WO2023005411A1 - 一种制氢控制方法及其应用装置 - Google Patents

一种制氢控制方法及其应用装置 Download PDF

Info

Publication number
WO2023005411A1
WO2023005411A1 PCT/CN2022/096526 CN2022096526W WO2023005411A1 WO 2023005411 A1 WO2023005411 A1 WO 2023005411A1 CN 2022096526 W CN2022096526 W CN 2022096526W WO 2023005411 A1 WO2023005411 A1 WO 2023005411A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen production
power
hydrogen
predicted
scheme
Prior art date
Application number
PCT/CN2022/096526
Other languages
English (en)
French (fr)
Inventor
张鹏
李运生
陈伟
周辉
Original Assignee
阳光新能源开发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光新能源开发股份有限公司 filed Critical 阳光新能源开发股份有限公司
Publication of WO2023005411A1 publication Critical patent/WO2023005411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present application relates to the technical field of hydrogen production, in particular to a hydrogen production control method and an application device thereof.
  • the present invention provides a hydrogen production control method and its application device. Multiple hydrogen production schemes are obtained by adjusting the hydrogen production forecast power and hydrogen production duration of each hydrogen production power supply, so as to meet the hydrogen production scheme control system of preset hydrogen production requirements.
  • the operation of the hydrogen system effectively ensures that the hydrogen output of the hydrogen production system meets the expected requirements and solves the problems of the existing technology.
  • the present invention provides a hydrogen production control method, which is applied to a hydrogen production system including various hydrogen production power sources, and the method includes:
  • the hydrogen production time period is obtained by dividing the target hydrogen production time interval
  • the hydrogen production system is controlled to produce hydrogen according to the target hydrogen production scheme.
  • the hydrogen output of each of the hydrogen production schemes is calculated, including:
  • the process of calculating the hydrogen production contribution value of any of the hydrogen production schemes includes:
  • the preset weight coefficient is negatively correlated with the hydrogen production cost of the hydrogen production power supply in the corresponding hydrogen production time period
  • hydrogen production predicted power and hydrogen production duration of each hydrogen production power source in each hydrogen production time period respectively calculate the hydrogen production contribution of the hydrogen production scheme in each hydrogen production time period value
  • the sum of the hydrogen production contribution sub-values is taken as the hydrogen production contribution value of the hydrogen production scheme.
  • hydrogen production forecast power and hydrogen production duration of each of the hydrogen production power sources in each of the hydrogen production time periods respectively calculate the hydrogen production scheme in each of the hydrogen production time
  • the hydrogen production contribution sub-values of the segment including:
  • the sum of the first calculation results corresponding to the same hydrogen production time period is calculated respectively to obtain the hydrogen production contribution sub-value of the hydrogen production scheme in the corresponding hydrogen production time period.
  • the calculation of the hydrogen output of the target hydrogen production scheme includes:
  • the acquisition of the predicted hydrogen production power of each hydrogen production power source in each hydrogen production time period includes:
  • the adjustment of the predicted hydrogen production power of each of the hydrogen production power sources includes:
  • the process of obtaining the available hydrogen production predicted power of any of the hydrogen production power sources in any of the hydrogen production time periods includes:
  • the smaller value of the predicted power and the rated hydrogen production predicted power is used as the available hydrogen production predicted power of the hydrogen production power source within the hydrogen production time period.
  • the adjustment of the hydrogen production duration of each of the hydrogen production power sources operating at the corresponding hydrogen production predicted power can obtain multiple hydrogen production schemes, including:
  • the hydrogen production duration of each of the hydrogen production power sources operating at the corresponding hydrogen production predicted power is adjusted within the duration range of the hydrogen production time period to obtain multiple hydrogen production schemes.
  • the multiple hydrogen production power sources include new energy power generation systems, energy storage systems and AC power grids;
  • the acquisition of the predicted hydrogen production power of each hydrogen production power source in each hydrogen production time period includes:
  • the energy storage system is controlled to be in a charging mode.
  • the preset hydrogen production range is set based on the total hydrogen demand.
  • the obtaining the total amount of hydrogen demand, and the hydrogen forecast output under the condition that the output power of the new energy power generation system is used for hydrogen production includes:
  • the total amount of hydrogen demand in the hydrogen production day is determined according to the hydrogen demand forecast data.
  • the process of determining the target hydrogen production time interval includes:
  • Each of the hydrogen production time intervals is respectively taken as a target hydrogen production time interval.
  • the present invention provides an energy scheduling device, including: a memory and a processor; the memory stores a program suitable for execution by the processor, so as to realize the hydrogen production described in any one of the first aspect of the present invention The steps of the control method.
  • the present invention provides a hydrogen production system, including: various hydrogen production power sources, hydrogen production devices, and the energy dispatching device described in the second aspect of the present invention, wherein,
  • the output terminals of each hydrogen production power supply are respectively connected to the power supply terminal of the hydrogen production device;
  • the energy scheduling device is respectively connected to each of the hydrogen production power sources and the hydrogen production device.
  • the hydrogen production control method In the hydrogen production control method provided by the present invention, after obtaining the hydrogen production forecast power of each hydrogen production power supply in each hydrogen production time period, adjust the hydrogen production time length of each hydrogen production power supply at the corresponding hydrogen production forecast power to obtain multiple hydrogen production Then, according to the predicted hydrogen production power and hydrogen production time corresponding to each hydrogen production power source in each hydrogen production scheme, calculate the hydrogen output of each hydrogen production scheme, if there is no hydrogen output within the preset hydrogen production range If there is a target hydrogen production plan, adjust the hydrogen production prediction power of each hydrogen production power source, and re-establish the hydrogen production plan until there is a target hydrogen production plan whose hydrogen output is within the preset hydrogen production range, and control according to the target hydrogen production plan The hydrogen production system produces hydrogen.
  • the hydrogen production control method provided by the present invention obtains multiple hydrogen production schemes by adjusting the predicted hydrogen production power and hydrogen production time of each hydrogen production power supply, so as to control the operation of the hydrogen production system with the hydrogen production scheme that meets the preset hydrogen production requirements, effectively Ensure that the hydrogen output of the hydrogen production system meets the expected requirements and solve the problems of the existing technology.
  • Fig. 1 is a flowchart of a hydrogen production control method provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the relationship between the output power curve of each hydrogen production power source mentioned in the embodiment of the present invention and the predicted power curve of available hydrogen production;
  • Fig. 3 is a flowchart of another hydrogen production control method provided by an embodiment of the present invention.
  • Fig. 4 is a flowchart of another hydrogen production control method provided by an embodiment of the present invention.
  • Fig. 5 is a structural block diagram of an energy scheduling device provided by an embodiment of the present invention.
  • the hydrogen production control method provided by the present invention is used to control the hydrogen production process of a hydrogen production system including various hydrogen production power sources, adjust the hydrogen production forecast power output by each hydrogen production power source during the hydrogen production process and the hydrogen production time length, To ensure that the hydrogen output within a certain period of time meets the actual application requirements.
  • the hydrogen production control method provided by the present invention can be applied to an electronic device capable of executing a preset control program and performing corresponding data processing functions.
  • the electronic device can be a computer, a palmtop computer, or a data processing server. Of course, in some cases, It can also be applied to server implementation on the network side.
  • Fig. 1 is a flowchart of a hydrogen production control method provided by an embodiment of the present invention.
  • the flow of the hydrogen production control method provided by this embodiment may include:
  • the hydrogen production power source of the hydrogen production system in existing applications mainly includes new energy power generation systems, energy storage systems and AC power grids.
  • the new energy power generation systems include wind power generation systems and photovoltaic power generation systems.
  • the hydrogen production control method provided in this embodiment and subsequent embodiments a natural day is used as the cycle
  • the hydrogen production process is controlled, and the natural day on which the hydrogen production process is controlled is defined as the hydrogen production day.
  • the hydrogen demand in different time periods of the hydrogen production day can be predicted according to the hydrogen demand forecast data, and based on the forecast results, the hydrogen production day can be divided into different hydrogen production time intervals, and any hydrogen production
  • the time interval is used as the target hydrogen production time interval, and the hydrogen production process is controlled according to the target hydrogen production time interval.
  • the hydrogen production time period mentioned in this embodiment is obtained by further dividing the target hydrogen production time interval.
  • the hydrogen production time periods mentioned in this embodiment belong to the same target hydrogen production time period, therefore, they are continuous in time, not discrete time periods.
  • any hydrogen production power source its output power within a hydrogen production day can be predicted.
  • the hydrogen production device in the hydrogen production system has a definite rated hydrogen production power.
