速度以及驾驶员需求的制动力矩查表更新最优制动器制动力分配系数β,重复步骤4-5,直至制动结束。
本发明四轮毂电机驱动电动汽车节能转矩分配系统的控制方法可以提高能量利用效率,同时使汽车具有良好的操纵稳定性,避免汽车在制动时失控,同时提高轮毂电机的再生制动能量回收效率,提高续航能力,节省电动汽车成本,提高使用者驾驶体验。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施方式,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (7)

1.一种四轮毂电机驱动电动汽车节能转矩分配系统的控制方法,其特征在于,具体包括如下步骤:
步骤1、当接收到驾驶员需求时,对行驶工况进行判断,若为驱动信号,则进入驱动行驶状态,根据电动汽车速度以及驾驶员所需求的扭矩查表得到四个轮毂电机的最优转矩分配系数;否则,执行步骤3;四电机的最优转矩矢量分配系数的获取过程为:以最小化四个轮毂电机功率损失为优化目标,基于电机效率图通过遗传-粒子群优化算法离线优化,得到不同期望转矩和电动汽车速度下四轮毂电机的最优转矩矢量分配系数;
所述四轮毂电机的最优转矩矢量分配系数的获取过程具体为:
步骤1.1、在电机效率图上根据每个车轮转速和车轮分配的转矩系数分配的转矩,查询轮毂电机的工作效率,结合车轮转速、车轮分配的转矩系数以及驾驶员所需求转矩,计算轮毂电机的输出功率Pi
其中,i=1,2,3,4表示车轮索引,1表示左前轮,2表示右前轮,3表示左后轮,4表示右后轮,ni为第i个车轮转速,pi表示第i个车轮所分配的转矩系数,Td表示驾驶员所需求转矩,ηi表示第i个轮毂电机工作效率;
步骤1.2、将某一电动汽车速度及某一驾驶员所需求转矩下的四个车轮所分配的转矩系数组成的四维向量作为粒子{pi},设置某一电动汽车速度及某一驾驶员所需求转矩下的粒子群规模、粒子的最大迭代次数,将四个轮毂电机的输出功率总和作为粒子适应度值;
步骤1.3、将适应度值最小的粒子作为领导者粒子,并保留领导者粒子及其适应度值;
步骤1.4、将所有粒子在下一次迭代过程中进行交叉,得到交叉后的粒子p′i(t+1):
其中,r为区间[0,1]间的随机数,pab(t)为第a个粒子中的第b个车轮在第t次迭代中的转矩系数,pcd(t)为第c个粒子中的第d个车轮在第t次迭代中的转矩系数;
步骤1.5、将交叉粒子p′i(t+1)进行随机变异,得到更新粒子:
其中,p′i-Max(t+1)为p′i(t+1)中的基因上限,p′i-low(t+1)为p′i(t+1)中的基因下限,N为最大迭代次数;
步骤1.6、再次计算更新粒子的适应度值,并将更新粒子的适应度值与领导者粒子的适应度值进行比较,将适应度值最小的粒子作为新的领导者粒子;
步骤1.7、重复步骤1.4-1.6,直至达到最大迭代次数,得到该电动汽车速度及该驾驶员所需求转矩下四轮毂电机的最优转矩矢量分配系数;
步骤1.8、将每个电动汽车速度及每个驾驶员所需求转矩下的四个车轮所分配的转矩系数按照步骤1.1-1.7的过程,得到所有电动汽车速度及所有驾驶员所需求转矩下四轮毂电机的最优转矩矢量分配系数;
步骤2、整车控制器VCU将查询到的四个轮毂电机的最优转矩分配系数发送到各自的电机控制器MCU,电机控制器MCU控制轮毂电机的输出驱动转矩,分配至各个车轮;
步骤3、若为制动信号,进入制动行驶状态,根据电动汽车速度以及驾驶员需求的制动力矩查表得到最优制动器制动力分配系数β,β为前制动器制动力占汽车总制动器制动力的比例;
步骤4、根据最优制动器制动力分配系数β以及驾驶员需求的制动力矩获得前轴制动力矩,将驾驶员需求的制动力矩结合1-β获得后轴制动力矩,将前轴制动力矩平均分配到前轴车轮中,将后轴制动力矩平均分配到后车轮中,得到各个车轮所需的制动力矩;
步骤5、若电动汽车的电池SOC值在90%以下,整车控制器VCU判断各个车轮所需要的制动力矩是否小于MCU控制器产生的轮毂电机的再生制动力矩,若小于,则各个车轮所需的制动力矩全部由轮毂电机的再生制动力矩提供,否则,各个车轮所需的制动力矩由轮毂电机的最大再生制动力矩和EBS控制器产生的摩擦制动力矩叠加提供;若电动汽车的电池SOC值大于90%,各个车轮所需的制动力矩全部由EBS控制产生的摩擦制动力矩提供;
步骤6、当电动汽车速度变化时,整车控制器VCU根据电动汽车速度以及驾驶员需求的制动力矩查表更新最优制动器制动力分配系数β,重复步骤4-5,直至制动结束。
2.根据权利要求1所述的四轮毂电机驱动电动汽车节能转矩分配系统的控制方法,其特征在于,步骤1.2中四个车轮所分配的转矩系数满足:分配的转矩系数后轮毂电机的转矩不大于轮毂电机的最大转矩,分配的转矩系数后轮毂电机的转速不大于轮毂电机的最大转速。
3.根据权利要求1所述的四轮毂电机驱动电动汽车节能转矩分配系统的控制方法,其特征在于,最优制动器制动力分配系数β的获取过程为:在保证制动安全的前提下,以最大化回收制动能量为优化目标,根据期望的制动力矩和电动汽车速度通过遗传-粒子群优化算法离线优化,得到最大化回收制动能量所对应的最优制动器制动力分配系数β。
4.根据权利要求3所述的四轮毂电机驱动电动汽车节能转矩分配系统的控制方法,其特征在于,最优制动器制动力分配系数β的获取过程具体为:
步骤3.1、根据制动器制动力分配系数β得到各个车轮所需的制动力矩,从而求取轮毂电机的再生制动功率:
Pui=Fuiiδ i=1,2,3,4
其中,Pui为第i个轮毂电机的再生制动功率,i=1,2,3,4表示车轮索引,1表示左前轮,2表示右前轮,3表示左后轮,4表示右后轮,R为车轮滚动半径,wi为各个车轮电机角速度,δ为发电效率,Fui为第i个车轮所需的制动力矩,Fu1=Fu2=βFu/2,Fu为驾驶员需求的制动力矩,Fu3=Fu4=(1-β)Fu/2;
步骤3.2、将某一电动汽车速度及某一驾驶员需求的制动力矩下的制动器制动力分配系数作为粒子,设置某一电动汽车速度及某一驾驶员需求的制动力矩下的粒子群规模、粒子的最大迭代次数,将四个轮毂电机的再生制动功率总和作为粒子适应度值;
步骤3.3、将适应度值最大的粒子作为领导者粒子,并保留领导者粒子及其适应度值;
步骤3.4、将所有粒子在下一次迭代过程中进行交叉,得到交叉后的粒子β′(t+1):
其中,r为区间[0,1]间的随机数,βx(t)为第x个粒子在第t次迭代中的制动器制动力分配系数,βy(t)为第y个粒子在第t次迭代中的制动器制动力分配系数;
步骤3.5、将交叉后的粒子β′(t+1)进行随机变异,得到更新粒子:
其中,β′max(t+1)为β′(t+1)中的基因上限,β′low(t+1)为β′(t+1)中的基因下限,N为最大迭代次数;
步骤3.6、再次计算更新粒子的适应度值,并将更新粒子的适应度值与领导者粒子的适应度值进行比较,将适应度值最大的粒子作为新的领导者粒子;
步骤3.7、重复步骤3.4-3.6,直至达到最大迭代次数,得到该电动汽车速度及该驾驶员需求的制动力矩下四轮毂电机的最优制动器制动力分配系数β;
步骤3.8、将每个电动汽车速度及每个驾驶员需求的制动力矩下的制动器制动力分配系数按照步骤3.1-3.7的过程,得到所有电动汽车速度及所有驾驶员需求的制动力矩下最优制动器制动力分配系数。
5.根据权利要求4所述的四轮毂电机驱动电动汽车节能转矩分配系统的控制方法,其特征在于,轮毂电机的再生制动功率不超过轮毂电机的额定功率;轮毂电机的转速小于最小转速后,轮毂电机的再生制动功率为0。
6.一种四轮毂电机驱动电动汽车节能转矩分配系统,其特征在于,采用权利要求1所述的四轮毂电机驱动电动汽车节能转矩分配系统的控制方法,包括:整车控制器VCU、两个EBS控制器、四个电机控制器MCU,所述整车控制器VCU分别与EBS控制器、电机控制器MCU连接,每个电机控制器MCU连接一个轮毂电机,所述轮毂电机设置于轮毂上;每个EBS控制器分别连接两个液压制动模块,液压制动模块用于各个车轮的制动。
7.根据权利要求6所述的一种四轮毂电机驱动电动汽车节能转矩分配系统,其特征在于,所述整车控制器VCU分别与电机控制器MCU、EBS控制器通过CAN总线连接。
CN202310330960.3A 2023-03-30 2023-03-30 四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法 Active CN116278803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310330960.3A CN116278803B (zh) 2023-03-30 2023-03-30 四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310330960.3A CN116278803B (zh) 2023-03-30 2023-03-30 四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法

Publications (2)

Publication Number Publication Date
CN116278803A CN116278803A (zh) 2023-06-23
CN116278803B true CN116278803B (zh) 2024-03-08

Family

ID=86837777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310330960.3A Active CN116278803B (zh) 2023-03-30 2023-03-30 四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法

Country Status (1)

Country Link
CN (1) CN116278803B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117445698B (zh) * 2023-12-13 2024-04-23 广西大学 一种轮毂电机驱动电动汽车扭矩分配分层控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050070753A (ko) * 2003-12-30 2005-07-07 현대자동차주식회사 4륜 하이브리드 전기 자동차의 회생 제동 제어방법
CN108437805A (zh) * 2018-03-09 2018-08-24 武汉理工大学 基于轮毂电机四轮驱动车辆的再生制动能量回收控制及计算方法
CN110239355A (zh) * 2019-06-26 2019-09-17 黑龙江工程学院 混合动力汽车再生制动控制方法
CN111824095A (zh) * 2020-06-14 2020-10-27 长春理工大学 四轮轮毂电动汽车电液复合制动防抱死协调优化控制方法
JP2021070442A (ja) * 2019-10-31 2021-05-06 いすゞ自動車株式会社 ハイブリッド車両の制御装置及び、制御方法
WO2023001100A1 (zh) * 2021-07-19 2023-01-26 中国第一汽车股份有限公司 分布式四驱扭矩控制方法
CN115675102A (zh) * 2022-11-08 2023-02-03 河南科技大学 一种粒子群算法优化的混合动力汽车再生制动控制方法
CN115723590A (zh) * 2022-12-13 2023-03-03 吉林大学 一种轮毂电机驱动汽车的节能转矩矢量控制方法
CN115782612A (zh) * 2022-11-23 2023-03-14 华人运通(山东)科技有限公司 车辆电机转矩分配方法、设备和系统
CN115848155A (zh) * 2023-01-09 2023-03-28 吉林大学 一种液压制动分档的电动汽车紧急制动转矩分配控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993213B1 (fr) * 2012-07-12 2015-10-23 Commissariat Energie Atomique Procede de gestion de l'energie consommee par un vehicule automobile et systeme mettant en œuvre un tel procede

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050070753A (ko) * 2003-12-30 2005-07-07 현대자동차주식회사 4륜 하이브리드 전기 자동차의 회생 제동 제어방법
CN108437805A (zh) * 2018-03-09 2018-08-24 武汉理工大学 基于轮毂电机四轮驱动车辆的再生制动能量回收控制及计算方法
CN110239355A (zh) * 2019-06-26 2019-09-17 黑龙江工程学院 混合动力汽车再生制动控制方法
JP2021070442A (ja) * 2019-10-31 2021-05-06 いすゞ自動車株式会社 ハイブリッド車両の制御装置及び、制御方法
CN111824095A (zh) * 2020-06-14 2020-10-27 长春理工大学 四轮轮毂电动汽车电液复合制动防抱死协调优化控制方法
WO2023001100A1 (zh) * 2021-07-19 2023-01-26 中国第一汽车股份有限公司 分布式四驱扭矩控制方法
CN115675102A (zh) * 2022-11-08 2023-02-03 河南科技大学 一种粒子群算法优化的混合动力汽车再生制动控制方法
CN115782612A (zh) * 2022-11-23 2023-03-14 华人运通(山东)科技有限公司 车辆电机转矩分配方法、设备和系统
CN115723590A (zh) * 2022-12-13 2023-03-03 吉林大学 一种轮毂电机驱动汽车的节能转矩矢量控制方法
CN115848155A (zh) * 2023-01-09 2023-03-28 吉林大学 一种液压制动分档的电动汽车紧急制动转矩分配控制系统

Also Published As

Publication number Publication date
CN116278803A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN102666184B (zh) 电动汽车及其控制方法
CN108437805A (zh) 基于轮毂电机四轮驱动车辆的再生制动能量回收控制及计算方法
CN111553024A (zh) 一种分布式驱动电动汽车驱动系统多目标优化方法和系统
CN108790940A (zh) 轮边驱动转向差速控制方法、控制装置、设备及汽车
CN116278803B (zh) 四轮毂电机驱动电动汽车节能转矩分配系统及其控制方法
CN109941245A (zh) 一种电动汽车制动力分配方法
CN104760591B (zh) 混合动力综合控制系统
CN113547928B (zh) 一种考虑轮胎滑移的双电机四驱电动汽车转矩分配方法
CN109774493B (zh) 一种基于分布式电驱动车辆的最优转矩分配方法
WO2024022043A1 (zh) 车辆中动力电池的充放电功率控制方法、装置及车辆
CN101898558A (zh) 一种四驱强混汽车的驱动模式控制方法
CN113829891A (zh) 电动汽车及其分布式转矩的分配方法和装置
Xu et al. An optimal torque distribution strategy for four-motorized-wheel electric vehicle considering energy conversation
CN110588366A (zh) 一种轮毂电机分布式分时四驱电动汽车底盘构型、四驱电动汽车和控制方法
Zhe et al. A control strategy of regenerative braking system for intelligent vehicle
CN110837679A (zh) 一种基于自适应遗传算法的分布式驱动汽车能效优化方法
CN113771635B (zh) 一种基于线控制动的能量回收控制方法
Heydari et al. Maximizing harvested energy through regenerative braking process in dual-motor all-wheel drive electric vehicles
CN110816514B (zh) 一种基于多模式切换的轮毂电机驱动车辆控制方法及系统
CN209888927U (zh) 新能源汽车底盘结构
CN113682152A (zh) 一种分布式驱动汽车牵引力控制方法
CN106515425B (zh) 一种发动机与电机直接驱动式混合动力装置及其控制方法和汽车
CN113650504B (zh) 一种电动车制动能量回收和滑行能量回收协调控制的方法
CN111634195A (zh) 一种四轮驱动电动汽车的转矩优化分配控制方法
CN210941361U (zh) 纯电动汽车的车轮发电式自给充电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant