WO2023000885A1 - 谐波齿轮装置和致动器 - Google Patents
谐波齿轮装置和致动器 Download PDFInfo
- Publication number
- WO2023000885A1 WO2023000885A1 PCT/CN2022/099468 CN2022099468W WO2023000885A1 WO 2023000885 A1 WO2023000885 A1 WO 2023000885A1 CN 2022099468 W CN2022099468 W CN 2022099468W WO 2023000885 A1 WO2023000885 A1 WO 2023000885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- teeth
- flexible external
- outer ring
- hole
- Prior art date
Links
- 238000005096 rolling process Methods 0.000 claims abstract description 127
- 230000002093 peripheral effect Effects 0.000 claims description 98
- 239000000314 lubricant Substances 0.000 claims description 96
- 230000007423 decrease Effects 0.000 abstract description 14
- 235000019589 hardness Nutrition 0.000 description 77
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 238000009966 trimming Methods 0.000 description 15
- 239000000843 powder Substances 0.000 description 13
- 230000005489 elastic deformation Effects 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910000906 Bronze Inorganic materials 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010974 bronze Substances 0.000 description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 1
- OGSYQYXYGXIQFH-UHFFFAOYSA-N chromium molybdenum nickel Chemical compound [Cr].[Ni].[Mo] OGSYQYXYGXIQFH-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/04—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
- F16C19/06—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H49/00—Other gearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
Definitions
- Embodiments of the present disclosure generally relate to harmonic gearing and actuators, and more particularly, to harmonic gearing and actuators including rigid internal gears, flexible external gears, and wave generators.
- Patent Document 1 discloses surface treatment of a flexible external gear in a harmonic gear device (flexural mesh gear device) by nitriding treatment.
- the harmonic gear device has: a ring-shaped rigid internal gear; a cup-shaped flexible external gear arranged inside; and an elliptical wave generator embedded in the inside.
- the flexible external gear includes a cylindrical body and external teeth formed on the outer peripheral surface of the body.
- the flexible external gear is bent into an ellipse by the action of the wave generator, and the parts of the external teeth of the flexible external gear located at both ends of the long axis of the ellipse and the internal teeth formed on the inner peripheral surface of the rigid internal gear engage.
- the meshing position of the two gears moves in the circumferential direction, and a relative rotation corresponding to the difference in the number of teeth of the inner teeth and the outer teeth (2N (N is a positive integer)) is generated between the two gears.
- N is a positive integer
- the flexible external gear side can obtain a rotational output greatly reduced in accordance with the difference in the number of teeth of the two gears.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2001-59153
- the contact portion between the flexible external gear and the wave generator may be damaged.
- Fretting wear occurs. When fretting wear occurs, it may cause surface roughness, rust caused by wear powder, and damage to the wave generator (bearing) caused by wear powder entering the inside of the wave generator, thereby affecting harmonics.
- Gear unit reliability since the wave generator fitted inside the flexible external gear rotates, especially when used for a long period of time, the contact portion between the flexible external gear and the wave generator may be damaged. Fretting wear occurs. When fretting wear occurs, it may cause surface roughness, rust caused by wear powder, and damage to the wave generator (bearing) caused by wear powder entering the inside of the wave generator, thereby affecting harmonics. Gear unit reliability.
- Embodiments of the present disclosure have been made in view of the above circumstances, and an object thereof is to provide a harmonic gear device and an actuator that are less likely to cause a decrease in reliability.
- a harmonic gear device in one aspect of an embodiment of the present disclosure includes a rigid internal gear, a flexible external gear, and a wave generator.
- the rigid internal gear is an annular member having internal teeth.
- the flexible external gear is an annular member having external teeth and arranged inside the rigid internal gear.
- the wave generator has a non-circular cam driven to rotate about a rotating shaft, and a bearing including an outer ring and a plurality of rolling elements and mounted on the outer side of the cam.
- the wave generator is disposed inside the flexible external gear and causes the flexible external gear to bend.
- the harmonic gear device deforms the flexible external gear as the cam rotates, meshes a part of the external teeth with a part of the internal teeth, and makes the flexible external gear conform to its relationship with the internal teeth.
- At least one of the outer ring and the outer teeth of the flexible external gear is provided with a through hole, the through hole passes through in the radial direction, and is connected with the outer ring and the flexible external gear. gaps between them.
- An actuator in one aspect of an embodiment of the present disclosure includes the harmonic gear device, a drive source, and an output section.
- the drive source rotates the wave generator.
- the output unit takes out the rotational force of either one of the rigid internal gear and the flexible external gear as an output.
- FIG. 1A is a cross-sectional view showing a schematic configuration of a harmonic gear device according to Embodiment 1.
- FIG. 1A is a cross-sectional view showing a schematic configuration of a harmonic gear device according to Embodiment 1.
- FIG. 1B is an enlarged view of area Z1 of FIG. 1A .
- Fig. 2A is a schematic diagram of the above-mentioned harmonic gear device viewed from the input side of the rotary shaft.
- FIG. 2B is an enlarged view of area Z1 of FIG. 2A .
- FIG. 3A is a schematic exploded perspective view of the above harmonic gear device viewed from the output side of the rotary shaft.
- Fig. 3B is a schematic exploded perspective view of the above-mentioned harmonic gear device viewed from the input side of the rotary shaft.
- FIG. 4 is a cross-sectional view showing a schematic structure of an actuator including the above-mentioned harmonic gear device.
- 5A is a schematic cross-sectional view focusing on the bearing and the flexible external gear of the above harmonic gear device.
- 5B is a schematic diagram of the inner peripheral surface of the flexible external gear viewed from the bearing side in the above harmonic gear device.
- FIG. 6 is a conceptual explanatory diagram for illustrating the operation of the long-axis side and the short-axis side of the tapered surface of the harmonic gear device.
- Fig. 7 is a cross-sectional view showing an example of a robot using the above-mentioned harmonic gear device.
- FIG. 8A is a cross-sectional view showing a main part of a harmonic gear device according to a first modified example of Embodiment 1.
- FIG. 8A is a cross-sectional view showing a main part of a harmonic gear device according to a first modified example of Embodiment 1.
- FIG. 8B is a cross-sectional view showing a main part of a harmonic gear device according to a second modified example of the first embodiment.
- 9A is a cross-sectional view showing a main part of a harmonic gear device according to a third modified example of the first embodiment.
- 9B is a cross-sectional view showing a main part of a harmonic gear device according to a fourth modified example of the first embodiment.
- FIG. 10A is a cross-sectional view showing a schematic configuration of a harmonic gear device according to Embodiment 2.
- FIG. 10A is a cross-sectional view showing a schematic configuration of a harmonic gear device according to Embodiment 2.
- FIG. 10B is an enlarged view of the area Z1 of FIG. 10A .
- Fig. 11A is a schematic diagram of the main part of the above-mentioned harmonic gear device viewed from the input side of the rotary shaft.
- FIG. 11B is an enlarged view of the periphery of the through-hole shown in FIG. 11A .
- FIG. 12A is a cross-sectional view of main parts showing a schematic configuration of a harmonic gear device according to a first modified example of Embodiment 2.
- FIG. 12A is a cross-sectional view of main parts showing a schematic configuration of a harmonic gear device according to a first modified example of Embodiment 2.
- FIG. 12B is a schematic diagram of a main part of a harmonic gear device according to a second modified example of Embodiment 2 viewed from the input side of the rotary shaft.
- FIG. 13A is a cross-sectional view of main parts showing a schematic configuration of a harmonic gear device according to Embodiment 2.
- FIG. 13A is a cross-sectional view of main parts showing a schematic configuration of a harmonic gear device according to Embodiment 2.
- Fig. 13B is a schematic diagram of the main part of the above-mentioned harmonic gear device viewed from the input side of the rotary shaft.
- FIGS. 1A to 4 The drawings referred to in the embodiments of the present disclosure are all schematic drawings, and the respective ratios of the sizes and thicknesses of the structural elements in the drawings do not necessarily reflect the actual size ratios.
- the tooth shape, size, and number of teeth of the inner teeth 21 and the outer teeth 31 in FIGS. 2A to 3B are schematically shown for illustration only, and are not intended to be limited to the illustrated shapes.
- the harmonic gear device 1 of the present embodiment is a gear device including a rigid internal gear 2 , a flexible external gear 3 and a wave generator 4 .
- an annular flexible external gear 3 is arranged inside an annular rigid internal gear 2
- a wave generator 4 is arranged inside the flexible external gear 3 .
- the wave generator 4 partially meshes the external teeth 31 of the flexible external gear 3 with the internal teeth 21 of the rigid internal gear 2 by bending the flexible external gear 3 into a non-circular shape.
- the wave generator 4 rotates, the meshing position of the internal teeth 21 and the external teeth 31 moves along the circumferential direction of the rigid internal gear 2, and a flexible force is generated between the two gears (the rigid internal gear 2 and the flexible external gear 3).
- the external gear 3 rotates relative to the rigid internal gear 2 according to the difference in the number of teeth.
- the rigid internal gear 2 is fixed, the flexible external gear 3 rotates with the relative rotation of both gears.
- a rotational output decelerated at a relatively high reduction ratio according to the difference in the number of teeth of both gears can be obtained from the flexible external gear 3 .
- the wave generator 4 that flexes the flexible external gear 3 has a non-circular cam 41 and a bearing 42 that are driven to rotate around the input side rotation axis Ax1 (see FIG. 1A ).
- the bearing 42 is disposed between the outer peripheral surface 411 of the cam 41 and the inner peripheral surface 301 of the flexible external gear 3 .
- the inner ring 422 of the bearing 42 is fixed to the outer peripheral surface 411 of the cam 41 , and the outer ring 421 of the bearing 42 is elastically deformed by being pressed by the cam 41 via a ball-shaped rolling element 423 .
- the rolling elements 423 roll so that the outer ring 421 can rotate relative to the inner ring 422.
- the wave generator 4 having the bearing 42 transmits power by meshing the internal teeth 21 and the external teeth 31 while flexing the flexible external gear 3 .
- the rotation of the wave generator 4 requires excess energy, resulting in a decrease in power transmission efficiency, or by the force applied to the bearing 42. Life shortening due to increased load, etc.
- the wear powder enters the bearing 42, starting from the indentation formed by the bite of the wear powder between the outer ring 421 or the inner ring 422 and the rolling element 423 of the bearing 42, the outer ring 421, the inner ring 422 and the The surface of any of the rolling elements 423 may be damaged.
- the harmonic gear device 1 suppresses the occurrence of fretting wear by the following configuration, so that a decrease in reliability does not easily occur.
- the harmonic gear device 1 of the present embodiment includes an annular rigid internal gear 2 having internal teeth 21 , an annular flexible external gear 3 having external teeth 31 , and a wave generator 4.
- the flexible external gear 3 is disposed inside the rigid internal gear 2 .
- the wave generator 4 is disposed inside the flexible external gear 3 and causes the flexible external gear 3 to bend.
- the wave generator 4 has a non-circular cam 41 driven to rotate around the rotation axis Ax1 , and a bearing 42 attached to the outside of the cam 41 .
- the bearing 42 includes an outer ring 421 and a plurality of rolling elements 423 .
- the flexible external gear 3 is deformed with the rotation of the cam 41, a part of the external teeth 31 meshes with a part of the internal teeth 21, and the flexible external gear 3 follows the shape of the flexible external gear 3.
- the difference in the number of teeth from the rigid internal gear 2 rotates relative to the rigid internal gear 2 .
- at least one of the outer ring 421 and the external teeth 31 of the flexible external gear 3 is provided with a through hole H1 , and the through hole H1 passes through in the radial direction and connects between the outer ring 421 and the flexible external gear 3 .
- the gap X1 is connected.
- At least one of the outer ring 421 and the external teeth 31 of the flexible external gear 3 is provided with a through-hole H1 penetrating in the radial direction.
- the through hole H1 passes through at least one of the outer ring 421 and the external teeth 31 of the flexible external gear 3 in the radial direction, and is connected to the gap X1 between the outer ring 421 and the flexible external gear 3 .
- the inner peripheral surface 425 (refer to FIG. 5A ) serving as the rolling surface of the plurality of rolling elements 423 in the outer ring 421 of the bearing 42 and the inner peripheral surface 425 (refer to FIG.
- the lubricant Lb1 can be supplied through the gap X1 between the outer ring 421 and the flexible external gear 3 through the through hole H1 (see FIG. 4 ).
- the occurrence of fretting wear is suppressed by preventing "lubricant depletion" in which the lubricant Lb1 is insufficient or exhausted at the contact portion between the outer ring 421 and the flexible external gear 3. produce. Furthermore, by providing the through-hole H1, the lubricant Lb1 can be supplied to the contact part of the flexible external gear 3 and the wave generator 4 through the through-hole H1, and sufficient lubricant Lb1 can be maintained in a contact part. As a result, the surface of the contact portion between the outer ring 421 and the flexible external gear 3 is covered with the lubricant Lb1, and the occurrence of fretting wear is suppressed.
- the harmonic gear device 1 of the present embodiment As a result, in the harmonic gear device 1 of the present embodiment, troubles caused by fretting wear between the outer ring 421 and the flexible external gear 3 are less likely to occur, and it is possible to provide a harmonic wave that is less likely to cause a decrease in reliability. gear unit 1.
- the harmonic gear device 1 of the present embodiment is less prone to decrease in reliability especially when used for a long time, and further, improves the transmission efficiency of the harmonic gear device 1 , prolongs its life, and achieves high performance. change.
- the through hole H1 may be provided in at least one of the outer ring 421 and the external teeth 31 of the flexible external gear 3 .
- the through-holes H1 provided in the outer ring 421 are referred to as "first through-holes”.
- hole" the through-hole H2 (see FIG. 10B ) provided in the external tooth 31 of the flexible external gear 3 is referred to as a "second through-hole”.
- the through-hole H1 is provided only in the outer ring 421 and the outer ring 421 of the external teeth 31 of the flexible external gear 3 .
- the through hole H1 includes the “first through hole” provided in the outer ring 421 .
- the through-hole H2 (second through-hole) on the side of the external teeth 31 of the flexible external gear 3 will be described in the second and third embodiments.
- the harmonic gear device 1 of the present embodiment constitutes an actuator 100 together with a drive source 101 and an output unit 102 .
- the actuator 100 of this embodiment includes the harmonic gear device 1, the drive source 101, and the output unit 102.
- the drive source 101 rotates the wave generator 4 .
- the output unit 102 takes out the rotational force of either the rigid internal gear 2 or the flexible external gear 3 as an output.
- the actuator 100 of the present embodiment there is an advantage that the reliability of the harmonic gear device 1 is less likely to be lowered.
- the "annular shape” mentioned in the embodiments of the present disclosure refers to a shape such as a circle (ring) forming a surrounding space (region) inside at least when viewed from above, and is not limited to a shape that is a perfect circle when viewed from above.
- the circular shape (annular shape) may be, for example, an elliptical shape, a polygonal shape, or the like.
- a shape such as a cup-shaped flexible external gear 3 may have a bottom 322 , and if the body portion 321 is annular, it may be called a "ring-shaped" flexible external gear 3 .
- the "gap” mentioned in the embodiments of the present disclosure refers to the space that may be generated between the opposing surfaces of two objects, even if the two objects are not separated, a gap may be generated between the two objects. That is, even if two objects are in contact, a slight gap may be generated between the two objects.
- the outer peripheral surface 424 (see FIG. 5A ) of the outer ring 421 facing each other and the inner peripheral surface of the flexible external gear 3 A gap X1 is generated between 301 .
- the outer peripheral surface 424 of the outer ring 421 is in contact with the inner peripheral surface 301 of the flexible external gear 3 , so a large gap X1 does not occur therebetween. Therefore, the gap X1 between the outer ring 421 and the flexible external gear 3 is a small gap that can be locally generated between the outer peripheral surface 424 of the outer ring 421 and the inner peripheral surface 301 of the flexible external gear 3 . As an example, a microscopic gap X1 is formed between the outer peripheral surface 424 of the outer ring 421 and the inner peripheral surface 301 of the flexible external gear 3 so that the lubricant Lb1 can penetrate.
- the “passing through in the radial direction” mentioned in the embodiments of the present disclosure refers to the radial direction, that is, passing through in the radial direction which is a direction perpendicular to the rotation axis Ax1 . That is, in the case of the through-hole H1 provided in the outer ring 421 as in this embodiment, the through-hole H1 may pass between the inner peripheral surface 425 and the outer peripheral surface 424 which are two surfaces in the radial direction of the outer ring 421 , for example , can also be inclined relative to the radial direction.
- the "rigidity” mentioned in the embodiments of the present disclosure refers to the property of an object to resist deformation when an external force is applied to the object and the object is about to deform. In other words, a rigid object is difficult to deform even when an external force is applied.
- the "flexibility” mentioned in the embodiments of the present disclosure refers to the property that an object undergoes elastic deformation (deflection) when an external force is applied to the object. In other words, a flexible object is prone to elastic deformation when an external force is applied. Therefore, "rigid” and “flexible” have opposite meanings.
- the "rigidity" of the rigid internal gear 2 and the “flexibility” of the flexible external gear 3 are used in relative meanings. That is, the “rigidity” of the rigid internal gear 2 means that the rigid internal gear 2 has relatively high rigidity at least compared with the flexible external gear 3 , that is, the rigid internal gear 2 is hardly deformed even if an external force is applied to the rigid internal gear 2 .
- the "flexibility" of the flexible external gear 3 means that at least compared with the rigid internal gear 2, the flexible external gear 3 has relatively high flexibility, that is to say, the flexible external gear 3 is easily elastic when an external force is applied. out of shape.
- the flexible external gear 3 has the opening surface 35 on the "input side” of the rotation axis Ax1.
- the terms "input side” and “output side” are merely labels for explanation, and the point is not to limit the positional relationship between the input and the output viewed from the harmonic gear unit 1 .
- non-circular shape refers to a shape that is not a perfect circle, and includes, for example, an elliptical shape and an oblong shape.
- the non-circular cam 41 of the wave generator 4 has an elliptical shape. That is, in the present embodiment, the wave generator 4 bends the flexible external gear 3 into an elliptical shape.
- the "elliptical shape” mentioned in the embodiments of the present disclosure refers to the entire shape in which the perfect circle is flattened so that the intersection point of the major axis and the minor axis orthogonal to each other is located at the center, and it is not limited to a distance from a certain distance on a plane.
- the curve formed by the set of points whose sum of the distance between two fixed points is constant is the mathematical "ellipse”. That is to say, the cam 41 in the present embodiment can be a curved line formed by a collection of points whose distances from two fixed points on a plane are constant as an "ellipse” in mathematics, or it can be not An “ellipse” in mathematics is an ellipse like an oblong.
- the drawings referred to in the embodiments of the present disclosure are all schematic drawings, and the respective ratios of the sizes and thicknesses of the structural elements in the drawings are not necessarily limited to reflect actual size ratios. Therefore, for example, in FIG. 2A , although the shape of the cam 41 of the wave generator 4 is a slightly exaggerated elliptical shape, it is not intended to limit the actual shape of the cam 41 .
- the "axis of rotation” mentioned in the embodiments of the present disclosure refers to an imaginary axis (straight line) that becomes the center of the rotational motion of the rotating body. That is, the rotation axis Ax1 is a virtual axis without a real body.
- the wave generator 4 rotates around the rotation axis Ax1.
- the "internal teeth” and “external teeth” mentioned in the embodiments of the present disclosure respectively refer to a collection (group) of multiple “teeth” rather than a single “teeth”. That is, the internal teeth 21 of the rigid internal gear 2 include a set of a plurality of teeth formed on the inner peripheral surface of the rigid internal gear 2 . Likewise, the external teeth 31 of the flexible external gear 3 include a set of teeth formed on the outer peripheral surface of the flexible external gear 3 .
- the "parallel” mentioned in the embodiments of the present disclosure refers to the case where two straight lines on a plane extend to any position and do not intersect, that is, the angle between the two is strictly 0 degrees (or 180 degrees). Except for the case, the angle between the two is in a relationship within an error range converging on several degrees (for example, less than 10 degrees) from 0 degrees.
- the "orthogonal" mentioned in the embodiments of the present disclosure means that, except for the case where the angle between the two intersects strictly at 90 degrees, the angle between the two is within a few degrees relative to 90 degrees. (for example, less than 10 degrees) degree of error range relationship.
- FIG. 1A is a cross-sectional view showing a schematic configuration of a harmonic gear device 1
- FIG. 1B is an enlarged view of a region Z1 in FIG. 1A
- 2A is a schematic view of the harmonic gear device 1 viewed from the input side of the rotation axis Ax1 (the right side of FIG. 1A )
- FIG. 2B is an enlarged view of a region Z1 in FIG. 2A
- Fig. 3A is a schematic exploded perspective view of the harmonic gear device 1 viewed from the output side of the rotary axis Ax1 (left side in Fig. 1A).
- 3B is a schematic exploded perspective view of the harmonic gear device 1 viewed from the input side of the rotation axis Ax1.
- FIG. 4 is a cross-sectional view showing a schematic configuration of an actuator 100 including the harmonic gear device 1 .
- the harmonic gear device 1 of the present embodiment includes the rigid internal gear 2 , the flexible external gear 3 , and the wave generator 4 .
- the materials of the rigid internal gear 2, the flexible external gear 3, and the wave generator 4, which are the structural elements of the harmonic gear device 1 are stainless steel, cast iron, carbon steel for mechanical structures, chrome-molybdenum steel, and phosphor bronze. or metals such as aluminum bronze.
- the metal mentioned here includes metals subjected to surface treatment such as nitriding treatment.
- a cup-shaped harmonic gear device is illustrated as an example of the harmonic gear device 1 . That is, in the harmonic gear device 1 of the present embodiment, the cup-shaped flexible external gear 3 is used. The wave generator 4 is combined with the flexible external gear 3 so as to be accommodated in the cup-shaped flexible external gear 3 .
- the harmonic gear device 1 is used in a state where the rigid internal gear 2 is fixed to the input side case 111 (see FIG. 4 ) and the output side case 112 (see FIG. 4 ). Accordingly, the flexible external gear 3 relatively rotates with respect to the fixed member (input-side housing 111 and the like) in association with the relative rotation of the rigid internal gear 2 and the flexible external gear 3 .
- the harmonic gear device 1 when the harmonic gear device 1 is used for the actuator 100, by applying a rotational force as an input to the wave generator 4, it is possible to take out a rotational force as an output from the flexible external gear 3. rotational force. That is, the harmonic gear device 1 operates so as to take the rotation of the wave generator 4 as an input rotation and the rotation of the flexible external gear 3 as an output rotation. Accordingly, in the harmonic gear unit 1 , it is possible to obtain an output rotation decelerated at a relatively high reduction ratio relative to the input rotation.
- the input-side rotational axis Ax1 and the output-side rotational axis Ax2 are on the same straight line.
- the rotation axis Ax1 on the input side and the rotation axis Ax2 on the output side are coaxial.
- the rotation axis Ax1 on the input side is the rotation center of the wave generator 4 to which the input rotation is applied
- the rotation axis Ax1 on the output side is the rotation center of the flexible external gear 3 which generates the output rotation. That is, in the harmonic gear unit 1 , the output rotation can be coaxially reduced by a relatively high reduction ratio relative to the input rotation.
- the rigid internal gear 2 is also called a circular spline, and is an annular member having internal teeth 21 .
- the rigid internal gear 2 has an annular shape in which at least the inner peripheral surface is a perfect circle in plan view.
- Internal teeth 21 are formed on the inner peripheral surface of the annular rigid internal gear 2 along the circumferential direction of the rigid internal gear 2 . All the plurality of teeth constituting the internal teeth 21 have the same shape and are provided at equal intervals over the entire area in the circumferential direction of the inner peripheral surface of the rigid internal gear 2 . That is, the pitch circle of the internal teeth 21 is a perfect circle in plan view.
- the rigid internal gear 2 has a predetermined thickness in the direction of the rotation axis Ax1. Internal teeth 21 are formed over the entire length of the rigid internal gear 2 in the thickness direction. The tooth lines of the internal teeth 21 are all parallel to the rotation axis Ax1.
- the rigid internal gear 2 is fixed to the input-side housing 111 (see FIG. 4 ), the output-side housing 112 (see FIG. 4 ), and the like. Therefore, a plurality of fixing holes 22 for fixing are formed in the rigid internal gear 2 (see FIGS. 3A and 3B ).
- the flexible external gear 3 is also called a flex spline, and is an annular member having external teeth 31 .
- the flexible external gear 3 is a cup-shaped member formed of a relatively thin metal elastic body (metal plate). That is, the flexible external gear 3 possesses flexibility because its thickness is relatively small (thin).
- the flexible external gear 3 has a cup-shaped body portion 32 .
- the main body part 32 has a body part 321 and a bottom part 322 .
- the body portion 321 has a cylindrical shape in which at least the inner peripheral surface 301 is a perfect circle in plan view in a state where the flexible external gear 3 is not elastically deformed.
- the central axis of the body part 321 coincides with the rotation axis Ax1.
- the bottom portion 322 is disposed on one opening surface of the trunk portion 321 and has a disc shape that is a perfect circle in plan view.
- the bottom portion 322 is arranged on the opening surface on the output side of the rotation axis Ax1 among the pair of opening surfaces of the trunk portion 321 .
- the main body 32 has a bottomed cylindrical cup shape that is open to the input side of the rotation axis Ax1 in the whole body 321 and bottom 322 .
- the opening surface 35 is formed on an end surface opposite to the bottom portion 322 in the direction of the rotation axis Ax1 of the flexible external gear 3 .
- the flexible external gear 3 has a cylindrical shape having an opening surface 35 on one side of the tooth line direction D1 (the input side of the rotation axis Ax1 here).
- the trunk portion 321 and the bottom portion 322 are integrally formed of one metal member, whereby a seamless main body portion 32 can be realized.
- the wave generator 4 and the flexible external gear 3 are combined so that the non-circular (elliptical) wave generator 4 is fitted inside the trunk portion 321 .
- the flexible external gear 3 is elastically deformed into a non-circular shape by receiving an external force in the radial direction (direction perpendicular to the rotation axis Ax1 ) from the wave generator 4 from the inside toward the outside.
- the body portion 321 of the flexible external gear 3 is elastically deformed into an elliptical shape. That is, the state where the flexible external gear 3 is not elastically deformed refers to the state where the wave generator 4 is not combined with the flexible external gear 3 . Conversely, the state where the flexible external gear 3 is elastically deformed refers to the state where the wave generator 4 and the flexible external gear 3 are combined.
- the wave generator 4 is fitted into an end portion of the inner peripheral surface 301 of the trunk portion 321 on the side opposite to the bottom portion 322 (the input side of the rotation axis Ax1 ).
- the wave generator 4 is fitted into the end portion on the opening surface 35 side in the direction of the rotation axis Ax1 of the body portion 321 of the flexible external gear 3 . Therefore, in the state where the flexible external gear 3 is elastically deformed, the end portion of the flexible external gear 3 on the opening surface 35 side in the direction of the rotation axis Ax1 is deformed more than the end portion on the bottom 322 side, Becomes a shape closer to an elliptical shape.
- the inner peripheral surface 301 of the body portion 321 of the flexible external gear 3 includes a portion inclined with respect to the rotation axis Ax1.
- the tapered surface 302 (see Figure 6).
- external teeth 31 are formed along the circumferential direction of the body portion 321 at least at an end portion on the side opposite to the bottom portion 322 (input side of the rotation axis Ax1 ) of the outer peripheral surface of the body portion 321 .
- the external teeth 31 are provided at least at the end portion on the opening surface 35 side in the direction of the rotation axis Ax1 of the body portion 321 of the flexible external gear 3 .
- All the plurality of teeth constituting the external teeth 31 have the same shape and are provided at equal intervals over the entire area in the circumferential direction of the outer peripheral surface of the flexible external gear 3 . That is, the pitch circles of the external teeth 31 are perfect circles in plan view when the flexible external gear 3 is not elastically deformed.
- the external teeth 31 are formed only within a constant width from the end edge of the trunk portion 321 on the opening surface 35 side (input side of the rotation axis Ax1). Specifically, the external teeth 31 are formed on the outer peripheral surface of at least the part where the wave generator 4 is fitted in the direction of the rotation axis Ax1 in the trunk part 321 (the end part on the side of the opening surface 35 ). The tooth lines of the external teeth 31 are all parallel to the rotation axis Ax1.
- the tooth line of either the internal teeth 21 of the rigid internal gear 2 or the external teeth 31 of the flexible external gear 3 is parallel to the rotation axis Ax1 . Therefore, in the present embodiment, the "tooth line direction D1" is a direction parallel to the rotation axis Ax1. Moreover, the size of the tooth line direction D1 of the internal teeth 21 is the tooth width of the internal teeth 21. Similarly, the size of the tooth line direction D1 of the external teeth 31 is the tooth width of the external teeth 31. Therefore, the tooth line direction D1 and the tooth width direction mean the same.
- the rotation of the flexible external gear 3 is taken out as the output rotation. Therefore, the output unit 102 of the actuator 100 is attached to the flexible external gear 3 (see FIG. 4 ).
- a plurality of mounting holes 33 for mounting a shaft serving as the output unit 102 are formed in the bottom portion 322 of the flexible external gear 3 .
- a through hole 34 is formed in the central portion of the bottom portion 322 . The periphery of the through hole 34 in the bottom 322 is thicker than other parts of the bottom 322 .
- the flexible external gear 3 configured in this way is disposed inside the rigid internal gear 2 .
- the flexible external gear 3 is connected to the rigid internal gear 2 so that only the end portion on the side opposite to the bottom 322 (the input side of the rotation axis Ax1 ) of the outer peripheral surface of the body portion 321 is inserted into the rigid internal gear 2 . 2 to combine. That is, the portion (the end portion on the side of the opening surface 35 ) into which the wave generator 4 is fitted in the direction of the rotation axis Ax1 of the body portion 321 of the flexible external gear 3 is inserted inside the rigid internal gear 2 .
- external teeth 31 are formed on the outer peripheral surface of the flexible external gear 3
- internal teeth 21 are formed on the inner peripheral surface of the rigid internal gear 2 . Therefore, in a state where the flexible external gear 3 is arranged inside the rigid internal gear 2 , the external teeth 31 and the internal teeth 21 face each other.
- the number of internal teeth 21 of the rigid internal gear 2 is 2N greater than the number of external teeth 31 of the flexible external gear 3 (N is a positive integer).
- N is "1" as an example, and the number of teeth of the flexible external gear 3 (of the external teeth 31 ) is "2" larger than the number of teeth of the rigid internal gear 2 (of the internal teeth 21 ).
- Such a difference in the number of teeth of the flexible external gear 3 and the rigid internal gear 2 defines the reduction ratio of the output rotation to the input rotation in the harmonic gear device 1 .
- the rotation is set so that the center of the outer tooth 31 in the tooth line direction D1 faces the center of the inner tooth 21 in the tooth line direction D1.
- the dimension (tooth width) of the tooth line direction D1 of the external teeth 31 is larger than the dimension (tooth width) of the tooth line direction D1 of the internal teeth 21 . Therefore, in the direction parallel to the rotation axis Ax1 , the internal teeth 21 are accommodated within the range of the tooth line of the external teeth 31 .
- the external teeth 31 protrude in at least one of the tooth line directions D1 with respect to the internal teeth 21 . In the present embodiment, the external teeth 31 protrude toward both sides (the input side and the output side of the rotation axis Ax1 ) in the tooth line direction D1 with respect to the internal teeth 21 .
- the pitch circles of the external teeth 31 that draw a perfect circle are set to be the same as those drawn in the same way.
- the pitch circle of the round internal teeth 21 is one revolution smaller than that. That is, in a state where the flexible external gear 3 is not elastically deformed, the external teeth 31 and the internal teeth 21 are opposed to each other through a gap and are not meshed with each other.
- the trunk portion 321 is bent into an elliptical shape (non-circular shape)
- the The external teeth 31 of the flexible external gear 3 partially mesh with the internal teeth 21 of the rigid internal gear 2 . That is, as shown in FIG. 2A , the body portion 321 (at least the end portion on the opening surface 35 side) of the flexible external gear 3 is elastically deformed into an elliptical shape, thereby, the elliptical shape is located outside the two ends in the major axis direction.
- the teeth 31 mesh with the internal teeth 21 .
- the major diameter of the pitch circle of the external teeth 31 that draws an ellipse coincides with the diameter of the pitch circle of the inner teeth 21 that draws a perfect circle
- the minor diameter of the pitch circle of the outer teeth 31 that draws an ellipse is smaller than that of the inner teeth 21 that draws a perfect circle.
- the diameter of the pitch circle is small.
- the wave generator 4 is also called a wave generator (wave generator), which is a component that makes the flexible external gear 3 deflect, thereby causing the external teeth 31 of the flexible external gear 3 to produce wave motion.
- the wave generator 4 has a non-circular outer peripheral shape, specifically an elliptical shape in plan view.
- the wave generator 4 has a cam 41 having a non-circular shape (here, an elliptical shape) and a bearing 42 fitted to the outer periphery of the cam 41 . That is, with respect to the bearing 42 , the cam 41 having a non-circular shape (elliptical shape) is fitted inside the inner ring 422 of the bearing 42 to combine the cam 41 . Accordingly, the bearing 42 is elastically deformed into a non-circular shape by receiving an external force in the radial direction (direction perpendicular to the rotation axis Ax1 ) from the cam 41 from the inner side toward the outer side of the inner ring 422 . That is, the state where the bearing 42 is not elastically deformed refers to the state where the cam 41 is not combined with the bearing 42 . Conversely, the state where the bearing 42 is elastically deformed refers to the state where the cam 41 and the bearing 42 are combined.
- the cam 41 is a non-circular (here, elliptical) member that is driven to rotate around the input-side rotational axis Ax1.
- the cam 41 has an outer peripheral surface 411 (see FIG. 1B ), and at least the outer peripheral surface 411 is formed of an elliptical metal plate in plan view.
- the cam 41 has a predetermined thickness in the direction of the rotation axis Ax1 (that is, the tooth line direction D1).
- the cam 41 has rigidity equivalent to that of the rigid internal gear 2 .
- the thickness of the cam 41 is smaller (thinner) than that of the rigid internal gear 2 .
- the rotation of the wave generator 4 is used as the input rotation. Therefore, the input unit 103 of the actuator 100 is attached to the wave generator 4 (see FIG. 4 ).
- a cam hole 43 for attaching a shaft serving as the input unit 103 is formed at the center of the cam 41 of the wave generator 4 .
- the bearing 42 has an outer ring 421 , an inner ring 422 and a plurality of rolling elements 423 .
- the bearing 42 is constituted by a deep groove ball bearing using spherical balls as the rolling elements 423 .
- Both the outer ring 421 and the inner ring 422 are annular members. Both the outer ring 421 and the inner ring 422 are annular members formed of a relatively thin metal elastic body (metal plate). In other words, the outer ring 421 and the inner ring 422 have flexibility due to their relatively small (thin) thicknesses. In the present embodiment, both the outer ring 421 and the inner ring 422 have an annular shape that is a perfect circle in plan view when the bearing 42 is not elastically deformed (the cam 41 is not combined with the bearing 42 ). The inner ring 422 is one turn smaller than the outer ring 421 and is disposed inside the outer ring 421. Here, since the inner diameter of the outer ring 421 is larger than the outer diameter of the inner ring 422 , a gap is generated between the inner peripheral surface 425 of the outer ring 421 and the outer peripheral surface of the inner ring 422 .
- a plurality of rolling elements 423 are disposed in a gap between the outer ring 421 and the inner ring 422 .
- the plurality of rolling elements 423 are arranged along the circumferential direction of the outer ring 421 .
- the plurality of rolling elements 423 are all metal balls (balls) of the same shape, and are arranged at equal intervals over the entire area of the outer ring 421 in the circumferential direction.
- the bearing 42 further has a cage, and the plurality of rolling elements 423 are held between the outer ring 421 and the inner ring 422 by the cage, although not particularly shown in the figure.
- the dimension in the width direction (direction parallel to the rotation axis Ax1 ) of the outer ring 421 and the inner ring 422 is the same as the thickness of the cam 41 . That is, the dimensions in the width direction of the outer ring 421 and the inner ring 422 are smaller than the thickness of the rigid internal gear 2 .
- the cam 41 is combined with the bearing 42 , whereby the inner ring 422 of the bearing 42 is fixed to the cam 41 , and the inner ring 422 is elastically deformed into an elliptical shape following the outer peripheral shape of the cam 41 .
- the outer ring 421 of the bearing 42 is elastically deformed into an elliptical shape by being pressed by the inner ring 422 via the plurality of rolling elements 423 .
- both the outer ring 421 and the inner ring 422 of the bearing 42 are elastically deformed into an elliptical shape.
- the outer ring 421 and the inner ring 422 form elliptical shapes that are similar to each other.
- the outer peripheral shape of the wave generator 4 having an elliptical shape viewed from the input side of the rotation axis Ax1 is accompanied by cams in such a manner that the major axis rotates around the rotation axis Ax1. 41 rotations vary.
- the wave generator 4 configured in this way is disposed inside the flexible external gear 3 .
- the flexible external gear 3 is connected to the wave generator 4 in such a manner that only the end portion of the inner peripheral surface 301 of the trunk portion 321 on the side opposite to the bottom 322 (opening surface 35 side) is fitted into the wave generator 4 . combination.
- the bearing 42 of the wave generator 4 is arranged between the outer peripheral surface 411 of the cam 41 and the inner peripheral surface 301 of the flexible external gear 3 .
- the outer diameter of the outer ring 421 in the state where the bearing 42 is not elastically deformed is the same as that of the flexible external gear 3 (body portion 321 ) in the same state where the elastic deformation is not generated. same inner diameter. Therefore, the outer peripheral surface 424 of the outer ring 421 of the wave generator 4 is in contact with the inner peripheral surface 301 of the flexible external gear 3 over the entire circumference of the bearing 42 in the circumferential direction. Accordingly, in a state where the flexible external gear 3 is elastically deformed (a state where the wave generator 4 and the flexible external gear 3 are combined), the trunk portion 321 is bent into an elliptical shape (non-circular shape). In this state, the flexible external gear 3 is fixed to the outer ring 421 of the bearing 42 .
- the body part 321 of the flexible external gear 3 is bent into an elliptical shape (non-circular shape), so that the external teeth 31 of the flexible external gear 3 are relatively
- the internal teeth 21 of the rigid internal gear 2 mesh locally. That is, when (the trunk portion 321 of) the flexible external gear 3 is elastically deformed into an elliptical shape, two external teeth 31 corresponding to both ends of the elliptical shape in the long-axis direction mesh with the internal teeth 21 .
- the rotation of the cam 41 is not transmitted to the outer ring 421 and the flexible external gear 3, but the elastic deformation of the inner ring 422 is transmitted to the outer ring 421 via a plurality of rolling elements 423 and flexible external gear 3 . Therefore, the outer peripheral shape of the elliptical flexible external gear 3 viewed from the input side of the rotation axis Ax1 changes with the rotation of the cam 41 so that its major axis rotates around the rotation axis Ax1 .
- a wave motion occurs in the external teeth 31 formed on the outer peripheral surface of the flexible external gear 3 .
- the meshing position of the internal teeth 21 and the external teeth 31 moves along the circumferential direction of the rigid internal gear 2 and generates relative rotation between the flexible external gear 3 and the rigid internal gear 2 . That is, the external teeth 31 mesh with the internal teeth 21 at both ends in the direction of the major axis of the elliptical shape formed by the flexible external gear 3 (the body portion 321 of the flexible external gear 3 ), so that the rotation axis passes through the major axis of the ellipse.
- Ax1 rotates around the center to move the meshing position of the internal teeth 21 and the external teeth 31 .
- the flexible external gear 3 is deformed as the wave generator 4 rotates around the rotation axis Ax1, and a part of the external teeth 31 and a part of the internal teeth 21 are separated. Mesh, and make the flexible external gear 3 rotate according to the tooth number difference between the flexible external gear 3 and the rigid internal gear 2.
- the difference in the number of teeth between the flexible external gear 3 and the rigid internal gear 2 defines the reduction ratio of the output rotation to the input rotation in the harmonic gear device 1 . That is, when the number of teeth of the rigid internal gear 2 is "V1" and the number of teeth of the flexible external gear 3 is "V2", the speed reduction ratio R1 is expressed by the following formula 1.
- the deceleration The ratio R1 is "35".
- the cam 41 rotates clockwise around the rotation axis Ax1 once (360 degrees) when viewed from the input side of the rotation axis Ax1
- the flexible external gear 3 rotates counterclockwise around the rotation axis Ax1.
- the amount corresponding to the tooth number difference "2" that is, 10.3 degrees).
- such a high reduction ratio R1 can be realized by combining the first-stage gears (the rigid internal gear 2 and the flexible external gear 3 ).
- the harmonic gear device 1 only needs to include at least a rigid internal gear 2, a flexible external gear 3, and a wave generator 4.
- a rigid internal gear 2 For example, it may further include the spline bushing described in the column "(3.2) Actuator”. 113 etc. as structural elements.
- the actuator 100 of the present embodiment includes the harmonic gear device 1 of the present embodiment, a drive source 101 , and an output unit 102 . That is, the actuator 100 includes a drive source 101 and an output unit 102 in addition to the rigid internal gear 2 , the flexible external gear 3 , and the wave generator 4 constituting the harmonic gear device 1 .
- the actuator 100 includes the harmonic gear unit 1 , the drive source 101 , and the output unit 102 , and includes an input unit 103 , an input side case 111 , an output side case 112 , a spline bush 113 , and a spacer 114 . , the first stopper 115 , the second stopper 116 and the mounting plate 117 .
- the actuator 100 further includes input side bearings 118 , 119 , an input side oil seal 120 , output side bearings 121 , 122 , and an output side oil seal 123 .
- the drive source 101, the input side oil seal 120 and the output side oil seal 123 in the actuator 100 are made of stainless steel, cast iron, carbon steel for mechanical structure, chromium molybdenum steel, phosphor bronze or aluminum bronze. and other metals.
- the driving source 101 is a power generation source such as a motor (electric motor).
- the power generated by the driving source 101 is transmitted to the cam 41 of the wave generator 4 in the harmonic gear device 1 .
- the drive source 101 is connected to a shaft serving as the input unit 103 , and power generated by the drive source 101 is transmitted to the cam 41 via the input unit 103 . Thereby, the drive source 101 can rotate the cam 41 .
- the output unit 102 is a cylindrical shaft arranged along the rotation axis Ax2 on the output side.
- the central axis which is the axis of the output unit 102 coincides with the rotation axis Ax2.
- the output unit 102 is held by the output-side housing 112 so as to be rotatable about the rotation axis Ax2.
- the output part 102 is fixed to the bottom 322 of the main body part 32 of the flexible external gear 3 , and rotates together with the flexible external gear 3 around the rotation axis Ax2 . That is, the output unit 102 takes out the rotational force of the flexible external gear 3 as an output.
- the input unit 103 is a cylindrical shaft arranged along the rotation axis Ax1 on the input side.
- the central axis that is the axis of the input unit 103 coincides with the rotation axis Ax1.
- the input unit 103 is held by the input side case 111 so as to be rotatable about the rotation axis Ax1.
- the input unit 103 is attached to the cam 41 of the wave generator 4, and rotates together with the cam 41 around the rotation axis Ax1. That is, the input unit 103 transmits power (rotational force) generated by the driving source 101 to the cam 41 as an input.
- the input side rotation axis Ax1 and the output side rotation axis Ax2 are located on the same straight line, so the input unit 103 and the output unit 102 are located on the same axis.
- the input side housing 111 holds the input unit 103 rotatably via input side bearings 118 and 119 .
- a pair of input-side bearings 118 and 119 are arranged along the rotation axis Ax1 at intervals.
- the shaft serving as the input part 103 passes through the input side housing 111, and the front end of the input part 103 extends from the input side end surface (the right end surface in FIG. 4 ) of the rotation axis Ax1 in the input side housing 111 protrude.
- the input side oil seal 120 closes the gap between the input side end surface of the rotation shaft Ax1 of the input side housing 111 and the input part 103 .
- the output side housing 112 holds the output unit 102 rotatably via output side bearings 121 and 122 .
- a pair of output-side bearings 121 and 122 are arranged along the rotation axis Ax2 at intervals.
- the output side oil seal 123 closes the gap between the output side end surface of the output side housing 112 on the output side of the rotation shaft Ax1 and the output portion 102 .
- the input-side case 111 and the output-side case 112 sandwich the rigid internal gear of the harmonic gear unit 1 from both sides in the direction parallel to the rotation axis Ax1, that is, the tooth line direction D1. 2 in combination with each other.
- the input-side housing 111 contacts the rigid internal gear 2 from the input side of the rotation axis Ax1
- the output-side housing 112 contacts the rigid internal gear 2 from the output side of the rotation axis Ax1 .
- the input-side housing 111 passes through the plurality of fixing holes 22 with the rigid internal gear 2 sandwiched between the output-side housing 112 and is fastened and fixed to the output-side housing 112 by screws (bolts). .
- the input-side housing 111, the output-side housing 112, and the rigid internal gear 2 are integrated with each other.
- the rigid internal gear 2 constitutes the outer contour of the actuator 100 together with the input side housing 111 and the output side housing 112 .
- the spline bushing 113 is a cylindrical member for coupling the shaft serving as the input unit 103 to the cam 41 .
- the spline bushing 113 is inserted into the cam hole 43 formed in the cam 41 , and the shaft serving as the input unit 103 is inserted into the spline bushing 113 so as to pass through the spline bushing 113 .
- the movement of the spline bush 113 relative to both the cam 41 and the input unit 103 is restricted in the rotational direction centered on the rotational axis Ax1, and the spline bush 113 can at least move in a direction parallel to the rotational axis Ax1. Move relative to the input unit 103 .
- a spline connection structure is realized as a connection structure between the input unit 103 and the cam 41 .
- the cam 41 can move along the rotation axis Ax1 with respect to the input part 103, and rotates together with the input part 103 centering on the rotation axis Ax1.
- the spacer 114 is a member that fills the gap between the spline bushing 113 and the cam 41 .
- the first stopper 115 is a component that prevents the spline bushing 113 from coming off the cam 41 .
- the first stopper 115 is formed of, for example, an E-ring, and is attached at a position on the input side of the rotation axis Ax1 when viewed from the cam 41 in the spline bush 113 .
- the second stopper 116 is a member that prevents the input portion 103 from coming off the spline bush 113 .
- the second stopper 116 is formed of, for example, an E-ring, and is attached to the input portion 103 so as to be in contact with the spline bush 113 from the output side of the rotation axis Ax1.
- the mounting plate 117 is a member for mounting the shaft serving as the output unit 102 on the bottom portion 322 of the flexible external gear 3 .
- the mounting plate 117 passes through the plurality of mounting holes 33 while sandwiching the peripheral portion of the through hole 34 in the bottom 322 with the flange portion of the output unit 102, and is screwed relative to the flange portion. (Bolts) are fastened.
- the shaft serving as the output unit 102 is fixed to the bottom portion 322 of the flexible external gear 3 .
- the lubricant Lb1 is sealed inside the outer contour of the actuator 100 constituted by the input-side housing 111 , the output-side housing 112 , and the rigid internal gear 2 . That is, in the space surrounded by the input-side case 111, the output-side case 112, and the rigid internal gear 2, there is a "lubricant reservoir" capable of storing the liquid or gel-like lubricant Lb1.
- the meshing portion of the internal teeth 21 and the external teeth 31, and between the outer ring 421 and the inner ring 422 of the bearing 42, etc. are injected with a liquid or a gel.
- the lubricant Lb1 is liquid lubricating oil (oil).
- the lubricant Lb1 also enters the gap X1 between the outer ring 421 (outer peripheral surface 424 ) of the bearing 42 and the flexible external gear 3 .
- the liquid level of the lubricant Lb1 is located below the lower ends of the output side bearings 121 and 122 , only in the lower portion ( The lower part in the vertical direction) stores the lubricant Lb1. Therefore, only a part in the rotational direction of the external teeth 31 and the outer ring 421 of the bearing 42 and the like are immersed in the lubricant Lb1 in the state shown in FIG. 4 . From the state, when the output unit 102 rotates with the rotation of the input unit 103, the outer ring 421 and the flexible external gear 3 also rotate around the rotation axis Ax1. As a result, the outer teeth 31, the outer ring 421 of the bearing 42, etc. The entirety of the direction of rotation is immersed in lubricant Lb1.
- FIG. 5A is a cross-sectional view focusing only on the bearing 42 and the flexible external gear 3 in the range corresponding to FIG. 1B
- FIG. 5B is a schematic view of the inner peripheral surface 301 of the flexible external gear 3 viewed from the bearing 42 side in FIG. 5A
- the outer ring 421 of the bearing 42 and the through-hole H1 are shown by imaginary lines (two-dot chain line).
- the through hole H1 includes only the first of the “first through hole” provided in the outer ring 421 and the “second through hole” provided in the external teeth 31 of the flexible external gear 3 .
- the through hole H1 provided on the outer ring 421 penetrates through the outer ring 421 in the radial direction.
- one opening surface of the through hole H1 faces the gap X1 between the outer ring 421 and the flexible external gear 3
- the other opening surface of the through hole H1 opens to the inner peripheral surface 425 of the outer ring 421 .
- one end of the through hole H1 is connected to the gap X1 between the outer ring 421 and the flexible external gear 3 , and the other end is connected to the space between the inner peripheral surface 425 of the outer ring 421 and the outer peripheral surface of the inner ring 422 . Therefore, the space between the inner peripheral surface 425 of the outer ring 421 on which the plurality of rolling elements 423 are arranged and the outer peripheral surface of the inner ring 422 is separated from the gap X1 between the outer ring 421 and the flexible external gear 3 via the through hole H1. connected.
- the through hole H1 is a circular hole having a circular (perfect circle) cross-sectional shape perpendicular to the radial direction.
- the center line of the through hole H1 is parallel to the radial direction. That is, the through hole H1 is a hole extending straight in the radial direction from the inner peripheral surface 425 to the outer peripheral surface 424 of the outer ring 421 .
- the cross-sectional shape of the through hole H1 perpendicular to the radial direction has the same shape over the entire length of the through hole H1 in the radial direction. That is, a cylindrical space is formed inside the through-hole H1.
- the diameter of the through hole H1 (Refer to FIG. 5B ) is the diameter of each of the plurality of rolling elements 423 (Refer to FIG. 5A ), whichever is smaller, is 0.1 times or less, or 1.0 mm or less.
- the diameter of the through-hole H1 mentioned here is When the cross-sectional shape of the through-hole H1 is a perfect circle, it is the diameter, and when the cross-sectional shape of the through-hole H1 is non-circular (for example, elliptical), it refers to the dimension in the minor axis direction.
- the diameter of the through hole H1 is the hole diameter of the rolling element 423 0.1 times or less and 1.0mm or less. According to the hole diameter of the through-hole H1 such
- the lubricant Lb1 can be efficiently supplied to the gap X1 between the outer ring 421 and the flexible external gear 3 through the through hole H1 .
- the space between the outer ring 421 and the inner ring 422 is connected to the gap X1 between the outer ring 421 and the flexible external gear 3 through the through hole H1, so the space between the outer ring 421 and the inner ring 422
- the lubricant Lb1 is supplied to the gap X1 through the through hole H1.
- the flow of the lubricant Lb1 in the through hole H1 is schematically indicated by dotted arrows.
- the rolling elements 423 function as a pump and can send the lubricant Lb1 between the outer ring 421 and the inner ring 422 into the gap X1 through the through hole H1 .
- “lubricant depletion” in which the lubricant Lb1 is insufficient or exhausted at the contact portion between the outer ring 421 and the flexible external gear 3 is prevented, and the occurrence of fretting wear is easily suppressed.
- the harmonic gear device 1 of the present embodiment includes a pump structure for supplying the lubricant Lb1 to the gap X1 through the through hole H1 during the relative rotation of the flexible external gear 3 with respect to the rigid internal gear 2 .
- the plurality of rolling elements 423 of the bearing 42 roll in the circumferential direction of the outer ring 421 , so the plurality of rolling elements 423 function as a pump as described above. That is, a plurality of rolling elements 423 constitute a pump structure.