  • the hydrogen production power cannot be greater than its own rated hydrogen production power. It can be seen that for the hydrogen production power supply, the part whose output power is greater than the rated hydrogen production power of the hydrogen production device cannot be used for hydrogen production. Therefore, when obtaining the hydrogen production power supply After the predicted power in the above hydrogen production time period and the rated hydrogen production predicted power of the hydrogen production device, it is necessary to use the smaller value of the predicted power of the hydrogen production power supply and the rated hydrogen production predicted power of the hydrogen production device as the hydrogen production The available hydrogen production forecast power of the power supply during the hydrogen production time period.
  • Fig. 2 is a schematic diagram of the relationship between the output power curves of each hydrogen production power source mentioned in the embodiment of the present invention and the available hydrogen production predicted power curve. According to Fig. 2, it can be seen that the various hydrogen production power sources The output power has different changing characteristics. At the same time, Figure 2 also shows the power curve when the wind power generation system and the photovoltaic power generation system are used together for hydrogen production, which can be understood as the power curve of the new energy power generation system, as well as the AC power grid and energy storage.
  • the power curve when the system is commonly used for hydrogen production, among them, in the power curve corresponding to the new energy power generation system Pmax corresponds to the maximum hydrogen production power of the hydrogen production device, and Pmin refers to the minimum hydrogen production power of the hydrogen production device, no matter how it is allocated For each hydrogen production power supply, the total hydrogen production power should be within the power range corresponding to Pmin and Pmax. Based on this premise, the curve of the available hydrogen production power is shown in the rightmost curve in Figure 2.
  • this embodiment sets corresponding functional ratios for various hydrogen production power sources. Therefore, in this step, in the case that the available hydrogen production forecast power of each hydrogen production power source has been determined, obtaining the available hydrogen production forecast power of each hydrogen production power source in each hydrogen production time period can also be understood as obtaining the hydrogen production power supply in each hydrogen production time period Function ratio, after obtaining the energy supply ratio of the hydrogen production power source and the available hydrogen production predicted power in each hydrogen production time period, calculate the product of the function ratio and the available hydrogen production predicted power in each hydrogen production time period, that is, the hydrogen production Hydrogen production prediction power of the power supply in each hydrogen production time period. It is conceivable that when the control method is executed for the first time on any hydrogen production day, the functional ratios of each hydrogen production power supply can use preset initial values.
  • the target hydrogen production time interval mentioned in this embodiment is obtained by dividing the hydrogen production day. Further, any hydrogen production time period is obtained by dividing the target hydrogen production time interval. It can be seen that, The longest hydrogen production time in any hydrogen production time period of any hydrogen production power source is the corresponding time period of the hydrogen production time period. Therefore, when adjusting the hydrogen production time of each hydrogen production power supply at the corresponding predicted hydrogen production power, it should Adjust within the duration of the hydrogen production time period, each adjustment will get a hydrogen production plan with the corresponding hydrogen production forecast power to run the corresponding hydrogen production time, traverse all possible hydrogen production time, you can get multiple hydrogen production plans.
  • the hydrogen production time in order to reduce the calculation amount and improve the program execution efficiency, can be adjusted according to a certain step size, such as 10 minutes as the step size.
  • each hydrogen production time period can be equal or different in length.
  • the target hydrogen production time interval can be evenly divided to obtain hydrogen production time periods with equal duration.
  • the hydrogen production day can also be used as a benchmark. First, the hydrogen production day is divided into multiple hydrogen production time periods, and then the number of hydrogen production time periods included in the hydrogen production time period is determined according to the specific range of the hydrogen production time period.
  • this step finally obtains multiple hydrogen production schemes with corresponding hydrogen production predicted power output and different hydrogen production durations.
  • the hydrogen output of each hydrogen production scheme can be calculated according to the hydrogen production forecast power and hydrogen production time corresponding to each hydrogen production power supply in each hydrogen production scheme.
  • the hydrogen production device absorbs electric energy and generates hydrogen based on the electric energy.
  • the hydrogen production process will inevitably have energy loss, that is, the hydrogen production system corresponds to a certain energy conversion efficiency in the hydrogen production process.
  • the energy conversion efficiency is certain. Therefore, in this step, it is first necessary to obtain the preset conversion efficiency of the hydrogen production device, and then calculate the total hydrogen production power corresponding to each hydrogen production scheme.
  • the total hydrogen production power and The product of preset conversion efficiencies is the hydrogen output corresponding to each hydrogen production scheme.
  • the purpose of the hydrogen production control method provided in this embodiment is to ensure that the hydrogen output meets the application requirements. Therefore, after obtaining the hydrogen output of each hydrogen production scheme, it is judged whether there is a hydrogen output that is within the predetermined range. Assuming a hydrogen production scheme within the range of hydrogen production as the target hydrogen production scheme, if it exists, execute S150; if not, execute S140.
  • the predicted power of each hydrogen production power source in the hydrogen production day is determined.
  • This method adjusts the power of each hydrogen production power source for hydrogen production by adjusting the function ratio. Therefore, in this step, also adjusts the power of each hydrogen production power
  • the function ratio of the power supply is adjusted to adjust the predicted hydrogen production power of each hydrogen production power supply, and after the adjustment of the predicted hydrogen production power is completed, return to S100.
  • the corresponding hydrogen production power supply can be controlled to supply power to the hydrogen production device according to the hydrogen production power and hydrogen production time of each hydrogen production power supply in the target hydrogen production scheme , producing hydrogen gas.
  • the hydrogen production control method provided by the present invention obtains multiple hydrogen production schemes by adjusting the hydrogen production forecast power and hydrogen production duration of each hydrogen production power source, so as to meet the preset hydrogen production requirements.
  • the operation of the hydrogen system effectively ensures that the hydrogen output of the hydrogen production system meets the expected requirements and solves the problems of the existing technology.
  • this embodiment provides another hydrogen production control method, and its specific flow can be referred to in FIG. 3 . It should be noted that the following content only expands on the parts of this embodiment that are different from the embodiment shown in FIG. 1 , and the rest of the content can be referred to the foregoing content, which will not be repeated here.
  • the hydrogen production contribution value is used to characterize the economy of the hydrogen production scheme, and the higher the hydrogen production contribution value, the lower the required hydrogen production cost in the case of producing the same hydrogen , or in other words, the higher the hydrogen production contribution value, the greater the amount of hydrogen obtained at the same hydrogen production cost.
  • the weight coefficient of the hydrogen production power source is mainly related to the energy capacity of the hydrogen production power source, such as the installed capacity of a photovoltaic power generation system and a wind power generation system, and the energy storage capacity of an energy storage system.
  • the energy capacity there is also a hydrogen production power source
  • the unit price of electric energy and the availability and convenience of hydrogen production power can be set according to the specific conditions of hydrogen production power in practical applications. It should be emphasized that the preset weight coefficient mentioned in this embodiment is negatively related to the hydrogen production cost of the hydrogen production power supply in the corresponding hydrogen production time period, that is, the higher the hydrogen production cost, the smaller the corresponding preset weight coefficient .
  • the preset weight coefficients of wind power generation system, photovoltaic power generation will vary in different hydrogen production time periods.
  • the preset weight coefficients of these four hydrogen production power sources are marked as k 1 , k 2 , k 3 , k 4 , where , as mentioned earlier, the preset weight coefficients of the AC grid in different hydrogen production time periods will change due to changes in electricity prices.
  • the preset weight coefficients corresponding to the N hydrogen production time periods of the AC power grid are respectively marked as k 11 , k 12 , ..., k 1N , and each hydrogen production time period
  • the preset weight coefficient of is multiplied by the corresponding hydrogen production forecast power, and the hydrogen production power vector of the AC grid can be further obtained
  • the hydrogen production power vector of the energy storage system can be obtained as The hydrogen production power vector of the wind power generation system is
  • the hydrogen production power vector of the photovoltaic power generation system is
  • the hydrogen production time lengths of the AC power grid, energy storage system, wind power generation system and photovoltaic power grid in any hydrogen production time period can be expressed as T 1j , T 2j , T 3j , T 4j , the aforementioned process of adjusting the hydrogen production time should be carried out within the time range corresponding to the hydrogen production time period, that is, the following rules are met:
  • j the jth hydrogen production time period
  • T Z represents the duration of the target hydrogen production time interval.
  • the hydrogen production contribution value of the hydrogen production scheme is represented by the matrix QT, and the calculation formula is as follows:
  • i of k ij is 1, which means the preset weight coefficient of the AC power grid in the j-th hydrogen production time period, and i is 2, which means the preset weight coefficient of the energy storage system in each hydrogen production time period.
  • Weight coefficient, i is 3 to indicate the preset weight coefficient of the wind power generation system in each hydrogen production time period, and i is 4 to indicate the preset weight coefficient of the photovoltaic power generation system in each hydrogen production time period; where the i value of P ij is 1, 2 , 3, and 4 are the hydrogen production power of the above four hydrogen production power sources in the jth hydrogen production time period, respectively.
  • the hydrogen production contribution sub-values of the hydrogen production scheme in each hydrogen production time period can be calculated first, that is, according to each hydrogen production power supply in each hydrogen production
  • the preset weight coefficient, hydrogen production forecast power and hydrogen production duration of the time period are calculated to obtain the hydrogen production contribution sub-value.
  • the preset weight coefficient, hydrogen production forecast power and production The corresponding first calculation result is obtained by multiplying the hydrogen production time.
  • k 11 P 11 T 11 is one of the first calculation results, and then calculate the first calculation results corresponding to the same hydrogen production time period.
  • S1202. Determine whether there is at least one candidate hydrogen production solution whose hydrogen production contribution value is greater than a preset threshold in each hydrogen production solution. If not, execute S1203. If yes, execute S1204.
  • each hydrogen production scheme is screened according to the relationship between the hydrogen production contribution value corresponding to the hydrogen production scheme and the preset threshold value. If the hydrogen production contribution value of the hydrogen production scheme is greater than the preset threshold value, it is considered as a candidate production The hydrogen scheme is retained. On the contrary, if the hydrogen production contribution value of the hydrogen production scheme is less than or equal to the preset threshold, it will be discarded. Based on this, if the hydrogen production contribution values of each hydrogen production scheme are less than or equal to the preset threshold value, execute S1203, and if there is at least one candidate hydrogen production scheme whose hydrogen production contribution value is greater than the preset threshold value, execute S1204.
  • the preset threshold can be set in combination with specific control accuracy and actual application requirements, and the present invention does not limit the specific setting of the preset threshold.
  • the execution process of S1203 can be implemented with reference to S140 in the embodiment shown in FIG. 1 , and will not be repeated here. After the adjustment of the predicted hydrogen production power is completed, return to S100 .
  • the candidate hydrogen production scheme with the largest hydrogen production contribution value among the candidate hydrogen production schemes is selected as the target hydrogen production scheme.
  • the hydrogen production device corresponds to the preset conversion efficiency in the hydrogen production process.
  • the hydrogen production power supply of the target hydrogen production scheme can be calculated first. Specifically, it can be calculated according to the following formula:
  • Hq ⁇ (P 11 T 11 +P 21 T 21 +P 31 T 31 +P 41 T 41 +L+P 1N T 1N +P 2N T 2N +P 3N T 3N +P 4N T 4N )
  • step S130 directly judges whether the hydrogen output of the target hydrogen production scheme is within the preset hydrogen production range, and other schemes do not need to perform hydrogen output Quantity calculation and subsequent steps can effectively reduce the calculation amount and improve control efficiency.
  • step S130 directly judges whether the hydrogen output of the target hydrogen production scheme is within the preset hydrogen production range, and other schemes do not need to perform hydrogen output Quantity calculation and subsequent steps can effectively reduce the calculation amount and improve control efficiency.
  • the power generation process of the wind power generation system and the photovoltaic power generation system has obvious fluctuations.
  • the electric energy output by wind power generation system and photovoltaic power generation system is difficult to meet the requirements of hydrogen production, then consider using energy storage system and AC power grid.
  • Fig. 4 is a flow chart of another hydrogen production control method provided by the embodiment of the present invention.
  • the hydrogen production control method provided by this embodiment before using various hydrogen production power sources for hydrogen production, Firstly, it is judged whether only the electric energy of the photovoltaic power generation system and the wind power generation system can meet the demand for hydrogen. Only when it is not satisfied, the control process of the embodiment shown in Figure 1 will be executed.
  • the specific execution process includes:
  • the new energy power generation system mainly includes a wind power generation system and a photovoltaic power generation system.
  • the hydrogen production control method provided by each embodiment of the present invention is realized based on the forecast data, specifically to this step In the process, it is first necessary to obtain the output power forecast data of the wind power generation system and the photovoltaic power generation system in the hydrogen production day and the hydrogen demand forecast data of the hydrogen production system in the hydrogen production day, and then determine the hydrogen production forecast in the hydrogen production day according to the output power forecast data , and determine the total hydrogen demand in hydrogen production days according to the hydrogen demand forecast data.
  • the preset hydrogen production range mentioned above can be set based on the predicted total hydrogen demand.
  • the specific methods for obtaining the output power forecast data and the hydrogen demand forecast data, as well as the specific calculation process of the hydrogen forecast output and the total hydrogen demand can be realized based on the existing technology, which is not limited in the present invention.
  • S1002. Determine whether the predicted output of hydrogen is less than the total demand for hydrogen. If yes, execute S1003. If not, execute S1004.
  • the predicted output of hydrogen is less than the total demand of hydrogen, it means that the output power of the photovoltaic power generation system and wind power system alone cannot meet the hydrogen demand on the hydrogen production day, and it needs to be coordinated with other hydrogen production power sources at the same time , such as the energy storage system and the AC power grid to complete the hydrogen production task on the hydrogen production day; on the contrary, if the hydrogen production forecast is greater than or equal to the total hydrogen demand, it means that the output power of the photovoltaic power generation system and the wind power generation system alone can meet the hydrogen production requirements. demand, without the assistance of other hydrogen production power sources.
  • the wind power generation system and the photovoltaic power generation system are controlled to supply power to the hydrogen production device.
  • the specific hydrogen production process can be realized by referring to the existing technology. Here No longer expand.
  • the energy storage system is controlled to be in the charging mode. It is conceivable that the energy storage system can play the role of a buffer pool in the entire hydrogen production system, and the output power of the photovoltaic power generation system and wind power generation system can at least To meet the demand for hydrogen production, if the output power of the two is further left, it can be stored in the energy storage system. Therefore, the control of the energy storage system in the charging mode mentioned in this step is only for the operation of the energy storage system The description of the state does not refer to the continuous charging of the energy storage system.
  • the specific charging process must be determined in conjunction with the relationship between the output power of the photovoltaic power generation system and the wind power generation system and the rated hydrogen production power of the hydrogen production device. For this process, the specific It can be implemented based on existing technologies, and will not be expanded here.
  • the hydrogen production control method provided in this embodiment first checks whether the output power of the new energy power generation system, that is, the wind power generation system and the photovoltaic power generation system can meet Judging the demand for hydrogen production, giving priority to using the output power of the photovoltaic power generation system and wind power generation system to produce hydrogen can effectively improve the utilization rate of the output power of the photovoltaic power generation system and wind power generation system.
  • the control process of hydrogen production using energy storage system and AC power grid is no longer executed, which effectively improves the execution efficiency of the algorithm and helps to improve the control efficiency.
  • FIG. 5 is a structural block diagram of an energy scheduling device provided by an embodiment of the present invention. As shown in FIG. 5, it may include: at least one processor 100, at least one communication interface 200, at least one memory 300 and at least one communication bus 400;
  • the number of the processor 100, the communication interface 200, the memory 300, and the communication bus 400 is at least one, and the processor 100, the communication interface 200, and the memory 300 complete the mutual communication through the communication bus 400; obviously, The communication connections shown in the processor 100, communication interface 200, memory 300 and communication bus 400 shown in FIG. 5 are only optional;
  • the communication interface 200 may be an interface of a communication module
  • the processor 100 may be a central processing unit CPU, or an ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 300 stores application programs, and may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 100 is specifically configured to execute the application program in the memory, so as to realize any embodiment of the hydrogen production control method described above.
  • the present invention also provides a hydrogen production system, including: various hydrogen production power sources, hydrogen production devices, and the energy dispatching device provided in the above embodiments, wherein,
  • the output terminals of each hydrogen production power supply are respectively connected to the power supply terminal of the hydrogen production device;
  • the energy dispatching device is respectively connected with each hydrogen production power source and hydrogen production device.
  • each embodiment of the present invention is described in a progressive manner, each embodiment focuses on the differences from other embodiments, and the same and similar parts of the various embodiments can be referred to each other.
  • the description is relatively simple, and for the related part, please refer to the description of the method part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)

Abstract

本申请提供的制氢控制方法及其应用装置,应用于制氢技术领域,该方法在获取各制氢电源在各制氢时间段的制氢预测功率后,调整各制氢电源以相应制氢预测功率运行的制氢时长,得到多个制氢方案,根据各制氢方案对应的制氢预测功率和制氢时长,分别计算各制氢方案的氢气产出量,如果不存在氢气产出量处于预设产氢范围内的目标制氢方案,则调整各制氢电源的制氢预测功率,并重新制定制氢方案,直至存在目标制氢方案,按照目标制氢方案控制制氢系统制氢。本方法通过调整各制氢电源的制氢预测功率和制氢时长得到多个制氢方案,以满足预设产氢要求的制氢方案控制制氢系统运行,有效确保制氢系统的氢气产量满足预期要求。

Description

一种制氢控制方法及其应用装置
本申请要求于2021年07月27日提交中国专利局、申请号为202110849285.6、发明名称为“一种制氢控制方法及其应用装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及制氢技术领域,特别涉及一种制氢控制方法及其应用装置。
背景技术
为了进一步提高制氢系统的氢气产量,满足用户日益增长的氢气使用需求,现有制氢系统大都设置有多种制氢电源,比如风力发电系统、光伏发电系统、储能系统和交流电网等,通过各种制氢电源的配合为制氢装置供电,进而充分、可控的为制氢装置提供电能,确保制氢过程顺利进行。
然而,不同的制氢电源往往对应着不同的供电性能,单纯的控制各制氢电源同时为制氢装置供电,显然难以达到最好的制氢产能。因此,如何合理分配各种制氢电源输出的制氢电能,确保制氢系统的氢气产量满足预期要求,成为本领域技术人员亟待解决的技术问题。
发明内容
本发明提供一种制氢控制方法及其应用装置,通过调整各制氢电源的制氢预测功率和制氢时长,得到多个制氢方案,以满足预设产氢要求的制氢方案控制制氢系统运行,有效确保制氢系统的氢气产量满足预期要求,解决现有技术的问题。
为实现上述目的,本发明提供的技术方案如下:
第一方面,本发明提供一种制氢控制方法,应用于包括多种制氢电源的制氢系统,所述方法包括:
获取各所述制氢电源在各制氢时间段的制氢预测功率;
其中,所述制氢时间段由目标制氢时间区间划分得到;
调整各所述制氢电源以相应制氢预测功率运行的制氢时长,得到多个制氢方案;
根据各所述制氢方案中各所述制氢电源对应的制氢预测功率和制氢时长,分别计算各所述制氢方案的氢气产出量;
若不存在氢气产出量处于预设产氢范围内的目标制氢方案,调整各所述制氢电源的制氢预测功率,并返回所述获取各所述制氢电源在各制氢时间段的制氢预测功率步骤;
若存在氢气产出量处于所述预设产氢范围内的目标制氢方案,按照所述目标制氢方案控制所述制氢系统制氢。
可选的,所述根据各所述制氢方案中各所述制氢电源对应的制氢预测功率和制氢时长,分别计算各所述制氢方案的氢气产出量,包括:
分别计算各所述制氢方案的制氢贡献值,其中,所述制氢贡献值表征制氢方案的经济性;
判断各所述制氢方案中是否存在至少一个制氢贡献值大于预设阈值的候选制氢方案;
若否,调整各所述制氢电源的制氢预测功率,并返回所述获取各所述制氢电源在各制氢时间段的制氢预测功率步骤;
若是,将各所述候选制氢方案中制氢贡献值最大的候选制氢方案作为目标制氢方案;
计算所述目标制氢方案的氢气产出量。
可选的,计算任一所述制氢方案的制氢贡献值的过程,包括:
获取各所述制氢电源在各所述制氢时间段的预设权重系数;
其中,所述预设权重系数与制氢电源在相应制氢时间段的制氢成本负相关;
根据各所述制氢电源在各所述制氢时间段的预设权重系数、制氢预测功率和制氢时长,分别计算所述制氢方案在各所述制氢时间段的制氢贡献子值;
将各所述制氢贡献子值之和作为所述制氢方案的制氢贡献值。
可选的,所述根据各所述制氢电源在各所述制氢时间段的预设权重系数、制氢预测功率和制氢时长,分别计算所述制氢方案在各所述制氢时间段的制氢贡献子值,包括:
针对每一个所述制氢电源,计算所述制氢电源在各所述制氢时间段的预设权重系数、制氢预测功率和制氢时长的乘积,得到相应的第一计算结果;
分别计算对应同一个制氢时间段的各第一计算结果之和,得到所述制氢方 案在相应的制氢时间段的制氢贡献子值。
可选的,所述计算所述目标制氢方案的氢气产出量,包括:
获取预设转换效率;
计算所述目标制氢方案的制氢总电量;
计算所述预设转换效率与所述制氢总电量的乘积,得到所述目标制氢方案的氢气产出量。
可选的,所述获取各所述制氢电源在各制氢时间段的制氢预测功率,包括:
针对每一个所述制氢电源,执行如下操作:
获取所述制氢电源的供能比例和在各所述制氢时间段的可用制氢预测功率;
分别计算所述功能比例与各所述制氢时间段的可用制氢预测功率的乘积,得到所述制氢电源在各所述制氢时间段的制氢预测功率。
可选的,所述调整各所述制氢电源的制氢预测功率,包括:
调整各所述制氢电源的供能比例。
可选的,获取任一所述制氢电源在任一所述制氢时间段的可用制氢预测功率的过程,包括:
获取所述制氢电源在所述制氢时间段内的预测功率和制氢装置的额定制氢预测功率;
将所述预测功率和所述额定制氢预测功率中的较小值,作为所述制氢电源在所述制氢时间段内的可用制氢预测功率。
可选的,所述调整各所述制氢电源以相应制氢预测功率运行的制氢时长,得到多个制氢方案,包括:
在所述制氢时间段的时长范围内调整各所述制氢电源以相应制氢预测功率运行的制氢时长,得到多个制氢方案。
可选的,所述多种制氢电源包括新能源发电系统、储能系统和交流电网;
所述获取各所述制氢电源在各制氢时间段的制氢预测功率,包括:
获取氢气需求总量,以及所述新能源发电系统的输出功率用于制氢的情况下的氢气预测产量;
若所述氢气预测产量小于所述氢气需求总量,获取各所述制氢电源在各制 氢时间段的制氢预测功率;
若所述氢气预测产量大于等于所述氢气需求总量,控制所述新能源发电系统为制氢装置供电;
控制所述储能系统处于充电模式。
可选的,所述预设产氢范围基于所述氢气需求总量设置。
可选的,所述获取氢气需求总量,以及所述新能源发电系统的输出功率用于制氢的情况下的氢气预测产量,包括:
获取所述新能源发电系统在制氢日内的输出功率预测数据和所述制氢系统在所述制氢日内的氢气需求预测数据;
根据所述输出功率预测数据确定所述制氢日内的氢气预测产量;
根据所述氢气需求预测数据确定所述制氢日内的氢气需求总量。
可选的,确定所述目标制氢时间区间的过程,包括:
根据所述氢气需求预测数据将所述制氢日划分为多个制氢时间区间;
分别将各所述制氢时间区间作为目标制氢时间区间。
第二方面,本发明提供一种能量调度装置,包括:存储器和处理器;所述存储器存储有适于所述处理器执行的程序,以实现本发明第一方面任一项所述的制氢控制方法的步骤。
第三方面,本发明提供一种制氢系统,包括:多种制氢电源、制氢装置和本发明第二方面所述的能量调度装置,其中,
各所述制氢电源的输出端分别与所述制氢装置的电源端相连;
所述能量调度装置分别与各所述制氢电源以及所述制氢装置相连。
本发明提供的制氢控制方法,在获取各制氢电源在各制氢时间段的制氢预测功率后,调整各制氢电源以相应制氢预测功率运行的制氢时长,得到多个制氢方案,然后根据各制氢方案中各制氢电源对应的制氢预测功率和制氢时长,分别计算各制氢方案的氢气产出量,如果不存在氢气产出量处于预设产氢范围内的目标制氢方案,则调整各制氢电源的制氢预测功率,并重新制定制氢方案,直至存在氢气产出量处于预设产氢范围内的目标制氢方案,按照目标制氢方案控制制氢系统制氢。本发明提供的制氢控制方法,通过调整各制氢电源的制氢预测功率和制氢时长,得到多个制氢方案,以满足预设产氢要求的制氢方案控 制制氢系统运行,有效确保制氢系统的氢气产量满足预期要求,解决现有技术的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术内的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述内的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种制氢控制方法的流程图;
图2是本发明实施例述及的各制氢电源的输出功率曲线与可用制氢预测功率曲线的关系示意图;
图3是本发明实施例提供的另一种制氢控制方法的流程图;
图4是本发明实施例提供的再一种制氢控制方法的流程图;
图5是本发明实施例提供的一种能量调度装置的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明提供的制氢控制方法,用于对包括多种制氢电源的制氢系统的制氢过程进行控制,调整各制氢电源在制氢过程中输出的制氢预测功率和制氢时长,以确保在一定时间内的氢气产出量满足实际应用需求。本发明提供的制氢控制方法可以应用于能够执行预设控制程序、进行相应数据处理功能的电子设备,该电子设备可以是计算机、掌上电脑,或者数据处理服务器,当然,在某些情况下,也可以应用于网络侧的服务器实现。参见图1,图1是本发明实施例提供的一种制氢控制方法的流程图,本实施例提供的制氢控制方法的流程,可以包括:
S100、获取各制氢电源在各制氢时间段的制氢预测功率。
如前所述,现有应用中制氢系统的制氢电源主要包括新能源发电系统、储能系统和交流电网,其中,新能源发电系统包括风力发电系统和光伏发电系统, 当然,还有可能包括其他类型的制氢电源,此处不再一一列举。考虑到光伏发电系统的供电过程具有明显的周期性,即只有在白天才能输出制氢功率,因此,在本实施例以及后续各个实施例提供的制氢控制方法中,均以一个自然日为周期对制氢过程进行控制,并将进行制氢过程控制的自然日定义为制氢日。
进一步的,考虑到实际应用中用户在不同时间段对氢气的需求量是不同的,以公交车的加氢站为例,一般在早晨、中午和傍晚三个时段需要大量的氢气,其余时段对氢气的需求量要明显低于前述三个时段,因此,在实际应用中需要优先保证氢气需求量大的时段的氢气供给。基于此,在实际应用中可以根据氢气需求预测数据对制氢日不同时间段的氢气需求量进行预测,并基于预测结果将制氢日划分为不同的制氢时间区间,并将任一制氢时间区间作为目标制氢时间区间,针对目标制氢时间区间进行制氢过程的控制。而本实施例中述及的制氢时间段,即时由目标制氢时间区间进一步划分得到的。
基于上述内容可见,本实施例中述及的各制氢时间段同属于同一个目标制氢时间区间,因此,在时间上是连续的,并非离散的时间段。
可选的,对于任意一种制氢电源而言,其在制氢日内的输出功率是可以预测得到的,同时,制氢系统中制氢装置有着确定的额定制氢功率,制氢装置输入的制氢功率不能大于自身的额定制氢功率,由此可知,对于制氢电源而言,其输出功率大于制氢装置额定制氢功率的部分将不能用于氢气生产,因此,在获取制氢电源在上述制氢时间段内的预测功率和制氢装置的额定制氢预测功率后,需要将制氢电源的预测功率和制氢装置的额定制氢预测功率中的较小值,作为该制氢电源在制氢时间段内的可用制氢预测功率。
可选的,参见图2,图2是本发明实施例述及的各制氢电源的输出功率曲线与可用制氢预测功率曲线的关系示意图,根据图2可以看出,各种制氢电源的输出功率具有不同的变化特性,同时,图2中还示出风力发电系统和光伏发电系统共同用于制氢时的功率曲线,可以理解为新能源发电系统的功率曲线,以及交流电网和储能系统共同用于制氢时的功率曲线,其中,新能源发电系统对应的功率曲线中,Pmax对应的即制氢装置的最大制氢功率,Pmin即制氢装置的最小制氢功率,不论如何分配各制氢电源,总的制氢功率应处于Pmin和Pmax对应的功率范围内,基于此前提得到的可用制氢功率的曲线则如图2中 最右侧曲线所示。
需要说明的是,图2中示出的各个功率曲线,都是示意图,在实际应用中以具体的制氢电源的性能为准。
而为了调整各种制氢电源在目标制氢时间区间、具体到各个制氢时间段内的制氢功率,本实施例为各种制氢电源设置相应的功能比例,因此,在本步骤中,在各制氢电源的可用制氢预测功率已经确定的情况下,获取各制氢电源在各制氢时间段的可用制氢预测功率,也可以理解为获取制氢电源在各制氢时间段的功能比例,在获取制氢电源的供能比例和在各制氢时间段的可用制氢预测功率后,分别计算功能比例与各制氢时间段的可用制氢预测功率的乘积,即得到制氢电源在各制氢时间段的制氢预测功率。可以想到的是,在任一制氢日首次执行本控制方法时,各制氢电源的功能比例可以使用预设的初始值。
需要说明的是,对于上述内容中述及的各种类制氢电源的输出功率预测、制氢系统的氢气需求量预测等过程,均可以基于现有技术实现,本发明对此不做限定。
S110、调整各制氢电源以相应制氢预测功率运行的制氢时长,得到多个制氢方案。
如前所述,本实施例中述及的目标制氢时间区间是由制氢日划分得到的,进一步的,任一制氢时间段是由目标制氢时间区间划分得到的,由此可见,任一制氢电源的任一制氢时间段内的制氢时长最长即制氢时间段对应的时长,因此,调整各制氢电源以相应制氢预测功率运行的制氢时长时,应在制氢时间段的时长范围内进行调整,每一次调整就得到一个以相应制氢预测功率运行相应制氢时长的制氢方案,遍历所有可能的制氢时长,即可得到多个制氢方案。
可选的,在调整制氢时长的过程中,为了减少计算量,提高程序执行效率,可以按照一定步长调整制氢时长,比如以10分钟为步长进行调整。进一步的,各个制氢时间段可以时长相等,也可以时长不等,为了简化调整过程,可以均分目标制氢时间区间,得到时长相等的制氢时间段。当然,也可以制氢日为基准,首先将制氢日划分为多个制氢时间段,然后依据制氢时间区间的具体范围,确定制氢时间区间所包括的制氢时间段的数量。
综上所述,本步骤最终得到以相应制氢预测功率输出、运行不同制氢时长 的多个制氢方案。
S120、根据各制氢方案中各制氢电源对应的制氢预测功率和制氢时长,分别计算各制氢方案的氢气产出量。
在经过前述步骤得到多个制氢方案后,即可分别根据各制氢方案中各制氢电源对应的制氢预测功率和制氢时长,计算得到各制氢方案的氢气产出量。根据现有技术可知,制氢装置吸收电能,并基于电能产生氢气,制氢过程必然不可避免的会存在能量损耗,即制氢系统在生产氢气过程中对应一定的能量转换效率,对于确定的制氢装置而言,该能量转换效率是确定的,因此,在本步骤中,首先需要获取制氢装置的预设转换效率,然后计算各制氢方案对应的制氢总电量,制氢总电量与预设转换效率的乘积,即各制氢方案对应的氢气产出量。
S130、判断是否存在氢气产出量处于预设产氢范围内的目标制氢方案,若否,执行S140,若是,执行S150。
如前所述,本实施例提供的制氢控制方法的是为了确保氢气产出量满足应用需求,因此,在得到各制氢方案的氢气产出量之后,判断是否存在氢气产出量处于预设产氢范围内的制氢方案,作为目标制氢方案,如果存在,则执行S150,如果不存在,执行S140。
可以想到的是,如果氢气产出量处于预设产氢范围内的制氢方案包括多个,则应选择氢气产出量最大的制氢方案作为目标制氢方案。
S140、调整各制氢电源的制氢预测功率。
如前所述,制氢日内各制氢电源的预测功率是确定的,本方法通过调整功能比例调整各制氢电源用于制氢的功率,因此,在本步骤中,同样通过调整各制氢电源的功能比例达到调整各制氢电源的制氢预测功率,并在完成制氢预测功率的调整后,返回S100。
可以想到的是,返回后,S100所获取得到的是各制氢电源调整后的制氢预测功率。
S150、按照目标制氢方案控制制氢系统制氢。
如果存在氢气产出量处于预设产氢范围内的目标制氢方案,即可按照目标制氢方案中各制氢电源的制氢功率和制氢时长控制相应的制氢电源为制氢装置供电,生成氢气。
综上所述,本发明提供的制氢控制方法,通过调整各制氢电源的制氢预测功率和制氢时长,得到多个制氢方案,以满足预设产氢要求的制氢方案控制制氢系统运行,有效确保制氢系统的氢气产量满足预期要求,解决现有技术的问题。
基于上述实施例所提供的制氢控制方法的执行过程可以看出,即便是针对确定的制氢功率调整制氢时长,所得的制氢方案也是非常多的,相应的,计算全部制氢方案的氢气产出量将耗费大量时间,不仅严重影响控制效率,还会占用大量的硬件资源。为解决这一问题,在图1所示实施例的基础上,本实施例提供另一种制氢控制方法,其具体的流程可以参见图3所示。需要说明的是,一下内容仅对本实施例区别于图1所示实施例的部分进行展开,其余部分可参见前述内容,此处不再复述。
具体的,在调整各制氢电源以相应制氢功率运行的制氢时长,得到多个制氢方案,执行如下步骤:
S1201、分别计算各制氢方案的制氢贡献值。
首选需要说明的是,在本实施例中,制氢贡献值用于表征制氢方案的经济性,制氢贡献值越高,表明在制备相同氢气的情况下,所需的制氢成本越低,或者说,制氢贡献值越高,表明在相同的制氢成本下,所得氢气的量越大。
可选的,为了准确的计算各制氢方案的制氢贡献值,本实施例为各制氢电源在各制氢时间段设置预设权重系数。在本实施例中,制氢电源的权重系数主要与制氢电源的能源容量,比如光伏发电系统、风力发电系统的装机容量,储能系统的储能容量,除了能源容量,还有制氢电源的电能单价以及制氢电源的可获得便利性等条件,在实际应用中,可根据制氢电源的具体情况设置。需要强调的是,本实施例中述及的预设权重系数是与制氢电源在相应制氢时间段的制氢成本负相关的,即制氢成本越高,相应的预设权重系数越小。
可以想到的是,对于确定的制氢系统而言,风力发电系统、光伏发电系统和储能系统的预设权重系数往往是固定的,交流电网由于在不同时段电价会有所变化,因此,交流电网的预设权重系数在不同的制氢时间段内会有所差异。
基于上述前提,下面以具体的示例说明制氢贡献值的计算过程:
假定制氢系统的制氢电源包括交流电网、储能系统、风力发电系统和光伏发电电网,这四种制氢电源预设权重系数分别标记为k 1、k 2、k 3、k 4,其中,如前所述,交流电网在不同制氢时间段的预设权重系数会因为电价变化而变化。
将目标制氢时间区间分为N份等时间段,交流电网在该N份制氢时间段对应的预设权重系数分别标记为k 11、k 12、…、k 1N,把各个制氢时间段的预设权重系数与相应的制氢预测功率相乘,可进一步得到交流电网的制氢功率向量
Figure PCTCN2022096526-appb-000001
相应的,可得储能系统的制氢功率向量为
Figure PCTCN2022096526-appb-000002
风力发电系统的制氢功率向量为
Figure PCTCN2022096526-appb-000003
光伏发电系统的制氢功率向量为
Figure PCTCN2022096526-appb-000004
N个制氢时间段等长的情况下,交流电网、储能系统、风力发电系统和光伏发电电网在任意一个制氢时间段内的制氢时长可表示为T 1j、T 2j、T 3j、T 4j,前述调整制氢时长的过程,应该在制氢时间段对应的时长范围内进行,即满足如下规则:
Figure PCTCN2022096526-appb-000005
Figure PCTCN2022096526-appb-000006
其中,j表示第j个制氢时间段;
T Z表示目标制氢时间区间的时长。
以矩阵QT表示制氢方案的制氢贡献值,则有如下计算公式:
Figure PCTCN2022096526-appb-000007
需要说明的是,在上式中,k ij的i为1表示交流电网在第j个制氢时间段的预设权重系数,i为2是表示储能系统在各制氢时间段的预设权重系数,i为3表示风力发电系统在各制氢时间段的预设权重系数,i为4表示光伏发电系统在各制氢时间段的预设权重系数;其中P ij的i值1、2、3、4分别上述四 个制氢电源在第j个制氢时间段的制氢功率。
将上述矩阵进行进一步计算,则有:
Figure PCTCN2022096526-appb-000008
基于上述公式看出,在计算制氢方案的制氢贡献值时,可以首先分别计算制氢方案在各个制氢时间段的制氢贡献子值,即根据各制氢电源在各任一制氢时间段的预设权重系数、制氢预测功率和制氢时长计算得到该制氢贡献子值,具体的,计算制氢电源在各制氢时间段的预设权重系数、制氢预测功率和制氢时长的乘积,得到相应的第一计算结果,以上式为例,k 11P 11T 11即为其中一个第一计算结果,然后分别计算对应同一个制氢时间段的各第一计算结果之和,即得到制氢方案在相应的制氢时间段的制氢贡献子值,仍以上式为例,上式中k 11P 11T 11+k 2P 21T 21+k 3P 31T 31+k 4P 41T 41所得结果即各制氢电源在第一个制氢时间段的制氢贡献子值,进一步求得各制氢电源在各制氢时间段的制氢贡献子值之和,即得到方案的制氢贡献值,具体可以表示为:
qt=k 11P 11T 11+k 2P 21T 21+k 3P 31T 31+k 4P 41T 41+k 12P 12T 12+k 2P 22T 22+k 3P 32T 32+k 4P 42T 42+L+k 1NP 1NT 1N+k 2P 2NT 2N+k 3P 3NT 3N+k 4P 4NT 4N
针对各个制氢方案执行上述计算过程,即得到各个制氢方案对应的制氢贡献值。
S1202、判断各制氢方案中是否存在至少一个制氢贡献值大于预设阈值的候选制氢方案,若否,执行S1203,若是,执行S1204。
在所得各个制氢方案中,依据制氢方案对应的制氢贡献值于预设阈值的大小关系对各个制氢方案进行筛选,如果制氢方案的制氢贡献值大于预设阈值则作为候选制氢方案予以保留,相反的,如果制氢方案的制氢贡献值小于等于预设阈值,则舍弃不用。基于此,如果各制氢方案的制氢贡献值均小于等于预设阈值,则执行S1203,如果存在至少一个制氢贡献值大于预设阈值的候选制氢方案,则执行S1204。
需要说明的是,对于预设阈值,可以结合具体的控制精度和实际应用需求设置,本发明对于预设阈值的具体设置不做限定。
S1203、调整各制氢电源的制氢预测功率。
可选的,S1203的执行过程可参照图1所示实施例中S140实现,此处不再复述,在完成制氢预测功率的调整后,返回S100。
S1204、将各候选制氢方案中制氢贡献值最大的候选制氢方案作为目标制氢方案。
如果候选制氢方案存在多个,为了获得更好的制氢产量,选择各候选制氢方案中制氢贡献值最大的候选制氢方案作为目标制氢方案。
S1205、计算目标制氢方案的氢气产出量。
如前所述,制氢装置在制氢过程中对应着预设转换效率,在确定目标制氢方案后,可以首先计算目标制氢方案的制氢供电量,具体的,可以按照如下公式计算:
Q=P 11T 11+P 21T 21+P 31T 31+P 41T 41+L+P 1NT 1N+P 2NT 2N+P 3NT 3N+P 4NT 4N
在得到制氢总电量后,计算预设转换效率与制氢总电量的乘积,即得到目标制氢方案的氢气产出量。具体可参照如下公式计算:
Hq=δ(P 11T 11+P 21T 21+P 31T 31+P 41T 41+L+P 1NT 1N+P 2NT 2N+P 3NT 3N+P 4NT 4N)
可以想到的是,在得到目标制氢方案的氢气产出量之后,S130步骤直接判断目标制氢方案的氢气产出量是否处于预设产氢范围即可,其余方案则不必再进行氢气产出量的计算以及后续步骤,因而可以有效降低计算量,提高控制效率。对于其余步骤的执行过程可参见图1所示实施例对应内容,此处不再赘述。
根据实际运行经验以及发电原理可知,风力发电系统和光伏发电系统的发电过程具有较为明显的波动性,为了充分利用风力发电系统和光伏发电系统输出的电能,在制氢过程中应优先使用二者的电能,当风力发电系统和光伏发电系统输出的电能难以满足制氢要求时,再考虑使用储能系统和交流电网。
基于上述理念,参见图4,图4是本发明实施例提供的再一种制氢控制方法的流程图,本实施例提供的制氢控制方法,在利用多种制氢电源进行制氢前, 首先判断只利用光伏发电系统和风力发电系统的电能是否能够满足氢气需求,只有在不满足的情况下才会执行图1所示实施例的控制过程,具体的执行流程包括:
S1001、获取氢气需求总量,以及新能源发电系统的输出功率用于制氢的情况下的氢气预测产量。
如前所述,新能源发电系统主要包括风力发电系统和光伏发电系统,进一步的,基于前述实施例可知,本发明各个实施例提供的制氢控制方法是基于预测数据实现的,具体到本步骤中,首先需要获取风力发电系统和光伏发电系统在制氢日内的输出功率预测数据和制氢系统在制氢日内的氢气需求预测数据,然后,根据输出功率预测数据确定制氢日内的氢气预测产量,并根据氢气需求预测数据确定制氢日内的氢气需求总量。
可以想到的是,前述内容中述及的预设产氢范围,可以基于预测得到的氢气需求总量设置。
至于输出功率预测数据和氢气需求预测数据的具体获取方法,以及氢气预测产量以及氢气需求总量的具体计算过程,均可以基于现有技术实现,本发明对此不做限定。
S1002、判断氢气预测产量是否小于氢气需求总量,若是,执行S1003,若否,执行S1004。
得到氢气预测产量和氢气需求总量后,如果氢气预测产量小于氢气需求总量,说明单纯利用光伏发电系统和风力发电系统输出的功率难以满足制氢日的氢气需求,需要同时配合其他制氢电源,比如储能系统和交流电网来完成制氢日的制氢任务;相反的,如果氢气预测产量大于等于氢气需求总量,说明单纯利用光伏发电系统和风力发电系统的输出功率就可以满足制氢需求,不需要其他制氢电源的辅助。
S1003、获取各制氢电源在各制氢时间段的制氢预测功率。
在需要综合利用光伏发电系统、风力发电系统、储能系统以及交流电网等多种制氢电源进行制氢作业的情况下执行本步骤,对于本步骤的具体执行过程,可以参照图1所示实施例中S100的相应内容,此处不再展开。
S1004、控制新能源发电系统为制氢装置供电,并控制储能系统处于充电 模式。
在利用光伏发电系统和风力发电系统的输出功率就可以满足制氢需求的情况下,控制风力发电系统和光伏发电系统为制氢装置供电,具体的制氢过程可参照现有技术实现,此处不再展开。
同时,控制储能系统处于充电模式,可以想到的是,储能系统在整个制氢系统中能够起到多充少补的缓冲池的作用,在光伏发电系统和风力发电系统的输出功率至少可以满足制氢需求,如果二者的输出功率进一步还有剩余,则可以储存在储能系统中,因此,本步骤中所述及的控制储能系统处于充电模式,仅仅是对储能系统的运行状态的说明,并非指储能系统持续的进行充电,具体的充电过程还要结合光伏发电系统以及风力发电系统的输出功率与制氢装置额定制氢功率之间的大小关系确定,对于此过程具体可以基于现有技术实现,此处不再展开。
至于图4中所示的S1003之后的其余步骤的执行过程,均可参照图1所示实施例实现,本实施例不再复述。
综上所述,本实施例提供的制氢控制方法,在正式利用多种制氢电源进行制氢作业前,首先对新能源发电系统,即风力发电系统和光伏发电系统的输出功率能否满足制氢需求进行判断,优先利用光伏发电系统和风力发电系统的输出功率制氢,能够有效提高对光伏发电系统和风力发电系统输出电能的利用率,同时,在利用光伏发电系统和风力发电系统的输出功率就可以满足制氢需求的情况下,不再执行利用储能系统和交流电网等系统进行制氢的控制过程,有效提高算法的执行效率,有助于提高控制效率。
可选的,参见图5,图5为本发明实施例提供的能量调度装置的结构框图,参见图5所示,可以包括:至少一个处理器100,至少一个通信接口200,至少一个存储器300和至少一个通信总线400;
在本发明实施例中,处理器100、通信接口200、存储器300、通信总线400的数量为至少一个,且处理器100、通信接口200、存储器300通过通信总线400完成相互间的通信;显然,图5所示的处理器100、通信接口200、存储器300和通信总线400所示的通信连接示意仅是可选的;
可选的,通信接口200可以为通信模块的接口;
处理器100可能是一个中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。
存储器300,存储有应用程序,可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
其中,处理器100具体用于执行存储器内的应用程序,以实现上述所述的制氢控制方法的任一实施例。
可选的,本发明还提供一种制氢系统,包括:多种制氢电源、制氢装置和上述实施例提供的能量调度装置,其中,
各制氢电源的输出端分别与制氢装置的电源端相连;
能量调度装置分别与各制氢电源以及制氢装置相连。
本发明中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (15)

  1. 一种制氢控制方法,其特征在于,应用于包括多种制氢电源的制氢系统,所述方法包括:
    获取各所述制氢电源在各制氢时间段的制氢预测功率;
    其中,所述制氢时间段由目标制氢时间区间划分得到;
    调整各所述制氢电源以相应制氢预测功率运行的制氢时长,得到多个制氢方案;
    根据各所述制氢方案中各所述制氢电源对应的制氢预测功率和制氢时长,分别计算各所述制氢方案的氢气产出量;
    若不存在氢气产出量处于预设产氢范围内的目标制氢方案,调整各所述制氢电源的制氢预测功率,并返回所述获取各所述制氢电源在各制氢时间段的制氢预测功率步骤;
    若存在氢气产出量处于所述预设产氢范围内的目标制氢方案,按照所述目标制氢方案控制所述制氢系统制氢。
  2. 根据权利要求1所述的制氢控制方法,其特征在于,所述根据各所述制氢方案中各所述制氢电源对应的制氢预测功率和制氢时长,分别计算各所述制氢方案的氢气产出量,包括:
    分别计算各所述制氢方案的制氢贡献值,其中,所述制氢贡献值表征制氢方案的经济性;
    判断各所述制氢方案中是否存在至少一个制氢贡献值大于预设阈值的候选制氢方案;
    若否,调整各所述制氢电源的制氢预测功率,并返回所述获取各所述制氢电源在各制氢时间段的制氢预测功率步骤;
    若是,将各所述候选制氢方案中制氢贡献值最大的候选制氢方案作为目标制氢方案;
    计算所述目标制氢方案的氢气产出量。
  3. 根据权利要求2所述的制氢控制方法,其特征在于,计算任一所述制氢方案的制氢贡献值的过程,包括:
    获取各所述制氢电源在各所述制氢时间段的预设权重系数;
    其中,所述预设权重系数与制氢电源在相应制氢时间段的制氢成本负相关;
    根据各所述制氢电源在各所述制氢时间段的预设权重系数、制氢预测功率和制氢时长,分别计算所述制氢方案在各所述制氢时间段的制氢贡献子值;
    将各所述制氢贡献子值之和作为所述制氢方案的制氢贡献值。
  4. 根据权利要求3所述的制氢控制方法,其特征在于,所述根据各所述制氢电源在各所述制氢时间段的预设权重系数、制氢预测功率和制氢时长,分别计算所述制氢方案在各所述制氢时间段的制氢贡献子值,包括:
    针对每一个所述制氢电源,计算所述制氢电源在各所述制氢时间段的预设权重系数、制氢预测功率和制氢时长的乘积,得到相应的第一计算结果;
    分别计算对应同一个制氢时间段的各第一计算结果之和,得到所述制氢方案在相应的制氢时间段的制氢贡献子值。
  5. 根据权利要求2所述的制氢控制方法,其特征在于,所述计算所述目标制氢方案的氢气产出量,包括:
    获取预设转换效率;
    计算所述目标制氢方案的制氢总电量;
    计算所述预设转换效率与所述制氢总电量的乘积,得到所述目标制氢方案的氢气产出量。
  6. 根据权利要求1所述的制氢控制方法,其特征在于,所述获取各所述制氢电源在各制氢时间段的制氢预测功率,包括:
    针对每一个所述制氢电源,执行如下操作:
    获取所述制氢电源的供能比例和在各所述制氢时间段的可用制氢预测功率;
    分别计算所述功能比例与各所述制氢时间段的可用制氢预测功率的乘积,得到所述制氢电源在各所述制氢时间段的制氢预测功率。
  7. 根据权利要求6所述的制氢控制方法,其特征在于,所述调整各所述制氢电源的制氢预测功率,包括:
    调整各所述制氢电源的供能比例。
  8. 根据权利要求6所述的制氢控制方法,其特征在于,获取任一所述制氢电源在任一所述制氢时间段的可用制氢预测功率的过程,包括:
    获取所述制氢电源在所述制氢时间段内的预测功率和制氢装置的额定制氢预测功率;
    将所述预测功率和所述额定制氢预测功率中的较小值,作为所述制氢电源在所述制氢时间段内的可用制氢预测功率。
  9. 根据权利要求1所述的制氢控制方法,其特征在于,所述调整各所述制氢电源以相应制氢预测功率运行的制氢时长,得到多个制氢方案,包括:
    在所述制氢时间段的时长范围内调整各所述制氢电源以相应制氢预测功率运行的制氢时长,得到多个制氢方案。
  10. 根据权利要求1-9任一项所述的制氢控制方法,其特征在于,所述多种制氢电源包括新能源发电系统、储能系统和交流电网;
    所述获取各所述制氢电源在各制氢时间段的制氢预测功率,包括:
    获取氢气需求总量,以及所述新能源发电系统的输出功率用于制氢的情况下的氢气预测产量;
    若所述氢气预测产量小于所述氢气需求总量,获取各所述制氢电源在各制氢时间段的制氢预测功率;
    若所述氢气预测产量大于等于所述氢气需求总量,控制所述新能源发电系统为制氢装置供电;
    控制所述储能系统处于充电模式。
  11. 根据权利要求10所述的制氢控制方法,其特征在于,所述预设产氢范围基于所述氢气需求总量设置。
  12. 根据权利要求10所述的制氢控制方法,其特征在于,所述获取氢气需求总量,以及所述新能源发电系统的输出功率用于制氢的情况下的氢气预测产量,包括:
    获取所述新能源发电系统在制氢日内的输出功率预测数据和所述制氢系统在所述制氢日内的氢气需求预测数据;
    根据所述输出功率预测数据确定所述制氢日内的氢气预测产量;
    根据所述氢气需求预测数据确定所述制氢日内的氢气需求总量。
  13. 根据权利要求12所述的制氢控制方法,其特征在于,确定所述目标制氢时间区间的过程,包括:
    根据所述氢气需求预测数据将所述制氢日划分为多个制氢时间区间;
    分别将各所述制氢时间区间作为目标制氢时间区间。
  14. 一种能量调度装置,其特征在于,包括:存储器和处理器;所述存储器存储有适于所述处理器执行的程序,以实现权利要求1-13任一项所述的制氢控制方法的步骤。
  15. 一种制氢系统,其特征在于,包括:多种制氢电源、制氢装置和权利要求14所述的能量调度装置,其中,
    各所述制氢电源的输出端分别与所述制氢装置的电源端相连;
    所述能量调度装置分别与各所述制氢电源以及所述制氢装置相连。
PCT/CN2022/096526 2021-07-27 2022-06-01 一种制氢控制方法及其应用装置 WO2023005411A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110849285.6 2021-07-27
CN202110849285.6A CN113572158B (zh) 2021-07-27 2021-07-27 一种制氢控制方法及其应用装置

Publications (1)

Publication Number Publication Date
WO2023005411A1 true WO2023005411A1 (zh) 2023-02-02

Family

ID=78167861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096526 WO2023005411A1 (zh) 2021-07-27 2022-06-01 一种制氢控制方法及其应用装置

Country Status (2)

Country Link
CN (1) CN113572158B (zh)
WO (1) WO2023005411A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113572158B (zh) * 2021-07-27 2023-11-24 阳光新能源开发股份有限公司 一种制氢控制方法及其应用装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108155662A (zh) * 2016-12-06 2018-06-12 北京天诚同创电气有限公司 风电制氢的控制方法和装置
JP2019170097A (ja) * 2018-03-23 2019-10-03 東京瓦斯株式会社 水素製造制御システム
CN111365607A (zh) * 2020-03-20 2020-07-03 重庆大学 基于智能预测与控制的车载氢气瓶三级加注方法
CN112736968A (zh) * 2020-12-24 2021-04-30 合肥阳光新能源科技有限公司 一种新能源制氢系统及其控制方法
CN113122879A (zh) * 2021-04-16 2021-07-16 阳光新能源开发有限公司 一种制氢控制方法及制氢系统
CN113572158A (zh) * 2021-07-27 2021-10-29 阳光新能源开发有限公司 一种制氢控制方法及其应用装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972550A (zh) * 2017-03-20 2017-07-21 国网浙江省电力公司嘉兴供电公司 一种基于潮汐能和光能的虚拟电厂功率调节方法
WO2020121447A1 (ja) * 2018-12-12 2020-06-18 東芝エネルギーシステムズ株式会社 水素システムの制御装置、および水素システムの制御方法
EP3896815A4 (en) * 2018-12-12 2022-07-27 Toshiba Energy Systems & Solutions Corporation HYDROGEN SYSTEM CONTROL DEVICE AND METHOD
JP7231312B2 (ja) * 2019-05-31 2023-03-01 東芝エネルギーシステムズ株式会社 水素製造システムの制御装置、及び水素製造システムの制御方法
CN112725832A (zh) * 2020-12-18 2021-04-30 阳光电源股份有限公司 一种水电解制氢控制方法、系统及控制器
CN112968448B (zh) * 2021-02-26 2022-02-01 清华四川能源互联网研究院 设备容量配置方法和相关装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108155662A (zh) * 2016-12-06 2018-06-12 北京天诚同创电气有限公司 风电制氢的控制方法和装置
JP2019170097A (ja) * 2018-03-23 2019-10-03 東京瓦斯株式会社 水素製造制御システム
CN111365607A (zh) * 2020-03-20 2020-07-03 重庆大学 基于智能预测与控制的车载氢气瓶三级加注方法
CN112736968A (zh) * 2020-12-24 2021-04-30 合肥阳光新能源科技有限公司 一种新能源制氢系统及其控制方法
CN113122879A (zh) * 2021-04-16 2021-07-16 阳光新能源开发有限公司 一种制氢控制方法及制氢系统
CN113572158A (zh) * 2021-07-27 2021-10-29 阳光新能源开发有限公司 一种制氢控制方法及其应用装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG DAWEI, QI DEQING; CAI GUOWEI: "RESEARCH OF OUTPUT POWER SMOOTHING METHOD OF WIND FARM WITH HYDROGEN PRODUCING SYSTEM", TAIYANGNENG-XUEBAO : JIKAN = ACTA ENERGIAE SOLARIS SINICA, ZHONG GUO TAI YANG NENG XUE HUI, CN, vol. 37, no. 12, 28 December 2016 (2016-12-28), CN , pages 3155 - 3162, XP093030448, ISSN: 0254-0096, DOI: 10.19912/j.0254-0096.2016.12.025 *

Also Published As

Publication number Publication date
CN113572158B (zh) 2023-11-24
CN113572158A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
CN102446115B (zh) 一种虚拟机的动态部署方法
Changtian et al. Energy-aware genetic algorithms for task scheduling in cloud computing
Quan et al. Task scheduling for energy consumption constrained parallel applications on heterogeneous computing systems
CN108319502A (zh) 一种基于移动边缘计算的d2d任务分配的方法及装置
CN103823718B (zh) 一种面向绿色云计算的资源配置方法
CN108416465B (zh) 一种移动云环境下的工作流优化方法
CN111813506A (zh) 一种基于粒子群算法资源感知计算迁移方法、装置及介质
WO2023005411A1 (zh) 一种制氢控制方法及其应用装置
CN112214301A (zh) 面向智慧城市基于用户偏好的动态计算迁移方法及装置
Song et al. An efficient scheduling algorithm for energy consumption constrained parallel applications on heterogeneous distributed systems
CN110830560A (zh) 一种基于强化学习的多用户移动边缘计算迁移方法
CN113159539B (zh) 多层边缘计算系统中联合绿色能量调度和动态任务分配方法
CN110189056A (zh) 一种电力系统调度的方法、系统及设备
CN104102532A (zh) 一种异构集群中基于低能耗的科学工作流调度方法
CN107622331A (zh) 一种发电机组与电力用户直接交易方式的优化方法和装置
CN107025610A (zh) 一种数据中心成本优化方法
CN113327065B (zh) 针对发电侧的用户复杂用电情况的能源管理方法及系统
CN112667377A (zh) 一种面向电力芯片混合多核系统的任务调度优化方法
Caux et al. Smart datacenter electrical load model for renewable sources management
CN115185651A (zh) 一种基于云计算的工作流优化调度算法
CN111861278B (zh) 一种电力系统的用电负荷峰谷时段划分方法及系统
CN115130842A (zh) 风光火一体化基地配置方法及装置
CN114418232A (zh) 储能系统运行优化方法、系统、服务器及存储介质
CN114069669A (zh) 一种共享储能运行模式控制方法
CN113852093A (zh) 一种储能装置与多晶硅负荷聚合调频方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE