WO2023000580A1 - 能量路由控制方法及装置、能量路由系统 - Google Patents

能量路由控制方法及装置、能量路由系统 Download PDF

Info

Publication number
WO2023000580A1
WO2023000580A1 PCT/CN2021/135652 CN2021135652W WO2023000580A1 WO 2023000580 A1 WO2023000580 A1 WO 2023000580A1 CN 2021135652 W CN2021135652 W CN 2021135652W WO 2023000580 A1 WO2023000580 A1 WO 2023000580A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
given
current
bus voltage
external
Prior art date
Application number
PCT/CN2021/135652
Other languages
English (en)
French (fr)
Inventor
黄文俊
陈四雄
苏先进
易龙强
Original Assignee
漳州科华技术有限责任公司
漳州科华电气技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 漳州科华技术有限责任公司, 漳州科华电气技术有限公司 filed Critical 漳州科华技术有限责任公司
Publication of WO2023000580A1 publication Critical patent/WO2023000580A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network

Definitions

  • the present application belongs to the technical field of circuit control, and more specifically relates to an energy routing control method and device, and an energy routing system.
  • Energy routing mainly realizes energy control and current conversion functions between various distributed energy sources and energy storage units. problem to be solved.
  • the purpose of this application is to provide an energy routing control method and device, and an energy routing system to solve the energy balance problem between external energy sources and energy storage units in the prior art.
  • the technical solution adopted in this application is to provide an energy routing control method, the method is applied to energy routing, and the energy routing includes a DC bus, a first DC for connecting to an external DC source /DC conversion unit, a bidirectional DC/DC conversion unit for connecting an external energy storage unit, the first DC/DC conversion unit and the bidirectional DC/DC conversion unit are both connected to the DC bus; the method includes :
  • the target current given value refers to the current given value pre-calculated based on the voltage feedback value of the external DC source
  • the second given current value refers to a given current value pre-calculated based on the battery voltage value of the external energy storage unit.
  • the difference between the preset first bus voltage given value and the bus voltage feedback value is recorded as the first bus voltage error value;
  • the first bus voltage given value is external The given value of the bus voltage corresponding to the DC source;
  • the limiting coefficient is constant; when the first bus voltage error value is not greater than a preset value, the first bus voltage error value and the limiting coefficient Coefficients are positively correlated.
  • the method for determining the clipping coefficient is:
  • is the clipping coefficient
  • f( ) is the preset clipping function
  • ⁇ U bus is the first bus voltage error value
  • is the preset value
  • G 1 ( s ) is the preset first transfer function .
  • the difference between the preset second bus voltage given value and the bus voltage feedback value is recorded as the second bus voltage error value, and the second bus voltage given value is external
  • the given value of the bus voltage corresponding to the energy storage unit when the second bus voltage error value is negative, the first given current value is greater than the second given current value, and the second bus voltage error value is When zero, the first given current value is equal to the second given current value, and when the error value of the second bus voltage is positive, the first given current value is less than the second given current value ;
  • the determining the current given value corresponding to the external energy storage unit based on the first given current value and the precalculated second given current value corresponding to the external energy storage unit includes:
  • the minimum value of the first given current value and the second given current value is used as the given current value corresponding to the external energy storage unit.
  • determining the first given current value corresponding to the external energy storage unit based on the bus voltage feedback value includes:
  • the second bus voltage given value is a bus voltage given value corresponding to the external energy storage unit
  • a first current value corresponding to the external energy storage unit is determined based on the second bus voltage error value and a preset second transfer function.
  • the calculation method of the target current given value is:
  • the target current given value is determined based on the voltage given value corresponding to the external DC source and the voltage feedback value.
  • the limiting the target current given value based on the limiting coefficient to obtain the limited current given value includes:
  • the product of the limiting coefficient and the target current given value is used as the limited current given value.
  • the calculation method of the second given current value is:
  • a second current setpoint is determined based on a preset battery voltage setpoint and the battery voltage value.
  • an energy routing control device including a memory, a processor, and a computer program stored in the memory and operable on the processor, and the processor executes the computer
  • the program is the steps to realize the energy routing control method described above.
  • an energy routing system including the energy routing and the energy routing control device described above.
  • this application determines the limiting coefficient corresponding to the external DC source and the first current supply corresponding to the external energy storage unit according to the feedback value of the bus voltage.
  • the current given value of the external DC source is limited by using the limiting coefficient, and the current given value corresponding to the external energy storage unit is determined by combining the first given current value and the second given current value.
  • the essence of this application is to adaptively adjust the current given value corresponding to the external DC source and the external energy storage unit based on the power of the external DC source and the external energy storage unit, taking into account different power
  • the energy regulation of the external DC source and the external energy storage unit is solved, and then the energy balance between the external DC source and the external energy storage unit is realized.
  • FIG. 1 is a schematic flowchart of an energy routing control method provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an energy routing provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of an energy routing control device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a maximum power point of an external DC source provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a control loop corresponding to an external DC source provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a control loop corresponding to an external energy storage unit provided by an embodiment of the present application.
  • FIG 2 is a schematic structural diagram of an energy routing provided by an embodiment of the present application.
  • the energy routing control method of the present application is applied to energy routing.
  • the energy routing includes a DC bus, a first DC/ The DC conversion unit, the bidirectional DC/DC conversion unit for connecting the external energy storage unit, the first DC/DC conversion unit and the bidirectional DC/DC conversion unit are all connected to the DC bus.
  • the energy routing may also include an AC/DC conversion unit connected to an external AC source, a DC/AC conversion unit connected to a DC bus, a DC/DC isolation unit, etc., which are not limited here.
  • the energy routing control method includes:
  • S101 Obtain a bus voltage feedback value of the DC bus, and determine a limiting coefficient corresponding to an external DC source and a first given current value corresponding to an external energy storage unit based on the bus voltage feedback value.
  • the difference between the first bus voltage reference value and the bus voltage feedback value is recorded as the first bus voltage error value
  • the first bus voltage reference value is the bus voltage reference value corresponding to the external DC source.
  • S102 Limit the target current given value based on the limiting coefficient to obtain a limited current given value, and control the first DC/DC converting unit based on the limited current given value.
  • the target current given value refers to the current given value pre-calculated based on the voltage feedback value of the external DC source.
  • MPPT Maximum Power Point Tracking, maximum power point tracking
  • S103 Determine a current given value corresponding to the external energy storage unit based on the first given current value and the second given current value, and control the bidirectional DC/DC conversion unit based on the given current value corresponding to the external energy storage unit.
  • the second given current value refers to a given current value pre-calculated based on the battery voltage value of the external energy storage unit.
  • the second given current value may be pre-calculated based on the battery voltage value corresponding to the energy storage unit.
  • the embodiment of the present application determines the limiting coefficient corresponding to the external DC source and the first value corresponding to the external energy storage unit according to the feedback value of the bus voltage.
  • Current given value the current given value of the external DC source is limited by using the limiting coefficient
  • the current given value corresponding to the external energy storage unit is determined by combining the first given current value and the second given current value . That is to say, the essence of the embodiment of the present application is based on the power of the external DC source and the external energy storage unit, and adaptively adjusts the current reference value corresponding to the external DC source and the current reference value corresponding to the external energy storage unit. The problem of energy regulation of the external DC source and the external energy storage unit under different power conditions is solved, and then the energy balance between the external DC source and the external energy storage unit is realized.
  • the method for determining the clipping coefficient is:
  • is the limiting coefficient
  • f( ) is the preset limiting function
  • is the preset value
  • ⁇ U bus is the error value of the first bus voltage, that is, the first bus voltage given value Ubusref1 and the bus voltage
  • the difference of the feedback value Ubus, G 1 ( s ) is a preset first transfer function.
  • the preset value ⁇ may be 0.
  • the limiting coefficient may be set to be greater than 0, A quantity less than 1 (for example, ⁇ can be 0.5 when ⁇ U bus is 0).
  • the limiting coefficient ⁇ can be obtained by inputting G 1 ( s )* ⁇ U bus into the preset limiting function f( ⁇ ).
  • the calculation method of the target current given value is:
  • the target current given value is determined based on the voltage given value Upvref and the voltage feedback value Upv corresponding to the external DC source.
  • the current feedback value Ipv and the voltage feedback value Upv can be input into a preset MPPT controller to obtain a voltage given value Upvref.
  • calculate the difference between the voltage given value Upvref and the voltage feedback value Upv and multiply the difference with the preset third transfer function G 3 (s) to obtain the target current given value (also That is, the current given value corresponding to the external DC source before limiting), on this basis, the product of the limiting coefficient and the target current given value is taken as the current given value Ipvref after limiting.
  • the difference between the preset second bus voltage given value and the bus voltage feedback value is recorded as the second bus voltage error value
  • the second bus voltage given value corresponds to the external energy storage unit The given value of the bus voltage.
  • the second bus voltage error value is negative, the first given current value is greater than the second given current value; when the second bus voltage error value is zero, the first given current value is equal to the second given current value, and the second When the bus voltage error value is positive, the first given current value is smaller than the second given current value.
  • the current given value corresponding to the external energy storage unit is determined based on the first given current value and the second given current value, including:
  • the minimum value of the first current given value Iref1 and the second current given value Iref2 is used as the current given value corresponding to the external energy storage unit.
