WO2023001057A1 - 混合动力汽车串并联驱动模式切换的控制方法 - Google Patents

混合动力汽车串并联驱动模式切换的控制方法 Download PDF

Info

Publication number
WO2023001057A1
WO2023001057A1 PCT/CN2022/105713 CN2022105713W WO2023001057A1 WO 2023001057 A1 WO2023001057 A1 WO 2023001057A1 CN 2022105713 W CN2022105713 W CN 2022105713W WO 2023001057 A1 WO2023001057 A1 WO 2023001057A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
engine
eng
mode
series
Prior art date
Application number
PCT/CN2022/105713
Other languages
English (en)
French (fr)
Inventor
祝浩
王德平
徐家良
刘加明
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Priority to EP22845222.3A priority Critical patent/EP4227178A4/en
Publication of WO2023001057A1 publication Critical patent/WO2023001057A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/023Fluid clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/203Reducing vibrations in the driveline related or induced by the clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1353Moment of inertia of a sub-unit
    • B60W2040/1361Moment of inertia of a sub-unit the component being the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1353Moment of inertia of a sub-unit
    • B60W2040/1376Moment of inertia of a sub-unit the component being the transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0695Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/088Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the technical field of vehicle control, for example, to a control method for switching between series and parallel driving modes of a hybrid vehicle.
  • the dual-motor hybrid configuration has been proven to be an easier hybrid configuration in recent years, and it can facilitate the realization of hybrid electric vehicles (Hybrid Electric Vehicle, HEV) and plug-in hybrid electric vehicles (Plug in Hybrid Electric Vehicle, PHEV). ) to switch between.
  • HEV Hybrid Electric Vehicle
  • PHEV Plug in Hybrid Electric Vehicle
  • the clutch When the vehicle is at medium or low speed, the clutch is disengaged, and the vehicle works in series drive mode, driven by the drive motor, the engine stops or works in an economical power generation area; when the vehicle is at medium or high speed, the clutch is engaged, and the vehicle Working in parallel driving mode, the engine directly drives the vehicle with a fixed speed ratio, and the engine load can be adjusted by driving the motor, so that the engine still works in a low fuel consumption economic zone; through the implementation of the above scheme, the new European endurance test standard (New European Driving Cycle, NEDC) working conditions can achieve a fuel consumption per 100 kilometers of less than 4L.
  • NEDC New European Driving Cycle
  • This application provides a control method for switching between series-parallel driving modes of hybrid electric vehicles, which can adapt to the variability of the vehicle's working conditions and the change of switching intention during the mode switching process. It is efficient and reliable, and realizes a clear control strategy. , which is convenient for calibration and application.
  • a control method for switching between series and parallel driving modes of a hybrid electric vehicle comprising:
  • S1 Determine the switching state of the driving mode of the hybrid electric vehicle; wherein, the switching state includes switching the driving mode of the hybrid electric vehicle from the series driving mode to the parallel driving mode, and the hybrid electric vehicle The drive mode is switched from the parallel drive mode to the series drive mode;
  • step S21 Adjust the operating point of the engine to the parameters in the parallel driving mode, and judge whether the driving mode of the hybrid electric vehicle is switched to the series driving mode, and when the driving mode of the hybrid electric vehicle is switched to the In the case of the series drive mode, perform step S33, and if the drive mode of the hybrid electric vehicle is not switched to the series drive mode, perform step S22;
  • step S22 Engage the clutch, and judge whether the driving mode of the hybrid electric vehicle is switched to the series driving mode, and if the driving mode of the hybrid electric vehicle is switched to the series driving mode, perform step S32, In the case that the drive mode of the hybrid electric vehicle is not switched to the series drive mode, step S23 is executed;
  • step S23 Switch the power source of the hybrid electric vehicle to the power source required in the parallel driving mode, and judge whether the driving mode of the hybrid electric vehicle is switched to the series driving mode, and in the hybrid electric vehicle
  • step S31 is performed, and when the drive mode of the hybrid vehicle is not switched to the series drive mode, step S24 is performed;
  • step S31 Switch the power source of the hybrid electric vehicle to the power source required in the series drive mode, and judge whether the drive mode of the hybrid electric vehicle is switched to the parallel drive mode.
  • step S23 When the driving mode of the hybrid vehicle is switched to the parallel driving mode, step S23 is performed, and when the driving mode of the hybrid electric vehicle is not switched to the parallel driving mode, step S32 is performed;
  • step S32 Disengage the clutch, and judge whether the driving mode of the hybrid electric vehicle is switched to the parallel driving mode, and if the driving mode of the hybrid electric vehicle is switched to the parallel driving mode, execute the step S22, when the drive mode of the hybrid electric vehicle is not switched to the parallel drive mode, execute step S33;
  • step S33 Adjust the operating point of the engine to the parameters in the series driving mode, and judge whether the driving mode of the hybrid electric vehicle is switched to the parallel driving mode, and when the driving mode of the hybrid electric vehicle is switched to In the case of the parallel driving mode, step S21 is performed, and in the case that the driving mode of the hybrid electric vehicle is not switched to the parallel driving mode, step S34 is performed;
  • the application also provides a vehicle, comprising:
  • a memory configured to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements any one control method for switching between series and parallel driving modes of a hybrid electric vehicle.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, any control method for switching between series and parallel driving modes of a hybrid electric vehicle can be realized.
  • Fig. 1 is the schematic diagram of the connection structure of engine, generator, driving motor provided by the embodiment of the present application;
  • Fig. 2 is a flowchart of a control method for switching between series and parallel driving modes of a hybrid electric vehicle provided by an embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • connection can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components.
  • a first feature being “on” or “under” a second feature may include the first feature being in direct contact with the second feature, and may also include the first feature and the second feature. Two features are not in direct contact but through another feature between them. Moreover, “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. "Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • This embodiment provides a kind of vehicle, as shown in Figure 1, this vehicle comprises engine 1, generator 2, clutch 3, driving motor 4, final reducer and differential 5 and gear pair 6, engine 1 and generator 2 are connected through a gear pair 6, a clutch 3 is connected between the engine 1 and the drive motor 4, and a final reducer and a differential 5 are connected between the drive motor 4 and the axle.
  • the clutch 3 When the vehicle is in the series drive mode, the clutch 3 is opened, the vehicle is driven by the drive motor 4, the engine 1 outputs negative torque and maintains it at the desired speed to ensure a certain output power, and the power of the engine is realized by charging and discharging the battery. Shaving peaks and filling valleys" to keep engine 1 working in the fuel economy zone.
  • the clutch 3 When the vehicle is in the parallel drive mode, the clutch 3 is engaged, the speed ratio of the engine 1 and the vehicle speed are fixed, the engine 1 works in the zero-torque follow-up mode, and the engine 1 and the drive motor 4 jointly complete the drive of the vehicle.
  • the parallel driving mode there are three sub-modes in the working state of the engine 1: driving and charging, driving and boosting, and engine 1 fuel cut-off.
  • the driver demand torque, engine torque and driving motor torque in different sub-modes are three sub-modes. Therefore, the target torque of the engine is also considered according to the different sub-modes.
  • this embodiment provides a control method for switching between series and parallel driving modes of a hybrid electric vehicle, which is applied to the above-mentioned vehicles, and the control method includes:
  • the switching state of the driving mode of the hybrid electric vehicle includes switching the driving mode of the hybrid electric vehicle from the series driving mode to the parallel driving mode, and switching the driving mode of the hybrid electric vehicle from the parallel driving mode to the series driving mode.
  • the vehicle controller judges in real time whether the vehicle (hybrid vehicle) needs to be switched between the series drive mode and the parallel drive mode, and if so, determines whether the drive mode of the hybrid vehicle is switched from the series drive mode to the parallel drive mode, or is driven by the parallel drive mode. mode switch to series drive mode.
  • step S21 Adjust the working point of the engine 1 to the parameters in the parallel drive mode, and judge whether the drive mode of the hybrid vehicle is switched to the series drive mode, if so, perform step S33, if the drive mode of the hybrid vehicle is not switched to the series drive mode drive mode, execute step S22.
  • the torque of the engine 1 is adjusted to the target torque of the engine 1 in the parallel drive mode, and the speed of the engine 1 is adjusted to be the same as the speed of the drive motor 4 in the current series drive mode.
  • the target torque of the engine 1 is defined as T Eng_Tgt
  • the target torque of the drive motor 4 is T Tm_Tgt
  • the target speed of the engine 1 is n Eng_Tgt
  • the requested torque of the generator 1 is T Gm_Tgt
  • the parallel driving mode there are three sub-modes in the working state of engine 1: driving and charging, driving and boosting, and engine 1 fuel cut-off, then
  • T Eng_Tgt min(T Drv -T Tm_PaSoc , T Eng_PaMax ).
  • T Eng_Tgt min(T Drv , T Eng_PaMax ).
  • T Eng_Tgt -T Eng_Los .
  • T Drv is the torque demanded by the driver
  • T Tm_PaSoc is the negative torque generated by the drive motor 4 in the parallel drive mode calculated based on the current system-on-chip (SOC)
  • T Eng_PaMax is the negative torque of the engine 1 in the parallel drive mode.
  • T Eng_Los is the friction torque value of engine 1 at the current speed
  • n Tm is the current speed of drive motor 4
  • T Eng_Act is the actual torque of engine 1
  • J Eng is the moment of inertia of engine 1
  • J Gm is the moment of inertia of generator 2
  • J Gear is the moment of inertia of the gear set between engine 1 and generator 2
  • T CL is the proportional integral (PI) torque of speed regulation.
  • the torque response of the engine 1 is slower than that of the drive motor 4, the torque of the engine 1 is not adjusted as much as possible, and the drive motor 4 is used to adjust the torque of the vehicle, then it is necessary to adjust the torque of the engine 1 in this step To the target torque of engine 1 in parallel drive mode. At the same time, in order to reduce the impact caused by the speed difference of the clutch 3 when the clutch 3 is engaged, it is necessary to adjust the speed of the engine 1 to be the same as the speed of the drive motor 4 in the current series drive mode.
  • the clutch 3 is not engaged.
  • the torque and speed of the engine 1 are adjusted to the parameters required in the parallel drive mode, the vehicle is still in the series drive mode, and the drive motor 4 completes the drive of the vehicle.
  • clutch 3 can be engaged. Both the preset torque difference and the preset speed difference are obtained according to the test, mainly considering the impact of the vehicle in the clutch 3 engagement stage and the power continuity in the power source alternation stage.
  • step S33 in the process of adjusting the operating point of the engine 1 to the parameters in the parallel drive mode, it is judged whether there is an instruction to switch to the series drive mode. If there is an instruction to switch to the series drive mode, it is only necessary to set The torque and rotational speed of the engine 1 are adjusted to the parameters in the series drive mode, that is, step S33 is executed, and the whole vehicle enters the series drive mode again.
  • the clutch 3 Since the clutch 3 is in the disengaged state when the vehicle re-enters the series drive mode, the clutch 3 remains in the disengaged state, and the drive motor 4 completes the driving of the vehicle.
  • step S22 engage the clutch 3, and judge whether the drive mode of the hybrid vehicle is switched to the series drive mode, if so, perform step S32, if the drive mode of the hybrid vehicle is not switched to the series drive mode, then perform step S23.
  • the generator 2 has controlled the difference between the rotational speed of the engine 1 and the rotational speed of the drive motor 4 to be relatively small in step S21, in order to further reduce the impact of the engagement of the clutch 3, during the engagement of the clutch 3, the clutch 3
  • the oil pressure is also gradually increased, and the oil pressure loading speed needs to be obtained in combination with the vehicle performance.
  • this step only adds the control of the clutch 3, and separates out the engagement phase of the clutch 3, so that only the dynamic adjustment of the torque and speed of the engine 1 is involved in step S21.
  • step S32 in the process of the clutch 3 being engaged, it is judged in real time whether there is an instruction to switch to the series drive mode, and if there is an instruction to switch to the series drive mode, then switch to step S32 to perform the separation operation of the clutch 3, and wait for After the clutch 3 is disengaged, the torque and speed of the engine 1 are respectively adjusted to the target torque and the target speed of the engine 1 in the series drive mode, so that the whole vehicle enters the series drive mode again.
  • step S23 switch the power source of the hybrid electric vehicle to the power source required under the parallel driving mode, and judge whether the driving mode of the hybrid electric vehicle is switched to the series driving mode, if so, then perform step S31, if the driving mode of the hybrid electric vehicle is not Switch to the serial driving mode, then execute step S24.
  • the torque of the generator 2 is reduced to zero, and the torque of the drive motor 4 is reduced, and the reduced torque of the drive motor 4 is the same as that of the generator 2, so as to reduce the power of the hybrid vehicle
  • the source switches the power source required in parallel drive mode.
  • the generator 2 Realize the switching of the output power of the engine 1 from electric transmission to mechanical transmission, the generator 2 gradually reduces the power generation torque, so that the torque of the engine 1 is released to the clutch 3, the driving motor 4 reduces the torque synchronously, and the driving motor 4 decreases
  • the small torque is the same as the reduced torque of the generator 2 . Since the synchronous adjustment amount of the torque of the generator 2 and the torque of the driving motor 4 is equal, it can ensure that the total output torque of the engine 1, the generator 2 and the driving motor 4 remains unchanged, ensuring the continuity of the driving force .
  • the vehicle After the torque of the generator 2 has been reduced to zero torque and the torque of the drive motor 4 has been reduced to the target torque of the drive motor in the parallel drive mode, the vehicle enters the parallel drive mode.
  • the target torque of the drive motor 4 is T Tm_Tgt
  • the requested torque of the generator 2 is T Gm_Tgt
  • T Drv is the torque demanded by the driver
  • T Eng_Act is the actual torque of the engine
  • ⁇ T Stp is the synchronous adjustment step size of the torque of the generator 2 and the drive motor 4
  • T * Gm_Tgt and T * Tm_Tgt are respectively Output values of the last calculation cycle of the requested torque of the generator 2 and the target torque of the drive motor 4 .
  • the torque of the engine 1 has been equal to the target torque of the engine 1 in the parallel driving mode, that is, the engine 1 and the drive motor 4 can each meet the driving torque requirement of the whole vehicle at this time, Therefore, in the power source switching stage, it is not necessary to consider the impact of the torque response difference between the engine 1 and the drive motor 4 on the dynamic performance of the vehicle; The impact of dynamic response time on the switching process is negligible.
  • step S31 switch the power source of the hybrid electric vehicle to the power source required in the series drive mode, increase the negative torque of the generator 2 to The torque of the engine 1 is absorbed, while the torque absorbed by the generator 2 is transferred to the drive motor 4 with the same magnitude, and then the clutch 3 is disengaged. After the clutch 3 is disengaged, the operating point of the engine 1 is adjusted to the parameters in the series drive mode, so that the whole vehicle enters the series drive mode.
  • step S31 switch the power source of the hybrid electric vehicle to the power source required under the series drive mode, and judge whether the drive mode of the hybrid electric vehicle is switched to the parallel drive mode, if so, then perform step S23, if the drive mode of the hybrid electric vehicle If it is not switched to the parallel driving mode, then step S32 is executed.
  • the working state of the engine 1 includes driving and charging, Three sub-modes of drive and boost and engine 1 oil cut-off, then
  • T Eng_Tgt min(T Drv -T Tm_PaSoc , T Eng_PaMax ).
  • T Eng_Tgt min(T Drv , T Eng_PaMax ).
  • T Eng_Tgt -T Eng_Los .
  • T Drv is the torque demanded by the driver
  • T Tm_PaSoc is the generated negative torque of the drive motor 4 in the parallel drive mode calculated based on the current SOC
  • T Eng_PaMax is the torque upper limit of the engine 1 in the parallel drive mode
  • T Eng_Los is the friction torque value of engine 1 at the current speed
  • T Eng_Act is the actual torque of engine 1
  • ⁇ T Stp is the synchronous adjustment step size of the torque of generator 1 and drive motor 4
  • T * Gm_Tgt and T * Tm_Tgt are the output values of the last calculation cycle of the requested torque of the generator 2 and the target torque of the drive motor 4, respectively.
  • step S23 In the process of switching the power source of the hybrid electric vehicle to the required power source under the series drive mode, judge in real time whether there is an instruction to switch to the parallel drive mode, and if there is an instruction to switch to the parallel drive mode, then perform step S23 , so that the generator 2 reduces the generating torque to zero, and the drive motor 4 reduces the torque synchronously, and the reduced torque of the drive motor 4 is the same as that of the generator 2, so that the engine 1 and the drive motor 4 share Drive the whole vehicle.
  • step S32 disengage the clutch 3, and judge whether the drive mode of the hybrid vehicle is switched to the parallel drive mode, if so, then perform step S22, if the drive mode of the hybrid vehicle is not switched to the parallel drive mode, then perform step S33.
  • T Tm_Tgt the target torque of the driving motor 4 as T Tm_Tgt
  • the target speed of the engine 1 as n Eng_Tgt
  • the requested torque of the generator 2 as T Gm_Tgt
  • T Drv is the torque demanded by the driver
  • n Tm is the current speed of the driving motor 4
  • T Eng_Act is the actual torque of the engine 1
  • J Eng is the moment of inertia of the engine 1
  • J Gm is the moment of inertia of the generator 2
  • J Gear is the moment of inertia of the gear set between the engine 1 and the generator 2
  • T CL is the speed regulating PI torque.
  • step S22 is performed to convert the separation operation of the clutch 3 to the clutch 3 pull-in operation. This process The torque of the engine 1 is still equal to the torque of the engine 1 in the parallel driving mode, and the generator 2 maintains the speed of the engine 1 at the same speed as that of the driving motor 4 based on the speed control mode.
  • Step S33 If the drive mode of the hybrid vehicle is not switched to the parallel drive mode, adjust the operating point of the engine 1 to the parameters in the series drive mode, and judge whether the drive mode of the hybrid vehicle is switched to the parallel drive mode, if so, then Step S21 is executed, and if the driving mode of the hybrid electric vehicle is not switched to the parallel driving mode, step S34 is executed.
  • the torque and the rotational speed of the engine 1 are adjusted to the target torque of the engine 1 and the target rotational speed of the engine 1 in the series drive mode, respectively.
  • the engine 1 After the clutch 3 is disengaged, the engine 1 has been disconnected from the drive motor 4. At this time, it is already in the state of "electric transmission", and the torque and speed of the engine 1 are adjusted to the target speed of the engine 1 in the series drive mode and the The target speed, the driving motor 4 independently completes the driving of the whole vehicle. At this stage, the torque of the engine 1, the torque of the drive motor 4, and the speed of the engine 1 match the corresponding data in the series drive mode, and the torque and speed of the engine 1 are adjusted to the target speed of the engine 1 in the series drive mode. After the target rotational speed of the engine 1 is close, the torque and rotational speed adjustment phase of the engine 1 ends, and the whole vehicle enters the series driving mode.
  • the control method for switching the series-parallel drive mode of a hybrid electric vehicle provided in this embodiment, through the analysis of the series-parallel drive mode of the whole vehicle, divides the process from the series drive mode to the parallel drive mode into three stages, from the parallel drive mode to the series drive mode.
  • the mode process is also divided into three stages, and at each stage it will be judged whether there is an intention to switch to another driving mode, so as to switch in time, which improves the accuracy, reliability and efficiency of vehicle control, and realizes Clear control strategy for easy calibration and application.
  • the essence of switching from series drive to parallel drive is to realize the conversion from engine 1 to wheel end from electric transmission to mechanical transmission at the power level; at the torque level, it is to realize the independent drive of drive motor 4 to engine 1 and drive motor 4
  • For common drive conversion first adjust the operating point of the engine 1 to the parameters in the parallel drive mode, and then engage the clutch 3 to ensure the consistency of the driving torque and speed of the vehicle during the switching process, avoid switching impact, and at the same time ensure the overall The power source is switched without changing the driving torque.
  • it is beneficial to reuse the functions of the modules by separately listing the clutch 3 to engage or disengage.
  • this embodiment converts the rotational speed and torque of multiple components to a fixed component according to the relationship between the speed ratios, namely Engine 2, in order to achieve the consistency of the reference point and improve the accuracy of control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

本申请涉及汽车控制技术领域,公开了一种混合动力汽车串并联驱动模式切换的控制方法。本申请提供的混合动力汽车串并联驱动模式切换的控制方法,通过对整车串并联驱动模式的分析,将串联驱动模式到并联驱动模式的过程分为三个阶段,并联驱动模式到串联驱动模式的过程也分为三个阶段,并且在每个阶段都会判断是否有切换成另外一种驱动模式的意图,以便及时进行切换。

Description

混合动力汽车串并联驱动模式切换的控制方法
本申请要求在2021年07月19日提交中国专利局、申请号为202110813193.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车控制技术领域,例如涉及一种混合动力汽车串并联驱动模式切换的控制方法。
背景技术
双电机混联构型近年来被证实为一个较易实施的混合动力构型,且可以方便实现混合动力汽车(Hybrid Electric Vehicle,HEV)和插电式混合动力汽车(Plug in Hybrid Electric Vehicle,PHEV)间的切换。当整车处于中低速时,离合器分开,整车工作在串联驱动模式,由驱动电机进行驱动,发动机停机或是工作在经济的发电区域;当整车处于中高速时,离合器吸合,整车工作在并联驱动模式,由发动机以固定速比直接驱动车辆,并且可以通过驱动电机来调整发动机的负荷,使得发动机依然工作在一个低油耗经济区;通过以上方案的实施,在新欧洲续航测试标准(New European Driving Cycle,NEDC)工况下可以获得小于4L的百公里油耗。
由于整车工况的多变性,涉及到频繁的整车驱动模式串并联切换控制,包括在模式切换过程中由切换意图的改变带来的新的切换控制。因此,高效可靠的串并联驱动模式切换的控制方法变得尤为重要。
发明内容
本申请提供了一种混合动力汽车串并联驱动模式切换的控制方法,能适应整车工况的多变性及能适应在模式切换过程中切换意图的改变,高效且可靠,实现了清晰的控制策略,便于标定和应用。
本申请采用以下技术方案:
混合动力汽车串并联驱动模式切换的控制方法,所述控制方法包括:
S1、确定所述混合动力汽车的驱动模式的切换状态;其中,所述切换状态包括所述混合动力汽车的驱动模式由所述串联驱动模式切换至所述并联驱动模式,以及所述混合动力汽车的驱动模式由所述并联驱动模式切换至串联驱动模式;
S2、在所述切换状态是所述混合动力汽车的驱动模式由所述串联驱动模式 切换至所述并联驱动模式的情况下,执行步骤S21-S24:
S21、将发动机的工作点调整至所述并联驱动模式下的参数,并判断所述混合动力汽车的驱动模式是否切换至所述串联驱动模式,在所述混合动力汽车的驱动模式切换至所述串联驱动模式的情况下,执行步骤S33,在所述混合动力汽车的驱动模式没有切换至所述串联驱动模式的情况下,执行步骤S22;
S22、将离合器吸合,并判断所述混合动力汽车的驱动模式是否切换至所述串联驱动模式,在所述混合动力汽车的驱动模式切换至所述串联驱动模式的情况下,执行步骤S32,在所述混合动力汽车的驱动模式没有切换至所述串联驱动模式的情况下,执行步骤S23;
S23、将所述混合动力汽车动力源切换至所述并联驱动模式下所需的动力源,并判断所述混合动力汽车的驱动模式是否切换至所述串联驱动模式,在所述混合动力汽车的驱动模式切换至所述串联驱动模式的情况下,执行步骤S31,在所述混合动力汽车的驱动模式没有切换至所述串联驱动模式的情况下,执行步骤S24;
S24、整车进入并联驱动模式;
S3、在所述切换状态是所述混合动力汽车的驱动模式由所述并联驱动模式切换至串联驱动模式的情况下,执行步骤S31-S34:
S31、将所述混合动力汽车的动力源切换至所述串联驱动模式下所需的动力源,并判断所述混合动力汽车的驱动模式是否切换至所述并联驱动模式,在所述混合动力汽车的驱动模式切换至所述并联驱动模式的情况下,执行步骤S23,在所述混合动力汽车的驱动模式没有切换至所述并联驱动模式的情况下,执行步骤S32;
S32、将所述离合器分离,并判断所述混合动力汽车的驱动模式是否切换至所述并联驱动模式,在所述混合动力汽车的驱动模式切换至所述并联驱动模式的情况下,则执行步骤S22,在所述混合动力汽车的驱动模式没有切换至所述并联驱动模式的情况下,执行步骤S33;
S33、将所述发动机的工作点调整至所述串联驱动模式下的参数,并判断所述混合动力汽车的驱动模式是否切换至所述并联驱动模式,在所述混合动力汽车的驱动模式切换至所述并联驱动模式的情况下,则执行步骤S21,在所述混合动力汽车的驱动模式没有切换至所述并联驱动模式的情况下,执行步骤S34;
S34、整车进入串联驱动模式。
本申请还提供了一种车辆,包括:
至少一个处理器;
存储器,设置为存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行时,所述至少一个处理器实现任一所述的混合动力汽车串并联驱动模式切换的控制方法。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现任一所述的混合动力汽车串并联驱动模式切换的控制方法。
附图说明
图1是本申请实施例提供的发动机、发电机、驱动电机的连接结构的示意图;
图2是本申请实施例提供的混合动力汽车串并联驱动模式切换的控制方法的流程图。
图中:
1、发动机;2、发电机;3、离合器;4、驱动电机;5、主减速器及差速器;6、齿轮副。
具体实施方式
下面将结合附图对本申请实施例的技术方案做进行描述,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以视具体情况理解上述术语在本申请中的含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一特征和第二特征直接接触,也可以包括第一特征和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本实施例提供了一种车辆,如图1所示,该车辆包括发动机1、发电机2、离合器3、驱动电机4、主减速器及差速器5和齿轮副6,发动机1和发电机2通过齿轮副6连接,发动机1与驱动电机4之间连接有离合器3,驱动电机4与轮轴之间连接有主减速器及差速器5。
在车辆处于串联驱动模式时,离合器3打开,车辆由驱动电机4驱动,发动机1输出负转矩并维持在期望转速以保证输出一定的发电功率,通过电池的充放电实现对发动机的功率的“削峰填谷”,以维持发动机1工作在燃油经济区。
在车辆处于并联驱动模式时,离合器3吸合,发动机1的转速和车速速比固定,发动机1工作在零转矩随转模式,发动机1和驱动电机4共同完成整车的驱动。在并联驱动模式下,发动机1的工作状态存在驱动与充电、驱动与助力及发动机1断油三种子模式,不同子模式下的驾驶员需求转矩、发动机的转矩以及驱动电机的转矩三者分配关系不同,因此发动机的目标转矩也根据子模式的不同分别考虑。
如图2所示,本实施例提供了一种混合动力汽车串并联驱动模式切换的控制方法,应用于上述的车辆中,该控制方法包括:
S1、确定混合动力汽车的驱动模式的切换状态。
混合动力汽车的驱动模式的切换状态包括混合动力汽车的驱动模式由串联驱动模式切换至并联驱动模式,以及混合动力汽车的驱动模式由并联驱动模式切换至串联驱动模式。
车辆控制器实时判断车辆(混合动力汽车)是否需要在串联驱动模式和并联驱动模式之间切换,若是,则确定混合动力汽车的驱动模式是由串联驱动模式切换至并联驱动模式,还是由并联驱动模式切换至串联驱动模式。
S2、若切换状态是混合动力汽车的驱动模式由串联驱动模式切换至并联驱动模式,则包括以下步骤:
S21、将发动机1的工作点调整至并联驱动模式下的参数,并判断混合动力汽车的驱动模式是否切换至串联驱动模式,若是,则执行步骤S33,若混合动力汽车的驱动模式没有切换至串联驱动模式,则执行步骤S22。
将发动机1的转矩调整为并联驱动模式下的发动机1的目标转矩,将发动机1的转速调整为与当前串联驱动模式下驱动电机4的转速相同。
在本实施例中,定义发动机1的目标转矩为T Eng_Tgt,驱动电机4的目标转矩为T Tm_Tgt,发动机1的目标转速为n Eng_Tgt,发电机1的请求转矩为T Gm_Tgt,且在并联驱动模式下,发动机1的工作状态存在驱动与充电、驱动与助力及发 动机1断油三种子模式,则
在驱动与充电子模式下,T Eng_Tgt=min(T Drv-T Tm_PaSoc,T Eng_PaMax)。
在驱动与助力子模式下,T Eng_Tgt=min(T Drv,T Eng_PaMax)。
在发动机1断油子模式下,T Eng_Tgt=-T Eng_Los
T Tm_Tgt=T Drv;n Eng_Tgt=n Tm;T Gm_Tgt=-T Eng_Act+(J Eng+J Gm+J Gear)dn Eng_Tgt/dt+T CL
式中,T Drv为驾驶员需求扭矩,T Tm_PaSoc为基于当前系统级芯片(System on Chip,SOC)计算的并联驱动模式下驱动电机4的发电负转矩,T Eng_PaMax为并联驱动模式下发动机1的转矩上限值,T Eng_Los为发动机1在当前转速下的摩擦转矩值,n Tm为驱动电机4的当前转速,T Eng_Act为发动机1的实际转矩,J Eng为发动机1的转动惯量,J Gm为发电机2的转动惯量,J Gear为发动机1与发电机2之间齿轮组的转动惯量,T CL为调速比例积分(Proportional Integral,PI)转矩。
由于发动机1的转矩响应较驱动电机4慢,因此尽可能不调整发动机1的转矩,而用驱动电机4来调整整车转矩,那么就需要在本步骤中将发动机1的转矩调整至并联驱动模式下的发动机1的目标转矩。同时,为了降低在离合器3吸合时因离合器3的转速差带来的冲击,需要将发动机1的转速调整为与当前串联驱动模式下驱动电机4的转速相同。
在本步骤中,离合器3未吸合,虽然发动机1的转矩和转速调整至并联驱动模式下所要求的参数,但是整车依然处于串联驱动模式,由驱动电机4完成整车驱动。
在调整发动机1的转矩和转速时,实时判断发动机1的转矩与发动机1的目标转矩差值是否小于预设转矩差值,以及发动机1的转速与发动机1的目标转速的差值是否小于预设转速差值,若发动机1的转矩与发动机1的目标转矩差值小于预设转矩差值,以及发动机1的转速与发动机1的目标转速的差值小于预设转速差值,离合器3才能吸合。预设转矩差值和预设转速差值均根据试验获取,主要考虑离合器3吸合阶段的整车冲击度以及动力源交替阶段的动力连续性。
在本实施例中,在将发动机1的工作点调整至并联驱动模式下的参数的过程中,判断是否有切换至串联驱动模式的指令,若有切换至串联驱动模式的指令,则只需要将发动机1的转矩和转速再调整为串联驱动模式下的参数,即执行步骤S33,整车重新进入串联驱动模式。
由于整车重新进入串联驱动模式时离合器3处于分离状态,因此离合器3依然保持分离状态,由驱动电机4完成整车驱动。
S22、将离合器3吸合,并判断混合动力汽车的驱动模式是否切换至串联驱动模式,若是,则执行步骤S32,若混合动力汽车的驱动模式没有切换至串联驱动模式,则执行步骤S23。
在离合器3吸合阶段,向离合器3发送吸合请求并且离合器3在执行吸合过程中,发电机2依然要将发动机1的转速维持至与驱动电机4的转速一致的状态下,以保证离合器3吸合过程中无冲击。整车依然由驱动电机4完成驱动,因此离合器3吸合阶段每个部件的控制目标与步骤S21中发动机1的工作数据一致。
虽然在步骤S21中发电机2已经将发动机1的转速和驱动电机4的转速的差值控制的比较小,但为了进一步降低离合器3吸合的冲击度,在离合器3吸合过程中,离合器3的油压也逐步增加,油压加载速度需要结合整车表现获取。
相较步骤S21,本步骤只是多了离合器3的控制,将离合器3吸合阶段单独分列出来,使步骤S21中只涉及发动机1的转矩和转速的动态调整。
在本实施例中,在离合器3执行吸合的过程中,实时判断是否有切换至串联驱动模式的指令,若有切换至串联驱动模式的指令,则切换至步骤S32执行离合器3分离操作,待离合器3分离后,将发动机1的转矩和转速分别调整为串联驱动模式下的发动机1的目标转矩和发动机1的目标转速,使整车重新进入串联驱动模式。
S23、将混合动力汽车的动力源切换并联驱动模式下所需的动力源,并判断混合动力汽车的驱动模式是否切换至串联驱动模式,若是,则执行步骤S31,若混合动力汽车的驱动模式没有切换至串联驱动模式,则执行步骤S24。
将发电机2的转矩减小至零,并将驱动电机4的转矩减小,且驱动电机4减小的转矩与发电机2减小的转矩相同,以将混合动力汽车的动力源切换并联驱动模式下所需的动力源。
实现发动机1输出功率从电传动到机械传动的切换,发电机2逐步减小发电转矩,从而使发动机1的转矩向离合器3释放出来,驱动电机4同步减少转矩,且驱动电机4减小的转矩与发电机2减小的转矩相同。由于发电机2的转矩和驱动电机4的转矩的同步调整量大小相等,因此可以保证发动机1、发电机2和驱动电机4三者对外输出总转矩不变,保证驱动力的连续性。
待发电机2的转矩已经降低至零转矩,驱动电机4的转矩已降低至并联驱动模式下驱动电机目标转矩后,整车进入并联驱动模式。
在本实施例中,定义驱动电机4的目标转矩为T Tm_Tgt,发电机2的请求转矩为T Gm_Tgt,则
Figure PCTCN2022105713-appb-000001
式中,T Drv为驾驶员需求扭矩,T Eng_Act为发动机1的实际转矩,△T Stp为发电机2和驱动电机4的转矩的同步调整步长,T * Gm_Tgt和T * Tm_Tgt分别为发电机2的请求转矩和驱动电机4的目标转矩的上一个计算周期输出值。
当切换过程的第一阶段结束,发动机1的转矩已经等于并联驱动模式下的发动机1的目标转矩,即此时发动机1和驱动电机4二者各自都能满足整车驱动转矩需求,所以在动力源切换阶段,不用考虑发动机1和驱动电机4的转矩响应差异对整车动力性的影响;同时,由于切换过程中不存在动力中断,对切换总时长要求不高,驱动电机4动态响应时间对切换过程的影响可以忽略。
在切换并联驱动模式下所需的动力源的过程中,实现的是由“电传动”到“机械传动”的转换,要实时判断是否切换至串联驱动模式,若需要切换至串联驱动模式,则是由“机械传动”转换到“电传动”,即执行步骤S31,将混合动力汽车的动力源切换至所述串联驱动模式下所需的动力源,增大发电机2的发电负转矩以吸收发动机1的转矩,同时将发电机2吸收的转矩以同等幅度转移至驱动电机4上,然后再使离合器3分离。在离合器3分离后,将发动机1的工作点调整至串联驱动模式下的参数,使整车进入串联驱动模式。
S24、若混合动力汽车的驱动模式没有切换至串联驱动模式,则整车进入并联驱动模式。
S3、若切换状态是混合动力汽车的驱动模式由并联驱动模式切换至串联驱动模式,则包括以下步骤:
S31、将混合动力汽车的动力源切换至串联驱动模式下所需的动力源,并判断混合动力汽车的驱动模式是否切换至并联驱动模式,若是,则执行步骤S23,若混合动力汽车的驱动模式没有切换至并联驱动模式,则执行步骤S32。
增大发电机2的发电负转矩以吸收发动机1的转矩,并将发电机2吸收的转矩以同等幅度转移至驱动电机4上,以切换串联驱动模式下所需的动力源。
在本实施例中,由于在离合器3断开后就实现了电传动,因此在断开离合器3前,就要实现机械传动向电传动的切换,通过发电机2增大发电负转矩来吸收发动机1的转矩,同时将发电机2吸收的转矩以同等幅度转移至驱动电机4上,由此在总驱动转矩不变的情况下实现了从发动机1驱动到驱动电机4驱动的转换。此后发动机1的全部功率被发电机2吸收,离合器3两端没有转矩传递。待发动机1的转矩完全被发电机2吸收,即发电机2的转矩等于发动机1 的转矩后,动力源切换结束。
定义发动机1的目标转矩为T Eng_Tgt,驱动电机4的目标转矩为T Tm_Tgt,发电机2的请求转矩为T Gm_Tgt,且在并联驱动模式下,发动机1的工作状态存在驱动与充电、驱动与助力及发动机1断油三种子模式,则
在驱动与充电子模式下,T Eng_Tgt=min(T Drv-T Tm_PaSoc,T Eng_PaMax)。
在驱动与助力子模式下,T Eng_Tgt=min(T Drv,T Eng_PaMax)。
在发动机断油子模式下,T Eng_Tgt=-T Eng_Los
Figure PCTCN2022105713-appb-000002
式中,T Drv为驾驶员需求扭矩,T Tm_PaSoc为基于当前SOC计算的并联驱动模式下驱动电机4的发电负转矩,T Eng_PaMax为并联驱动模式下发动机1的转矩上限值,T Eng_Los为发动机1在当前转速下的摩擦转矩值,T Eng_Act为发动机1的实际转矩,△T Stp为发电机1和驱动电机4的转矩的同步调整步长,T * Gm_Tgt和T * Tm_Tgt分别为发电机2的请求转矩和驱动电机4的目标转矩的上一个计算周期输出值。
在将混合混合动力汽车的动力源切换至串联驱动模式下所需的动力源的过程中,实时判断是否有切换至并联驱动模式的指令,若是有切换至并联驱动模式的指令,则执行步骤S23,使发电机2减小发电转矩至零,驱动电机4同步减小转矩,且驱动电机4减小的转矩与发电机2减小的转矩相同,使发动机1与驱动电机4共同驱动整车。
S32、将离合器3分离,并判断混合动力汽车的驱动模式是否切换至并联驱动模式,若是,则执行步骤S22,若混合动力汽车的驱动模式没有切换至并联驱动模式,则执行步骤S33。
在本实施例中,在发电机2的转矩等于发动机1的转矩,驱动电机4的转矩调整为串联驱动模式下的驱动电机4的目标转矩,且发动机1的转速与驱动电机4转速相同时,将离合器3分离。
定义驱动电机4的目标转矩为T Tm_Tgt,发动机1的目标转速为n Eng_Tgt,发电机2的请求转矩为T Gm_Tgt,则
T Tm_Tgt=T Drv;n Eng_Tgt=n Tm;T Gm_Tgt=-T Eng_Act+(J Eng+J Gm+J Gear)dn Eng_Tgt/dt+T CL
式中,T Drv为驾驶员需求扭矩,n Tm为驱动电机4的当前转速,T Eng_Act为发动机1的实际转矩,J Eng为发动机1的转动惯量,J Gm为发电机2的转动惯量,J Gear为发动机1与发电机2之间齿轮组的转动惯量,T CL为调速PI转矩。
在离合器3分离的过程中,实时判断是否有切换至并联驱动模式的指令,若是有切换至并联驱动模式的指令,则执行步骤S22将离合器3的分离操作转为离合器3吸合操作,此过程发动机1的转矩依然等于并联驱动模式下的发动机1的转矩,发电机2基于转速控模式将发动机1的转速维持在与驱动电机4相同的转速。待离合器3再次吸合后,切换并联驱动模式下所需的动力源,即发电机2减小发电转矩至零,驱动电机4以发电机2的发电转矩的调整量同步减小转矩,使整车重新进入并联驱动模式。
S33、若混合动力汽车的驱动模式没有切换至并联驱动模式,则将发动机1的工作点调整至串联驱动模式下的参数,并判断混合动力汽车的驱动模式是否切换至并联驱动模式,若是,则执行步骤S21,若混合动力汽车的驱动模式没有切换至并联驱动模式,则执行步骤S34。
在本实施例中,将发动机1的转矩和转速分别调整为串联驱动模式下的发动机1的目标转矩和发动机1的目标转速。
待离合器3分离后,发动机1已经与驱动电机4断开,此时已经处于“电传动”状态,将发动机1的转矩和转速调整为串联驱动模式下的发动机1的目标转速和发动机1的目标转速,驱动电机4独立完成整车的驱动。此阶段发动机1的转矩、驱动电机4的转矩、发动机1的转速与串联驱动模式下的相应数据相匹配,待发动机1的转矩和转速调整至与串联驱动模式下发动机1的目标转速和发动机1的目标转速相近后,发动机1的转矩和转速调整阶段结束,整车进入串联驱动模式。
定义发动机1的目标转矩为T Eng_Tgt,发动机1的目标转速为n Eng_Tgt,则
T Eng_Tgt=T Eng_Se;n Eng_Tgt=n Eng_Se;式中,T Eng_Se和n Eng_Se分别为整车能量管理模块计算得到的发动机1在目标发电功率点的转矩值和转速值。
在将发动机1的工作点调整至串联驱动模式下的参数的过程中,离合器3已分离,整车已进入串联驱动模式,仅仅是发动机1的工作点还没调整到目标参数值,此时如果整车需要再次进入并联驱动模式,则会依次执行由串联驱动模式到并联驱动模式切换的过程,即执行步骤S21-S23,使整车重新进入并联驱动模式。
S34、若混合动力汽车的驱动模式没有切换至并联驱动模式,则整车进入串联驱动模式。
本实施例提供的混合动力汽车串并联驱动模式切换的控制方法,通过对整车串并联驱动模式的分析,将串联驱动模式到并联驱动模式的过程分为三个阶段,并联驱动模式到串联驱动模式的过程也分为三个阶段,并且在每个阶段都 会判断是否有切换成另外一种驱动模式的意图,以便及时进行切换,提高了汽车控制的精确性、可靠性和高效性,实现了清晰的控制策略,便于标定和应用。
串联驱动到并联驱动切换的本质,在功率层面,是要实现发动机1到车轮端从电传动到机械传动的转换;在转矩层面,是要实现驱动电机4独立驱动到发动机1和驱动电机4共同驱动的转换,先将发动机1的工作点调整至并联驱动模式下的参数再将离合器3吸合,保证切换过程中整车驱动转矩和转速的一致性,避免切换冲击,同时在保证总驱动转矩不变的情况下切换动力源。此外,将离合器3吸合或分离单独分列出来,有利于模块功能复用。
由于多个部件之间的速比不同,为保证多个部件的转矩和转速能够直接比较和运算,本实施例将多个部件的转速和转矩根据速比关系折算至一个固定部件,即发动机2,以实现参照点的一致性,提高控制的精确性。

Claims (12)

  1. 混合动力汽车串并联驱动模式切换的控制方法,包括:
    S1、确定所述混合动力汽车的驱动模式的切换状态;其中,所述切换状态包括所述混合动力汽车的驱动模式由所述串联驱动模式切换至所述并联驱动模式,以及所述混合动力汽车的驱动模式由所述并联驱动模式切换至串联驱动模式;
    S2、在所述切换状态是所述混合动力汽车的驱动模式由所述串联驱动模式切换至所述并联驱动模式的情况下,执行步骤S21-S24:
    S21、将发动机(1)的工作点调整至所述并联驱动模式下的参数,并判断所述混合动力汽车的驱动模式是否切换至所述串联驱动模式,在所述混合动力汽车的驱动模式切换至所述串联驱动模式的情况下,执行步骤S33,在所述混合动力汽车的驱动模式没有切换至所述串联驱动模式的情况下,执行步骤S22;
    S22、将离合器(3)吸合,并判断所述混合动力汽车的驱动模式是否切换至所述串联驱动模式,在所述混合动力汽车的驱动模式切换至所述串联驱动模式的情况下,执行步骤S32,在所述混合动力汽车的驱动模式没有切换至所述串联驱动模式的情况下,执行步骤S23;
    S23、将所述混合动力汽车动力源切换至所述并联驱动模式下所需的动力源,并判断所述混合动力汽车的驱动模式是否切换至所述串联驱动模式,在所述混合动力汽车的驱动模式切换至所述串联驱动模式的情况下,执行步骤S31,在所述混合动力汽车的驱动模式没有切换至所述串联驱动模式的情况下,执行步骤S24;
    S24、整车进入并联驱动模式;
    S3、在所述切换状态是所述混合动力汽车的驱动模式由所述并联驱动模式切换至串联驱动模式的情况下,执行步骤S31-S34:
    S31、将所述混合动力汽车的动力源切换至所述串联驱动模式下所需的动力源,并判断所述混合动力汽车的驱动模式是否切换至所述并联驱动模式,在所述混合动力汽车的驱动模式切换至所述并联驱动模式的情况下,执行步骤S23,在所述混合动力汽车的驱动模式没有切换至所述并联驱动模式的情况下,执行步骤S32;
    S32、将所述离合器(3)分离,并判断所述混合动力汽车的驱动模式是否切换至所述并联驱动模式,在所述混合动力汽车的驱动模式切换至所述并联驱动模式的情况下,则执行步骤S22,在所述混合动力汽车的驱动模式没有切换至所述并联驱动模式的情况下,执行步骤S33;
    S33、将所述发动机(1)的工作点调整至所述串联驱动模式下的参数,并判断所述混合动力汽车的驱动模式是否切换至所述并联驱动模式,在所述混合动力汽车的驱动模式切换至所述并联驱动模式的情况下,执行步骤S21,在所述混合动力汽车的驱动模式没有切换至所述并联驱动模式的情况下,执行步骤S34;
    S34、整车进入串联驱动模式。
  2. 根据权利要求1所述的混合动力汽车串并联驱动模式切换的控制方法,其中,将发动机(1)的工作点调整至所述并联驱动模式下的参数,包括:
    将所述发动机(1)的转矩调整为所述并联驱动模式下的发动机(1)的目标转矩,将所述发动机(1)的转速调整为与当前所述串联驱动模式下驱动电机(4)的转速相同。
  3. 根据权利要求2所述的混合动力汽车串并联驱动模式切换的控制方法,其中,定义发动机(1)的目标转矩为T Eng_Tgt,驱动电机(4)的目标转矩为T Tm_Tgt,发动机(1)的目标转速为n Eng_Tgt,发电机(2)的请求转矩为T Gm_Tgt, 且在所述并联驱动模式下,所述发动机(1)的工作状态存在驱动与充电、驱动与助力及发动机(1)断油三种子模式,则
    在驱动与充电子模式下,T Eng_Tgt=min(T Drv-T Tm_PaSoc,T Eng_PaMax);
    在驱动与助力子模式下,T Eng_Tgt=min(T Drv,T Eng_PaMax);
    在发动机(1)断油子模式下,T Eng_Tgt=-T Eng_Los
    T Tm_Tgt=T Drv;n Eng_Tgt=n Tm;T Gm_Tgt=-T Eng_Act+(J Eng+J Gm+J Gear)d n Eng_Tgt/dt+T CL
    式中,T Drv为驾驶员需求扭矩,T Tm_PaSoc为基于当前系统级芯片SOC计算的并联驱动模式下驱动电机(4)的发电负转矩,T Eng_PaMax为并联驱动模式下发动机(1)的转矩上限值,T Eng_Los为发动机(1)在当前转速下的摩擦转矩值,n Tm为驱动电机(4)的当前转速,T Eng_Act为发动机(1)的实际转矩,J Eng为发动机(1)的转动惯量,J Gm为发电机(2)的转动惯量,J Gear为发动机(1)与发电机(2)之间齿轮组的转动惯量,T CL为调速比例积分PI转矩。
  4. 根据权利要求1所述的混合动力汽车串并联驱动模式切换的控制方法,其中,将所述混合动力汽车的动力源切换至所述并联驱动模式下所需的动力源,包括:
    将发电机(2)的转矩减小至零,并将驱动电机(4)的转矩减小,其中,驱动电机(4)减小的转矩与发电机(2)减小的转矩相同。
  5. 根据权利要求4所述的混合动力汽车串并联驱动模式切换的控制方法,其中,定义驱动电机(4)的目标转矩为T Tm_Tgt,发电机(2)的请求转矩为T Gm_Tgt,则
    Figure PCTCN2022105713-appb-100001
    式中,T Drv为驾驶员需求扭矩,T Eng_Act为发动机(1)的实际转矩,△T Stp 为发电机(2)和驱动电机(4)的转矩同步调整步长,T * Gm_Tgt和T * Tm_Tgt分别为发电机(2)的请求转矩和驱动电机(4)的目标转矩的上一个计算周期的输出值。
  6. 根据权利要求1所述的混合动力汽车串并联驱动模式切换的控制方法,其中,将所述混合动力汽车的动力源切换至所述串联驱动模式下所需的动力源,包括:
    增大发电机(2)的转矩以吸收所述发动机(1)的转矩,并将所述发电机(2)吸收的转矩以同等幅度转移至驱动电机(4)上。
  7. 根据权利要求6所述的混合动力汽车串并联驱动模式切换的控制方法,其中,定义发动机(1)的目标转矩为T Eng_Tgt,驱动电机(4)的目标转矩为T Tm_Tgt,发电机(2)的请求转矩为T Gm_Tgt,且在所述并联驱动模式下,所述发动机(1)的工作状态存在驱动与充电、驱动与助力及发动机(1)断油三种子模式,则
    在驱动与充电子模式下,T Eng_Tgt=min(T Drv-T Tm_PaSoc,T Eng_PaMax);
    在驱动与助力子模式下,T Eng_Tgt=min(T Drv,T Eng_PaMax);
    在发动机(1)断油子模式下,T Eng_Tgt=-T Eng_Los
    Figure PCTCN2022105713-appb-100002
    式中,T Drv为驾驶员需求扭矩,T Tm_PaSoc为基于当前SOC计算的并联驱动模式下驱动电机(4)的发电负转矩,T Eng_PaMax为并联驱动模式下发动机(1)的转矩上限值,T Eng_Los为发动机(1)的当前转速下的摩擦转矩值,T Eng_Act为发动机(1)的实际转矩,△T Stp为发电机(2)和驱动电机(4)的转矩同步调整步长,T * Gm_Tgt和T * Tm_Tgt分别为发电机(2)的请求转矩和驱动电机(4)的目标转矩的上一个计算周期输出值。
  8. 根据权利要求1所述的混合动力汽车串并联驱动模式切换的控制方法,其中,将离合器(3)分离,包括:
    在发电机(2)的转矩等于所述发动机(1)的转矩,驱动电机(4)的转矩调整为所述串联驱动模式下的驱动电机(4)的目标转矩,且所述发动机(1)的转速与所述驱动电机(4)的转速相同时,将所述离合器(3)分离。
  9. 根据权利要求8所述的混合动力汽车串并联驱动模式切换的控制方法,其中,定义驱动电机(4)的目标转矩为T Tm_Tgt,发动机(1)的目标转速为n Eng_Tgt,发电机(2)的请求转矩为T Gm_Tgt,则
    T Tm_Tgt=T Drv;n Eng_Tgt=n Tm;T Gm_Tgt=-T Eng_Act+(J Eng+J Gm+J Gear)d n Eng_Tgt/dt+T CL
    式中,T Drv为驾驶员需求扭矩,n Tm为驱动电机(4)的当前转速,T Eng_Act为发动机(1)的实际转矩,J Eng为发动机(1)的转动惯量,J Gm为发电机(2)的转动惯量,J Gear为发动机(1)与发电机(2)之间齿轮组的转动惯量,T CL为调速PI转矩。
  10. 根据权利要求1所述的混合动力汽车串并联驱动模式切换的控制方法,其中,将所述发动机(1)的工作点调整至所述串联驱动模式下的参数,包括:
    将所述发动机(1)的转矩和转速分别调整为所述串联驱动模式下的发动机(1)的目标转矩和发动机(1)的目标转速;
    定义发动机(1)的目标转矩为T Eng_Tgt,发动机(1)的目标转速为n Eng_Tgt,则
    T Eng_Tgt=T Eng_Se;n Eng_Tgt=n Eng_Se
    式中,T Eng_Se和n Eng_Se分别为整车能量管理模块计算得到的发动机(1)在目标发电功率点的转矩值和转速值。
  11. 一种车辆,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行时,所述至少一个处理器实现如权利要求1-10中任一所述的混合动力汽车串并联驱动模式切换的控制方法。
  12. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-10中任一所述的混合动力汽车串并联驱动模式切换的控制方法。
PCT/CN2022/105713 2021-07-19 2022-07-14 混合动力汽车串并联驱动模式切换的控制方法 WO2023001057A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22845222.3A EP4227178A4 (en) 2021-07-19 2022-07-14 CONTROL METHOD FOR SWITCHING SERIAL-PARALLEL CONNECTION DRIVING MODES FOR AN ELECTRIC HYBRID VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110813193.2A CN113386730B (zh) 2021-07-19 2021-07-19 混合动力汽车串并联驱动模式切换的控制方法
CN202110813193.2 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023001057A1 true WO2023001057A1 (zh) 2023-01-26

Family

ID=77626485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105713 WO2023001057A1 (zh) 2021-07-19 2022-07-14 混合动力汽车串并联驱动模式切换的控制方法

Country Status (3)

Country Link
EP (1) EP4227178A4 (zh)
CN (1) CN113386730B (zh)
WO (1) WO2023001057A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116001770A (zh) * 2023-03-27 2023-04-25 成都赛力斯科技有限公司 一种混合动力车辆的发电机调速控制方法及装置
CN116620258A (zh) * 2023-07-24 2023-08-22 成都赛力斯科技有限公司 一种应用于紧急制动的扭矩切换控制方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113386730B (zh) * 2021-07-19 2023-01-06 中国第一汽车股份有限公司 混合动力汽车串并联驱动模式切换的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299903A (ja) * 1999-04-09 2000-10-24 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
JP2013052710A (ja) * 2011-09-01 2013-03-21 Mitsubishi Motors Corp ハイブリット車両の制御装置
CN104842992A (zh) * 2014-12-19 2015-08-19 北汽福田汽车股份有限公司 混合动力车的整车工作模式切换方法和系统以及变速箱控制器
CN106553639A (zh) * 2015-09-17 2017-04-05 北汽福田汽车股份有限公司 混合动力汽车及控制方法和系统
CN110979307A (zh) * 2019-12-31 2020-04-10 义乌吉利动力总成有限公司 一种双电机动力系统串并联模式切换的控制方法及装置
CN113386730A (zh) * 2021-07-19 2021-09-14 中国第一汽车股份有限公司 混合动力汽车串并联驱动模式切换的控制方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402236B2 (ja) * 1999-01-13 2003-05-06 トヨタ自動車株式会社 動力出力装置およびハイブリッド車両並びにその制御方法
JP2000295712A (ja) * 1999-04-07 2000-10-20 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
JP2007099141A (ja) * 2005-10-06 2007-04-19 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP4377898B2 (ja) * 2006-09-11 2009-12-02 本田技研工業株式会社 ハイブリッド車両の制御装置
DE102008002383A1 (de) * 2008-06-12 2009-12-17 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs
DE102008053505B4 (de) * 2008-10-28 2023-10-05 Volkswagen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeuges
JP5382223B2 (ja) * 2010-07-21 2014-01-08 日産自動車株式会社 ハイブリッド車両の制御装置
JP2012056487A (ja) * 2010-09-10 2012-03-22 Toyota Motor Corp ハイブリッド車両の制御装置
US9026291B2 (en) * 2010-11-04 2015-05-05 Toyota Jidosha Kabushiki Kaisha Vehicle hybrid drive device
JP6319132B2 (ja) * 2015-02-18 2018-05-09 トヨタ自動車株式会社 ハイブリッド車両
US10232698B2 (en) * 2015-06-09 2019-03-19 Nissan Motor Co., Ltd. Mode transition control device for hybrid vehicle
KR101776723B1 (ko) * 2015-09-03 2017-09-08 현대자동차 주식회사 하이브리드 차량의 주행 모드 변환 제어 방법 및 그 제어 장치
DE102015222692A1 (de) * 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015224077A1 (de) * 2015-12-02 2017-06-08 Borgward Trademark Holdings Gmbh Hybrid-Elektrofahrzeug, Verfahren und System zu dessen Regelung
JP6658350B2 (ja) * 2016-06-29 2020-03-04 トヨタ自動車株式会社 ハイブリッド車両
JP6912339B2 (ja) * 2017-09-26 2021-08-04 株式会社Subaru ハイブリッド車両のパワーユニット
JP7024326B2 (ja) * 2017-10-31 2022-02-24 トヨタ自動車株式会社 ハイブリッド車両
CN108437976B (zh) * 2018-03-21 2020-04-07 重庆长安汽车股份有限公司 一种插电式强混汽车的动力系统控制方法
US10773710B2 (en) * 2018-05-09 2020-09-15 Ford Global Technologies, Llc Systems and methods for a hybrid vehicle with a manual shift transmission
WO2020065799A1 (ja) * 2018-09-26 2020-04-02 日産自動車株式会社 電動車両の制御方法および電動車両の駆動システム
JP7298179B2 (ja) * 2019-02-18 2023-06-27 日産自動車株式会社 電動車両の制御方法および電動車両の駆動システム
US11519498B2 (en) * 2019-09-13 2022-12-06 Ford Global Technologies, Llc Methods and system for engine control during gear shifting in a hybrid electric vehicle
CN111824110B (zh) * 2020-07-22 2021-08-13 中国第一汽车股份有限公司 一种发动机停机控制方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299903A (ja) * 1999-04-09 2000-10-24 Fuji Heavy Ind Ltd ハイブリッド車の制御装置
JP2013052710A (ja) * 2011-09-01 2013-03-21 Mitsubishi Motors Corp ハイブリット車両の制御装置
CN104842992A (zh) * 2014-12-19 2015-08-19 北汽福田汽车股份有限公司 混合动力车的整车工作模式切换方法和系统以及变速箱控制器
CN106553639A (zh) * 2015-09-17 2017-04-05 北汽福田汽车股份有限公司 混合动力汽车及控制方法和系统
CN110979307A (zh) * 2019-12-31 2020-04-10 义乌吉利动力总成有限公司 一种双电机动力系统串并联模式切换的控制方法及装置
CN113386730A (zh) * 2021-07-19 2021-09-14 中国第一汽车股份有限公司 混合动力汽车串并联驱动模式切换的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4227178A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116001770A (zh) * 2023-03-27 2023-04-25 成都赛力斯科技有限公司 一种混合动力车辆的发电机调速控制方法及装置
CN116620258A (zh) * 2023-07-24 2023-08-22 成都赛力斯科技有限公司 一种应用于紧急制动的扭矩切换控制方法和装置
CN116620258B (zh) * 2023-07-24 2023-09-22 成都赛力斯科技有限公司 一种应用于紧急制动的扭矩切换控制方法和装置

Also Published As

Publication number Publication date
EP4227178A1 (en) 2023-08-16
EP4227178A4 (en) 2024-04-10
CN113386730B (zh) 2023-01-06
CN113386730A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
WO2023001057A1 (zh) 混合动力汽车串并联驱动模式切换的控制方法
WO2023001056A1 (zh) 混合动力汽车驱动模式切换的控制方法、车辆及存储介质
US7626354B2 (en) Hybrid vehicle equipped with a variable voltage battery
EP2634057B1 (en) Hybrid vehicle control device
WO2022135097A1 (zh) 双电机车辆控制方法、装置、设备及存储介质
RU2663260C2 (ru) Устройство управления муфтой для гибридного транспортного средства
KR100923827B1 (ko) 하이브리드 차량의 엔진 시동 제어 장치 및 하이브리드차량의 엔진 시동 제어 방법
EP2529990B1 (en) An engine stop control system for hybrid electric vehicle
CN103419775B (zh) 用于混合动力车辆的控制设备
KR101742397B1 (ko) 하이브리드 차량
WO2014109064A1 (ja) ハイブリッド車両及びその制御方法
US20130297128A1 (en) Hybrid vehicle engine start control device
JP6010365B2 (ja) ハイブリッド自動車のトルク制御方法及びそのシステム
KR101684557B1 (ko) 하이브리드 차량의 엔진 클러치 접합점 학습 방법 및 그 학습 장치
CN110978986A (zh) 一种双电机混合动力总成控制系统
CN104554241A (zh) 一种多模式相对独立的油电混合动力系统及其控制方法
KR102648823B1 (ko) 하이브리드 차량의 엔진 시동 방법 및 장치
KR102621563B1 (ko) 하이브리드 차량의 엔진 제어 방법
KR20200063414A (ko) 하이브리드 자동차 및 그를 위한 주행 제어 방법
KR20190052297A (ko) 하이브리드 차량용 파워트레인 및 그 제어방법
CN111252064B (zh) 一种混动车辆控制方法及系统
CN113428132A (zh) 一种混合动力总成的控制方法
CN113650600A (zh) 一种混动车型模式切换时发动机转速控制方法及控制器
JP7087999B2 (ja) ハイブリッド車両の駆動力制御装置
KR20230090470A (ko) 하이브리드 차량의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022845222

Country of ref document: EP

Effective date: 20230508

NENP Non-entry into the national phase

Ref country code: DE