- the rolling elements 423 since the rolling elements 423 roll in the space between the outer ring 421 and the inner ring 422 , the pressure in the space between the outer ring 421 and the inner ring 422 increases, so that the pressure existing in the outer ring 421 The lubricant Lb1 between the inner ring 422 is squeezed out to the side of the gap X1 through the through hole H1.
- the rolling elements 423 constitute a positive displacement pump such as a vane pump, and squeeze out the lubricant Lb1 to the gap X1 side with sufficient pressure, so that sufficient lubricant Lb1 can be easily supplied into the gap X1.
- the opening surface of the through hole H1 on the inner peripheral surface 425 side of the outer ring 421 opens to the bottom surface of the rolling groove 426 formed in the inner peripheral surface 425 of the outer ring 421 . That is, at the center of the inner peripheral surface 425 of the outer ring 421 in the width direction (tooth line direction D1), a rolling groove 426 extending in the circumferential direction over the entire circumference of the outer ring 421 is formed, and a plurality of rolling elements 423 roll along the rolling groove 426. . Similar rolling grooves 427 are formed on the outer peripheral surface of the inner ring 422 , and a plurality of rolling elements 423 are sandwiched and held between these rolling grooves 426 , 427 facing each other.
- the through holes H1 are arranged in the range where the rolling grooves 426 are formed in the width direction (tooth line direction D1 ) of the outer ring 421 so as to open to the bottom surface of the rolling grooves 426 of the outer ring 421 .
- the through-hole H1 is arrange
- the through hole H1 is arranged at the center of the rolling groove 426 in the width direction (tooth line direction D1) of the outer ring 421 .
- the centers of the plurality of rolling elements 423 pass through the opening surface of the through hole H1, so that when the rolling elements 423 rotate, the rolling elements 423 efficiently function as pumps, and the lubricant can be easily pumped through the through hole H1.
- Lb1 is fed into gap X1.
- the outer ring 421 and the flexible external gear 3 are in contact mainly at both ends of the outer ring 421 in the width direction (tooth line direction D1 ).
- the through hole H1 is formed at the center of the outer ring 421 in the width direction (tooth line direction D1), so that when the outer ring 421 comes into contact with the flexible external gear 3, the outer ring 421 is less likely to be damaged due to the through hole H1. reduction in strength.
- the cross-sectional shape of the rolling grooves 426 and 427 perpendicular to the circumferential direction of the outer ring 421 is formed in an arc shape.
- the curvature of the circular arc in the cross-sectional shape of the rolling grooves 426 and 427 is larger than the curvature of each of the plurality of rolling elements 423 .
- the radius of curvature of the arc in the cross-sectional shape of the rolling grooves 426 and 427 is smaller than the radius of curvature of the rolling element 423 .
- each rolling element 423 is supported at four points in total, which are both end edges of the rolling groove 426 in the outer ring 421 in the width direction (tooth line direction D1 ) and the inner ring 422. Both ends of the rolling groove 427 in the width direction (tooth line direction D1).
- the rolling elements 423 are supported by a pair of end edges that are diagonally opposed to each other.
- the opening surface of the through-hole H1 formed in the bottom surface of the rolling groove 426 faces the surface of the rolling element 423 with the above-mentioned gap therebetween.
- the present embodiment in the radial direction, between the tracks of the plurality of rolling elements 423 and the opening surface of the outer ring 421 on the inner peripheral surface 425 side of the (first) through hole H1 of the outer ring 421 . Make sure that the distance exceeds the specified value.
- At least one of the outer ring 421 and the flexible external gear 3 has a groove 303 extending at least in the circumferential direction of the outer ring 421 on the surface facing the gap X1 .
- a plurality of grooves 303 are formed on the inner peripheral surface 301 of the flexible external gear 3 facing the gap X1.
- the grooves 303 are formed using processing marks generated by honing on the inner peripheral surface 301 of the flexible external gear 3 . That is, in the honing process, mesh-shaped (twill-shaped) scratch marks called "cross-hatching" are left on the polished surface.
- the cross hatching is formed by a plurality of grooves 303 intersecting at a crossing angle of 20° to 60°, and is formed on substantially the entire area of the inner peripheral surface 301 of the honed flexible external gear 3 .
- the plurality of grooves 303 extend in both the width direction of the outer ring 421 (tooth line direction D1 ) and the circumferential direction of the outer ring 421 on the inner peripheral surface 301 of the flexible external gear 3 .
- the lubricant Lb1 As the lubricant Lb1 penetrates into these plurality of grooves 303, the lubricant Lb1 easily spreads over a relatively large range in the gap X1. That is, the lubricant Lb1 supplied to the gap X1 between the outer ring 421 and the flexible external gear 3 through the through hole H1 easily passes through the groove 303 and diffuses in the gap X1 in the circumferential direction of the outer ring 421 . In particular, if the fine grooves 303 are formed by honing or the like, the lubricant Lb1 sent from the through hole H1 into the gap X1 can be expected to spread in the circumferential direction of the outer ring 421 due to, for example, capillarity.
- the lubricant Lb1 easily spreads not only in the circumferential direction of the outer ring 421 but also in the width direction of the outer ring 421 (tooth line direction D1 ) in the cross-hatched mesh grooves 303 .
- At least the outer peripheral surface 424 of the outer ring 421 and the inner peripheral surface 301 of the flexible external gear 3 have no oil repellency so that the lubricant Lb1 easily penetrates into the gap X1 between the outer ring 421 and the flexible external gear 3 .
- the through hole H1 includes a plurality of first through holes provided in the outer ring 421 so as to be aligned in the circumferential direction of the outer ring 421 .
- the through-holes H1 are formed only by the first through-holes provided in the outer ring 421 , so all the plurality of through-holes H1 are arranged in a row in the circumferential direction of the outer ring 421 .
- three through-holes H1 are provided in the outer ring 421 .
- the lubricant Lb1 can be supplied through the gap X1 between the outer ring 421 and the flexible external gear 3 through the through hole H1 at a plurality of places (three places in the present embodiment) in the circumferential direction of the outer ring 421 .
- the interval P1 of the plurality of through holes H1 is a value other than a multiple of the interval P2 of the plurality of rolling elements 423 .
- the bearing 42 has 26 rolling elements 423 and the outer ring 421 has three through holes H1.
- the 26 rolling elements 423 and the three through-holes H1 are provided at equal intervals (equal intervals) in the circumferential direction of the outer ring 421 .
- the interval P1 is a value expressed by the distance between the centers of two through-holes H1 adjacent to each other in the circumferential direction of the outer ring 421 by an angle around the rotation axis Ax1.
- the interval P2 is the distance between the centers of the outer ring 421 and The distance between the centers of two adjacent rolling elements 423 in the circumferential direction is a value represented by an angle around the rotation axis Ax1.
- the rolling elements 423 do not exist at positions corresponding to all the through holes H1 at the same time. That is, in a state where one rolling element 423 is located at a position corresponding to one through-hole H1, the rolling element 423 is not located at a position corresponding to the other two through-holes H1. Therefore, in the harmonic gear device 1 of the present embodiment, it is possible to avoid a relatively large impact that may occur when a plurality of rolling elements 423 are inserted (or pulled out) at the same time through the plurality of through holes H1, and it is easy to protect the outer ring 421 and The rolling elements 423 and the like are protected from impact. In addition, the pumping action by the rolling of the rolling elements 423 is also more efficient than when the rolling elements 423 are positioned on all the through holes H1 at the same time.
- the surface hardness of the internal teeth 21 is lower than that of the external teeth 31 . That is, the hardness of the surface of the external teeth 31 is higher (harder) than the surface of the internal teeth 21 .
- the "hardness” mentioned in the present disclosure refers to the degree of hardness of an object, and the hardness of a metal is represented by, for example, the size of a depression formed by pushing a steel ball with a certain pressure.
- examples of the hardness of metal include Rockwell hardness (HRC), Brinell hardness (HB), Vickers hardness (HV), or Shore hardness (Hs).
- HRC Rockwell hardness
- HB Brinell hardness
- HV Vickers hardness
- Hs Shore hardness
- the hardness is represented by Vickers hardness (HV).
- As means for increasing (hardening) the hardness of a metal member there are, for example, alloying or heat treatment.
- the surface of the external teeth 31 of the flexible external gear 3 is made of a material with high hardness and high toughness (toughness), and the internal teeth 21 of the rigid internal gear 2 are made of a material with a hardness lower than that of the external teeth 31.
- the external teeth 31 are made of nickel-chromium-molybdenum steel specified as "SNCM439" in Japanese Industrial Standards (JIS: Japanese Industrial Standards) subjected to heat treatment (quenching and tempering).
- Spherical graphite cast iron specified as "FCD800-2" in Japanese Industrial Standards (JIS) is used for the internal teeth 21 .
- the surface hardness of the internal teeth 21 which is relatively low in hardness compared with the external teeth 31 is HV350 or less.
- the surface hardness of the internal teeth 21 is selected within the range of HV250 or more and less than HV350.
- the lower limit of the surface hardness of the internal teeth 21 is not limited to HV250, and may be, for example, HV150, HV160, HV170, HV180, HV190, HV200, HV210, HV220, HV230, or HV240.
- the upper limit of the surface hardness of the internal teeth 21 is not limited to HV350, and may be, for example, HV360, HV370, HV380, HV390, HV400, HV410, HV420, HV430, HV440, or HV450.
- the surface hardness of the external teeth 31 is selected within the range of not less than HV380 and not more than HV450.
- the lower limit of the surface hardness of the external teeth 31 is not limited to HV380, and may be, for example, HV280, HV290, HV300, HV310, HV320, HV330, HV340, HV350, HV360, or HV370.
- the upper limit of the surface hardness of the internal teeth 21 is not limited to HV450, and may be, for example, HV460, HV470, HV480, HV490, HV500, HV510, HV520, HV530, HV540, or HV550.
- the difference between the surface hardness of the internal teeth 21 and the surface hardness of the external teeth 31 is HV50 or more. That is, the surface hardness of the external teeth 31 is set to be HV50 or more higher than the surface hardness of the internal teeth 21 . In short, for example, if the surface hardness of the internal teeth 21 is HV350, the surface hardness of the external teeth 31 is HV400 or more. In addition, if the surface hardness of the external teeth 31 is HV380, the surface hardness of the internal teeth 21 is HV330 or less.
- the difference between the surface hardness of the internal teeth 21 and the surface hardness of the external teeth 31 is not limited to HV50 or more, and may be, for example, HV20 or more, HV30 or more, or HV40 or more. Furthermore, preferably, the difference between the surface hardness of the internal teeth 21 and the surface hardness of the external teeth 31 is large, for example, more preferably HV60 or higher, HV70 or higher, HV80 or higher, HV90 or higher, or HV100 or higher. If the difference between the surface hardness of the internal teeth 21 and the surface hardness of the external teeth 31 is HV100 or more, when the surface hardness of the internal teeth 21 is HV350, the surface hardness of the external teeth 31 is HV450 or more.
- the surface hardness of the internal teeth 21 is set lower than the surface hardness of the external teeth 31 . Therefore, when the harmonic gear unit 1 is in operation, if the internal teeth 21 come into contact with the external teeth 31 , the internal teeth 21 having a relatively lower surface hardness than the external teeth 31 are actively worn. When the two parts (the inner teeth 21 and the outer teeth 31 ) with different surface hardnesses contact, the wear of the relatively soft inner teeth 21 is accelerated, and the wear of the relatively hard outer teeth 31 is suppressed.
- the tooth surfaces of the internal teeth 21 are moderately worn, thereby increasing the real contact area between the internal teeth 21 and the external teeth 31, and reducing the surface pressure, thereby The wear of the outer teeth 31 is not easy to occur.
- the surface hardness of the internal teeth 21 is HV350 or less as in the present embodiment, even if the foreign matter X1 is generated due to chipping or wear of the internal teeth 21 due to the contact between the internal teeth 21 and the external teeth 31, the foreign matter X1 will not Relatively soft.
- the surface hardness of the internal teeth 21 and the external teeth 31 does not have to be specified by Vickers hardness (HV), and other hardnesses can also be used, such as Rockwell hardness (HRC), Brinell hardness (HB) or Shore hardness (Hs) , to specify the surface hardness of the internal teeth 21 and the external teeth 31 .
- HV Vickers hardness
- HRC Rockwell hardness
- HB Brinell hardness
- Hs Shore hardness
- the surface hardness of the internal teeth 21 is HRC30 or less.
- the surface hardness of the internal teeth 21 is selected within the range of HRC20 to less than HRC30.
- the lower limit of the surface hardness of the internal teeth 21 is not limited to HRC20, and may be, for example, HRC10, HRC15, or HRC25.
- the upper limit of the surface hardness of the internal teeth 21 is not limited to HRC30, and may be, for example, HRC35, HRC40, or HRC45.
- the surface hardness of the external tooth 31 is HRC40 or more.
- the surface hardness of the external teeth 31 is selected within the range of not less than HRC40 and not more than HRC60.
- the lower limit value of the surface hardness of the external tooth 31 is not limited to HRC40, For example, HRC30, HRC35, etc. may be sufficient.
- the upper limit of the surface hardness of the external teeth 31 is not limited to HRC60, and may be, for example, HRC50, HRC55, HRC65, HRC70, or HRC75.
- the internal teeth 21 have a dedendum 212 and a dedendum 213 .
- the internal teeth 21 are provided on the inner peripheral surface of the rigid internal gear 2, so the dedendum 212 of the internal teeth 21 corresponds to the inner peripheral surface of the rigid internal gear 2, and the addendum 213 faces inward from the inner peripheral surface of the rigid internal gear 2 (the rigid internal gear 2 center of gear 2) protrudes.
- the external teeth 31 have a dedendum 312 and a dedendum 313 .
- the external teeth 31 are arranged on the outer peripheral surface of the flexible external gear 3 (the body part 321), so the dedendum 312 of the external teeth 31 is equivalent to the outer peripheral surface of the flexible external gear 3 (the body part 321), and the addendum 313 is from the flexible external gear 3 (the body part 321).
- the outer peripheral surface of (the body part 321 of) the external gear 3 protrudes outward.
- the crests 313 of the external teeth 31 are inserted between adjacent pairs of crests 213 of the internal teeth 21 , so that the internal teeth 21 and the external teeth 31 are meshed.
- the dedendum 313 of the external tooth 31 is opposed to the dedendum 212 of the internal tooth 21
- the dedendum 213 of the internal tooth 21 is opposed to the dedendum 312 of the external tooth 31 .
- the internal teeth 21 have chamfered portions 211 at both end portions in the tooth line direction D1.
- the chamfered portion 211 is a C surface obtained by reducing the protruding amount of the internal teeth 21 toward both sides in the tooth line direction D1 , and is basically a portion that does not contribute to the meshing of the internal teeth 21 and the external teeth 31 . That is, the chamfered portion 211 of the internal tooth 21 does not contact the external tooth 31 even at the meshing position of the internal tooth 21 and the external tooth 31 .
- the external teeth 31 have chamfered portions 311 at both end portions in the tooth line direction D1.
- the chamfered portion 311 is a C surface obtained by reducing the protruding amount of the internal teeth 21 toward both sides in the tooth line direction D1 , and basically does not contribute to the meshing of the internal teeth 21 and the external teeth 31 . That is, the chamfered portion 311 of the external tooth 31 does not contact the internal tooth 21 even at the meshing position between the internal tooth 21 and the external tooth 31 .
- the internal teeth 21 of the rigid internal gear 2 have tooth line trimming portions 210 . That is, in the harmonic gear device 1 , at least the internal teeth 21 are subjected to tooth line dressing.
- the tooth line trimming portion 210 of the internal teeth 21 is provided at at least one end in the tooth line direction D1.
- the inner tooth 21 has the tooth line trimming portion 210 at least one end portion of the internal tooth 21 in the tooth line direction D1.
- the tooth line trimming portion 210 is provided at both ends of the internal tooth 21 in the tooth line direction D1.
- the “line trimming” mentioned in the present disclosure refers to the trimming in the tooth line direction D1 , and the tooth line trimming portion 210 of the inner tooth 21 is a part of the inner tooth 21 where the tooth line trimming is performed. According to tooth line trimming, it is possible to give intentional protrusions or change the helix angle to the regular tooth line shape of the gear.
- Typical processing for tooth line dressing includes crowning and relief processing (end undulation).
- the crowning process refers to processing that rounds the center portion in the tooth line direction D1 of the gear such that the center portion in the tooth line direction D1 becomes convex.
- Relief processing is a processing method that moderately avoids both ends in the tooth line direction D1.
- tooth relief processing is processing performed while avoiding only both ends in the tooth line direction D1.
- tooth contact position with the mating gear can be brought closer to the center in the tooth line direction D1.
- the external teeth 31 of the flexible external gear 3 also have tooth line trimming portions 310 . That is, in the harmonic gear device 1 , not only the internal teeth 21 but also the external teeth 31 are subjected to tooth line dressing.
- the tooth line trimming portion 210 of the external teeth is provided at at least one end portion in the tooth line direction D1.
- the external teeth 31 have the tooth line trimming portion 310 on at least one end portion of the external teeth 31 in the tooth line direction D1.
- the tooth line trimming portion 310 is provided at both ends of the external teeth 31 in the tooth line direction D1.
- the harmonic gear device 1 of the present embodiment at least one of the inner teeth 21 and the outer teeth 31 has the tooth line trimmers 210 , 310 .
- the tooth line trimmers 210 and 310 can prevent stress concentration due to excessive tooth contact between the internal teeth 21 and the external teeth 31 , and as a result, the tooth contact between the internal teeth 21 and the external teeth 31 can be improved. Therefore, foreign matter caused by chipping or abrasion due to contact between the internal teeth 21 and the external teeth 31 is less likely to occur, and it is possible to realize the harmonic gear device 1 that is less likely to cause a decrease in reliability.
- the cause of such fretting wear is considered to be "lubricant depletion" in which the lubricant Lb1 is insufficient or exhausted at the contact portion between the flexible external gear 3 and the wave generator 4 . That is, it can be estimated that the contact portion between the flexible external gear 3 and the wave generator 4 is originally in an environment where fretting wear is likely to occur due to microvibration between the contact surfaces in a state where the lubricant Lb1 is insufficient. environment. Specifically, the following two reasons can be considered as the reason why such an environment where fretting wear easily occurs.
- the first reason is that the flexible external gear 3 frequently repeats elastic deformation. That is to say, during one rotation of the cam 41 of the wave generator 4, the flexible external gear 3 repeats two elastic deformations with the long axis of the ellipse in one direction (for example, the vertical direction in FIG. 2A ). Therefore, when the cam 41 rotates at a high speed, the flexible external gear 3 is elastically deformed repeatedly at high speed, and vibration is likely to be generated at the contact portion between the flexible external gear 3 and the wave generator 4 as the elastic deformation is repeated. As a result, microvibration occurs in a state where the lubricant Lb1 is insufficient at the contact portion between the flexible external gear 3 and the wave generator 4 .
- the end of the flexible external gear 3 on the opening surface 35 side in the direction of the rotation axis Ax1 deforms more than the end on the bottom 322 side. , and become a shape closer to an ellipse shape. Therefore, in the state where the flexible external gear 3 is elastically deformed, the inner peripheral surface 301 of the body portion 321 of the flexible external gear 3 includes a tapered surface inclined by an inclination angle ⁇ 1 with respect to the rotation axis Ax1 as shown in FIG. 6 . 302. In addition, the inclination angle ⁇ 1 of the tapered surface 302 changes according to the elastic deformation of the flexible external gear 3.
- the inclination angle ⁇ 1 of the tapered surface 302 is the largest at both ends of the ellipse in the major axis direction ("major axis side" in FIG. At both ends in the minor axis direction of the ellipse, the inclination angle ⁇ 1 of the tapered surface 302 is the smallest ("minor axis side" in FIG. 6). Therefore, the inclination angle ⁇ 1 of the tapered surface 302 also changes at high speed due to the frequent and repeated elastic deformation of the flexible external gear 3, whereby the inner peripheral surface 301 (tapered surface 302) of the flexible external gear 3 repeatedly impacts the outer ring. The outer peripheral surface 424 of 421 vibrates in a manner. As a result, fretting wear tends to occur at the contact portion between the flexible external gear 3 and the wave generator 4 due to the generation of microvibrations accompanying impacts.
- the second reason is that the relative rotation between the outer ring 421 and the flexible external gear 3 is low speed. That is, due to the influence of the gap X1 between the outer ring 421 and the flexible external gear 3, the cam 41 of the wave generator 4 rotates and the outer ring 421 and the flexible external gear 3 are elastically deformed. Relative rotation may occur between 421 and the flexible external gear 3 . However, this relative rotation is, for example, a low-speed rotation of about a few thousandths or a few hundredths of the rotation speed of the cam 41 .
- the lubricant Lb1 cannot be expected to flow due to the relative rotation, and it is disadvantageous to form a film (oil film) of the lubricant Lb1 at the contact portion. environment of. However, since relative rotation may occur between the outer ring 421 and the flexible external gear 3 , the outer ring 421 and the flexible external gear 3 rub against each other, creating an environment where fretting wear easily occurs.
- the lubricant Lb1 can be forcibly supplied to the contact portion between the outer ring 421 and the flexible external gear 3 in an environment where fretting wear is likely to occur. That is, the harmonic gear device 1 can supply the lubricant Lb1 to the contact portion of the flexible external gear 3 and the wave generator 4 through the through hole H1 , thereby maintaining sufficient lubricant Lb1 at the contact portion. In this way, occurrence of fretting wear is suppressed by preventing "lubricant depletion" in which the lubricant Lb1 is insufficient or exhausted at the contact portion between the outer ring 421 and the flexible external gear 3 .
- the harmonic gear device 1 of the present embodiment troubles caused by fretting wear between the outer ring 421 and the flexible external gear 3 are less likely to occur, and it is possible to provide harmonics that are less likely to cause a decrease in reliability.
- gear unit 1 since the harmonic gear device 1 of the present embodiment is less prone to decrease in reliability especially when used for a long time, the transmission efficiency, longer life, and higher performance of the harmonic gear device 1 are further brought about.
- the harmonic gear device 1 since the lubricant Lb1 is supplied to the contact portion between the outer ring 421 and the flexible external gear 3, it is difficult to hinder the deformation followability of the flexible external gear 3, leading to an improvement in power transmission efficiency, and Longer life due to reduction of the load applied to the bearing 42 and the like. Furthermore, since the wear powder generated by fretting wear is prevented from entering the bearing 42 and the like, the occurrence of damage starting from the indentation formed by the bite of the wear powder (surface origin type peeling) is also reduced. Therefore, as the harmonic gear device 1 , a longer life and higher performance can be expected.
- the through-hole H1 is provided so that when the eye-catching portion of the outer ring 421 passes through the lubricant reservoir, lubrication is replenished only through the gap between the outer ring 421 and the inner ring 422 .
- lubricant Lb1 the lubricant Lb1 can also be supplied to the gap X1. That is, since the lubricant Lb1 replenished between the outer ring 421 and the inner ring 422 is supplied to the gap X1 through the through hole H1, friction at the contact portion with the flexible external gear 3 is less likely to occur on the entire circumference of the outer ring 421. "Lubricant exhausted".
- the rolling elements 423 when the bearing 42 operates to rotate the plurality of rolling elements 423 , the rolling elements 423 function as a pump, whereby the lubricant Lb1 can be forcibly sent into the gap X1 through the through hole H1 . Furthermore, on at least one surface of the outer ring 421 and the flexible external gear 3 facing the gap X1 (in this embodiment, the inner peripheral surface 301 of the flexible external gear 3 ), a gap along the circumferential direction of the outer ring 421 is formed. Extended groove 303 .
- the lubricant Lb1 supplied to the gap X1 through the through hole H1 easily spreads over the entire area between the outer ring 421 and the flexible external gear 3, and depletion of the lubricant in the gap X1 can be efficiently eliminated. Furthermore, the repeated elastic deformation of the flexible external gear 3 contributes to the diffusion of the lubricant Lb1 in the gap X1 even if the inclination angle ⁇ 1 of the tapered surface 302 changes at a high speed. In addition, not only the depletion of the lubricant is suppressed, but also the startability of the harmonic gear device 1 can be improved in a low-temperature environment where the lubricant Lb1 is likely to solidify, for example.
- a surface processing step of processing the surface of the outer ring 421 (in particular, the inner peripheral surface 425 serving as the rolling surface) after the drilling step of forming the through-hole H1. That is, it is preferable that compressive residual stress remains around the through-hole H1 in the outer ring 421 so that the through-hole H1 does not become a starting point of cracking of the outer ring 421 . For this reason, it is preferable to form the through-hole H1 before the outer ring 421 is subjected to a surface processing step such as quenching, so that compressive residual stress due to heat treatment remains.
- the periphery of the through hole H1 in the outer ring 421 may be subjected to processing such as shot peening in which the surface is modified and solidified by projecting a small spherical projection, thereby improving The fatigue strength of the outer ring 421.
- FIG. 7 is a cross-sectional view showing an example of a robot 9 using the harmonic gear device 1 according to the present embodiment.
- the robot 9 is a horizontal multi-joint robot, a so-called SCARA (Selective Compliance Assembly Robot Arm) type robot.
- SCARA Selective Compliance Assembly Robot Arm
- the robot 9 includes two harmonic gear units 1 and a link 91 .
- the two harmonic gear units 1 are respectively installed on the joints of two places in the robot 9 .
- the link 91 connects the two joint parts.
- the harmonic gear unit 1 is not a cup-shaped harmonic gear unit but a hat-shaped harmonic gear unit. That is, in the harmonic gear device 1 illustrated in Fig. 7 , a flexible external gear 3 formed in the shape of a top hat is used.
- Embodiment 1 is just one of various implementations of the embodiments of the present disclosure. Embodiment 1 Various changes can be made according to the design, as long as the purpose of the embodiments of the present disclosure can be achieved.
- the drawings referred to in the embodiments of the present disclosure are all schematic diagrams, and the sizes and thickness ratios of the structural elements in the drawings do not necessarily reflect actual size ratios. Modified examples of the first embodiment are listed below. Modifications described below can be applied in combination as appropriate.
- 8A , 8B, 9A, and 9B show modifications of the first embodiment, and are cross-sectional views corresponding to FIG. 5A .
- the through hole H1 may be located at a position deviated from the centers of the plurality of rolling elements 423 in a direction parallel to the rotation axis Ax1 (tooth line direction D1 ).
- the through hole H1 is disposed at a position deviated from the center of the rolling element 423 toward the opening surface 35 , that is, at a position between the center of the rolling element 423 and the opening surface 35 in the tooth line direction D1 .
- the through-holes H1 are provided in a plurality of places in a direction (tooth line direction D1 ) parallel to the rotation axis Ax1 .
- the through-holes H1 are arranged at positions on both sides of the center of the rolling elements 423 in the tooth line direction D1 .
- the opening area of the through hole H1 on the side of the gap X1 is smaller than that of the through hole H1 opposite to the gap X1.
- the side opening area is small. That is, in the (first) through-hole H1 provided in the outer ring 421 , the opening area of the through-hole H1 on the side of the gap X1 , that is, on the side of the outer peripheral surface 424 , is larger than that of the through-hole H1 on the side opposite to the side of the gap X1 , that is, on the side of the inner peripheral surface 425 .
- the opening area is small. In the example of FIG.
- the through hole H1 is formed such that a step is provided on its inner peripheral surface, and the portion of the through hole H1 closer to the outer peripheral surface than the step is compared to the portion of the through hole H1 on the inner peripheral surface 425 side than the step.
- the portion on the 424 side (gap X1 side) has a smaller hole diameter.
- the inner peripheral surface of the through-hole H1 is formed in a tapered shape, and the through-hole H1 is formed so that the hole diameter becomes smaller toward the outer peripheral surface 424 side (the gap X1 side).
- a plurality of steps may be provided, and the diameter of the through-hole H1 may be changed in three or more stages.
- the opening area of the through hole H1 on the side of the gap X1 is smaller than the opening area of the through hole H1 on the side opposite to the gap X1, it is possible to improve the supply to the gap X1 through the through hole H1.
- the aperture diameter of the through-hole H1 is preferably greater at the portion with the largest opening area (the side opposite to the gap X1). is the diameter of rolling element 423 0.1 times or less or 1.0 mm or less, whichever is smaller.
- the harmonic gear device 1 it is not an essential configuration of the harmonic gear device 1 to perform tooth profile modification on the internal teeth 21 and the external teeth 31 .
- at least one of the internal teeth 21 and the external teeth 31 may not be subjected to profile modification.
- ensuring a distance equal to or greater than a predetermined value in the radial direction between the tracks of the plurality of rolling elements 423 and the opening surface of the (first) through-hole H1 provided in the outer ring 421 is not sufficient for the harmonic gear device 1 . required structure. That is, in a state where the rolling elements 423 are present at positions corresponding to the through-holes H1, no gap is generated between the opening surface of the through-holes H1 and the rolling elements 423, and the rolling elements 423 may close the through-holes H1. .
- each rolling element 423 is not an essential structure of the harmonic gear device 1, and each rolling element 423 may be supported by two points, for example.
- the harmonic gear device 1 is not limited to the cup type described in the first embodiment, and may be, for example, a top hat type, a ring type, a differential type, a flat type (doughnut type), or a shield type.
- a top-hat type harmonic gear device 1 as illustrated in FIG. 7 has a cylindrical flexible external gear 3 similar to the cup type. One side has an open face 35 . That is, the hat-shaped flexible external gear 3 has a flange portion at one end of the rotation axis Ax1, and has an opening surface 35 at an end opposite to the flange portion. Even the top-hat-shaped flexible external gear 3 has external teeth 31 at the end on the opening surface 35 side, into which the wave generator 4 is fitted.
- the structure of the actuator 100 is not limited to the structure described in Embodiment 1, and can be appropriately changed.
- the connection structure between the input unit 103 and the cam 41 is not limited to a spline connection structure, and a cross joint or the like may be used.
- the Oldham joint as the connection structure between the input part 103 and the cam 41, the eccentricity between the input side rotation axis Ax1 and the wave generator 4 (cam 41) can be canceled out, and thus the rigid internal gear 2 and the flexible external gear 3 can be cancelled. of eccentricity.
- the cam 41 does not have to be movable along the rotation axis Ax1 relative to the input portion 103 .
- the application examples of the harmonic gear device 1 and the actuator 100 of the present embodiment are not limited to the above-mentioned horizontal articulated robot, and may be, for example, industrial robots other than the horizontal articulated robot or robots other than industrial use.
- industrial robots other than horizontal articulated robots include vertical articulated robots, parallel link robots, and the like.
- robots other than industrial use include home-use robots, care-use robots, and medical-use robots.
- the bearing 42 is not limited to a deep groove ball bearing, For example, an angular contact ball bearing etc. may be sufficient.
- the bearing 42 is not limited to a ball bearing, and may be a cylindrical roller bearing, a needle roller bearing, or a tapered roller bearing such as a roller bearing such as a "roller" in which the rolling elements 423 are not ball-shaped. Even with the rolling elements 423 other than the ball shape (spherical body shape), a pressure difference is generated by the rolling elements 423 rolling, whereby the rolling elements 423 function as a pump structure.
- each component of the harmonic gear device 1 or the actuator 100 is not limited to metal, and may be resin such as engineering plastic, for example.
- the lubricant Lb1 is not limited to a liquid substance such as lubricating oil (oil), but may be a gel-like substance such as grease.
- the groove 303 extending at least in the circumferential direction of the outer ring 421 may be formed on at least one surface of the outer ring 421 and the flexible external gear 3 facing the gap X1. Therefore, the groove 303 is not limited to being formed on the inner peripheral surface 301 of the flexible external gear 3, but may be formed on the outer peripheral surface 424 of the outer ring 421, or may be formed on both of them.
- the number and arrangement of the through holes H1 are not limited to those described in the first embodiment.
- one, two, or four or more through holes H1 may be provided.
- the interval P1 of the plurality of through-holes H1 may be a multiple of the interval P2 of the plurality of rolling elements 423, and the plurality of through-holes H1 are not necessarily arranged at equal intervals. .
- FIGS. 10A to 11B the difference between the harmonic gear device 1A of the present embodiment and the harmonic gear device 1 of the first embodiment is that the through-holes H2 are provided in the external teeth 31 of the flexible external gear 3 .
- FIGS. 10A and 10B correspond to FIGS. 1A and 1B in the first embodiment
- FIG. 11A corresponds to FIG. 2B in the first embodiment
- FIG. 11B is an enlarged schematic view of the periphery of the through-hole H2 in FIG. 11A .
- the through-holes H2 are provided only in the outer ring 421 and the flexible external gear 3 (the external teeth 31 among them).
- the through hole H2 includes the “second through hole” provided in the external teeth 31 of the flexible external gear 3 .
- the through hole H2 provided on the external teeth 31 of the flexible external gear 3 that is, the through hole H2 provided at the position corresponding to the bearing 42 in the direction of the rotation axis Ax1 , penetrates the flexible external gear 3 in the radial direction.
- one opening surface of the through hole H2 faces the gap X1 between the outer ring 421 and the flexible external gear 3 , and the other opening surface of the through hole H2 is aligned with the inner teeth 31 of the flexible external gear 3 .
- the outer peripheral surfaces of the meshing surfaces of the teeth 21 are open. Therefore, one end of the through hole H2 is connected to the gap X1 between the outer ring 421 and the flexible external gear 3 , and the other end is connected to the space between the outer teeth 31 and the inner teeth 21 . Therefore, the space between the external teeth 31 and the internal teeth 21 communicates with the gap X1 between the outer ring 421 and the flexible external gear 3 via the through hole H2. Accordingly, the lubricant Lb1 in the space between the external teeth 31 and the internal teeth 21 can pass through the through hole H2 and be supplied to the gap X1 between the outer ring 421 and the flexible external gear 3 .
- the external teeth 31 and the internal teeth 21 constitute a positive displacement pump such as a vane pump, and squeeze the lubricant Lb1 to the gap X1 side with sufficient pressure, so that sufficient lubricant Lb1 can be easily supplied into the gap X1.
- the flexible external gear 3 has a cylindrical shape having an opening surface 35 on one side of the tooth line direction D1 of the external teeth 31 .
- the through hole H2 is located between the center of the external teeth 31 and the end on the opening surface 35 side in a direction parallel to the rotation axis Ax1 (tooth line direction D1 ).
- the through hole H2 is disposed at a position deviated from the center of the external teeth 31 toward the opening surface 35 side (right side in FIG. 10B ) in the tooth line direction D1.
- the through-hole H2 exists in the position deviated from the center of the some rolling element 423 in the direction parallel to the rotation axis Ax1.
- the through-hole H2 is provided in the part of the external tooth 31 close to the opening surface 35 which contributes to the transmission of relatively low torque.
- the portion on the opening surface 35 side is used for lower torque transmission than the portion on the bottom 322 side. Therefore, by providing the through-holes H2 at places in the external teeth 31 where stress concentration is unlikely to occur when the external teeth 31 mesh with the internal teeth 21 , it is difficult to reduce the strength of the external teeth 31 due to the through-holes H2 . Furthermore, since the inner peripheral surface 301 of the flexible external gear 3 includes the tapered surface 302 inclined by the inclination angle ⁇ 1 with respect to the rotation axis Ax1, the gap X1 between the outer ring 421 and the flexible external gear 3 is larger on the side of the opening surface 35 than on the open surface 35 side. The bottom 322 side is large. Therefore, by providing the through hole H2 on the opening surface 35 side, there is also an advantage that the lubricant Lb1 can be easily supplied to the gap X1 through the through hole H2.
- the (second) through hole H2 is arranged at the dedendum 312 and the dedendum 313 of the dedendum 313 of the external teeth 31 . That is, as shown in FIG. 11A and FIG. 11B , the external tooth 31 has a dedendum 312 and a dedendum 313 , but the through hole H2 is formed at the dedendum 313 part.
- a gap G1 is ensured between the dedendum 313 of the external teeth 31 and the dedendum 212 of the internal teeth 21 .
- the internal teeth 21 do not come into contact with the periphery of the through-hole H2 formed in the addendum 313, and the reduction in the strength of the outer ring 421 due to the through-hole H2 is less likely to occur. Furthermore, since the flexible external gear 3 is elastically deformed, stress concentration tends to occur on the thinner dedendum 312, but compared with the case where the through-hole H2 is formed on the dedendum 312, by forming the through-hole H2 on the dedendum, 313, it is not easy to cause cracks starting from the through hole H2.
- the surface hardness of the middle portion 314 (see FIG. 11B ) in the tooth height direction of the external teeth 31 is at least higher than that of the tooth tips 313 .
- only the middle portion 314 of the outer tooth 31 is locally heat-treated by a method capable of local heat treatment such as laser hardening, thereby increasing the local surface hardness of the outer tooth 31 .
- the surface hardness of the tooth tips 313 of the external teeth 31 is HRC40, while the surface hardness of the middle part 314 is about HRC60.
- the harmonic gear unit 1A When the harmonic gear unit 1A is used for a long period of time, for example, foreign matter such as metal powder or nitrides may be generated due to chipping or abrasion due to contact between the internal teeth 21 and the external teeth 31 .
- the toughness is less likely to be damaged, and the flexibility to the flexible external gear 3 can be maintained. Deformation tolerance.
- the middle portion 314 in the tooth height direction that can actually contact the internal teeth 21 among the external teeth 31 of the flexible external gear 3 the surface hardness can be increased to suppress the external deformation caused by the contact with the internal teeth 21. Generation of foreign matter such as metal powder or nitride due to chipping or wear of the teeth 31 .
- the through hole H2 may be located at the center of the external teeth 31 in a direction parallel to the rotation axis Ax1 (tooth line direction D1 ).
- the through holes H2 may be arranged at the dedendum 312 and the dedendum 312 of the dedendum 313 of the external teeth 31 .
- Embodiment 2 can be applied in combination with the configuration (including modifications) described in Embodiment 1 as appropriate.
- a structure in which the surface hardness of the middle portion 314 in the tooth height direction of the external teeth 31 is at least higher than that of the tooth tips 313 may be adopted in the structure in which the outer ring 421 is provided with the through hole H1 as in the first embodiment.
- FIG. 13A and FIG. 13B the difference between the harmonic gear device 1B of the present embodiment and the harmonic gear device 1A of the second embodiment is that through-holes H1 and H2 are provided on the outer ring 421 and the outer surface of the flexible external gear 3 . Teeth 31 on both sides.
- FIG. 13A corresponds to FIG. 10B in the second embodiment
- FIG. 13B corresponds to FIG. 11A in the second embodiment.
- the through holes H1 and H2 include both the “first through hole” provided in the outer ring 421 and the “second through hole” provided in the flexible external gear 3 . Therefore, the lubricant Lb1 present in the space between the outer ring 421 and the inner ring 422 of the bearing 42 can be supplied to the gap X1 between the outer ring 421 and the flexible external gear 3 through the through hole H1 . In addition, the lubricant Lb1 present in the space between the external teeth 31 and the internal teeth 21 can be supplied to the gap X1 between the outer ring 421 and the flexible external gear 3 through the through hole H2. Therefore, the lubricant Lb1 can be supplied to the gap X1 from both sides (inside and outside) in the radial direction.
- the (first) through hole H1 is located at the same position as the center of the plurality of rolling elements 423 in the direction parallel to the rotation axis Ax1 (tooth line direction D1 ).
- the (second) through-hole H2 is located at a position deviated from the center of the plurality of rolling elements 423 in a direction (tooth line direction D1 ) parallel to the rotation axis Ax1 .
- the through holes include a (first) through hole H1 provided in the outer ring 421 and a (second) through hole H2 provided in the flexible external gear 3 .
- the positions in the tooth line direction D1 of the inner teeth 21 are different between the (first) through hole H1 and the (second) through hole H2 .
- the (first) through-hole H1 provided in the outer ring 421 and the (second) through-hole H2 provided in the flexible external gear 3 may be different in shape, size or number. At least any one is different.
- Embodiment 3 can be applied in combination with the configuration (including modifications) described in Embodiment 1 or Embodiment 2 as appropriate.
- the harmonic gear device (1, 1A, 1B) of the first aspect includes a rigid internal gear (2), a flexible external gear (3), and a wave generator (4).
- the rigid internal gear (2) is an annular member having internal teeth (21).
- the flexible external gear (3) is an annular member having external teeth (31) and arranged inside the rigid internal gear (2).
- the wave generator (4) has a non-circular cam (41) that is rotationally driven around the rotation axis (Ax1), and includes an outer ring (421) and a plurality of rolling elements (423) and is mounted on the cam (41). bearing (42) on the outside of the The wave generator (4) is arranged inside the flexible external gear (3), and causes the flexible external gear (3) to bend.
- the flexible external gear (3) is deformed with the rotation of the cam (41), and a part of the external teeth (31) meshes with a part of the internal teeth (21) , and make the flexible external gear (3) relatively rotate relative to the rigid internal gear (2) according to the tooth number difference between the flexible external gear (3) and the rigid internal gear (2).
- At least one of the outer ring (421) and the external teeth (31) of the flexible external gear (3) is provided with a through hole (H1, H2), the through hole (H1, H2) passes through in the radial direction, and It is connected with the gap (X1) between the outer ring (421) and the flexible external gear (3).
- the inner peripheral surface (425) of the outer ring (421) of the bearing (42), which becomes the rolling surface of the plurality of rolling elements (423), and the outer teeth (31) of the flexible external gear (3) At least one of the outer peripheral surfaces to be meshed with the internal teeth (21) communicates with the gap (X1) via the through holes (H1, H2). Therefore, the lubricant (Lb1) can be supplied through the gap (X1) between the outer ring (421) and the flexible external gear (3) through the through holes (H1, H2).
- the through holes (H1) include those provided in the outer ring ( 421) a plurality of first through holes (H1).
- the lubricant (Lb1) can be supplied through the gap (X1) between the outer ring (421) and the flexible external gear (3) through the plurality of first through holes (H1), and therefore, the fretting wear is easily suppressed. produce.
- the interval (P1) of the plurality of first through holes (H1) is the interval of the plurality of rolling elements (423) Values other than multiples of (P2).
- the through hole (H1) includes a first through hole (H1) provided on the outer ring (421). hole (H1). In the radial direction, a distance equal to or greater than a predetermined value is ensured between the tracks of the plurality of rolling elements (423) and the opening surface on the inner peripheral surface (425) side of the outer ring (421) of the first through hole (H1).
- the through hole (H2) includes a The second through hole (H2).
- the second through hole (H2) is arranged at the dedendum (313) of the dedendum (312) and the dedendum (313) of the external tooth (31).
- the stress concentration caused by contacting the inner teeth (21) is less likely to occur around the second through hole (H2) formed on the tooth top (313), and the stress concentration caused by the second through hole (H2) is less likely to occur.
- cracking or the like starting from the second through hole (H2) is less likely to occur.
- the through holes (H1, H2) include holes arranged on the outer ring (421) The first through hole (H1) and the second through hole (H2) provided in the flexible external gear (3).
- the positions in the tooth line direction (D1) of the inner teeth (21) are different between the first through hole (H1) and the second through hole (H2).
- the first through hole (H1) and the second through hole (H2) will not be arranged in a straight line in the radial direction, but it is easy to connect between the outer ring (421) and the flexible external gear (3).
- the gap (X1) holds the lubricant (Lb1).
- a pump structure is provided, and the pump structure is opposite to the flexible external gear (3).
- a lubricant (Lb1) is supplied to the gap (X1) through the through holes (H1, H2).
- the lubricant (Lb1) can be extruded toward the gap (X1) side with sufficient pressure, and sufficient lubricant (Lb1) can be easily supplied into the gap (X1).
- the through holes (H1, H2) are in the radial direction, in the gap ( The opening area on the X1) side is smaller than the opening area on the opposite side to the gap (X1).
- the lubricant (Lb1) can be extruded from the through holes (H1, H2) to the gap (X1) side with sufficient pressure, and sufficient lubricant (Lb1) can be easily supplied into the gap (X1).
- One surface facing the gap (X1) is formed with a groove (303) extending at least along the circumferential direction of the outer ring (421).
- the lubricant (Lb1) since the lubricant (Lb1) penetrates into the groove (303), the lubricant (Lb1) easily spreads over a relatively wide range in the gap (X1).
- the flexible external gear (3) is on the tooth line of the external teeth (31)
- One side of the direction (D1) has a cylindrical shape with an opening surface (35).
- the through holes (H1, H2) are located between the center of the external teeth (31) and the end on the opening surface (35) side in a direction parallel to the rotation axis (Ax1).
- the lubricant (Lb1) can be easily supplied to the gap (X1) through the through-holes (H1, H2).
- the through holes (H1, H2) are in a direction parallel to the rotation axis (Ax1) Make , be located at a position deviated from the centers of the plurality of rolling elements (423).
- cracks or the like starting from the through-holes (H1, H2) are less likely to occur.
- the diameter of the through hole (H1, H2) is a plurality of rolling elements (423) The smaller one of 0.1 times or less or 1.0 mm or less of each hole diameter.
- the lubricant (Lb1) can be efficiently supplied to the gap (X1) between the outer ring (421) and the flexible external gear (3) through the through holes (H1, H2).
- the middle part in the tooth height direction of the external teeth (31) ( 314) has at least a higher surface hardness than the crest (313).
- the toughness is less likely to be impaired, and the resistance against deformation of the flexible external gear (3) can be maintained.
- the surface hardness can be increased to suppress the contact with the internal teeth (21). Generation of foreign matter such as metal powder or nitride due to chipping or wear of the outer teeth (31) caused by the contact of the teeth (21).
- An actuator (100) of a fourteenth aspect includes the harmonic gear device (1, 1A, 1B) of any one of the first to thirteenth aspects, a drive source (101), and an output unit (102).
- the driving source (101) rotates the wave generator (4).
- the output unit (102) takes out the rotational force of either one of the rigid internal gear (2) and the flexible external gear (3) as an output.
- the structures of the second to thirteenth aspects are not essential structures of the harmonic gear device (1, 1A, 1B), and can be appropriately omitted.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Retarders (AREA)
- Rolling Contact Bearings (AREA)
Abstract
提供了一种不易产生可靠性降低的谐波齿轮装置(1)和致动器(100)。谐波齿轮装置(1)包括刚性内齿轮(2)、挠性外齿轮(3)、以及波发生器(4),波发生器(4)具有非圆形状的凸轮(41),以旋转轴(Ax1)为中心被驱动旋转;以及轴承(42),包括外圈(421)和多个滚动体(423)且装配于凸轮(41)的外侧,伴随于凸轮(41)的旋转而使挠性外齿轮(3)变形,使外齿(31)的一部分与内齿(21)的一部分啮合,并使挠性外齿轮(3)按照其与刚性内齿轮(2)的齿数差相对于刚性内齿轮(2)进行相对旋转,在外圈(421)和挠性外齿轮(3)的外齿(31)中的至少一方设有贯通孔(H1),该贯通孔(H1)沿径向方向贯穿通过,并与外圈(421)和挠性外齿轮(3)之间的间隙相连。
Description
相关申请的交叉引用
本申请基于申请号为特愿2021-118431、申请日为2021年7月19日的日本专利申请提出,并要求该日本专利申请的优先权,该日本专利申请的全部内容在此引入本申请作为参考。
本公开实施例一般性地涉及谐波齿轮装置和致动器,更详细而言,涉及包括刚性内齿轮、挠性外齿轮以及波发生器的谐波齿轮装置和致动器。
在专利文献1中公开了通过氮化处理进行谐波齿轮装置(挠曲啮合式齿轮装置)中的挠性外齿轮的表面处理。
谐波齿轮装置具有:环状的刚性内齿轮;配置于其内侧的杯形的挠性外齿轮;以及嵌入至其内侧的椭圆形的波发生器。挠性外齿轮包括圆筒状的躯体部、以及形成于躯体部的外周面的外齿。挠性外齿轮在波发生器的作用下而挠曲成椭圆形,挠性外齿轮的位于椭圆形状的长轴方向的两端的外齿的部分与形成于刚性内齿轮的内周面的内齿啮合。
当波发生器通过马达等旋转时,两齿轮的啮合位置沿圆周方向移动,在两齿轮之间产生与内齿和外齿的齿数差(2N(N为正整数))相应的相对旋转。此处,当刚性内齿轮一侧被固定时,可从挠性外齿轮一侧得到与两齿轮的齿数差相应地被大幅减速了的旋转输出。
现有技术文献
专利文献
专利文献1:日本特开第2001-59153号公报
发明内容
发明要解决的课题
但是,在如上所述的谐波齿轮装置中,由于嵌入至挠性外齿轮的内侧的波发生器旋转,因此特别是当长期间使用时,在挠性外齿轮与波发生器的接触部位可能产生微动磨损(fretting wear)。当产生微动磨损时,有可能导致表面的粗糙、由磨损粉引起的生锈、以及由磨损粉进入波发生器的内侧而引起的波发生器(的轴承)的损伤等,从而影响谐波齿轮装置的可靠性。
本公开实施例是鉴于上述情况而完成的,其目的在于提供不易产生可靠性的降低的谐波齿轮装置和致动器。
用于解决课题的方案
本公开实施例的一方案中的谐波齿轮装置包括刚性内齿轮、挠性外齿轮、以及波发生器。所述刚性内齿轮为具有内齿的环状的部件。所述挠性外齿轮为具有外齿且配置于所述刚性内齿轮的内侧的环状的部件。所述波发生器具有以旋转轴为中心被驱动旋转的非圆形状的凸轮、以及包括外圈和多个滚动体且装配于所述凸轮的外侧的轴承。所述波发生器配置于所述挠性外齿轮的内侧,并使所述挠性外齿轮产生挠曲。所述谐波齿轮装置伴随于所述凸轮的旋转使所述挠性外齿轮变形,使所述外齿的一部分与所述内齿的一部分啮合,并使所述挠性外齿轮按照其与所述刚性内齿轮的齿数差相对于所述刚性内齿轮进行相对旋转。在所述外圈和所述挠性外齿轮的所述外齿中的至少一方设有贯通孔,该贯通孔沿径向方向贯穿通过,并与所述外圈和所述挠性外齿轮之间的间隙相连。
本公开实施例的一方案中的致动器包括所述谐波齿轮装置、驱动源、以及输出部。所述驱动源使所述波发生器旋转。所述输出部将所述刚性内 齿轮以及所述挠性外齿轮中的任一方的旋转力作为输出而取出。
发明效果
根据本公开实施例,具有能够提供不易产生可靠性的降低的谐波齿轮装置以及致动器的优点。
图1A是示出实施方式一的谐波齿轮装置的概略结构的剖视图。
图1B是图1A的区域Z1的放大图。
图2A是从旋转轴的输入侧观察到的上述谐波齿轮装置的概略图。
图2B是图2A的区域Z1的放大图。
图3A是从旋转轴的输出侧观察到的上述谐波齿轮装置的概略的分解立体图。
图3B是从旋转轴的输入侧观察到的上述谐波齿轮装置的概略的分解立体图。
图4是示出包括上述谐波齿轮装置的致动器的概略结构的剖视图。
图5A是着眼于上述谐波齿轮装置的轴承以及挠性外齿轮的概略的剖视图。
图5B是从上述谐波齿轮装置中的轴承侧观察到的挠性外齿轮的内周面的示意图。
图6是用于示出上述谐波齿轮装置的锥面的长轴侧以及短轴侧的动作的概念性的说明图。
图7是示出使用了上述谐波齿轮装置的机器人的一例的剖视图。
图8A是示出实施方式一的第一变形例的谐波齿轮装置的主要部分的剖视图。
图8B是示出实施方式一的第二变形例的谐波齿轮装置的主要部分的剖视图。
图9A是示出实施方式一的第三变形例的谐波齿轮装置的主要部分的剖视图。
图9B是示出实施方式一的第四变形例的谐波齿轮装置的主要部分的剖视图。
图10A是示出实施方式二的谐波齿轮装置的概略结构的剖视图。
图10B是图10A的区域Z1的放大图。
图11A是从旋转轴的输入侧观察到的上述谐波齿轮装置的主要部分的概略图。
图11B是图11A的贯通孔的周边的放大图。
图12A是示出实施方式二的第一变形例的谐波齿轮装置的概略结构的主要部分的剖视图。
图12B是从旋转轴的输入侧观察到的实施方式二的第二变形例的谐波齿轮装置的主要部分的概略图。
图13A是示出实施方式二的谐波齿轮装置的概略结构的主要部分的剖视图。
图13B是从旋转轴的输入侧观察到的上述谐波齿轮装置的主要部分的概略图。
(实施方式一)
(1)概要
以下,对于本实施方式的谐波齿轮装置1的概要,参照图1A至图4进行说明。本公开实施例中所参照的附图均为示意性的图,图中的各结构要件的大小和厚度各自的比不一定反映实际的尺寸比。例如,图2A至图3B中的内齿21和外齿31的齿形、尺寸和齿数等均仅是为了说明而示意性地表示,并不旨在限定于图示的形状。
本实施方式的谐波齿轮装置1是包括刚性内齿轮2、挠性外齿轮3和波发生器4的齿轮装置。该谐波齿轮装置1中,在环状的刚性内齿轮2的内侧配置环状的挠性外齿轮3,而且在挠性外齿轮3的内侧配置波发生器4。波发生器4通过使挠性外齿轮3挠曲为非圆形状,从而使挠性外齿轮3的外齿31相对于刚性内齿轮2的内齿21局部地啮合。当波发生器4旋转时,内齿21与外齿31的啮合位置沿刚性内齿轮2的圆周方向移动,并在两齿轮(刚性内齿轮2和挠性外齿轮3)之间产生使挠性外齿轮3按照其与刚性内齿轮2的齿数差进行的相对旋转。此处,如果刚性内齿轮2被固定,则挠性外齿轮3伴随于两齿轮的相对旋转而旋转。其结果是,可从挠性外齿轮3获得与两齿轮的齿数差相应地、以比较高的减速比被减速了的旋转输出。
另外,使挠性外齿轮3产生挠曲的波发生器4具有以输入侧的旋转轴Ax1(参照图1A)为中心被驱动旋转的非圆形状的凸轮41、和轴承42。轴承42配置于凸轮41的外周面411与挠性外齿轮3的内周面301之间。轴承42的内圈422固定于凸轮41的外周面411,轴承42的外圈421经由滚珠状的滚动体423被凸轮41按压而弹性变形。此处,滚动体423滚动,由此,外圈421能够相对于内圈422相对地旋转,因此当非圆形状的凸轮41旋转时,内圈422的旋转不会向外圈421传递,而在被凸轮41按压的挠性外齿轮3的外齿31产生波动运动。通过产生外齿31的波动运动,从而如上述那样内齿21与外齿31的啮合位置沿刚性内齿轮2的圆周方向移动,并在挠性外齿轮3与刚性内齿轮2之间产生相对旋转。
总而言之,在这种谐波齿轮装置1中,具有轴承42的波发生器4一边使挠性外齿轮3挠曲,一边利用内齿21与外齿31的啮合实现动力的传递。
在这种谐波齿轮装置1中,特别是在长时间使用时,伴随于嵌入至挠性外齿轮3的内侧的波发生器4的旋转,在挠性外齿轮3与波发生器4的接触部位可能产生微动磨损(fretting wear)。当产生微动磨损时,有可能导致表面的粗糙、由磨损粉引起的生锈、以及由磨损粉进入波发生器4的 内侧而引起的波发生器4(的轴承42)的损伤等,而影响谐波齿轮装置1的可靠性。
作为一例,当由于表面的粗糙或锈的产生而阻碍挠性外齿轮3的变形跟随性时,波发生器4的旋转需要多余的能量,导致动力传递效率的降低、或由施加于轴承42的载荷增加而造成的寿命缩短等。另外,当磨损粉进入轴承42时,以由磨损粉向轴承42的外圈421或内圈422与滚动体423之间的咬入而形成的压痕为起点,在外圈421、内圈422以及滚动体423中的任一个的表面可能产生损伤。由于这样的损伤(表面起点型的剥落)导致谐波齿轮装置1的品质以及特性等的劣化,其结果是,导致谐波齿轮装置1的可靠性的降低。因此,本实施方式的谐波齿轮装置1通过以下的结构抑制微动磨损的产生,而不易产生可靠性的降低。
即,如图1A至图3B所示,本实施方式的谐波齿轮装置1包括具有内齿21的环状的刚性内齿轮2、具有外齿31的环状的挠性外齿轮3、以及波发生器4。挠性外齿轮3配置于刚性内齿轮2的内侧。波发生器4配置于挠性外齿轮3的内侧,并使挠性外齿轮3产生挠曲。波发生器4具有以旋转轴Ax1为中心被驱动旋转的非圆形状的凸轮41、以及装配于凸轮41的外侧的轴承42。轴承42包括外圈421以及多个滚动体423。在谐波齿轮装置1中,伴随于凸轮41的旋转而使挠性外齿轮3变形,使外齿31的一部分与内齿21的一部分啮合,并使挠性外齿轮3按照挠性外齿轮3与刚性内齿轮2的齿数差相对于刚性内齿轮2相对旋转。此处,在外圈421和挠性外齿轮3的外齿31的至少一方设有贯通孔H1,该贯通孔H1沿着径向方向贯穿通过,并与外圈421和挠性外齿轮3之间的间隙X1相连。
根据该方案,在外圈421和挠性外齿轮3的外齿31中的至少一方设有沿着径向方向贯穿通过的贯通孔H1。贯通孔H1沿着径向方向贯穿通过外圈421和挠性外齿轮3的外齿31中的至少一方,并与外圈421和挠性外齿轮3之间的间隙X1相连。也就是说,轴承42的外圈421中的成为多个滚 动体423的滚动面的内周面425(参照图5A)、以及挠性外齿轮3的外齿31中的成为与内齿21的啮合面的外周面中的至少一方借助贯通孔H1与间隙X1连通。因此,能够通过贯通孔H1对外圈421与挠性外齿轮3之间的间隙X1供给润滑剂Lb1(参照图4)。
也就是说,本实施方式的谐波齿轮装置1中,通过防止在外圈421与挠性外齿轮3的接触部位处润滑剂Lb1不足或枯竭的“润滑剂耗尽”,来抑制微动磨损的产生。进一步而言,通过设置贯通孔H1,能够经由贯通孔H1对挠性外齿轮3与波发生器4的接触部位供给润滑剂Lb1,从而在接触部位维持充分的润滑剂Lb1。其结果是,外圈421与挠性外齿轮3的接触部位的表面成为被润滑剂Lb1覆盖的状态,微动磨损的产生被抑制。由此,在本实施方式的谐波齿轮装置1中,不易产生由外圈421与挠性外齿轮3之间的微动磨损引起的不良状况,而能够提供不易产生可靠性的降低的谐波齿轮装置1。并且,本实施方式的谐波齿轮装置1特别是在长时间使用时也不易产生可靠性的降低,进而,还带来了谐波齿轮装置1的传递效率的改善、长寿命化、以及高性能化。
然而,贯通孔H1可以设置于外圈421和挠性外齿轮3的外齿31中的至少一方。本公开实施例中,在对分别设置于外圈421和挠性外齿轮3的外齿31的贯通孔H1进行区分的情况下,将设置于外圈421的贯通孔H1称为“第一贯通孔”,将设置于挠性外齿轮3的外齿31的贯通孔H2(参照图10B)称为“第二贯通孔”。在本实施方式中,作为一例,贯通孔H1仅设置于外圈421和挠性外齿轮3的外齿31中的外圈421。换言之,在本实施方式中,贯通孔H1包括设置于外圈421的“第一贯通孔”。另一方面,关于挠性外齿轮3的外齿31侧的贯通孔H2(第二贯通孔),在实施方式二以及实施方式三中进行说明。
另外,如图4所示,本实施方式的谐波齿轮装置1与驱动源101以及输出部102一同构成致动器100。换言之,本实施方式的致动器100包括谐 波齿轮装置1、驱动源101、以及输出部102。驱动源101使波发生器4旋转。输出部102将刚性内齿轮2以及挠性外齿轮3的任一方的旋转力作为输出而取出。
根据本实施方式的致动器100,具有谐波齿轮装置1的不易产生可靠性地降低这样的优点。
(2)定义
本公开实施例中所提及的“环状”是指至少在俯视时如在内侧形成包围而成的空间(区域)的圈(环)那样的形状,并不限于在俯视时为正圆的圆形状(圆环状),例如也可以是椭圆形状和多边形状等。进一步,例如也可以是如杯状的挠性外齿轮3那样具有底部322之类的形状,若其躯体部321为环状,则称为“环状”的挠性外齿轮3。
本公开实施例中所提及的“间隙”是指在两个物体的相对面间可能产生的空间,即使这两个物体不分离,在两者之间也可能产生间隙。也就是说,即使两个物体接触,在这两个物体之间也可能产生微小的间隙。在挠性外齿轮3与嵌入至挠性外齿轮3的内侧的外圈421之间,在相互对置的外圈421的外周面424(参照图5A)与挠性外齿轮3的内周面301之间产生间隙X1。但是,基本上来说,外圈421的外周面424与挠性外齿轮3的内周面301接触,因此两者间不会产生大的间隙X1。因此,外圈421与挠性外齿轮3之间的间隙X1是在外圈421的外周面424与挠性外齿轮3的内周面301之间可局部产生的微小的间隙。作为一例,在外圈421的外周面424和挠性外齿轮3的内周面301产生润滑剂Lb1能够浸透的程度的微观上的间隙X1。
本公开实施例中所提及的“沿着径向方向贯穿通过”是指径向方向,也就是沿着作为与旋转轴Ax1正交的方向的径向贯穿通过。即,如果是本实施方式这样的在外圈421设置的贯通孔H1,贯通孔H1贯穿通过作为外圈421的径向方向的两个面的内周面425以及外周面424之间即可,例如, 也可以相对于径向方向倾斜。
本公开实施例中所提及的“刚性”是指在对物体施加外力而物体要变形时,物体抵抗该变形的性质。换言之,拥有刚性的物体即使施加外力也难以变形。另外,本公开实施例中所提及的“挠性”是指在对物体施加外力时,物体发生弹性变形(挠曲)的性质。换言之,拥有挠性的物体在被施加外力时容易发生弹性变形。因此,“刚性”和“挠性”是相反的意思。
特别是,在本公开实施例中,刚性内齿轮2的“刚性”和挠性外齿轮3的“挠性”按相对的意思来使用。即,刚性内齿轮2的“刚性”是指至少与挠性外齿轮3相比,刚性内齿轮2拥有相对高的刚性,也就是说即使对刚性内齿轮2施加外力也难以变形。同样,挠性外齿轮3的“挠性”是指至少与刚性内齿轮2相比,挠性外齿轮3具有相对高的挠性,也就是说挠性外齿轮3在被施加外力时容易弹性变形。
另外,在本公开实施例中,有时将旋转轴Ax1的一方侧(图1A的右侧)称为“输入侧”,并将旋转轴Ax1的另一侧(图1A的左侧)称为“输出侧”。也就是说,在图1A的例子中,挠性外齿轮3在旋转轴Ax1的“输入侧”具有开口面35。但是,“输入侧”和“输出侧”只不过是为了说明而赋予的标签,其主旨并不是限定从谐波齿轮装置1观察到的、输入和输出的位置关系。
本公开实施例中所提及的“非圆形状”是指不是正圆的形状,例如包括椭圆形状和长圆形状等。在本实施方式中,作为一例,波发生器4的非圆形状的凸轮41为椭圆形状。也就是说,在本实施方式中,波发生器4使挠性外齿轮3挠曲为椭圆形状。
在本公开实施例中所提及的“椭圆形状”是指正圆被压扁而使彼此正交的长轴与短轴的交点位于中心这样的形状全体,并不限于由一个平面上的距某两个定点的距离之和为恒定的点的集合构成的曲线即数学上的“椭圆”。也就是说,本实施方式中的凸轮41既可以是如数学上的“椭圆”那 样由一个平面上的距某两个定点的距离之和为恒定的点的集合构成的曲线状,也可以不是数学上的“椭圆”而是像长圆那样的椭圆形状。如上所述,本公开实施例中所参照的附图均为示意性的图,图中的各结构要件的大小和厚度各自的比不一定限于反映实际的尺寸比。因此,例如图2A中,虽然使波发生器4的凸轮41的形状为稍微夸张的椭圆形状,但并不旨在限定实际的凸轮41的形状。
在本公开实施例中所提及的“旋转轴”是指成为旋转体的旋转运动的中心的假想的轴(直线)。也就是说,旋转轴Ax1是不伴有实体的假想轴。波发生器4以旋转轴Ax1为中心进行旋转运动。
在本公开实施例中所提及的“内齿”和“外齿”分别指多个“齿”的集合(组)而不是单体的“齿”。也就是说,刚性内齿轮2的内齿21包括形成于刚性内齿轮2的内周面的多个齿的集合。同样,挠性外齿轮3的外齿31包括形成于挠性外齿轮3的外周面的多个齿的集合。
本公开实施例中提及的“平行”是指,除了一平面上的两条直线延长到任何位置也不相交的情况,即两者之间的角度严格地为0度(或180度)的情况之外,两者之间的角度处于相对于0度收敛在几度(例如小于10度)程度的误差范围内的关系。同样,本公开实施例中提及的“正交”是指,除了两者之间的角度严格地以90度相交的情况之外,两者之间的角度处于相对于90度收敛在几度(例如小于10度)程度的误差范围内的关系。
(3)结构
以下,参照图1A至图4对本实施方式的谐波齿轮装置1以及致动器100的详细结构进行说明。
图1A是示出谐波齿轮装置1的概略结构的剖视图,图1B是图1A的区域Z1的放大图。图2A是从旋转轴Ax1的输入侧(图1A的右侧)观察谐波齿轮装置1时的概略图,图2B是图2A的区域Z1的放大图。图3A是从旋转轴Ax1的输出侧(图1A的左侧)观察谐波齿轮装置1时的概略的 分解立体图。图3B是从旋转轴Ax1的输入侧观察谐波齿轮装置1时的概略的分解立体图。图4是示出包括谐波齿轮装置1的致动器100的概略结构的剖视图。
(3.1)谐波齿轮装置
如上所述,本实施方式的谐波齿轮装置1包括刚性内齿轮2、挠性外齿轮3、以及波发生器4。在本实施方式中,作为谐波齿轮装置1的结构要件的刚性内齿轮2、挠性外齿轮3以及波发生器4的材质为不锈钢、铸铁、机械结构用碳钢、铬钼钢、磷青铜或铝青铜等金属。此处所说的金属包括实施了氮化处理等表面处理的金属。
另外,在本实施方式中,作为谐波齿轮装置1的一例,例示杯型的谐波齿轮装置。也就是说,在本实施方式的谐波齿轮装置1中,使用形成为杯状的挠性外齿轮3。波发生器4以收容在杯状的挠性外齿轮3内的方式与挠性外齿轮3组合。
另外,作为本实施方式中的一例,谐波齿轮装置1在刚性内齿轮2固定于输入侧壳体111(参照图4)和输出侧壳体112(参照图4)等的状态下使用。由此,伴随于刚性内齿轮2与挠性外齿轮3的相对旋转,挠性外齿轮3相对于固定构件(输入侧壳体111等)进行相对旋转。
而且,在本实施方式中,在将谐波齿轮装置1用于致动器100的情况下,通过向波发生器4施加作为输入的旋转力,从而能够从挠性外齿轮3取出作为输出的旋转力。也就是说,谐波齿轮装置1以将波发生器4的旋转作为输入旋转并将挠性外齿轮3的旋转作为输出旋转的方式动作。由此,在谐波齿轮装置1中,能够得到相对于输入旋转以比较高的减速比减速的输出旋转。
而且,在本实施方式的谐波齿轮装置1中,输入侧的旋转轴Ax1和输出侧的旋转轴Ax2在同一直线上。换言之,输入侧的旋转轴Ax1和输出侧的旋转轴Ax2为同轴。此处,输入侧的旋转轴Ax1是被施加有输入旋转的 波发生器4的旋转中心,输出侧的旋转轴Ax1是产生输出旋转的挠性外齿轮3的旋转中心。也就是说,在谐波齿轮装置1中,在同轴上能够得到相对于输入旋转以比较高的减速比减速的输出旋转。
刚性内齿轮2也称为圆花键(circular spline),其为具有内齿21的环状的部件。在本实施方式中,刚性内齿轮2具有至少内周面在俯视时为正圆的圆环状。在圆环状的刚性内齿轮2的内周面沿着刚性内齿轮2的圆周方向形成有内齿21。构成内齿21的多个齿全部为相同的形状,且等间距地设置在刚性内齿轮2的内周面的圆周方向的整个区域。也就是说,内齿21的节圆在俯视时为正圆。另外,刚性内齿轮2在旋转轴Ax1的方向上具有规定的厚度。内齿21均形成于刚性内齿轮2的厚度方向的整个长度上。内齿21的齿线均与旋转轴Ax1平行。
如上所述,刚性内齿轮2固定于输入侧壳体111(参照图4)和输出侧壳体112(参照图4)等。因此,在刚性内齿轮2形成有固定用的多个固定孔22(参照图3A和图3B)。
挠性外齿轮3也称为柔性花键(flex spline),其为具有外齿31的环状的部件。在本实施方式中,挠性外齿轮3是由比较薄壁的金属弹性体(金属板)形成为杯状的部件。也就是说,挠性外齿轮3通过其厚度比较小(薄)而拥有挠性。挠性外齿轮3具有杯状的主体部32。主体部32具有躯体部321和底部322。躯体部321在挠性外齿轮3未产生弹性变形的状态下,具有至少内周面301在俯视时为正圆的圆筒状。躯体部321的中心轴与旋转轴Ax1一致。底部322配置于躯体部321的一方的开口面,且具有在俯视时为正圆的圆盘状。底部322配置于躯体部321的一对开口面中的、旋转轴Ax1的输出侧的开口面。根据上述内容,主体部32在躯体部321和底部322的整体上实现了向旋转轴Ax1的输入侧开放的、有底的圆筒状即杯状的形状。换言之,在挠性外齿轮3的旋转轴Ax1的方向上的与底部322位于相反侧的端面形成有开口面35。也就是说,挠性外齿轮3是在齿线方向D1的一 方(在此旋转轴Ax1的输入侧)具有开口面35的筒状。在本实施方式中,躯体部321和底部322由一个金属构件一体形成,由此能够实现无缝的主体部32。
此处,以在躯体部321的内侧嵌入非圆形状(椭圆形状)的波发生器4的方式使波发生器4与挠性外齿轮3组合。由此,挠性外齿轮3通过从内侧朝向外侧地、从波发生器4受到径向方向(与旋转轴Ax1正交的方向)的外力,而弹性变形为非圆形状。在本实施方式中,通过使波发生器4与挠性外齿轮3组合,从而挠性外齿轮3的躯体部321弹性变形为椭圆形状。也就是说,挠性外齿轮3未产生弹性变形的状态是指波发生器4未与挠性外齿轮3组合的状态。相反,挠性外齿轮3产生弹性变形的状态是指波发生器4与挠性外齿轮3组合了的状态。
更详细而言,波发生器4嵌入至躯体部321的内周面301中与底部322相反的一侧(旋转轴Ax1的输入侧)的端部。换言之,波发生器4嵌入至挠性外齿轮3的躯体部321中的、旋转轴Ax1的方向上的开口面35侧的端部。因此,在挠性外齿轮3产生了弹性变形的状态下,与底部322侧的端部相比,挠性外齿轮3在旋转轴Ax1的方向上的开口面35侧的端部更大地变形,成为更接近椭圆形状的形状。根据这样的旋转轴Ax1的方向上的变形量的差异,在挠性外齿轮3产生了弹性变形的状态下,挠性外齿轮3的躯体部321的内周面301包括相对于旋转轴Ax1倾斜的锥面302(参照图6)。
另外,在躯体部321的外周面中的至少与底部322相反的一侧(旋转轴Ax1的输入侧)的端部,外齿31沿着躯体部321的圆周方向形成。换言之,外齿31设置于挠性外齿轮3的躯体部321中的至少旋转轴Ax1的方向的开口面35侧的端部。构成外齿31的多个齿全部为相同的形状,且等间距地设置在挠性外齿轮3的外周面的圆周方向的整个区域。也就是说,外齿31的节圆在挠性外齿轮3未产生弹性变形的状态下,在俯视时为正圆。外齿31仅形成于与躯体部321的开口面35侧(旋转轴Ax1的输入侧)的端缘相距 恒定宽度的范围内。具体而言,在躯体部321中的旋转轴Ax1的方向上至少供波发生器4嵌入的部分(开口面35侧的端部),在外周面形成有外齿31。外齿31的齿线均与旋转轴Ax1平行。
总而言之,在本实施方式的谐波齿轮装置1中,刚性内齿轮2的内齿21以及挠性外齿轮3的外齿31中的任一个的齿线均与旋转轴Ax1平行。因此,在本实施方式中,“齿线方向D1”为与旋转轴Ax1平行的方向。并且,内齿21的齿线方向D1的尺寸为内齿21的齿宽,同样,外齿31的齿线方向D1的尺寸为外齿31的齿宽,因此,齿线方向D1与齿宽方向意思相同。
如上所述,在本实施方式中,将挠性外齿轮3的旋转作为输出旋转而取出。因此,在挠性外齿轮3安装有致动器100的输出部102(参照图4)。在挠性外齿轮3的底部322形成有用于安装作为输出部102的轴的多个安装孔33。进一步,在底部322的中央部形成有透孔34。底部322中的透孔34的周围比底部322的其他部位厚。
如此构成的挠性外齿轮3配置于刚性内齿轮2的内侧。此处,挠性外齿轮3以仅躯体部321的外周面中的与底部322相反的一侧(旋转轴Ax1的输入侧)的端部插入至刚性内齿轮2的内侧的方式与刚性内齿轮2进行组合。也就是说,挠性外齿轮3的躯体部321中的在旋转轴Ax1的方向上供波发生器4嵌入的部分(开口面35侧的端部)插入至刚性内齿轮2的内侧。此处,在挠性外齿轮3的外周面形成有外齿31,且在刚性内齿轮2的内周面形成有内齿21。因此,在挠性外齿轮3配置于刚性内齿轮2的内侧的状态下,外齿31与内齿21彼此相对。
此处,刚性内齿轮2中的内齿21的齿数比挠性外齿轮3的外齿31的齿数多2N(N为正整数)。在本实施方式中,作为一例,N为“1”,挠性外齿轮3的(外齿31的)齿数比刚性内齿轮2的(内齿21的)齿数多“2”。这样的挠性外齿轮3与刚性内齿轮2的齿数差规定谐波齿轮装置1中的输出旋 转相对于输入旋转的减速比。
在此,在本实施方式中,作为一例,如图1A以及图1B所示,以外齿31的齿线方向D1的中心与内齿21的齿线方向D1的中心相对的方式,来设定旋转轴Ax1的方向上的挠性外齿轮3与刚性内齿轮2的相对位置。也就是说,对于挠性外齿轮3的外齿31和刚性内齿轮2的内齿21而言,齿线方向D1上的中心的位置对准旋转轴Ax1的方向的同一位置。另外,在本实施方式中,外齿31的齿线方向D1的尺寸(齿宽)比内齿21的齿线方向D1的尺寸(齿宽)大。因此,在与旋转轴Ax1平行的方向上,内齿21收纳在外齿31的齿线的范围内。换言之,外齿31相对于内齿21向齿线方向D1的至少一方突出。在本实施方式中,外齿31相对于内齿21向齿线方向D1的双方(旋转轴Ax1的输入侧以及输出侧)突出。
此处,在挠性外齿轮3未产生弹性变形的状态(波发生器4未与挠性外齿轮3组合的状态)下,描绘正圆的外齿31的节圆设定为与同样描绘正圆的内齿21的节圆相比小一圈。也就是说,在挠性外齿轮3未产生弹性变形的状态下,外齿31与内齿21通过隔着间隙相对而彼此未啮合。
另一方面,在挠性外齿轮3产生了弹性变形的状态(波发生器4与挠性外齿轮3组合了的状态)下,由于躯体部321挠曲为椭圆形状(非圆形状),因此挠性外齿轮3的外齿31相对于刚性内齿轮2的内齿21局部性地啮合。也就是说,如图2A所示,挠性外齿轮3的躯体部321(的至少开口面35侧的端部)弹性变形为椭圆形状,由此,位于椭圆形状的长轴方向的两端的外齿31与内齿21啮合。换言之,描绘椭圆的外齿31的节圆的长径与描绘正圆的内齿21的节圆的直径一致,描绘椭圆的外齿31的节圆的短径比描绘正圆的内齿21的节圆的直径小。如此,当挠性外齿轮3弹性变形时,构成外齿31的多个齿中的一部分齿与构成内齿21的多个齿中的一部分齿啮合。其结果是,在谐波齿轮装置1中,能够使外齿31的一部分与内齿21的一部分啮合。
波发生器4也称为波形发生器(wave generator),其是使挠性外齿轮3产生挠曲,从而使挠性外齿轮3的外齿31产生波动运动的部件。在本实施方式中,波发生器4是俯视时外周形状为非圆形状、具体而言为椭圆形状的部件。
波发生器4具有非圆形状(此处为椭圆形状)的凸轮41和装配于凸轮41的外周的轴承42。也就是说,相对于轴承42,在轴承42的内圈422的内侧嵌入有非圆形状(椭圆形状)的凸轮41,从而组合凸轮41。由此,轴承42通过从内圈422的内侧朝向外侧地、从凸轮41受到径向方向(与旋转轴Ax1正交的方向)的外力,从而弹性变形为非圆形状。也就是说,轴承42未产生弹性变形的状态是指凸轮41未与轴承42组合的状态。相反,轴承42产生弹性变形的状态是指凸轮41与轴承42组合了的状态。
凸轮41是以输入侧的旋转轴Ax1为中心被驱动旋转的、非圆形状(此处为椭圆形状)的部件。凸轮41具有外周面411(参照图1B),其至少外周面411由在俯视时为椭圆形状的金属板构成。凸轮41在旋转轴Ax1的方向(也就是齿线方向D1)上具有规定的厚度。由此,凸轮41具有与刚性内齿轮2同等程度的刚性。但是,凸轮41的厚度与刚性内齿轮2的厚度相比小(薄)。如上所述,在本实施方式中,将波发生器4的旋转作为输入旋转。因此,在波发生器4安装有致动器100的输入部103(参照图4)。在波发生器4的凸轮41的中央部形成有用于安装作为输入部103的轴的凸轮孔43。
轴承42具有外圈421、内圈422和多个滚动体423。在本实施方式中,作为一例,轴承42使用球体状的滚珠作为滚动体423,由深沟球轴承构成。
外圈421和内圈422均为环状的部件。外圈421和内圈422均是由比较薄的金属弹性体(金属板)形成为环状的部件。也就是说,外圈421和内圈422分别通过厚度比较小(薄)而具有挠性。在本实施方式中,外圈421和内圈422在轴承42未产生弹性变形的状态(凸轮41未与轴承42组合的状态)下,均具有俯视时为正圆的圆环状。内圈422比外圈421小一圈并配置于 外圈421的内侧。此处,外圈421的内径比内圈422的外径大,因此在外圈421的内周面425与内圈422的外周面之间产生间隙。
多个滚动体423配置于外圈421与内圈422之间的间隙。多个滚动体423沿外圈421的圆周方向排列配置。多个滚动体423全部为相同形状的金属球(滚珠),且等间距地设置在外圈421的圆周方向的整个区域。此处,轴承42还具有保持器,多个滚动体423由保持器保持在外圈421与内圈422之间,但未特别地进行图示。
另外,在本实施方式中,作为一例,外圈421以及内圈422的宽度方向(与旋转轴Ax1平行的方向)的尺寸与凸轮41的厚度相同。也就是说,外圈421以及内圈422的宽度方向的尺寸与刚性内齿轮2的厚度相比小。
通过这种轴承42的结构,凸轮41与轴承42组合,由此轴承42的内圈422固定于凸轮41,内圈422弹性变形为仿效凸轮41的外周形状的椭圆形状。此时,轴承42的外圈421经由多个滚动体423被内圈422按压而弹性变形为椭圆形状。由此,轴承42的外圈421和内圈422均弹性变形为椭圆形状。如此,在轴承42产生了弹性变形的状态(凸轮41与轴承42组合了的状态)下,外圈421和内圈422形成相互为相似形状的椭圆形状。
即使是在轴承42产生弹性变形的状态下,由于在外圈421与内圈422之间夹有多个滚动体423,因此外圈421与内圈422之间的间隙在外圈421的整周被维持为大致恒定。并且,在该状态下,外圈421与内圈422之间的多个滚动体423进行滚动,由此,外圈421能够相对于内圈422进行相对旋转。由此,在轴承42产生了弹性变形的状态下,当凸轮41以旋转轴Ax1为中心旋转时,凸轮41的旋转不会传递至外圈421,而内圈422的弹性变形经由多个滚动体423传递至外圈421。也就是说,在波发生器4中,当凸轮41以旋转轴Ax1为中心旋转时,外圈421以由外圈421仿效的椭圆形状的长轴以旋转轴Ax1为中心进行旋转的方式弹性变形。因此,作为波发生器4整体而言,从旋转轴Ax1的输入侧观察到的、呈椭圆形状的波发 生器4的外周形状以其长轴以旋转轴Ax1为中心进行旋转的方式伴随于凸轮41的旋转而变化。
如此构成的波发生器4配置于挠性外齿轮3的内侧。此处,挠性外齿轮3以仅躯体部321的内周面301中的与底部322相反的一侧(开口面35侧)的端部嵌合于波发生器4的方式,与波发生器4组合。此时,波发生器4的轴承42配置于凸轮41的外周面411与挠性外齿轮3的内周面301之间。此处,在轴承42未产生弹性变形的状态(凸轮41未与轴承42组合的状态)下的外圈421的外径与同样未产生弹性变形状态下的挠性外齿轮3(躯体部321)的内径相同。因此,波发生器4的外圈421的外周面424在轴承42的圆周方向的整周上与挠性外齿轮3的内周面301相接。由此,在挠性外齿轮3产生了弹性变形的状态(波发生器4与挠性外齿轮3组合了的状态)下,躯体部321挠曲为椭圆形状(非圆形状)。在该状态下,挠性外齿轮3相对于轴承42的外圈421被固定。
但是,由于挠性外齿轮3与波发生器4仅嵌合,因此,挠性外齿轮3与轴承42的外圈421并未完全地被固定。因此,如上所述,在挠性外齿轮3与嵌入至挠性外齿轮3的内侧的外圈421之间会产生微小的间隙X1。严格来说,由于外圈421的外周面424的直径比挠性外齿轮3的内周面301的直径稍小,因此外圈421与挠性外齿轮3之间的间隙X1不会被完全地填埋,至少局部性地产生间隙X1。并且,也存在这样的间隙X1的影响,波发生器4的凸轮41旋转且外圈421以及挠性外齿轮3弹性变形,伴随于此,在外圈421与挠性外齿轮3之间可能产生相对旋转。该相对旋转例如是凸轮41的转速的几千分之一或几百分之一的程度的旋转,但由于这样的相对旋转,而使得外圈421与挠性外齿轮3相对地相互摩擦的现象是微动磨损的一个成因。
如图2A所示,在上述构成的谐波齿轮装置1中,通过挠性外齿轮3的躯体部321挠曲为椭圆形状(非圆形状),从而挠性外齿轮3的外齿31相对 于刚性内齿轮2的内齿21局部性地啮合。也就是说,通过挠性外齿轮3(的躯体部321)弹性变形为椭圆形状,从而与该椭圆形状的长轴方向的两端相当的两个部位的外齿31相对于内齿21啮合。并且,当凸轮41以旋转轴Ax1为中心旋转时,凸轮41的旋转不会传递至外圈421和挠性外齿轮3,而内圈422的弹性变形经由多个滚动体423传递至外圈421和挠性外齿轮3。因此,从旋转轴Ax1的输入侧观察到的、呈椭圆形的挠性外齿轮3的外周形状以其长轴以旋转轴Ax1为中心进行旋转的方式,伴随于凸轮41的旋转而变化。
其结果是,在形成于挠性外齿轮3的外周面的外齿31产生波动运动。通过产生外齿31的波动运动,内齿21与外齿31的啮合位置沿刚性内齿轮2的圆周方向移动,并在挠性外齿轮3与刚性内齿轮2之间产生相对旋转。也就是说,外齿31在挠性外齿轮3(的躯体部321)所形成的椭圆形状的长轴方向的两端处与内齿21啮合,因此,通过该椭圆形状的长轴以旋转轴Ax1为中心进行旋转,从而使内齿21与外齿31的啮合位置移动。如此,在本实施方式的谐波齿轮装置1中,伴随于以旋转轴Ax1为中心的波发生器4的旋转而使挠性外齿轮3变形,使外齿31的一部分与内齿21的一部分啮合,并使挠性外齿轮3按照挠性外齿轮3与刚性内齿轮2的齿数差进行旋转。
另外,如上所述,在谐波齿轮装置1中,挠性外齿轮3与刚性内齿轮2的齿数差规定了谐波齿轮装置1中的输出旋转相对于输入旋转的减速比。也就是说,在将刚性内齿轮2的齿数设为“V1”并将挠性外齿轮3的齿数设为“V2”的情况下,减速比R1由下述式1表示。
R1=V2/(V1-V2) (式1)
总而言之,刚性内齿轮2与挠性外齿轮3的齿数差(V1-V2)越小,则减速比R1越大。作为一例,当刚性内齿轮2的齿数V1为“72”,挠性外齿轮3的齿数V2为“70”,它们的齿数差(V1-V2)为“2”时,根据上 述式1,减速比R1为“35”。在该情况下,当从旋转轴Ax1的输入侧观察时,若凸轮41以旋转轴Ax1为中心顺时针旋转1周(360度),则挠性外齿轮3以旋转轴Ax1为中心逆时针旋转与齿数差“2”相应的量(也就是10.3度)。
根据本实施方式的谐波齿轮装置1,这样高的减速比R1能够通过一级齿轮(刚性内齿轮2以及挠性外齿轮3)的组合来实现。
另外,谐波齿轮装置1至少包括刚性内齿轮2、挠性外齿轮3、以及波发生器4即可,例如,也可以进一步包括“(3.2)致动器”栏中说明的花键衬套113等作为结构要件。
(3.2)致动器
接下来,对于本实施方式的致动器100的结构更详细地进行说明。
如图4所示,本实施方式的致动器100包括本实施方式的谐波齿轮装置1、驱动源101、以及输出部102。也就是说,致动器100除了构成谐波齿轮装置1的刚性内齿轮2、挠性外齿轮3以及波发生器4之外,还包括驱动源101以及输出部102。另外,致动器100包括谐波齿轮装置1、驱动源101以及输出部102之外,还包括输入部103、输入侧壳体111、输出侧壳体112、花键衬套113、间隔件114、第一止挡件115、第二止挡件116以及安装板117。另外,在本实施方式中,致动器100还包括输入侧轴承118、119、输入侧油封120、输出侧轴承121、122以及输出侧油封123。
在本实施方式中,致动器100中的驱动源101,输入侧油封120以及输出侧油封123以外的部件的材质为不锈钢、铸铁、机械结构用碳钢、铬钼钢、磷青铜或铝青铜等金属。
驱动源101是马达(电动机)等动力的产生源。驱动源101所产生的动力传递至谐波齿轮装置1中的波发生器4的凸轮41。具体而言,驱动源101与作为输入部103的轴连接,由驱动源101所产生的动力经由输入部103传递至凸轮41。由此,驱动源101能够使凸轮41旋转。
输出部102是沿着输出侧的旋转轴Ax2配置的圆柱状的轴。作为输出部102的轴的中心轴与旋转轴Ax2一致。输出部102被输出侧壳体112保持为能够以旋转轴Ax2为中心旋转。输出部102固定于挠性外齿轮3中的主体部32的底部322,并以旋转轴Ax2为中心与挠性外齿轮3一同旋转。也就是说,输出部102将挠性外齿轮3的旋转力作为输出而取出。
输入部103是沿着输入侧的旋转轴Ax1配置的圆柱状的轴。作为输入部103的轴的中心轴与旋转轴Ax1一致。输入部103通过输入侧壳体111保持为能够以旋转轴Ax1为中心旋转。输入部103安装于波发生器4的凸轮41,并以旋转轴Ax1为中心与凸轮41一起旋转。也就是说,输入部103将驱动源101所产生的动力(旋转力)作为输入传递至凸轮41。如上所述,在本实施方式中,输入侧的旋转轴Ax1与输出侧的旋转轴Ax2位于同一直线上,因此输入部103与输出部102位于同轴上。
输入侧壳体111经由输入侧轴承118、119将输入部103保持为输入部103能够旋转。一对输入侧轴承118、119沿着旋转轴Ax1隔开间隔地排列配置。在本实施方式中,作为输入部103的轴贯穿通过输入侧壳体111,且输入部103的前端部从输入侧壳体111中的旋转轴Ax1的输入侧的端面(图4的右端面)突出。输入侧壳体111的旋转轴Ax1的输入侧的端面中的、与输入部103之间的间隙被输入侧油封120堵塞。
输出侧壳体112经由输出侧轴承121、122将输出部102保持为输出部102能够旋转。一对输出侧轴承121、122沿着旋转轴Ax2隔开间隔地排列配置。在本实施方式中,作为输出部102的轴贯穿通过输出侧壳体112,且输出部102的前端部从输出侧壳体112中的旋转轴Ax1的输出侧的端面(图4的左端面)突出。输出侧壳体112的旋转轴Ax1的输出侧的端面中的、与输出部102之间的间隙被输出侧油封123堵塞。
此处,如图4所示,输入侧壳体111和输出侧壳体112在从与旋转轴Ax1平行的方向、也就是齿线方向D1的两侧夹持谐波齿轮装置1的刚性内 齿轮2的状态下彼此结合。具体而言,输入侧壳体111相对于刚性内齿轮2从旋转轴Ax1的输入侧接触,输出侧壳体112相对于刚性内齿轮2从旋转轴Ax1的输出侧接触。如此,输入侧壳体111在与输出侧壳体112之间夹着刚性内齿轮2的状态下,穿过多个固定孔22,而相对于输出侧壳体112被螺钉(螺栓)紧固固定。由此,输入侧壳体111、输出侧壳体112和刚性内齿轮2彼此结合而成为一体。换言之,刚性内齿轮2与输入侧壳体111和输出侧壳体112一起构成致动器100的外轮廓。
花键衬套113是用于将作为输入部103的轴相对于凸轮41进行连结的筒状的部件。花键衬套113插入至形成在凸轮41的凸轮孔43,作为输入部103的轴以贯穿通过花键衬套113的方式插入至花键衬套113。此处,花键衬套113在以旋转轴Ax1为中心的旋转方向上相对于凸轮41和输入部103双方的移动被限制,且花键衬套113在与旋转轴Ax1平行的方向上至少能够相对于输入部103移动。由此,作为输入部103与凸轮41的连结结构,实现了花键连结结构。由此,凸轮41能够相对于输入部103沿着旋转轴Ax1移动,并以旋转轴Ax1为中心与输入部103一起旋转。
间隔件114是填埋花键衬套113与凸轮41之间的间隙的部件。第一止挡件115是防止花键衬套113从凸轮41脱落的部件。第一止挡件115例如由E型环构成,且从花键衬套113中的凸轮41观察时安装于旋转轴Ax1的输入侧的位置。第二止挡件116是防止输入部103从花键衬套113脱落的部件。第二止挡件116例如由E型环构成,且以从旋转轴Ax1的输出侧与花键衬套113接触的方式安装于输入部103。
安装板117是用于在挠性外齿轮3的底部322安装作为输出部102的轴的部件。具体而言,安装板117在与输出部102的凸缘部之间夹着底部322中的透孔34的周围部分的状态下,穿过多个安装孔33,而相对于凸缘部被螺钉(螺栓)紧固固定。由此,在挠性外齿轮3的底部322固定作为输出部102的轴。
然而,在本实施方式中,在由输入侧壳体111、输出侧壳体112以及刚性内齿轮2构成的致动器100的外轮廓的内侧封入有润滑剂Lb1。也就是说,在由输入侧壳体111、输出侧壳体112以及刚性内齿轮2所围起的空间内存在能够贮存液状或凝胶状的润滑剂Lb1的”润滑剂储存处”。
即,本实施方式的谐波齿轮装置1中,例如,在内齿21与外齿31的啮合部分、以及轴承42的外圈421与内圈422之间等,注入有液状或凝胶状的润滑剂Lb1。作为一例,润滑剂Lb1为液状的润滑油(油)。并且,在谐波齿轮装置1使用时,润滑剂Lb1也进入轴承42的外圈421(外周面424)与挠性外齿轮3之间的间隙X1。
在本实施方式中,作为一例,如图4所示,以润滑剂Lb1的液面位于比输出侧轴承121、122的下端更靠下方的方式,仅在致动器100的外轮廓的下部(铅垂方向的下部)贮存有润滑剂Lb1。因此,对于外齿31以及轴承42的外圈421等,在图4的状态下,仅旋转方向上的一部分浸在润滑剂Lb1中。从状态开始,当输出部102伴随于输入部103的旋转而旋转时,外圈421以及挠性外齿轮3也绕旋转轴Ax1旋转,其结果是,外齿31以及轴承42的外圈421等的旋转方向的整体浸在润滑剂Lb1中。
(4)各部的详细结构
接下来,参照图1A至图2B、图5A以及图5B对本实施方式的谐波齿轮装置1的各部的更详细的结构更详细地进行说明。
图5A是对于相当于图1B的范围仅着眼于轴承42以及挠性外齿轮3的剖视图,图5B是从图5A的轴承42侧观察到的挠性外齿轮3的内周面301的示意图。图5B中以想像线(双点划线)示出轴承42的外圈421以及贯通孔H1。
(4.1)贯通孔的形状以及尺寸
首先,参照图5A以及图5B对本实施方式中的贯通孔H1的形状以及尺寸进行说明。
在本实施方式中,如上所述,贯通孔H1仅包括设置于外圈421的“第一贯通孔”和设置于挠性外齿轮3的外齿31的“第二贯通孔”中的第一贯通孔。设置于外圈421的贯通孔H1沿径向方向贯穿通过外圈421。由此,贯通孔H1的一方的开口面面向外圈421与挠性外齿轮3之间的间隙X1,贯通孔H1的另一方的开口面在外圈421的内周面425开口。因此,贯通孔H1的一端与外圈421与挠性外齿轮3之间的间隙X1相连,另一端与外圈421的内周面425与内圈422的外周面之间的空间相连。因此,配置有多个滚动体423的外圈421的内周面425与内圈422的外周面之间的空间经由贯通孔H1,而与外圈421与挠性外齿轮3之间的间隙X1连通。
另外,贯通孔H1是与径向方向正交的剖面形状为圆形(正圆)状的圆孔。在本实施方式中,作为一例,贯通孔H1的中心线与径向方向平行。也就是说,贯通孔H1是从外圈421的内周面425到外周面424沿径向方向笔直地延伸的孔。而且,贯通孔H1的与径向方向正交的剖面形状在贯通孔H1的径向方向上的全长为同一形状。也就是说,在贯通孔H1的内部形成圆柱状的空间。
此处,贯通孔H1的孔径
(参照图5B)是多个滚动体423各自的孔径
(参照图5A)的0.1倍以下,或1.0mm以下的其中更小的一方。此处所提及的贯通孔H1的孔径
在贯通孔H1的剖面形状为正圆的情况为其直径,在贯通孔H1的剖面形状为非圆形状(例如椭圆形状)的情况下是指其短轴方向的尺寸。在本实施方式中,作为一例,贯通孔H1的孔径
为滚动体423的孔径
的0.1倍以下且1.0mm以下。根据这样的贯通孔H1的孔径
能够通过贯通孔H1而高效地对外圈421与挠性外齿轮3之间的间隙X1供给润滑剂Lb1。
根据以上说明的结构,外圈421与内圈422之间的空间经由贯通孔H1而与外圈421与挠性外齿轮3之间的间隙X1相连,因此外圈421与内圈422之间的润滑剂Lb1通过贯通孔H1供给至间隙X1。在图5A中,用虚线 箭头示意性地表示贯通孔H1内的润滑剂Lb1的流动。特别是,当轴承42动作而使得多个滚动体423旋转时,滚动体423作为泵发挥功能,而能够将外圈421与内圈422之间的润滑剂Lb1经由贯通孔H1送入间隙X1。其结果是,防止在外圈421与挠性外齿轮3的接触部位处润滑剂Lb1不足或枯竭的“润滑剂耗尽”,从而容易抑制微动磨损的产生。
总而言之,本实施方式的谐波齿轮装置1具备泵结构,该泵结构在挠性外齿轮3相对于刚性内齿轮2的相对旋转时,通过贯通孔H1对间隙X1供给润滑剂Lb1。在挠性外齿轮3相对于刚性内齿轮2相对旋转时,轴承42的多个滚动体423在外圈421的周向上滚动,因此如上述那样多个滚动体423作为泵发挥功能。也就是说,多个滚动体423构成泵结构。特别是,在本实施方式中,滚动体423在外圈421与内圈422之间的空间内滚动,由此外圈421与内圈422之间的空间内的压力升高,因此存在于外圈421与内圈422之间的润滑剂Lb1通过贯通孔H1向间隙X1侧挤出。这样一来,滚动体423构成叶片泵那样的容积型的泵,以充分的压力将润滑剂Lb1向间隙X1侧挤出,因此容易向间隙X1内供给充分的润滑剂Lb1。
另外,贯通孔H1中、外圈421的内周面425侧的开口面在形成于外圈421的内周面425的滚动槽426的底面开口。也就是说,在外圈421的内周面425的宽度方向(齿线方向D1)的中央部,形成有在外圈421整周上沿周向延伸的滚动槽426,多个滚动体423沿滚动槽426滚动。在内圈422的外周面也形成有同样的滚动槽427,多个滚动体423以被夹入的方式被保持在这些相互相对的滚动槽426、427之间。并且,贯通孔H1以在外圈421的滚动槽426的底面开口的方式,配置于外圈421的宽度方向(齿线方向D1)上的形成有滚动槽426的范围。
进一步,在本实施方式中,贯通孔H1在与旋转轴Ax1平行的方向(齿线方向D1)上,配置于与多个滚动体423的中心相同的位置。换言之,贯通孔H1配置在外圈421的宽度方向(齿线方向D1)上的滚动槽426的中 心。根据该结构,多个滚动体423的中心在贯通孔H1的开口面上通过,由此,在滚动体423旋转时,滚动体423作为泵高效地发挥作用,而容易经由贯通孔H1将润滑剂Lb1送入间隙X1。进一步,可知外圈421与挠性外齿轮3主要在外圈421的宽度方向(齿线方向D1)的两端部进行接触。由此,贯通孔H1形成于外圈421的宽度方向(齿线方向D1)上的中心,由此,在外圈421与挠性外齿轮3接触时,不易产生由贯通孔H1引起的外圈421的强度的降低。
此处,如图5A所示,滚动槽426、427的与外圈421的周向正交的剖面形状形成为圆弧状。并且,滚动槽426、427的剖面形状中的圆弧的曲率比多个滚动体423各自的曲率大。换言之,滚动槽426、427的剖面形状中的圆弧的曲率半径比滚动体423的曲率半径小。因此,在多个滚动体423以被夹入的方式保持在滚动槽426、427之间的状态下,在滚动槽426、427的底面与各滚动体423的表面之间确保一定程度的间隙。也就是说,如图5A所示,各滚动体423在合计四处被四点支承,该四处为外圈421中的滚动槽426的宽度方向(齿线方向D1)的两端缘和内圈422中的滚动槽427的宽度方向(齿线方向D1)的两端缘。但是,实际上在外圈421与内圈422之间相对地施加有推力方向(与旋转轴Ax1平行的方向)的载荷,因此滚动体423被成为相互斜对的关系的一对端缘支承。
因此,形成于滚动槽426的底面的贯通孔H1的开口面隔着上述间隙相对于滚动体423的表面对置。总而言之,在本实施方式中,在径向方向上,在多个滚动体423的轨道与设置于外圈421的(第一)贯通孔H1的外圈421的内周面425侧的开口面之间,确保规定值以上的距离。也就是说,即使在滚动体423存在于与贯通孔H1对应的位置的状态下,也会在贯通孔H1的开口面与滚动体423之间确保规定值以上的距离(间隙),从而贯通孔H1不会被滚动体423被闭塞。由此,多个滚动体423即使在滚动时通过贯通孔H1上,滚动体423也不会与贯通孔H1的开口缘发生碰撞。其结果 是,在滚动体423通过贯通孔H1上时,能够避免由滚动体423与贯通孔H1的开口缘发生碰撞而引起的冲击的产生,而容易保护外圈421以及滚动体423等免受冲击。
另外,在本实施方式中,如图5B所示,在外圈421与挠性外齿轮3中的至少一方的面对间隙X1的面,形成有至少沿外圈421的周向延伸的槽303。在本实施方式中,作为一例,在挠性外齿轮3中的面对间隙X1的内周面301,形成有多条槽303。在此,利用在挠性外齿轮3的内周面301因珩磨加工而产生的加工痕来形成槽303。即,在珩磨加工中,在研磨后的表面留下被称为“交叉阴影”的网眼状(斜纹状)的刻痕痕迹。作为一例,交叉阴影由以20度以上60度以下的交叉角度交叉的多条槽303形成,形成于被珩磨加工的挠性外齿轮3的内周面301的大致整个区域。这些多条槽303,在挠性外齿轮3的内周面301沿外圈421的宽度方向(齿线方向D1)以及外圈421的周向双方延伸。
通过润滑剂Lb1渗入这些多个槽303,润滑剂Lb1容易遍及间隙X1中的比较大的范围。也就是说,通过贯通孔H1供给至外圈421与挠性外齿轮3之间的间隙X1的润滑剂Lb1,容易通过槽303内而在间隙X1内沿外圈421的周向扩散。特别是,如果是通过珩磨加工等产生的微细的槽303,则可以期待从贯通孔H1送入间隙X1的润滑剂Lb1由于例如毛细管现象,而向外圈421的周向扩散。而且,如果是交叉阴影那样的网眼状的槽303,润滑剂Lb1不仅容易向外圈421的周向扩散,还容易向外圈421的宽度方向(齿线方向D1)扩散。
此处,为了润滑剂Lb1容易浸透至外圈421与挠性外齿轮3之间的间隙X1,优选至少外圈421的外周面424以及挠性外齿轮3的内周面301不具有防油性。
(4.2)贯通孔的数量以及配置
接下来,参照图2A以及图2B对本实施方式中的贯通孔H1的数量以 及配置进行说明。
如图2A所示,贯通孔H1包括以在外圈421的周向上排列的方式设置于外圈421的多个第一贯通孔。在本实施方式中,贯通孔H1仅由设置于外圈421的第一贯通孔形成,因此多个贯通孔H1全部在外圈421的周向上排列而配置。在本实施方式中,作为一例,在外圈421设有三个贯通孔H1。因此,能够在外圈421的周向的多个部位(在本实施方式中为三处),通过贯通孔H1对外圈421与挠性外齿轮3之间的间隙X1供给润滑剂Lb1。其结果是,与在外圈421的周向上仅一处设置贯通孔H1的情况相比,容易在间隙X1中的外圈421的周向的整个区域的范围内供给润滑剂Lb1。
此处,如图2A所示,多个贯通孔H1(第一贯通孔)的间隔P1是多个滚动体423的间隔P2的倍数以外的值。在本实施方式中,作为一例,轴承42具有26个滚动体423,在外圈421具有3个贯通孔H1。并且,26个滚动体423以及3个贯通孔H1分别等间距(等间距)地设置在外圈421的周向上。因此,3个贯通孔H1在外圈421的周向上的间隔P1为120度(=360度÷3),26个滚动体423在外圈421的周向上的间隔P2为13.85度(=360度÷26)。此处,间隔P1是将外圈421的周向上相邻的两个贯通孔H1的中心之间的距离用绕旋转轴Ax1的角度来表示的值,同样地,间隔P2是将外圈421的周向上相邻的两个滚动体423的中心之间的距离用绕旋转轴Ax1的角度来表示的值。在本实施方式中,为了即使这样对多个滚动体423的间隔P2(13.85度)乘以任何整数也不与多个贯通孔H1的间隔P1(120度)一致,将间隔P1设为无法被间隔P2整除那样的值。
由此,滚动体423不会同时存在于与全部贯通孔H1对应的位置。也就是说,在一个滚动体423位于与一个贯通孔H1对应的位置的状态下,滚动体423不会位于与其他的两个贯通孔H1对应的位置。因此,本实施方式的谐波齿轮装置1中,能够避免在多个贯通孔H1同时嵌入(或拔出)多个滚动体423时产生可能产生的比较大的冲击,而容易保护外圈421以及滚动 体423等免受冲击。另外,与滚动体423同时位于全部贯通孔H1上的情况相比,基于滚动体423的滚动的泵作用也变得高效。
(4.3)表面硬度
接下来,对本实施方式中的内齿21以及外齿31的表面硬度进行说明。
在本实施方式中,如上所述,内齿21的表面硬度比外齿31的表面硬度低。也就是说,外齿31的表面的硬度比内齿21的表面高(硬)。本公开所提及的“硬度”是指物体的硬度的程度,金属的硬度例如用以一定的压力推压钢球而形成的凹陷的大小来表示。具体而言,作为金属的硬度的一例,有洛氏硬度(HRC)、布氏硬度(HB)、维氏硬度(HV)或肖氏硬度(Hs)等。在本实施方式中,只要没有特别规定,则通过维氏硬度(HV)来表示硬度。作为提高(增硬)金属部件的硬度的手段,例如有合金化或热处理等。
在本实施方式中,挠性外齿轮3的外齿31的表面由高硬度且高韧性(强韧)的材质形成,刚性内齿轮2的内齿21由与外齿31相比硬度低的材质形成。在本实施方式中,作为一例,外齿31使用以下材料,即,对日本产业规格(JIS:Japanese Industrial Standards)中规定为“SNCM439”的镍铬钼钢实施了热处理(淬火回火)的材料。内齿21使用日本产业规格(JIS)中规定为“FCD800-2”的球状石墨铸铁。
进一步,优选的是,与外齿31相比相对低硬度的内齿21的表面硬度为HV350以下。在本实施方式中,作为一例,内齿21的表面硬度在HV250以上且小于HV350的范围内选择。内齿21的表面硬度的下限值不限于HV250,例如,也可以是HV150、HV160、HV170、HV180、HV190、HV200、HV210、HV220、HV230或HV240等。同样地,内齿21的表面硬度的上限值不限于HV350,例如,也可以是HV360、HV370、HV380、HV390、HV400、HV410、HV420、HV430、HV440或HV450等。
对此,优选的是,与内齿21相比为相对高硬度的外齿31的表面硬度 为HV380以上。在本实施方式中,作为一例,外齿31的表面硬度在HV380以上且HV450以下的范围内进行选择。外齿31的表面硬度的下限值不限于HV380,例如也可以是HV280、HV290、HV300、HV310、HV320、HV330、HV340、HV350、HV360或HV370等。同样地,内齿21的表面硬度的上限值不限于HV450,例如,也可以是HV460、HV470、HV480、HV490、HV500、HV510、HV520、HV530、HV540或HV550等。
另外,在本实施方式中,内齿21的表面硬度与外齿31的表面硬度之差为HV50以上。也就是说,外齿31的表面硬度被设定得比内齿21的表面硬度高HV50以上。总而言之,例如,如果内齿21的表面硬度为HV350,则外齿31的表面硬度为HV400以上。另外,如果外齿31的表面硬度为HV380,则内齿21的表面硬度为HV330以下。内齿21的表面硬度与外齿31的表面硬度之差不限于HV50以上,例如,也可以为HV20以上、HV30以上或HV40以上。进一步,优选的是,内齿21的表面硬度与外齿31的表面硬度之差较大,例如进一步优选为HV60以上、HV70以上、HV80以上、HV90以上或HV100以上。如果内齿21的表面硬度与外齿31的表面硬度之差为HV100以上,则当内齿21的表面硬度为HV350时,外齿31的表面硬度为HV450以上。
如上所述,在本实施方式中,内齿21的表面硬度被设定得比外齿31的表面硬度低。因此,在谐波齿轮装置1工作时,如果内齿21与外齿31接触,则与外齿31相比,表面硬度相对低的内齿21积极地磨损。当表面硬度不同的两个部件(内齿21以及外齿31)接触时,相对软质的内齿21磨损加剧,相对硬质的外齿31的磨损被抑制。也就是说,在谐波齿轮装置1的使用的初期阶段,内齿21的齿面适度地进行磨损,由此,内齿21与外齿31之间的真实接触面积扩大,面压降低,从而不易产生外齿31的磨损。并且,在如本实施方式那样内齿21的表面硬度为HV350以下的情况下,由于内齿21与外齿31的接触,即使因内齿21的缺损或磨损等产生异物 X1,该异物X1也比较软质。总而言之,通过将在谐波齿轮装置1的使用初期容易产生的磨损所引起的异物X1作为从比较软质的内齿21出来的软质的异物X1,例如,即使异物X1进入轴承42也能够抑制对轴承42的损伤。结果是,例如,抑制对轴承42的损伤变大的硬质的异物X1的产生量等。特别是,当内齿21的表面硬度与外齿31的表面硬度之差为如HV50以上那样的比较大的值时,上述效果显著。
而且,通过使用球状石墨铸铁作为内齿21的材料,在内齿21的初期磨损时,可以期待抑制内齿21与外齿31的齿面的烧结的效果。由此,能够得到内齿21与外齿31的啮合部位的润滑效果,且能够提高谐波齿轮装置1中的动力传递效率。
内齿21以及外齿31的表面硬度并非必须用维氏硬度(HV)来规定,也可以用其他的硬度,例如洛氏硬度(HRC)、布氏硬度(HB)或肖氏硬度(Hs),来规定内齿21以及外齿31的表面硬度。
具体而言,在用洛氏硬度来规定表面硬度的情况下,优选内齿21的表面硬度为HRC30以下。作为一例,内齿21的表面硬度在HRC20以上且小于HRC30的范围内进行选择。内齿21的表面硬度的下限值不限于HRC20,例如,也可以为HRC10、HRC15或HRC25等。同样地,内齿21的表面硬度的上限值不限于HRC30,例如也可以为HRC35、HRC40或HRC45等。
对此,优选外齿31的表面硬度为HRC40以上。作为一例,外齿31的表面硬度在HRC40以上且HRC60以下的范围内进行选择。外齿31的表面硬度的下限值不限于HRC40,例如,也可以为HRC30或HRC35等。同样地,外齿31的表面硬度的上限值不限于HRC60,例如,也可以为HRC50、HRC55、HRC65、HRC70或HRC75等。
(4.4)齿线修整
接下来,对本实施方式中的内齿21以及外齿31的齿线修整进行说明。
作为前提,如图1B所示,内齿21具有齿根212以及齿顶213。内齿 21设置于刚性内齿轮2的内周面,因此内齿21的齿根212相当于刚性内齿轮2的内周面,齿顶213从刚性内齿轮2的内周面朝向内侧(刚性内齿轮2的中心)突出。
另一方面,如图1B所示,外齿31具有齿根312以及齿顶313。外齿31设置于挠性外齿轮3(的躯体部321)的外周面,因此外齿31的齿根312相当于挠性外齿轮3(的躯体部321)的外周面,齿顶313从挠性外齿轮3(的躯体部321)的外周面朝向外侧突出。
在内齿21与外齿31的啮合位置处,外齿31的齿顶313插入内齿21的相邻的一对齿顶213之间,从而内齿21与外齿31啮合。此时,外齿31的齿顶313与内齿21的齿根212对置,内齿21的齿顶213与外齿31的齿根312对置。并且,理想的是,在内齿21的齿根212与外齿31的齿顶313之间、及在外齿31的齿根312与内齿21的齿顶213之间确保微小的间隙。在该状态下,内齿21和外齿31的在齿厚方向上相对的齿面彼此接触,从而进行刚性内齿轮2与挠性外齿轮3之间的动力传递。
进一步,内齿21在齿线方向D1的两端部具有倒角部211。倒角部211为朝向齿线方向D1的两侧减小内齿21的突出量而得到的C面,基本上是对内齿21与外齿31的啮合没有帮助的部位。也就是说,内齿21的倒角部211即使在内齿21与外齿31的啮合位置也不与外齿31相接。同样地,外齿31在齿线方向D1的两端部具有倒角部311。倒角部311为朝向齿线方向D1的两侧减小内齿21的突出量而得到的C面,基本上是对内齿21与外齿31的啮合没有帮助的部位。也就是说,外齿31的倒角部311即使在内齿21与外齿31的啮合位置也不与内齿21相接。
此处,在本实施方式中,刚性内齿轮2的内齿21具有齿线修整部210。也就是说,在谐波齿轮装置1中,至少对内齿21实施齿线修整。内齿21的齿线修整部210设置于齿线方向D1的至少一方的端部。换言之,内齿21在内齿21的齿线方向D1的至少一方的端部具有齿线修整部210。在本 实施方式中,齿线修整部210设置于内齿21的齿线方向D1的两端部。
本公开所提及的“齿线修整”是指齿线方向D1的修整,内齿21的齿线修整部210为内齿21中的实施了齿线修整的部位。根据齿线修整,能够对齿轮的正规的齿线形状赋予有意的凸起或变更螺旋角。作为齿线修整的代表性的加工,有凸面加工和铲齿加工(端部起伏)。凸面加工是指以齿轮的齿线方向D1的中央部成为凸起的方式,使齿线方向D1的中央部具有圆角的加工。铲齿加工是适度地避开齿线方向D1的两端部的加工方法。相对于凸面加工是使朝向中央部具有圆角那样的在齿线方向D1的大致全长上进行的加工,铲齿加工是仅避开齿线方向D1的两端部而进行的加工。无论是凸面加工还是铲齿加工,通过使齿线方向D1的两端部的齿厚比中央部小,都能够使与配对齿轮的齿接触位置靠近齿线方向D1的中心附近。通过这样的齿线修整,抑制因齿轮的制作误差或组装误差而导致的齿接触偏向齿线方向D1的一端部的“单侧接触”,特别是缓和齿线方向D1的端部(齿宽端部)的应力集中,改善齿接触。
另外,在本实施方式中,挠性外齿轮3的外齿31也具有齿线修整部310。也就是说,在谐波齿轮装置1中,不仅对内齿21实施齿线修整,而且对外齿31也实施齿线修整。外齿的齿线修整部210设置于齿线方向D1的至少一方的端部。换言之,外齿31在外齿31的齿线方向D1的至少一方的端部具有齿线修整部310。在本实施方式中,齿线修整部310设置于外齿31的齿线方向D1的两端部。
如此一来,本实施方式的谐波齿轮装置1中,内齿21以及外齿31的至少一方具有齿线修整部210、310。利用齿线修整部210、310,能够不易产生由内齿21与外齿31的过度的齿接触引起的应力集中,其结果是,能够改善内齿21与外齿31的齿接触。从而,不易产生由内齿21与外齿31的接触所造成的缺损或磨损等引起的异物,能够实现不易产生可靠性的降低的谐波齿轮装置1。
(5)作用
接下来,对本实施方式的谐波齿轮装置1的作用更详细地进行说明。
如上所述,谐波齿轮装置1中,特别是,若长时间使用,伴随于嵌入至挠性外齿轮3的内侧的波发生器4的旋转,在挠性外齿轮3与波发生器4的接触部位可能产生微动磨损。并且,当产生微动磨损时,有可能导致表面的粗糙、由磨损粉引起的生锈、以及由磨损粉进入波发生器4的内侧而引起的波发生器4(的轴承42)的损伤等,而影响谐波齿轮装置1的可靠性。
作为产生这样的微动磨损的原因,可认为是在挠性外齿轮3与波发生器4的接触部位产生了润滑剂Lb1不足或枯竭的“润滑剂耗尽”。即,可以推定原本挠性外齿轮3与波发生器4的接触部位处于以下环境,即,由于在润滑剂Lb1不充分的状态下产生接触面之间的微振动,而容易产生微动磨损的环境。作为成为这样的容易产生微动磨损的环境的理由,具体可以考虑下述两个理由。
第一个理由在于挠性外齿轮3频繁地反复弹性变形。也就是说,在波发生器4的凸轮41旋转一周的期间,挠性外齿轮3反复进行两次一方向(例如图2A的上下方向)为椭圆形状的长轴的弹性变形。因此,通过凸轮41高速旋转,挠性外齿轮3高速地反复进行弹性变形,伴随于该弹性变形的反复进行,在挠性外齿轮3与波发生器4的接触部位容易产生振动。其结果是,在挠性外齿轮3与波发生器4的接触部位,在润滑剂Lb1不充分的状态下产生微振动。
更详细而言,在挠性外齿轮3产生了弹性变形的状态下,挠性外齿轮3在旋转轴Ax1的方向上的开口面35侧的端部比在底部322侧的端部变形更大,而成为更接近椭圆形状的形状。因此,在挠性外齿轮3产生了弹性变形的状态下,挠性外齿轮3的躯体部321的内周面301如图6所示,包括相对于旋转轴Ax1倾斜了倾斜角度θ1的锥面302。并且,锥面302的倾斜 角度θ1伴随于挠性外齿轮3的弹性变形而变化。也就是说,在从开口面35侧观察挠性外齿轮3时,在椭圆形状的长轴方向的两端部,锥面302的倾斜角度θ1最大(图6的“长轴侧”),在椭圆形状的短轴方向的两端部,锥面302的倾斜角度θ1最小(图6的“短轴侧”)。因此,通过挠性外齿轮3频繁地反复进行弹性变形,锥面302的倾斜角度θ1也高速地变化,由此,挠性外齿轮3的内周面301(锥面302)以反复冲击外圈421的外周面424的方式振动。如此,通过产生伴随冲击的微振动,其结果是,在挠性外齿轮3与波发生器4的接触部位容易产生微动磨损。
第二个理由在于外圈421与挠性外齿轮3之间的相对旋转为低速。也就是说,由于外圈421与挠性外齿轮3之间的间隙X1的影响,波发生器4的凸轮41旋转且外圈421以及挠性外齿轮3发生弹性变形,伴随于此,在外圈421与挠性外齿轮3之间可能产生相对旋转。然而,该相对旋转,例如为凸轮41的转速的几千分之一或几百分之一程度的低速旋转。因此,在外圈421与挠性外齿轮3之间的间隙X1中,无法期待利用该相对旋转来使润滑剂Lb1流动,而处于不利于在其接触部位形成由润滑剂Lb1形成的膜(油膜)的环境。但是,由于在外圈421与挠性外齿轮3之间可能产生相对旋转,因此,外圈421与挠性外齿轮3相对地相互摩擦,而成为容易产生微动磨损的环境。
在本实施方式的谐波齿轮装置1中,根据上述那样的理由,能够对处于容易产生微动磨损的环境的外圈421与挠性外齿轮3之间的接触部位强制地供给润滑剂Lb1。即,谐波齿轮装置1能够经由贯通孔H1对挠性外齿轮3与波发生器4的接触部位供给润滑剂Lb1,由此,在接触部位维持充分的润滑剂Lb1。这样一来,通过防止在外圈421与挠性外齿轮3的接触部位处润滑剂Lb1不足或枯竭的”润滑剂耗尽”,来抑制微动磨损的产生。
其结果是,外圈421与挠性外齿轮3的接触部位的表面成为被润滑剂Lb1覆盖的状态,抑制微动磨损的产生。由此,本实施方式的谐波齿轮装置 1中,不易产生由外圈421与挠性外齿轮3之间的微动磨损引起的不良状况,而能够提供提供不易产生可靠性的降低的谐波齿轮装置1。并且,本实施方式的谐波齿轮装置1特别是在长时间使用时不易产生可靠性的降低,因此还进一步带来了谐波齿轮装置1的传递效率的改善、长寿命化以及高性能化。
即,谐波齿轮装置1中,由于对外圈421与挠性外齿轮3的接触部位供给润滑剂Lb1,因此难以阻碍挠性外齿轮3的变形跟随性,从而带来动力传递效率的提高、以及由施加于轴承42的载荷减少而引起的长寿命化等。而且,由于防止了因微动磨损而产生的磨损粉进入轴承42等,因此也减少了以由于磨损粉的咬入而形成的压痕为起点的损伤(表面起点型的剥落)的产生。因此,作为谐波齿轮装置1,可以期待其长寿命化以及高性能化。
特别是,在着眼于外圈421的周向的一部分的情况下,在仅在致动器100的外轮廓的下部存在润滑剂储存处的结构中(参照图4),如果没有贯通孔H1,则仅在该着眼部位通过润滑剂储存处时,润滑剂Lb1能够浸入间隙X1。并且,由于外圈421的旋转与内圈422的旋转相比为低速,因此,润滑剂Lb1能够浸入间隙X1的频率变低。相对于此,在本实施方式的谐波齿轮装置1中,通过设置有贯通孔H1,从而在外圈421的着眼部位通过润滑剂储存处时,仅通过对外圈421与内圈422之间补充润滑剂Lb1,就能够对间隙X1也供给润滑剂Lb1。也就是说,由于补充到外圈421与内圈422之间的润滑剂Lb1通过贯通孔H1向间隙X1供给,因此在外圈421的整周上不易产生与挠性外齿轮3的接触部位处的“润滑剂耗尽”。
另外,在本实施方式中,当轴承42动作而使多个滚动体423旋转时,滚动体423作为泵发挥功能,由此,能够将润滑剂Lb1经由贯通孔H1强制地送入间隙X1。而且,在外圈421和挠性外齿轮3中的至少一方的面对间隙X1的面(在本实施方式中为挠性外齿轮3的内周面301),形成有沿外圈421的周向延伸的槽303。根据这些结构,经由贯通孔H1供给至间隙 X1的润滑剂Lb1,容易在外圈421与挠性外齿轮3之间的整个区域扩散,能够高效地消除在X该间隙X1处的润滑剂耗尽。而且,通过挠性外齿轮3反复进行弹性变形,即使锥面302的倾斜角度θ1高速地变化也有助于润滑剂Lb1在该间隙X1扩散。并且,不仅抑制润滑剂耗尽,而且还能够实现例如谐波齿轮装置1在润滑剂Lb1容易固化的低温环境下的起动性的改善。
(6)制造方法
在制造本实施方式的谐波齿轮装置1时,特别是在制造外圈421时,优选实施避免由于设置贯通孔H1而导致强度降低的对策。
作为一例,优选在形成贯通孔H1的开孔工序后,进行外圈421的(特别是成为滚动面的内周面425)的表面加工的表面加工工序。也就是说,优选的是,在外圈421中的贯通孔H1周边残留压缩残留应力,以免贯通孔H1成为外圈421的破裂的起点。为此,优选在外圈421进行淬火等表面加工工序前,形成贯通孔H1,残留由热处理引起的压缩残留应力。或者,也可以在热处理后,对外圈421中的贯通孔H1的周边实施以下加工,即,通过投射较小的球状投射件而对表面赋予改性固化的喷丸硬化加工等,由此来提高外圈421的疲劳强度。
(7)应用例
接下来,参照图7对本实施方式的谐波齿轮装置1以及致动器100的应用例进行说明。
图7是示出本实施方式的使用谐波齿轮装置1的机器人9的一例的剖视图。该机器人9为水平多关节机器人,也就是所谓的斯卡拉(SCARA:Selective Compliance Assembly Robot Arm)型机器人。
如图7所示,机器人9具备两个谐波齿轮装置1和连杆91。两个谐波齿轮装置1分别设置于机器人9中的两个部位的关节部。连杆91连结两个部位的关节部。在图7的例子中,谐波齿轮装置1由不是杯型而是礼帽型的谐波齿轮装置构成。也就是说,在图7所例示的谐波齿轮装置1中,使 用形成为礼帽状的挠性外齿轮3。
(8)变形例
实施方式一只不过是本公开实施例的各种实施方式之一。实施方式一可以根据设计等进行各种变更,只要能够达成本公开实施例的目的即可。另外,本公开实施例中参照的附图均是示意性的图,图中的各结构要件的大小以及厚度各自的比不一定反映实际的尺寸比。以下,列举实施方式一的变形例。以下说明的变形例能够适当组合而应用。
图8A、图8B、图9A以及图9B示出实施方式一的变形例,是相当于图5A的剖视图。
在图8A所示的第一变形例中,贯通孔H1也可以在与旋转轴Ax1平行的方向(齿线方向D1)上处于相对多个滚动体423的中心偏离的位置。图8A的例子中,贯通孔H1配置于相对滚动体423的中心向开口面35侧偏离的位置、也就是在齿线方向方向D1上滚动体423的中心与开口面35之间的位置。根据该结构,具有如下优点:即使从滚动体423对形成有贯通孔H1的构件(此处为外圈421)沿径向方向上施加大的载荷,该载荷也难以作用于贯通孔H1的周边,而不易产生以贯通孔H1为起点的破裂等。
在如图8B所示的第二变形例中,贯通孔H1在与旋转轴Ax1平行的方向(齿线方向D1)上设置于多个部位。在图8B的例子中,贯通孔H1配置于在齿线方向D1上成为滚动体423的中心的两侧的位置。
在图9A所示的第三变形例、以及图9B所示的第四变形例中,在径向方向上,贯通孔H1在间隙X1侧的开口面积都比贯通孔H1在与间隙X1相反一侧的开口面积小。即,在设置于外圈421的(第一)贯通孔H1中,贯通孔H1在间隙X1侧即外周面424侧的开口面积比贯通孔H1在与间隙X1相反一侧即内周面425侧的开口面积小。在图9A的例子中,贯通孔H1形成为在其内周面设置有台阶,与贯通孔H1的比该台阶靠内周面425侧的部分相比,贯通孔H1的比该台阶靠外周面424侧(间隙X1侧)的部分的 孔径更小。在图9B的例子中,贯通孔H1的内周面形成为锥状,贯通孔H1形成为越靠外周面424侧(间隙X1侧)则孔径越小。进而,作为其他例子,也可以设有多个台阶,贯通孔H1的孔径以3个阶段以上变化。
如第三变形例以及第四变形例那样,由于贯通孔H1在间隙X1侧的开口面积比贯通孔H1在与间隙X1相反一侧的开口面积小,因此能够提高通过贯通孔H1供给至间隙X1的润滑剂Lb1的压力。也就是说,通过缩小贯通孔H1中的润滑剂Lb1的出口侧,能够提高从贯通孔H1向间隙X1排出的润滑剂Lb1的压力,而更高效地对间隙X1供给润滑剂Lb1。
另外,对内齿21以及外齿31实施齿形修整并非谐波齿轮装置1所必须的结构。例如,也可以对内齿21与外齿31中的至少一方不实施齿形修整。
另外,在径向方向上,在多个滚动体423的轨道与设置于外圈421的(第一)贯通孔H1的开口面之间确保规定值以上的距离,这对于谐波齿轮装置1并非必须的结构。也就是说,也可以是在滚动体423存在于与贯通孔H1对应的位置的状态下,在贯通孔H1的开口面与滚动体423之间不产生间隙,而由滚动体423闭塞贯通孔H1。
另外,在轴承42中各滚动体423被4点支承也并非谐波齿轮装置1所必须的结构,例如,各滚动体423也可以是被两点支承的结构。
另外,谐波齿轮装置1不限于实施方式一中说明的杯型,例如也可以是礼帽型、环型、差速器型、扁平型(圆饼型)或屏蔽型等。例如,即使是图7所例示那样的礼帽型的谐波齿轮装置1,也与杯型同样地具有筒状的挠性外齿轮3,该筒状的挠性外齿轮3在齿线方向方向D1的一方具有开口面35。也就是说,礼帽状的挠性外齿轮3在旋转轴Ax1的一侧的端部具有 凸缘部,在与凸缘部相反一侧的端部具有开口面35。即使是礼帽状的挠性外齿轮3,也在开口面35侧的端部具有外齿31且供波发生器4嵌入。
另外,对于致动器100的结构,也不限于实施方式一中说明的结构,能够进行适当的变更。例如,对于输入部103与凸轮41的连结结构,不限于花键连结结构,也可以使用十字接头等。通过使用十字接头作为输入部103与凸轮41的连结结构,能够抵消输入侧的旋转轴Ax1与波发生器4(凸轮41)之间的偏心,进而能够抵消刚性内齿轮2与挠性外齿轮3的偏心。而且,凸轮41不必能够相对于输入部103沿着旋转轴Ax1移动。
另外,本实施方式的谐波齿轮装置1以及致动器100的应用例不限于上述那样的水平多关节机器人,例如也可以是水平多关节机器人以外的工业用机器人或工业用以外的机器人等。对于水平多关节机器人以外的工业用机器人,作为一例,有垂直多关节型机器人或并联连杆型机器人等。对于工业用以外的机器人,作为一例,有家庭用机器人、护理用机器人或医疗用机器人等。
另外,轴承42不限于深沟球轴承,例如也可以是角接触球轴承等。而且,轴承42不限于球轴承,例如也可以是由滚动体423不为滚珠状的“滚子”构成的圆筒滚子轴承、针状滚子轴承或圆锥滚子轴承等滚子轴承。即使是这样的滚珠状(球体状)以外的滚动体423,也通过滚动体423滚动而产生压力差,由此,滚动体423作为泵结构发挥功能。
另外,谐波齿轮装置1或致动器100的各结构要件的材质不限于金属,例如也可以是工程塑料等树脂。
另外,润滑剂Lb1不限于润滑油(油)等液状的物质,也可以是润滑脂等凝胶状的物质。
另外,至少沿外圈421的周向延伸的槽303,只要形成于外圈421和挠性外齿轮3中的至少一方的面对间隙X1的面即可。因此,槽303不限于形成在挠性外齿轮3的内周面301上,也可以形成在外圈421的外周面424 上,也可以是形成在它们两方上。
另外,贯通孔H1的数量以及配置不限于实施方式一中说明的数量以及配置。例如,贯通孔H1也可以设置1个、2个或4个以上。而且,在设置有多个贯通孔H1的情况下,多个贯通孔H1的间隔P1也可以是多个滚动体423的间隔P2的倍数,多个贯通孔H1等间距地进行配置也不是必须的。
(实施方式二)
如图10A至图11B所示,本实施方式的谐波齿轮装置1A与实施方式一的谐波齿轮装置1的不同点在于,贯通孔H2设置于挠性外齿轮3的外齿31。以下,对于与实施方式一同样的结构,标注共同的附图标记并适当省略说明。图10A以及图10B相当于实施方式一中的图1A以及图1B,图11A相当于实施方式一中的图2B。图11B是将图11A的贯通孔H2的周边放大后的概略图。
即,在本实施方式中,贯通孔H2仅设置于外圈421和挠性外齿轮3(中的外齿31)中的挠性外齿轮3。换言之,在本实施方式中,贯通孔H2包括设置于挠性外齿轮3的外齿31的“第二贯通孔”。设置于挠性外齿轮3的外齿31部分的贯通孔H2,也就是在旋转轴Ax1方向上设置在与轴承42对应的部位的贯通孔H2沿着径向方向贯穿通过挠性外齿轮3。由此,贯通孔H2的一方的开口面面向外圈421与挠性外齿轮3之间的间隙X1,贯通孔H2的另一方的开口面在挠性外齿轮3的外齿31中成为与内齿21的啮合面的外周面开口。因此,贯通孔H2的一端与外圈421和挠性外齿轮3之间的间隙X1相连,另一端与外齿31和内齿21之间的空间相连。因此,外齿31与内齿21之间的空间经由贯通孔H2,而与外圈421和挠性外齿轮3之间的间隙X1连通。由此,处于外齿31与内齿21之间的空间的润滑剂Lb1能够通过贯通孔H2,向外圈421与挠性外齿轮3之间的间隙X1供给。
在挠性外齿轮3相对于刚性内齿轮2相对旋转时,外齿31的一部分与内齿21啮合,因此外齿31以及内齿21作为泵发挥功能。也就是说,外齿 31以及内齿21构成泵结构。在本实施方式中,由于外齿31与内齿21啮合,外齿31与内齿21之间的空间内的压力升高,因此存在于外齿31与内齿21之间的润滑剂Lb1通过贯通孔H2向间隙X1侧挤出。这样一来,外齿31以及内齿21构成叶片泵那样的容积型的泵,并以充分的压力将润滑剂Lb1向间隙X1侧挤出,因此容易向间隙X1内供给充分的润滑剂Lb1。
此处,图10B所示,挠性外齿轮3是在外齿31的齿线方向D1的一方具有开口面35的筒状。贯通孔H2在与旋转轴Ax1平行的方向(齿线方向D1)上,位于外齿31中的中心与开口面35侧的端部之间。换言之,贯通孔H2配置在齿线方向D1上相对外齿31的中心向开口面35侧(图10B中为右侧)偏离的位置。进一步而言,贯通孔H2处于在与旋转轴Ax1平行的方向上相比多个滚动体423的中心偏离的位置。根据此结构,在外齿31中的靠近有助于比较低的转矩的传递的开口面35的部位设置贯通孔H2。
也就是说,外齿31在齿线方向D1上,与底部322侧的部位相比,开口面35侧的部位用于较低转矩的传递。因此,通过将贯通孔H2在外齿31与内齿21啮合的状态下设置于外齿31中的难以产生应力集中的部位,从而不易产生由贯通孔H2引起外齿31的强度的降低。而且,挠性外齿轮3的内周面301包括相对于旋转轴Ax1倾斜了倾斜角度θ1的锥面302,因此外圈421与挠性外齿轮3之间的间隙X1在开口面35侧比在底部322侧大。因此,通过将贯通孔H2设置于开口面35侧,还具有容易通过贯通孔H2对间隙X1供给润滑剂Lb1的优点。
另外,(第二)贯通孔H2配置于外齿31的齿根312以及齿顶313中的齿顶313。也就是说,如图11A以及图11B所示,外齿31具有齿根312以及齿顶313,但贯通孔H2形成于齿顶313部分。此处,即使在内齿21与外齿31啮合的状态下,也如图11B所示,在外齿31的齿顶313与内齿21的齿根212之间确保间隙G1。因此,内齿21不与形成于齿顶313的贯通孔H2的周边接触,而不易产生由贯通孔H2引起的外圈421的强度的降 低。并且,由于挠性外齿轮3弹性变形,因此在较薄的齿根312容易产生应力集中,但当与贯通孔H2形成于齿根312的情况相比时,通过将贯通孔H2形成于齿顶313,而不易产生以贯通孔H2为起点的破裂等。
然而,外齿31中的齿高方向的中间部分314(参照图11B)的表面硬度至少比齿顶313高。具体而言,例如通过激光淬火等能够局部进行热处理的方法,仅对外齿31的中间部分314局部地实施热处理,由此,提高外齿31局部表面硬度。作为一例,外齿31的齿顶313的表面硬度为HRC40,相对于此,中间部分314的表面硬度为HRC60的程度。
谐波齿轮装置1A若长时间使用时,例如,由于内齿21与外齿31的接触,可能产生由缺损或磨损等引起的金属粉或氮化物等异物。在本实施方式中,局部地提高外齿31的表面硬度,由此,与提高挠性外齿轮3的整体的表面硬度的情况相比,不易损伤韧性,而能够维持对于挠性外齿轮3的变形的耐性。而且,对于挠性外齿轮3的外齿31中的、实际能够与内齿21接触的齿高方向的中间部分314,能够通过提高表面硬度,来抑制由与内齿21的接触所造成的外齿31的缺损或磨损等引起的金属粉或氮化物等异物的产生。
作为实施方式二的第一变形例,如图12A所示,贯通孔H2也可以在与旋转轴Ax1平行的方向(齿线方向D1)上位于外齿31的中心。另外,作为实施方式二的第二变形例,如图12B所示,贯通孔H2也可以配置于外齿31的齿根312以及齿顶313中的齿根312。
实施方式二的结构(包括变形例)能够与实施方式一中说明的结构(包括变形例)适当组合来应用。例如,使外齿31中的齿高方向的中间部分314的表面硬度至少比齿顶313高的结构也可以如实施方式一那样在外圈421设置有贯通孔H1的结构中采用。
(实施方式三)
如图13A以及图13B所示,本实施方式的谐波齿轮装置1B与实施方 式二的谐波齿轮装置1A不同点在于,贯通孔H1、H2设置于外圈421以及挠性外齿轮3的外齿31双方。以下,对于与实施方式二同样的结构,标注共同的附图标记并适当省略说明。图13A相当于实施方式二中的图10B,图13B相当于实施方式二中的图11A。
即,在本实施方式中,贯通孔H1、H2包括设置于外圈421的“第一贯通孔”与设置于挠性外齿轮3的“第二贯通孔”双方。因此,存在于轴承42的外圈421与内圈422之间的空间的润滑剂Lb1能够通过贯通孔H1向外圈421与挠性外齿轮3之间的间隙X1供给。并且,存在于外齿31与内齿21之间的空间的润滑剂Lb1能够通过贯通孔H2向外圈421与挠性外齿轮3之间的间隙X1供给。因此,能够从径向方向的两侧(内侧以及外侧)对间隙X1供给润滑剂Lb1。
此处,如图13A所示,(第一)贯通孔H1在与旋转轴Ax1平行的方向(齿线方向D1)上位于与多个滚动体423的中心相同的位置。另一方面,(第二)贯通孔H2在与旋转轴Ax1平行的方向(齿线方向D1)上位于偏离多个滚动体423的中心的位置。总而言之,贯通孔包括设置于外圈421的(第一)贯通孔H1以及设置于挠性外齿轮3的(第二)贯通孔H2。对于(第一)贯通孔H1与(第二)贯通孔H2而言,在内齿21的齿线方向D1上的位置不同。
因此,即使在外圈421与挠性外齿轮3之间产生相对旋转,外圈421的周向上的两贯通孔H1、H2的位置关系产生变化,两贯通孔H1、H2也不会在径向方向上排列在一条直线上。因此,能够避免滚动体423作为泵结构发挥功能而送入贯通孔H1内的润滑剂Lb1从贯通孔H2脱落。同样地,能够避免外齿31以及内齿21作为泵结构发挥功能而送入贯通孔H2内的润滑剂Lb1从贯通孔H1脱落。其结果是,容易在外圈421与挠性外齿轮3之间的间隙X1保持润滑剂Lb1。
作为实施方式三的变形例,对于设置于外圈421的(第一)贯通孔H1 与设置于挠性外齿轮3的(第二)贯通孔H2而言,可以是形状、尺寸或个数的至少任一个不同。
实施方式三的结构(包括变形例)能够与实施方式一或实施方式二中说明的结构(包括变形例)适当组合来应用。
(总结)
如上所述,第一方案的谐波齿轮装置(1、1A、1B)具备刚性内齿轮(2)、挠性外齿轮(3)、波发生器(4)。刚性内齿轮(2)是具有内齿(21)的环状的部件。挠性外齿轮(3)是具有外齿(31),且配置在刚性内齿轮(2)的内侧的环状的部件。波发生器(4)具有以旋转轴(Ax1)为中心被旋转驱动的非圆形状的凸轮(41)、以及包括外圈(421)以及多个滚动体(423)且装配于凸轮(41)的外侧的轴承(42)。波发生器(4)配置在挠性外齿轮(3)的内侧,并使挠性外齿轮(3)产生挠曲。在谐波齿轮装置(1、1A、1B)中,伴随于凸轮(41)的旋转而使挠性外齿轮(3)变形,使外齿(31)的一部分与内齿(21)的一部分啮合,并使挠性外齿轮(3)按照挠性外齿轮(3)与刚性内齿轮(2)的齿数差相对于刚性内齿轮(2)相对旋转。在外圈(421)和挠性外齿轮(3)的外齿(31)中的至少一方设置有贯通孔(H1、H2),该贯通孔(H1、H2)沿着径向方向贯穿通过,并与外圈(421)和挠性外齿轮(3)之间的间隙(X1)相连。
根据该方案,轴承(42)的外圈(421)中的成为多个滚动体(423)的滚动面的内周面(425)、以及挠性外齿轮(3)的外齿(31)中的成为与内齿(21)的啮合面的外周面中的至少一方借助贯通孔(H1、H2)与间隙(X1)连通。因此,能够通过贯通孔(H1、H2)对外圈(421)与挠性外齿轮(3)之间的间隙(X1)供给润滑剂(Lb1)。由此,在谐波齿轮装置(1、1A、1B)中,通过防止在外圈(421)与挠性外齿轮(3)的接触部位的润滑剂(Lb1)处不足或枯竭的“润滑剂耗尽”,能够抑制微动磨损的产生。由此,谐波齿轮装置(1、1A、1B)中,不易产生由外圈(421)与 挠性外齿轮(3)之间的微动磨损引起的不良状况,从而能够提供不易产生可靠性的降低的谐波齿轮装置(1、1A、1B)。
在第二方案的谐波齿轮装置(1、1A、1B)中,在第一方案的基础上,贯通孔(H1)包括以沿外圈(421)的周向上排列的方式设置于外圈(421)的多个第一贯通孔(H1)。
根据该方案,能够通过多个第一贯通孔(H1)对外圈(421)与挠性外齿轮(3)之间的间隙(X1)供给润滑剂(Lb1),因此,容易抑制微动磨损的产生。
在第三方案的谐波齿轮装置(1、1A、1B)中,在第二方案的基础上,多个第一贯通孔(H1)的间隔(P1)为多个滚动体(423)的间隔(P2)的倍数以外的值。
根据该方案,能够避免在多个第一贯通孔(H1)同时嵌入(或拔出)多个滚动体(423)时产生可能产生的比较大的冲击,容易保护外圈(421)以及滚动体(423)等免受冲击。
在第四方案的谐波齿轮装置(1、1A、1B)中,在第一至三方案中的任一方案的基础上,贯通孔(H1)包括设置于外圈(421)的第一贯通孔(H1)。在径向方向上,在多个滚动体(423)的轨道与第一贯通孔(H1)的外圈(421)的内周面(425)侧的开口面之间确保规定值以上的距离。
根据该方案,在滚动体(423)通过第一贯通孔(H1)上时,能够避免由滚动体(423)与第一贯通孔(H1)的开口缘碰撞引起的冲击的产生,容易保护外圈(421)以及滚动体(423)等免受冲击。
在第五方案的谐波齿轮装置(1、1A、1B)中,在第一至第四方案中的任一方案的基础上,贯通孔(H2)包括设置于挠性外齿轮(3)的第二贯通孔(H2)。第二贯通孔(H2)配置于外齿(31)的齿根(312)和齿顶(313)中的齿顶(313)。
根据该方案,在形成于齿顶(313)的第二贯通孔(H2)的周边,不易 产生因接触内齿(21)而引起的应力集中,不易产生由第二贯通孔(H2)引起的外圈(421)的强度的降低。并且,当与第二贯通孔(H2)形成于齿根(312)的情况相比时,不易产生以第二贯通孔(H2)为起点的破裂等。
在第六方案的谐波齿轮装置(1、1A、1B)中,在第一至第五方案中的任一方案的基础上,贯通孔(H1、H2)包括设置于外圈(421)的第一贯通孔(H1)以及设置于挠性外齿轮(3)的第二贯通孔(H2)。对于第一贯通孔(H1)与第二贯通孔(H2)而言,在内齿(21)的齿线方向(D1)上的位置不同。
根据该方案,第一贯通孔(H1)与第二贯通孔(H2)不会在径向方向上排列在一条直线上,而容易在外圈(421)与挠性外齿轮(3)之间的间隙(X1)保持润滑剂(Lb1)。
在第七方案的谐波齿轮装置(1、1A、1B)中,在第一至第六方案中的任一方案的基础上,具备泵结构,该泵结构在挠性外齿轮(3)相对于刚性内齿轮(2)相对旋转时,通过贯通孔(H1、H2)对间隙(X1)供给润滑剂(Lb1)。
根据该方案,能够以充分的压力将润滑剂(Lb1)向间隙(X1)侧挤出,容易将充分的润滑剂(Lb1)供给至间隙(X1)内。
在第八方案的谐波齿轮装置(1、1A、1B)中,在第一至第七方案中的任一方案的基础上,贯通孔(H1、H2)在径向方向上,在间隙(X1)侧的开口面积比在与间隙(X1)相反一侧的开口面积小。
根据该方案,能够从贯通孔(H1、H2)以充分的压力将润滑剂(Lb1)向间隙(X1)侧挤出,容易将充分的润滑剂(Lb1)供给至间隙(X1)内。
在第九方案的谐波齿轮装置(1、1A、1B)中,在第一至第八方案中的任一方案的基础上,在外圈(421)和挠性外齿轮(3)中的至少一方的面对间隙(X1)的面形成有至少沿外圈(421)的周向延伸的槽(303)。
根据该方案,通过润滑剂(Lb1)渗入槽(303),润滑剂(Lb1)容易 遍及间隙(X1)中的比较大的范围。
在第十方案的谐波齿轮装置(1、1A、1B)中,在第一至第九方案中的任一方案的基础上,挠性外齿轮(3)是在外齿(31)的齿线方向(D1)的一方具有开口面(35)的筒状。贯通孔(H1、H2)在与旋转轴(Ax1)平行的方向上,位于外齿(31)中的中心与开口面(35)侧的端部之间。
根据该方案,容易通过贯通孔(H1、H2)对间隙(X1)供给润滑剂(Lb1)。
第十一方案的谐波齿轮装置(1、1A、1B)中,在第一至十方案中的任一方案的基础上,贯通孔(H1、H2)在与旋转轴(Ax1)平行的方向使,位于偏离多个滚动体(423)的中心的位置。
根据该方案,不易产生以贯通孔(H1、H2)为起点的破裂等。
在第十二方案的谐波齿轮装置(1、1A、1B)中,在第一至第十一方案中的任一方案的基础上,贯通孔(H1、H2)的孔径为多个滚动体(423)各自的孔径的0.1倍以下或者1.0mm以下中的较小的一方。
根据该方案,能够通过贯通孔(H1、H2)高效地对外圈(421)与挠性外齿轮(3)之间的间隙(X1)供给润滑剂(Lb1)。
在第十三方案的谐波齿轮装置(1、1A、1B)中,在第一至第十二方案中的任一方案的基础上,外齿(31)中的齿高方向的中间部分(314)的表面硬度至少比齿顶(313)高。
根据该方案,与提高挠性外齿轮(3)的整体的表面硬度的情况相比,不易损伤韧性,而能够维持对于挠性外齿轮(3)的变形的耐性。而且,对于挠性外齿轮(3)的外齿(31)中的、实际能够与内齿(21)接触的齿高方向的中间部分(314),能够通过提高表面硬度,来抑制由与内齿(21)的接触所造成的外齿(31)的缺损或磨损等引起的金属粉或氮化物等异物的产生。
第十四方案的致动器(100)具备第一至第十三方案中的任一方案的谐波齿轮装置(1、1A、1B)、驱动源(101)、输出部(102)。驱动源(101) 使波发生器(4)旋转。输出部(102)将刚性内齿轮(2)以及挠性外齿轮(3)中的任一方的旋转力作为输出而取出。
根据该方案,不易产生由外圈(421)与挠性外齿轮(3)之间的微动磨损引起的不良状况,而能够提供不易产生可靠性的降低的致动器(100)。
对于第二至第十三方案的结构,并非谐波齿轮装置(1、1A、1B)必须的结构,能够适当省略。
附图标记说明:
1、1A、1B谐波齿轮装置
2刚性内齿轮
3挠性外齿轮
4波发生器
21内齿
31外齿
35开口面
41凸轮
42轴承
100致动器
101驱动源
102输出部
301(挠性外齿轮的)内周面
303槽
312齿根
313齿顶
314中间部分
421外圈
423滚动体
424(外圈的)外周面
425(外圈的)内周面
Ax1旋转轴
D1齿线方向
H1(第一)贯通孔
H2(第二)贯通孔
Lb1润滑剂
P1(第一贯通孔的)间隔
P2(滚动体的)间隔
X1间隙。
根据本公开实施例,能够提供可靠性高的谐波齿轮装置以及致动器。
Claims (14)
- 一种谐波齿轮装置,其中,所述谐波齿轮装置包括:环状的刚性内齿轮,具有内齿;环状的挠性外齿轮,具有外齿且配置于所述刚性内齿轮的内侧;以及波发生器,具有非圆形状的凸轮和轴承,所述非圆形状的凸轮以旋转轴为中心被驱动旋转,所述轴承包括外圈和多个滚动体并装配于所述凸轮的外侧,所述波发生器配置于所述挠性外齿轮的内侧,并使所述挠性外齿轮产生挠曲,在所述谐波齿轮装置中,伴随于所述凸轮的旋转而使所述挠性外齿轮变形,使所述外齿的一部分与所述内齿的一部分啮合,并使所述挠性外齿轮按照该挠性外齿轮与所述刚性内齿轮的齿数差相对于所述刚性内齿轮进行相对旋转,在所述外圈和所述挠性外齿轮的所述外齿中的至少一方设有贯通孔,该贯通孔沿着径向方向贯穿通过,并与所述外圈和所述挠性外齿轮之间的间隙相连。
- 根据权利要求1所述的谐波齿轮装置,其中,所述贯通孔包括以沿所述外圈的周向排列的方式设于所述外圈的多个第一贯通孔。
- 根据权利要求2所述的谐波齿轮装置,其中,所述多个第一贯通孔的间隔为所述多个滚动体的间隔的倍数以外的值。
- 根据权利要求1至3中任一项所述的谐波齿轮装置,其中,所述贯通孔包括设于所述外圈的第一贯通孔,在所述径向方向上,在所述多个滚动体的轨道与所述第一贯通孔的靠所述外圈的内周面侧的开口面之间确保有规定值以上的距离。
- 根据权利要求1至4中任一项所述的谐波齿轮装置,其中,所述贯通孔包括设于所述挠性外齿轮的第二贯通孔,所述第二贯通孔配置于所述外齿的齿根和齿顶中的所述齿顶。
- 根据权利要求1至5中任一项所述的谐波齿轮装置,其中,所述贯通孔包括设于所述外圈的第一贯通孔以及设于所述挠性外齿轮的第二贯通孔,对于所述第一贯通孔与所述第二贯通孔而言,在所述内齿的齿线方向上的位置不同。
- 根据权利要求1至6中任一项所述的谐波齿轮装置,其中,所述谐波齿轮装置包括泵结构,该泵结构在所述挠性外齿轮相对于所述刚性内齿轮的相对旋转时,通过所述贯通孔对所述间隙供给润滑剂。
- 根据权利要求1至7中任一项所述的谐波齿轮装置,其中,所述贯通孔在所述径向方向上,在所述间隙侧的开口面积比在与所述间隙相反的一侧的开口面积小。
- 根据权利要求1至8中任一项所述的谐波齿轮装置,其中,在所述外圈和所述挠性外齿轮中的至少一方的面对所述间隙的面形成有至少沿所述外圈的周向延伸的槽。
- 根据权利要求1至9中任一项所述的谐波齿轮装置,其中,所述挠性外齿轮为在所述外齿的齿线方向的一方具有开口面的筒状,所述贯通孔在与所述旋转轴平行的方向上,位于所述外齿中的中心与所述开口面侧的端部之间。
- 根据权利要求1至10中任一项所述的谐波齿轮装置,其中,所述贯通孔在与所述旋转轴平行的方向上,位于偏离所述多个滚动体的中心的位置。
- 根据权利要求1至11中任一项所述的谐波齿轮装置,其中,所述贯通孔的孔径为所述多个滚动体各自的孔径的0.1倍以下或者1.0mm以下中的较小的一方。
- 根据权利要求1至12中任一项所述的谐波齿轮装置,其中,所述外齿中的齿高方向的中间部分的表面硬度至少比齿顶的高。
- 一种致动器,其中,所述致动器包括:权利要求1至13中任一项所述的谐波齿轮装置;使所述波发生器旋转的驱动源;以及将所述刚性内齿轮以及所述挠性外齿轮的任一方的旋转力作为输出而取出的输出部。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280051451.0A CN117716147A (zh) | 2021-07-19 | 2022-06-17 | 谐波齿轮装置和致动器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021118431A JP7490618B2 (ja) | 2021-07-19 | 2021-07-19 | 波動歯車装置及びアクチュエータ |
JP2021-118431 | 2021-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023000885A1 true WO2023000885A1 (zh) | 2023-01-26 |
Family
ID=84980088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/099468 WO2023000885A1 (zh) | 2021-07-19 | 2022-06-17 | 谐波齿轮装置和致动器 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7490618B2 (zh) |
CN (1) | CN117716147A (zh) |
WO (1) | WO2023000885A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230250865A1 (en) * | 2020-10-16 | 2023-08-10 | Midea Group Co., Ltd. | Harmonic Gear Device and Actuator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080082518A (ko) * | 2007-03-08 | 2008-09-11 | 가부시키가이샤 하모닉 드라이브 시스템즈 | 파동기어 감속기의 윤활방법 및 회전 테이블 장치 |
CN108180272A (zh) * | 2017-12-25 | 2018-06-19 | 香河皓达机器人谐波减速器制造有限公司 | 压力控制谐波减速器 |
JP2019199893A (ja) * | 2018-05-14 | 2019-11-21 | セイコーエプソン株式会社 | ロボット、歯車装置および歯車装置ユニット |
WO2020105186A1 (ja) * | 2018-11-22 | 2020-05-28 | 株式会社ハーモニック・ドライブ・システムズ | 波動歯車装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021024418A1 (ja) | 2019-08-07 | 2021-02-11 | 公益財団法人応用科学研究所 | 歯車、歯車の製造方法 |
-
2021
- 2021-07-19 JP JP2021118431A patent/JP7490618B2/ja active Active
-
2022
- 2022-06-17 WO PCT/CN2022/099468 patent/WO2023000885A1/zh active Application Filing
- 2022-06-17 CN CN202280051451.0A patent/CN117716147A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080082518A (ko) * | 2007-03-08 | 2008-09-11 | 가부시키가이샤 하모닉 드라이브 시스템즈 | 파동기어 감속기의 윤활방법 및 회전 테이블 장치 |
CN108180272A (zh) * | 2017-12-25 | 2018-06-19 | 香河皓达机器人谐波减速器制造有限公司 | 压力控制谐波减速器 |
JP2019199893A (ja) * | 2018-05-14 | 2019-11-21 | セイコーエプソン株式会社 | ロボット、歯車装置および歯車装置ユニット |
WO2020105186A1 (ja) * | 2018-11-22 | 2020-05-28 | 株式会社ハーモニック・ドライブ・システムズ | 波動歯車装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230250865A1 (en) * | 2020-10-16 | 2023-08-10 | Midea Group Co., Ltd. | Harmonic Gear Device and Actuator |
Also Published As
Publication number | Publication date |
---|---|
CN117716147A (zh) | 2024-03-15 |
JP7490618B2 (ja) | 2024-05-27 |
JP2023014479A (ja) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230304568A1 (en) | Harmonic Gear Device and Actuator | |
WO2023000885A1 (zh) | 谐波齿轮装置和致动器 | |
CN117628141A (zh) | 柔性外齿齿轮、谐波齿轮装置以及机器人用关节装置 | |
WO2023071232A1 (zh) | 谐波齿轮装置、谐波齿轮装置的制造方法、机器人用关节装置和齿轮部件 | |
WO2023071231A1 (zh) | 谐波齿轮装置、谐波齿轮装置的制造方法、机器人用关节装置和齿轮部件 | |
CN115461560A (zh) | 谐波齿轮装置、执行器和盖体 | |
JP2023157907A (ja) | 内接噛合遊星歯車装置及びロボット用関節装置 | |
WO2023115848A1 (zh) | 谐波齿轮装置以及机器人用关节装置 | |
JP7335390B1 (ja) | 波動歯車装置、ロボット用関節装置及び歯車部品 | |
KR20220112695A (ko) | 감속기 | |
WO2022077872A1 (zh) | 谐波齿轮装置及执行器 | |
JP7474209B2 (ja) | 内接噛合遊星歯車装置及びロボット用関節装置 | |
JP7474210B2 (ja) | 内接噛合遊星歯車装置及びロボット用関節装置 | |
WO2024055866A1 (zh) | 内啮合行星齿轮装置 | |
CN116214573A (zh) | 机器人机械手臂结构和机器人、及挠性外齿轮的制造方法 | |
JP2024086522A (ja) | 歯車装置、及び歯車装置の製造方法 | |
JP2024043451A (ja) | 歯車装置及びロボット用関節装置 | |
JP2023169990A (ja) | 内接噛合遊星歯車装置、ロボット用関節装置及び波動歯車装置 | |
CN117628142A (zh) | 谐波齿轮装置及其制造方法以及机器人用关节装置 | |
CN115698547A (zh) | 内啮合行星齿轮装置及执行器 | |
CN115836173A (zh) | 内啮合行星齿轮装置及执行器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22845051 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280051451.0 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22845051 Country of ref document: EP Kind code of ref document: A1 |