  • the second bus voltage given value can be set to be smaller than the first bus voltage given value.
  • the bus voltage feedback value will increase, and the bus voltage feedback value will gradually decrease.
  • the first bus voltage error value is positively correlated with the limit coefficient, therefore, the limit coefficient will gradually become smaller, and then the current given value of the external DC source will be limited according to the limit coefficient, and the current given value after the limit will continue to change.
  • the external DC source works at point U2 (refer to Figure 4), and then limit the power of the external DC source, so as to achieve energy balance.
  • the given value of the second bus voltage is smaller than the given value of the first bus voltage, so the given value of the second bus voltage will be continuously increased , which in turn leads to the constant increase of the first given current value, the first given current value will be greater than the second given current value, and the executive body will given value) to regulate the external energy storage unit, that is to say, when the power of the external DC source is greater than the power of the external energy storage unit, the external energy storage unit will be regulated based on the battery voltage value (the external energy storage unit maximizes ground absorption energy), the current setting value of the external DC source will be reduced by reducing the limiting factor, thereby reducing the power of the external DC source (the external DC source reduces the output energy) to achieve energy balance.
  • the limiting coefficient is 1, that is, when the power of the external DC source is less than the power of the external energy storage unit, the current given value of the external DC source is not limited, and the external DC source works at point U1 ( Refer to Figure 4). At this time, since the bus voltage feedback value is small, the error value of the second bus voltage is positive, and the first given current value will be smaller than the second given current value.
  • the essence of the executive body is to store external energy based on the bus voltage feedback value. unit is controlled. That is to say, when the power of the external DC source is less than the power of the external energy storage unit, and the energy of the external DC source is insufficient, the external DC source will output energy to the maximum, and the external energy storage unit will work based on the actual bus voltage feedback value instead of Work based on the battery voltage value (that is, the external energy storage unit will reduce energy absorption), so as to achieve energy balance.
  • the relationship between the given value of the bus voltage (the first given value of the bus voltage or the given value of the second bus voltage) and the feedback value of the bus voltage referred to in this application refers to the size relationship.
  • determining the first given current value corresponding to the external energy storage unit based on the feedback value of the bus voltage includes:
  • the second bus voltage error value is determined based on the bus voltage feedback value Ubus and the preset second bus voltage given value Ubusref2, and the second bus voltage given value is a bus voltage given value corresponding to the external energy storage unit.
  • the first current value Iref1 corresponding to the external energy storage unit is determined based on the second bus voltage error value and the preset second transfer function G 2 (s).
  • the first given current value Iref1 can be obtained by multiplying the second bus voltage error value by the preset second transfer function G 2 (s).
  • the calculation method of the second given current value corresponding to the external energy storage unit is:
  • the second given current value corresponding to the external energy storage unit is determined based on the preset battery voltage given value Ubatref and the battery voltage value Ubat.
  • the difference between the battery voltage reference Ubatref and the battery voltage Ubat can be calculated, and the difference can be multiplied by the preset fifth transfer function G 5 (s) to obtain the second current reference ValueIref2.
  • the minimum value among the first given current value Iref1 and the second given current value Iref2 can be selected as the given current value corresponding to the external energy storage unit.
  • the control amount of the bidirectional DC/DC conversion unit can be calculated based on the given current value corresponding to the external energy storage unit, the battery current value Ibat, and the preset sixth transfer function G 6 (s).
  • an energy routing control device 300 which may include: one or more processors 301 , one or more input devices 302 , one or more output devices 303 and one or more memory devices 304 .
  • the above processor 301 , input device 302 , output device 303 and memory 304 communicate with each other through the communication bus 305 .
  • the memory 304 is used to store computer programs including program instructions.
  • the processor 301 is used to execute program instructions stored in the memory 304 . Wherein, the processor 301 is configured to invoke program instructions to execute the steps of the above-mentioned method embodiments.
  • the so-called processor 301 may be a central processing unit (Central Processing Unit, CPU), the processor can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the input device 302 may include a touch panel, a fingerprint sensor (for collecting the user's fingerprint information and fingerprint direction information), a microphone, etc.
  • the output device 303 may include a display (LCD, etc.), a speaker, and the like.
  • the memory 304 may include read-only memory and random-access memory, and provides information to the processor 301 Provide instructions and data. A portion of memory 304 may also include non-volatile random access memory. For example, memory 304 may also store device type information.
  • the processor 301, input device 302, and output device 303 described in the embodiment of this application can execute the implementation described in the first embodiment and the second embodiment of the routing energy control method provided in the embodiment of this application Way.
  • an energy routing system including the energy routing and the energy routing control device described above.

Abstract

本申请提供了一种能量路由控制方法及装置、能量路由系统,所述方法包括:获取所述直流母线的母线电压反馈值,并基于所述母线电压反馈值确定外部直流源对应的限幅系数、外部储能单元对应的第一电流给定值;基于所述限幅系数对目标电流给定值进行限幅,得到限幅后的电流给定值,并基于限幅后的电流给定值对所述第一DC/DC变换单元进行控制;基于所述第一电流给定值以及第二电流给定值确定外部储能单元对应的电流给定值,并基于外部储能单元对应的电流给定值对所述双向DC/DC变换单元进行控制。本申请可有效保证能量路由的能量均衡。

Description

能量路由控制方法及装置、能量路由系统
本专利申请要求于2021年7月22日提交的中国专利申请No.CN202110831365.9的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请属于电路控制技术领域,更具体地说,是涉及一种能量路由控制方法及装置、能量路由系统。
背景技术
随着分布式能源的大量出现,实现各种分布式能源之间的互联成为本领域人员的重点研究方向,因此能量路由应运而生。
能量路由主要实现各种分布式能源与储能单元之间的能量控制、电流转换功能等,在此基础上,为了保证能量路由内的能量平衡,如何对能量路由进行控制成为本领域技术人员亟需解决的问题。
技术问题
本申请的目的在于提供一种能量路由控制方法及装置、能量路由系统,以解决现有技术中存在的外接能源与储能单元之间的能量平衡问题。
技术解决方案
本申请采用的技术方案是:本申请采用的技术方案是提供了一种能量路由控制方法,所述方法应用于能量路由,所述能量路由包括直流母线、用于连接外部直流源的第一DC/DC变换单元、用于连接外部储能单元的双向DC/DC变换单元,所述第一DC/DC变换单元与所述双向DC/DC变换单元均与所述直流母线连接;所述方法包括:
获取所述直流母线的母线电压反馈值,并基于所述母线电压反馈值确定外部直流源对应的限幅系数、外部储能单元对应的第一电流给定值;
基于所述限幅系数对目标电流给定值进行限幅,得到限幅后的电流给定值,并基于限幅后的电流给定值对所述第一DC/DC变换单元进行控制;其中,所述目标电流给定值指基于外部直流源的电压反馈值预先计算得出的电流给定值;
基于所述第一电流给定值以及第二电流给定值确定外部储能单元对应的电流给定值,并基于外部储能单元对应的电流给定值对所述双向DC/DC变换单元进行控制;其中,所述第二电流给定值指基于外部储能单元的电池电压值预先计算得出的电流给定值。
在一种可能的实现方式中,将预设的第一母线电压给定值与所述母线电压反馈值的差值记为第一母线电压误差值;所述第一母线电压给定值为外部直流源对应的母线电压给定值;
所述第一母线电压误差值大于预设值时,所述限幅系数为常量,所述第一母线电压误差值不大于预设值时,所述第一母线电压误差值与所述限幅系数正相关。
在一种可能的实现方式中,所述限幅系数的确定方法为:
Figure dest_path_image001
其中, δ为限幅系数,f(·)为预设的限幅函数,Δ U bus为第一母线电压误差值, α为预设值, G 1( s)为预设的第一传递函数。
在一种可能的实现方式中,将预设的第二母线电压给定值与所述母线电压反馈值的差值记为第二母线电压误差值,所述第二母线电压给定值为外部储能单元对应的母线电压给定值;所述第二母线电压误差值为负时,所述第一电流给定值大于所述第二电流给定值,所述第二母线电压误差值为零时,所述第一电流给定值等于所述第二电流给定值,所述第二母线电压误差值为正时,所述第一电流给定值小于所述第二电流给定值;
相应的,所述基于所述第一电流给定值以及预先计算的外部储能单元对应的第二电流给定值确定外部储能单元对应的电流给定值,包括:
将所述第一电流给定值与所述第二电流给定值中的最小值作为外部储能单元对应的电流给定值。
在一种可能的实现方式中,基于所述母线电压反馈值确定外部储能单元对应的第一电流给定值,包括:
基于所述母线电压反馈值与预设的第二母线电压给定值确定第二母线电压误差值;所述第二母线电压给定值为外部储能单元对应的母线电压给定值;
基于所述第二母线电压误差值以及预设的第二传递函数确定外部储能单元对应的第一电流值。
在一种可能的实现方式中,目标电流给定值的计算方法为:
获取外部直流源对应的电流反馈值以及电压反馈值,并基于所述电流反馈值、所述电压反馈值、预设的MPPT控制器确定外部直流源对应的电压给定值;
基于外部直流源对应的电压给定值、所述电压反馈值确定目标电流给定值。
在一种可能的实现方式中,所述基于所述限幅系数对目标电流给定值进行限幅,得到限幅后的电流给定值,包括:
将所述限幅系数与所述目标电流给定值的乘积作为限幅后的电流给定值。
在一种可能的实现方式中,所述第二电流给定值的计算方法为:
获取储能单元对应的电池电压值;
基于预设的电池电压给定值以及所述电池电压值确定第二电流给定值。
本申请的另一方面,还提供了一种能量路由控制装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以上所述的能量路由控制方法的步骤。
本申请的再一方面,还提供了一种能量路由系统,包括以上所述的能量路由以及能量路由控制装置。
有益效果
本申请提供的能量路由控制方法及装置、能量路由系统的有益效果在于:
考虑到外部直流源、外部储能单元的功率大小会体现到母线电压的高低上,本申请根据母线电压反馈值确定了外部直流源对应的限幅系数以及外部储能单元对应的第一电流给定值,利用限幅系数对外部直流源的电流给定值进行了限幅,并综合第一电流给定值和第二电流给定值确定了外部储能单元对应的电流给定值。也就是说,本申请本质是基于外部直流源与外部储能单元的功率大小适应性地调整了外部直流源对应的电流给定值、外部储能单元对应的电流给定值,考虑到了不同功率情形下外部直流源与外部储能单元的能量调控问题,进而实现了外部直流源与外部储能单元的能量平衡。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的能量路由控制方法的流程示意图;
图2为本申请一实施例提供的能量路由的结构示意图;
图3为本申请一实施例提供的能量路由控制装置的结构示意图;
图4为本申请一实施例提供的外部直流源的最大功率点示意图;
图5为本申请一实施例提供的外部直流源对应的控制环路示意图;
图6为本申请一实施例提供的外部储能单元对应的控制环路示意图。
本申请的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
下面结合附图和具体实施方式对本申请作进一步详细的说明。
请参考图2,图2为本申请一实施例提供的能量路由的结构示意图,本申请的能量路由控制方法应用于能量路由,能量路由包括直流母线、用于连接外部直流源的第一DC/DC变换单元、用于连接外部储能单元的双向DC/DC变换单元,第一DC/DC变换单元与双向DC/DC变换单元均与直流母线连接。在此基础上,能量路由还可包括与外部交流源连接的AC/DC变换单元、与直流母线连接的DC/AC变换单元、DC/DC隔离单元等,此处不作限定。
本申请通过控制第一DC/DC变换单元与双向DC/DC变换单元来实现外部直流源与外部储能单元之间的能量均衡,在此基础上,参考图1,图1为本申请一实施例提供的能量路由控制方法的流程示意图,该能量路由控制方法包括:
S101:获取直流母线的母线电压反馈值,并基于母线电压反馈值确定外部直流源对应的限幅系数、外部储能单元对应的第一电流给定值。
本实施例中,将第一母线电压给定值与母线电压反馈值的差值记为第一母线电压误差值,第一母线电压给定值为外部直流源对应的母线电压给定值,在一种可能的实现方式中,第一母线电压误差值不大于预设值时,第一母线电压误差值与限幅系数正相关,第一母线电压误差值大于预设值时,限幅系数为常量。
S102:基于限幅系数对目标电流给定值进行限幅,得到限幅后的电流给定值,并基于限幅后的电流给定值对第一DC/DC变换单元进行控制。其中,目标电流给定值指基于外部直流源的电压反馈值预先计算得出的电流给定值。
在本实施例中,可基于MPPT(Maximum Power Point Tracking,最大功率点跟踪)控制预先计算目标电流给定值。
S103:基于第一电流给定值以及第二电流给定值确定外部储能单元对应的电流给定值,并基于外部储能单元对应的电流给定值对双向DC/DC变换单元进行控制。其中,第二电流给定值指基于外部储能单元的电池电压值预先计算得出的电流给定值。
本实施例中,可基于储能单元对应的电池电压值预先计算第二电流给定值。
考虑到外部直流源、外部储能单元的功率大小会体现到母线电压的高低上,本申请实施例根据母线电压反馈值确定了外部直流源对应的限幅系数以及外部储能单元对应的第一电流给定值,利用限幅系数对外部直流源的电流给定值进行了限幅,并综合第一电流给定值和第二电流给定值确定了外部储能单元对应的电流给定值。也就是说,本申请实施例本质是基于外部直流源与外部储能单元的功率大小,适应性地调整了外部直流源对应的电流给定值、外部储能单元对应的电流给定值,考虑到了不同功率情形下外部直流源与外部储能单元的能量调控问题,进而实现了外部直流源与外部储能单元的能量平衡。
在一种可能的实现方式中,可参考图5,限幅系数的确定方法为:
Figure dest_path_image002
其中, δ为限幅系数,f(·)为预设的限幅函数, α为预设值,Δ U bus为第一母线电压误差值,也即第一母线电压给定值Ubusref1与母线电压反馈值Ubus的差值, G 1( s)为预设的第一传递函数。其中,预设值 α可为0,在此基础上,在本实施例一种可能的实现方式中,当第一母线电压误差值Δ U bus为0时,限幅系数可设置为大于0,小于1的量(例如,Δ U bus为0时, α可以为0.5)。
在本实施例中,将 G 1( s)*Δ U bus输入至预设的限幅函数f(·)中即可得出限幅系数 δ
在一种可能的实现方式中,可参考图5,目标电流给定值的计算方法为:
获取外部直流源对应的电流反馈值Ipv以及电压反馈值Upv,并基于电流反馈值Ipv、电压反馈值Upv、预设的MPPT控制器确定外部直流源对应的电压给定值Upvref。
基于外部直流源对应的电压给定值Upvref、电压反馈值Upv确定目标电流给定值。
在本实施例中,可将电流反馈值Ipv以及电压反馈值Upv输入至预设的MPPT控制器中,得到电压给定值Upvref。在此基础上,计算电压给定值Upvref与电压反馈值Upv的差值,将该差值与预设的第三传递函数G 3(s)相乘,即可得到目标电流给定值(也即限幅之前外部直流源对应的电流给定值),在此基础上,将限幅系数与目标电流给定值的乘积作为限幅后的电流给定值Ipvref。
在得出限幅后的电流给定值Ipvref之后,基于电流反馈值Ipv、电流给定值Ipvref以及预设的第四传递函数G 4(s)即可得出第一DC/DC变换单元对应的控制量。
在一种可能的实现方式中,将预设的第二母线电压给定值与母线电压反馈值的差值记为第二母线电压误差值,第二母线电压给定值为外部储能单元对应的母线电压给定值。第二母线电压误差值为负时,第一电流给定值大于第二电流给定值,第二母线电压误差值为零时,第一电流给定值等于第二电流给定值,第二母线电压误差值为正时,第一电流给定值小于第二电流给定值。
相应的,可参考图6,基于第一电流给定值以及第二电流给定值确定外部储能单元对应的电流给定值,包括:
将第一电流给定值Iref1与第二电流给定值Iref2中的最小值作为外部储能单元对应的电流给定值。
在本实施例中,可设定第二母线电压给定值小于第一母线电压给定值。
在此基础上,本实施例实现能量均衡的原理详述如下:
外部直流源的功率大于外部储能单元的功率时,多余的功率无法被外部储能单元吸收,多余的能量会抬高直流母线的电压,母线电压反馈值会增大,母线电压反馈值会逐渐大于第一母线电压给定值,对应本实施例中的第一母线电压误差值会逐渐变小,根据本实施例所描述的,第一母线电压误差值不大于预设值时,第一母线电压误差值与限幅系数正相关,因此,限幅系数也会逐渐变小,后续会根据限幅系数对外部直流源的电流给定值进行限幅,限幅后的电流给定值不断变小,使得外部直流源工作在U2点(参考图4),进而限制外部直流源的功率,从而实现能量均衡。此时,对于外部储能单元,由于第一母线电压误差值会逐渐变小,第二母线电压给定值小于第一母线电压给定值,因此第二母线电压给定值会不断被拉大,进而导致第一电流给定值不断增大,第一电流给定值会大于第二电流给定值,执行主体会基于第二电流给定值(也即根据电池电压值计算得出的电流给定值)对外部储能单元进行调控,也就是说,在外部直流源的功率大于外部储能单元的功率时,会基于电池电压值对外部储能单元进行调控(外部储能单元最大限度地吸收能量),会通过降低限幅系数来降低外部直流源的电流给定值,从而降低外部直流源的功率(外部直流源降低输出能量),实现能量均衡。
外部直流源的功率小于外部储能单元的功率时,外部直流源输入的能量不足,母线电压反馈值会下跌,此时母线电压反馈值会小于第一母线电压给定值,也即对应本实施例中的第一母线电压误差值会大于零。在此基础上,限幅系数为1,也即,在外部直流源的功率小于外部储能单元的功率时,不对外部直流源的电流给定值进行限幅,外部直流源工作在U1点(参考图4)。此时,由于母线电压反馈值较小,因此第二母线电压误差值为正,第一电流给定值会小于第二电流给定值,因此执行主体本质是基于母线电压反馈值对外部储能单元进行控制的。也就是说,外部直流源的功率小于外部储能单元的功率、外部直流源能量不足时,外部直流源会最大限度地输出能量,外部储能单元会基于实际的母线电压反馈值工作,而并非基于电池电压值工作(也即外部储能单元会降低能量吸收),从而实现能量均衡。
其中,需要指出的是,本申请所提及的母线电压给定值(第一母线电压给定值或者第二母线电压给定值)与母线电压反馈值的大小关系指的是系统稳态下的大小关系。
在一种可能的实现方式中,可参考图6,基于母线电压反馈值确定外部储能单元对应的第一电流给定值,包括:
基于母线电压反馈值Ubus与预设的第二母线电压给定值Ubusref2确定第二母线电压误差值,第二母线电压给定值为外部储能单元对应的母线电压给定值。
基于第二母线电压误差值以及预设的第二传递函数G 2(s)确定外部储能单元对应的第一电流值Iref1。
在本实施例中,将第二母线电压误差值与预设的第二传递函数G 2(s)相乘,即可得到第一电流给定值Iref1。
在一种可能的实现方式中,可参考图6,外部储能单元对应的第二电流给定值的计算方法为:
获取储能单元对应的电池电压值Ubat。
基于预设的电池电压给定值Ubatref以及电池电压值Ubat确定外部储能单元对应的第二电流给定值。
本实施例中,可计算电池电压给定值Ubatref与电池电压值Ubat的差值,将该差值与预设的第五传递函数G 5(s)相乘,即可得到第二电流给定值Iref2。
在此基础上,可选择第一电流给定值Iref1、第二电流给定值Iref2中的最小值作为外部储能单元对应的电流给定值。之后,可基于外部储能单元对应的电流给定值、电池电流值Ibat、以及预设的第六传递函数G 6(s)计算双向DC/DC变换单元的控制量。
本申请的另一方面,还提供了一种能量路由控制装置300可以包括:一个或多个处理器301、一个或多个输入设备302、一个或多个输出设备303及一个或多个存储器304。上述处理器301、输入设备302、输出设备303及存储器304通过通信总线305完成相互间的通信。存储器304用于存储计算机程序,计算机程序包括程序指令。处理器301用于执行存储器304存储的程序指令。其中,处理器301被配置用于调用程序指令执行上述各方法实施例的步骤。
应当理解,在本申请实施例中,所称处理器301可以是中央处理单元 (Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者任何常规的处理器等。
输入设备302可以包括触控板、指纹采传感器(用于采集用户的指纹信息和指纹的方向信息)、麦克风等,输出设备303可以包括显示器(LCD等)、扬声器等。
该存储器304可以包括只读存储器和随机存取存储器,并向处理器301 提供指令和数据。存储器304的一部分还可以包括非易失性随机存取存储器。例如,存储器304还可以存储设备类型的信息。
具体实现中,本申请实施例中所描述的处理器301、输入设备302、输出设备303可执行本申请实施例提供的路由能量控制方法的第一实施例和第二实施例中所描述的实现方式。
本申请的再一方面,还提供了一种能量路由系统,包括以上所述的能量路由以及能量路由控制装置。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种能量路由控制方法,其特征在于,所述方法应用于能量路由,所述能量路由包括直流母线、用于连接外部直流源的第一DC/DC变换单元、用于连接外部储能单元的双向DC/DC变换单元,所述第一DC/DC变换单元与所述双向DC/DC变换单元均与所述直流母线连接;所述方法包括:
    获取所述直流母线的母线电压反馈值,并基于所述母线电压反馈值确定外部直流源对应的限幅系数、外部储能单元对应的第一电流给定值;
    基于所述限幅系数对目标电流给定值进行限幅,得到限幅后的电流给定值,并基于限幅后的电流给定值对所述第一DC/DC变换单元进行控制;其中,所述目标电流给定值指基于外部直流源的电压反馈值预先计算得出的电流给定值;
    基于所述第一电流给定值以及第二电流给定值确定外部储能单元对应的电流给定值,并基于外部储能单元对应的电流给定值对所述双向DC/DC变换单元进行控制;其中,所述第二电流给定值指基于外部储能单元的电池电压值预先计算得出的电流给定值。
  2. 如权利要求1所述的能量路由控制方法,其特征在于,将预设的第一母线电压给定值与所述母线电压反馈值的差值记为第一母线电压误差值;所述第一母线电压给定值为外部直流源对应的母线电压给定值;
    所述第一母线电压误差值大于预设值时,所述限幅系数为常量,所述第一母线电压误差值不大于预设值时,所述第一母线电压误差值与所述限幅系数正相关。
  3. 如权利要求2所述的能量路由控制方法,其特征在于,所述限幅系数的确定方法为:
    Figure dest_path_image001
    其中, δ为限幅系数,f(·)为预设的限幅函数,Δ U bus为第一母线电压误差值, α为预设值, G 1( s)为预设的第一传递函数。
  4. 如权利要求1所述的能量路由控制方法,其特征在于,将预设的第二母线电压给定值与所述母线电压反馈值的差值记为第二母线电压误差值,所述第二母线电压给定值为外部储能单元对应的母线电压给定值;所述第二母线电压误差值为负时,所述第一电流给定值大于所述第二电流给定值,所述第二母线电压误差值为零时,所述第一电流给定值等于所述第二电流给定值,所述第二母线电压误差值为正时,所述第一电流给定值小于所述第二电流给定值;
    相应的,所述基于所述第一电流给定值以及预先计算的外部储能单元对应的第二电流给定值确定外部储能单元对应的电流给定值,包括:
    将所述第一电流给定值与所述第二电流给定值中的最小值作为外部储能单元对应的电流给定值。
  5. 如权利要求1所述的能量路由控制方法,其特征在于,基于所述母线电压反馈值确定外部储能单元对应的第一电流给定值,包括:
    基于所述母线电压反馈值与预设的第二母线电压给定值确定第二母线电压误差值;所述第二母线电压给定值为外部储能单元对应的母线电压给定值;
    基于所述第二母线电压误差值以及预设的第二传递函数确定外部储能单元对应的第一电流值。
  6. 如权利要求1至5任一项所述的能量路由控制方法,其特征在于,目标电流给定值的计算方法为:
    获取外部直流源对应的电流反馈值以及电压反馈值,并基于所述电流反馈值、所述电压反馈值、预设的MPPT控制器确定外部直流源对应的电压给定值;
    基于外部直流源对应的电压给定值、所述电压反馈值确定目标电流给定值。
  7. 如权利要求1至5任一项所述的能量路由控制方法,其特征在于,所述基于所述限幅系数对目标电流给定值进行限幅,得到限幅后的电流给定值,包括:
    将所述限幅系数与所述目标电流给定值的乘积作为限幅后的电流给定值。
  8. 如权利要求1至5任一项所述的能量路由控制方法,其特征在于,所述第二电流给定值的计算方法为:
    获取储能单元对应的电池电压值;
    基于预设的电池电压给定值以及所述电池电压值确定第二电流给定值。
  9. 一种能量路由控制装置,其特征在于,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1-8任一项所述的能量路由控制方法的步骤。
  10. 一种能量路由系统,其特征在于,包括如权利要求1所应用的能量路由以及如权利要求9所述的能量路由控制装置。
PCT/CN2021/135652 2021-07-22 2021-12-06 能量路由控制方法及装置、能量路由系统 WO2023000580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110831365.9A CN113612216B (zh) 2021-07-22 2021-07-22 能量路由控制方法及装置、能量路由系统
CN202110831365.9 2021-07-22

Publications (1)

Publication Number Publication Date
WO2023000580A1 true WO2023000580A1 (zh) 2023-01-26

Family

ID=78305157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135652 WO2023000580A1 (zh) 2021-07-22 2021-12-06 能量路由控制方法及装置、能量路由系统

Country Status (2)

Country Link
CN (1) CN113612216B (zh)
WO (1) WO2023000580A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113612216B (zh) * 2021-07-22 2023-09-29 漳州科华技术有限责任公司 能量路由控制方法及装置、能量路由系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983589A (zh) * 2012-11-15 2013-03-20 中国电力科学研究院 一种基于混合储能的电网友好型分布式电源的控制方法
US20140339902A1 (en) * 2013-05-17 2014-11-20 Electro Standards Laboratories Design for Hybrid Super-Capacitor / Battery Systems in Pulsed Power Applications
CN108121393A (zh) * 2016-11-29 2018-06-05 张喜军 一种蓄电池充电最大功率点跟踪控制方法
CN108512254A (zh) * 2018-05-20 2018-09-07 烟台仙崴机电有限公司 一种能源互联网光伏发电微网系统
CN112242712A (zh) * 2019-07-17 2021-01-19 株洲中车时代电气股份有限公司 用于两级式光伏逆变系统的功率控制方法
CN113612216A (zh) * 2021-07-22 2021-11-05 漳州科华技术有限责任公司 能量路由控制方法及装置、能量路由系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362821B2 (en) * 2013-02-05 2016-06-07 Shenzhen China Star Optoelectronics Technology Co., Ltd Power system and control method thereof
CN105680477B (zh) * 2016-03-10 2018-02-16 厦门科华恒盛股份有限公司 一种光伏并网逆变器降额控制系统及方法
CN107017617B (zh) * 2017-05-26 2019-07-26 太原理工大学 改进的直流微电网中混合储能系统自适应下垂控制方法
CN108631357B (zh) * 2018-04-03 2020-08-28 阳光电源股份有限公司 一种中高压能量变换系统
CN109634334B (zh) * 2018-11-29 2020-05-22 西安理工大学 基于模型预测及模糊补偿的直流母线电压外环控制方法
CN110829507B (zh) * 2019-11-22 2021-06-18 湖南大学 一种海岛特种能量路由器的供电方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983589A (zh) * 2012-11-15 2013-03-20 中国电力科学研究院 一种基于混合储能的电网友好型分布式电源的控制方法
US20140339902A1 (en) * 2013-05-17 2014-11-20 Electro Standards Laboratories Design for Hybrid Super-Capacitor / Battery Systems in Pulsed Power Applications
CN108121393A (zh) * 2016-11-29 2018-06-05 张喜军 一种蓄电池充电最大功率点跟踪控制方法
CN108512254A (zh) * 2018-05-20 2018-09-07 烟台仙崴机电有限公司 一种能源互联网光伏发电微网系统
CN112242712A (zh) * 2019-07-17 2021-01-19 株洲中车时代电气股份有限公司 用于两级式光伏逆变系统的功率控制方法
CN113612216A (zh) * 2021-07-22 2021-11-05 漳州科华技术有限责任公司 能量路由控制方法及装置、能量路由系统

Also Published As

Publication number Publication date
CN113612216B (zh) 2023-09-29
CN113612216A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
TWI402647B (zh) 可動態調整電壓及有效節能之電壓控制裝置、方法及電腦裝置
KR20130108021A (ko) 직렬 인터페이스를 사용한 적응형 전압 스케일링
WO2023000580A1 (zh) 能量路由控制方法及装置、能量路由系统
WO2022227697A1 (zh) 并网变流器的控制方法、装置及并网变流器
WO2022135440A1 (zh) Llc谐振电路的控制方法、控制装置及终端设备
CN109245639B (zh) 一种风电机组调频方法、装置、设备及介质
CN106357102B (zh) 用于无刷直流电机驱动变频器的母线电压控制方法
CN112477621B (zh) 一种电动车扭矩控制方法、设备及计算机可读存储介质
WO2016138820A1 (zh) 一种投资仓位风险控制方法及系统
CN111523654B (zh) 处理装置及方法
CN107968411B (zh) 一种微电网中关键负载的电压控制方法和装置
WO2023005411A1 (zh) 一种制氢控制方法及其应用装置
CN111416377B (zh) 一种提高电网暂态稳定性的柔性直流控制方法及装置
KR102367501B1 (ko) 계통 연계형 전력변환장치의 제어장치
CN114884086A (zh) 基于风储系统的控制方法、装置、设备和存储介质
CN112838592B (zh) 一种荷源协调日前调度方法、装置及系统
CN113904426B (zh) Ups控制方法及装置、ups系统
CN107924331B (zh) 用于灵活和动态频率相关遥测的技术
CN113422425B (zh) 模块化ups休眠控制方法及装置、模块化ups系统
CN115657764A (zh) 元器件加热方法、控制设备、供电系统
CN113067398A (zh) 多源输入电压控制方法及装置、多源输入系统
TWI670914B (zh) 蓄電控制裝置
CN112865197A (zh) 输入源功率分配控制方法及装置、多源供电系统
CN116501099B (zh) 光伏与太阳能光光线垂直关系智能调控系统
CN115833312A (zh) 电池充放电控制方法、控制设备、电池充放电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE